]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ecp_nistp224.c
indent has problems with comments that are on the right hand side of a line.
[thirdparty/openssl.git] / crypto / ec / ecp_nistp224.c
1 /* crypto/ec/ecp_nistp224.c */
2 /*
3 * Written by Emilia Kasper (Google) for the OpenSSL project.
4 */
5 /* Copyright 2011 Google Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 *
9 * you may not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS,
16 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 */
20
21 /*
22 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
23 *
24 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
25 * and Adam Langley's public domain 64-bit C implementation of curve25519
26 */
27
28 #include <openssl/opensslconf.h>
29 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
30
31 #include <stdint.h>
32 #include <string.h>
33 #include <openssl/err.h>
34 #include "ec_lcl.h"
35
36 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
37 /* even with gcc, the typedef won't work for 32-bit platforms */
38 typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
39 #else
40 #error "Need GCC 3.1 or later to define type uint128_t"
41 #endif
42
43 typedef uint8_t u8;
44 typedef uint64_t u64;
45 typedef int64_t s64;
46
47
48 /******************************************************************************/
49 /*-
50 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
51 *
52 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
53 * using 64-bit coefficients called 'limbs',
54 * and sometimes (for multiplication results) as
55 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
56 * using 128-bit coefficients called 'widelimbs'.
57 * A 4-limb representation is an 'felem';
58 * a 7-widelimb representation is a 'widefelem'.
59 * Even within felems, bits of adjacent limbs overlap, and we don't always
60 * reduce the representations: we ensure that inputs to each felem
61 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
62 * and fit into a 128-bit word without overflow. The coefficients are then
63 * again partially reduced to obtain an felem satisfying a_i < 2^57.
64 * We only reduce to the unique minimal representation at the end of the
65 * computation.
66 */
67
68 typedef uint64_t limb;
69 typedef uint128_t widelimb;
70
71 typedef limb felem[4];
72 typedef widelimb widefelem[7];
73
74 /* Field element represented as a byte arrary.
75 * 28*8 = 224 bits is also the group order size for the elliptic curve,
76 * and we also use this type for scalars for point multiplication.
77 */
78 typedef u8 felem_bytearray[28];
79
80 static const felem_bytearray nistp224_curve_params[5] = {
81 {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */
82 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
83 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
84 {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */
85 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
86 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
87 {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */
88 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
89 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
90 {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */
91 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
92 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
93 {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */
94 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
95 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
96 };
97
98 /*-
99 * Precomputed multiples of the standard generator
100 * Points are given in coordinates (X, Y, Z) where Z normally is 1
101 * (0 for the point at infinity).
102 * For each field element, slice a_0 is word 0, etc.
103 *
104 * The table has 2 * 16 elements, starting with the following:
105 * index | bits | point
106 * ------+---------+------------------------------
107 * 0 | 0 0 0 0 | 0G
108 * 1 | 0 0 0 1 | 1G
109 * 2 | 0 0 1 0 | 2^56G
110 * 3 | 0 0 1 1 | (2^56 + 1)G
111 * 4 | 0 1 0 0 | 2^112G
112 * 5 | 0 1 0 1 | (2^112 + 1)G
113 * 6 | 0 1 1 0 | (2^112 + 2^56)G
114 * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
115 * 8 | 1 0 0 0 | 2^168G
116 * 9 | 1 0 0 1 | (2^168 + 1)G
117 * 10 | 1 0 1 0 | (2^168 + 2^56)G
118 * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
119 * 12 | 1 1 0 0 | (2^168 + 2^112)G
120 * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
121 * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
122 * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
123 * followed by a copy of this with each element multiplied by 2^28.
124 *
125 * The reason for this is so that we can clock bits into four different
126 * locations when doing simple scalar multiplies against the base point,
127 * and then another four locations using the second 16 elements.
128 */
129 static const felem gmul[2][16][3] =
130 {{{{0, 0, 0, 0},
131 {0, 0, 0, 0},
132 {0, 0, 0, 0}},
133 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
134 {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
135 {1, 0, 0, 0}},
136 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
137 {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
138 {1, 0, 0, 0}},
139 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
140 {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
141 {1, 0, 0, 0}},
142 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
143 {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
144 {1, 0, 0, 0}},
145 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
146 {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
147 {1, 0, 0, 0}},
148 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
149 {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
150 {1, 0, 0, 0}},
151 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
152 {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
153 {1, 0, 0, 0}},
154 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
155 {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
156 {1, 0, 0, 0}},
157 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
158 {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
159 {1, 0, 0, 0}},
160 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
161 {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
162 {1, 0, 0, 0}},
163 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
164 {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
165 {1, 0, 0, 0}},
166 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
167 {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
168 {1, 0, 0, 0}},
169 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
170 {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
171 {1, 0, 0, 0}},
172 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
173 {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
174 {1, 0, 0, 0}},
175 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
176 {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
177 {1, 0, 0, 0}}},
178 {{{0, 0, 0, 0},
179 {0, 0, 0, 0},
180 {0, 0, 0, 0}},
181 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
182 {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
183 {1, 0, 0, 0}},
184 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
185 {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
186 {1, 0, 0, 0}},
187 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
188 {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
189 {1, 0, 0, 0}},
190 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
191 {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
192 {1, 0, 0, 0}},
193 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
194 {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
195 {1, 0, 0, 0}},
196 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
197 {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
198 {1, 0, 0, 0}},
199 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
200 {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
201 {1, 0, 0, 0}},
202 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
203 {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
204 {1, 0, 0, 0}},
205 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
206 {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
207 {1, 0, 0, 0}},
208 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
209 {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
210 {1, 0, 0, 0}},
211 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
212 {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
213 {1, 0, 0, 0}},
214 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
215 {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
216 {1, 0, 0, 0}},
217 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
218 {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
219 {1, 0, 0, 0}},
220 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
221 {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
222 {1, 0, 0, 0}},
223 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
224 {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
225 {1, 0, 0, 0}}}};
226
227 /* Precomputation for the group generator. */
228 typedef struct {
229 felem g_pre_comp[2][16][3];
230 int references;
231 } NISTP224_PRE_COMP;
232
233 const EC_METHOD *EC_GFp_nistp224_method(void)
234 {
235 static const EC_METHOD ret = {
236 EC_FLAGS_DEFAULT_OCT,
237 NID_X9_62_prime_field,
238 ec_GFp_nistp224_group_init,
239 ec_GFp_simple_group_finish,
240 ec_GFp_simple_group_clear_finish,
241 ec_GFp_nist_group_copy,
242 ec_GFp_nistp224_group_set_curve,
243 ec_GFp_simple_group_get_curve,
244 ec_GFp_simple_group_get_degree,
245 ec_GFp_simple_group_check_discriminant,
246 ec_GFp_simple_point_init,
247 ec_GFp_simple_point_finish,
248 ec_GFp_simple_point_clear_finish,
249 ec_GFp_simple_point_copy,
250 ec_GFp_simple_point_set_to_infinity,
251 ec_GFp_simple_set_Jprojective_coordinates_GFp,
252 ec_GFp_simple_get_Jprojective_coordinates_GFp,
253 ec_GFp_simple_point_set_affine_coordinates,
254 ec_GFp_nistp224_point_get_affine_coordinates,
255 0 /* point_set_compressed_coordinates */,
256 0 /* point2oct */,
257 0 /* oct2point */,
258 ec_GFp_simple_add,
259 ec_GFp_simple_dbl,
260 ec_GFp_simple_invert,
261 ec_GFp_simple_is_at_infinity,
262 ec_GFp_simple_is_on_curve,
263 ec_GFp_simple_cmp,
264 ec_GFp_simple_make_affine,
265 ec_GFp_simple_points_make_affine,
266 ec_GFp_nistp224_points_mul,
267 ec_GFp_nistp224_precompute_mult,
268 ec_GFp_nistp224_have_precompute_mult,
269 ec_GFp_nist_field_mul,
270 ec_GFp_nist_field_sqr,
271 0 /* field_div */,
272 0 /* field_encode */,
273 0 /* field_decode */,
274 0 /* field_set_to_one */ };
275
276 return &ret;
277 }
278
279 /* Helper functions to convert field elements to/from internal representation */
280 static void bin28_to_felem(felem out, const u8 in[28])
281 {
282 out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
283 out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
284 out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
285 out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
286 }
287
288 static void felem_to_bin28(u8 out[28], const felem in)
289 {
290 unsigned i;
291 for (i = 0; i < 7; ++i)
292 {
293 out[i] = in[0]>>(8*i);
294 out[i+7] = in[1]>>(8*i);
295 out[i+14] = in[2]>>(8*i);
296 out[i+21] = in[3]>>(8*i);
297 }
298 }
299
300 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
301 static void flip_endian(u8 *out, const u8 *in, unsigned len)
302 {
303 unsigned i;
304 for (i = 0; i < len; ++i)
305 out[i] = in[len-1-i];
306 }
307
308 /* From OpenSSL BIGNUM to internal representation */
309 static int BN_to_felem(felem out, const BIGNUM *bn)
310 {
311 felem_bytearray b_in;
312 felem_bytearray b_out;
313 unsigned num_bytes;
314
315 /* BN_bn2bin eats leading zeroes */
316 memset(b_out, 0, sizeof b_out);
317 num_bytes = BN_num_bytes(bn);
318 if (num_bytes > sizeof b_out)
319 {
320 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
321 return 0;
322 }
323 if (BN_is_negative(bn))
324 {
325 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
326 return 0;
327 }
328 num_bytes = BN_bn2bin(bn, b_in);
329 flip_endian(b_out, b_in, num_bytes);
330 bin28_to_felem(out, b_out);
331 return 1;
332 }
333
334 /* From internal representation to OpenSSL BIGNUM */
335 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
336 {
337 felem_bytearray b_in, b_out;
338 felem_to_bin28(b_in, in);
339 flip_endian(b_out, b_in, sizeof b_out);
340 return BN_bin2bn(b_out, sizeof b_out, out);
341 }
342
343 /******************************************************************************/
344 /*-
345 * FIELD OPERATIONS
346 *
347 * Field operations, using the internal representation of field elements.
348 * NB! These operations are specific to our point multiplication and cannot be
349 * expected to be correct in general - e.g., multiplication with a large scalar
350 * will cause an overflow.
351 *
352 */
353
354 static void felem_one(felem out)
355 {
356 out[0] = 1;
357 out[1] = 0;
358 out[2] = 0;
359 out[3] = 0;
360 }
361
362 static void felem_assign(felem out, const felem in)
363 {
364 out[0] = in[0];
365 out[1] = in[1];
366 out[2] = in[2];
367 out[3] = in[3];
368 }
369
370 /* Sum two field elements: out += in */
371 static void felem_sum(felem out, const felem in)
372 {
373 out[0] += in[0];
374 out[1] += in[1];
375 out[2] += in[2];
376 out[3] += in[3];
377 }
378
379 /* Get negative value: out = -in */
380 /* Assumes in[i] < 2^57 */
381 static void felem_neg(felem out, const felem in)
382 {
383 static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
384 static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
385 static const limb two58m42m2 = (((limb) 1) << 58) -
386 (((limb) 1) << 42) - (((limb) 1) << 2);
387
388 /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
389 out[0] = two58p2 - in[0];
390 out[1] = two58m42m2 - in[1];
391 out[2] = two58m2 - in[2];
392 out[3] = two58m2 - in[3];
393 }
394
395 /* Subtract field elements: out -= in */
396 /* Assumes in[i] < 2^57 */
397 static void felem_diff(felem out, const felem in)
398 {
399 static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
400 static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
401 static const limb two58m42m2 = (((limb) 1) << 58) -
402 (((limb) 1) << 42) - (((limb) 1) << 2);
403
404 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
405 out[0] += two58p2;
406 out[1] += two58m42m2;
407 out[2] += two58m2;
408 out[3] += two58m2;
409
410 out[0] -= in[0];
411 out[1] -= in[1];
412 out[2] -= in[2];
413 out[3] -= in[3];
414 }
415
416 /* Subtract in unreduced 128-bit mode: out -= in */
417 /* Assumes in[i] < 2^119 */
418 static void widefelem_diff(widefelem out, const widefelem in)
419 {
420 static const widelimb two120 = ((widelimb) 1) << 120;
421 static const widelimb two120m64 = (((widelimb) 1) << 120) -
422 (((widelimb) 1) << 64);
423 static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
424 (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
425
426 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
427 out[0] += two120;
428 out[1] += two120m64;
429 out[2] += two120m64;
430 out[3] += two120;
431 out[4] += two120m104m64;
432 out[5] += two120m64;
433 out[6] += two120m64;
434
435 out[0] -= in[0];
436 out[1] -= in[1];
437 out[2] -= in[2];
438 out[3] -= in[3];
439 out[4] -= in[4];
440 out[5] -= in[5];
441 out[6] -= in[6];
442 }
443
444 /* Subtract in mixed mode: out128 -= in64 */
445 /* in[i] < 2^63 */
446 static void felem_diff_128_64(widefelem out, const felem in)
447 {
448 static const widelimb two64p8 = (((widelimb) 1) << 64) +
449 (((widelimb) 1) << 8);
450 static const widelimb two64m8 = (((widelimb) 1) << 64) -
451 (((widelimb) 1) << 8);
452 static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
453 (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
454
455 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
456 out[0] += two64p8;
457 out[1] += two64m48m8;
458 out[2] += two64m8;
459 out[3] += two64m8;
460
461 out[0] -= in[0];
462 out[1] -= in[1];
463 out[2] -= in[2];
464 out[3] -= in[3];
465 }
466
467 /* Multiply a field element by a scalar: out = out * scalar
468 * The scalars we actually use are small, so results fit without overflow */
469 static void felem_scalar(felem out, const limb scalar)
470 {
471 out[0] *= scalar;
472 out[1] *= scalar;
473 out[2] *= scalar;
474 out[3] *= scalar;
475 }
476
477 /* Multiply an unreduced field element by a scalar: out = out * scalar
478 * The scalars we actually use are small, so results fit without overflow */
479 static void widefelem_scalar(widefelem out, const widelimb scalar)
480 {
481 out[0] *= scalar;
482 out[1] *= scalar;
483 out[2] *= scalar;
484 out[3] *= scalar;
485 out[4] *= scalar;
486 out[5] *= scalar;
487 out[6] *= scalar;
488 }
489
490 /* Square a field element: out = in^2 */
491 static void felem_square(widefelem out, const felem in)
492 {
493 limb tmp0, tmp1, tmp2;
494 tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
495 out[0] = ((widelimb) in[0]) * in[0];
496 out[1] = ((widelimb) in[0]) * tmp1;
497 out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
498 out[3] = ((widelimb) in[3]) * tmp0 +
499 ((widelimb) in[1]) * tmp2;
500 out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
501 out[5] = ((widelimb) in[3]) * tmp2;
502 out[6] = ((widelimb) in[3]) * in[3];
503 }
504
505 /* Multiply two field elements: out = in1 * in2 */
506 static void felem_mul(widefelem out, const felem in1, const felem in2)
507 {
508 out[0] = ((widelimb) in1[0]) * in2[0];
509 out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
510 out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
511 ((widelimb) in1[2]) * in2[0];
512 out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
513 ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
514 out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
515 ((widelimb) in1[3]) * in2[1];
516 out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
517 out[6] = ((widelimb) in1[3]) * in2[3];
518 }
519
520 /*-
521 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
522 * Requires in[i] < 2^126,
523 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
524 static void felem_reduce(felem out, const widefelem in)
525 {
526 static const widelimb two127p15 = (((widelimb) 1) << 127) +
527 (((widelimb) 1) << 15);
528 static const widelimb two127m71 = (((widelimb) 1) << 127) -
529 (((widelimb) 1) << 71);
530 static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
531 (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
532 widelimb output[5];
533
534 /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
535 output[0] = in[0] + two127p15;
536 output[1] = in[1] + two127m71m55;
537 output[2] = in[2] + two127m71;
538 output[3] = in[3];
539 output[4] = in[4];
540
541 /* Eliminate in[4], in[5], in[6] */
542 output[4] += in[6] >> 16;
543 output[3] += (in[6] & 0xffff) << 40;
544 output[2] -= in[6];
545
546 output[3] += in[5] >> 16;
547 output[2] += (in[5] & 0xffff) << 40;
548 output[1] -= in[5];
549
550 output[2] += output[4] >> 16;
551 output[1] += (output[4] & 0xffff) << 40;
552 output[0] -= output[4];
553
554 /* Carry 2 -> 3 -> 4 */
555 output[3] += output[2] >> 56;
556 output[2] &= 0x00ffffffffffffff;
557
558 output[4] = output[3] >> 56;
559 output[3] &= 0x00ffffffffffffff;
560
561 /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
562
563 /* Eliminate output[4] */
564 output[2] += output[4] >> 16;
565 /* output[2] < 2^56 + 2^56 = 2^57 */
566 output[1] += (output[4] & 0xffff) << 40;
567 output[0] -= output[4];
568
569 /* Carry 0 -> 1 -> 2 -> 3 */
570 output[1] += output[0] >> 56;
571 out[0] = output[0] & 0x00ffffffffffffff;
572
573 output[2] += output[1] >> 56;
574 /* output[2] < 2^57 + 2^72 */
575 out[1] = output[1] & 0x00ffffffffffffff;
576 output[3] += output[2] >> 56;
577 /* output[3] <= 2^56 + 2^16 */
578 out[2] = output[2] & 0x00ffffffffffffff;
579
580 /*-
581 * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
582 * out[3] <= 2^56 + 2^16 (due to final carry),
583 * so out < 2*p
584 */
585 out[3] = output[3];
586 }
587
588 static void felem_square_reduce(felem out, const felem in)
589 {
590 widefelem tmp;
591 felem_square(tmp, in);
592 felem_reduce(out, tmp);
593 }
594
595 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
596 {
597 widefelem tmp;
598 felem_mul(tmp, in1, in2);
599 felem_reduce(out, tmp);
600 }
601
602 /* Reduce to unique minimal representation.
603 * Requires 0 <= in < 2*p (always call felem_reduce first) */
604 static void felem_contract(felem out, const felem in)
605 {
606 static const int64_t two56 = ((limb) 1) << 56;
607 /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
608 /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
609 int64_t tmp[4], a;
610 tmp[0] = in[0];
611 tmp[1] = in[1];
612 tmp[2] = in[2];
613 tmp[3] = in[3];
614 /* Case 1: a = 1 iff in >= 2^224 */
615 a = (in[3] >> 56);
616 tmp[0] -= a;
617 tmp[1] += a << 40;
618 tmp[3] &= 0x00ffffffffffffff;
619 /* Case 2: a = 0 iff p <= in < 2^224, i.e.,
620 * the high 128 bits are all 1 and the lower part is non-zero */
621 a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
622 (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
623 a &= 0x00ffffffffffffff;
624 /* turn a into an all-one mask (if a = 0) or an all-zero mask */
625 a = (a - 1) >> 63;
626 /* subtract 2^224 - 2^96 + 1 if a is all-one*/
627 tmp[3] &= a ^ 0xffffffffffffffff;
628 tmp[2] &= a ^ 0xffffffffffffffff;
629 tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
630 tmp[0] -= 1 & a;
631
632 /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
633 * be non-zero, so we only need one step */
634 a = tmp[0] >> 63;
635 tmp[0] += two56 & a;
636 tmp[1] -= 1 & a;
637
638 /* carry 1 -> 2 -> 3 */
639 tmp[2] += tmp[1] >> 56;
640 tmp[1] &= 0x00ffffffffffffff;
641
642 tmp[3] += tmp[2] >> 56;
643 tmp[2] &= 0x00ffffffffffffff;
644
645 /* Now 0 <= out < p */
646 out[0] = tmp[0];
647 out[1] = tmp[1];
648 out[2] = tmp[2];
649 out[3] = tmp[3];
650 }
651
652 /* Zero-check: returns 1 if input is 0, and 0 otherwise.
653 * We know that field elements are reduced to in < 2^225,
654 * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
655 * and 2^225 - 2^97 + 2 */
656 static limb felem_is_zero(const felem in)
657 {
658 limb zero, two224m96p1, two225m97p2;
659
660 zero = in[0] | in[1] | in[2] | in[3];
661 zero = (((int64_t)(zero) - 1) >> 63) & 1;
662 two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
663 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
664 two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
665 two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
666 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
667 two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
668 return (zero | two224m96p1 | two225m97p2);
669 }
670
671 static limb felem_is_zero_int(const felem in)
672 {
673 return (int) (felem_is_zero(in) & ((limb)1));
674 }
675
676 /* Invert a field element */
677 /* Computation chain copied from djb's code */
678 static void felem_inv(felem out, const felem in)
679 {
680 felem ftmp, ftmp2, ftmp3, ftmp4;
681 widefelem tmp;
682 unsigned i;
683
684 felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */
685 felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */
686 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2 */
687 felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 1 */
688 felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
689 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
690 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
691 felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */
692 felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
693 for (i = 0; i < 5; ++i) /* 2^12 - 2^6 */
694 {
695 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
696 }
697 felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
698 felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
699 for (i = 0; i < 11; ++i) /* 2^24 - 2^12 */
700 {
701 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
702 }
703 felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
704 felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
705 for (i = 0; i < 23; ++i) /* 2^48 - 2^24 */
706 {
707 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
708 }
709 felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
710 felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
711 for (i = 0; i < 47; ++i) /* 2^96 - 2^48 */
712 {
713 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
714 }
715 felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
716 felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
717 for (i = 0; i < 23; ++i) /* 2^120 - 2^24 */
718 {
719 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
720 }
721 felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
722 for (i = 0; i < 6; ++i) /* 2^126 - 2^6 */
723 {
724 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
725 }
726 felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^126 - 1 */
727 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^127 - 2 */
728 felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^127 - 1 */
729 for (i = 0; i < 97; ++i) /* 2^224 - 2^97 */
730 {
731 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
732 }
733 felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
734 }
735
736 /* Copy in constant time:
737 * if icopy == 1, copy in to out,
738 * if icopy == 0, copy out to itself. */
739 static void
740 copy_conditional(felem out, const felem in, limb icopy)
741 {
742 unsigned i;
743 /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
744 const limb copy = -icopy;
745 for (i = 0; i < 4; ++i)
746 {
747 const limb tmp = copy & (in[i] ^ out[i]);
748 out[i] ^= tmp;
749 }
750 }
751
752 /******************************************************************************/
753 /*-
754 * ELLIPTIC CURVE POINT OPERATIONS
755 *
756 * Points are represented in Jacobian projective coordinates:
757 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
758 * or to the point at infinity if Z == 0.
759 *
760 */
761
762 /*-
763 * Double an elliptic curve point:
764 * (X', Y', Z') = 2 * (X, Y, Z), where
765 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
766 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
767 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
768 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
769 * while x_out == y_in is not (maybe this works, but it's not tested).
770 */
771 static void
772 point_double(felem x_out, felem y_out, felem z_out,
773 const felem x_in, const felem y_in, const felem z_in)
774 {
775 widefelem tmp, tmp2;
776 felem delta, gamma, beta, alpha, ftmp, ftmp2;
777
778 felem_assign(ftmp, x_in);
779 felem_assign(ftmp2, x_in);
780
781 /* delta = z^2 */
782 felem_square(tmp, z_in);
783 felem_reduce(delta, tmp);
784
785 /* gamma = y^2 */
786 felem_square(tmp, y_in);
787 felem_reduce(gamma, tmp);
788
789 /* beta = x*gamma */
790 felem_mul(tmp, x_in, gamma);
791 felem_reduce(beta, tmp);
792
793 /* alpha = 3*(x-delta)*(x+delta) */
794 felem_diff(ftmp, delta);
795 /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
796 felem_sum(ftmp2, delta);
797 /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
798 felem_scalar(ftmp2, 3);
799 /* ftmp2[i] < 3 * 2^58 < 2^60 */
800 felem_mul(tmp, ftmp, ftmp2);
801 /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
802 felem_reduce(alpha, tmp);
803
804 /* x' = alpha^2 - 8*beta */
805 felem_square(tmp, alpha);
806 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
807 felem_assign(ftmp, beta);
808 felem_scalar(ftmp, 8);
809 /* ftmp[i] < 8 * 2^57 = 2^60 */
810 felem_diff_128_64(tmp, ftmp);
811 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
812 felem_reduce(x_out, tmp);
813
814 /* z' = (y + z)^2 - gamma - delta */
815 felem_sum(delta, gamma);
816 /* delta[i] < 2^57 + 2^57 = 2^58 */
817 felem_assign(ftmp, y_in);
818 felem_sum(ftmp, z_in);
819 /* ftmp[i] < 2^57 + 2^57 = 2^58 */
820 felem_square(tmp, ftmp);
821 /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
822 felem_diff_128_64(tmp, delta);
823 /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
824 felem_reduce(z_out, tmp);
825
826 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
827 felem_scalar(beta, 4);
828 /* beta[i] < 4 * 2^57 = 2^59 */
829 felem_diff(beta, x_out);
830 /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
831 felem_mul(tmp, alpha, beta);
832 /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
833 felem_square(tmp2, gamma);
834 /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
835 widefelem_scalar(tmp2, 8);
836 /* tmp2[i] < 8 * 2^116 = 2^119 */
837 widefelem_diff(tmp, tmp2);
838 /* tmp[i] < 2^119 + 2^120 < 2^121 */
839 felem_reduce(y_out, tmp);
840 }
841
842 /*-
843 * Add two elliptic curve points:
844 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
845 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
846 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
847 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
848 * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
849 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
850 *
851 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
852 */
853
854 /* This function is not entirely constant-time:
855 * it includes a branch for checking whether the two input points are equal,
856 * (while not equal to the point at infinity).
857 * This case never happens during single point multiplication,
858 * so there is no timing leak for ECDH or ECDSA signing. */
859 static void point_add(felem x3, felem y3, felem z3,
860 const felem x1, const felem y1, const felem z1,
861 const int mixed, const felem x2, const felem y2, const felem z2)
862 {
863 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
864 widefelem tmp, tmp2;
865 limb z1_is_zero, z2_is_zero, x_equal, y_equal;
866
867 if (!mixed)
868 {
869 /* ftmp2 = z2^2 */
870 felem_square(tmp, z2);
871 felem_reduce(ftmp2, tmp);
872
873 /* ftmp4 = z2^3 */
874 felem_mul(tmp, ftmp2, z2);
875 felem_reduce(ftmp4, tmp);
876
877 /* ftmp4 = z2^3*y1 */
878 felem_mul(tmp2, ftmp4, y1);
879 felem_reduce(ftmp4, tmp2);
880
881 /* ftmp2 = z2^2*x1 */
882 felem_mul(tmp2, ftmp2, x1);
883 felem_reduce(ftmp2, tmp2);
884 }
885 else
886 {
887 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
888
889 /* ftmp4 = z2^3*y1 */
890 felem_assign(ftmp4, y1);
891
892 /* ftmp2 = z2^2*x1 */
893 felem_assign(ftmp2, x1);
894 }
895
896 /* ftmp = z1^2 */
897 felem_square(tmp, z1);
898 felem_reduce(ftmp, tmp);
899
900 /* ftmp3 = z1^3 */
901 felem_mul(tmp, ftmp, z1);
902 felem_reduce(ftmp3, tmp);
903
904 /* tmp = z1^3*y2 */
905 felem_mul(tmp, ftmp3, y2);
906 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
907
908 /* ftmp3 = z1^3*y2 - z2^3*y1 */
909 felem_diff_128_64(tmp, ftmp4);
910 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
911 felem_reduce(ftmp3, tmp);
912
913 /* tmp = z1^2*x2 */
914 felem_mul(tmp, ftmp, x2);
915 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
916
917 /* ftmp = z1^2*x2 - z2^2*x1 */
918 felem_diff_128_64(tmp, ftmp2);
919 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
920 felem_reduce(ftmp, tmp);
921
922 /* the formulae are incorrect if the points are equal
923 * so we check for this and do doubling if this happens */
924 x_equal = felem_is_zero(ftmp);
925 y_equal = felem_is_zero(ftmp3);
926 z1_is_zero = felem_is_zero(z1);
927 z2_is_zero = felem_is_zero(z2);
928 /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
929 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
930 {
931 point_double(x3, y3, z3, x1, y1, z1);
932 return;
933 }
934
935 /* ftmp5 = z1*z2 */
936 if (!mixed)
937 {
938 felem_mul(tmp, z1, z2);
939 felem_reduce(ftmp5, tmp);
940 }
941 else
942 {
943 /* special case z2 = 0 is handled later */
944 felem_assign(ftmp5, z1);
945 }
946
947 /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
948 felem_mul(tmp, ftmp, ftmp5);
949 felem_reduce(z_out, tmp);
950
951 /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
952 felem_assign(ftmp5, ftmp);
953 felem_square(tmp, ftmp);
954 felem_reduce(ftmp, tmp);
955
956 /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
957 felem_mul(tmp, ftmp, ftmp5);
958 felem_reduce(ftmp5, tmp);
959
960 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
961 felem_mul(tmp, ftmp2, ftmp);
962 felem_reduce(ftmp2, tmp);
963
964 /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
965 felem_mul(tmp, ftmp4, ftmp5);
966 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
967
968 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
969 felem_square(tmp2, ftmp3);
970 /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
971
972 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
973 felem_diff_128_64(tmp2, ftmp5);
974 /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
975
976 /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
977 felem_assign(ftmp5, ftmp2);
978 felem_scalar(ftmp5, 2);
979 /* ftmp5[i] < 2 * 2^57 = 2^58 */
980
981 /*-
982 * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
983 * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
984 */
985 felem_diff_128_64(tmp2, ftmp5);
986 /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
987 felem_reduce(x_out, tmp2);
988
989 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
990 felem_diff(ftmp2, x_out);
991 /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
992
993 /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
994 felem_mul(tmp2, ftmp3, ftmp2);
995 /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
996
997 /*-
998 * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
999 * z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1000 */
1001 widefelem_diff(tmp2, tmp);
1002 /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1003 felem_reduce(y_out, tmp2);
1004
1005 /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1006 * the point at infinity, so we need to check for this separately */
1007
1008 /* if point 1 is at infinity, copy point 2 to output, and vice versa */
1009 copy_conditional(x_out, x2, z1_is_zero);
1010 copy_conditional(x_out, x1, z2_is_zero);
1011 copy_conditional(y_out, y2, z1_is_zero);
1012 copy_conditional(y_out, y1, z2_is_zero);
1013 copy_conditional(z_out, z2, z1_is_zero);
1014 copy_conditional(z_out, z1, z2_is_zero);
1015 felem_assign(x3, x_out);
1016 felem_assign(y3, y_out);
1017 felem_assign(z3, z_out);
1018 }
1019
1020 /*
1021 * select_point selects the |idx|th point from a precomputation table and
1022 * copies it to out.
1023 * The pre_comp array argument should be size of |size| argument
1024 */
1025 static void select_point(const u64 idx, unsigned int size, const felem pre_comp[][3], felem out[3])
1026 {
1027 unsigned i, j;
1028 limb *outlimbs = &out[0][0];
1029 memset(outlimbs, 0, 3 * sizeof(felem));
1030
1031 for (i = 0; i < size; i++)
1032 {
1033 const limb *inlimbs = &pre_comp[i][0][0];
1034 u64 mask = i ^ idx;
1035 mask |= mask >> 4;
1036 mask |= mask >> 2;
1037 mask |= mask >> 1;
1038 mask &= 1;
1039 mask--;
1040 for (j = 0; j < 4 * 3; j++)
1041 outlimbs[j] |= inlimbs[j] & mask;
1042 }
1043 }
1044
1045 /* get_bit returns the |i|th bit in |in| */
1046 static char get_bit(const felem_bytearray in, unsigned i)
1047 {
1048 if (i >= 224)
1049 return 0;
1050 return (in[i >> 3] >> (i & 7)) & 1;
1051 }
1052
1053 /* Interleaved point multiplication using precomputed point multiples:
1054 * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
1055 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1056 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1057 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1058 static void batch_mul(felem x_out, felem y_out, felem z_out,
1059 const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1060 const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
1061 {
1062 int i, skip;
1063 unsigned num;
1064 unsigned gen_mul = (g_scalar != NULL);
1065 felem nq[3], tmp[4];
1066 u64 bits;
1067 u8 sign, digit;
1068
1069 /* set nq to the point at infinity */
1070 memset(nq, 0, 3 * sizeof(felem));
1071
1072 /* Loop over all scalars msb-to-lsb, interleaving additions
1073 * of multiples of the generator (two in each of the last 28 rounds)
1074 * and additions of other points multiples (every 5th round).
1075 */
1076 skip = 1; /* save two point operations in the first round */
1077 for (i = (num_points ? 220 : 27); i >= 0; --i)
1078 {
1079 /* double */
1080 if (!skip)
1081 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1082
1083 /* add multiples of the generator */
1084 if (gen_mul && (i <= 27))
1085 {
1086 /* first, look 28 bits upwards */
1087 bits = get_bit(g_scalar, i + 196) << 3;
1088 bits |= get_bit(g_scalar, i + 140) << 2;
1089 bits |= get_bit(g_scalar, i + 84) << 1;
1090 bits |= get_bit(g_scalar, i + 28);
1091 /* select the point to add, in constant time */
1092 select_point(bits, 16, g_pre_comp[1], tmp);
1093
1094 if (!skip)
1095 {
1096 point_add(nq[0], nq[1], nq[2],
1097 nq[0], nq[1], nq[2],
1098 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1099 }
1100 else
1101 {
1102 memcpy(nq, tmp, 3 * sizeof(felem));
1103 skip = 0;
1104 }
1105
1106 /* second, look at the current position */
1107 bits = get_bit(g_scalar, i + 168) << 3;
1108 bits |= get_bit(g_scalar, i + 112) << 2;
1109 bits |= get_bit(g_scalar, i + 56) << 1;
1110 bits |= get_bit(g_scalar, i);
1111 /* select the point to add, in constant time */
1112 select_point(bits, 16, g_pre_comp[0], tmp);
1113 point_add(nq[0], nq[1], nq[2],
1114 nq[0], nq[1], nq[2],
1115 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1116 }
1117
1118 /* do other additions every 5 doublings */
1119 if (num_points && (i % 5 == 0))
1120 {
1121 /* loop over all scalars */
1122 for (num = 0; num < num_points; ++num)
1123 {
1124 bits = get_bit(scalars[num], i + 4) << 5;
1125 bits |= get_bit(scalars[num], i + 3) << 4;
1126 bits |= get_bit(scalars[num], i + 2) << 3;
1127 bits |= get_bit(scalars[num], i + 1) << 2;
1128 bits |= get_bit(scalars[num], i) << 1;
1129 bits |= get_bit(scalars[num], i - 1);
1130 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1131
1132 /* select the point to add or subtract */
1133 select_point(digit, 17, pre_comp[num], tmp);
1134 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
1135 copy_conditional(tmp[1], tmp[3], sign);
1136
1137 if (!skip)
1138 {
1139 point_add(nq[0], nq[1], nq[2],
1140 nq[0], nq[1], nq[2],
1141 mixed, tmp[0], tmp[1], tmp[2]);
1142 }
1143 else
1144 {
1145 memcpy(nq, tmp, 3 * sizeof(felem));
1146 skip = 0;
1147 }
1148 }
1149 }
1150 }
1151 felem_assign(x_out, nq[0]);
1152 felem_assign(y_out, nq[1]);
1153 felem_assign(z_out, nq[2]);
1154 }
1155
1156 /******************************************************************************/
1157 /* FUNCTIONS TO MANAGE PRECOMPUTATION
1158 */
1159
1160 static NISTP224_PRE_COMP *nistp224_pre_comp_new()
1161 {
1162 NISTP224_PRE_COMP *ret = NULL;
1163 ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1164 if (!ret)
1165 {
1166 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1167 return ret;
1168 }
1169 memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1170 ret->references = 1;
1171 return ret;
1172 }
1173
1174 static void *nistp224_pre_comp_dup(void *src_)
1175 {
1176 NISTP224_PRE_COMP *src = src_;
1177
1178 /* no need to actually copy, these objects never change! */
1179 CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1180
1181 return src_;
1182 }
1183
1184 static void nistp224_pre_comp_free(void *pre_)
1185 {
1186 int i;
1187 NISTP224_PRE_COMP *pre = pre_;
1188
1189 if (!pre)
1190 return;
1191
1192 i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1193 if (i > 0)
1194 return;
1195
1196 OPENSSL_free(pre);
1197 }
1198
1199 static void nistp224_pre_comp_clear_free(void *pre_)
1200 {
1201 int i;
1202 NISTP224_PRE_COMP *pre = pre_;
1203
1204 if (!pre)
1205 return;
1206
1207 i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1208 if (i > 0)
1209 return;
1210
1211 OPENSSL_cleanse(pre, sizeof *pre);
1212 OPENSSL_free(pre);
1213 }
1214
1215 /******************************************************************************/
1216 /* OPENSSL EC_METHOD FUNCTIONS
1217 */
1218
1219 int ec_GFp_nistp224_group_init(EC_GROUP *group)
1220 {
1221 int ret;
1222 ret = ec_GFp_simple_group_init(group);
1223 group->a_is_minus3 = 1;
1224 return ret;
1225 }
1226
1227 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1228 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1229 {
1230 int ret = 0;
1231 BN_CTX *new_ctx = NULL;
1232 BIGNUM *curve_p, *curve_a, *curve_b;
1233
1234 if (ctx == NULL)
1235 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1236 BN_CTX_start(ctx);
1237 if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1238 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1239 ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1240 BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1241 BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1242 BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1243 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1244 (BN_cmp(curve_b, b)))
1245 {
1246 ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1247 EC_R_WRONG_CURVE_PARAMETERS);
1248 goto err;
1249 }
1250 group->field_mod_func = BN_nist_mod_224;
1251 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1252 err:
1253 BN_CTX_end(ctx);
1254 if (new_ctx != NULL)
1255 BN_CTX_free(new_ctx);
1256 return ret;
1257 }
1258
1259 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1260 * (X', Y') = (X/Z^2, Y/Z^3) */
1261 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1262 const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1263 {
1264 felem z1, z2, x_in, y_in, x_out, y_out;
1265 widefelem tmp;
1266
1267 if (EC_POINT_is_at_infinity(group, point))
1268 {
1269 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1270 EC_R_POINT_AT_INFINITY);
1271 return 0;
1272 }
1273 if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1274 (!BN_to_felem(z1, &point->Z))) return 0;
1275 felem_inv(z2, z1);
1276 felem_square(tmp, z2); felem_reduce(z1, tmp);
1277 felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1278 felem_contract(x_out, x_in);
1279 if (x != NULL)
1280 {
1281 if (!felem_to_BN(x, x_out)) {
1282 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1283 ERR_R_BN_LIB);
1284 return 0;
1285 }
1286 }
1287 felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1288 felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1289 felem_contract(y_out, y_in);
1290 if (y != NULL)
1291 {
1292 if (!felem_to_BN(y, y_out)) {
1293 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1294 ERR_R_BN_LIB);
1295 return 0;
1296 }
1297 }
1298 return 1;
1299 }
1300
1301 static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
1302 {
1303 /* Runs in constant time, unless an input is the point at infinity
1304 * (which normally shouldn't happen). */
1305 ec_GFp_nistp_points_make_affine_internal(
1306 num,
1307 points,
1308 sizeof(felem),
1309 tmp_felems,
1310 (void (*)(void *)) felem_one,
1311 (int (*)(const void *)) felem_is_zero_int,
1312 (void (*)(void *, const void *)) felem_assign,
1313 (void (*)(void *, const void *)) felem_square_reduce,
1314 (void (*)(void *, const void *, const void *)) felem_mul_reduce,
1315 (void (*)(void *, const void *)) felem_inv,
1316 (void (*)(void *, const void *)) felem_contract);
1317 }
1318
1319 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1320 * Result is stored in r (r can equal one of the inputs). */
1321 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1322 const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1323 const BIGNUM *scalars[], BN_CTX *ctx)
1324 {
1325 int ret = 0;
1326 int j;
1327 unsigned i;
1328 int mixed = 0;
1329 BN_CTX *new_ctx = NULL;
1330 BIGNUM *x, *y, *z, *tmp_scalar;
1331 felem_bytearray g_secret;
1332 felem_bytearray *secrets = NULL;
1333 felem (*pre_comp)[17][3] = NULL;
1334 felem *tmp_felems = NULL;
1335 felem_bytearray tmp;
1336 unsigned num_bytes;
1337 int have_pre_comp = 0;
1338 size_t num_points = num;
1339 felem x_in, y_in, z_in, x_out, y_out, z_out;
1340 NISTP224_PRE_COMP *pre = NULL;
1341 const felem (*g_pre_comp)[16][3] = NULL;
1342 EC_POINT *generator = NULL;
1343 const EC_POINT *p = NULL;
1344 const BIGNUM *p_scalar = NULL;
1345
1346 if (ctx == NULL)
1347 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1348 BN_CTX_start(ctx);
1349 if (((x = BN_CTX_get(ctx)) == NULL) ||
1350 ((y = BN_CTX_get(ctx)) == NULL) ||
1351 ((z = BN_CTX_get(ctx)) == NULL) ||
1352 ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1353 goto err;
1354
1355 if (scalar != NULL)
1356 {
1357 pre = EC_EX_DATA_get_data(group->extra_data,
1358 nistp224_pre_comp_dup, nistp224_pre_comp_free,
1359 nistp224_pre_comp_clear_free);
1360 if (pre)
1361 /* we have precomputation, try to use it */
1362 g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
1363 else
1364 /* try to use the standard precomputation */
1365 g_pre_comp = &gmul[0];
1366 generator = EC_POINT_new(group);
1367 if (generator == NULL)
1368 goto err;
1369 /* get the generator from precomputation */
1370 if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1371 !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1372 !felem_to_BN(z, g_pre_comp[0][1][2]))
1373 {
1374 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1375 goto err;
1376 }
1377 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1378 generator, x, y, z, ctx))
1379 goto err;
1380 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1381 /* precomputation matches generator */
1382 have_pre_comp = 1;
1383 else
1384 /* we don't have valid precomputation:
1385 * treat the generator as a random point */
1386 num_points = num_points + 1;
1387 }
1388
1389 if (num_points > 0)
1390 {
1391 if (num_points >= 3)
1392 {
1393 /* unless we precompute multiples for just one or two points,
1394 * converting those into affine form is time well spent */
1395 mixed = 1;
1396 }
1397 secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1398 pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
1399 if (mixed)
1400 tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
1401 if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
1402 {
1403 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1404 goto err;
1405 }
1406
1407 /* we treat NULL scalars as 0, and NULL points as points at infinity,
1408 * i.e., they contribute nothing to the linear combination */
1409 memset(secrets, 0, num_points * sizeof(felem_bytearray));
1410 memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
1411 for (i = 0; i < num_points; ++i)
1412 {
1413 if (i == num)
1414 /* the generator */
1415 {
1416 p = EC_GROUP_get0_generator(group);
1417 p_scalar = scalar;
1418 }
1419 else
1420 /* the i^th point */
1421 {
1422 p = points[i];
1423 p_scalar = scalars[i];
1424 }
1425 if ((p_scalar != NULL) && (p != NULL))
1426 {
1427 /* reduce scalar to 0 <= scalar < 2^224 */
1428 if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
1429 {
1430 /* this is an unusual input, and we don't guarantee
1431 * constant-timeness */
1432 if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1433 {
1434 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1435 goto err;
1436 }
1437 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1438 }
1439 else
1440 num_bytes = BN_bn2bin(p_scalar, tmp);
1441 flip_endian(secrets[i], tmp, num_bytes);
1442 /* precompute multiples */
1443 if ((!BN_to_felem(x_out, &p->X)) ||
1444 (!BN_to_felem(y_out, &p->Y)) ||
1445 (!BN_to_felem(z_out, &p->Z))) goto err;
1446 felem_assign(pre_comp[i][1][0], x_out);
1447 felem_assign(pre_comp[i][1][1], y_out);
1448 felem_assign(pre_comp[i][1][2], z_out);
1449 for (j = 2; j <= 16; ++j)
1450 {
1451 if (j & 1)
1452 {
1453 point_add(
1454 pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1455 pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1456 0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1457 }
1458 else
1459 {
1460 point_double(
1461 pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1462 pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1463 }
1464 }
1465 }
1466 }
1467 if (mixed)
1468 make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1469 }
1470
1471 /* the scalar for the generator */
1472 if ((scalar != NULL) && (have_pre_comp))
1473 {
1474 memset(g_secret, 0, sizeof g_secret);
1475 /* reduce scalar to 0 <= scalar < 2^224 */
1476 if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
1477 {
1478 /* this is an unusual input, and we don't guarantee
1479 * constant-timeness */
1480 if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1481 {
1482 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1483 goto err;
1484 }
1485 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1486 }
1487 else
1488 num_bytes = BN_bn2bin(scalar, tmp);
1489 flip_endian(g_secret, tmp, num_bytes);
1490 /* do the multiplication with generator precomputation*/
1491 batch_mul(x_out, y_out, z_out,
1492 (const felem_bytearray (*)) secrets, num_points,
1493 g_secret,
1494 mixed, (const felem (*)[17][3]) pre_comp,
1495 g_pre_comp);
1496 }
1497 else
1498 /* do the multiplication without generator precomputation */
1499 batch_mul(x_out, y_out, z_out,
1500 (const felem_bytearray (*)) secrets, num_points,
1501 NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
1502 /* reduce the output to its unique minimal representation */
1503 felem_contract(x_in, x_out);
1504 felem_contract(y_in, y_out);
1505 felem_contract(z_in, z_out);
1506 if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1507 (!felem_to_BN(z, z_in)))
1508 {
1509 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1510 goto err;
1511 }
1512 ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1513
1514 err:
1515 BN_CTX_end(ctx);
1516 if (generator != NULL)
1517 EC_POINT_free(generator);
1518 if (new_ctx != NULL)
1519 BN_CTX_free(new_ctx);
1520 if (secrets != NULL)
1521 OPENSSL_free(secrets);
1522 if (pre_comp != NULL)
1523 OPENSSL_free(pre_comp);
1524 if (tmp_felems != NULL)
1525 OPENSSL_free(tmp_felems);
1526 return ret;
1527 }
1528
1529 int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1530 {
1531 int ret = 0;
1532 NISTP224_PRE_COMP *pre = NULL;
1533 int i, j;
1534 BN_CTX *new_ctx = NULL;
1535 BIGNUM *x, *y;
1536 EC_POINT *generator = NULL;
1537 felem tmp_felems[32];
1538
1539 /* throw away old precomputation */
1540 EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
1541 nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
1542 if (ctx == NULL)
1543 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1544 BN_CTX_start(ctx);
1545 if (((x = BN_CTX_get(ctx)) == NULL) ||
1546 ((y = BN_CTX_get(ctx)) == NULL))
1547 goto err;
1548 /* get the generator */
1549 if (group->generator == NULL) goto err;
1550 generator = EC_POINT_new(group);
1551 if (generator == NULL)
1552 goto err;
1553 BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
1554 BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
1555 if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
1556 goto err;
1557 if ((pre = nistp224_pre_comp_new()) == NULL)
1558 goto err;
1559 /* if the generator is the standard one, use built-in precomputation */
1560 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1561 {
1562 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1563 ret = 1;
1564 goto err;
1565 }
1566 if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
1567 (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
1568 (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
1569 goto err;
1570 /* compute 2^56*G, 2^112*G, 2^168*G for the first table,
1571 * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
1572 */
1573 for (i = 1; i <= 8; i <<= 1)
1574 {
1575 point_double(
1576 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1577 pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1578 for (j = 0; j < 27; ++j)
1579 {
1580 point_double(
1581 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1582 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1583 }
1584 if (i == 8)
1585 break;
1586 point_double(
1587 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1588 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1589 for (j = 0; j < 27; ++j)
1590 {
1591 point_double(
1592 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1593 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
1594 }
1595 }
1596 for (i = 0; i < 2; i++)
1597 {
1598 /* g_pre_comp[i][0] is the point at infinity */
1599 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1600 /* the remaining multiples */
1601 /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1602 point_add(
1603 pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1604 pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1605 pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1606 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1607 pre->g_pre_comp[i][2][2]);
1608 /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1609 point_add(
1610 pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1611 pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1612 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1613 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1614 pre->g_pre_comp[i][2][2]);
1615 /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1616 point_add(
1617 pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1618 pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1619 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1620 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1621 pre->g_pre_comp[i][4][2]);
1622 /* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
1623 point_add(
1624 pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1625 pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1626 pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1627 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1628 pre->g_pre_comp[i][2][2]);
1629 for (j = 1; j < 8; ++j)
1630 {
1631 /* odd multiples: add G resp. 2^28*G */
1632 point_add(
1633 pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
1634 pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
1635 pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
1636 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1637 pre->g_pre_comp[i][1][2]);
1638 }
1639 }
1640 make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1641
1642 if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
1643 nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
1644 goto err;
1645 ret = 1;
1646 pre = NULL;
1647 err:
1648 BN_CTX_end(ctx);
1649 if (generator != NULL)
1650 EC_POINT_free(generator);
1651 if (new_ctx != NULL)
1652 BN_CTX_free(new_ctx);
1653 if (pre)
1654 nistp224_pre_comp_free(pre);
1655 return ret;
1656 }
1657
1658 int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1659 {
1660 if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
1661 nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
1662 != NULL)
1663 return 1;
1664 else
1665 return 0;
1666 }
1667
1668 #else
1669 static void *dummy=&dummy;
1670 #endif