]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_sqrt.c
Move 'q->neg = 0' to those places where it is needed
[thirdparty/openssl.git] / crypto / bn / bn_sqrt.c
1 /* crypto/bn/bn_mod.c */
2 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * and Bodo Moeller for the OpenSSL project. */
4 /* ====================================================================
5 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
57
58 #include "cryptlib.h"
59 #include "bn_lcl.h"
60
61
62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63 /* Returns 'ret' such that
64 * ret^2 == a (mod p),
65 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66 * in Algebraic Computational Number Theory", algorithm 1.5.1).
67 * 'p' must be prime!
68 */
69 {
70 BIGNUM *ret = in;
71 int err = 1;
72 int r;
73 BIGNUM *b, *q, *t, *x, *y;
74 int e, i, j;
75
76 if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
77 {
78 if (BN_abs_is_word(p, 2))
79 {
80 if (ret == NULL)
81 ret = BN_new();
82 if (ret == NULL)
83 goto end;
84 if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
85 {
86 BN_free(ret);
87 return NULL;
88 }
89 return ret;
90 }
91
92 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
93 return(NULL);
94 }
95
96 if (BN_is_zero(a) || BN_is_one(a))
97 {
98 if (ret == NULL)
99 ret = BN_new();
100 if (ret == NULL)
101 goto end;
102 if (!BN_set_word(ret, BN_is_one(a)))
103 {
104 BN_free(ret);
105 return NULL;
106 }
107 return ret;
108 }
109
110 #if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */
111 r = BN_kronecker(a, p, ctx);
112 if (r < -1) return NULL;
113 if (r == -1)
114 {
115 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
116 return(NULL);
117 }
118 #endif
119
120 BN_CTX_start(ctx);
121 b = BN_CTX_get(ctx);
122 q = BN_CTX_get(ctx);
123 t = BN_CTX_get(ctx);
124 x = BN_CTX_get(ctx);
125 y = BN_CTX_get(ctx);
126 if (y == NULL) goto end;
127
128 if (ret == NULL)
129 ret = BN_new();
130 if (ret == NULL) goto end;
131
132 /* now write |p| - 1 as 2^e*q where q is odd */
133 e = 1;
134 while (!BN_is_bit_set(p, e))
135 e++;
136 if (e > 2)
137 {
138 /* we don't need this q if e = 1 or 2 */
139 if (!BN_rshift(q, p, e)) goto end;
140 q->neg = 0;
141 }
142
143 if (e == 1)
144 {
145 /* The easy case: (p-1)/2 is odd, so 2 has an inverse
146 * modulo (p-1)/2, and square roots can be computed
147 * directly by modular exponentiation.
148 * We have
149 * 2 * (p+1)/4 == 1 (mod (p-1)/2),
150 * so we can use exponent (p+1)/4, i.e. (p-3)/4 + 1.
151 */
152 if (!BN_rshift(q, p, 2)) goto end;
153 q->neg = 0;
154 if (!BN_add_word(q, 1)) goto end;
155 if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
156 err = 0;
157 goto end;
158 }
159
160 if (e == 2)
161 {
162 /* p == 5 (mod 8)
163 *
164 * In this case 2 is always a non-square since
165 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
166 * So if a really is a square, then 2*a is a non-square.
167 * Thus for
168 * b := (2*a)^((p-5)/8),
169 * i := (2*a)*b^2
170 * we have
171 * i^2 = (2*a)^((1 + (p-5)/4)*2)
172 * = (2*a)^((p-1)/2)
173 * = -1;
174 * so if we set
175 * x := a*b*(i-1),
176 * then
177 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
178 * = a^2 * b^2 * (-2*i)
179 * = a*(-i)*(2*a*b^2)
180 * = a*(-i)*i
181 * = a.
182 *
183 * (This is due to A.O.L. Atkin,
184 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
185 * November 1992.)
186 */
187
188 /* make sure that a is reduced modulo p */
189 if (a->neg || BN_ucmp(a, p) >= 0)
190 {
191 if (!BN_nnmod(x, a, p, ctx)) goto end;
192 a = x; /* use x as temporary variable */
193 }
194
195 /* t := 2*a */
196 if (!BN_mod_lshift1_quick(t, a, p)) goto end;
197
198 /* b := (2*a)^((p-5)/8) */
199 if (!BN_rshift(q, p, 3)) goto end;
200 q->neg = 0;
201 if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
202
203 /* y := b^2 */
204 if (!BN_mod_sqr(y, b, p, ctx)) goto end;
205
206 /* t := (2*a)*b^2 - 1*/
207 if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
208 if (!BN_sub_word(t, 1)) goto end;
209
210 /* x = a*b*t */
211 if (!BN_mod_mul(x, a, b, p, ctx)) goto end;
212 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
213
214 if (!BN_copy(ret, x)) goto end;
215 err = 0;
216 goto end;
217 }
218
219 /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
220 * First, find some y that is not a square. */
221 i = 2;
222 do
223 {
224 /* For efficiency, try small numbers first;
225 * if this fails, try random numbers.
226 */
227 if (i < 22)
228 {
229 if (!BN_set_word(y, i)) goto end;
230 }
231 else
232 {
233 if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
234 if (BN_ucmp(y, p) >= 0)
235 {
236 if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
237 }
238 /* now 0 <= y < |p| */
239 if (BN_is_zero(y))
240 if (!BN_set_word(y, i)) goto end;
241 }
242
243 r = BN_kronecker(y, p, ctx);
244 if (r < -1) goto end;
245 if (r == 0)
246 {
247 /* m divides p */
248 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
249 goto end;
250 }
251 }
252 while (r == 1 && ++i < 82);
253
254 if (r != -1)
255 {
256 /* Many rounds and still no non-square -- this is more likely
257 * a bug than just bad luck.
258 * Even if p is not prime, we should have found some y
259 * such that r == -1.
260 */
261 BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
262 goto end;
263 }
264
265
266 /* Now that we have some non-square, we can find an element
267 * of order 2^e by computing its q'th power. */
268 if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
269 if (BN_is_one(y))
270 {
271 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
272 goto end;
273 }
274
275 /* Now we know that (if p is indeed prime) there is an integer
276 * k, 0 <= k < 2^e, such that
277 *
278 * a^q * y^k == 1 (mod p).
279 *
280 * As a^q is a square and y is not, k must be even.
281 * q+1 is even, too, so there is an element
282 *
283 * X := a^((q+1)/2) * y^(k/2),
284 *
285 * and it satisfies
286 *
287 * X^2 = a^q * a * y^k
288 * = a,
289 *
290 * so it is the square root that we are looking for.
291 */
292
293 /* t := (q-1)/2 (note that q is odd) */
294 if (!BN_rshift1(t, q)) goto end;
295
296 /* x := a^((q-1)/2) */
297 if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
298 {
299 if (!BN_nnmod(t, a, p, ctx)) goto end;
300 if (BN_is_zero(t))
301 {
302 /* special case: a == 0 (mod p) */
303 if (!BN_zero(ret)) goto end;
304 err = 0;
305 goto end;
306 }
307 else
308 if (!BN_one(x)) goto end;
309 }
310 else
311 {
312 if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
313 if (BN_is_zero(x))
314 {
315 /* special case: a == 0 (mod p) */
316 if (!BN_zero(ret)) goto end;
317 err = 0;
318 goto end;
319 }
320 }
321
322 /* b := a*x^2 (= a^q) */
323 if (!BN_mod_sqr(b, x, p, ctx)) goto end;
324 if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
325
326 /* x := a*x (= a^((q+1)/2)) */
327 if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
328
329 while (1)
330 {
331 /* Now b is a^q * y^k for some even k (0 <= k < 2^E
332 * where E refers to the original value of e, which we
333 * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
334 *
335 * We have a*b = x^2,
336 * y^2^(e-1) = -1,
337 * b^2^(e-1) = 1.
338 */
339
340 if (BN_is_one(b))
341 {
342 if (!BN_copy(ret, x)) goto end;
343 err = 0;
344 goto end;
345 }
346
347
348 /* find smallest i such that b^(2^i) = 1 */
349 i = 1;
350 if (!BN_mod_sqr(t, b, p, ctx)) goto end;
351 while (!BN_is_one(t))
352 {
353 i++;
354 if (i == e)
355 {
356 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
357 goto end;
358 }
359 if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
360 }
361
362
363 /* t := y^2^(e - i - 1) */
364 if (!BN_copy(t, y)) goto end;
365 for (j = e - i - 1; j > 0; j--)
366 {
367 if (!BN_mod_sqr(t, t, p, ctx)) goto end;
368 }
369 if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
370 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
371 if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
372 e = i;
373 }
374
375 end:
376 if (err)
377 {
378 if (ret != NULL && ret != in)
379 {
380 BN_clear_free(ret);
381 }
382 ret = NULL;
383 }
384 BN_CTX_end(ctx);
385 return ret;
386 }