]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_asm.c
bn/bn_asm.c: make it indent-friendly.
[thirdparty/openssl.git] / crypto / bn / bn_asm.c
1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63
64 #include <assert.h>
65 #include <openssl/crypto.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68
69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
70
71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72 {
73 BN_ULONG c1=0;
74
75 assert(num >= 0);
76 if (num <= 0) return(c1);
77
78 #ifndef OPENSSL_SMALL_FOOTPRINT
79 while (num&~3)
80 {
81 mul_add(rp[0],ap[0],w,c1);
82 mul_add(rp[1],ap[1],w,c1);
83 mul_add(rp[2],ap[2],w,c1);
84 mul_add(rp[3],ap[3],w,c1);
85 ap+=4; rp+=4; num-=4;
86 }
87 #endif
88 while (num)
89 {
90 mul_add(rp[0],ap[0],w,c1);
91 ap++; rp++; num--;
92 }
93
94 return(c1);
95 }
96
97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98 {
99 BN_ULONG c1=0;
100
101 assert(num >= 0);
102 if (num <= 0) return(c1);
103
104 #ifndef OPENSSL_SMALL_FOOTPRINT
105 while (num&~3)
106 {
107 mul(rp[0],ap[0],w,c1);
108 mul(rp[1],ap[1],w,c1);
109 mul(rp[2],ap[2],w,c1);
110 mul(rp[3],ap[3],w,c1);
111 ap+=4; rp+=4; num-=4;
112 }
113 #endif
114 while (num)
115 {
116 mul(rp[0],ap[0],w,c1);
117 ap++; rp++; num--;
118 }
119 return(c1);
120 }
121
122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123 {
124 assert(n >= 0);
125 if (n <= 0) return;
126
127 #ifndef OPENSSL_SMALL_FOOTPRINT
128 while (n&~3)
129 {
130 sqr(r[0],r[1],a[0]);
131 sqr(r[2],r[3],a[1]);
132 sqr(r[4],r[5],a[2]);
133 sqr(r[6],r[7],a[3]);
134 a+=4; r+=8; n-=4;
135 }
136 #endif
137 while (n)
138 {
139 sqr(r[0],r[1],a[0]);
140 a++; r+=2; n--;
141 }
142 }
143
144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
145
146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147 {
148 BN_ULONG c=0;
149 BN_ULONG bl,bh;
150
151 assert(num >= 0);
152 if (num <= 0) return((BN_ULONG)0);
153
154 bl=LBITS(w);
155 bh=HBITS(w);
156
157 #ifndef OPENSSL_SMALL_FOOTPRINT
158 while (num&~3)
159 {
160 mul_add(rp[0],ap[0],bl,bh,c);
161 mul_add(rp[1],ap[1],bl,bh,c);
162 mul_add(rp[2],ap[2],bl,bh,c);
163 mul_add(rp[3],ap[3],bl,bh,c);
164 ap+=4; rp+=4; num-=4;
165 }
166 #endif
167 while (num)
168 {
169 mul_add(rp[0],ap[0],bl,bh,c);
170 ap++; rp++; num--;
171 }
172 return(c);
173 }
174
175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176 {
177 BN_ULONG carry=0;
178 BN_ULONG bl,bh;
179
180 assert(num >= 0);
181 if (num <= 0) return((BN_ULONG)0);
182
183 bl=LBITS(w);
184 bh=HBITS(w);
185
186 #ifndef OPENSSL_SMALL_FOOTPRINT
187 while (num&~3)
188 {
189 mul(rp[0],ap[0],bl,bh,carry);
190 mul(rp[1],ap[1],bl,bh,carry);
191 mul(rp[2],ap[2],bl,bh,carry);
192 mul(rp[3],ap[3],bl,bh,carry);
193 ap+=4; rp+=4; num-=4;
194 }
195 #endif
196 while (num)
197 {
198 mul(rp[0],ap[0],bl,bh,carry);
199 ap++; rp++; num--;
200 }
201 return(carry);
202 }
203
204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205 {
206 assert(n >= 0);
207 if (n <= 0) return;
208
209 #ifndef OPENSSL_SMALL_FOOTPRINT
210 while (n&~3)
211 {
212 sqr64(r[0],r[1],a[0]);
213 sqr64(r[2],r[3],a[1]);
214 sqr64(r[4],r[5],a[2]);
215 sqr64(r[6],r[7],a[3]);
216 a+=4; r+=8; n-=4;
217 }
218 #endif
219 while (n)
220 {
221 sqr64(r[0],r[1],a[0]);
222 a++; r+=2; n--;
223 }
224 }
225
226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
227
228 #if defined(BN_LLONG) && defined(BN_DIV2W)
229
230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231 {
232 return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233 }
234
235 #else
236
237 /* Divide h,l by d and return the result. */
238 /* I need to test this some more :-( */
239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240 {
241 BN_ULONG dh,dl,q,ret=0,th,tl,t;
242 int i,count=2;
243
244 if (d == 0) return(BN_MASK2);
245
246 i=BN_num_bits_word(d);
247 assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
248
249 i=BN_BITS2-i;
250 if (h >= d) h-=d;
251
252 if (i)
253 {
254 d<<=i;
255 h=(h<<i)|(l>>(BN_BITS2-i));
256 l<<=i;
257 }
258 dh=(d&BN_MASK2h)>>BN_BITS4;
259 dl=(d&BN_MASK2l);
260 for (;;)
261 {
262 if ((h>>BN_BITS4) == dh)
263 q=BN_MASK2l;
264 else
265 q=h/dh;
266
267 th=q*dh;
268 tl=dl*q;
269 for (;;)
270 {
271 t=h-th;
272 if ((t&BN_MASK2h) ||
273 ((tl) <= (
274 (t<<BN_BITS4)|
275 ((l&BN_MASK2h)>>BN_BITS4))))
276 break;
277 q--;
278 th-=dh;
279 tl-=dl;
280 }
281 t=(tl>>BN_BITS4);
282 tl=(tl<<BN_BITS4)&BN_MASK2h;
283 th+=t;
284
285 if (l < tl) th++;
286 l-=tl;
287 if (h < th)
288 {
289 h+=d;
290 q--;
291 }
292 h-=th;
293
294 if (--count == 0) break;
295
296 ret=q<<BN_BITS4;
297 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298 l=(l&BN_MASK2l)<<BN_BITS4;
299 }
300 ret|=q;
301 return(ret);
302 }
303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
304
305 #ifdef BN_LLONG
306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307 {
308 BN_ULLONG ll=0;
309
310 assert(n >= 0);
311 if (n <= 0) return((BN_ULONG)0);
312
313 #ifndef OPENSSL_SMALL_FOOTPRINT
314 while (n&~3)
315 {
316 ll+=(BN_ULLONG)a[0]+b[0];
317 r[0]=(BN_ULONG)ll&BN_MASK2;
318 ll>>=BN_BITS2;
319 ll+=(BN_ULLONG)a[1]+b[1];
320 r[1]=(BN_ULONG)ll&BN_MASK2;
321 ll>>=BN_BITS2;
322 ll+=(BN_ULLONG)a[2]+b[2];
323 r[2]=(BN_ULONG)ll&BN_MASK2;
324 ll>>=BN_BITS2;
325 ll+=(BN_ULLONG)a[3]+b[3];
326 r[3]=(BN_ULONG)ll&BN_MASK2;
327 ll>>=BN_BITS2;
328 a+=4; b+=4; r+=4; n-=4;
329 }
330 #endif
331 while (n)
332 {
333 ll+=(BN_ULLONG)a[0]+b[0];
334 r[0]=(BN_ULONG)ll&BN_MASK2;
335 ll>>=BN_BITS2;
336 a++; b++; r++; n--;
337 }
338 return((BN_ULONG)ll);
339 }
340 #else /* !BN_LLONG */
341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342 {
343 BN_ULONG c,l,t;
344
345 assert(n >= 0);
346 if (n <= 0) return((BN_ULONG)0);
347
348 c=0;
349 #ifndef OPENSSL_SMALL_FOOTPRINT
350 while (n&~3)
351 {
352 t=a[0];
353 t=(t+c)&BN_MASK2;
354 c=(t < c);
355 l=(t+b[0])&BN_MASK2;
356 c+=(l < t);
357 r[0]=l;
358 t=a[1];
359 t=(t+c)&BN_MASK2;
360 c=(t < c);
361 l=(t+b[1])&BN_MASK2;
362 c+=(l < t);
363 r[1]=l;
364 t=a[2];
365 t=(t+c)&BN_MASK2;
366 c=(t < c);
367 l=(t+b[2])&BN_MASK2;
368 c+=(l < t);
369 r[2]=l;
370 t=a[3];
371 t=(t+c)&BN_MASK2;
372 c=(t < c);
373 l=(t+b[3])&BN_MASK2;
374 c+=(l < t);
375 r[3]=l;
376 a+=4; b+=4; r+=4; n-=4;
377 }
378 #endif
379 while(n)
380 {
381 t=a[0];
382 t=(t+c)&BN_MASK2;
383 c=(t < c);
384 l=(t+b[0])&BN_MASK2;
385 c+=(l < t);
386 r[0]=l;
387 a++; b++; r++; n--;
388 }
389 return((BN_ULONG)c);
390 }
391 #endif /* !BN_LLONG */
392
393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394 {
395 BN_ULONG t1,t2;
396 int c=0;
397
398 assert(n >= 0);
399 if (n <= 0) return((BN_ULONG)0);
400
401 #ifndef OPENSSL_SMALL_FOOTPRINT
402 while (n&~3)
403 {
404 t1=a[0]; t2=b[0];
405 r[0]=(t1-t2-c)&BN_MASK2;
406 if (t1 != t2) c=(t1 < t2);
407 t1=a[1]; t2=b[1];
408 r[1]=(t1-t2-c)&BN_MASK2;
409 if (t1 != t2) c=(t1 < t2);
410 t1=a[2]; t2=b[2];
411 r[2]=(t1-t2-c)&BN_MASK2;
412 if (t1 != t2) c=(t1 < t2);
413 t1=a[3]; t2=b[3];
414 r[3]=(t1-t2-c)&BN_MASK2;
415 if (t1 != t2) c=(t1 < t2);
416 a+=4; b+=4; r+=4; n-=4;
417 }
418 #endif
419 while (n)
420 {
421 t1=a[0]; t2=b[0];
422 r[0]=(t1-t2-c)&BN_MASK2;
423 if (t1 != t2) c=(t1 < t2);
424 a++; b++; r++; n--;
425 }
426 return(c);
427 }
428
429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
430
431 #undef bn_mul_comba8
432 #undef bn_mul_comba4
433 #undef bn_sqr_comba8
434 #undef bn_sqr_comba4
435
436 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
440
441 #ifdef BN_LLONG
442 /*
443 * Keep in mind that additions to multiplication result can not
444 * overflow, because its high half cannot be all-ones.
445 */
446 # define mul_add_c(a,b,c0,c1,c2) do { \
447 BN_ULONG hi; \
448 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
449 t += c0; /* no carry */ \
450 c0 = (BN_ULONG)Lw(t); \
451 hi = (BN_ULONG)Hw(t); \
452 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
453 } while(0)
454
455 # define mul_add_c2(a,b,c0,c1,c2) do { \
456 BN_ULONG hi; \
457 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
458 BN_ULLONG tt = t+c0; /* no carry */ \
459 c0 = (BN_ULONG)Lw(tt); \
460 hi = (BN_ULONG)Hw(tt); \
461 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
462 t += c0; /* no carry */ \
463 c0 = (BN_ULONG)Lw(t); \
464 hi = (BN_ULONG)Hw(t); \
465 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
466 } while(0)
467
468 # define sqr_add_c(a,i,c0,c1,c2) do { \
469 BN_ULONG hi; \
470 BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \
471 t += c0; /* no carry */ \
472 c0 = (BN_ULONG)Lw(t); \
473 hi = (BN_ULONG)Hw(t); \
474 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
475 } while(0)
476
477 # define sqr_add_c2(a,i,j,c0,c1,c2) \
478 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
479
480 #elif defined(BN_UMULT_LOHI)
481 /*
482 * Keep in mind that additions to hi can not overflow, because
483 * the high word of a multiplication result cannot be all-ones.
484 */
485 # define mul_add_c(a,b,c0,c1,c2) do { \
486 BN_ULONG ta = (a), tb = (b); \
487 BN_ULONG lo, hi; \
488 BN_UMULT_LOHI(lo,hi,ta,tb); \
489 c0 += lo; hi += (c0<lo)?1:0; \
490 c1 += hi; c2 += (c1<hi)?1:0; \
491 } while(0)
492
493 # define mul_add_c2(a,b,c0,c1,c2) do { \
494 BN_ULONG ta = (a), tb = (b); \
495 BN_ULONG lo, hi, tt; \
496 BN_UMULT_LOHI(lo,hi,ta,tb); \
497 c0 += lo; tt = hi+((c0<lo)?1:0); \
498 c1 += tt; c2 += (c1<tt)?1:0; \
499 c0 += lo; hi += (c0<lo)?1:0; \
500 c1 += hi; c2 += (c1<hi)?1:0; \
501 } while(0)
502
503 # define sqr_add_c(a,i,c0,c1,c2) do { \
504 BN_ULONG ta = (a)[i]; \
505 BN_ULONG lo, hi; \
506 BN_UMULT_LOHI(lo,hi,ta,ta); \
507 c0 += lo; hi += (c0<lo)?1:0; \
508 c1 += hi; c2 += (c1<hi)?1:0; \
509 } while(0)
510
511 # define sqr_add_c2(a,i,j,c0,c1,c2) \
512 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
513
514 #elif defined(BN_UMULT_HIGH)
515 /*
516 * Keep in mind that additions to hi can not overflow, because
517 * the high word of a multiplication result cannot be all-ones.
518 */
519 # define mul_add_c(a,b,c0,c1,c2) do { \
520 BN_ULONG ta = (a), tb = (b); \
521 BN_ULONG lo = ta * tb; \
522 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
523 c0 += lo; hi += (c0<lo)?1:0; \
524 c1 += hi; c2 += (c1<hi)?1:0; \
525 } while(0)
526
527 # define mul_add_c2(a,b,c0,c1,c2) do { \
528 BN_ULONG ta = (a), tb = (b), tt; \
529 BN_ULONG lo = ta * tb; \
530 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
531 c0 += lo; tt = hi + ((c0<lo)?1:0); \
532 c1 += tt; c2 += (c1<tt)?1:0; \
533 c0 += lo; hi += (c0<lo)?1:0; \
534 c1 += hi; c2 += (c1<hi)?1:0; \
535 } while(0)
536
537 # define sqr_add_c(a,i,c0,c1,c2) do { \
538 BN_ULONG ta = (a)[i]; \
539 BN_ULONG lo = ta * ta; \
540 BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \
541 c0 += lo; hi += (c0<lo)?1:0; \
542 c1 += hi; c2 += (c1<hi)?1:0; \
543 } while(0)
544
545 #define sqr_add_c2(a,i,j,c0,c1,c2) \
546 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
547
548 #else /* !BN_LLONG */
549 /*
550 * Keep in mind that additions to hi can not overflow, because
551 * the high word of a multiplication result cannot be all-ones.
552 */
553 # define mul_add_c(a,b,c0,c1,c2) do { \
554 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
555 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
556 mul64(lo,hi,bl,bh); \
557 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
558 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
559 } while(0)
560
561 # define mul_add_c2(a,b,c0,c1,c2) do { \
562 BN_ULONG tt; \
563 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
564 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
565 mul64(lo,hi,bl,bh); \
566 tt = hi; \
567 c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \
568 c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \
569 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
570 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
571 } while(0)
572
573 # define sqr_add_c(a,i,c0,c1,c2) do { \
574 BN_ULONG lo, hi; \
575 sqr64(lo,hi,(a)[i]); \
576 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
577 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
578 } while(0)
579
580 # define sqr_add_c2(a,i,j,c0,c1,c2) \
581 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
582 #endif /* !BN_LLONG */
583
584 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
585 {
586 BN_ULONG c1,c2,c3;
587
588 c1=0;
589 c2=0;
590 c3=0;
591 mul_add_c(a[0],b[0],c1,c2,c3);
592 r[0]=c1;
593 c1=0;
594 mul_add_c(a[0],b[1],c2,c3,c1);
595 mul_add_c(a[1],b[0],c2,c3,c1);
596 r[1]=c2;
597 c2=0;
598 mul_add_c(a[2],b[0],c3,c1,c2);
599 mul_add_c(a[1],b[1],c3,c1,c2);
600 mul_add_c(a[0],b[2],c3,c1,c2);
601 r[2]=c3;
602 c3=0;
603 mul_add_c(a[0],b[3],c1,c2,c3);
604 mul_add_c(a[1],b[2],c1,c2,c3);
605 mul_add_c(a[2],b[1],c1,c2,c3);
606 mul_add_c(a[3],b[0],c1,c2,c3);
607 r[3]=c1;
608 c1=0;
609 mul_add_c(a[4],b[0],c2,c3,c1);
610 mul_add_c(a[3],b[1],c2,c3,c1);
611 mul_add_c(a[2],b[2],c2,c3,c1);
612 mul_add_c(a[1],b[3],c2,c3,c1);
613 mul_add_c(a[0],b[4],c2,c3,c1);
614 r[4]=c2;
615 c2=0;
616 mul_add_c(a[0],b[5],c3,c1,c2);
617 mul_add_c(a[1],b[4],c3,c1,c2);
618 mul_add_c(a[2],b[3],c3,c1,c2);
619 mul_add_c(a[3],b[2],c3,c1,c2);
620 mul_add_c(a[4],b[1],c3,c1,c2);
621 mul_add_c(a[5],b[0],c3,c1,c2);
622 r[5]=c3;
623 c3=0;
624 mul_add_c(a[6],b[0],c1,c2,c3);
625 mul_add_c(a[5],b[1],c1,c2,c3);
626 mul_add_c(a[4],b[2],c1,c2,c3);
627 mul_add_c(a[3],b[3],c1,c2,c3);
628 mul_add_c(a[2],b[4],c1,c2,c3);
629 mul_add_c(a[1],b[5],c1,c2,c3);
630 mul_add_c(a[0],b[6],c1,c2,c3);
631 r[6]=c1;
632 c1=0;
633 mul_add_c(a[0],b[7],c2,c3,c1);
634 mul_add_c(a[1],b[6],c2,c3,c1);
635 mul_add_c(a[2],b[5],c2,c3,c1);
636 mul_add_c(a[3],b[4],c2,c3,c1);
637 mul_add_c(a[4],b[3],c2,c3,c1);
638 mul_add_c(a[5],b[2],c2,c3,c1);
639 mul_add_c(a[6],b[1],c2,c3,c1);
640 mul_add_c(a[7],b[0],c2,c3,c1);
641 r[7]=c2;
642 c2=0;
643 mul_add_c(a[7],b[1],c3,c1,c2);
644 mul_add_c(a[6],b[2],c3,c1,c2);
645 mul_add_c(a[5],b[3],c3,c1,c2);
646 mul_add_c(a[4],b[4],c3,c1,c2);
647 mul_add_c(a[3],b[5],c3,c1,c2);
648 mul_add_c(a[2],b[6],c3,c1,c2);
649 mul_add_c(a[1],b[7],c3,c1,c2);
650 r[8]=c3;
651 c3=0;
652 mul_add_c(a[2],b[7],c1,c2,c3);
653 mul_add_c(a[3],b[6],c1,c2,c3);
654 mul_add_c(a[4],b[5],c1,c2,c3);
655 mul_add_c(a[5],b[4],c1,c2,c3);
656 mul_add_c(a[6],b[3],c1,c2,c3);
657 mul_add_c(a[7],b[2],c1,c2,c3);
658 r[9]=c1;
659 c1=0;
660 mul_add_c(a[7],b[3],c2,c3,c1);
661 mul_add_c(a[6],b[4],c2,c3,c1);
662 mul_add_c(a[5],b[5],c2,c3,c1);
663 mul_add_c(a[4],b[6],c2,c3,c1);
664 mul_add_c(a[3],b[7],c2,c3,c1);
665 r[10]=c2;
666 c2=0;
667 mul_add_c(a[4],b[7],c3,c1,c2);
668 mul_add_c(a[5],b[6],c3,c1,c2);
669 mul_add_c(a[6],b[5],c3,c1,c2);
670 mul_add_c(a[7],b[4],c3,c1,c2);
671 r[11]=c3;
672 c3=0;
673 mul_add_c(a[7],b[5],c1,c2,c3);
674 mul_add_c(a[6],b[6],c1,c2,c3);
675 mul_add_c(a[5],b[7],c1,c2,c3);
676 r[12]=c1;
677 c1=0;
678 mul_add_c(a[6],b[7],c2,c3,c1);
679 mul_add_c(a[7],b[6],c2,c3,c1);
680 r[13]=c2;
681 c2=0;
682 mul_add_c(a[7],b[7],c3,c1,c2);
683 r[14]=c3;
684 r[15]=c1;
685 }
686
687 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
688 {
689 BN_ULONG c1,c2,c3;
690
691 c1=0;
692 c2=0;
693 c3=0;
694 mul_add_c(a[0],b[0],c1,c2,c3);
695 r[0]=c1;
696 c1=0;
697 mul_add_c(a[0],b[1],c2,c3,c1);
698 mul_add_c(a[1],b[0],c2,c3,c1);
699 r[1]=c2;
700 c2=0;
701 mul_add_c(a[2],b[0],c3,c1,c2);
702 mul_add_c(a[1],b[1],c3,c1,c2);
703 mul_add_c(a[0],b[2],c3,c1,c2);
704 r[2]=c3;
705 c3=0;
706 mul_add_c(a[0],b[3],c1,c2,c3);
707 mul_add_c(a[1],b[2],c1,c2,c3);
708 mul_add_c(a[2],b[1],c1,c2,c3);
709 mul_add_c(a[3],b[0],c1,c2,c3);
710 r[3]=c1;
711 c1=0;
712 mul_add_c(a[3],b[1],c2,c3,c1);
713 mul_add_c(a[2],b[2],c2,c3,c1);
714 mul_add_c(a[1],b[3],c2,c3,c1);
715 r[4]=c2;
716 c2=0;
717 mul_add_c(a[2],b[3],c3,c1,c2);
718 mul_add_c(a[3],b[2],c3,c1,c2);
719 r[5]=c3;
720 c3=0;
721 mul_add_c(a[3],b[3],c1,c2,c3);
722 r[6]=c1;
723 r[7]=c2;
724 }
725
726 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
727 {
728 BN_ULONG c1,c2,c3;
729
730 c1=0;
731 c2=0;
732 c3=0;
733 sqr_add_c(a,0,c1,c2,c3);
734 r[0]=c1;
735 c1=0;
736 sqr_add_c2(a,1,0,c2,c3,c1);
737 r[1]=c2;
738 c2=0;
739 sqr_add_c(a,1,c3,c1,c2);
740 sqr_add_c2(a,2,0,c3,c1,c2);
741 r[2]=c3;
742 c3=0;
743 sqr_add_c2(a,3,0,c1,c2,c3);
744 sqr_add_c2(a,2,1,c1,c2,c3);
745 r[3]=c1;
746 c1=0;
747 sqr_add_c(a,2,c2,c3,c1);
748 sqr_add_c2(a,3,1,c2,c3,c1);
749 sqr_add_c2(a,4,0,c2,c3,c1);
750 r[4]=c2;
751 c2=0;
752 sqr_add_c2(a,5,0,c3,c1,c2);
753 sqr_add_c2(a,4,1,c3,c1,c2);
754 sqr_add_c2(a,3,2,c3,c1,c2);
755 r[5]=c3;
756 c3=0;
757 sqr_add_c(a,3,c1,c2,c3);
758 sqr_add_c2(a,4,2,c1,c2,c3);
759 sqr_add_c2(a,5,1,c1,c2,c3);
760 sqr_add_c2(a,6,0,c1,c2,c3);
761 r[6]=c1;
762 c1=0;
763 sqr_add_c2(a,7,0,c2,c3,c1);
764 sqr_add_c2(a,6,1,c2,c3,c1);
765 sqr_add_c2(a,5,2,c2,c3,c1);
766 sqr_add_c2(a,4,3,c2,c3,c1);
767 r[7]=c2;
768 c2=0;
769 sqr_add_c(a,4,c3,c1,c2);
770 sqr_add_c2(a,5,3,c3,c1,c2);
771 sqr_add_c2(a,6,2,c3,c1,c2);
772 sqr_add_c2(a,7,1,c3,c1,c2);
773 r[8]=c3;
774 c3=0;
775 sqr_add_c2(a,7,2,c1,c2,c3);
776 sqr_add_c2(a,6,3,c1,c2,c3);
777 sqr_add_c2(a,5,4,c1,c2,c3);
778 r[9]=c1;
779 c1=0;
780 sqr_add_c(a,5,c2,c3,c1);
781 sqr_add_c2(a,6,4,c2,c3,c1);
782 sqr_add_c2(a,7,3,c2,c3,c1);
783 r[10]=c2;
784 c2=0;
785 sqr_add_c2(a,7,4,c3,c1,c2);
786 sqr_add_c2(a,6,5,c3,c1,c2);
787 r[11]=c3;
788 c3=0;
789 sqr_add_c(a,6,c1,c2,c3);
790 sqr_add_c2(a,7,5,c1,c2,c3);
791 r[12]=c1;
792 c1=0;
793 sqr_add_c2(a,7,6,c2,c3,c1);
794 r[13]=c2;
795 c2=0;
796 sqr_add_c(a,7,c3,c1,c2);
797 r[14]=c3;
798 r[15]=c1;
799 }
800
801 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
802 {
803 BN_ULONG c1,c2,c3;
804
805 c1=0;
806 c2=0;
807 c3=0;
808 sqr_add_c(a,0,c1,c2,c3);
809 r[0]=c1;
810 c1=0;
811 sqr_add_c2(a,1,0,c2,c3,c1);
812 r[1]=c2;
813 c2=0;
814 sqr_add_c(a,1,c3,c1,c2);
815 sqr_add_c2(a,2,0,c3,c1,c2);
816 r[2]=c3;
817 c3=0;
818 sqr_add_c2(a,3,0,c1,c2,c3);
819 sqr_add_c2(a,2,1,c1,c2,c3);
820 r[3]=c1;
821 c1=0;
822 sqr_add_c(a,2,c2,c3,c1);
823 sqr_add_c2(a,3,1,c2,c3,c1);
824 r[4]=c2;
825 c2=0;
826 sqr_add_c2(a,3,2,c3,c1,c2);
827 r[5]=c3;
828 c3=0;
829 sqr_add_c(a,3,c1,c2,c3);
830 r[6]=c1;
831 r[7]=c2;
832 }
833
834 #ifdef OPENSSL_NO_ASM
835 #ifdef OPENSSL_BN_ASM_MONT
836 #include <alloca.h>
837 /*
838 * This is essentially reference implementation, which may or may not
839 * result in performance improvement. E.g. on IA-32 this routine was
840 * observed to give 40% faster rsa1024 private key operations and 10%
841 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
842 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
843 * reference implementation, one to be used as starting point for
844 * platform-specific assembler. Mentioned numbers apply to compiler
845 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
846 * can vary not only from platform to platform, but even for compiler
847 * versions. Assembler vs. assembler improvement coefficients can
848 * [and are known to] differ and are to be documented elsewhere.
849 */
850 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
851 {
852 BN_ULONG c0,c1,ml,*tp,n0;
853 #ifdef mul64
854 BN_ULONG mh;
855 #endif
856 volatile BN_ULONG *vp;
857 int i=0,j;
858
859 #if 0 /* template for platform-specific implementation */
860 if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
861 #endif
862 vp = tp = alloca((num+2)*sizeof(BN_ULONG));
863
864 n0 = *n0p;
865
866 c0 = 0;
867 ml = bp[0];
868 #ifdef mul64
869 mh = HBITS(ml);
870 ml = LBITS(ml);
871 for (j=0;j<num;++j)
872 mul(tp[j],ap[j],ml,mh,c0);
873 #else
874 for (j=0;j<num;++j)
875 mul(tp[j],ap[j],ml,c0);
876 #endif
877
878 tp[num] = c0;
879 tp[num+1] = 0;
880 goto enter;
881
882 for(i=0;i<num;i++)
883 {
884 c0 = 0;
885 ml = bp[i];
886 #ifdef mul64
887 mh = HBITS(ml);
888 ml = LBITS(ml);
889 for (j=0;j<num;++j)
890 mul_add(tp[j],ap[j],ml,mh,c0);
891 #else
892 for (j=0;j<num;++j)
893 mul_add(tp[j],ap[j],ml,c0);
894 #endif
895 c1 = (tp[num] + c0)&BN_MASK2;
896 tp[num] = c1;
897 tp[num+1] = (c1<c0?1:0);
898 enter:
899 c1 = tp[0];
900 ml = (c1*n0)&BN_MASK2;
901 c0 = 0;
902 #ifdef mul64
903 mh = HBITS(ml);
904 ml = LBITS(ml);
905 mul_add(c1,np[0],ml,mh,c0);
906 #else
907 mul_add(c1,ml,np[0],c0);
908 #endif
909 for(j=1;j<num;j++)
910 {
911 c1 = tp[j];
912 #ifdef mul64
913 mul_add(c1,np[j],ml,mh,c0);
914 #else
915 mul_add(c1,ml,np[j],c0);
916 #endif
917 tp[j-1] = c1&BN_MASK2;
918 }
919 c1 = (tp[num] + c0)&BN_MASK2;
920 tp[num-1] = c1;
921 tp[num] = tp[num+1] + (c1<c0?1:0);
922 }
923
924 if (tp[num]!=0 || tp[num-1]>=np[num-1])
925 {
926 c0 = bn_sub_words(rp,tp,np,num);
927 if (tp[num]!=0 || c0==0)
928 {
929 for(i=0;i<num+2;i++) vp[i] = 0;
930 return 1;
931 }
932 }
933 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
934 vp[num] = 0;
935 vp[num+1] = 0;
936 return 1;
937 }
938 #else
939 /*
940 * Return value of 0 indicates that multiplication/convolution was not
941 * performed to signal the caller to fall down to alternative/original
942 * code-path.
943 */
944 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
945 { return 0; }
946 #endif /* OPENSSL_BN_ASM_MONT */
947 #endif
948
949 #else /* !BN_MUL_COMBA */
950
951 /* hmm... is it faster just to do a multiply? */
952 #undef bn_sqr_comba4
953 #undef bn_sqr_comba8
954 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
955 {
956 BN_ULONG t[8];
957 bn_sqr_normal(r,a,4,t);
958 }
959
960 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
961 {
962 BN_ULONG t[16];
963 bn_sqr_normal(r,a,8,t);
964 }
965
966 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
967 {
968 r[4]=bn_mul_words( &(r[0]),a,4,b[0]);
969 r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
970 r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
971 r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
972 }
973
974 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
975 {
976 r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
977 r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
978 r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
979 r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
980 r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
981 r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
982 r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
983 r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
984 }
985
986 #ifdef OPENSSL_NO_ASM
987 #ifdef OPENSSL_BN_ASM_MONT
988 #include <alloca.h>
989 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
990 {
991 BN_ULONG c0,c1,*tp,n0=*n0p;
992 volatile BN_ULONG *vp;
993 int i=0,j;
994
995 vp = tp = alloca((num+2)*sizeof(BN_ULONG));
996
997 for(i=0;i<=num;i++) tp[i]=0;
998
999 for(i=0;i<num;i++)
1000 {
1001 c0 = bn_mul_add_words(tp,ap,num,bp[i]);
1002 c1 = (tp[num] + c0)&BN_MASK2;
1003 tp[num] = c1;
1004 tp[num+1] = (c1<c0?1:0);
1005
1006 c0 = bn_mul_add_words(tp,np,num,tp[0]*n0);
1007 c1 = (tp[num] + c0)&BN_MASK2;
1008 tp[num] = c1;
1009 tp[num+1] += (c1<c0?1:0);
1010 for(j=0;j<=num;j++) tp[j]=tp[j+1];
1011 }
1012
1013 if (tp[num]!=0 || tp[num-1]>=np[num-1])
1014 {
1015 c0 = bn_sub_words(rp,tp,np,num);
1016 if (tp[num]!=0 || c0==0)
1017 {
1018 for(i=0;i<num+2;i++) vp[i] = 0;
1019 return 1;
1020 }
1021 }
1022 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
1023 vp[num] = 0;
1024 vp[num+1] = 0;
1025 return 1;
1026 }
1027 #else
1028 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1029 { return 0; }
1030 #endif /* OPENSSL_BN_ASM_MONT */
1031 #endif
1032
1033 #endif /* !BN_MUL_COMBA */