]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec2_smpl.c
SCA hardening for mod. field inversion in EC_GROUP
[thirdparty/openssl.git] / crypto / ec / ec2_smpl.c
1 /*
2 * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <openssl/err.h>
12
13 #include "internal/bn_int.h"
14 #include "ec_lcl.h"
15
16 #ifndef OPENSSL_NO_EC2M
17
18 /*
19 * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
20 * are handled by EC_GROUP_new.
21 */
22 int ec_GF2m_simple_group_init(EC_GROUP *group)
23 {
24 group->field = BN_new();
25 group->a = BN_new();
26 group->b = BN_new();
27
28 if (group->field == NULL || group->a == NULL || group->b == NULL) {
29 BN_free(group->field);
30 BN_free(group->a);
31 BN_free(group->b);
32 return 0;
33 }
34 return 1;
35 }
36
37 /*
38 * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
39 * handled by EC_GROUP_free.
40 */
41 void ec_GF2m_simple_group_finish(EC_GROUP *group)
42 {
43 BN_free(group->field);
44 BN_free(group->a);
45 BN_free(group->b);
46 }
47
48 /*
49 * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
50 * members are handled by EC_GROUP_clear_free.
51 */
52 void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
53 {
54 BN_clear_free(group->field);
55 BN_clear_free(group->a);
56 BN_clear_free(group->b);
57 group->poly[0] = 0;
58 group->poly[1] = 0;
59 group->poly[2] = 0;
60 group->poly[3] = 0;
61 group->poly[4] = 0;
62 group->poly[5] = -1;
63 }
64
65 /*
66 * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
67 * handled by EC_GROUP_copy.
68 */
69 int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
70 {
71 if (!BN_copy(dest->field, src->field))
72 return 0;
73 if (!BN_copy(dest->a, src->a))
74 return 0;
75 if (!BN_copy(dest->b, src->b))
76 return 0;
77 dest->poly[0] = src->poly[0];
78 dest->poly[1] = src->poly[1];
79 dest->poly[2] = src->poly[2];
80 dest->poly[3] = src->poly[3];
81 dest->poly[4] = src->poly[4];
82 dest->poly[5] = src->poly[5];
83 if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
84 NULL)
85 return 0;
86 if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
87 NULL)
88 return 0;
89 bn_set_all_zero(dest->a);
90 bn_set_all_zero(dest->b);
91 return 1;
92 }
93
94 /* Set the curve parameters of an EC_GROUP structure. */
95 int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
96 const BIGNUM *p, const BIGNUM *a,
97 const BIGNUM *b, BN_CTX *ctx)
98 {
99 int ret = 0, i;
100
101 /* group->field */
102 if (!BN_copy(group->field, p))
103 goto err;
104 i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
105 if ((i != 5) && (i != 3)) {
106 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
107 goto err;
108 }
109
110 /* group->a */
111 if (!BN_GF2m_mod_arr(group->a, a, group->poly))
112 goto err;
113 if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
114 == NULL)
115 goto err;
116 bn_set_all_zero(group->a);
117
118 /* group->b */
119 if (!BN_GF2m_mod_arr(group->b, b, group->poly))
120 goto err;
121 if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
122 == NULL)
123 goto err;
124 bn_set_all_zero(group->b);
125
126 ret = 1;
127 err:
128 return ret;
129 }
130
131 /*
132 * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
133 * then there values will not be set but the method will return with success.
134 */
135 int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
136 BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
137 {
138 int ret = 0;
139
140 if (p != NULL) {
141 if (!BN_copy(p, group->field))
142 return 0;
143 }
144
145 if (a != NULL) {
146 if (!BN_copy(a, group->a))
147 goto err;
148 }
149
150 if (b != NULL) {
151 if (!BN_copy(b, group->b))
152 goto err;
153 }
154
155 ret = 1;
156
157 err:
158 return ret;
159 }
160
161 /*
162 * Gets the degree of the field. For a curve over GF(2^m) this is the value
163 * m.
164 */
165 int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
166 {
167 return BN_num_bits(group->field) - 1;
168 }
169
170 /*
171 * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
172 * elliptic curve <=> b != 0 (mod p)
173 */
174 int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
175 BN_CTX *ctx)
176 {
177 int ret = 0;
178 BIGNUM *b;
179 BN_CTX *new_ctx = NULL;
180
181 if (ctx == NULL) {
182 ctx = new_ctx = BN_CTX_new();
183 if (ctx == NULL) {
184 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
185 ERR_R_MALLOC_FAILURE);
186 goto err;
187 }
188 }
189 BN_CTX_start(ctx);
190 b = BN_CTX_get(ctx);
191 if (b == NULL)
192 goto err;
193
194 if (!BN_GF2m_mod_arr(b, group->b, group->poly))
195 goto err;
196
197 /*
198 * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
199 * curve <=> b != 0 (mod p)
200 */
201 if (BN_is_zero(b))
202 goto err;
203
204 ret = 1;
205
206 err:
207 if (ctx != NULL)
208 BN_CTX_end(ctx);
209 BN_CTX_free(new_ctx);
210 return ret;
211 }
212
213 /* Initializes an EC_POINT. */
214 int ec_GF2m_simple_point_init(EC_POINT *point)
215 {
216 point->X = BN_new();
217 point->Y = BN_new();
218 point->Z = BN_new();
219
220 if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
221 BN_free(point->X);
222 BN_free(point->Y);
223 BN_free(point->Z);
224 return 0;
225 }
226 return 1;
227 }
228
229 /* Frees an EC_POINT. */
230 void ec_GF2m_simple_point_finish(EC_POINT *point)
231 {
232 BN_free(point->X);
233 BN_free(point->Y);
234 BN_free(point->Z);
235 }
236
237 /* Clears and frees an EC_POINT. */
238 void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
239 {
240 BN_clear_free(point->X);
241 BN_clear_free(point->Y);
242 BN_clear_free(point->Z);
243 point->Z_is_one = 0;
244 }
245
246 /*
247 * Copy the contents of one EC_POINT into another. Assumes dest is
248 * initialized.
249 */
250 int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
251 {
252 if (!BN_copy(dest->X, src->X))
253 return 0;
254 if (!BN_copy(dest->Y, src->Y))
255 return 0;
256 if (!BN_copy(dest->Z, src->Z))
257 return 0;
258 dest->Z_is_one = src->Z_is_one;
259 dest->curve_name = src->curve_name;
260
261 return 1;
262 }
263
264 /*
265 * Set an EC_POINT to the point at infinity. A point at infinity is
266 * represented by having Z=0.
267 */
268 int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
269 EC_POINT *point)
270 {
271 point->Z_is_one = 0;
272 BN_zero(point->Z);
273 return 1;
274 }
275
276 /*
277 * Set the coordinates of an EC_POINT using affine coordinates. Note that
278 * the simple implementation only uses affine coordinates.
279 */
280 int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
281 EC_POINT *point,
282 const BIGNUM *x,
283 const BIGNUM *y, BN_CTX *ctx)
284 {
285 int ret = 0;
286 if (x == NULL || y == NULL) {
287 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
288 ERR_R_PASSED_NULL_PARAMETER);
289 return 0;
290 }
291
292 if (!BN_copy(point->X, x))
293 goto err;
294 BN_set_negative(point->X, 0);
295 if (!BN_copy(point->Y, y))
296 goto err;
297 BN_set_negative(point->Y, 0);
298 if (!BN_copy(point->Z, BN_value_one()))
299 goto err;
300 BN_set_negative(point->Z, 0);
301 point->Z_is_one = 1;
302 ret = 1;
303
304 err:
305 return ret;
306 }
307
308 /*
309 * Gets the affine coordinates of an EC_POINT. Note that the simple
310 * implementation only uses affine coordinates.
311 */
312 int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
313 const EC_POINT *point,
314 BIGNUM *x, BIGNUM *y,
315 BN_CTX *ctx)
316 {
317 int ret = 0;
318
319 if (EC_POINT_is_at_infinity(group, point)) {
320 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
321 EC_R_POINT_AT_INFINITY);
322 return 0;
323 }
324
325 if (BN_cmp(point->Z, BN_value_one())) {
326 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
327 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
328 return 0;
329 }
330 if (x != NULL) {
331 if (!BN_copy(x, point->X))
332 goto err;
333 BN_set_negative(x, 0);
334 }
335 if (y != NULL) {
336 if (!BN_copy(y, point->Y))
337 goto err;
338 BN_set_negative(y, 0);
339 }
340 ret = 1;
341
342 err:
343 return ret;
344 }
345
346 /*
347 * Computes a + b and stores the result in r. r could be a or b, a could be
348 * b. Uses algorithm A.10.2 of IEEE P1363.
349 */
350 int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
351 const EC_POINT *b, BN_CTX *ctx)
352 {
353 BN_CTX *new_ctx = NULL;
354 BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
355 int ret = 0;
356
357 if (EC_POINT_is_at_infinity(group, a)) {
358 if (!EC_POINT_copy(r, b))
359 return 0;
360 return 1;
361 }
362
363 if (EC_POINT_is_at_infinity(group, b)) {
364 if (!EC_POINT_copy(r, a))
365 return 0;
366 return 1;
367 }
368
369 if (ctx == NULL) {
370 ctx = new_ctx = BN_CTX_new();
371 if (ctx == NULL)
372 return 0;
373 }
374
375 BN_CTX_start(ctx);
376 x0 = BN_CTX_get(ctx);
377 y0 = BN_CTX_get(ctx);
378 x1 = BN_CTX_get(ctx);
379 y1 = BN_CTX_get(ctx);
380 x2 = BN_CTX_get(ctx);
381 y2 = BN_CTX_get(ctx);
382 s = BN_CTX_get(ctx);
383 t = BN_CTX_get(ctx);
384 if (t == NULL)
385 goto err;
386
387 if (a->Z_is_one) {
388 if (!BN_copy(x0, a->X))
389 goto err;
390 if (!BN_copy(y0, a->Y))
391 goto err;
392 } else {
393 if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
394 goto err;
395 }
396 if (b->Z_is_one) {
397 if (!BN_copy(x1, b->X))
398 goto err;
399 if (!BN_copy(y1, b->Y))
400 goto err;
401 } else {
402 if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
403 goto err;
404 }
405
406 if (BN_GF2m_cmp(x0, x1)) {
407 if (!BN_GF2m_add(t, x0, x1))
408 goto err;
409 if (!BN_GF2m_add(s, y0, y1))
410 goto err;
411 if (!group->meth->field_div(group, s, s, t, ctx))
412 goto err;
413 if (!group->meth->field_sqr(group, x2, s, ctx))
414 goto err;
415 if (!BN_GF2m_add(x2, x2, group->a))
416 goto err;
417 if (!BN_GF2m_add(x2, x2, s))
418 goto err;
419 if (!BN_GF2m_add(x2, x2, t))
420 goto err;
421 } else {
422 if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
423 if (!EC_POINT_set_to_infinity(group, r))
424 goto err;
425 ret = 1;
426 goto err;
427 }
428 if (!group->meth->field_div(group, s, y1, x1, ctx))
429 goto err;
430 if (!BN_GF2m_add(s, s, x1))
431 goto err;
432
433 if (!group->meth->field_sqr(group, x2, s, ctx))
434 goto err;
435 if (!BN_GF2m_add(x2, x2, s))
436 goto err;
437 if (!BN_GF2m_add(x2, x2, group->a))
438 goto err;
439 }
440
441 if (!BN_GF2m_add(y2, x1, x2))
442 goto err;
443 if (!group->meth->field_mul(group, y2, y2, s, ctx))
444 goto err;
445 if (!BN_GF2m_add(y2, y2, x2))
446 goto err;
447 if (!BN_GF2m_add(y2, y2, y1))
448 goto err;
449
450 if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
451 goto err;
452
453 ret = 1;
454
455 err:
456 BN_CTX_end(ctx);
457 BN_CTX_free(new_ctx);
458 return ret;
459 }
460
461 /*
462 * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
463 * A.10.2 of IEEE P1363.
464 */
465 int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
466 BN_CTX *ctx)
467 {
468 return ec_GF2m_simple_add(group, r, a, a, ctx);
469 }
470
471 int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
472 {
473 if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
474 /* point is its own inverse */
475 return 1;
476
477 if (!EC_POINT_make_affine(group, point, ctx))
478 return 0;
479 return BN_GF2m_add(point->Y, point->X, point->Y);
480 }
481
482 /* Indicates whether the given point is the point at infinity. */
483 int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
484 const EC_POINT *point)
485 {
486 return BN_is_zero(point->Z);
487 }
488
489 /*-
490 * Determines whether the given EC_POINT is an actual point on the curve defined
491 * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
492 * y^2 + x*y = x^3 + a*x^2 + b.
493 */
494 int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
495 BN_CTX *ctx)
496 {
497 int ret = -1;
498 BN_CTX *new_ctx = NULL;
499 BIGNUM *lh, *y2;
500 int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
501 const BIGNUM *, BN_CTX *);
502 int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
503
504 if (EC_POINT_is_at_infinity(group, point))
505 return 1;
506
507 field_mul = group->meth->field_mul;
508 field_sqr = group->meth->field_sqr;
509
510 /* only support affine coordinates */
511 if (!point->Z_is_one)
512 return -1;
513
514 if (ctx == NULL) {
515 ctx = new_ctx = BN_CTX_new();
516 if (ctx == NULL)
517 return -1;
518 }
519
520 BN_CTX_start(ctx);
521 y2 = BN_CTX_get(ctx);
522 lh = BN_CTX_get(ctx);
523 if (lh == NULL)
524 goto err;
525
526 /*-
527 * We have a curve defined by a Weierstrass equation
528 * y^2 + x*y = x^3 + a*x^2 + b.
529 * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
530 * <=> ((x + a) * x + y ) * x + b + y^2 = 0
531 */
532 if (!BN_GF2m_add(lh, point->X, group->a))
533 goto err;
534 if (!field_mul(group, lh, lh, point->X, ctx))
535 goto err;
536 if (!BN_GF2m_add(lh, lh, point->Y))
537 goto err;
538 if (!field_mul(group, lh, lh, point->X, ctx))
539 goto err;
540 if (!BN_GF2m_add(lh, lh, group->b))
541 goto err;
542 if (!field_sqr(group, y2, point->Y, ctx))
543 goto err;
544 if (!BN_GF2m_add(lh, lh, y2))
545 goto err;
546 ret = BN_is_zero(lh);
547
548 err:
549 BN_CTX_end(ctx);
550 BN_CTX_free(new_ctx);
551 return ret;
552 }
553
554 /*-
555 * Indicates whether two points are equal.
556 * Return values:
557 * -1 error
558 * 0 equal (in affine coordinates)
559 * 1 not equal
560 */
561 int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
562 const EC_POINT *b, BN_CTX *ctx)
563 {
564 BIGNUM *aX, *aY, *bX, *bY;
565 BN_CTX *new_ctx = NULL;
566 int ret = -1;
567
568 if (EC_POINT_is_at_infinity(group, a)) {
569 return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
570 }
571
572 if (EC_POINT_is_at_infinity(group, b))
573 return 1;
574
575 if (a->Z_is_one && b->Z_is_one) {
576 return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
577 }
578
579 if (ctx == NULL) {
580 ctx = new_ctx = BN_CTX_new();
581 if (ctx == NULL)
582 return -1;
583 }
584
585 BN_CTX_start(ctx);
586 aX = BN_CTX_get(ctx);
587 aY = BN_CTX_get(ctx);
588 bX = BN_CTX_get(ctx);
589 bY = BN_CTX_get(ctx);
590 if (bY == NULL)
591 goto err;
592
593 if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
594 goto err;
595 if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
596 goto err;
597 ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
598
599 err:
600 BN_CTX_end(ctx);
601 BN_CTX_free(new_ctx);
602 return ret;
603 }
604
605 /* Forces the given EC_POINT to internally use affine coordinates. */
606 int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
607 BN_CTX *ctx)
608 {
609 BN_CTX *new_ctx = NULL;
610 BIGNUM *x, *y;
611 int ret = 0;
612
613 if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
614 return 1;
615
616 if (ctx == NULL) {
617 ctx = new_ctx = BN_CTX_new();
618 if (ctx == NULL)
619 return 0;
620 }
621
622 BN_CTX_start(ctx);
623 x = BN_CTX_get(ctx);
624 y = BN_CTX_get(ctx);
625 if (y == NULL)
626 goto err;
627
628 if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
629 goto err;
630 if (!BN_copy(point->X, x))
631 goto err;
632 if (!BN_copy(point->Y, y))
633 goto err;
634 if (!BN_one(point->Z))
635 goto err;
636 point->Z_is_one = 1;
637
638 ret = 1;
639
640 err:
641 BN_CTX_end(ctx);
642 BN_CTX_free(new_ctx);
643 return ret;
644 }
645
646 /*
647 * Forces each of the EC_POINTs in the given array to use affine coordinates.
648 */
649 int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
650 EC_POINT *points[], BN_CTX *ctx)
651 {
652 size_t i;
653
654 for (i = 0; i < num; i++) {
655 if (!group->meth->make_affine(group, points[i], ctx))
656 return 0;
657 }
658
659 return 1;
660 }
661
662 /* Wrapper to simple binary polynomial field multiplication implementation. */
663 int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
664 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
665 {
666 return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
667 }
668
669 /* Wrapper to simple binary polynomial field squaring implementation. */
670 int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
671 const BIGNUM *a, BN_CTX *ctx)
672 {
673 return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
674 }
675
676 /* Wrapper to simple binary polynomial field division implementation. */
677 int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
678 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
679 {
680 return BN_GF2m_mod_div(r, a, b, group->field, ctx);
681 }
682
683 /*-
684 * Lopez-Dahab ladder, pre step.
685 * See e.g. "Guide to ECC" Alg 3.40.
686 * Modified to blind s and r independently.
687 * s:= p, r := 2p
688 */
689 static
690 int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
691 EC_POINT *r, EC_POINT *s,
692 EC_POINT *p, BN_CTX *ctx)
693 {
694 /* if p is not affine, something is wrong */
695 if (p->Z_is_one == 0)
696 return 0;
697
698 /* s blinding: make sure lambda (s->Z here) is not zero */
699 do {
700 if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
701 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
702 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
703 return 0;
704 }
705 } while (BN_is_zero(s->Z));
706
707 /* if field_encode defined convert between representations */
708 if ((group->meth->field_encode != NULL
709 && !group->meth->field_encode(group, s->Z, s->Z, ctx))
710 || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
711 return 0;
712
713 /* r blinding: make sure lambda (r->Y here for storage) is not zero */
714 do {
715 if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
716 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
717 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
718 return 0;
719 }
720 } while (BN_is_zero(r->Y));
721
722 if ((group->meth->field_encode != NULL
723 && !group->meth->field_encode(group, r->Y, r->Y, ctx))
724 || !group->meth->field_sqr(group, r->Z, p->X, ctx)
725 || !group->meth->field_sqr(group, r->X, r->Z, ctx)
726 || !BN_GF2m_add(r->X, r->X, group->b)
727 || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
728 || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
729 return 0;
730
731 s->Z_is_one = 0;
732 r->Z_is_one = 0;
733
734 return 1;
735 }
736
737 /*-
738 * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
739 * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
740 * s := r + s, r := 2r
741 */
742 static
743 int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
744 EC_POINT *r, EC_POINT *s,
745 EC_POINT *p, BN_CTX *ctx)
746 {
747 if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
748 || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
749 || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
750 || !group->meth->field_sqr(group, r->Z, r->X, ctx)
751 || !BN_GF2m_add(s->Z, r->Y, s->X)
752 || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
753 || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
754 || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
755 || !BN_GF2m_add(s->X, s->X, r->Y)
756 || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
757 || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
758 || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
759 || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
760 || !BN_GF2m_add(r->X, r->Y, s->Y))
761 return 0;
762
763 return 1;
764 }
765
766 /*-
767 * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
768 * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
769 * without Precomputation" (Lopez and Dahab, CHES 1999),
770 * Appendix Alg Mxy.
771 */
772 static
773 int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
774 EC_POINT *r, EC_POINT *s,
775 EC_POINT *p, BN_CTX *ctx)
776 {
777 int ret = 0;
778 BIGNUM *t0, *t1, *t2 = NULL;
779
780 if (BN_is_zero(r->Z))
781 return EC_POINT_set_to_infinity(group, r);
782
783 if (BN_is_zero(s->Z)) {
784 if (!EC_POINT_copy(r, p)
785 || !EC_POINT_invert(group, r, ctx)) {
786 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
787 return 0;
788 }
789 return 1;
790 }
791
792 BN_CTX_start(ctx);
793 t0 = BN_CTX_get(ctx);
794 t1 = BN_CTX_get(ctx);
795 t2 = BN_CTX_get(ctx);
796 if (t2 == NULL) {
797 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
798 goto err;
799 }
800
801 if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
802 || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
803 || !BN_GF2m_add(t1, r->X, t1)
804 || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
805 || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
806 || !BN_GF2m_add(t2, t2, s->X)
807 || !group->meth->field_mul(group, t1, t1, t2, ctx)
808 || !group->meth->field_sqr(group, t2, p->X, ctx)
809 || !BN_GF2m_add(t2, p->Y, t2)
810 || !group->meth->field_mul(group, t2, t2, t0, ctx)
811 || !BN_GF2m_add(t1, t2, t1)
812 || !group->meth->field_mul(group, t2, p->X, t0, ctx)
813 || !group->meth->field_inv(group, t2, t2, ctx)
814 || !group->meth->field_mul(group, t1, t1, t2, ctx)
815 || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
816 || !BN_GF2m_add(t2, p->X, r->X)
817 || !group->meth->field_mul(group, t2, t2, t1, ctx)
818 || !BN_GF2m_add(r->Y, p->Y, t2)
819 || !BN_one(r->Z))
820 goto err;
821
822 r->Z_is_one = 1;
823
824 /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
825 BN_set_negative(r->X, 0);
826 BN_set_negative(r->Y, 0);
827
828 ret = 1;
829
830 err:
831 BN_CTX_end(ctx);
832 return ret;
833 }
834
835 static
836 int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
837 const BIGNUM *scalar, size_t num,
838 const EC_POINT *points[],
839 const BIGNUM *scalars[],
840 BN_CTX *ctx)
841 {
842 int ret = 0;
843 EC_POINT *t = NULL;
844
845 /*-
846 * We limit use of the ladder only to the following cases:
847 * - r := scalar * G
848 * Fixed point mul: scalar != NULL && num == 0;
849 * - r := scalars[0] * points[0]
850 * Variable point mul: scalar == NULL && num == 1;
851 * - r := scalar * G + scalars[0] * points[0]
852 * used, e.g., in ECDSA verification: scalar != NULL && num == 1
853 *
854 * In any other case (num > 1) we use the default wNAF implementation.
855 *
856 * We also let the default implementation handle degenerate cases like group
857 * order or cofactor set to 0.
858 */
859 if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
860 return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
861
862 if (scalar != NULL && num == 0)
863 /* Fixed point multiplication */
864 return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
865
866 if (scalar == NULL && num == 1)
867 /* Variable point multiplication */
868 return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
869
870 /*-
871 * Double point multiplication:
872 * r := scalar * G + scalars[0] * points[0]
873 */
874
875 if ((t = EC_POINT_new(group)) == NULL) {
876 ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
877 return 0;
878 }
879
880 if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
881 || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
882 || !EC_POINT_add(group, r, t, r, ctx))
883 goto err;
884
885 ret = 1;
886
887 err:
888 EC_POINT_free(t);
889 return ret;
890 }
891
892 /*-
893 * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
894 * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
895 * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
896 */
897 static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
898 const BIGNUM *a, BN_CTX *ctx)
899 {
900 int ret;
901
902 if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
903 ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
904 return ret;
905 }
906
907 const EC_METHOD *EC_GF2m_simple_method(void)
908 {
909 static const EC_METHOD ret = {
910 EC_FLAGS_DEFAULT_OCT,
911 NID_X9_62_characteristic_two_field,
912 ec_GF2m_simple_group_init,
913 ec_GF2m_simple_group_finish,
914 ec_GF2m_simple_group_clear_finish,
915 ec_GF2m_simple_group_copy,
916 ec_GF2m_simple_group_set_curve,
917 ec_GF2m_simple_group_get_curve,
918 ec_GF2m_simple_group_get_degree,
919 ec_group_simple_order_bits,
920 ec_GF2m_simple_group_check_discriminant,
921 ec_GF2m_simple_point_init,
922 ec_GF2m_simple_point_finish,
923 ec_GF2m_simple_point_clear_finish,
924 ec_GF2m_simple_point_copy,
925 ec_GF2m_simple_point_set_to_infinity,
926 0, /* set_Jprojective_coordinates_GFp */
927 0, /* get_Jprojective_coordinates_GFp */
928 ec_GF2m_simple_point_set_affine_coordinates,
929 ec_GF2m_simple_point_get_affine_coordinates,
930 0, /* point_set_compressed_coordinates */
931 0, /* point2oct */
932 0, /* oct2point */
933 ec_GF2m_simple_add,
934 ec_GF2m_simple_dbl,
935 ec_GF2m_simple_invert,
936 ec_GF2m_simple_is_at_infinity,
937 ec_GF2m_simple_is_on_curve,
938 ec_GF2m_simple_cmp,
939 ec_GF2m_simple_make_affine,
940 ec_GF2m_simple_points_make_affine,
941 ec_GF2m_simple_points_mul,
942 0, /* precompute_mult */
943 0, /* have_precompute_mult */
944 ec_GF2m_simple_field_mul,
945 ec_GF2m_simple_field_sqr,
946 ec_GF2m_simple_field_div,
947 ec_GF2m_simple_field_inv,
948 0, /* field_encode */
949 0, /* field_decode */
950 0, /* field_set_to_one */
951 ec_key_simple_priv2oct,
952 ec_key_simple_oct2priv,
953 0, /* set private */
954 ec_key_simple_generate_key,
955 ec_key_simple_check_key,
956 ec_key_simple_generate_public_key,
957 0, /* keycopy */
958 0, /* keyfinish */
959 ecdh_simple_compute_key,
960 0, /* field_inverse_mod_ord */
961 0, /* blind_coordinates */
962 ec_GF2m_simple_ladder_pre,
963 ec_GF2m_simple_ladder_step,
964 ec_GF2m_simple_ladder_post
965 };
966
967 return &ret;
968 }
969
970 #endif