]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
bn/bn_gf2m.c: appease STACK, unstable code detector.
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /*
31 * NOTE: This file is licensed pursuant to the OpenSSL license below and may
32 * be modified; but after modifications, the above covenant may no longer
33 * apply! In such cases, the corresponding paragraph ["In addition, Sun
34 * covenants ... causes the infringement."] and this note can be edited out;
35 * but please keep the Sun copyright notice and attribution.
36 */
37
38 /* ====================================================================
39 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 *
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 *
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in
50 * the documentation and/or other materials provided with the
51 * distribution.
52 *
53 * 3. All advertising materials mentioning features or use of this
54 * software must display the following acknowledgment:
55 * "This product includes software developed by the OpenSSL Project
56 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 *
58 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
59 * endorse or promote products derived from this software without
60 * prior written permission. For written permission, please contact
61 * openssl-core@openssl.org.
62 *
63 * 5. Products derived from this software may not be called "OpenSSL"
64 * nor may "OpenSSL" appear in their names without prior written
65 * permission of the OpenSSL Project.
66 *
67 * 6. Redistributions of any form whatsoever must retain the following
68 * acknowledgment:
69 * "This product includes software developed by the OpenSSL Project
70 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 *
72 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
73 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
75 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
76 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
77 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
78 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
81 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
82 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
83 * OF THE POSSIBILITY OF SUCH DAMAGE.
84 * ====================================================================
85 *
86 * This product includes cryptographic software written by Eric Young
87 * (eay@cryptsoft.com). This product includes software written by Tim
88 * Hudson (tjh@cryptsoft.com).
89 *
90 */
91
92 #include <assert.h>
93 #include <limits.h>
94 #include <stdio.h>
95 #include "internal/cryptlib.h"
96 #include "bn_lcl.h"
97
98 #ifndef OPENSSL_NO_EC2M
99
100 /*
101 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
102 * fail.
103 */
104 # define MAX_ITERATIONS 50
105
106 static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85
108 };
109
110 /* Platform-specific macros to accelerate squaring. */
111 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
112 # define SQR1(w) \
113 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
114 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
115 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
116 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
117 # define SQR0(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
119 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
120 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
121 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
122 # endif
123 # ifdef THIRTY_TWO_BIT
124 # define SQR1(w) \
125 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
126 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
127 # define SQR0(w) \
128 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
129 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
130 # endif
131
132 # if !defined(OPENSSL_BN_ASM_GF2m)
133 /*
134 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
135 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
136 * the variables have the right amount of space allocated.
137 */
138 # ifdef THIRTY_TWO_BIT
139 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
140 const BN_ULONG b)
141 {
142 register BN_ULONG h, l, s;
143 BN_ULONG tab[8], top2b = a >> 30;
144 register BN_ULONG a1, a2, a4;
145
146 a1 = a & (0x3FFFFFFF);
147 a2 = a1 << 1;
148 a4 = a2 << 1;
149
150 tab[0] = 0;
151 tab[1] = a1;
152 tab[2] = a2;
153 tab[3] = a1 ^ a2;
154 tab[4] = a4;
155 tab[5] = a1 ^ a4;
156 tab[6] = a2 ^ a4;
157 tab[7] = a1 ^ a2 ^ a4;
158
159 s = tab[b & 0x7];
160 l = s;
161 s = tab[b >> 3 & 0x7];
162 l ^= s << 3;
163 h = s >> 29;
164 s = tab[b >> 6 & 0x7];
165 l ^= s << 6;
166 h ^= s >> 26;
167 s = tab[b >> 9 & 0x7];
168 l ^= s << 9;
169 h ^= s >> 23;
170 s = tab[b >> 12 & 0x7];
171 l ^= s << 12;
172 h ^= s >> 20;
173 s = tab[b >> 15 & 0x7];
174 l ^= s << 15;
175 h ^= s >> 17;
176 s = tab[b >> 18 & 0x7];
177 l ^= s << 18;
178 h ^= s >> 14;
179 s = tab[b >> 21 & 0x7];
180 l ^= s << 21;
181 h ^= s >> 11;
182 s = tab[b >> 24 & 0x7];
183 l ^= s << 24;
184 h ^= s >> 8;
185 s = tab[b >> 27 & 0x7];
186 l ^= s << 27;
187 h ^= s >> 5;
188 s = tab[b >> 30];
189 l ^= s << 30;
190 h ^= s >> 2;
191
192 /* compensate for the top two bits of a */
193
194 if (top2b & 01) {
195 l ^= b << 30;
196 h ^= b >> 2;
197 }
198 if (top2b & 02) {
199 l ^= b << 31;
200 h ^= b >> 1;
201 }
202
203 *r1 = h;
204 *r0 = l;
205 }
206 # endif
207 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
208 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
209 const BN_ULONG b)
210 {
211 register BN_ULONG h, l, s;
212 BN_ULONG tab[16], top3b = a >> 61;
213 register BN_ULONG a1, a2, a4, a8;
214
215 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
216 a2 = a1 << 1;
217 a4 = a2 << 1;
218 a8 = a4 << 1;
219
220 tab[0] = 0;
221 tab[1] = a1;
222 tab[2] = a2;
223 tab[3] = a1 ^ a2;
224 tab[4] = a4;
225 tab[5] = a1 ^ a4;
226 tab[6] = a2 ^ a4;
227 tab[7] = a1 ^ a2 ^ a4;
228 tab[8] = a8;
229 tab[9] = a1 ^ a8;
230 tab[10] = a2 ^ a8;
231 tab[11] = a1 ^ a2 ^ a8;
232 tab[12] = a4 ^ a8;
233 tab[13] = a1 ^ a4 ^ a8;
234 tab[14] = a2 ^ a4 ^ a8;
235 tab[15] = a1 ^ a2 ^ a4 ^ a8;
236
237 s = tab[b & 0xF];
238 l = s;
239 s = tab[b >> 4 & 0xF];
240 l ^= s << 4;
241 h = s >> 60;
242 s = tab[b >> 8 & 0xF];
243 l ^= s << 8;
244 h ^= s >> 56;
245 s = tab[b >> 12 & 0xF];
246 l ^= s << 12;
247 h ^= s >> 52;
248 s = tab[b >> 16 & 0xF];
249 l ^= s << 16;
250 h ^= s >> 48;
251 s = tab[b >> 20 & 0xF];
252 l ^= s << 20;
253 h ^= s >> 44;
254 s = tab[b >> 24 & 0xF];
255 l ^= s << 24;
256 h ^= s >> 40;
257 s = tab[b >> 28 & 0xF];
258 l ^= s << 28;
259 h ^= s >> 36;
260 s = tab[b >> 32 & 0xF];
261 l ^= s << 32;
262 h ^= s >> 32;
263 s = tab[b >> 36 & 0xF];
264 l ^= s << 36;
265 h ^= s >> 28;
266 s = tab[b >> 40 & 0xF];
267 l ^= s << 40;
268 h ^= s >> 24;
269 s = tab[b >> 44 & 0xF];
270 l ^= s << 44;
271 h ^= s >> 20;
272 s = tab[b >> 48 & 0xF];
273 l ^= s << 48;
274 h ^= s >> 16;
275 s = tab[b >> 52 & 0xF];
276 l ^= s << 52;
277 h ^= s >> 12;
278 s = tab[b >> 56 & 0xF];
279 l ^= s << 56;
280 h ^= s >> 8;
281 s = tab[b >> 60];
282 l ^= s << 60;
283 h ^= s >> 4;
284
285 /* compensate for the top three bits of a */
286
287 if (top3b & 01) {
288 l ^= b << 61;
289 h ^= b >> 3;
290 }
291 if (top3b & 02) {
292 l ^= b << 62;
293 h ^= b >> 2;
294 }
295 if (top3b & 04) {
296 l ^= b << 63;
297 h ^= b >> 1;
298 }
299
300 *r1 = h;
301 *r0 = l;
302 }
303 # endif
304
305 /*
306 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
307 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
308 * ensure that the variables have the right amount of space allocated.
309 */
310 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
311 const BN_ULONG b1, const BN_ULONG b0)
312 {
313 BN_ULONG m1, m0;
314 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
315 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
316 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
317 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
318 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
319 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
320 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
321 }
322 # else
323 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
324 BN_ULONG b0);
325 # endif
326
327 /*
328 * Add polynomials a and b and store result in r; r could be a or b, a and b
329 * could be equal; r is the bitwise XOR of a and b.
330 */
331 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
332 {
333 int i;
334 const BIGNUM *at, *bt;
335
336 bn_check_top(a);
337 bn_check_top(b);
338
339 if (a->top < b->top) {
340 at = b;
341 bt = a;
342 } else {
343 at = a;
344 bt = b;
345 }
346
347 if (bn_wexpand(r, at->top) == NULL)
348 return 0;
349
350 for (i = 0; i < bt->top; i++) {
351 r->d[i] = at->d[i] ^ bt->d[i];
352 }
353 for (; i < at->top; i++) {
354 r->d[i] = at->d[i];
355 }
356
357 r->top = at->top;
358 bn_correct_top(r);
359
360 return 1;
361 }
362
363 /*-
364 * Some functions allow for representation of the irreducible polynomials
365 * as an int[], say p. The irreducible f(t) is then of the form:
366 * t^p[0] + t^p[1] + ... + t^p[k]
367 * where m = p[0] > p[1] > ... > p[k] = 0.
368 */
369
370 /* Performs modular reduction of a and store result in r. r could be a. */
371 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
372 {
373 int j, k;
374 int n, dN, d0, d1;
375 BN_ULONG zz, *z;
376
377 bn_check_top(a);
378
379 if (!p[0]) {
380 /* reduction mod 1 => return 0 */
381 BN_zero(r);
382 return 1;
383 }
384
385 /*
386 * Since the algorithm does reduction in the r value, if a != r, copy the
387 * contents of a into r so we can do reduction in r.
388 */
389 if (a != r) {
390 if (!bn_wexpand(r, a->top))
391 return 0;
392 for (j = 0; j < a->top; j++) {
393 r->d[j] = a->d[j];
394 }
395 r->top = a->top;
396 }
397 z = r->d;
398
399 /* start reduction */
400 dN = p[0] / BN_BITS2;
401 for (j = r->top - 1; j > dN;) {
402 zz = z[j];
403 if (z[j] == 0) {
404 j--;
405 continue;
406 }
407 z[j] = 0;
408
409 for (k = 1; p[k] != 0; k++) {
410 /* reducing component t^p[k] */
411 n = p[0] - p[k];
412 d0 = n % BN_BITS2;
413 d1 = BN_BITS2 - d0;
414 n /= BN_BITS2;
415 z[j - n] ^= (zz >> d0);
416 if (d0)
417 z[j - n - 1] ^= (zz << d1);
418 }
419
420 /* reducing component t^0 */
421 n = dN;
422 d0 = p[0] % BN_BITS2;
423 d1 = BN_BITS2 - d0;
424 z[j - n] ^= (zz >> d0);
425 if (d0)
426 z[j - n - 1] ^= (zz << d1);
427 }
428
429 /* final round of reduction */
430 while (j == dN) {
431
432 d0 = p[0] % BN_BITS2;
433 zz = z[dN] >> d0;
434 if (zz == 0)
435 break;
436 d1 = BN_BITS2 - d0;
437
438 /* clear up the top d1 bits */
439 if (d0)
440 z[dN] = (z[dN] << d1) >> d1;
441 else
442 z[dN] = 0;
443 z[0] ^= zz; /* reduction t^0 component */
444
445 for (k = 1; p[k] != 0; k++) {
446 BN_ULONG tmp_ulong;
447
448 /* reducing component t^p[k] */
449 n = p[k] / BN_BITS2;
450 d0 = p[k] % BN_BITS2;
451 d1 = BN_BITS2 - d0;
452 z[n] ^= (zz << d0);
453 if (d0 && (tmp_ulong = zz >> d1))
454 z[n + 1] ^= tmp_ulong;
455 }
456
457 }
458
459 bn_correct_top(r);
460 return 1;
461 }
462
463 /*
464 * Performs modular reduction of a by p and store result in r. r could be a.
465 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
466 * function is only provided for convenience; for best performance, use the
467 * BN_GF2m_mod_arr function.
468 */
469 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
470 {
471 int ret = 0;
472 int arr[6];
473 bn_check_top(a);
474 bn_check_top(p);
475 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
476 if (!ret || ret > (int)OSSL_NELEM(arr)) {
477 BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
478 return 0;
479 }
480 ret = BN_GF2m_mod_arr(r, a, arr);
481 bn_check_top(r);
482 return ret;
483 }
484
485 /*
486 * Compute the product of two polynomials a and b, reduce modulo p, and store
487 * the result in r. r could be a or b; a could be b.
488 */
489 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
490 const int p[], BN_CTX *ctx)
491 {
492 int zlen, i, j, k, ret = 0;
493 BIGNUM *s;
494 BN_ULONG x1, x0, y1, y0, zz[4];
495
496 bn_check_top(a);
497 bn_check_top(b);
498
499 if (a == b) {
500 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
501 }
502
503 BN_CTX_start(ctx);
504 if ((s = BN_CTX_get(ctx)) == NULL)
505 goto err;
506
507 zlen = a->top + b->top + 4;
508 if (!bn_wexpand(s, zlen))
509 goto err;
510 s->top = zlen;
511
512 for (i = 0; i < zlen; i++)
513 s->d[i] = 0;
514
515 for (j = 0; j < b->top; j += 2) {
516 y0 = b->d[j];
517 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
518 for (i = 0; i < a->top; i += 2) {
519 x0 = a->d[i];
520 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
521 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
522 for (k = 0; k < 4; k++)
523 s->d[i + j + k] ^= zz[k];
524 }
525 }
526
527 bn_correct_top(s);
528 if (BN_GF2m_mod_arr(r, s, p))
529 ret = 1;
530 bn_check_top(r);
531
532 err:
533 BN_CTX_end(ctx);
534 return ret;
535 }
536
537 /*
538 * Compute the product of two polynomials a and b, reduce modulo p, and store
539 * the result in r. r could be a or b; a could equal b. This function calls
540 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
541 * only provided for convenience; for best performance, use the
542 * BN_GF2m_mod_mul_arr function.
543 */
544 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
545 const BIGNUM *p, BN_CTX *ctx)
546 {
547 int ret = 0;
548 const int max = BN_num_bits(p) + 1;
549 int *arr = NULL;
550 bn_check_top(a);
551 bn_check_top(b);
552 bn_check_top(p);
553 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
554 goto err;
555 ret = BN_GF2m_poly2arr(p, arr, max);
556 if (!ret || ret > max) {
557 BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
558 goto err;
559 }
560 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
561 bn_check_top(r);
562 err:
563 OPENSSL_free(arr);
564 return ret;
565 }
566
567 /* Square a, reduce the result mod p, and store it in a. r could be a. */
568 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
569 BN_CTX *ctx)
570 {
571 int i, ret = 0;
572 BIGNUM *s;
573
574 bn_check_top(a);
575 BN_CTX_start(ctx);
576 if ((s = BN_CTX_get(ctx)) == NULL)
577 return 0;
578 if (!bn_wexpand(s, 2 * a->top))
579 goto err;
580
581 for (i = a->top - 1; i >= 0; i--) {
582 s->d[2 * i + 1] = SQR1(a->d[i]);
583 s->d[2 * i] = SQR0(a->d[i]);
584 }
585
586 s->top = 2 * a->top;
587 bn_correct_top(s);
588 if (!BN_GF2m_mod_arr(r, s, p))
589 goto err;
590 bn_check_top(r);
591 ret = 1;
592 err:
593 BN_CTX_end(ctx);
594 return ret;
595 }
596
597 /*
598 * Square a, reduce the result mod p, and store it in a. r could be a. This
599 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
600 * wrapper function is only provided for convenience; for best performance,
601 * use the BN_GF2m_mod_sqr_arr function.
602 */
603 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
604 {
605 int ret = 0;
606 const int max = BN_num_bits(p) + 1;
607 int *arr = NULL;
608
609 bn_check_top(a);
610 bn_check_top(p);
611 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
612 goto err;
613 ret = BN_GF2m_poly2arr(p, arr, max);
614 if (!ret || ret > max) {
615 BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
616 goto err;
617 }
618 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
619 bn_check_top(r);
620 err:
621 OPENSSL_free(arr);
622 return ret;
623 }
624
625 /*
626 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
627 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
628 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
629 * Curve Cryptography Over Binary Fields".
630 */
631 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
632 {
633 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
634 int ret = 0;
635
636 bn_check_top(a);
637 bn_check_top(p);
638
639 BN_CTX_start(ctx);
640
641 if ((b = BN_CTX_get(ctx)) == NULL)
642 goto err;
643 if ((c = BN_CTX_get(ctx)) == NULL)
644 goto err;
645 if ((u = BN_CTX_get(ctx)) == NULL)
646 goto err;
647 if ((v = BN_CTX_get(ctx)) == NULL)
648 goto err;
649
650 if (!BN_GF2m_mod(u, a, p))
651 goto err;
652 if (BN_is_zero(u))
653 goto err;
654
655 if (!BN_copy(v, p))
656 goto err;
657 # if 0
658 if (!BN_one(b))
659 goto err;
660
661 while (1) {
662 while (!BN_is_odd(u)) {
663 if (BN_is_zero(u))
664 goto err;
665 if (!BN_rshift1(u, u))
666 goto err;
667 if (BN_is_odd(b)) {
668 if (!BN_GF2m_add(b, b, p))
669 goto err;
670 }
671 if (!BN_rshift1(b, b))
672 goto err;
673 }
674
675 if (BN_abs_is_word(u, 1))
676 break;
677
678 if (BN_num_bits(u) < BN_num_bits(v)) {
679 tmp = u;
680 u = v;
681 v = tmp;
682 tmp = b;
683 b = c;
684 c = tmp;
685 }
686
687 if (!BN_GF2m_add(u, u, v))
688 goto err;
689 if (!BN_GF2m_add(b, b, c))
690 goto err;
691 }
692 # else
693 {
694 int i, ubits = BN_num_bits(u), vbits = BN_num_bits(v), /* v is copy
695 * of p */
696 top = p->top;
697 BN_ULONG *udp, *bdp, *vdp, *cdp;
698
699 bn_wexpand(u, top);
700 udp = u->d;
701 for (i = u->top; i < top; i++)
702 udp[i] = 0;
703 u->top = top;
704 bn_wexpand(b, top);
705 bdp = b->d;
706 bdp[0] = 1;
707 for (i = 1; i < top; i++)
708 bdp[i] = 0;
709 b->top = top;
710 bn_wexpand(c, top);
711 cdp = c->d;
712 for (i = 0; i < top; i++)
713 cdp[i] = 0;
714 c->top = top;
715 vdp = v->d; /* It pays off to "cache" *->d pointers,
716 * because it allows optimizer to be more
717 * aggressive. But we don't have to "cache"
718 * p->d, because *p is declared 'const'... */
719 while (1) {
720 while (ubits && !(udp[0] & 1)) {
721 BN_ULONG u0, u1, b0, b1, mask;
722
723 u0 = udp[0];
724 b0 = bdp[0];
725 mask = (BN_ULONG)0 - (b0 & 1);
726 b0 ^= p->d[0] & mask;
727 for (i = 0; i < top - 1; i++) {
728 u1 = udp[i + 1];
729 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
730 u0 = u1;
731 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
732 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
733 b0 = b1;
734 }
735 udp[i] = u0 >> 1;
736 bdp[i] = b0 >> 1;
737 ubits--;
738 }
739
740 if (ubits <= BN_BITS2 && udp[0] == 1)
741 break;
742
743 if (ubits < vbits) {
744 i = ubits;
745 ubits = vbits;
746 vbits = i;
747 tmp = u;
748 u = v;
749 v = tmp;
750 tmp = b;
751 b = c;
752 c = tmp;
753 udp = vdp;
754 vdp = v->d;
755 bdp = cdp;
756 cdp = c->d;
757 }
758 for (i = 0; i < top; i++) {
759 udp[i] ^= vdp[i];
760 bdp[i] ^= cdp[i];
761 }
762 if (ubits == vbits) {
763 BN_ULONG ul;
764 int utop = (ubits - 1) / BN_BITS2;
765
766 while ((ul = udp[utop]) == 0 && utop)
767 utop--;
768 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
769 }
770 }
771 bn_correct_top(b);
772 }
773 # endif
774
775 if (!BN_copy(r, b))
776 goto err;
777 bn_check_top(r);
778 ret = 1;
779
780 err:
781 # ifdef BN_DEBUG /* BN_CTX_end would complain about the
782 * expanded form */
783 bn_correct_top(c);
784 bn_correct_top(u);
785 bn_correct_top(v);
786 # endif
787 BN_CTX_end(ctx);
788 return ret;
789 }
790
791 /*
792 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
793 * This function calls down to the BN_GF2m_mod_inv implementation; this
794 * wrapper function is only provided for convenience; for best performance,
795 * use the BN_GF2m_mod_inv function.
796 */
797 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
798 BN_CTX *ctx)
799 {
800 BIGNUM *field;
801 int ret = 0;
802
803 bn_check_top(xx);
804 BN_CTX_start(ctx);
805 if ((field = BN_CTX_get(ctx)) == NULL)
806 goto err;
807 if (!BN_GF2m_arr2poly(p, field))
808 goto err;
809
810 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
811 bn_check_top(r);
812
813 err:
814 BN_CTX_end(ctx);
815 return ret;
816 }
817
818 # ifndef OPENSSL_SUN_GF2M_DIV
819 /*
820 * Divide y by x, reduce modulo p, and store the result in r. r could be x
821 * or y, x could equal y.
822 */
823 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
824 const BIGNUM *p, BN_CTX *ctx)
825 {
826 BIGNUM *xinv = NULL;
827 int ret = 0;
828
829 bn_check_top(y);
830 bn_check_top(x);
831 bn_check_top(p);
832
833 BN_CTX_start(ctx);
834 xinv = BN_CTX_get(ctx);
835 if (xinv == NULL)
836 goto err;
837
838 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
839 goto err;
840 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
841 goto err;
842 bn_check_top(r);
843 ret = 1;
844
845 err:
846 BN_CTX_end(ctx);
847 return ret;
848 }
849 # else
850 /*
851 * Divide y by x, reduce modulo p, and store the result in r. r could be x
852 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
853 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
854 * Great Divide".
855 */
856 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
857 const BIGNUM *p, BN_CTX *ctx)
858 {
859 BIGNUM *a, *b, *u, *v;
860 int ret = 0;
861
862 bn_check_top(y);
863 bn_check_top(x);
864 bn_check_top(p);
865
866 BN_CTX_start(ctx);
867
868 a = BN_CTX_get(ctx);
869 b = BN_CTX_get(ctx);
870 u = BN_CTX_get(ctx);
871 v = BN_CTX_get(ctx);
872 if (v == NULL)
873 goto err;
874
875 /* reduce x and y mod p */
876 if (!BN_GF2m_mod(u, y, p))
877 goto err;
878 if (!BN_GF2m_mod(a, x, p))
879 goto err;
880 if (!BN_copy(b, p))
881 goto err;
882
883 while (!BN_is_odd(a)) {
884 if (!BN_rshift1(a, a))
885 goto err;
886 if (BN_is_odd(u))
887 if (!BN_GF2m_add(u, u, p))
888 goto err;
889 if (!BN_rshift1(u, u))
890 goto err;
891 }
892
893 do {
894 if (BN_GF2m_cmp(b, a) > 0) {
895 if (!BN_GF2m_add(b, b, a))
896 goto err;
897 if (!BN_GF2m_add(v, v, u))
898 goto err;
899 do {
900 if (!BN_rshift1(b, b))
901 goto err;
902 if (BN_is_odd(v))
903 if (!BN_GF2m_add(v, v, p))
904 goto err;
905 if (!BN_rshift1(v, v))
906 goto err;
907 } while (!BN_is_odd(b));
908 } else if (BN_abs_is_word(a, 1))
909 break;
910 else {
911 if (!BN_GF2m_add(a, a, b))
912 goto err;
913 if (!BN_GF2m_add(u, u, v))
914 goto err;
915 do {
916 if (!BN_rshift1(a, a))
917 goto err;
918 if (BN_is_odd(u))
919 if (!BN_GF2m_add(u, u, p))
920 goto err;
921 if (!BN_rshift1(u, u))
922 goto err;
923 } while (!BN_is_odd(a));
924 }
925 } while (1);
926
927 if (!BN_copy(r, u))
928 goto err;
929 bn_check_top(r);
930 ret = 1;
931
932 err:
933 BN_CTX_end(ctx);
934 return ret;
935 }
936 # endif
937
938 /*
939 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
940 * * or yy, xx could equal yy. This function calls down to the
941 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
942 * convenience; for best performance, use the BN_GF2m_mod_div function.
943 */
944 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
945 const int p[], BN_CTX *ctx)
946 {
947 BIGNUM *field;
948 int ret = 0;
949
950 bn_check_top(yy);
951 bn_check_top(xx);
952
953 BN_CTX_start(ctx);
954 if ((field = BN_CTX_get(ctx)) == NULL)
955 goto err;
956 if (!BN_GF2m_arr2poly(p, field))
957 goto err;
958
959 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
960 bn_check_top(r);
961
962 err:
963 BN_CTX_end(ctx);
964 return ret;
965 }
966
967 /*
968 * Compute the bth power of a, reduce modulo p, and store the result in r. r
969 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
970 * P1363.
971 */
972 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
973 const int p[], BN_CTX *ctx)
974 {
975 int ret = 0, i, n;
976 BIGNUM *u;
977
978 bn_check_top(a);
979 bn_check_top(b);
980
981 if (BN_is_zero(b))
982 return (BN_one(r));
983
984 if (BN_abs_is_word(b, 1))
985 return (BN_copy(r, a) != NULL);
986
987 BN_CTX_start(ctx);
988 if ((u = BN_CTX_get(ctx)) == NULL)
989 goto err;
990
991 if (!BN_GF2m_mod_arr(u, a, p))
992 goto err;
993
994 n = BN_num_bits(b) - 1;
995 for (i = n - 1; i >= 0; i--) {
996 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
997 goto err;
998 if (BN_is_bit_set(b, i)) {
999 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1000 goto err;
1001 }
1002 }
1003 if (!BN_copy(r, u))
1004 goto err;
1005 bn_check_top(r);
1006 ret = 1;
1007 err:
1008 BN_CTX_end(ctx);
1009 return ret;
1010 }
1011
1012 /*
1013 * Compute the bth power of a, reduce modulo p, and store the result in r. r
1014 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
1015 * implementation; this wrapper function is only provided for convenience;
1016 * for best performance, use the BN_GF2m_mod_exp_arr function.
1017 */
1018 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
1019 const BIGNUM *p, BN_CTX *ctx)
1020 {
1021 int ret = 0;
1022 const int max = BN_num_bits(p) + 1;
1023 int *arr = NULL;
1024 bn_check_top(a);
1025 bn_check_top(b);
1026 bn_check_top(p);
1027 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1028 goto err;
1029 ret = BN_GF2m_poly2arr(p, arr, max);
1030 if (!ret || ret > max) {
1031 BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1032 goto err;
1033 }
1034 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1035 bn_check_top(r);
1036 err:
1037 OPENSSL_free(arr);
1038 return ret;
1039 }
1040
1041 /*
1042 * Compute the square root of a, reduce modulo p, and store the result in r.
1043 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1044 */
1045 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
1046 BN_CTX *ctx)
1047 {
1048 int ret = 0;
1049 BIGNUM *u;
1050
1051 bn_check_top(a);
1052
1053 if (!p[0]) {
1054 /* reduction mod 1 => return 0 */
1055 BN_zero(r);
1056 return 1;
1057 }
1058
1059 BN_CTX_start(ctx);
1060 if ((u = BN_CTX_get(ctx)) == NULL)
1061 goto err;
1062
1063 if (!BN_set_bit(u, p[0] - 1))
1064 goto err;
1065 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1066 bn_check_top(r);
1067
1068 err:
1069 BN_CTX_end(ctx);
1070 return ret;
1071 }
1072
1073 /*
1074 * Compute the square root of a, reduce modulo p, and store the result in r.
1075 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1076 * implementation; this wrapper function is only provided for convenience;
1077 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1078 */
1079 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1080 {
1081 int ret = 0;
1082 const int max = BN_num_bits(p) + 1;
1083 int *arr = NULL;
1084 bn_check_top(a);
1085 bn_check_top(p);
1086 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1087 goto err;
1088 ret = BN_GF2m_poly2arr(p, arr, max);
1089 if (!ret || ret > max) {
1090 BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1091 goto err;
1092 }
1093 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1094 bn_check_top(r);
1095 err:
1096 OPENSSL_free(arr);
1097 return ret;
1098 }
1099
1100 /*
1101 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1102 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1103 */
1104 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1105 BN_CTX *ctx)
1106 {
1107 int ret = 0, count = 0, j;
1108 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1109
1110 bn_check_top(a_);
1111
1112 if (!p[0]) {
1113 /* reduction mod 1 => return 0 */
1114 BN_zero(r);
1115 return 1;
1116 }
1117
1118 BN_CTX_start(ctx);
1119 a = BN_CTX_get(ctx);
1120 z = BN_CTX_get(ctx);
1121 w = BN_CTX_get(ctx);
1122 if (w == NULL)
1123 goto err;
1124
1125 if (!BN_GF2m_mod_arr(a, a_, p))
1126 goto err;
1127
1128 if (BN_is_zero(a)) {
1129 BN_zero(r);
1130 ret = 1;
1131 goto err;
1132 }
1133
1134 if (p[0] & 0x1) { /* m is odd */
1135 /* compute half-trace of a */
1136 if (!BN_copy(z, a))
1137 goto err;
1138 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1139 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1140 goto err;
1141 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1142 goto err;
1143 if (!BN_GF2m_add(z, z, a))
1144 goto err;
1145 }
1146
1147 } else { /* m is even */
1148
1149 rho = BN_CTX_get(ctx);
1150 w2 = BN_CTX_get(ctx);
1151 tmp = BN_CTX_get(ctx);
1152 if (tmp == NULL)
1153 goto err;
1154 do {
1155 if (!BN_rand(rho, p[0], 0, 0))
1156 goto err;
1157 if (!BN_GF2m_mod_arr(rho, rho, p))
1158 goto err;
1159 BN_zero(z);
1160 if (!BN_copy(w, rho))
1161 goto err;
1162 for (j = 1; j <= p[0] - 1; j++) {
1163 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1164 goto err;
1165 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1166 goto err;
1167 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1168 goto err;
1169 if (!BN_GF2m_add(z, z, tmp))
1170 goto err;
1171 if (!BN_GF2m_add(w, w2, rho))
1172 goto err;
1173 }
1174 count++;
1175 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1176 if (BN_is_zero(w)) {
1177 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1178 goto err;
1179 }
1180 }
1181
1182 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1183 goto err;
1184 if (!BN_GF2m_add(w, z, w))
1185 goto err;
1186 if (BN_GF2m_cmp(w, a)) {
1187 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1188 goto err;
1189 }
1190
1191 if (!BN_copy(r, z))
1192 goto err;
1193 bn_check_top(r);
1194
1195 ret = 1;
1196
1197 err:
1198 BN_CTX_end(ctx);
1199 return ret;
1200 }
1201
1202 /*
1203 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1204 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1205 * implementation; this wrapper function is only provided for convenience;
1206 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1207 */
1208 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1209 BN_CTX *ctx)
1210 {
1211 int ret = 0;
1212 const int max = BN_num_bits(p) + 1;
1213 int *arr = NULL;
1214 bn_check_top(a);
1215 bn_check_top(p);
1216 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1217 goto err;
1218 ret = BN_GF2m_poly2arr(p, arr, max);
1219 if (!ret || ret > max) {
1220 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1221 goto err;
1222 }
1223 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1224 bn_check_top(r);
1225 err:
1226 OPENSSL_free(arr);
1227 return ret;
1228 }
1229
1230 /*
1231 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1232 * x^i) into an array of integers corresponding to the bits with non-zero
1233 * coefficient. Array is terminated with -1. Up to max elements of the array
1234 * will be filled. Return value is total number of array elements that would
1235 * be filled if array was large enough.
1236 */
1237 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1238 {
1239 int i, j, k = 0;
1240 BN_ULONG mask;
1241
1242 if (BN_is_zero(a))
1243 return 0;
1244
1245 for (i = a->top - 1; i >= 0; i--) {
1246 if (!a->d[i])
1247 /* skip word if a->d[i] == 0 */
1248 continue;
1249 mask = BN_TBIT;
1250 for (j = BN_BITS2 - 1; j >= 0; j--) {
1251 if (a->d[i] & mask) {
1252 if (k < max)
1253 p[k] = BN_BITS2 * i + j;
1254 k++;
1255 }
1256 mask >>= 1;
1257 }
1258 }
1259
1260 if (k < max) {
1261 p[k] = -1;
1262 k++;
1263 }
1264
1265 return k;
1266 }
1267
1268 /*
1269 * Convert the coefficient array representation of a polynomial to a
1270 * bit-string. The array must be terminated by -1.
1271 */
1272 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1273 {
1274 int i;
1275
1276 bn_check_top(a);
1277 BN_zero(a);
1278 for (i = 0; p[i] != -1; i++) {
1279 if (BN_set_bit(a, p[i]) == 0)
1280 return 0;
1281 }
1282 bn_check_top(a);
1283
1284 return 1;
1285 }
1286
1287 #endif