]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec_mult.c
[crypto/ec] Ladder tweaks
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
1 /*
2 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 /*
12 * ECDSA low level APIs are deprecated for public use, but still ok for
13 * internal use.
14 */
15 #include "internal/deprecated.h"
16
17 #include <string.h>
18 #include <openssl/err.h>
19
20 #include "internal/cryptlib.h"
21 #include "crypto/bn.h"
22 #include "ec_local.h"
23 #include "internal/refcount.h"
24
25 /*
26 * This file implements the wNAF-based interleaving multi-exponentiation method
27 * Formerly at:
28 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
29 * You might now find it here:
30 * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
31 * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
32 * For multiplication with precomputation, we use wNAF splitting, formerly at:
33 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
34 */
35
36 /* structure for precomputed multiples of the generator */
37 struct ec_pre_comp_st {
38 const EC_GROUP *group; /* parent EC_GROUP object */
39 size_t blocksize; /* block size for wNAF splitting */
40 size_t numblocks; /* max. number of blocks for which we have
41 * precomputation */
42 size_t w; /* window size */
43 EC_POINT **points; /* array with pre-calculated multiples of
44 * generator: 'num' pointers to EC_POINT
45 * objects followed by a NULL */
46 size_t num; /* numblocks * 2^(w-1) */
47 CRYPTO_REF_COUNT references;
48 CRYPTO_RWLOCK *lock;
49 };
50
51 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
52 {
53 EC_PRE_COMP *ret = NULL;
54
55 if (!group)
56 return NULL;
57
58 ret = OPENSSL_zalloc(sizeof(*ret));
59 if (ret == NULL) {
60 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
61 return ret;
62 }
63
64 ret->group = group;
65 ret->blocksize = 8; /* default */
66 ret->w = 4; /* default */
67 ret->references = 1;
68
69 ret->lock = CRYPTO_THREAD_lock_new();
70 if (ret->lock == NULL) {
71 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
72 OPENSSL_free(ret);
73 return NULL;
74 }
75 return ret;
76 }
77
78 EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
79 {
80 int i;
81 if (pre != NULL)
82 CRYPTO_UP_REF(&pre->references, &i, pre->lock);
83 return pre;
84 }
85
86 void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
87 {
88 int i;
89
90 if (pre == NULL)
91 return;
92
93 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
94 REF_PRINT_COUNT("EC_ec", pre);
95 if (i > 0)
96 return;
97 REF_ASSERT_ISNT(i < 0);
98
99 if (pre->points != NULL) {
100 EC_POINT **pts;
101
102 for (pts = pre->points; *pts != NULL; pts++)
103 EC_POINT_free(*pts);
104 OPENSSL_free(pre->points);
105 }
106 CRYPTO_THREAD_lock_free(pre->lock);
107 OPENSSL_free(pre);
108 }
109
110 #define EC_POINT_BN_set_flags(P, flags) do { \
111 BN_set_flags((P)->X, (flags)); \
112 BN_set_flags((P)->Y, (flags)); \
113 BN_set_flags((P)->Z, (flags)); \
114 } while(0)
115
116 /*-
117 * This functions computes a single point multiplication over the EC group,
118 * using, at a high level, a Montgomery ladder with conditional swaps, with
119 * various timing attack defenses.
120 *
121 * It performs either a fixed point multiplication
122 * (scalar * generator)
123 * when point is NULL, or a variable point multiplication
124 * (scalar * point)
125 * when point is not NULL.
126 *
127 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
128 * constant time bets are off (where n is the cardinality of the EC group).
129 *
130 * This function expects `group->order` and `group->cardinality` to be well
131 * defined and non-zero: it fails with an error code otherwise.
132 *
133 * NB: This says nothing about the constant-timeness of the ladder step
134 * implementation (i.e., the default implementation is based on EC_POINT_add and
135 * EC_POINT_dbl, which of course are not constant time themselves) or the
136 * underlying multiprecision arithmetic.
137 *
138 * The product is stored in `r`.
139 *
140 * This is an internal function: callers are in charge of ensuring that the
141 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
142 *
143 * Returns 1 on success, 0 otherwise.
144 */
145 int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
146 const BIGNUM *scalar, const EC_POINT *point,
147 BN_CTX *ctx)
148 {
149 int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
150 EC_POINT *p = NULL;
151 EC_POINT *s = NULL;
152 BIGNUM *k = NULL;
153 BIGNUM *lambda = NULL;
154 BIGNUM *cardinality = NULL;
155 int ret = 0;
156
157 /* early exit if the input point is the point at infinity */
158 if (point != NULL && EC_POINT_is_at_infinity(group, point))
159 return EC_POINT_set_to_infinity(group, r);
160
161 if (BN_is_zero(group->order)) {
162 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
163 return 0;
164 }
165 if (BN_is_zero(group->cofactor)) {
166 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
167 return 0;
168 }
169
170 BN_CTX_start(ctx);
171
172 if (((p = EC_POINT_new(group)) == NULL)
173 || ((s = EC_POINT_new(group)) == NULL)) {
174 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
175 goto err;
176 }
177
178 if (point == NULL) {
179 if (!EC_POINT_copy(p, group->generator)) {
180 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
181 goto err;
182 }
183 } else {
184 if (!EC_POINT_copy(p, point)) {
185 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
186 goto err;
187 }
188 }
189
190 EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
191 EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
192 EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
193
194 cardinality = BN_CTX_get(ctx);
195 lambda = BN_CTX_get(ctx);
196 k = BN_CTX_get(ctx);
197 if (k == NULL) {
198 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
199 goto err;
200 }
201
202 if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
203 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
204 goto err;
205 }
206
207 /*
208 * Group cardinalities are often on a word boundary.
209 * So when we pad the scalar, some timing diff might
210 * pop if it needs to be expanded due to carries.
211 * So expand ahead of time.
212 */
213 cardinality_bits = BN_num_bits(cardinality);
214 group_top = bn_get_top(cardinality);
215 if ((bn_wexpand(k, group_top + 2) == NULL)
216 || (bn_wexpand(lambda, group_top + 2) == NULL)) {
217 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
218 goto err;
219 }
220
221 if (!BN_copy(k, scalar)) {
222 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
223 goto err;
224 }
225
226 BN_set_flags(k, BN_FLG_CONSTTIME);
227
228 if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
229 /*-
230 * this is an unusual input, and we don't guarantee
231 * constant-timeness
232 */
233 if (!BN_nnmod(k, k, cardinality, ctx)) {
234 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
235 goto err;
236 }
237 }
238
239 if (!BN_add(lambda, k, cardinality)) {
240 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
241 goto err;
242 }
243 BN_set_flags(lambda, BN_FLG_CONSTTIME);
244 if (!BN_add(k, lambda, cardinality)) {
245 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
246 goto err;
247 }
248 /*
249 * lambda := scalar + cardinality
250 * k := scalar + 2*cardinality
251 */
252 kbit = BN_is_bit_set(lambda, cardinality_bits);
253 BN_consttime_swap(kbit, k, lambda, group_top + 2);
254
255 group_top = bn_get_top(group->field);
256 if ((bn_wexpand(s->X, group_top) == NULL)
257 || (bn_wexpand(s->Y, group_top) == NULL)
258 || (bn_wexpand(s->Z, group_top) == NULL)
259 || (bn_wexpand(r->X, group_top) == NULL)
260 || (bn_wexpand(r->Y, group_top) == NULL)
261 || (bn_wexpand(r->Z, group_top) == NULL)
262 || (bn_wexpand(p->X, group_top) == NULL)
263 || (bn_wexpand(p->Y, group_top) == NULL)
264 || (bn_wexpand(p->Z, group_top) == NULL)) {
265 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
266 goto err;
267 }
268
269 /* ensure input point is in affine coords for ladder step efficiency */
270 if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) {
271 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
272 goto err;
273 }
274
275 /* Initialize the Montgomery ladder */
276 if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
277 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
278 goto err;
279 }
280
281 /* top bit is a 1, in a fixed pos */
282 pbit = 1;
283
284 #define EC_POINT_CSWAP(c, a, b, w, t) do { \
285 BN_consttime_swap(c, (a)->X, (b)->X, w); \
286 BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
287 BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
288 t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
289 (a)->Z_is_one ^= (t); \
290 (b)->Z_is_one ^= (t); \
291 } while(0)
292
293 /*-
294 * The ladder step, with branches, is
295 *
296 * k[i] == 0: S = add(R, S), R = dbl(R)
297 * k[i] == 1: R = add(S, R), S = dbl(S)
298 *
299 * Swapping R, S conditionally on k[i] leaves you with state
300 *
301 * k[i] == 0: T, U = R, S
302 * k[i] == 1: T, U = S, R
303 *
304 * Then perform the ECC ops.
305 *
306 * U = add(T, U)
307 * T = dbl(T)
308 *
309 * Which leaves you with state
310 *
311 * k[i] == 0: U = add(R, S), T = dbl(R)
312 * k[i] == 1: U = add(S, R), T = dbl(S)
313 *
314 * Swapping T, U conditionally on k[i] leaves you with state
315 *
316 * k[i] == 0: R, S = T, U
317 * k[i] == 1: R, S = U, T
318 *
319 * Which leaves you with state
320 *
321 * k[i] == 0: S = add(R, S), R = dbl(R)
322 * k[i] == 1: R = add(S, R), S = dbl(S)
323 *
324 * So we get the same logic, but instead of a branch it's a
325 * conditional swap, followed by ECC ops, then another conditional swap.
326 *
327 * Optimization: The end of iteration i and start of i-1 looks like
328 *
329 * ...
330 * CSWAP(k[i], R, S)
331 * ECC
332 * CSWAP(k[i], R, S)
333 * (next iteration)
334 * CSWAP(k[i-1], R, S)
335 * ECC
336 * CSWAP(k[i-1], R, S)
337 * ...
338 *
339 * So instead of two contiguous swaps, you can merge the condition
340 * bits and do a single swap.
341 *
342 * k[i] k[i-1] Outcome
343 * 0 0 No Swap
344 * 0 1 Swap
345 * 1 0 Swap
346 * 1 1 No Swap
347 *
348 * This is XOR. pbit tracks the previous bit of k.
349 */
350
351 for (i = cardinality_bits - 1; i >= 0; i--) {
352 kbit = BN_is_bit_set(k, i) ^ pbit;
353 EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
354
355 /* Perform a single step of the Montgomery ladder */
356 if (!ec_point_ladder_step(group, r, s, p, ctx)) {
357 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
358 goto err;
359 }
360 /*
361 * pbit logic merges this cswap with that of the
362 * next iteration
363 */
364 pbit ^= kbit;
365 }
366 /* one final cswap to move the right value into r */
367 EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
368 #undef EC_POINT_CSWAP
369
370 /* Finalize ladder (and recover full point coordinates) */
371 if (!ec_point_ladder_post(group, r, s, p, ctx)) {
372 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
373 goto err;
374 }
375
376 ret = 1;
377
378 err:
379 EC_POINT_free(p);
380 EC_POINT_clear_free(s);
381 BN_CTX_end(ctx);
382
383 return ret;
384 }
385
386 #undef EC_POINT_BN_set_flags
387
388 /*
389 * TODO: table should be optimised for the wNAF-based implementation,
390 * sometimes smaller windows will give better performance (thus the
391 * boundaries should be increased)
392 */
393 #define EC_window_bits_for_scalar_size(b) \
394 ((size_t) \
395 ((b) >= 2000 ? 6 : \
396 (b) >= 800 ? 5 : \
397 (b) >= 300 ? 4 : \
398 (b) >= 70 ? 3 : \
399 (b) >= 20 ? 2 : \
400 1))
401
402 /*-
403 * Compute
404 * \sum scalars[i]*points[i],
405 * also including
406 * scalar*generator
407 * in the addition if scalar != NULL
408 */
409 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
410 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
411 BN_CTX *ctx)
412 {
413 const EC_POINT *generator = NULL;
414 EC_POINT *tmp = NULL;
415 size_t totalnum;
416 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
417 size_t pre_points_per_block = 0;
418 size_t i, j;
419 int k;
420 int r_is_inverted = 0;
421 int r_is_at_infinity = 1;
422 size_t *wsize = NULL; /* individual window sizes */
423 signed char **wNAF = NULL; /* individual wNAFs */
424 size_t *wNAF_len = NULL;
425 size_t max_len = 0;
426 size_t num_val;
427 EC_POINT **val = NULL; /* precomputation */
428 EC_POINT **v;
429 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
430 * 'pre_comp->points' */
431 const EC_PRE_COMP *pre_comp = NULL;
432 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
433 * treated like other scalars, i.e.
434 * precomputation is not available */
435 int ret = 0;
436
437 if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
438 /*-
439 * Handle the common cases where the scalar is secret, enforcing a
440 * scalar multiplication implementation based on a Montgomery ladder,
441 * with various timing attack defenses.
442 */
443 if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
444 /*-
445 * In this case we want to compute scalar * GeneratorPoint: this
446 * codepath is reached most prominently by (ephemeral) key
447 * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
448 * ECDH keygen/first half), where the scalar is always secret. This
449 * is why we ignore if BN_FLG_CONSTTIME is actually set and we
450 * always call the ladder version.
451 */
452 return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
453 }
454 if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
455 /*-
456 * In this case we want to compute scalar * VariablePoint: this
457 * codepath is reached most prominently by the second half of ECDH,
458 * where the secret scalar is multiplied by the peer's public point.
459 * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
460 * actually set and we always call the ladder version.
461 */
462 return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
463 }
464 }
465
466 if (scalar != NULL) {
467 generator = EC_GROUP_get0_generator(group);
468 if (generator == NULL) {
469 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
470 goto err;
471 }
472
473 /* look if we can use precomputed multiples of generator */
474
475 pre_comp = group->pre_comp.ec;
476 if (pre_comp && pre_comp->numblocks
477 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
478 0)) {
479 blocksize = pre_comp->blocksize;
480
481 /*
482 * determine maximum number of blocks that wNAF splitting may
483 * yield (NB: maximum wNAF length is bit length plus one)
484 */
485 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
486
487 /*
488 * we cannot use more blocks than we have precomputation for
489 */
490 if (numblocks > pre_comp->numblocks)
491 numblocks = pre_comp->numblocks;
492
493 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
494
495 /* check that pre_comp looks sane */
496 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
497 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
498 goto err;
499 }
500 } else {
501 /* can't use precomputation */
502 pre_comp = NULL;
503 numblocks = 1;
504 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
505 * 'scalars' */
506 }
507 }
508
509 totalnum = num + numblocks;
510
511 wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
512 wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
513 /* include space for pivot */
514 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
515 val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
516
517 /* Ensure wNAF is initialised in case we end up going to err */
518 if (wNAF != NULL)
519 wNAF[0] = NULL; /* preliminary pivot */
520
521 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
522 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
523 goto err;
524 }
525
526 /*
527 * num_val will be the total number of temporarily precomputed points
528 */
529 num_val = 0;
530
531 for (i = 0; i < num + num_scalar; i++) {
532 size_t bits;
533
534 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
535 wsize[i] = EC_window_bits_for_scalar_size(bits);
536 num_val += (size_t)1 << (wsize[i] - 1);
537 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
538 wNAF[i] =
539 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
540 &wNAF_len[i]);
541 if (wNAF[i] == NULL)
542 goto err;
543 if (wNAF_len[i] > max_len)
544 max_len = wNAF_len[i];
545 }
546
547 if (numblocks) {
548 /* we go here iff scalar != NULL */
549
550 if (pre_comp == NULL) {
551 if (num_scalar != 1) {
552 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
553 goto err;
554 }
555 /* we have already generated a wNAF for 'scalar' */
556 } else {
557 signed char *tmp_wNAF = NULL;
558 size_t tmp_len = 0;
559
560 if (num_scalar != 0) {
561 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
562 goto err;
563 }
564
565 /*
566 * use the window size for which we have precomputation
567 */
568 wsize[num] = pre_comp->w;
569 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
570 if (!tmp_wNAF)
571 goto err;
572
573 if (tmp_len <= max_len) {
574 /*
575 * One of the other wNAFs is at least as long as the wNAF
576 * belonging to the generator, so wNAF splitting will not buy
577 * us anything.
578 */
579
580 numblocks = 1;
581 totalnum = num + 1; /* don't use wNAF splitting */
582 wNAF[num] = tmp_wNAF;
583 wNAF[num + 1] = NULL;
584 wNAF_len[num] = tmp_len;
585 /*
586 * pre_comp->points starts with the points that we need here:
587 */
588 val_sub[num] = pre_comp->points;
589 } else {
590 /*
591 * don't include tmp_wNAF directly into wNAF array - use wNAF
592 * splitting and include the blocks
593 */
594
595 signed char *pp;
596 EC_POINT **tmp_points;
597
598 if (tmp_len < numblocks * blocksize) {
599 /*
600 * possibly we can do with fewer blocks than estimated
601 */
602 numblocks = (tmp_len + blocksize - 1) / blocksize;
603 if (numblocks > pre_comp->numblocks) {
604 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
605 OPENSSL_free(tmp_wNAF);
606 goto err;
607 }
608 totalnum = num + numblocks;
609 }
610
611 /* split wNAF in 'numblocks' parts */
612 pp = tmp_wNAF;
613 tmp_points = pre_comp->points;
614
615 for (i = num; i < totalnum; i++) {
616 if (i < totalnum - 1) {
617 wNAF_len[i] = blocksize;
618 if (tmp_len < blocksize) {
619 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
620 OPENSSL_free(tmp_wNAF);
621 goto err;
622 }
623 tmp_len -= blocksize;
624 } else
625 /*
626 * last block gets whatever is left (this could be
627 * more or less than 'blocksize'!)
628 */
629 wNAF_len[i] = tmp_len;
630
631 wNAF[i + 1] = NULL;
632 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
633 if (wNAF[i] == NULL) {
634 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
635 OPENSSL_free(tmp_wNAF);
636 goto err;
637 }
638 memcpy(wNAF[i], pp, wNAF_len[i]);
639 if (wNAF_len[i] > max_len)
640 max_len = wNAF_len[i];
641
642 if (*tmp_points == NULL) {
643 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
644 OPENSSL_free(tmp_wNAF);
645 goto err;
646 }
647 val_sub[i] = tmp_points;
648 tmp_points += pre_points_per_block;
649 pp += blocksize;
650 }
651 OPENSSL_free(tmp_wNAF);
652 }
653 }
654 }
655
656 /*
657 * All points we precompute now go into a single array 'val'.
658 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
659 * subarray of 'pre_comp->points' if we already have precomputation.
660 */
661 val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
662 if (val == NULL) {
663 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
664 goto err;
665 }
666 val[num_val] = NULL; /* pivot element */
667
668 /* allocate points for precomputation */
669 v = val;
670 for (i = 0; i < num + num_scalar; i++) {
671 val_sub[i] = v;
672 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
673 *v = EC_POINT_new(group);
674 if (*v == NULL)
675 goto err;
676 v++;
677 }
678 }
679 if (!(v == val + num_val)) {
680 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
681 goto err;
682 }
683
684 if ((tmp = EC_POINT_new(group)) == NULL)
685 goto err;
686
687 /*-
688 * prepare precomputed values:
689 * val_sub[i][0] := points[i]
690 * val_sub[i][1] := 3 * points[i]
691 * val_sub[i][2] := 5 * points[i]
692 * ...
693 */
694 for (i = 0; i < num + num_scalar; i++) {
695 if (i < num) {
696 if (!EC_POINT_copy(val_sub[i][0], points[i]))
697 goto err;
698 } else {
699 if (!EC_POINT_copy(val_sub[i][0], generator))
700 goto err;
701 }
702
703 if (wsize[i] > 1) {
704 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
705 goto err;
706 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
707 if (!EC_POINT_add
708 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
709 goto err;
710 }
711 }
712 }
713
714 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
715 goto err;
716
717 r_is_at_infinity = 1;
718
719 for (k = max_len - 1; k >= 0; k--) {
720 if (!r_is_at_infinity) {
721 if (!EC_POINT_dbl(group, r, r, ctx))
722 goto err;
723 }
724
725 for (i = 0; i < totalnum; i++) {
726 if (wNAF_len[i] > (size_t)k) {
727 int digit = wNAF[i][k];
728 int is_neg;
729
730 if (digit) {
731 is_neg = digit < 0;
732
733 if (is_neg)
734 digit = -digit;
735
736 if (is_neg != r_is_inverted) {
737 if (!r_is_at_infinity) {
738 if (!EC_POINT_invert(group, r, ctx))
739 goto err;
740 }
741 r_is_inverted = !r_is_inverted;
742 }
743
744 /* digit > 0 */
745
746 if (r_is_at_infinity) {
747 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
748 goto err;
749 r_is_at_infinity = 0;
750 } else {
751 if (!EC_POINT_add
752 (group, r, r, val_sub[i][digit >> 1], ctx))
753 goto err;
754 }
755 }
756 }
757 }
758 }
759
760 if (r_is_at_infinity) {
761 if (!EC_POINT_set_to_infinity(group, r))
762 goto err;
763 } else {
764 if (r_is_inverted)
765 if (!EC_POINT_invert(group, r, ctx))
766 goto err;
767 }
768
769 ret = 1;
770
771 err:
772 EC_POINT_free(tmp);
773 OPENSSL_free(wsize);
774 OPENSSL_free(wNAF_len);
775 if (wNAF != NULL) {
776 signed char **w;
777
778 for (w = wNAF; *w != NULL; w++)
779 OPENSSL_free(*w);
780
781 OPENSSL_free(wNAF);
782 }
783 if (val != NULL) {
784 for (v = val; *v != NULL; v++)
785 EC_POINT_clear_free(*v);
786
787 OPENSSL_free(val);
788 }
789 OPENSSL_free(val_sub);
790 return ret;
791 }
792
793 /*-
794 * ec_wNAF_precompute_mult()
795 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
796 * for use with wNAF splitting as implemented in ec_wNAF_mul().
797 *
798 * 'pre_comp->points' is an array of multiples of the generator
799 * of the following form:
800 * points[0] = generator;
801 * points[1] = 3 * generator;
802 * ...
803 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
804 * points[2^(w-1)] = 2^blocksize * generator;
805 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
806 * ...
807 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
808 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
809 * ...
810 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
811 * points[2^(w-1)*numblocks] = NULL
812 */
813 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
814 {
815 const EC_POINT *generator;
816 EC_POINT *tmp_point = NULL, *base = NULL, **var;
817 const BIGNUM *order;
818 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
819 EC_POINT **points = NULL;
820 EC_PRE_COMP *pre_comp;
821 int ret = 0;
822 #ifndef FIPS_MODE
823 BN_CTX *new_ctx = NULL;
824 #endif
825
826 /* if there is an old EC_PRE_COMP object, throw it away */
827 EC_pre_comp_free(group);
828 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
829 return 0;
830
831 generator = EC_GROUP_get0_generator(group);
832 if (generator == NULL) {
833 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
834 goto err;
835 }
836
837 #ifndef FIPS_MODE
838 if (ctx == NULL)
839 ctx = new_ctx = BN_CTX_new();
840 #endif
841 if (ctx == NULL)
842 goto err;
843
844 BN_CTX_start(ctx);
845
846 order = EC_GROUP_get0_order(group);
847 if (order == NULL)
848 goto err;
849 if (BN_is_zero(order)) {
850 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
851 goto err;
852 }
853
854 bits = BN_num_bits(order);
855 /*
856 * The following parameters mean we precompute (approximately) one point
857 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
858 * bit lengths, other parameter combinations might provide better
859 * efficiency.
860 */
861 blocksize = 8;
862 w = 4;
863 if (EC_window_bits_for_scalar_size(bits) > w) {
864 /* let's not make the window too small ... */
865 w = EC_window_bits_for_scalar_size(bits);
866 }
867
868 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
869 * to use for wNAF
870 * splitting */
871
872 pre_points_per_block = (size_t)1 << (w - 1);
873 num = pre_points_per_block * numblocks; /* number of points to compute
874 * and store */
875
876 points = OPENSSL_malloc(sizeof(*points) * (num + 1));
877 if (points == NULL) {
878 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
879 goto err;
880 }
881
882 var = points;
883 var[num] = NULL; /* pivot */
884 for (i = 0; i < num; i++) {
885 if ((var[i] = EC_POINT_new(group)) == NULL) {
886 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
887 goto err;
888 }
889 }
890
891 if ((tmp_point = EC_POINT_new(group)) == NULL
892 || (base = EC_POINT_new(group)) == NULL) {
893 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
894 goto err;
895 }
896
897 if (!EC_POINT_copy(base, generator))
898 goto err;
899
900 /* do the precomputation */
901 for (i = 0; i < numblocks; i++) {
902 size_t j;
903
904 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
905 goto err;
906
907 if (!EC_POINT_copy(*var++, base))
908 goto err;
909
910 for (j = 1; j < pre_points_per_block; j++, var++) {
911 /*
912 * calculate odd multiples of the current base point
913 */
914 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
915 goto err;
916 }
917
918 if (i < numblocks - 1) {
919 /*
920 * get the next base (multiply current one by 2^blocksize)
921 */
922 size_t k;
923
924 if (blocksize <= 2) {
925 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
926 goto err;
927 }
928
929 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
930 goto err;
931 for (k = 2; k < blocksize; k++) {
932 if (!EC_POINT_dbl(group, base, base, ctx))
933 goto err;
934 }
935 }
936 }
937
938 if (!EC_POINTs_make_affine(group, num, points, ctx))
939 goto err;
940
941 pre_comp->group = group;
942 pre_comp->blocksize = blocksize;
943 pre_comp->numblocks = numblocks;
944 pre_comp->w = w;
945 pre_comp->points = points;
946 points = NULL;
947 pre_comp->num = num;
948 SETPRECOMP(group, ec, pre_comp);
949 pre_comp = NULL;
950 ret = 1;
951
952 err:
953 BN_CTX_end(ctx);
954 #ifndef FIPS_MODE
955 BN_CTX_free(new_ctx);
956 #endif
957 EC_ec_pre_comp_free(pre_comp);
958 if (points) {
959 EC_POINT **p;
960
961 for (p = points; *p != NULL; p++)
962 EC_POINT_free(*p);
963 OPENSSL_free(points);
964 }
965 EC_POINT_free(tmp_point);
966 EC_POINT_free(base);
967 return ret;
968 }
969
970 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
971 {
972 return HAVEPRECOMP(group, ec);
973 }