]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
Put the first stage of my bignum debugging adventures into CVS. This code
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96
97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98 #define MAX_ITERATIONS 50
99
100 static const BN_ULONG SQR_tb[16] =
101 { 0, 1, 4, 5, 16, 17, 20, 21,
102 64, 65, 68, 69, 80, 81, 84, 85 };
103 /* Platform-specific macros to accelerate squaring. */
104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105 #define SQR1(w) \
106 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
110 #define SQR0(w) \
111 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
114 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
115 #endif
116 #ifdef THIRTY_TWO_BIT
117 #define SQR1(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
120 #define SQR0(w) \
121 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
122 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
123 #endif
124 #ifdef SIXTEEN_BIT
125 #define SQR1(w) \
126 SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
127 #define SQR0(w) \
128 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
129 #endif
130 #ifdef EIGHT_BIT
131 #define SQR1(w) \
132 SQR_tb[(w) >> 4 & 0xF]
133 #define SQR0(w) \
134 SQR_tb[(w) & 15]
135 #endif
136
137 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138 * result is a polynomial r with degree < 2 * BN_BITS - 1
139 * The caller MUST ensure that the variables have the right amount
140 * of space allocated.
141 */
142 #ifdef EIGHT_BIT
143 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144 {
145 register BN_ULONG h, l, s;
146 BN_ULONG tab[4], top1b = a >> 7;
147 register BN_ULONG a1, a2;
148
149 a1 = a & (0x7F); a2 = a1 << 1;
150
151 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152
153 s = tab[b & 0x3]; l = s;
154 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6;
155 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156 s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2;
157
158 /* compensate for the top bit of a */
159
160 if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161
162 *r1 = h; *r0 = l;
163 }
164 #endif
165 #ifdef SIXTEEN_BIT
166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167 {
168 register BN_ULONG h, l, s;
169 BN_ULONG tab[4], top1b = a >> 15;
170 register BN_ULONG a1, a2;
171
172 a1 = a & (0x7FFF); a2 = a1 << 1;
173
174 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175
176 s = tab[b & 0x3]; l = s;
177 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14;
178 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12;
179 s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10;
180 s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8;
181 s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6;
182 s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4;
183 s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2;
184
185 /* compensate for the top bit of a */
186
187 if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188
189 *r1 = h; *r0 = l;
190 }
191 #endif
192 #ifdef THIRTY_TWO_BIT
193 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194 {
195 register BN_ULONG h, l, s;
196 BN_ULONG tab[8], top2b = a >> 30;
197 register BN_ULONG a1, a2, a4;
198
199 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200
201 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
202 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203
204 s = tab[b & 0x7]; l = s;
205 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
206 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
207 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
208 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
213 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
214 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
215
216 /* compensate for the top two bits of a */
217
218 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220
221 *r1 = h; *r0 = l;
222 }
223 #endif
224 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
225 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226 {
227 register BN_ULONG h, l, s;
228 BN_ULONG tab[16], top3b = a >> 61;
229 register BN_ULONG a1, a2, a4, a8;
230
231 a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232
233 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
234 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
235 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
236 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237
238 s = tab[b & 0xF]; l = s;
239 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
240 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
241 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
253 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
254
255 /* compensate for the top three bits of a */
256
257 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260
261 *r1 = h; *r0 = l;
262 }
263 #endif
264
265 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267 * The caller MUST ensure that the variables have the right amount
268 * of space allocated.
269 */
270 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271 {
272 BN_ULONG m1, m0;
273 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275 bn_GF2m_mul_1x1(r+1, r, a0, b0);
276 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
279 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
280 }
281
282
283 /* Add polynomials a and b and store result in r; r could be a or b, a and b
284 * could be equal; r is the bitwise XOR of a and b.
285 */
286 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287 {
288 int i;
289 const BIGNUM *at, *bt;
290
291 if (a->top < b->top) { at = b; bt = a; }
292 else { at = a; bt = b; }
293
294 bn_wexpand(r, at->top);
295
296 for (i = 0; i < bt->top; i++)
297 {
298 r->d[i] = at->d[i] ^ bt->d[i];
299 }
300 for (; i < at->top; i++)
301 {
302 r->d[i] = at->d[i];
303 }
304
305 r->top = at->top;
306 bn_correct_top(r);
307
308 return 1;
309 }
310
311
312 /* Some functions allow for representation of the irreducible polynomials
313 * as an int[], say p. The irreducible f(t) is then of the form:
314 * t^p[0] + t^p[1] + ... + t^p[k]
315 * where m = p[0] > p[1] > ... > p[k] = 0.
316 */
317
318
319 /* Performs modular reduction of a and store result in r. r could be a. */
320 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
321 {
322 int j, k;
323 int n, dN, d0, d1;
324 BN_ULONG zz, *z;
325
326 /* Since the algorithm does reduction in the r value, if a != r, copy the
327 * contents of a into r so we can do reduction in r.
328 */
329 if (a != r)
330 {
331 if (!bn_wexpand(r, a->top)) return 0;
332 for (j = 0; j < a->top; j++)
333 {
334 r->d[j] = a->d[j];
335 }
336 r->top = a->top;
337 }
338 z = r->d;
339
340 /* start reduction */
341 dN = p[0] / BN_BITS2;
342 for (j = r->top - 1; j > dN;)
343 {
344 zz = z[j];
345 if (z[j] == 0) { j--; continue; }
346 z[j] = 0;
347
348 for (k = 1; p[k] > 0; k++)
349 {
350 /* reducing component t^p[k] */
351 n = p[0] - p[k];
352 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
353 n /= BN_BITS2;
354 z[j-n] ^= (zz>>d0);
355 if (d0) z[j-n-1] ^= (zz<<d1);
356 }
357
358 /* reducing component t^0 */
359 n = dN;
360 d0 = p[0] % BN_BITS2;
361 d1 = BN_BITS2 - d0;
362 z[j-n] ^= (zz >> d0);
363 if (d0) z[j-n-1] ^= (zz << d1);
364 }
365
366 /* final round of reduction */
367 while (j == dN)
368 {
369
370 d0 = p[0] % BN_BITS2;
371 zz = z[dN] >> d0;
372 if (zz == 0) break;
373 d1 = BN_BITS2 - d0;
374
375 if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
376 z[0] ^= zz; /* reduction t^0 component */
377
378 for (k = 1; p[k] > 0; k++)
379 {
380 BN_ULONG tmp_ulong;
381
382 /* reducing component t^p[k]*/
383 n = p[k] / BN_BITS2;
384 d0 = p[k] % BN_BITS2;
385 d1 = BN_BITS2 - d0;
386 z[n] ^= (zz << d0);
387 tmp_ulong = zz >> d1;
388 if (d0 && tmp_ulong)
389 z[n+1] ^= tmp_ulong;
390 }
391
392
393 }
394
395 bn_correct_top(r);
396
397 return 1;
398 }
399
400 /* Performs modular reduction of a by p and store result in r. r could be a.
401 *
402 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
403 * function is only provided for convenience; for best performance, use the
404 * BN_GF2m_mod_arr function.
405 */
406 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
407 {
408 const int max = BN_num_bits(p);
409 unsigned int *arr=NULL, ret = 0;
410 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
411 if (BN_GF2m_poly2arr(p, arr, max) > max)
412 {
413 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
414 goto err;
415 }
416 ret = BN_GF2m_mod_arr(r, a, arr);
417 bn_check_top(r);
418 err:
419 if (arr) OPENSSL_free(arr);
420 return ret;
421 }
422
423
424 /* Compute the product of two polynomials a and b, reduce modulo p, and store
425 * the result in r. r could be a or b; a could be b.
426 */
427 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
428 {
429 int zlen, i, j, k, ret = 0;
430 BIGNUM *s;
431 BN_ULONG x1, x0, y1, y0, zz[4];
432
433 if (a == b)
434 {
435 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
436 }
437
438
439 BN_CTX_start(ctx);
440 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
441
442 zlen = a->top + b->top + 4;
443 if (!bn_wexpand(s, zlen)) goto err;
444 s->top = zlen;
445
446 for (i = 0; i < zlen; i++) s->d[i] = 0;
447
448 for (j = 0; j < b->top; j += 2)
449 {
450 y0 = b->d[j];
451 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
452 for (i = 0; i < a->top; i += 2)
453 {
454 x0 = a->d[i];
455 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
456 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
457 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
458 }
459 }
460
461 bn_correct_top(s);
462 BN_GF2m_mod_arr(r, s, p);
463 bn_check_top(r);
464 ret = 1;
465
466 err:
467 BN_CTX_end(ctx);
468 return ret;
469
470 }
471
472 /* Compute the product of two polynomials a and b, reduce modulo p, and store
473 * the result in r. r could be a or b; a could equal b.
474 *
475 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
476 * function is only provided for convenience; for best performance, use the
477 * BN_GF2m_mod_mul_arr function.
478 */
479 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
480 {
481 const int max = BN_num_bits(p);
482 unsigned int *arr=NULL, ret = 0;
483 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
484 if (BN_GF2m_poly2arr(p, arr, max) > max)
485 {
486 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
487 goto err;
488 }
489 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
490 bn_check_top(r);
491 err:
492 if (arr) OPENSSL_free(arr);
493 return ret;
494 }
495
496
497 /* Square a, reduce the result mod p, and store it in a. r could be a. */
498 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
499 {
500 int i, ret = 0;
501 BIGNUM *s;
502
503 BN_CTX_start(ctx);
504 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
505 if (!bn_wexpand(s, 2 * a->top)) goto err;
506
507 for (i = a->top - 1; i >= 0; i--)
508 {
509 s->d[2*i+1] = SQR1(a->d[i]);
510 s->d[2*i ] = SQR0(a->d[i]);
511 }
512
513 s->top = 2 * a->top;
514 bn_correct_top(s);
515 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
516 bn_check_top(r);
517 ret = 1;
518 err:
519 BN_CTX_end(ctx);
520 return ret;
521 }
522
523 /* Square a, reduce the result mod p, and store it in a. r could be a.
524 *
525 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
526 * function is only provided for convenience; for best performance, use the
527 * BN_GF2m_mod_sqr_arr function.
528 */
529 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
530 {
531 const int max = BN_num_bits(p);
532 unsigned int *arr=NULL, ret = 0;
533 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
534 if (BN_GF2m_poly2arr(p, arr, max) > max)
535 {
536 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
537 goto err;
538 }
539 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
540 bn_check_top(r);
541 err:
542 if (arr) OPENSSL_free(arr);
543 return ret;
544 }
545
546
547 /* Invert a, reduce modulo p, and store the result in r. r could be a.
548 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
549 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
550 * of Elliptic Curve Cryptography Over Binary Fields".
551 */
552 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
553 {
554 BIGNUM *b, *c, *u, *v, *tmp;
555 int ret = 0;
556
557 BN_CTX_start(ctx);
558
559 b = BN_CTX_get(ctx);
560 c = BN_CTX_get(ctx);
561 u = BN_CTX_get(ctx);
562 v = BN_CTX_get(ctx);
563 if (v == NULL) goto err;
564
565 if (!BN_one(b)) goto err;
566 if (!BN_zero(c)) goto err;
567 if (!BN_GF2m_mod(u, a, p)) goto err;
568 if (!BN_copy(v, p)) goto err;
569
570 u->neg = 0; /* Need to set u->neg = 0 because BN_is_one(u) checks
571 * the neg flag of the bignum.
572 */
573
574 if (BN_is_zero(u)) goto err;
575
576 while (1)
577 {
578 while (!BN_is_odd(u))
579 {
580 if (!BN_rshift1(u, u)) goto err;
581 if (BN_is_odd(b))
582 {
583 if (!BN_GF2m_add(b, b, p)) goto err;
584 }
585 if (!BN_rshift1(b, b)) goto err;
586 }
587
588 if (BN_is_one(u)) break;
589
590 if (BN_num_bits(u) < BN_num_bits(v))
591 {
592 tmp = u; u = v; v = tmp;
593 tmp = b; b = c; c = tmp;
594 }
595
596 if (!BN_GF2m_add(u, u, v)) goto err;
597 if (!BN_GF2m_add(b, b, c)) goto err;
598 }
599
600
601 if (!BN_copy(r, b)) goto err;
602 bn_check_top(r);
603 ret = 1;
604
605 err:
606 BN_CTX_end(ctx);
607 return ret;
608 }
609
610 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
611 *
612 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
613 * function is only provided for convenience; for best performance, use the
614 * BN_GF2m_mod_inv function.
615 */
616 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
617 {
618 BIGNUM *field;
619 int ret = 0;
620
621 BN_CTX_start(ctx);
622 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
623 if (!BN_GF2m_arr2poly(p, field)) goto err;
624
625 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
626 bn_check_top(r);
627
628 err:
629 BN_CTX_end(ctx);
630 return ret;
631 }
632
633
634 #ifndef OPENSSL_SUN_GF2M_DIV
635 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
636 * or y, x could equal y.
637 */
638 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
639 {
640 BIGNUM *xinv = NULL;
641 int ret = 0;
642
643 BN_CTX_start(ctx);
644 xinv = BN_CTX_get(ctx);
645 if (xinv == NULL) goto err;
646
647 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
648 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
649 bn_check_top(r);
650 ret = 1;
651
652 err:
653 BN_CTX_end(ctx);
654 return ret;
655 }
656 #else
657 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
658 * or y, x could equal y.
659 * Uses algorithm Modular_Division_GF(2^m) from
660 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
661 * the Great Divide".
662 */
663 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
664 {
665 BIGNUM *a, *b, *u, *v;
666 int ret = 0;
667
668 BN_CTX_start(ctx);
669
670 a = BN_CTX_get(ctx);
671 b = BN_CTX_get(ctx);
672 u = BN_CTX_get(ctx);
673 v = BN_CTX_get(ctx);
674 if (v == NULL) goto err;
675
676 /* reduce x and y mod p */
677 if (!BN_GF2m_mod(u, y, p)) goto err;
678 if (!BN_GF2m_mod(a, x, p)) goto err;
679 if (!BN_copy(b, p)) goto err;
680 if (!BN_zero(v)) goto err;
681
682 a->neg = 0; /* Need to set a->neg = 0 because BN_is_one(a) checks
683 * the neg flag of the bignum.
684 */
685
686 while (!BN_is_odd(a))
687 {
688 if (!BN_rshift1(a, a)) goto err;
689 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
690 if (!BN_rshift1(u, u)) goto err;
691 }
692
693 do
694 {
695 if (BN_GF2m_cmp(b, a) > 0)
696 {
697 if (!BN_GF2m_add(b, b, a)) goto err;
698 if (!BN_GF2m_add(v, v, u)) goto err;
699 do
700 {
701 if (!BN_rshift1(b, b)) goto err;
702 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
703 if (!BN_rshift1(v, v)) goto err;
704 } while (!BN_is_odd(b));
705 }
706 else if (BN_is_one(a))
707 break;
708 else
709 {
710 if (!BN_GF2m_add(a, a, b)) goto err;
711 if (!BN_GF2m_add(u, u, v)) goto err;
712 do
713 {
714 if (!BN_rshift1(a, a)) goto err;
715 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
716 if (!BN_rshift1(u, u)) goto err;
717 } while (!BN_is_odd(a));
718 }
719 } while (1);
720
721 if (!BN_copy(r, u)) goto err;
722 bn_check_top(r);
723 ret = 1;
724
725 err:
726 BN_CTX_end(ctx);
727 return ret;
728 }
729 #endif
730
731 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
732 * or yy, xx could equal yy.
733 *
734 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
735 * function is only provided for convenience; for best performance, use the
736 * BN_GF2m_mod_div function.
737 */
738 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
739 {
740 BIGNUM *field;
741 int ret = 0;
742
743 BN_CTX_start(ctx);
744 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
745 if (!BN_GF2m_arr2poly(p, field)) goto err;
746
747 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
748 bn_check_top(r);
749
750 err:
751 BN_CTX_end(ctx);
752 return ret;
753 }
754
755
756 /* Compute the bth power of a, reduce modulo p, and store
757 * the result in r. r could be a.
758 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
759 */
760 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
761 {
762 int ret = 0, i, n;
763 BIGNUM *u;
764
765 if (BN_is_zero(b))
766 {
767 return(BN_one(r));
768 }
769
770
771 BN_CTX_start(ctx);
772 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
773
774 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
775
776 n = BN_num_bits(b) - 1;
777 for (i = n - 1; i >= 0; i--)
778 {
779 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
780 if (BN_is_bit_set(b, i))
781 {
782 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
783 }
784 }
785 if (!BN_copy(r, u)) goto err;
786 bn_check_top(r);
787
788 ret = 1;
789
790 err:
791 BN_CTX_end(ctx);
792 return ret;
793 }
794
795 /* Compute the bth power of a, reduce modulo p, and store
796 * the result in r. r could be a.
797 *
798 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
799 * function is only provided for convenience; for best performance, use the
800 * BN_GF2m_mod_exp_arr function.
801 */
802 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
803 {
804 const int max = BN_num_bits(p);
805 unsigned int *arr=NULL, ret = 0;
806 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
807 if (BN_GF2m_poly2arr(p, arr, max) > max)
808 {
809 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
810 goto err;
811 }
812 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
813 bn_check_top(r);
814 err:
815 if (arr) OPENSSL_free(arr);
816 return ret;
817 }
818
819 /* Compute the square root of a, reduce modulo p, and store
820 * the result in r. r could be a.
821 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
822 */
823 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
824 {
825 int ret = 0;
826 BIGNUM *u;
827
828 BN_CTX_start(ctx);
829 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
830
831 if (!BN_zero(u)) goto err;
832 if (!BN_set_bit(u, p[0] - 1)) goto err;
833 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
834 bn_check_top(r);
835
836 err:
837 BN_CTX_end(ctx);
838 return ret;
839 }
840
841 /* Compute the square root of a, reduce modulo p, and store
842 * the result in r. r could be a.
843 *
844 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
845 * function is only provided for convenience; for best performance, use the
846 * BN_GF2m_mod_sqrt_arr function.
847 */
848 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
849 {
850 const int max = BN_num_bits(p);
851 unsigned int *arr=NULL, ret = 0;
852 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
853 if (BN_GF2m_poly2arr(p, arr, max) > max)
854 {
855 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
856 goto err;
857 }
858 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
859 bn_check_top(r);
860 err:
861 if (arr) OPENSSL_free(arr);
862 return ret;
863 }
864
865 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
866 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
867 */
868 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
869 {
870 int ret = 0, count = 0;
871 unsigned int j;
872 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
873
874 BN_CTX_start(ctx);
875 a = BN_CTX_get(ctx);
876 z = BN_CTX_get(ctx);
877 w = BN_CTX_get(ctx);
878 if (w == NULL) goto err;
879
880 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
881
882 if (BN_is_zero(a))
883 {
884 ret = BN_zero(r);
885 goto err;
886 }
887
888 if (p[0] & 0x1) /* m is odd */
889 {
890 /* compute half-trace of a */
891 if (!BN_copy(z, a)) goto err;
892 for (j = 1; j <= (p[0] - 1) / 2; j++)
893 {
894 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
895 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
896 if (!BN_GF2m_add(z, z, a)) goto err;
897 }
898
899 }
900 else /* m is even */
901 {
902 rho = BN_CTX_get(ctx);
903 w2 = BN_CTX_get(ctx);
904 tmp = BN_CTX_get(ctx);
905 if (tmp == NULL) goto err;
906 do
907 {
908 if (!BN_rand(rho, p[0], 0, 0)) goto err;
909 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
910 if (!BN_zero(z)) goto err;
911 if (!BN_copy(w, rho)) goto err;
912 for (j = 1; j <= p[0] - 1; j++)
913 {
914 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
915 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
916 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
917 if (!BN_GF2m_add(z, z, tmp)) goto err;
918 if (!BN_GF2m_add(w, w2, rho)) goto err;
919 }
920 count++;
921 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
922 if (BN_is_zero(w))
923 {
924 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
925 goto err;
926 }
927 }
928
929 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
930 if (!BN_GF2m_add(w, z, w)) goto err;
931 if (BN_GF2m_cmp(w, a)) goto err;
932
933 if (!BN_copy(r, z)) goto err;
934 bn_check_top(r);
935
936 ret = 1;
937
938 err:
939 BN_CTX_end(ctx);
940 return ret;
941 }
942
943 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
944 *
945 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
946 * function is only provided for convenience; for best performance, use the
947 * BN_GF2m_mod_solve_quad_arr function.
948 */
949 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
950 {
951 const int max = BN_num_bits(p);
952 unsigned int *arr=NULL, ret = 0;
953 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
954 if (BN_GF2m_poly2arr(p, arr, max) > max)
955 {
956 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
957 goto err;
958 }
959 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
960 bn_check_top(r);
961 err:
962 if (arr) OPENSSL_free(arr);
963 return ret;
964 }
965
966 /* Convert the bit-string representation of a polynomial a into an array
967 * of integers corresponding to the bits with non-zero coefficient.
968 * Up to max elements of the array will be filled. Return value is total
969 * number of coefficients that would be extracted if array was large enough.
970 */
971 int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
972 {
973 int i, j, k;
974 BN_ULONG mask;
975
976 for (k = 0; k < max; k++) p[k] = 0;
977 k = 0;
978
979 for (i = a->top - 1; i >= 0; i--)
980 {
981 mask = BN_TBIT;
982 for (j = BN_BITS2 - 1; j >= 0; j--)
983 {
984 if (a->d[i] & mask)
985 {
986 if (k < max) p[k] = BN_BITS2 * i + j;
987 k++;
988 }
989 mask >>= 1;
990 }
991 }
992
993 return k;
994 }
995
996 /* Convert the coefficient array representation of a polynomial to a
997 * bit-string. The array must be terminated by 0.
998 */
999 int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
1000 {
1001 int i;
1002
1003 BN_zero(a);
1004 for (i = 0; p[i] > 0; i++)
1005 {
1006 BN_set_bit(a, p[i]);
1007 }
1008 BN_set_bit(a, 0);
1009 bn_check_top(a);
1010
1011 return 1;
1012 }
1013