]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gcd.c
Put the first stage of my bignum debugging adventures into CVS. This code
[thirdparty/openssl.git] / crypto / bn / bn_gcd.c
1 /* crypto/bn/bn_gcd.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112 #include "cryptlib.h"
113 #include "bn_lcl.h"
114
115 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118 {
119 BIGNUM *a,*b,*t;
120 int ret=0;
121
122 bn_check_top(in_a);
123 bn_check_top(in_b);
124
125 BN_CTX_start(ctx);
126 a = BN_CTX_get(ctx);
127 b = BN_CTX_get(ctx);
128 if (a == NULL || b == NULL) goto err;
129
130 if (BN_copy(a,in_a) == NULL) goto err;
131 if (BN_copy(b,in_b) == NULL) goto err;
132 a->neg = 0;
133 b->neg = 0;
134
135 if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136 t=euclid(a,b);
137 if (t == NULL) goto err;
138
139 if (BN_copy(r,t) == NULL) goto err;
140 ret=1;
141 err:
142 BN_CTX_end(ctx);
143 bn_check_top(r);
144 return(ret);
145 }
146
147 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
148 {
149 BIGNUM *t;
150 int shifts=0;
151
152 bn_check_top(a);
153 bn_check_top(b);
154
155 /* 0 <= b <= a */
156 while (!BN_is_zero(b))
157 {
158 /* 0 < b <= a */
159
160 if (BN_is_odd(a))
161 {
162 if (BN_is_odd(b))
163 {
164 if (!BN_sub(a,a,b)) goto err;
165 if (!BN_rshift1(a,a)) goto err;
166 if (BN_cmp(a,b) < 0)
167 { t=a; a=b; b=t; }
168 }
169 else /* a odd - b even */
170 {
171 if (!BN_rshift1(b,b)) goto err;
172 if (BN_cmp(a,b) < 0)
173 { t=a; a=b; b=t; }
174 }
175 }
176 else /* a is even */
177 {
178 if (BN_is_odd(b))
179 {
180 if (!BN_rshift1(a,a)) goto err;
181 if (BN_cmp(a,b) < 0)
182 { t=a; a=b; b=t; }
183 }
184 else /* a even - b even */
185 {
186 if (!BN_rshift1(a,a)) goto err;
187 if (!BN_rshift1(b,b)) goto err;
188 shifts++;
189 }
190 }
191 /* 0 <= b <= a */
192 }
193
194 if (shifts)
195 {
196 if (!BN_lshift(a,a,shifts)) goto err;
197 }
198 bn_check_top(a);
199 return(a);
200 err:
201 return(NULL);
202 }
203
204
205 /* solves ax == 1 (mod n) */
206 BIGNUM *BN_mod_inverse(BIGNUM *in,
207 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
208 {
209 BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
210 BIGNUM *ret=NULL;
211 int sign;
212
213 bn_check_top(a);
214 bn_check_top(n);
215
216 BN_CTX_start(ctx);
217 A = BN_CTX_get(ctx);
218 B = BN_CTX_get(ctx);
219 X = BN_CTX_get(ctx);
220 D = BN_CTX_get(ctx);
221 M = BN_CTX_get(ctx);
222 Y = BN_CTX_get(ctx);
223 T = BN_CTX_get(ctx);
224 if (T == NULL) goto err;
225
226 if (in == NULL)
227 R=BN_new();
228 else
229 R=in;
230 if (R == NULL) goto err;
231
232 BN_one(X);
233 BN_zero(Y);
234 if (BN_copy(B,a) == NULL) goto err;
235 if (BN_copy(A,n) == NULL) goto err;
236 A->neg = 0;
237 if (B->neg || (BN_ucmp(B, A) >= 0))
238 {
239 if (!BN_nnmod(B, B, A, ctx)) goto err;
240 }
241 sign = -1;
242 /* From B = a mod |n|, A = |n| it follows that
243 *
244 * 0 <= B < A,
245 * -sign*X*a == B (mod |n|),
246 * sign*Y*a == A (mod |n|).
247 */
248
249 if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
250 {
251 /* Binary inversion algorithm; requires odd modulus.
252 * This is faster than the general algorithm if the modulus
253 * is sufficiently small (about 400 .. 500 bits on 32-bit
254 * sytems, but much more on 64-bit systems) */
255 int shift;
256
257 while (!BN_is_zero(B))
258 {
259 /*
260 * 0 < B < |n|,
261 * 0 < A <= |n|,
262 * (1) -sign*X*a == B (mod |n|),
263 * (2) sign*Y*a == A (mod |n|)
264 */
265
266 /* Now divide B by the maximum possible power of two in the integers,
267 * and divide X by the same value mod |n|.
268 * When we're done, (1) still holds. */
269 shift = 0;
270 while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
271 {
272 shift++;
273
274 if (BN_is_odd(X))
275 {
276 if (!BN_uadd(X, X, n)) goto err;
277 }
278 /* now X is even, so we can easily divide it by two */
279 if (!BN_rshift1(X, X)) goto err;
280 }
281 if (shift > 0)
282 {
283 if (!BN_rshift(B, B, shift)) goto err;
284 }
285
286
287 /* Same for A and Y. Afterwards, (2) still holds. */
288 shift = 0;
289 while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
290 {
291 shift++;
292
293 if (BN_is_odd(Y))
294 {
295 if (!BN_uadd(Y, Y, n)) goto err;
296 }
297 /* now Y is even */
298 if (!BN_rshift1(Y, Y)) goto err;
299 }
300 if (shift > 0)
301 {
302 if (!BN_rshift(A, A, shift)) goto err;
303 }
304
305
306 /* We still have (1) and (2).
307 * Both A and B are odd.
308 * The following computations ensure that
309 *
310 * 0 <= B < |n|,
311 * 0 < A < |n|,
312 * (1) -sign*X*a == B (mod |n|),
313 * (2) sign*Y*a == A (mod |n|),
314 *
315 * and that either A or B is even in the next iteration.
316 */
317 if (BN_ucmp(B, A) >= 0)
318 {
319 /* -sign*(X + Y)*a == B - A (mod |n|) */
320 if (!BN_uadd(X, X, Y)) goto err;
321 /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
322 * actually makes the algorithm slower */
323 if (!BN_usub(B, B, A)) goto err;
324 }
325 else
326 {
327 /* sign*(X + Y)*a == A - B (mod |n|) */
328 if (!BN_uadd(Y, Y, X)) goto err;
329 /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
330 if (!BN_usub(A, A, B)) goto err;
331 }
332 }
333 }
334 else
335 {
336 /* general inversion algorithm */
337
338 while (!BN_is_zero(B))
339 {
340 BIGNUM *tmp;
341
342 /*
343 * 0 < B < A,
344 * (*) -sign*X*a == B (mod |n|),
345 * sign*Y*a == A (mod |n|)
346 */
347
348 /* (D, M) := (A/B, A%B) ... */
349 if (BN_num_bits(A) == BN_num_bits(B))
350 {
351 if (!BN_one(D)) goto err;
352 if (!BN_sub(M,A,B)) goto err;
353 }
354 else if (BN_num_bits(A) == BN_num_bits(B) + 1)
355 {
356 /* A/B is 1, 2, or 3 */
357 if (!BN_lshift1(T,B)) goto err;
358 if (BN_ucmp(A,T) < 0)
359 {
360 /* A < 2*B, so D=1 */
361 if (!BN_one(D)) goto err;
362 if (!BN_sub(M,A,B)) goto err;
363 }
364 else
365 {
366 /* A >= 2*B, so D=2 or D=3 */
367 if (!BN_sub(M,A,T)) goto err;
368 if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
369 if (BN_ucmp(A,D) < 0)
370 {
371 /* A < 3*B, so D=2 */
372 if (!BN_set_word(D,2)) goto err;
373 /* M (= A - 2*B) already has the correct value */
374 }
375 else
376 {
377 /* only D=3 remains */
378 if (!BN_set_word(D,3)) goto err;
379 /* currently M = A - 2*B, but we need M = A - 3*B */
380 if (!BN_sub(M,M,B)) goto err;
381 }
382 }
383 }
384 else
385 {
386 if (!BN_div(D,M,A,B,ctx)) goto err;
387 }
388
389 /* Now
390 * A = D*B + M;
391 * thus we have
392 * (**) sign*Y*a == D*B + M (mod |n|).
393 */
394
395 tmp=A; /* keep the BIGNUM object, the value does not matter */
396
397 /* (A, B) := (B, A mod B) ... */
398 A=B;
399 B=M;
400 /* ... so we have 0 <= B < A again */
401
402 /* Since the former M is now B and the former B is now A,
403 * (**) translates into
404 * sign*Y*a == D*A + B (mod |n|),
405 * i.e.
406 * sign*Y*a - D*A == B (mod |n|).
407 * Similarly, (*) translates into
408 * -sign*X*a == A (mod |n|).
409 *
410 * Thus,
411 * sign*Y*a + D*sign*X*a == B (mod |n|),
412 * i.e.
413 * sign*(Y + D*X)*a == B (mod |n|).
414 *
415 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
416 * -sign*X*a == B (mod |n|),
417 * sign*Y*a == A (mod |n|).
418 * Note that X and Y stay non-negative all the time.
419 */
420
421 /* most of the time D is very small, so we can optimize tmp := D*X+Y */
422 if (BN_is_one(D))
423 {
424 if (!BN_add(tmp,X,Y)) goto err;
425 }
426 else
427 {
428 if (BN_is_word(D,2))
429 {
430 if (!BN_lshift1(tmp,X)) goto err;
431 }
432 else if (BN_is_word(D,4))
433 {
434 if (!BN_lshift(tmp,X,2)) goto err;
435 }
436 else if (D->top == 1)
437 {
438 if (!BN_copy(tmp,X)) goto err;
439 if (!BN_mul_word(tmp,D->d[0])) goto err;
440 }
441 else
442 {
443 if (!BN_mul(tmp,D,X,ctx)) goto err;
444 }
445 if (!BN_add(tmp,tmp,Y)) goto err;
446 }
447
448 M=Y; /* keep the BIGNUM object, the value does not matter */
449 Y=X;
450 X=tmp;
451 sign = -sign;
452 }
453 }
454
455 /*
456 * The while loop (Euclid's algorithm) ends when
457 * A == gcd(a,n);
458 * we have
459 * sign*Y*a == A (mod |n|),
460 * where Y is non-negative.
461 */
462
463 if (sign < 0)
464 {
465 if (!BN_sub(Y,n,Y)) goto err;
466 }
467 /* Now Y*a == A (mod |n|). */
468
469
470 if (BN_is_one(A))
471 {
472 /* Y*a == 1 (mod |n|) */
473 if (!Y->neg && BN_ucmp(Y,n) < 0)
474 {
475 if (!BN_copy(R,Y)) goto err;
476 }
477 else
478 {
479 if (!BN_nnmod(R,Y,n,ctx)) goto err;
480 }
481 }
482 else
483 {
484 BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
485 goto err;
486 }
487 ret=R;
488 err:
489 if ((ret == NULL) && (in == NULL)) BN_free(R);
490 BN_CTX_end(ctx);
491 bn_check_top(ret);
492 return(ret);
493 }