]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec_mult.c
Implement coordinate blinding for EC_POINT
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
1 /*
2 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <string.h>
12 #include <openssl/err.h>
13
14 #include "internal/cryptlib.h"
15 #include "internal/bn_int.h"
16 #include "ec_lcl.h"
17 #include "internal/refcount.h"
18
19 /*
20 * This file implements the wNAF-based interleaving multi-exponentiation method
21 * Formerly at:
22 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
23 * You might now find it here:
24 * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
25 * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
26 * For multiplication with precomputation, we use wNAF splitting, formerly at:
27 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
28 */
29
30 /* structure for precomputed multiples of the generator */
31 struct ec_pre_comp_st {
32 const EC_GROUP *group; /* parent EC_GROUP object */
33 size_t blocksize; /* block size for wNAF splitting */
34 size_t numblocks; /* max. number of blocks for which we have
35 * precomputation */
36 size_t w; /* window size */
37 EC_POINT **points; /* array with pre-calculated multiples of
38 * generator: 'num' pointers to EC_POINT
39 * objects followed by a NULL */
40 size_t num; /* numblocks * 2^(w-1) */
41 CRYPTO_REF_COUNT references;
42 CRYPTO_RWLOCK *lock;
43 };
44
45 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
46 {
47 EC_PRE_COMP *ret = NULL;
48
49 if (!group)
50 return NULL;
51
52 ret = OPENSSL_zalloc(sizeof(*ret));
53 if (ret == NULL) {
54 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
55 return ret;
56 }
57
58 ret->group = group;
59 ret->blocksize = 8; /* default */
60 ret->w = 4; /* default */
61 ret->references = 1;
62
63 ret->lock = CRYPTO_THREAD_lock_new();
64 if (ret->lock == NULL) {
65 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
66 OPENSSL_free(ret);
67 return NULL;
68 }
69 return ret;
70 }
71
72 EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73 {
74 int i;
75 if (pre != NULL)
76 CRYPTO_UP_REF(&pre->references, &i, pre->lock);
77 return pre;
78 }
79
80 void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81 {
82 int i;
83
84 if (pre == NULL)
85 return;
86
87 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
88 REF_PRINT_COUNT("EC_ec", pre);
89 if (i > 0)
90 return;
91 REF_ASSERT_ISNT(i < 0);
92
93 if (pre->points != NULL) {
94 EC_POINT **pts;
95
96 for (pts = pre->points; *pts != NULL; pts++)
97 EC_POINT_free(*pts);
98 OPENSSL_free(pre->points);
99 }
100 CRYPTO_THREAD_lock_free(pre->lock);
101 OPENSSL_free(pre);
102 }
103
104 #define EC_POINT_BN_set_flags(P, flags) do { \
105 BN_set_flags((P)->X, (flags)); \
106 BN_set_flags((P)->Y, (flags)); \
107 BN_set_flags((P)->Z, (flags)); \
108 } while(0)
109
110 /*-
111 * This functions computes (in constant time) a point multiplication over the
112 * EC group.
113 *
114 * At a high level, it is Montgomery ladder with conditional swaps.
115 *
116 * It performs either a fixed point multiplication
117 * (scalar * generator)
118 * when point is NULL, or a variable point multiplication
119 * (scalar * point)
120 * when point is not NULL.
121 *
122 * scalar should be in the range [0,n) otherwise all constant time bets are off.
123 *
124 * NB: This says nothing about EC_POINT_add and EC_POINT_dbl,
125 * which of course are not constant time themselves.
126 *
127 * The product is stored in r.
128 *
129 * Returns 1 on success, 0 otherwise.
130 */
131 static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
132 const BIGNUM *scalar, const EC_POINT *point,
133 BN_CTX *ctx)
134 {
135 int i, order_bits, group_top, kbit, pbit, Z_is_one;
136 EC_POINT *s = NULL;
137 BIGNUM *k = NULL;
138 BIGNUM *lambda = NULL;
139 BN_CTX *new_ctx = NULL;
140 int ret = 0;
141
142 if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
143 return 0;
144
145 BN_CTX_start(ctx);
146
147 order_bits = BN_num_bits(group->order);
148
149 s = EC_POINT_new(group);
150 if (s == NULL)
151 goto err;
152
153 if (point == NULL) {
154 if (!EC_POINT_copy(s, group->generator))
155 goto err;
156 } else {
157 if (!EC_POINT_copy(s, point))
158 goto err;
159 }
160
161 EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
162
163 lambda = BN_CTX_get(ctx);
164 k = BN_CTX_get(ctx);
165 if (k == NULL)
166 goto err;
167
168 /*
169 * Group orders are often on a word boundary.
170 * So when we pad the scalar, some timing diff might
171 * pop if it needs to be expanded due to carries.
172 * So expand ahead of time.
173 */
174 group_top = bn_get_top(group->order);
175 if ((bn_wexpand(k, group_top + 1) == NULL)
176 || (bn_wexpand(lambda, group_top + 1) == NULL))
177 goto err;
178
179 if (!BN_copy(k, scalar))
180 goto err;
181
182 BN_set_flags(k, BN_FLG_CONSTTIME);
183
184 if ((BN_num_bits(k) > order_bits) || (BN_is_negative(k))) {
185 /*-
186 * this is an unusual input, and we don't guarantee
187 * constant-timeness
188 */
189 if (!BN_nnmod(k, k, group->order, ctx))
190 goto err;
191 }
192
193 if (!BN_add(lambda, k, group->order))
194 goto err;
195 BN_set_flags(lambda, BN_FLG_CONSTTIME);
196 if (!BN_add(k, lambda, group->order))
197 goto err;
198 /*
199 * lambda := scalar + order
200 * k := scalar + 2*order
201 */
202 kbit = BN_is_bit_set(lambda, order_bits);
203 BN_consttime_swap(kbit, k, lambda, group_top + 1);
204
205 group_top = bn_get_top(group->field);
206 if ((bn_wexpand(s->X, group_top) == NULL)
207 || (bn_wexpand(s->Y, group_top) == NULL)
208 || (bn_wexpand(s->Z, group_top) == NULL)
209 || (bn_wexpand(r->X, group_top) == NULL)
210 || (bn_wexpand(r->Y, group_top) == NULL)
211 || (bn_wexpand(r->Z, group_top) == NULL))
212 goto err;
213
214 /*-
215 * Apply coordinate blinding for EC_POINT.
216 *
217 * The underlying EC_METHOD can optionally implement this function:
218 * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
219 * success or if coordinate blinding is not implemented for this
220 * group.
221 */
222 if (!ec_point_blind_coordinates(group, s, ctx))
223 goto err;
224
225 /* top bit is a 1, in a fixed pos */
226 if (!EC_POINT_copy(r, s))
227 goto err;
228
229 EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
230
231 if (!EC_POINT_dbl(group, s, s, ctx))
232 goto err;
233
234 pbit = 0;
235
236 #define EC_POINT_CSWAP(c, a, b, w, t) do { \
237 BN_consttime_swap(c, (a)->X, (b)->X, w); \
238 BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
239 BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
240 t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
241 (a)->Z_is_one ^= (t); \
242 (b)->Z_is_one ^= (t); \
243 } while(0)
244
245 /*-
246 * The ladder step, with branches, is
247 *
248 * k[i] == 0: S = add(R, S), R = dbl(R)
249 * k[i] == 1: R = add(S, R), S = dbl(S)
250 *
251 * Swapping R, S conditionally on k[i] leaves you with state
252 *
253 * k[i] == 0: T, U = R, S
254 * k[i] == 1: T, U = S, R
255 *
256 * Then perform the ECC ops.
257 *
258 * U = add(T, U)
259 * T = dbl(T)
260 *
261 * Which leaves you with state
262 *
263 * k[i] == 0: U = add(R, S), T = dbl(R)
264 * k[i] == 1: U = add(S, R), T = dbl(S)
265 *
266 * Swapping T, U conditionally on k[i] leaves you with state
267 *
268 * k[i] == 0: R, S = T, U
269 * k[i] == 1: R, S = U, T
270 *
271 * Which leaves you with state
272 *
273 * k[i] == 0: S = add(R, S), R = dbl(R)
274 * k[i] == 1: R = add(S, R), S = dbl(S)
275 *
276 * So we get the same logic, but instead of a branch it's a
277 * conditional swap, followed by ECC ops, then another conditional swap.
278 *
279 * Optimization: The end of iteration i and start of i-1 looks like
280 *
281 * ...
282 * CSWAP(k[i], R, S)
283 * ECC
284 * CSWAP(k[i], R, S)
285 * (next iteration)
286 * CSWAP(k[i-1], R, S)
287 * ECC
288 * CSWAP(k[i-1], R, S)
289 * ...
290 *
291 * So instead of two contiguous swaps, you can merge the condition
292 * bits and do a single swap.
293 *
294 * k[i] k[i-1] Outcome
295 * 0 0 No Swap
296 * 0 1 Swap
297 * 1 0 Swap
298 * 1 1 No Swap
299 *
300 * This is XOR. pbit tracks the previous bit of k.
301 */
302
303 for (i = order_bits - 1; i >= 0; i--) {
304 kbit = BN_is_bit_set(k, i) ^ pbit;
305 EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
306 if (!EC_POINT_add(group, s, r, s, ctx))
307 goto err;
308 if (!EC_POINT_dbl(group, r, r, ctx))
309 goto err;
310 /*
311 * pbit logic merges this cswap with that of the
312 * next iteration
313 */
314 pbit ^= kbit;
315 }
316 /* one final cswap to move the right value into r */
317 EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
318 #undef EC_POINT_CSWAP
319
320 ret = 1;
321
322 err:
323 EC_POINT_free(s);
324 BN_CTX_end(ctx);
325 BN_CTX_free(new_ctx);
326
327 return ret;
328 }
329
330 #undef EC_POINT_BN_set_flags
331
332 /*
333 * TODO: table should be optimised for the wNAF-based implementation,
334 * sometimes smaller windows will give better performance (thus the
335 * boundaries should be increased)
336 */
337 #define EC_window_bits_for_scalar_size(b) \
338 ((size_t) \
339 ((b) >= 2000 ? 6 : \
340 (b) >= 800 ? 5 : \
341 (b) >= 300 ? 4 : \
342 (b) >= 70 ? 3 : \
343 (b) >= 20 ? 2 : \
344 1))
345
346 /*-
347 * Compute
348 * \sum scalars[i]*points[i],
349 * also including
350 * scalar*generator
351 * in the addition if scalar != NULL
352 */
353 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
354 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
355 BN_CTX *ctx)
356 {
357 BN_CTX *new_ctx = NULL;
358 const EC_POINT *generator = NULL;
359 EC_POINT *tmp = NULL;
360 size_t totalnum;
361 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
362 size_t pre_points_per_block = 0;
363 size_t i, j;
364 int k;
365 int r_is_inverted = 0;
366 int r_is_at_infinity = 1;
367 size_t *wsize = NULL; /* individual window sizes */
368 signed char **wNAF = NULL; /* individual wNAFs */
369 size_t *wNAF_len = NULL;
370 size_t max_len = 0;
371 size_t num_val;
372 EC_POINT **val = NULL; /* precomputation */
373 EC_POINT **v;
374 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
375 * 'pre_comp->points' */
376 const EC_PRE_COMP *pre_comp = NULL;
377 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
378 * treated like other scalars, i.e.
379 * precomputation is not available */
380 int ret = 0;
381
382 if (!ec_point_is_compat(r, group)) {
383 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
384 return 0;
385 }
386
387 if ((scalar == NULL) && (num == 0)) {
388 return EC_POINT_set_to_infinity(group, r);
389 }
390
391 /*-
392 * Handle the common cases where the scalar is secret, enforcing a constant
393 * time scalar multiplication algorithm.
394 */
395 if ((scalar != NULL) && (num == 0)) {
396 /*-
397 * In this case we want to compute scalar * GeneratorPoint: this
398 * codepath is reached most prominently by (ephemeral) key generation
399 * of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH
400 * keygen/first half), where the scalar is always secret. This is why
401 * we ignore if BN_FLG_CONSTTIME is actually set and we always call the
402 * constant time version.
403 */
404 return ec_mul_consttime(group, r, scalar, NULL, ctx);
405 }
406 if ((scalar == NULL) && (num == 1)) {
407 /*-
408 * In this case we want to compute scalar * GenericPoint: this codepath
409 * is reached most prominently by the second half of ECDH, where the
410 * secret scalar is multiplied by the peer's public point. To protect
411 * the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and
412 * we always call the constant time version.
413 */
414 return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
415 }
416
417 for (i = 0; i < num; i++) {
418 if (!ec_point_is_compat(points[i], group)) {
419 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
420 return 0;
421 }
422 }
423
424 if (ctx == NULL) {
425 ctx = new_ctx = BN_CTX_new();
426 if (ctx == NULL)
427 goto err;
428 }
429
430 if (scalar != NULL) {
431 generator = EC_GROUP_get0_generator(group);
432 if (generator == NULL) {
433 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
434 goto err;
435 }
436
437 /* look if we can use precomputed multiples of generator */
438
439 pre_comp = group->pre_comp.ec;
440 if (pre_comp && pre_comp->numblocks
441 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
442 0)) {
443 blocksize = pre_comp->blocksize;
444
445 /*
446 * determine maximum number of blocks that wNAF splitting may
447 * yield (NB: maximum wNAF length is bit length plus one)
448 */
449 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
450
451 /*
452 * we cannot use more blocks than we have precomputation for
453 */
454 if (numblocks > pre_comp->numblocks)
455 numblocks = pre_comp->numblocks;
456
457 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
458
459 /* check that pre_comp looks sane */
460 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
461 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
462 goto err;
463 }
464 } else {
465 /* can't use precomputation */
466 pre_comp = NULL;
467 numblocks = 1;
468 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
469 * 'scalars' */
470 }
471 }
472
473 totalnum = num + numblocks;
474
475 wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
476 wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
477 /* include space for pivot */
478 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
479 val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
480
481 /* Ensure wNAF is initialised in case we end up going to err */
482 if (wNAF != NULL)
483 wNAF[0] = NULL; /* preliminary pivot */
484
485 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
486 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
487 goto err;
488 }
489
490 /*
491 * num_val will be the total number of temporarily precomputed points
492 */
493 num_val = 0;
494
495 for (i = 0; i < num + num_scalar; i++) {
496 size_t bits;
497
498 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
499 wsize[i] = EC_window_bits_for_scalar_size(bits);
500 num_val += (size_t)1 << (wsize[i] - 1);
501 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
502 wNAF[i] =
503 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
504 &wNAF_len[i]);
505 if (wNAF[i] == NULL)
506 goto err;
507 if (wNAF_len[i] > max_len)
508 max_len = wNAF_len[i];
509 }
510
511 if (numblocks) {
512 /* we go here iff scalar != NULL */
513
514 if (pre_comp == NULL) {
515 if (num_scalar != 1) {
516 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
517 goto err;
518 }
519 /* we have already generated a wNAF for 'scalar' */
520 } else {
521 signed char *tmp_wNAF = NULL;
522 size_t tmp_len = 0;
523
524 if (num_scalar != 0) {
525 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
526 goto err;
527 }
528
529 /*
530 * use the window size for which we have precomputation
531 */
532 wsize[num] = pre_comp->w;
533 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
534 if (!tmp_wNAF)
535 goto err;
536
537 if (tmp_len <= max_len) {
538 /*
539 * One of the other wNAFs is at least as long as the wNAF
540 * belonging to the generator, so wNAF splitting will not buy
541 * us anything.
542 */
543
544 numblocks = 1;
545 totalnum = num + 1; /* don't use wNAF splitting */
546 wNAF[num] = tmp_wNAF;
547 wNAF[num + 1] = NULL;
548 wNAF_len[num] = tmp_len;
549 /*
550 * pre_comp->points starts with the points that we need here:
551 */
552 val_sub[num] = pre_comp->points;
553 } else {
554 /*
555 * don't include tmp_wNAF directly into wNAF array - use wNAF
556 * splitting and include the blocks
557 */
558
559 signed char *pp;
560 EC_POINT **tmp_points;
561
562 if (tmp_len < numblocks * blocksize) {
563 /*
564 * possibly we can do with fewer blocks than estimated
565 */
566 numblocks = (tmp_len + blocksize - 1) / blocksize;
567 if (numblocks > pre_comp->numblocks) {
568 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
569 OPENSSL_free(tmp_wNAF);
570 goto err;
571 }
572 totalnum = num + numblocks;
573 }
574
575 /* split wNAF in 'numblocks' parts */
576 pp = tmp_wNAF;
577 tmp_points = pre_comp->points;
578
579 for (i = num; i < totalnum; i++) {
580 if (i < totalnum - 1) {
581 wNAF_len[i] = blocksize;
582 if (tmp_len < blocksize) {
583 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
584 OPENSSL_free(tmp_wNAF);
585 goto err;
586 }
587 tmp_len -= blocksize;
588 } else
589 /*
590 * last block gets whatever is left (this could be
591 * more or less than 'blocksize'!)
592 */
593 wNAF_len[i] = tmp_len;
594
595 wNAF[i + 1] = NULL;
596 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
597 if (wNAF[i] == NULL) {
598 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
599 OPENSSL_free(tmp_wNAF);
600 goto err;
601 }
602 memcpy(wNAF[i], pp, wNAF_len[i]);
603 if (wNAF_len[i] > max_len)
604 max_len = wNAF_len[i];
605
606 if (*tmp_points == NULL) {
607 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
608 OPENSSL_free(tmp_wNAF);
609 goto err;
610 }
611 val_sub[i] = tmp_points;
612 tmp_points += pre_points_per_block;
613 pp += blocksize;
614 }
615 OPENSSL_free(tmp_wNAF);
616 }
617 }
618 }
619
620 /*
621 * All points we precompute now go into a single array 'val'.
622 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
623 * subarray of 'pre_comp->points' if we already have precomputation.
624 */
625 val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
626 if (val == NULL) {
627 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
628 goto err;
629 }
630 val[num_val] = NULL; /* pivot element */
631
632 /* allocate points for precomputation */
633 v = val;
634 for (i = 0; i < num + num_scalar; i++) {
635 val_sub[i] = v;
636 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
637 *v = EC_POINT_new(group);
638 if (*v == NULL)
639 goto err;
640 v++;
641 }
642 }
643 if (!(v == val + num_val)) {
644 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
645 goto err;
646 }
647
648 if ((tmp = EC_POINT_new(group)) == NULL)
649 goto err;
650
651 /*-
652 * prepare precomputed values:
653 * val_sub[i][0] := points[i]
654 * val_sub[i][1] := 3 * points[i]
655 * val_sub[i][2] := 5 * points[i]
656 * ...
657 */
658 for (i = 0; i < num + num_scalar; i++) {
659 if (i < num) {
660 if (!EC_POINT_copy(val_sub[i][0], points[i]))
661 goto err;
662 } else {
663 if (!EC_POINT_copy(val_sub[i][0], generator))
664 goto err;
665 }
666
667 if (wsize[i] > 1) {
668 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
669 goto err;
670 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
671 if (!EC_POINT_add
672 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
673 goto err;
674 }
675 }
676 }
677
678 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
679 goto err;
680
681 r_is_at_infinity = 1;
682
683 for (k = max_len - 1; k >= 0; k--) {
684 if (!r_is_at_infinity) {
685 if (!EC_POINT_dbl(group, r, r, ctx))
686 goto err;
687 }
688
689 for (i = 0; i < totalnum; i++) {
690 if (wNAF_len[i] > (size_t)k) {
691 int digit = wNAF[i][k];
692 int is_neg;
693
694 if (digit) {
695 is_neg = digit < 0;
696
697 if (is_neg)
698 digit = -digit;
699
700 if (is_neg != r_is_inverted) {
701 if (!r_is_at_infinity) {
702 if (!EC_POINT_invert(group, r, ctx))
703 goto err;
704 }
705 r_is_inverted = !r_is_inverted;
706 }
707
708 /* digit > 0 */
709
710 if (r_is_at_infinity) {
711 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
712 goto err;
713 r_is_at_infinity = 0;
714 } else {
715 if (!EC_POINT_add
716 (group, r, r, val_sub[i][digit >> 1], ctx))
717 goto err;
718 }
719 }
720 }
721 }
722 }
723
724 if (r_is_at_infinity) {
725 if (!EC_POINT_set_to_infinity(group, r))
726 goto err;
727 } else {
728 if (r_is_inverted)
729 if (!EC_POINT_invert(group, r, ctx))
730 goto err;
731 }
732
733 ret = 1;
734
735 err:
736 BN_CTX_free(new_ctx);
737 EC_POINT_free(tmp);
738 OPENSSL_free(wsize);
739 OPENSSL_free(wNAF_len);
740 if (wNAF != NULL) {
741 signed char **w;
742
743 for (w = wNAF; *w != NULL; w++)
744 OPENSSL_free(*w);
745
746 OPENSSL_free(wNAF);
747 }
748 if (val != NULL) {
749 for (v = val; *v != NULL; v++)
750 EC_POINT_clear_free(*v);
751
752 OPENSSL_free(val);
753 }
754 OPENSSL_free(val_sub);
755 return ret;
756 }
757
758 /*-
759 * ec_wNAF_precompute_mult()
760 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
761 * for use with wNAF splitting as implemented in ec_wNAF_mul().
762 *
763 * 'pre_comp->points' is an array of multiples of the generator
764 * of the following form:
765 * points[0] = generator;
766 * points[1] = 3 * generator;
767 * ...
768 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
769 * points[2^(w-1)] = 2^blocksize * generator;
770 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
771 * ...
772 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
773 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
774 * ...
775 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
776 * points[2^(w-1)*numblocks] = NULL
777 */
778 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
779 {
780 const EC_POINT *generator;
781 EC_POINT *tmp_point = NULL, *base = NULL, **var;
782 BN_CTX *new_ctx = NULL;
783 const BIGNUM *order;
784 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
785 EC_POINT **points = NULL;
786 EC_PRE_COMP *pre_comp;
787 int ret = 0;
788
789 /* if there is an old EC_PRE_COMP object, throw it away */
790 EC_pre_comp_free(group);
791 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
792 return 0;
793
794 generator = EC_GROUP_get0_generator(group);
795 if (generator == NULL) {
796 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
797 goto err;
798 }
799
800 if (ctx == NULL) {
801 ctx = new_ctx = BN_CTX_new();
802 if (ctx == NULL)
803 goto err;
804 }
805
806 BN_CTX_start(ctx);
807
808 order = EC_GROUP_get0_order(group);
809 if (order == NULL)
810 goto err;
811 if (BN_is_zero(order)) {
812 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
813 goto err;
814 }
815
816 bits = BN_num_bits(order);
817 /*
818 * The following parameters mean we precompute (approximately) one point
819 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
820 * bit lengths, other parameter combinations might provide better
821 * efficiency.
822 */
823 blocksize = 8;
824 w = 4;
825 if (EC_window_bits_for_scalar_size(bits) > w) {
826 /* let's not make the window too small ... */
827 w = EC_window_bits_for_scalar_size(bits);
828 }
829
830 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
831 * to use for wNAF
832 * splitting */
833
834 pre_points_per_block = (size_t)1 << (w - 1);
835 num = pre_points_per_block * numblocks; /* number of points to compute
836 * and store */
837
838 points = OPENSSL_malloc(sizeof(*points) * (num + 1));
839 if (points == NULL) {
840 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
841 goto err;
842 }
843
844 var = points;
845 var[num] = NULL; /* pivot */
846 for (i = 0; i < num; i++) {
847 if ((var[i] = EC_POINT_new(group)) == NULL) {
848 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
849 goto err;
850 }
851 }
852
853 if ((tmp_point = EC_POINT_new(group)) == NULL
854 || (base = EC_POINT_new(group)) == NULL) {
855 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
856 goto err;
857 }
858
859 if (!EC_POINT_copy(base, generator))
860 goto err;
861
862 /* do the precomputation */
863 for (i = 0; i < numblocks; i++) {
864 size_t j;
865
866 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
867 goto err;
868
869 if (!EC_POINT_copy(*var++, base))
870 goto err;
871
872 for (j = 1; j < pre_points_per_block; j++, var++) {
873 /*
874 * calculate odd multiples of the current base point
875 */
876 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
877 goto err;
878 }
879
880 if (i < numblocks - 1) {
881 /*
882 * get the next base (multiply current one by 2^blocksize)
883 */
884 size_t k;
885
886 if (blocksize <= 2) {
887 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
888 goto err;
889 }
890
891 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
892 goto err;
893 for (k = 2; k < blocksize; k++) {
894 if (!EC_POINT_dbl(group, base, base, ctx))
895 goto err;
896 }
897 }
898 }
899
900 if (!EC_POINTs_make_affine(group, num, points, ctx))
901 goto err;
902
903 pre_comp->group = group;
904 pre_comp->blocksize = blocksize;
905 pre_comp->numblocks = numblocks;
906 pre_comp->w = w;
907 pre_comp->points = points;
908 points = NULL;
909 pre_comp->num = num;
910 SETPRECOMP(group, ec, pre_comp);
911 pre_comp = NULL;
912 ret = 1;
913
914 err:
915 if (ctx != NULL)
916 BN_CTX_end(ctx);
917 BN_CTX_free(new_ctx);
918 EC_ec_pre_comp_free(pre_comp);
919 if (points) {
920 EC_POINT **p;
921
922 for (p = points; *p != NULL; p++)
923 EC_POINT_free(*p);
924 OPENSSL_free(points);
925 }
926 EC_POINT_free(tmp_point);
927 EC_POINT_free(base);
928 return ret;
929 }
930
931 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
932 {
933 return HAVEPRECOMP(group, ec);
934 }