]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
Use safer sizeof variant in malloc
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /*
31 * NOTE: This file is licensed pursuant to the OpenSSL license below and may
32 * be modified; but after modifications, the above covenant may no longer
33 * apply! In such cases, the corresponding paragraph ["In addition, Sun
34 * covenants ... causes the infringement."] and this note can be edited out;
35 * but please keep the Sun copyright notice and attribution.
36 */
37
38 /* ====================================================================
39 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 *
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 *
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in
50 * the documentation and/or other materials provided with the
51 * distribution.
52 *
53 * 3. All advertising materials mentioning features or use of this
54 * software must display the following acknowledgment:
55 * "This product includes software developed by the OpenSSL Project
56 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 *
58 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
59 * endorse or promote products derived from this software without
60 * prior written permission. For written permission, please contact
61 * openssl-core@openssl.org.
62 *
63 * 5. Products derived from this software may not be called "OpenSSL"
64 * nor may "OpenSSL" appear in their names without prior written
65 * permission of the OpenSSL Project.
66 *
67 * 6. Redistributions of any form whatsoever must retain the following
68 * acknowledgment:
69 * "This product includes software developed by the OpenSSL Project
70 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 *
72 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
73 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
75 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
76 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
77 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
78 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
81 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
82 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
83 * OF THE POSSIBILITY OF SUCH DAMAGE.
84 * ====================================================================
85 *
86 * This product includes cryptographic software written by Eric Young
87 * (eay@cryptsoft.com). This product includes software written by Tim
88 * Hudson (tjh@cryptsoft.com).
89 *
90 */
91
92 #include <assert.h>
93 #include <limits.h>
94 #include <stdio.h>
95 #include "cryptlib.h"
96 #include "bn_lcl.h"
97
98 #ifndef OPENSSL_NO_EC2M
99
100 /*
101 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
102 * fail.
103 */
104 # define MAX_ITERATIONS 50
105
106 static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85
108 };
109
110 /* Platform-specific macros to accelerate squaring. */
111 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
112 # define SQR1(w) \
113 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
114 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
115 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
116 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
117 # define SQR0(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
119 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
120 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
121 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
122 # endif
123 # ifdef THIRTY_TWO_BIT
124 # define SQR1(w) \
125 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
126 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
127 # define SQR0(w) \
128 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
129 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
130 # endif
131
132 # if !defined(OPENSSL_BN_ASM_GF2m)
133 /*
134 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
135 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
136 * the variables have the right amount of space allocated.
137 */
138 # ifdef THIRTY_TWO_BIT
139 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
140 const BN_ULONG b)
141 {
142 register BN_ULONG h, l, s;
143 BN_ULONG tab[8], top2b = a >> 30;
144 register BN_ULONG a1, a2, a4;
145
146 a1 = a & (0x3FFFFFFF);
147 a2 = a1 << 1;
148 a4 = a2 << 1;
149
150 tab[0] = 0;
151 tab[1] = a1;
152 tab[2] = a2;
153 tab[3] = a1 ^ a2;
154 tab[4] = a4;
155 tab[5] = a1 ^ a4;
156 tab[6] = a2 ^ a4;
157 tab[7] = a1 ^ a2 ^ a4;
158
159 s = tab[b & 0x7];
160 l = s;
161 s = tab[b >> 3 & 0x7];
162 l ^= s << 3;
163 h = s >> 29;
164 s = tab[b >> 6 & 0x7];
165 l ^= s << 6;
166 h ^= s >> 26;
167 s = tab[b >> 9 & 0x7];
168 l ^= s << 9;
169 h ^= s >> 23;
170 s = tab[b >> 12 & 0x7];
171 l ^= s << 12;
172 h ^= s >> 20;
173 s = tab[b >> 15 & 0x7];
174 l ^= s << 15;
175 h ^= s >> 17;
176 s = tab[b >> 18 & 0x7];
177 l ^= s << 18;
178 h ^= s >> 14;
179 s = tab[b >> 21 & 0x7];
180 l ^= s << 21;
181 h ^= s >> 11;
182 s = tab[b >> 24 & 0x7];
183 l ^= s << 24;
184 h ^= s >> 8;
185 s = tab[b >> 27 & 0x7];
186 l ^= s << 27;
187 h ^= s >> 5;
188 s = tab[b >> 30];
189 l ^= s << 30;
190 h ^= s >> 2;
191
192 /* compensate for the top two bits of a */
193
194 if (top2b & 01) {
195 l ^= b << 30;
196 h ^= b >> 2;
197 }
198 if (top2b & 02) {
199 l ^= b << 31;
200 h ^= b >> 1;
201 }
202
203 *r1 = h;
204 *r0 = l;
205 }
206 # endif
207 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
208 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
209 const BN_ULONG b)
210 {
211 register BN_ULONG h, l, s;
212 BN_ULONG tab[16], top3b = a >> 61;
213 register BN_ULONG a1, a2, a4, a8;
214
215 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
216 a2 = a1 << 1;
217 a4 = a2 << 1;
218 a8 = a4 << 1;
219
220 tab[0] = 0;
221 tab[1] = a1;
222 tab[2] = a2;
223 tab[3] = a1 ^ a2;
224 tab[4] = a4;
225 tab[5] = a1 ^ a4;
226 tab[6] = a2 ^ a4;
227 tab[7] = a1 ^ a2 ^ a4;
228 tab[8] = a8;
229 tab[9] = a1 ^ a8;
230 tab[10] = a2 ^ a8;
231 tab[11] = a1 ^ a2 ^ a8;
232 tab[12] = a4 ^ a8;
233 tab[13] = a1 ^ a4 ^ a8;
234 tab[14] = a2 ^ a4 ^ a8;
235 tab[15] = a1 ^ a2 ^ a4 ^ a8;
236
237 s = tab[b & 0xF];
238 l = s;
239 s = tab[b >> 4 & 0xF];
240 l ^= s << 4;
241 h = s >> 60;
242 s = tab[b >> 8 & 0xF];
243 l ^= s << 8;
244 h ^= s >> 56;
245 s = tab[b >> 12 & 0xF];
246 l ^= s << 12;
247 h ^= s >> 52;
248 s = tab[b >> 16 & 0xF];
249 l ^= s << 16;
250 h ^= s >> 48;
251 s = tab[b >> 20 & 0xF];
252 l ^= s << 20;
253 h ^= s >> 44;
254 s = tab[b >> 24 & 0xF];
255 l ^= s << 24;
256 h ^= s >> 40;
257 s = tab[b >> 28 & 0xF];
258 l ^= s << 28;
259 h ^= s >> 36;
260 s = tab[b >> 32 & 0xF];
261 l ^= s << 32;
262 h ^= s >> 32;
263 s = tab[b >> 36 & 0xF];
264 l ^= s << 36;
265 h ^= s >> 28;
266 s = tab[b >> 40 & 0xF];
267 l ^= s << 40;
268 h ^= s >> 24;
269 s = tab[b >> 44 & 0xF];
270 l ^= s << 44;
271 h ^= s >> 20;
272 s = tab[b >> 48 & 0xF];
273 l ^= s << 48;
274 h ^= s >> 16;
275 s = tab[b >> 52 & 0xF];
276 l ^= s << 52;
277 h ^= s >> 12;
278 s = tab[b >> 56 & 0xF];
279 l ^= s << 56;
280 h ^= s >> 8;
281 s = tab[b >> 60];
282 l ^= s << 60;
283 h ^= s >> 4;
284
285 /* compensate for the top three bits of a */
286
287 if (top3b & 01) {
288 l ^= b << 61;
289 h ^= b >> 3;
290 }
291 if (top3b & 02) {
292 l ^= b << 62;
293 h ^= b >> 2;
294 }
295 if (top3b & 04) {
296 l ^= b << 63;
297 h ^= b >> 1;
298 }
299
300 *r1 = h;
301 *r0 = l;
302 }
303 # endif
304
305 /*
306 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
307 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
308 * ensure that the variables have the right amount of space allocated.
309 */
310 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
311 const BN_ULONG b1, const BN_ULONG b0)
312 {
313 BN_ULONG m1, m0;
314 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
315 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
316 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
317 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
318 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
319 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
320 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
321 }
322 # else
323 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
324 BN_ULONG b0);
325 # endif
326
327 /*
328 * Add polynomials a and b and store result in r; r could be a or b, a and b
329 * could be equal; r is the bitwise XOR of a and b.
330 */
331 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
332 {
333 int i;
334 const BIGNUM *at, *bt;
335
336 bn_check_top(a);
337 bn_check_top(b);
338
339 if (a->top < b->top) {
340 at = b;
341 bt = a;
342 } else {
343 at = a;
344 bt = b;
345 }
346
347 if (bn_wexpand(r, at->top) == NULL)
348 return 0;
349
350 for (i = 0; i < bt->top; i++) {
351 r->d[i] = at->d[i] ^ bt->d[i];
352 }
353 for (; i < at->top; i++) {
354 r->d[i] = at->d[i];
355 }
356
357 r->top = at->top;
358 bn_correct_top(r);
359
360 return 1;
361 }
362
363 /*-
364 * Some functions allow for representation of the irreducible polynomials
365 * as an int[], say p. The irreducible f(t) is then of the form:
366 * t^p[0] + t^p[1] + ... + t^p[k]
367 * where m = p[0] > p[1] > ... > p[k] = 0.
368 */
369
370 /* Performs modular reduction of a and store result in r. r could be a. */
371 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
372 {
373 int j, k;
374 int n, dN, d0, d1;
375 BN_ULONG zz, *z;
376
377 bn_check_top(a);
378
379 if (!p[0]) {
380 /* reduction mod 1 => return 0 */
381 BN_zero(r);
382 return 1;
383 }
384
385 /*
386 * Since the algorithm does reduction in the r value, if a != r, copy the
387 * contents of a into r so we can do reduction in r.
388 */
389 if (a != r) {
390 if (!bn_wexpand(r, a->top))
391 return 0;
392 for (j = 0; j < a->top; j++) {
393 r->d[j] = a->d[j];
394 }
395 r->top = a->top;
396 }
397 z = r->d;
398
399 /* start reduction */
400 dN = p[0] / BN_BITS2;
401 for (j = r->top - 1; j > dN;) {
402 zz = z[j];
403 if (z[j] == 0) {
404 j--;
405 continue;
406 }
407 z[j] = 0;
408
409 for (k = 1; p[k] != 0; k++) {
410 /* reducing component t^p[k] */
411 n = p[0] - p[k];
412 d0 = n % BN_BITS2;
413 d1 = BN_BITS2 - d0;
414 n /= BN_BITS2;
415 z[j - n] ^= (zz >> d0);
416 if (d0)
417 z[j - n - 1] ^= (zz << d1);
418 }
419
420 /* reducing component t^0 */
421 n = dN;
422 d0 = p[0] % BN_BITS2;
423 d1 = BN_BITS2 - d0;
424 z[j - n] ^= (zz >> d0);
425 if (d0)
426 z[j - n - 1] ^= (zz << d1);
427 }
428
429 /* final round of reduction */
430 while (j == dN) {
431
432 d0 = p[0] % BN_BITS2;
433 zz = z[dN] >> d0;
434 if (zz == 0)
435 break;
436 d1 = BN_BITS2 - d0;
437
438 /* clear up the top d1 bits */
439 if (d0)
440 z[dN] = (z[dN] << d1) >> d1;
441 else
442 z[dN] = 0;
443 z[0] ^= zz; /* reduction t^0 component */
444
445 for (k = 1; p[k] != 0; k++) {
446 BN_ULONG tmp_ulong;
447
448 /* reducing component t^p[k] */
449 n = p[k] / BN_BITS2;
450 d0 = p[k] % BN_BITS2;
451 d1 = BN_BITS2 - d0;
452 z[n] ^= (zz << d0);
453 tmp_ulong = zz >> d1;
454 if (d0 && tmp_ulong)
455 z[n + 1] ^= tmp_ulong;
456 }
457
458 }
459
460 bn_correct_top(r);
461 return 1;
462 }
463
464 /*
465 * Performs modular reduction of a by p and store result in r. r could be a.
466 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
467 * function is only provided for convenience; for best performance, use the
468 * BN_GF2m_mod_arr function.
469 */
470 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
471 {
472 int ret = 0;
473 int arr[6];
474 bn_check_top(a);
475 bn_check_top(p);
476 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
477 if (!ret || ret > (int)OSSL_NELEM(arr)) {
478 BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
479 return 0;
480 }
481 ret = BN_GF2m_mod_arr(r, a, arr);
482 bn_check_top(r);
483 return ret;
484 }
485
486 /*
487 * Compute the product of two polynomials a and b, reduce modulo p, and store
488 * the result in r. r could be a or b; a could be b.
489 */
490 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
491 const int p[], BN_CTX *ctx)
492 {
493 int zlen, i, j, k, ret = 0;
494 BIGNUM *s;
495 BN_ULONG x1, x0, y1, y0, zz[4];
496
497 bn_check_top(a);
498 bn_check_top(b);
499
500 if (a == b) {
501 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
502 }
503
504 BN_CTX_start(ctx);
505 if ((s = BN_CTX_get(ctx)) == NULL)
506 goto err;
507
508 zlen = a->top + b->top + 4;
509 if (!bn_wexpand(s, zlen))
510 goto err;
511 s->top = zlen;
512
513 for (i = 0; i < zlen; i++)
514 s->d[i] = 0;
515
516 for (j = 0; j < b->top; j += 2) {
517 y0 = b->d[j];
518 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
519 for (i = 0; i < a->top; i += 2) {
520 x0 = a->d[i];
521 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
522 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
523 for (k = 0; k < 4; k++)
524 s->d[i + j + k] ^= zz[k];
525 }
526 }
527
528 bn_correct_top(s);
529 if (BN_GF2m_mod_arr(r, s, p))
530 ret = 1;
531 bn_check_top(r);
532
533 err:
534 BN_CTX_end(ctx);
535 return ret;
536 }
537
538 /*
539 * Compute the product of two polynomials a and b, reduce modulo p, and store
540 * the result in r. r could be a or b; a could equal b. This function calls
541 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
542 * only provided for convenience; for best performance, use the
543 * BN_GF2m_mod_mul_arr function.
544 */
545 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
546 const BIGNUM *p, BN_CTX *ctx)
547 {
548 int ret = 0;
549 const int max = BN_num_bits(p) + 1;
550 int *arr = NULL;
551 bn_check_top(a);
552 bn_check_top(b);
553 bn_check_top(p);
554 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
555 goto err;
556 ret = BN_GF2m_poly2arr(p, arr, max);
557 if (!ret || ret > max) {
558 BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
559 goto err;
560 }
561 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
562 bn_check_top(r);
563 err:
564 OPENSSL_free(arr);
565 return ret;
566 }
567
568 /* Square a, reduce the result mod p, and store it in a. r could be a. */
569 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
570 BN_CTX *ctx)
571 {
572 int i, ret = 0;
573 BIGNUM *s;
574
575 bn_check_top(a);
576 BN_CTX_start(ctx);
577 if ((s = BN_CTX_get(ctx)) == NULL)
578 return 0;
579 if (!bn_wexpand(s, 2 * a->top))
580 goto err;
581
582 for (i = a->top - 1; i >= 0; i--) {
583 s->d[2 * i + 1] = SQR1(a->d[i]);
584 s->d[2 * i] = SQR0(a->d[i]);
585 }
586
587 s->top = 2 * a->top;
588 bn_correct_top(s);
589 if (!BN_GF2m_mod_arr(r, s, p))
590 goto err;
591 bn_check_top(r);
592 ret = 1;
593 err:
594 BN_CTX_end(ctx);
595 return ret;
596 }
597
598 /*
599 * Square a, reduce the result mod p, and store it in a. r could be a. This
600 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
601 * wrapper function is only provided for convenience; for best performance,
602 * use the BN_GF2m_mod_sqr_arr function.
603 */
604 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
605 {
606 int ret = 0;
607 const int max = BN_num_bits(p) + 1;
608 int *arr = NULL;
609
610 bn_check_top(a);
611 bn_check_top(p);
612 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
613 goto err;
614 ret = BN_GF2m_poly2arr(p, arr, max);
615 if (!ret || ret > max) {
616 BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
617 goto err;
618 }
619 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
620 bn_check_top(r);
621 err:
622 OPENSSL_free(arr);
623 return ret;
624 }
625
626 /*
627 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
628 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
629 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
630 * Curve Cryptography Over Binary Fields".
631 */
632 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
633 {
634 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
635 int ret = 0;
636
637 bn_check_top(a);
638 bn_check_top(p);
639
640 BN_CTX_start(ctx);
641
642 if ((b = BN_CTX_get(ctx)) == NULL)
643 goto err;
644 if ((c = BN_CTX_get(ctx)) == NULL)
645 goto err;
646 if ((u = BN_CTX_get(ctx)) == NULL)
647 goto err;
648 if ((v = BN_CTX_get(ctx)) == NULL)
649 goto err;
650
651 if (!BN_GF2m_mod(u, a, p))
652 goto err;
653 if (BN_is_zero(u))
654 goto err;
655
656 if (!BN_copy(v, p))
657 goto err;
658 # if 0
659 if (!BN_one(b))
660 goto err;
661
662 while (1) {
663 while (!BN_is_odd(u)) {
664 if (BN_is_zero(u))
665 goto err;
666 if (!BN_rshift1(u, u))
667 goto err;
668 if (BN_is_odd(b)) {
669 if (!BN_GF2m_add(b, b, p))
670 goto err;
671 }
672 if (!BN_rshift1(b, b))
673 goto err;
674 }
675
676 if (BN_abs_is_word(u, 1))
677 break;
678
679 if (BN_num_bits(u) < BN_num_bits(v)) {
680 tmp = u;
681 u = v;
682 v = tmp;
683 tmp = b;
684 b = c;
685 c = tmp;
686 }
687
688 if (!BN_GF2m_add(u, u, v))
689 goto err;
690 if (!BN_GF2m_add(b, b, c))
691 goto err;
692 }
693 # else
694 {
695 int i, ubits = BN_num_bits(u), vbits = BN_num_bits(v), /* v is copy
696 * of p */
697 top = p->top;
698 BN_ULONG *udp, *bdp, *vdp, *cdp;
699
700 bn_wexpand(u, top);
701 udp = u->d;
702 for (i = u->top; i < top; i++)
703 udp[i] = 0;
704 u->top = top;
705 bn_wexpand(b, top);
706 bdp = b->d;
707 bdp[0] = 1;
708 for (i = 1; i < top; i++)
709 bdp[i] = 0;
710 b->top = top;
711 bn_wexpand(c, top);
712 cdp = c->d;
713 for (i = 0; i < top; i++)
714 cdp[i] = 0;
715 c->top = top;
716 vdp = v->d; /* It pays off to "cache" *->d pointers,
717 * because it allows optimizer to be more
718 * aggressive. But we don't have to "cache"
719 * p->d, because *p is declared 'const'... */
720 while (1) {
721 while (ubits && !(udp[0] & 1)) {
722 BN_ULONG u0, u1, b0, b1, mask;
723
724 u0 = udp[0];
725 b0 = bdp[0];
726 mask = (BN_ULONG)0 - (b0 & 1);
727 b0 ^= p->d[0] & mask;
728 for (i = 0; i < top - 1; i++) {
729 u1 = udp[i + 1];
730 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
731 u0 = u1;
732 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
733 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
734 b0 = b1;
735 }
736 udp[i] = u0 >> 1;
737 bdp[i] = b0 >> 1;
738 ubits--;
739 }
740
741 if (ubits <= BN_BITS2 && udp[0] == 1)
742 break;
743
744 if (ubits < vbits) {
745 i = ubits;
746 ubits = vbits;
747 vbits = i;
748 tmp = u;
749 u = v;
750 v = tmp;
751 tmp = b;
752 b = c;
753 c = tmp;
754 udp = vdp;
755 vdp = v->d;
756 bdp = cdp;
757 cdp = c->d;
758 }
759 for (i = 0; i < top; i++) {
760 udp[i] ^= vdp[i];
761 bdp[i] ^= cdp[i];
762 }
763 if (ubits == vbits) {
764 BN_ULONG ul;
765 int utop = (ubits - 1) / BN_BITS2;
766
767 while ((ul = udp[utop]) == 0 && utop)
768 utop--;
769 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
770 }
771 }
772 bn_correct_top(b);
773 }
774 # endif
775
776 if (!BN_copy(r, b))
777 goto err;
778 bn_check_top(r);
779 ret = 1;
780
781 err:
782 # ifdef BN_DEBUG /* BN_CTX_end would complain about the
783 * expanded form */
784 bn_correct_top(c);
785 bn_correct_top(u);
786 bn_correct_top(v);
787 # endif
788 BN_CTX_end(ctx);
789 return ret;
790 }
791
792 /*
793 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
794 * This function calls down to the BN_GF2m_mod_inv implementation; this
795 * wrapper function is only provided for convenience; for best performance,
796 * use the BN_GF2m_mod_inv function.
797 */
798 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
799 BN_CTX *ctx)
800 {
801 BIGNUM *field;
802 int ret = 0;
803
804 bn_check_top(xx);
805 BN_CTX_start(ctx);
806 if ((field = BN_CTX_get(ctx)) == NULL)
807 goto err;
808 if (!BN_GF2m_arr2poly(p, field))
809 goto err;
810
811 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
812 bn_check_top(r);
813
814 err:
815 BN_CTX_end(ctx);
816 return ret;
817 }
818
819 # ifndef OPENSSL_SUN_GF2M_DIV
820 /*
821 * Divide y by x, reduce modulo p, and store the result in r. r could be x
822 * or y, x could equal y.
823 */
824 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
825 const BIGNUM *p, BN_CTX *ctx)
826 {
827 BIGNUM *xinv = NULL;
828 int ret = 0;
829
830 bn_check_top(y);
831 bn_check_top(x);
832 bn_check_top(p);
833
834 BN_CTX_start(ctx);
835 xinv = BN_CTX_get(ctx);
836 if (xinv == NULL)
837 goto err;
838
839 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
840 goto err;
841 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
842 goto err;
843 bn_check_top(r);
844 ret = 1;
845
846 err:
847 BN_CTX_end(ctx);
848 return ret;
849 }
850 # else
851 /*
852 * Divide y by x, reduce modulo p, and store the result in r. r could be x
853 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
854 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
855 * Great Divide".
856 */
857 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
858 const BIGNUM *p, BN_CTX *ctx)
859 {
860 BIGNUM *a, *b, *u, *v;
861 int ret = 0;
862
863 bn_check_top(y);
864 bn_check_top(x);
865 bn_check_top(p);
866
867 BN_CTX_start(ctx);
868
869 a = BN_CTX_get(ctx);
870 b = BN_CTX_get(ctx);
871 u = BN_CTX_get(ctx);
872 v = BN_CTX_get(ctx);
873 if (v == NULL)
874 goto err;
875
876 /* reduce x and y mod p */
877 if (!BN_GF2m_mod(u, y, p))
878 goto err;
879 if (!BN_GF2m_mod(a, x, p))
880 goto err;
881 if (!BN_copy(b, p))
882 goto err;
883
884 while (!BN_is_odd(a)) {
885 if (!BN_rshift1(a, a))
886 goto err;
887 if (BN_is_odd(u))
888 if (!BN_GF2m_add(u, u, p))
889 goto err;
890 if (!BN_rshift1(u, u))
891 goto err;
892 }
893
894 do {
895 if (BN_GF2m_cmp(b, a) > 0) {
896 if (!BN_GF2m_add(b, b, a))
897 goto err;
898 if (!BN_GF2m_add(v, v, u))
899 goto err;
900 do {
901 if (!BN_rshift1(b, b))
902 goto err;
903 if (BN_is_odd(v))
904 if (!BN_GF2m_add(v, v, p))
905 goto err;
906 if (!BN_rshift1(v, v))
907 goto err;
908 } while (!BN_is_odd(b));
909 } else if (BN_abs_is_word(a, 1))
910 break;
911 else {
912 if (!BN_GF2m_add(a, a, b))
913 goto err;
914 if (!BN_GF2m_add(u, u, v))
915 goto err;
916 do {
917 if (!BN_rshift1(a, a))
918 goto err;
919 if (BN_is_odd(u))
920 if (!BN_GF2m_add(u, u, p))
921 goto err;
922 if (!BN_rshift1(u, u))
923 goto err;
924 } while (!BN_is_odd(a));
925 }
926 } while (1);
927
928 if (!BN_copy(r, u))
929 goto err;
930 bn_check_top(r);
931 ret = 1;
932
933 err:
934 BN_CTX_end(ctx);
935 return ret;
936 }
937 # endif
938
939 /*
940 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
941 * * or yy, xx could equal yy. This function calls down to the
942 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
943 * convenience; for best performance, use the BN_GF2m_mod_div function.
944 */
945 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
946 const int p[], BN_CTX *ctx)
947 {
948 BIGNUM *field;
949 int ret = 0;
950
951 bn_check_top(yy);
952 bn_check_top(xx);
953
954 BN_CTX_start(ctx);
955 if ((field = BN_CTX_get(ctx)) == NULL)
956 goto err;
957 if (!BN_GF2m_arr2poly(p, field))
958 goto err;
959
960 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
961 bn_check_top(r);
962
963 err:
964 BN_CTX_end(ctx);
965 return ret;
966 }
967
968 /*
969 * Compute the bth power of a, reduce modulo p, and store the result in r. r
970 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
971 * P1363.
972 */
973 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
974 const int p[], BN_CTX *ctx)
975 {
976 int ret = 0, i, n;
977 BIGNUM *u;
978
979 bn_check_top(a);
980 bn_check_top(b);
981
982 if (BN_is_zero(b))
983 return (BN_one(r));
984
985 if (BN_abs_is_word(b, 1))
986 return (BN_copy(r, a) != NULL);
987
988 BN_CTX_start(ctx);
989 if ((u = BN_CTX_get(ctx)) == NULL)
990 goto err;
991
992 if (!BN_GF2m_mod_arr(u, a, p))
993 goto err;
994
995 n = BN_num_bits(b) - 1;
996 for (i = n - 1; i >= 0; i--) {
997 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
998 goto err;
999 if (BN_is_bit_set(b, i)) {
1000 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1001 goto err;
1002 }
1003 }
1004 if (!BN_copy(r, u))
1005 goto err;
1006 bn_check_top(r);
1007 ret = 1;
1008 err:
1009 BN_CTX_end(ctx);
1010 return ret;
1011 }
1012
1013 /*
1014 * Compute the bth power of a, reduce modulo p, and store the result in r. r
1015 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
1016 * implementation; this wrapper function is only provided for convenience;
1017 * for best performance, use the BN_GF2m_mod_exp_arr function.
1018 */
1019 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
1020 const BIGNUM *p, BN_CTX *ctx)
1021 {
1022 int ret = 0;
1023 const int max = BN_num_bits(p) + 1;
1024 int *arr = NULL;
1025 bn_check_top(a);
1026 bn_check_top(b);
1027 bn_check_top(p);
1028 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1029 goto err;
1030 ret = BN_GF2m_poly2arr(p, arr, max);
1031 if (!ret || ret > max) {
1032 BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1033 goto err;
1034 }
1035 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1036 bn_check_top(r);
1037 err:
1038 OPENSSL_free(arr);
1039 return ret;
1040 }
1041
1042 /*
1043 * Compute the square root of a, reduce modulo p, and store the result in r.
1044 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1045 */
1046 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
1047 BN_CTX *ctx)
1048 {
1049 int ret = 0;
1050 BIGNUM *u;
1051
1052 bn_check_top(a);
1053
1054 if (!p[0]) {
1055 /* reduction mod 1 => return 0 */
1056 BN_zero(r);
1057 return 1;
1058 }
1059
1060 BN_CTX_start(ctx);
1061 if ((u = BN_CTX_get(ctx)) == NULL)
1062 goto err;
1063
1064 if (!BN_set_bit(u, p[0] - 1))
1065 goto err;
1066 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1067 bn_check_top(r);
1068
1069 err:
1070 BN_CTX_end(ctx);
1071 return ret;
1072 }
1073
1074 /*
1075 * Compute the square root of a, reduce modulo p, and store the result in r.
1076 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1077 * implementation; this wrapper function is only provided for convenience;
1078 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1079 */
1080 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1081 {
1082 int ret = 0;
1083 const int max = BN_num_bits(p) + 1;
1084 int *arr = NULL;
1085 bn_check_top(a);
1086 bn_check_top(p);
1087 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1088 goto err;
1089 ret = BN_GF2m_poly2arr(p, arr, max);
1090 if (!ret || ret > max) {
1091 BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1092 goto err;
1093 }
1094 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1095 bn_check_top(r);
1096 err:
1097 OPENSSL_free(arr);
1098 return ret;
1099 }
1100
1101 /*
1102 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1103 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1104 */
1105 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1106 BN_CTX *ctx)
1107 {
1108 int ret = 0, count = 0, j;
1109 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1110
1111 bn_check_top(a_);
1112
1113 if (!p[0]) {
1114 /* reduction mod 1 => return 0 */
1115 BN_zero(r);
1116 return 1;
1117 }
1118
1119 BN_CTX_start(ctx);
1120 a = BN_CTX_get(ctx);
1121 z = BN_CTX_get(ctx);
1122 w = BN_CTX_get(ctx);
1123 if (w == NULL)
1124 goto err;
1125
1126 if (!BN_GF2m_mod_arr(a, a_, p))
1127 goto err;
1128
1129 if (BN_is_zero(a)) {
1130 BN_zero(r);
1131 ret = 1;
1132 goto err;
1133 }
1134
1135 if (p[0] & 0x1) { /* m is odd */
1136 /* compute half-trace of a */
1137 if (!BN_copy(z, a))
1138 goto err;
1139 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1140 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1141 goto err;
1142 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1143 goto err;
1144 if (!BN_GF2m_add(z, z, a))
1145 goto err;
1146 }
1147
1148 } else { /* m is even */
1149
1150 rho = BN_CTX_get(ctx);
1151 w2 = BN_CTX_get(ctx);
1152 tmp = BN_CTX_get(ctx);
1153 if (tmp == NULL)
1154 goto err;
1155 do {
1156 if (!BN_rand(rho, p[0], 0, 0))
1157 goto err;
1158 if (!BN_GF2m_mod_arr(rho, rho, p))
1159 goto err;
1160 BN_zero(z);
1161 if (!BN_copy(w, rho))
1162 goto err;
1163 for (j = 1; j <= p[0] - 1; j++) {
1164 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1165 goto err;
1166 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1167 goto err;
1168 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1169 goto err;
1170 if (!BN_GF2m_add(z, z, tmp))
1171 goto err;
1172 if (!BN_GF2m_add(w, w2, rho))
1173 goto err;
1174 }
1175 count++;
1176 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1177 if (BN_is_zero(w)) {
1178 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1179 goto err;
1180 }
1181 }
1182
1183 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1184 goto err;
1185 if (!BN_GF2m_add(w, z, w))
1186 goto err;
1187 if (BN_GF2m_cmp(w, a)) {
1188 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1189 goto err;
1190 }
1191
1192 if (!BN_copy(r, z))
1193 goto err;
1194 bn_check_top(r);
1195
1196 ret = 1;
1197
1198 err:
1199 BN_CTX_end(ctx);
1200 return ret;
1201 }
1202
1203 /*
1204 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1205 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1206 * implementation; this wrapper function is only provided for convenience;
1207 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1208 */
1209 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1210 BN_CTX *ctx)
1211 {
1212 int ret = 0;
1213 const int max = BN_num_bits(p) + 1;
1214 int *arr = NULL;
1215 bn_check_top(a);
1216 bn_check_top(p);
1217 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1218 goto err;
1219 ret = BN_GF2m_poly2arr(p, arr, max);
1220 if (!ret || ret > max) {
1221 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1222 goto err;
1223 }
1224 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1225 bn_check_top(r);
1226 err:
1227 OPENSSL_free(arr);
1228 return ret;
1229 }
1230
1231 /*
1232 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1233 * x^i) into an array of integers corresponding to the bits with non-zero
1234 * coefficient. Array is terminated with -1. Up to max elements of the array
1235 * will be filled. Return value is total number of array elements that would
1236 * be filled if array was large enough.
1237 */
1238 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1239 {
1240 int i, j, k = 0;
1241 BN_ULONG mask;
1242
1243 if (BN_is_zero(a))
1244 return 0;
1245
1246 for (i = a->top - 1; i >= 0; i--) {
1247 if (!a->d[i])
1248 /* skip word if a->d[i] == 0 */
1249 continue;
1250 mask = BN_TBIT;
1251 for (j = BN_BITS2 - 1; j >= 0; j--) {
1252 if (a->d[i] & mask) {
1253 if (k < max)
1254 p[k] = BN_BITS2 * i + j;
1255 k++;
1256 }
1257 mask >>= 1;
1258 }
1259 }
1260
1261 if (k < max) {
1262 p[k] = -1;
1263 k++;
1264 }
1265
1266 return k;
1267 }
1268
1269 /*
1270 * Convert the coefficient array representation of a polynomial to a
1271 * bit-string. The array must be terminated by -1.
1272 */
1273 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1274 {
1275 int i;
1276
1277 bn_check_top(a);
1278 BN_zero(a);
1279 for (i = 0; p[i] != -1; i++) {
1280 if (BN_set_bit(a, p[i]) == 0)
1281 return 0;
1282 }
1283 bn_check_top(a);
1284
1285 return 1;
1286 }
1287
1288 #endif