]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec2_smpl.c
More comments
[thirdparty/openssl.git] / crypto / ec / ec2_smpl.c
1 /* crypto/ec/ec2_smpl.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16 /* ====================================================================
17 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 * software must display the following acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 * endorse or promote products derived from this software without
38 * prior written permission. For written permission, please contact
39 * openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 * nor may "OpenSSL" appear in their names without prior written
43 * permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 * acknowledgment:
47 * "This product includes software developed by the OpenSSL Project
48 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com). This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70
71
72 #include <openssl/err.h>
73
74 #include "internal/bn_int.h"
75 #include "ec_lcl.h"
76
77 #ifndef OPENSSL_NO_EC2M
78
79
80 const EC_METHOD *EC_GF2m_simple_method(void)
81 {
82 static const EC_METHOD ret = {
83 EC_FLAGS_DEFAULT_OCT,
84 NID_X9_62_characteristic_two_field,
85 ec_GF2m_simple_group_init,
86 ec_GF2m_simple_group_finish,
87 ec_GF2m_simple_group_clear_finish,
88 ec_GF2m_simple_group_copy,
89 ec_GF2m_simple_group_set_curve,
90 ec_GF2m_simple_group_get_curve,
91 ec_GF2m_simple_group_get_degree,
92 ec_GF2m_simple_group_check_discriminant,
93 ec_GF2m_simple_point_init,
94 ec_GF2m_simple_point_finish,
95 ec_GF2m_simple_point_clear_finish,
96 ec_GF2m_simple_point_copy,
97 ec_GF2m_simple_point_set_to_infinity,
98 0 /* set_Jprojective_coordinates_GFp */,
99 0 /* get_Jprojective_coordinates_GFp */,
100 ec_GF2m_simple_point_set_affine_coordinates,
101 ec_GF2m_simple_point_get_affine_coordinates,
102 0,0,0,
103 ec_GF2m_simple_add,
104 ec_GF2m_simple_dbl,
105 ec_GF2m_simple_invert,
106 ec_GF2m_simple_is_at_infinity,
107 ec_GF2m_simple_is_on_curve,
108 ec_GF2m_simple_cmp,
109 ec_GF2m_simple_make_affine,
110 ec_GF2m_simple_points_make_affine,
111
112 /* the following three method functions are defined in ec2_mult.c */
113 ec_GF2m_simple_mul,
114 ec_GF2m_precompute_mult,
115 ec_GF2m_have_precompute_mult,
116
117 ec_GF2m_simple_field_mul,
118 ec_GF2m_simple_field_sqr,
119 ec_GF2m_simple_field_div,
120 0 /* field_encode */,
121 0 /* field_decode */,
122 0 /* field_set_to_one */ };
123
124 return &ret;
125 }
126
127
128 /* Initialize a GF(2^m)-based EC_GROUP structure.
129 * Note that all other members are handled by EC_GROUP_new.
130 */
131 int ec_GF2m_simple_group_init(EC_GROUP *group)
132 {
133 group->field = BN_new();
134 group->a = BN_new();
135 group->b = BN_new();
136
137 if(!group->field || !group->a || !group->b)
138 {
139 if(group->field) BN_free(group->field);
140 if(group->a) BN_free(group->a);
141 if(group->b) BN_free(group->b);
142 return 0;
143 }
144 return 1;
145 }
146
147
148 /* Free a GF(2^m)-based EC_GROUP structure.
149 * Note that all other members are handled by EC_GROUP_free.
150 */
151 void ec_GF2m_simple_group_finish(EC_GROUP *group)
152 {
153 BN_free(group->field);
154 BN_free(group->a);
155 BN_free(group->b);
156 }
157
158
159 /* Clear and free a GF(2^m)-based EC_GROUP structure.
160 * Note that all other members are handled by EC_GROUP_clear_free.
161 */
162 void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
163 {
164 BN_clear_free(group->field);
165 BN_clear_free(group->a);
166 BN_clear_free(group->b);
167 group->poly[0] = 0;
168 group->poly[1] = 0;
169 group->poly[2] = 0;
170 group->poly[3] = 0;
171 group->poly[4] = 0;
172 group->poly[5] = -1;
173 }
174
175
176 /* Copy a GF(2^m)-based EC_GROUP structure.
177 * Note that all other members are handled by EC_GROUP_copy.
178 */
179 int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
180 {
181 if (!BN_copy(dest->field, src->field)) return 0;
182 if (!BN_copy(dest->a, src->a)) return 0;
183 if (!BN_copy(dest->b, src->b)) return 0;
184 dest->poly[0] = src->poly[0];
185 dest->poly[1] = src->poly[1];
186 dest->poly[2] = src->poly[2];
187 dest->poly[3] = src->poly[3];
188 dest->poly[4] = src->poly[4];
189 dest->poly[5] = src->poly[5];
190 if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
191 if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
192 bn_set_all_zero(dest->a);
193 bn_set_all_zero(dest->b);
194 return 1;
195 }
196
197
198 /* Set the curve parameters of an EC_GROUP structure. */
199 int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
200 const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
201 {
202 int ret = 0, i;
203
204 /* group->field */
205 if (!BN_copy(group->field, p)) goto err;
206 i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
207 if ((i != 5) && (i != 3))
208 {
209 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
210 goto err;
211 }
212
213 /* group->a */
214 if (!BN_GF2m_mod_arr(group->a, a, group->poly)) goto err;
215 if(bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
216 bn_set_all_zero(group->a);
217
218 /* group->b */
219 if (!BN_GF2m_mod_arr(group->b, b, group->poly)) goto err;
220 if(bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
221 bn_set_all_zero(group->b);
222
223 ret = 1;
224 err:
225 return ret;
226 }
227
228
229 /* Get the curve parameters of an EC_GROUP structure.
230 * If p, a, or b are NULL then there values will not be set but the method will return with success.
231 */
232 int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
233 {
234 int ret = 0;
235
236 if (p != NULL)
237 {
238 if (!BN_copy(p, group->field)) return 0;
239 }
240
241 if (a != NULL)
242 {
243 if (!BN_copy(a, group->a)) goto err;
244 }
245
246 if (b != NULL)
247 {
248 if (!BN_copy(b, group->b)) goto err;
249 }
250
251 ret = 1;
252
253 err:
254 return ret;
255 }
256
257
258 /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */
259 int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
260 {
261 return BN_num_bits(group->field)-1;
262 }
263
264
265 /* Checks the discriminant of the curve.
266 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
267 */
268 int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
269 {
270 int ret = 0;
271 BIGNUM *b;
272 BN_CTX *new_ctx = NULL;
273
274 if (ctx == NULL)
275 {
276 ctx = new_ctx = BN_CTX_new();
277 if (ctx == NULL)
278 {
279 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
280 goto err;
281 }
282 }
283 BN_CTX_start(ctx);
284 b = BN_CTX_get(ctx);
285 if (b == NULL) goto err;
286
287 if (!BN_GF2m_mod_arr(b, group->b, group->poly)) goto err;
288
289 /* check the discriminant:
290 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
291 */
292 if (BN_is_zero(b)) goto err;
293
294 ret = 1;
295
296 err:
297 if (ctx != NULL)
298 BN_CTX_end(ctx);
299 if (new_ctx != NULL)
300 BN_CTX_free(new_ctx);
301 return ret;
302 }
303
304
305 /* Initializes an EC_POINT. */
306 int ec_GF2m_simple_point_init(EC_POINT *point)
307 {
308 point->X = BN_new();
309 point->Y = BN_new();
310 point->Z = BN_new();
311
312 if(!point->X || !point->Y || !point->Z)
313 {
314 if(point->X) BN_free(point->X);
315 if(point->Y) BN_free(point->Y);
316 if(point->Z) BN_free(point->Z);
317 return 0;
318 }
319 return 1;
320 }
321
322
323 /* Frees an EC_POINT. */
324 void ec_GF2m_simple_point_finish(EC_POINT *point)
325 {
326 BN_free(point->X);
327 BN_free(point->Y);
328 BN_free(point->Z);
329 }
330
331
332 /* Clears and frees an EC_POINT. */
333 void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
334 {
335 BN_clear_free(point->X);
336 BN_clear_free(point->Y);
337 BN_clear_free(point->Z);
338 point->Z_is_one = 0;
339 }
340
341
342 /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */
343 int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
344 {
345 if (!BN_copy(dest->X, src->X)) return 0;
346 if (!BN_copy(dest->Y, src->Y)) return 0;
347 if (!BN_copy(dest->Z, src->Z)) return 0;
348 dest->Z_is_one = src->Z_is_one;
349
350 return 1;
351 }
352
353
354 /* Set an EC_POINT to the point at infinity.
355 * A point at infinity is represented by having Z=0.
356 */
357 int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
358 {
359 point->Z_is_one = 0;
360 BN_zero(point->Z);
361 return 1;
362 }
363
364
365 /* Set the coordinates of an EC_POINT using affine coordinates.
366 * Note that the simple implementation only uses affine coordinates.
367 */
368 int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
369 const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
370 {
371 int ret = 0;
372 if (x == NULL || y == NULL)
373 {
374 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
375 return 0;
376 }
377
378 if (!BN_copy(point->X, x)) goto err;
379 BN_set_negative(point->X, 0);
380 if (!BN_copy(point->Y, y)) goto err;
381 BN_set_negative(point->Y, 0);
382 if (!BN_copy(point->Z, BN_value_one())) goto err;
383 BN_set_negative(point->Z, 0);
384 point->Z_is_one = 1;
385 ret = 1;
386
387 err:
388 return ret;
389 }
390
391
392 /* Gets the affine coordinates of an EC_POINT.
393 * Note that the simple implementation only uses affine coordinates.
394 */
395 int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
396 BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
397 {
398 int ret = 0;
399
400 if (EC_POINT_is_at_infinity(group, point))
401 {
402 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
403 return 0;
404 }
405
406 if (BN_cmp(point->Z, BN_value_one()))
407 {
408 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
409 return 0;
410 }
411 if (x != NULL)
412 {
413 if (!BN_copy(x, point->X)) goto err;
414 BN_set_negative(x, 0);
415 }
416 if (y != NULL)
417 {
418 if (!BN_copy(y, point->Y)) goto err;
419 BN_set_negative(y, 0);
420 }
421 ret = 1;
422
423 err:
424 return ret;
425 }
426
427 /* Computes a + b and stores the result in r. r could be a or b, a could be b.
428 * Uses algorithm A.10.2 of IEEE P1363.
429 */
430 int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
431 {
432 BN_CTX *new_ctx = NULL;
433 BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
434 int ret = 0;
435
436 if (EC_POINT_is_at_infinity(group, a))
437 {
438 if (!EC_POINT_copy(r, b)) return 0;
439 return 1;
440 }
441
442 if (EC_POINT_is_at_infinity(group, b))
443 {
444 if (!EC_POINT_copy(r, a)) return 0;
445 return 1;
446 }
447
448 if (ctx == NULL)
449 {
450 ctx = new_ctx = BN_CTX_new();
451 if (ctx == NULL)
452 return 0;
453 }
454
455 BN_CTX_start(ctx);
456 x0 = BN_CTX_get(ctx);
457 y0 = BN_CTX_get(ctx);
458 x1 = BN_CTX_get(ctx);
459 y1 = BN_CTX_get(ctx);
460 x2 = BN_CTX_get(ctx);
461 y2 = BN_CTX_get(ctx);
462 s = BN_CTX_get(ctx);
463 t = BN_CTX_get(ctx);
464 if (t == NULL) goto err;
465
466 if (a->Z_is_one)
467 {
468 if (!BN_copy(x0, a->X)) goto err;
469 if (!BN_copy(y0, a->Y)) goto err;
470 }
471 else
472 {
473 if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
474 }
475 if (b->Z_is_one)
476 {
477 if (!BN_copy(x1, b->X)) goto err;
478 if (!BN_copy(y1, b->Y)) goto err;
479 }
480 else
481 {
482 if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
483 }
484
485
486 if (BN_GF2m_cmp(x0, x1))
487 {
488 if (!BN_GF2m_add(t, x0, x1)) goto err;
489 if (!BN_GF2m_add(s, y0, y1)) goto err;
490 if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
491 if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
492 if (!BN_GF2m_add(x2, x2, group->a)) goto err;
493 if (!BN_GF2m_add(x2, x2, s)) goto err;
494 if (!BN_GF2m_add(x2, x2, t)) goto err;
495 }
496 else
497 {
498 if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
499 {
500 if (!EC_POINT_set_to_infinity(group, r)) goto err;
501 ret = 1;
502 goto err;
503 }
504 if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
505 if (!BN_GF2m_add(s, s, x1)) goto err;
506
507 if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
508 if (!BN_GF2m_add(x2, x2, s)) goto err;
509 if (!BN_GF2m_add(x2, x2, group->a)) goto err;
510 }
511
512 if (!BN_GF2m_add(y2, x1, x2)) goto err;
513 if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
514 if (!BN_GF2m_add(y2, y2, x2)) goto err;
515 if (!BN_GF2m_add(y2, y2, y1)) goto err;
516
517 if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
518
519 ret = 1;
520
521 err:
522 BN_CTX_end(ctx);
523 if (new_ctx != NULL)
524 BN_CTX_free(new_ctx);
525 return ret;
526 }
527
528
529 /* Computes 2 * a and stores the result in r. r could be a.
530 * Uses algorithm A.10.2 of IEEE P1363.
531 */
532 int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
533 {
534 return ec_GF2m_simple_add(group, r, a, a, ctx);
535 }
536
537
538 int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
539 {
540 if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
541 /* point is its own inverse */
542 return 1;
543
544 if (!EC_POINT_make_affine(group, point, ctx)) return 0;
545 return BN_GF2m_add(point->Y, point->X, point->Y);
546 }
547
548
549 /* Indicates whether the given point is the point at infinity. */
550 int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
551 {
552 return BN_is_zero(point->Z);
553 }
554
555
556 /*-
557 * Determines whether the given EC_POINT is an actual point on the curve defined
558 * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
559 * y^2 + x*y = x^3 + a*x^2 + b.
560 */
561 int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
562 {
563 int ret = -1;
564 BN_CTX *new_ctx = NULL;
565 BIGNUM *lh, *y2;
566 int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
567 int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
568
569 if (EC_POINT_is_at_infinity(group, point))
570 return 1;
571
572 field_mul = group->meth->field_mul;
573 field_sqr = group->meth->field_sqr;
574
575 /* only support affine coordinates */
576 if (!point->Z_is_one) return -1;
577
578 if (ctx == NULL)
579 {
580 ctx = new_ctx = BN_CTX_new();
581 if (ctx == NULL)
582 return -1;
583 }
584
585 BN_CTX_start(ctx);
586 y2 = BN_CTX_get(ctx);
587 lh = BN_CTX_get(ctx);
588 if (lh == NULL) goto err;
589
590 /*-
591 * We have a curve defined by a Weierstrass equation
592 * y^2 + x*y = x^3 + a*x^2 + b.
593 * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
594 * <=> ((x + a) * x + y ) * x + b + y^2 = 0
595 */
596 if (!BN_GF2m_add(lh, point->X, group->a)) goto err;
597 if (!field_mul(group, lh, lh, point->X, ctx)) goto err;
598 if (!BN_GF2m_add(lh, lh, point->Y)) goto err;
599 if (!field_mul(group, lh, lh, point->X, ctx)) goto err;
600 if (!BN_GF2m_add(lh, lh, group->b)) goto err;
601 if (!field_sqr(group, y2, point->Y, ctx)) goto err;
602 if (!BN_GF2m_add(lh, lh, y2)) goto err;
603 ret = BN_is_zero(lh);
604 err:
605 if (ctx) BN_CTX_end(ctx);
606 if (new_ctx) BN_CTX_free(new_ctx);
607 return ret;
608 }
609
610
611 /*-
612 * Indicates whether two points are equal.
613 * Return values:
614 * -1 error
615 * 0 equal (in affine coordinates)
616 * 1 not equal
617 */
618 int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
619 {
620 BIGNUM *aX, *aY, *bX, *bY;
621 BN_CTX *new_ctx = NULL;
622 int ret = -1;
623
624 if (EC_POINT_is_at_infinity(group, a))
625 {
626 return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
627 }
628
629 if (EC_POINT_is_at_infinity(group, b))
630 return 1;
631
632 if (a->Z_is_one && b->Z_is_one)
633 {
634 return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
635 }
636
637 if (ctx == NULL)
638 {
639 ctx = new_ctx = BN_CTX_new();
640 if (ctx == NULL)
641 return -1;
642 }
643
644 BN_CTX_start(ctx);
645 aX = BN_CTX_get(ctx);
646 aY = BN_CTX_get(ctx);
647 bX = BN_CTX_get(ctx);
648 bY = BN_CTX_get(ctx);
649 if (bY == NULL) goto err;
650
651 if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
652 if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
653 ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
654
655 err:
656 if (ctx) BN_CTX_end(ctx);
657 if (new_ctx) BN_CTX_free(new_ctx);
658 return ret;
659 }
660
661
662 /* Forces the given EC_POINT to internally use affine coordinates. */
663 int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
664 {
665 BN_CTX *new_ctx = NULL;
666 BIGNUM *x, *y;
667 int ret = 0;
668
669 if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
670 return 1;
671
672 if (ctx == NULL)
673 {
674 ctx = new_ctx = BN_CTX_new();
675 if (ctx == NULL)
676 return 0;
677 }
678
679 BN_CTX_start(ctx);
680 x = BN_CTX_get(ctx);
681 y = BN_CTX_get(ctx);
682 if (y == NULL) goto err;
683
684 if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
685 if (!BN_copy(point->X, x)) goto err;
686 if (!BN_copy(point->Y, y)) goto err;
687 if (!BN_one(point->Z)) goto err;
688
689 ret = 1;
690
691 err:
692 if (ctx) BN_CTX_end(ctx);
693 if (new_ctx) BN_CTX_free(new_ctx);
694 return ret;
695 }
696
697
698 /* Forces each of the EC_POINTs in the given array to use affine coordinates. */
699 int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
700 {
701 size_t i;
702
703 for (i = 0; i < num; i++)
704 {
705 if (!group->meth->make_affine(group, points[i], ctx)) return 0;
706 }
707
708 return 1;
709 }
710
711
712 /* Wrapper to simple binary polynomial field multiplication implementation. */
713 int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
714 {
715 return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
716 }
717
718
719 /* Wrapper to simple binary polynomial field squaring implementation. */
720 int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
721 {
722 return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
723 }
724
725
726 /* Wrapper to simple binary polynomial field division implementation. */
727 int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
728 {
729 return BN_GF2m_mod_div(r, a, b, group->field, ctx);
730 }
731
732 #endif