]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ecp_nistp224.c
Fix potential SCA vulnerability in some EC_METHODs
[thirdparty/openssl.git] / crypto / ec / ecp_nistp224.c
1 /*
2 * Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* Copyright 2011 Google Inc.
11 *
12 * Licensed under the Apache License, Version 2.0 (the "License");
13 *
14 * you may not use this file except in compliance with the License.
15 * You may obtain a copy of the License at
16 *
17 * http://www.apache.org/licenses/LICENSE-2.0
18 *
19 * Unless required by applicable law or agreed to in writing, software
20 * distributed under the License is distributed on an "AS IS" BASIS,
21 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22 * See the License for the specific language governing permissions and
23 * limitations under the License.
24 */
25
26 /*
27 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
28 *
29 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
30 * and Adam Langley's public domain 64-bit C implementation of curve25519
31 */
32
33 #include <openssl/opensslconf.h>
34 #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
35 NON_EMPTY_TRANSLATION_UNIT
36 #else
37
38 # include <stdint.h>
39 # include <string.h>
40 # include <openssl/err.h>
41 # include "ec_local.h"
42
43 # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44 /* even with gcc, the typedef won't work for 32-bit platforms */
45 typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
46 * platforms */
47 # else
48 # error "Your compiler doesn't appear to support 128-bit integer types"
49 # endif
50
51 typedef uint8_t u8;
52 typedef uint64_t u64;
53
54 /******************************************************************************/
55 /*-
56 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
57 *
58 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
59 * using 64-bit coefficients called 'limbs',
60 * and sometimes (for multiplication results) as
61 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
62 * using 128-bit coefficients called 'widelimbs'.
63 * A 4-limb representation is an 'felem';
64 * a 7-widelimb representation is a 'widefelem'.
65 * Even within felems, bits of adjacent limbs overlap, and we don't always
66 * reduce the representations: we ensure that inputs to each felem
67 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
68 * and fit into a 128-bit word without overflow. The coefficients are then
69 * again partially reduced to obtain an felem satisfying a_i < 2^57.
70 * We only reduce to the unique minimal representation at the end of the
71 * computation.
72 */
73
74 typedef uint64_t limb;
75 typedef uint128_t widelimb;
76
77 typedef limb felem[4];
78 typedef widelimb widefelem[7];
79
80 /*
81 * Field element represented as a byte array. 28*8 = 224 bits is also the
82 * group order size for the elliptic curve, and we also use this type for
83 * scalars for point multiplication.
84 */
85 typedef u8 felem_bytearray[28];
86
87 static const felem_bytearray nistp224_curve_params[5] = {
88 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
89 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
90 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
91 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
92 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
93 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
94 {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
95 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
96 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
97 {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
98 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
99 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
100 {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
101 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
102 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
103 };
104
105 /*-
106 * Precomputed multiples of the standard generator
107 * Points are given in coordinates (X, Y, Z) where Z normally is 1
108 * (0 for the point at infinity).
109 * For each field element, slice a_0 is word 0, etc.
110 *
111 * The table has 2 * 16 elements, starting with the following:
112 * index | bits | point
113 * ------+---------+------------------------------
114 * 0 | 0 0 0 0 | 0G
115 * 1 | 0 0 0 1 | 1G
116 * 2 | 0 0 1 0 | 2^56G
117 * 3 | 0 0 1 1 | (2^56 + 1)G
118 * 4 | 0 1 0 0 | 2^112G
119 * 5 | 0 1 0 1 | (2^112 + 1)G
120 * 6 | 0 1 1 0 | (2^112 + 2^56)G
121 * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
122 * 8 | 1 0 0 0 | 2^168G
123 * 9 | 1 0 0 1 | (2^168 + 1)G
124 * 10 | 1 0 1 0 | (2^168 + 2^56)G
125 * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
126 * 12 | 1 1 0 0 | (2^168 + 2^112)G
127 * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
128 * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
129 * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
130 * followed by a copy of this with each element multiplied by 2^28.
131 *
132 * The reason for this is so that we can clock bits into four different
133 * locations when doing simple scalar multiplies against the base point,
134 * and then another four locations using the second 16 elements.
135 */
136 static const felem gmul[2][16][3] = {
137 {{{0, 0, 0, 0},
138 {0, 0, 0, 0},
139 {0, 0, 0, 0}},
140 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
141 {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
142 {1, 0, 0, 0}},
143 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
144 {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
145 {1, 0, 0, 0}},
146 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
147 {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
148 {1, 0, 0, 0}},
149 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
150 {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
151 {1, 0, 0, 0}},
152 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
153 {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
154 {1, 0, 0, 0}},
155 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
156 {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
157 {1, 0, 0, 0}},
158 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
159 {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
160 {1, 0, 0, 0}},
161 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
162 {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
163 {1, 0, 0, 0}},
164 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
165 {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
166 {1, 0, 0, 0}},
167 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
168 {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
169 {1, 0, 0, 0}},
170 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
171 {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
172 {1, 0, 0, 0}},
173 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
174 {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
175 {1, 0, 0, 0}},
176 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
177 {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
178 {1, 0, 0, 0}},
179 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
180 {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
181 {1, 0, 0, 0}},
182 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
183 {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
184 {1, 0, 0, 0}}},
185 {{{0, 0, 0, 0},
186 {0, 0, 0, 0},
187 {0, 0, 0, 0}},
188 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
189 {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
190 {1, 0, 0, 0}},
191 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
192 {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
193 {1, 0, 0, 0}},
194 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
195 {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
196 {1, 0, 0, 0}},
197 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
198 {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
199 {1, 0, 0, 0}},
200 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
201 {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
202 {1, 0, 0, 0}},
203 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
204 {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
205 {1, 0, 0, 0}},
206 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
207 {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
208 {1, 0, 0, 0}},
209 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
210 {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
211 {1, 0, 0, 0}},
212 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
213 {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
214 {1, 0, 0, 0}},
215 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
216 {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
217 {1, 0, 0, 0}},
218 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
219 {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
220 {1, 0, 0, 0}},
221 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
222 {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
223 {1, 0, 0, 0}},
224 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
225 {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
226 {1, 0, 0, 0}},
227 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
228 {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
229 {1, 0, 0, 0}},
230 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
231 {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
232 {1, 0, 0, 0}}}
233 };
234
235 /* Precomputation for the group generator. */
236 struct nistp224_pre_comp_st {
237 felem g_pre_comp[2][16][3];
238 CRYPTO_REF_COUNT references;
239 CRYPTO_RWLOCK *lock;
240 };
241
242 const EC_METHOD *EC_GFp_nistp224_method(void)
243 {
244 static const EC_METHOD ret = {
245 EC_FLAGS_DEFAULT_OCT,
246 NID_X9_62_prime_field,
247 ec_GFp_nistp224_group_init,
248 ec_GFp_simple_group_finish,
249 ec_GFp_simple_group_clear_finish,
250 ec_GFp_nist_group_copy,
251 ec_GFp_nistp224_group_set_curve,
252 ec_GFp_simple_group_get_curve,
253 ec_GFp_simple_group_get_degree,
254 ec_group_simple_order_bits,
255 ec_GFp_simple_group_check_discriminant,
256 ec_GFp_simple_point_init,
257 ec_GFp_simple_point_finish,
258 ec_GFp_simple_point_clear_finish,
259 ec_GFp_simple_point_copy,
260 ec_GFp_simple_point_set_to_infinity,
261 ec_GFp_simple_set_Jprojective_coordinates_GFp,
262 ec_GFp_simple_get_Jprojective_coordinates_GFp,
263 ec_GFp_simple_point_set_affine_coordinates,
264 ec_GFp_nistp224_point_get_affine_coordinates,
265 0 /* point_set_compressed_coordinates */ ,
266 0 /* point2oct */ ,
267 0 /* oct2point */ ,
268 ec_GFp_simple_add,
269 ec_GFp_simple_dbl,
270 ec_GFp_simple_invert,
271 ec_GFp_simple_is_at_infinity,
272 ec_GFp_simple_is_on_curve,
273 ec_GFp_simple_cmp,
274 ec_GFp_simple_make_affine,
275 ec_GFp_simple_points_make_affine,
276 ec_GFp_nistp224_points_mul,
277 ec_GFp_nistp224_precompute_mult,
278 ec_GFp_nistp224_have_precompute_mult,
279 ec_GFp_nist_field_mul,
280 ec_GFp_nist_field_sqr,
281 0 /* field_div */ ,
282 ec_GFp_simple_field_inv,
283 0 /* field_encode */ ,
284 0 /* field_decode */ ,
285 0, /* field_set_to_one */
286 ec_key_simple_priv2oct,
287 ec_key_simple_oct2priv,
288 0, /* set private */
289 ec_key_simple_generate_key,
290 ec_key_simple_check_key,
291 ec_key_simple_generate_public_key,
292 0, /* keycopy */
293 0, /* keyfinish */
294 ecdh_simple_compute_key,
295 ecdsa_simple_sign_setup,
296 ecdsa_simple_sign_sig,
297 ecdsa_simple_verify_sig,
298 0, /* field_inverse_mod_ord */
299 0, /* blind_coordinates */
300 0, /* ladder_pre */
301 0, /* ladder_step */
302 0 /* ladder_post */
303 };
304
305 return &ret;
306 }
307
308 /*
309 * Helper functions to convert field elements to/from internal representation
310 */
311 static void bin28_to_felem(felem out, const u8 in[28])
312 {
313 out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
314 out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff;
315 out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff;
316 out[3] = (*((const uint64_t *)(in+20))) >> 8;
317 }
318
319 static void felem_to_bin28(u8 out[28], const felem in)
320 {
321 unsigned i;
322 for (i = 0; i < 7; ++i) {
323 out[i] = in[0] >> (8 * i);
324 out[i + 7] = in[1] >> (8 * i);
325 out[i + 14] = in[2] >> (8 * i);
326 out[i + 21] = in[3] >> (8 * i);
327 }
328 }
329
330 /* From OpenSSL BIGNUM to internal representation */
331 static int BN_to_felem(felem out, const BIGNUM *bn)
332 {
333 felem_bytearray b_out;
334 int num_bytes;
335
336 if (BN_is_negative(bn)) {
337 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
338 return 0;
339 }
340 num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341 if (num_bytes < 0) {
342 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
343 return 0;
344 }
345 bin28_to_felem(out, b_out);
346 return 1;
347 }
348
349 /* From internal representation to OpenSSL BIGNUM */
350 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351 {
352 felem_bytearray b_out;
353 felem_to_bin28(b_out, in);
354 return BN_lebin2bn(b_out, sizeof(b_out), out);
355 }
356
357 /******************************************************************************/
358 /*-
359 * FIELD OPERATIONS
360 *
361 * Field operations, using the internal representation of field elements.
362 * NB! These operations are specific to our point multiplication and cannot be
363 * expected to be correct in general - e.g., multiplication with a large scalar
364 * will cause an overflow.
365 *
366 */
367
368 static void felem_one(felem out)
369 {
370 out[0] = 1;
371 out[1] = 0;
372 out[2] = 0;
373 out[3] = 0;
374 }
375
376 static void felem_assign(felem out, const felem in)
377 {
378 out[0] = in[0];
379 out[1] = in[1];
380 out[2] = in[2];
381 out[3] = in[3];
382 }
383
384 /* Sum two field elements: out += in */
385 static void felem_sum(felem out, const felem in)
386 {
387 out[0] += in[0];
388 out[1] += in[1];
389 out[2] += in[2];
390 out[3] += in[3];
391 }
392
393 /* Subtract field elements: out -= in */
394 /* Assumes in[i] < 2^57 */
395 static void felem_diff(felem out, const felem in)
396 {
397 static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398 static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399 static const limb two58m42m2 = (((limb) 1) << 58) -
400 (((limb) 1) << 42) - (((limb) 1) << 2);
401
402 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403 out[0] += two58p2;
404 out[1] += two58m42m2;
405 out[2] += two58m2;
406 out[3] += two58m2;
407
408 out[0] -= in[0];
409 out[1] -= in[1];
410 out[2] -= in[2];
411 out[3] -= in[3];
412 }
413
414 /* Subtract in unreduced 128-bit mode: out -= in */
415 /* Assumes in[i] < 2^119 */
416 static void widefelem_diff(widefelem out, const widefelem in)
417 {
418 static const widelimb two120 = ((widelimb) 1) << 120;
419 static const widelimb two120m64 = (((widelimb) 1) << 120) -
420 (((widelimb) 1) << 64);
421 static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422 (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423
424 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425 out[0] += two120;
426 out[1] += two120m64;
427 out[2] += two120m64;
428 out[3] += two120;
429 out[4] += two120m104m64;
430 out[5] += two120m64;
431 out[6] += two120m64;
432
433 out[0] -= in[0];
434 out[1] -= in[1];
435 out[2] -= in[2];
436 out[3] -= in[3];
437 out[4] -= in[4];
438 out[5] -= in[5];
439 out[6] -= in[6];
440 }
441
442 /* Subtract in mixed mode: out128 -= in64 */
443 /* in[i] < 2^63 */
444 static void felem_diff_128_64(widefelem out, const felem in)
445 {
446 static const widelimb two64p8 = (((widelimb) 1) << 64) +
447 (((widelimb) 1) << 8);
448 static const widelimb two64m8 = (((widelimb) 1) << 64) -
449 (((widelimb) 1) << 8);
450 static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451 (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452
453 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454 out[0] += two64p8;
455 out[1] += two64m48m8;
456 out[2] += two64m8;
457 out[3] += two64m8;
458
459 out[0] -= in[0];
460 out[1] -= in[1];
461 out[2] -= in[2];
462 out[3] -= in[3];
463 }
464
465 /*
466 * Multiply a field element by a scalar: out = out * scalar The scalars we
467 * actually use are small, so results fit without overflow
468 */
469 static void felem_scalar(felem out, const limb scalar)
470 {
471 out[0] *= scalar;
472 out[1] *= scalar;
473 out[2] *= scalar;
474 out[3] *= scalar;
475 }
476
477 /*
478 * Multiply an unreduced field element by a scalar: out = out * scalar The
479 * scalars we actually use are small, so results fit without overflow
480 */
481 static void widefelem_scalar(widefelem out, const widelimb scalar)
482 {
483 out[0] *= scalar;
484 out[1] *= scalar;
485 out[2] *= scalar;
486 out[3] *= scalar;
487 out[4] *= scalar;
488 out[5] *= scalar;
489 out[6] *= scalar;
490 }
491
492 /* Square a field element: out = in^2 */
493 static void felem_square(widefelem out, const felem in)
494 {
495 limb tmp0, tmp1, tmp2;
496 tmp0 = 2 * in[0];
497 tmp1 = 2 * in[1];
498 tmp2 = 2 * in[2];
499 out[0] = ((widelimb) in[0]) * in[0];
500 out[1] = ((widelimb) in[0]) * tmp1;
501 out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502 out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503 out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504 out[5] = ((widelimb) in[3]) * tmp2;
505 out[6] = ((widelimb) in[3]) * in[3];
506 }
507
508 /* Multiply two field elements: out = in1 * in2 */
509 static void felem_mul(widefelem out, const felem in1, const felem in2)
510 {
511 out[0] = ((widelimb) in1[0]) * in2[0];
512 out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513 out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514 ((widelimb) in1[2]) * in2[0];
515 out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516 ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517 out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518 ((widelimb) in1[3]) * in2[1];
519 out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520 out[6] = ((widelimb) in1[3]) * in2[3];
521 }
522
523 /*-
524 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525 * Requires in[i] < 2^126,
526 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527 static void felem_reduce(felem out, const widefelem in)
528 {
529 static const widelimb two127p15 = (((widelimb) 1) << 127) +
530 (((widelimb) 1) << 15);
531 static const widelimb two127m71 = (((widelimb) 1) << 127) -
532 (((widelimb) 1) << 71);
533 static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534 (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535 widelimb output[5];
536
537 /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538 output[0] = in[0] + two127p15;
539 output[1] = in[1] + two127m71m55;
540 output[2] = in[2] + two127m71;
541 output[3] = in[3];
542 output[4] = in[4];
543
544 /* Eliminate in[4], in[5], in[6] */
545 output[4] += in[6] >> 16;
546 output[3] += (in[6] & 0xffff) << 40;
547 output[2] -= in[6];
548
549 output[3] += in[5] >> 16;
550 output[2] += (in[5] & 0xffff) << 40;
551 output[1] -= in[5];
552
553 output[2] += output[4] >> 16;
554 output[1] += (output[4] & 0xffff) << 40;
555 output[0] -= output[4];
556
557 /* Carry 2 -> 3 -> 4 */
558 output[3] += output[2] >> 56;
559 output[2] &= 0x00ffffffffffffff;
560
561 output[4] = output[3] >> 56;
562 output[3] &= 0x00ffffffffffffff;
563
564 /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565
566 /* Eliminate output[4] */
567 output[2] += output[4] >> 16;
568 /* output[2] < 2^56 + 2^56 = 2^57 */
569 output[1] += (output[4] & 0xffff) << 40;
570 output[0] -= output[4];
571
572 /* Carry 0 -> 1 -> 2 -> 3 */
573 output[1] += output[0] >> 56;
574 out[0] = output[0] & 0x00ffffffffffffff;
575
576 output[2] += output[1] >> 56;
577 /* output[2] < 2^57 + 2^72 */
578 out[1] = output[1] & 0x00ffffffffffffff;
579 output[3] += output[2] >> 56;
580 /* output[3] <= 2^56 + 2^16 */
581 out[2] = output[2] & 0x00ffffffffffffff;
582
583 /*-
584 * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585 * out[3] <= 2^56 + 2^16 (due to final carry),
586 * so out < 2*p
587 */
588 out[3] = output[3];
589 }
590
591 static void felem_square_reduce(felem out, const felem in)
592 {
593 widefelem tmp;
594 felem_square(tmp, in);
595 felem_reduce(out, tmp);
596 }
597
598 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
599 {
600 widefelem tmp;
601 felem_mul(tmp, in1, in2);
602 felem_reduce(out, tmp);
603 }
604
605 /*
606 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607 * call felem_reduce first)
608 */
609 static void felem_contract(felem out, const felem in)
610 {
611 static const int64_t two56 = ((limb) 1) << 56;
612 /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613 /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614 int64_t tmp[4], a;
615 tmp[0] = in[0];
616 tmp[1] = in[1];
617 tmp[2] = in[2];
618 tmp[3] = in[3];
619 /* Case 1: a = 1 iff in >= 2^224 */
620 a = (in[3] >> 56);
621 tmp[0] -= a;
622 tmp[1] += a << 40;
623 tmp[3] &= 0x00ffffffffffffff;
624 /*
625 * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626 * and the lower part is non-zero
627 */
628 a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629 (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630 a &= 0x00ffffffffffffff;
631 /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632 a = (a - 1) >> 63;
633 /* subtract 2^224 - 2^96 + 1 if a is all-one */
634 tmp[3] &= a ^ 0xffffffffffffffff;
635 tmp[2] &= a ^ 0xffffffffffffffff;
636 tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637 tmp[0] -= 1 & a;
638
639 /*
640 * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641 * non-zero, so we only need one step
642 */
643 a = tmp[0] >> 63;
644 tmp[0] += two56 & a;
645 tmp[1] -= 1 & a;
646
647 /* carry 1 -> 2 -> 3 */
648 tmp[2] += tmp[1] >> 56;
649 tmp[1] &= 0x00ffffffffffffff;
650
651 tmp[3] += tmp[2] >> 56;
652 tmp[2] &= 0x00ffffffffffffff;
653
654 /* Now 0 <= out < p */
655 out[0] = tmp[0];
656 out[1] = tmp[1];
657 out[2] = tmp[2];
658 out[3] = tmp[3];
659 }
660
661 /*
662 * Get negative value: out = -in
663 * Requires in[i] < 2^63,
664 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665 */
666 static void felem_neg(felem out, const felem in)
667 {
668 widefelem tmp;
669
670 memset(tmp, 0, sizeof(tmp));
671 felem_diff_128_64(tmp, in);
672 felem_reduce(out, tmp);
673 }
674
675 /*
676 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677 * elements are reduced to in < 2^225, so we only need to check three cases:
678 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679 */
680 static limb felem_is_zero(const felem in)
681 {
682 limb zero, two224m96p1, two225m97p2;
683
684 zero = in[0] | in[1] | in[2] | in[3];
685 zero = (((int64_t) (zero) - 1) >> 63) & 1;
686 two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688 two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689 two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691 two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692 return (zero | two224m96p1 | two225m97p2);
693 }
694
695 static int felem_is_zero_int(const void *in)
696 {
697 return (int)(felem_is_zero(in) & ((limb) 1));
698 }
699
700 /* Invert a field element */
701 /* Computation chain copied from djb's code */
702 static void felem_inv(felem out, const felem in)
703 {
704 felem ftmp, ftmp2, ftmp3, ftmp4;
705 widefelem tmp;
706 unsigned i;
707
708 felem_square(tmp, in);
709 felem_reduce(ftmp, tmp); /* 2 */
710 felem_mul(tmp, in, ftmp);
711 felem_reduce(ftmp, tmp); /* 2^2 - 1 */
712 felem_square(tmp, ftmp);
713 felem_reduce(ftmp, tmp); /* 2^3 - 2 */
714 felem_mul(tmp, in, ftmp);
715 felem_reduce(ftmp, tmp); /* 2^3 - 1 */
716 felem_square(tmp, ftmp);
717 felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
718 felem_square(tmp, ftmp2);
719 felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
720 felem_square(tmp, ftmp2);
721 felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
722 felem_mul(tmp, ftmp2, ftmp);
723 felem_reduce(ftmp, tmp); /* 2^6 - 1 */
724 felem_square(tmp, ftmp);
725 felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
726 for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
727 felem_square(tmp, ftmp2);
728 felem_reduce(ftmp2, tmp);
729 }
730 felem_mul(tmp, ftmp2, ftmp);
731 felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
732 felem_square(tmp, ftmp2);
733 felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
734 for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */
735 felem_square(tmp, ftmp3);
736 felem_reduce(ftmp3, tmp);
737 }
738 felem_mul(tmp, ftmp3, ftmp2);
739 felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
740 felem_square(tmp, ftmp2);
741 felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
742 for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */
743 felem_square(tmp, ftmp3);
744 felem_reduce(ftmp3, tmp);
745 }
746 felem_mul(tmp, ftmp3, ftmp2);
747 felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
748 felem_square(tmp, ftmp3);
749 felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
750 for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */
751 felem_square(tmp, ftmp4);
752 felem_reduce(ftmp4, tmp);
753 }
754 felem_mul(tmp, ftmp3, ftmp4);
755 felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
756 felem_square(tmp, ftmp3);
757 felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
758 for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */
759 felem_square(tmp, ftmp4);
760 felem_reduce(ftmp4, tmp);
761 }
762 felem_mul(tmp, ftmp2, ftmp4);
763 felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
764 for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
765 felem_square(tmp, ftmp2);
766 felem_reduce(ftmp2, tmp);
767 }
768 felem_mul(tmp, ftmp2, ftmp);
769 felem_reduce(ftmp, tmp); /* 2^126 - 1 */
770 felem_square(tmp, ftmp);
771 felem_reduce(ftmp, tmp); /* 2^127 - 2 */
772 felem_mul(tmp, ftmp, in);
773 felem_reduce(ftmp, tmp); /* 2^127 - 1 */
774 for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */
775 felem_square(tmp, ftmp);
776 felem_reduce(ftmp, tmp);
777 }
778 felem_mul(tmp, ftmp, ftmp3);
779 felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
780 }
781
782 /*
783 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784 * out to itself.
785 */
786 static void copy_conditional(felem out, const felem in, limb icopy)
787 {
788 unsigned i;
789 /*
790 * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791 */
792 const limb copy = -icopy;
793 for (i = 0; i < 4; ++i) {
794 const limb tmp = copy & (in[i] ^ out[i]);
795 out[i] ^= tmp;
796 }
797 }
798
799 /******************************************************************************/
800 /*-
801 * ELLIPTIC CURVE POINT OPERATIONS
802 *
803 * Points are represented in Jacobian projective coordinates:
804 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805 * or to the point at infinity if Z == 0.
806 *
807 */
808
809 /*-
810 * Double an elliptic curve point:
811 * (X', Y', Z') = 2 * (X, Y, Z), where
812 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816 * while x_out == y_in is not (maybe this works, but it's not tested).
817 */
818 static void
819 point_double(felem x_out, felem y_out, felem z_out,
820 const felem x_in, const felem y_in, const felem z_in)
821 {
822 widefelem tmp, tmp2;
823 felem delta, gamma, beta, alpha, ftmp, ftmp2;
824
825 felem_assign(ftmp, x_in);
826 felem_assign(ftmp2, x_in);
827
828 /* delta = z^2 */
829 felem_square(tmp, z_in);
830 felem_reduce(delta, tmp);
831
832 /* gamma = y^2 */
833 felem_square(tmp, y_in);
834 felem_reduce(gamma, tmp);
835
836 /* beta = x*gamma */
837 felem_mul(tmp, x_in, gamma);
838 felem_reduce(beta, tmp);
839
840 /* alpha = 3*(x-delta)*(x+delta) */
841 felem_diff(ftmp, delta);
842 /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843 felem_sum(ftmp2, delta);
844 /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845 felem_scalar(ftmp2, 3);
846 /* ftmp2[i] < 3 * 2^58 < 2^60 */
847 felem_mul(tmp, ftmp, ftmp2);
848 /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849 felem_reduce(alpha, tmp);
850
851 /* x' = alpha^2 - 8*beta */
852 felem_square(tmp, alpha);
853 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854 felem_assign(ftmp, beta);
855 felem_scalar(ftmp, 8);
856 /* ftmp[i] < 8 * 2^57 = 2^60 */
857 felem_diff_128_64(tmp, ftmp);
858 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859 felem_reduce(x_out, tmp);
860
861 /* z' = (y + z)^2 - gamma - delta */
862 felem_sum(delta, gamma);
863 /* delta[i] < 2^57 + 2^57 = 2^58 */
864 felem_assign(ftmp, y_in);
865 felem_sum(ftmp, z_in);
866 /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867 felem_square(tmp, ftmp);
868 /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869 felem_diff_128_64(tmp, delta);
870 /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871 felem_reduce(z_out, tmp);
872
873 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874 felem_scalar(beta, 4);
875 /* beta[i] < 4 * 2^57 = 2^59 */
876 felem_diff(beta, x_out);
877 /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878 felem_mul(tmp, alpha, beta);
879 /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880 felem_square(tmp2, gamma);
881 /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882 widefelem_scalar(tmp2, 8);
883 /* tmp2[i] < 8 * 2^116 = 2^119 */
884 widefelem_diff(tmp, tmp2);
885 /* tmp[i] < 2^119 + 2^120 < 2^121 */
886 felem_reduce(y_out, tmp);
887 }
888
889 /*-
890 * Add two elliptic curve points:
891 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895 * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897 *
898 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899 */
900
901 /*
902 * This function is not entirely constant-time: it includes a branch for
903 * checking whether the two input points are equal, (while not equal to the
904 * point at infinity). This case never happens during single point
905 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906 */
907 static void point_add(felem x3, felem y3, felem z3,
908 const felem x1, const felem y1, const felem z1,
909 const int mixed, const felem x2, const felem y2,
910 const felem z2)
911 {
912 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913 widefelem tmp, tmp2;
914 limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915 limb points_equal;
916
917 if (!mixed) {
918 /* ftmp2 = z2^2 */
919 felem_square(tmp, z2);
920 felem_reduce(ftmp2, tmp);
921
922 /* ftmp4 = z2^3 */
923 felem_mul(tmp, ftmp2, z2);
924 felem_reduce(ftmp4, tmp);
925
926 /* ftmp4 = z2^3*y1 */
927 felem_mul(tmp2, ftmp4, y1);
928 felem_reduce(ftmp4, tmp2);
929
930 /* ftmp2 = z2^2*x1 */
931 felem_mul(tmp2, ftmp2, x1);
932 felem_reduce(ftmp2, tmp2);
933 } else {
934 /*
935 * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936 */
937
938 /* ftmp4 = z2^3*y1 */
939 felem_assign(ftmp4, y1);
940
941 /* ftmp2 = z2^2*x1 */
942 felem_assign(ftmp2, x1);
943 }
944
945 /* ftmp = z1^2 */
946 felem_square(tmp, z1);
947 felem_reduce(ftmp, tmp);
948
949 /* ftmp3 = z1^3 */
950 felem_mul(tmp, ftmp, z1);
951 felem_reduce(ftmp3, tmp);
952
953 /* tmp = z1^3*y2 */
954 felem_mul(tmp, ftmp3, y2);
955 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956
957 /* ftmp3 = z1^3*y2 - z2^3*y1 */
958 felem_diff_128_64(tmp, ftmp4);
959 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960 felem_reduce(ftmp3, tmp);
961
962 /* tmp = z1^2*x2 */
963 felem_mul(tmp, ftmp, x2);
964 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965
966 /* ftmp = z1^2*x2 - z2^2*x1 */
967 felem_diff_128_64(tmp, ftmp2);
968 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969 felem_reduce(ftmp, tmp);
970
971 /*
972 * The formulae are incorrect if the points are equal, in affine coordinates
973 * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974 * happens.
975 *
976 * We use bitwise operations to avoid potential side-channels introduced by
977 * the short-circuiting behaviour of boolean operators.
978 */
979 x_equal = felem_is_zero(ftmp);
980 y_equal = felem_is_zero(ftmp3);
981 /*
982 * The special case of either point being the point at infinity (z1 and/or
983 * z2 are zero), is handled separately later on in this function, so we
984 * avoid jumping to point_double here in those special cases.
985 */
986 z1_is_zero = felem_is_zero(z1);
987 z2_is_zero = felem_is_zero(z2);
988
989 /*
990 * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991 * specific implementation `felem_is_zero()` returns truth as `0x1`
992 * (rather than `0xff..ff`).
993 *
994 * This implies that `~true` in this implementation becomes
995 * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996 * the if expression, we mask out only the last bit in the next
997 * line.
998 */
999 points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000
1001 if (points_equal) {
1002 /*
1003 * This is obviously not constant-time but, as mentioned before, this
1004 * case never happens during single point multiplication, so there is no
1005 * timing leak for ECDH or ECDSA signing.
1006 */
1007 point_double(x3, y3, z3, x1, y1, z1);
1008 return;
1009 }
1010
1011 /* ftmp5 = z1*z2 */
1012 if (!mixed) {
1013 felem_mul(tmp, z1, z2);
1014 felem_reduce(ftmp5, tmp);
1015 } else {
1016 /* special case z2 = 0 is handled later */
1017 felem_assign(ftmp5, z1);
1018 }
1019
1020 /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021 felem_mul(tmp, ftmp, ftmp5);
1022 felem_reduce(z_out, tmp);
1023
1024 /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025 felem_assign(ftmp5, ftmp);
1026 felem_square(tmp, ftmp);
1027 felem_reduce(ftmp, tmp);
1028
1029 /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030 felem_mul(tmp, ftmp, ftmp5);
1031 felem_reduce(ftmp5, tmp);
1032
1033 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034 felem_mul(tmp, ftmp2, ftmp);
1035 felem_reduce(ftmp2, tmp);
1036
1037 /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038 felem_mul(tmp, ftmp4, ftmp5);
1039 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040
1041 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042 felem_square(tmp2, ftmp3);
1043 /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044
1045 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046 felem_diff_128_64(tmp2, ftmp5);
1047 /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048
1049 /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050 felem_assign(ftmp5, ftmp2);
1051 felem_scalar(ftmp5, 2);
1052 /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053
1054 /*-
1055 * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056 * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057 */
1058 felem_diff_128_64(tmp2, ftmp5);
1059 /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060 felem_reduce(x_out, tmp2);
1061
1062 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063 felem_diff(ftmp2, x_out);
1064 /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065
1066 /*
1067 * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068 */
1069 felem_mul(tmp2, ftmp3, ftmp2);
1070 /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071
1072 /*-
1073 * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074 * z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075 */
1076 widefelem_diff(tmp2, tmp);
1077 /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078 felem_reduce(y_out, tmp2);
1079
1080 /*
1081 * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082 * the point at infinity, so we need to check for this separately
1083 */
1084
1085 /*
1086 * if point 1 is at infinity, copy point 2 to output, and vice versa
1087 */
1088 copy_conditional(x_out, x2, z1_is_zero);
1089 copy_conditional(x_out, x1, z2_is_zero);
1090 copy_conditional(y_out, y2, z1_is_zero);
1091 copy_conditional(y_out, y1, z2_is_zero);
1092 copy_conditional(z_out, z2, z1_is_zero);
1093 copy_conditional(z_out, z1, z2_is_zero);
1094 felem_assign(x3, x_out);
1095 felem_assign(y3, y_out);
1096 felem_assign(z3, z_out);
1097 }
1098
1099 /*
1100 * select_point selects the |idx|th point from a precomputation table and
1101 * copies it to out.
1102 * The pre_comp array argument should be size of |size| argument
1103 */
1104 static void select_point(const u64 idx, unsigned int size,
1105 const felem pre_comp[][3], felem out[3])
1106 {
1107 unsigned i, j;
1108 limb *outlimbs = &out[0][0];
1109
1110 memset(out, 0, sizeof(*out) * 3);
1111 for (i = 0; i < size; i++) {
1112 const limb *inlimbs = &pre_comp[i][0][0];
1113 u64 mask = i ^ idx;
1114 mask |= mask >> 4;
1115 mask |= mask >> 2;
1116 mask |= mask >> 1;
1117 mask &= 1;
1118 mask--;
1119 for (j = 0; j < 4 * 3; j++)
1120 outlimbs[j] |= inlimbs[j] & mask;
1121 }
1122 }
1123
1124 /* get_bit returns the |i|th bit in |in| */
1125 static char get_bit(const felem_bytearray in, unsigned i)
1126 {
1127 if (i >= 224)
1128 return 0;
1129 return (in[i >> 3] >> (i & 7)) & 1;
1130 }
1131
1132 /*
1133 * Interleaved point multiplication using precomputed point multiples: The
1134 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136 * generator, using certain (large) precomputed multiples in g_pre_comp.
1137 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138 */
1139 static void batch_mul(felem x_out, felem y_out, felem z_out,
1140 const felem_bytearray scalars[],
1141 const unsigned num_points, const u8 *g_scalar,
1142 const int mixed, const felem pre_comp[][17][3],
1143 const felem g_pre_comp[2][16][3])
1144 {
1145 int i, skip;
1146 unsigned num;
1147 unsigned gen_mul = (g_scalar != NULL);
1148 felem nq[3], tmp[4];
1149 u64 bits;
1150 u8 sign, digit;
1151
1152 /* set nq to the point at infinity */
1153 memset(nq, 0, sizeof(nq));
1154
1155 /*
1156 * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157 * of the generator (two in each of the last 28 rounds) and additions of
1158 * other points multiples (every 5th round).
1159 */
1160 skip = 1; /* save two point operations in the first
1161 * round */
1162 for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163 /* double */
1164 if (!skip)
1165 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166
1167 /* add multiples of the generator */
1168 if (gen_mul && (i <= 27)) {
1169 /* first, look 28 bits upwards */
1170 bits = get_bit(g_scalar, i + 196) << 3;
1171 bits |= get_bit(g_scalar, i + 140) << 2;
1172 bits |= get_bit(g_scalar, i + 84) << 1;
1173 bits |= get_bit(g_scalar, i + 28);
1174 /* select the point to add, in constant time */
1175 select_point(bits, 16, g_pre_comp[1], tmp);
1176
1177 if (!skip) {
1178 /* value 1 below is argument for "mixed" */
1179 point_add(nq[0], nq[1], nq[2],
1180 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181 } else {
1182 memcpy(nq, tmp, 3 * sizeof(felem));
1183 skip = 0;
1184 }
1185
1186 /* second, look at the current position */
1187 bits = get_bit(g_scalar, i + 168) << 3;
1188 bits |= get_bit(g_scalar, i + 112) << 2;
1189 bits |= get_bit(g_scalar, i + 56) << 1;
1190 bits |= get_bit(g_scalar, i);
1191 /* select the point to add, in constant time */
1192 select_point(bits, 16, g_pre_comp[0], tmp);
1193 point_add(nq[0], nq[1], nq[2],
1194 nq[0], nq[1], nq[2],
1195 1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196 }
1197
1198 /* do other additions every 5 doublings */
1199 if (num_points && (i % 5 == 0)) {
1200 /* loop over all scalars */
1201 for (num = 0; num < num_points; ++num) {
1202 bits = get_bit(scalars[num], i + 4) << 5;
1203 bits |= get_bit(scalars[num], i + 3) << 4;
1204 bits |= get_bit(scalars[num], i + 2) << 3;
1205 bits |= get_bit(scalars[num], i + 1) << 2;
1206 bits |= get_bit(scalars[num], i) << 1;
1207 bits |= get_bit(scalars[num], i - 1);
1208 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209
1210 /* select the point to add or subtract */
1211 select_point(digit, 17, pre_comp[num], tmp);
1212 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213 * point */
1214 copy_conditional(tmp[1], tmp[3], sign);
1215
1216 if (!skip) {
1217 point_add(nq[0], nq[1], nq[2],
1218 nq[0], nq[1], nq[2],
1219 mixed, tmp[0], tmp[1], tmp[2]);
1220 } else {
1221 memcpy(nq, tmp, 3 * sizeof(felem));
1222 skip = 0;
1223 }
1224 }
1225 }
1226 }
1227 felem_assign(x_out, nq[0]);
1228 felem_assign(y_out, nq[1]);
1229 felem_assign(z_out, nq[2]);
1230 }
1231
1232 /******************************************************************************/
1233 /*
1234 * FUNCTIONS TO MANAGE PRECOMPUTATION
1235 */
1236
1237 static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238 {
1239 NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240
1241 if (!ret) {
1242 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1243 return ret;
1244 }
1245
1246 ret->references = 1;
1247
1248 ret->lock = CRYPTO_THREAD_lock_new();
1249 if (ret->lock == NULL) {
1250 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1251 OPENSSL_free(ret);
1252 return NULL;
1253 }
1254 return ret;
1255 }
1256
1257 NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258 {
1259 int i;
1260 if (p != NULL)
1261 CRYPTO_UP_REF(&p->references, &i, p->lock);
1262 return p;
1263 }
1264
1265 void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266 {
1267 int i;
1268
1269 if (p == NULL)
1270 return;
1271
1272 CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273 REF_PRINT_COUNT("EC_nistp224", x);
1274 if (i > 0)
1275 return;
1276 REF_ASSERT_ISNT(i < 0);
1277
1278 CRYPTO_THREAD_lock_free(p->lock);
1279 OPENSSL_free(p);
1280 }
1281
1282 /******************************************************************************/
1283 /*
1284 * OPENSSL EC_METHOD FUNCTIONS
1285 */
1286
1287 int ec_GFp_nistp224_group_init(EC_GROUP *group)
1288 {
1289 int ret;
1290 ret = ec_GFp_simple_group_init(group);
1291 group->a_is_minus3 = 1;
1292 return ret;
1293 }
1294
1295 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296 const BIGNUM *a, const BIGNUM *b,
1297 BN_CTX *ctx)
1298 {
1299 int ret = 0;
1300 BIGNUM *curve_p, *curve_a, *curve_b;
1301 #ifndef FIPS_MODE
1302 BN_CTX *new_ctx = NULL;
1303
1304 if (ctx == NULL)
1305 ctx = new_ctx = BN_CTX_new();
1306 #endif
1307 if (ctx == NULL)
1308 return 0;
1309
1310 BN_CTX_start(ctx);
1311 curve_p = BN_CTX_get(ctx);
1312 curve_a = BN_CTX_get(ctx);
1313 curve_b = BN_CTX_get(ctx);
1314 if (curve_b == NULL)
1315 goto err;
1316 BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317 BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318 BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320 ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1321 EC_R_WRONG_CURVE_PARAMETERS);
1322 goto err;
1323 }
1324 group->field_mod_func = BN_nist_mod_224;
1325 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1326 err:
1327 BN_CTX_end(ctx);
1328 #ifndef FIPS_MODE
1329 BN_CTX_free(new_ctx);
1330 #endif
1331 return ret;
1332 }
1333
1334 /*
1335 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1336 * (X/Z^2, Y/Z^3)
1337 */
1338 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1339 const EC_POINT *point,
1340 BIGNUM *x, BIGNUM *y,
1341 BN_CTX *ctx)
1342 {
1343 felem z1, z2, x_in, y_in, x_out, y_out;
1344 widefelem tmp;
1345
1346 if (EC_POINT_is_at_infinity(group, point)) {
1347 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1348 EC_R_POINT_AT_INFINITY);
1349 return 0;
1350 }
1351 if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1352 (!BN_to_felem(z1, point->Z)))
1353 return 0;
1354 felem_inv(z2, z1);
1355 felem_square(tmp, z2);
1356 felem_reduce(z1, tmp);
1357 felem_mul(tmp, x_in, z1);
1358 felem_reduce(x_in, tmp);
1359 felem_contract(x_out, x_in);
1360 if (x != NULL) {
1361 if (!felem_to_BN(x, x_out)) {
1362 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1363 ERR_R_BN_LIB);
1364 return 0;
1365 }
1366 }
1367 felem_mul(tmp, z1, z2);
1368 felem_reduce(z1, tmp);
1369 felem_mul(tmp, y_in, z1);
1370 felem_reduce(y_in, tmp);
1371 felem_contract(y_out, y_in);
1372 if (y != NULL) {
1373 if (!felem_to_BN(y, y_out)) {
1374 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1375 ERR_R_BN_LIB);
1376 return 0;
1377 }
1378 }
1379 return 1;
1380 }
1381
1382 static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1383 felem tmp_felems[ /* num+1 */ ])
1384 {
1385 /*
1386 * Runs in constant time, unless an input is the point at infinity (which
1387 * normally shouldn't happen).
1388 */
1389 ec_GFp_nistp_points_make_affine_internal(num,
1390 points,
1391 sizeof(felem),
1392 tmp_felems,
1393 (void (*)(void *))felem_one,
1394 felem_is_zero_int,
1395 (void (*)(void *, const void *))
1396 felem_assign,
1397 (void (*)(void *, const void *))
1398 felem_square_reduce, (void (*)
1399 (void *,
1400 const void
1401 *,
1402 const void
1403 *))
1404 felem_mul_reduce,
1405 (void (*)(void *, const void *))
1406 felem_inv,
1407 (void (*)(void *, const void *))
1408 felem_contract);
1409 }
1410
1411 /*
1412 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1413 * values Result is stored in r (r can equal one of the inputs).
1414 */
1415 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1416 const BIGNUM *scalar, size_t num,
1417 const EC_POINT *points[],
1418 const BIGNUM *scalars[], BN_CTX *ctx)
1419 {
1420 int ret = 0;
1421 int j;
1422 unsigned i;
1423 int mixed = 0;
1424 BIGNUM *x, *y, *z, *tmp_scalar;
1425 felem_bytearray g_secret;
1426 felem_bytearray *secrets = NULL;
1427 felem (*pre_comp)[17][3] = NULL;
1428 felem *tmp_felems = NULL;
1429 int num_bytes;
1430 int have_pre_comp = 0;
1431 size_t num_points = num;
1432 felem x_in, y_in, z_in, x_out, y_out, z_out;
1433 NISTP224_PRE_COMP *pre = NULL;
1434 const felem(*g_pre_comp)[16][3] = NULL;
1435 EC_POINT *generator = NULL;
1436 const EC_POINT *p = NULL;
1437 const BIGNUM *p_scalar = NULL;
1438
1439 BN_CTX_start(ctx);
1440 x = BN_CTX_get(ctx);
1441 y = BN_CTX_get(ctx);
1442 z = BN_CTX_get(ctx);
1443 tmp_scalar = BN_CTX_get(ctx);
1444 if (tmp_scalar == NULL)
1445 goto err;
1446
1447 if (scalar != NULL) {
1448 pre = group->pre_comp.nistp224;
1449 if (pre)
1450 /* we have precomputation, try to use it */
1451 g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1452 else
1453 /* try to use the standard precomputation */
1454 g_pre_comp = &gmul[0];
1455 generator = EC_POINT_new(group);
1456 if (generator == NULL)
1457 goto err;
1458 /* get the generator from precomputation */
1459 if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1460 !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1461 !felem_to_BN(z, g_pre_comp[0][1][2])) {
1462 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1463 goto err;
1464 }
1465 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1466 generator, x, y, z,
1467 ctx))
1468 goto err;
1469 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1470 /* precomputation matches generator */
1471 have_pre_comp = 1;
1472 else
1473 /*
1474 * we don't have valid precomputation: treat the generator as a
1475 * random point
1476 */
1477 num_points = num_points + 1;
1478 }
1479
1480 if (num_points > 0) {
1481 if (num_points >= 3) {
1482 /*
1483 * unless we precompute multiples for just one or two points,
1484 * converting those into affine form is time well spent
1485 */
1486 mixed = 1;
1487 }
1488 secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1489 pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1490 if (mixed)
1491 tmp_felems =
1492 OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1493 if ((secrets == NULL) || (pre_comp == NULL)
1494 || (mixed && (tmp_felems == NULL))) {
1495 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1496 goto err;
1497 }
1498
1499 /*
1500 * we treat NULL scalars as 0, and NULL points as points at infinity,
1501 * i.e., they contribute nothing to the linear combination
1502 */
1503 for (i = 0; i < num_points; ++i) {
1504 if (i == num) {
1505 /* the generator */
1506 p = EC_GROUP_get0_generator(group);
1507 p_scalar = scalar;
1508 } else {
1509 /* the i^th point */
1510 p = points[i];
1511 p_scalar = scalars[i];
1512 }
1513 if ((p_scalar != NULL) && (p != NULL)) {
1514 /* reduce scalar to 0 <= scalar < 2^224 */
1515 if ((BN_num_bits(p_scalar) > 224)
1516 || (BN_is_negative(p_scalar))) {
1517 /*
1518 * this is an unusual input, and we don't guarantee
1519 * constant-timeness
1520 */
1521 if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1522 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1523 goto err;
1524 }
1525 num_bytes = BN_bn2lebinpad(tmp_scalar,
1526 secrets[i], sizeof(secrets[i]));
1527 } else {
1528 num_bytes = BN_bn2lebinpad(p_scalar,
1529 secrets[i], sizeof(secrets[i]));
1530 }
1531 if (num_bytes < 0) {
1532 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1533 goto err;
1534 }
1535 /* precompute multiples */
1536 if ((!BN_to_felem(x_out, p->X)) ||
1537 (!BN_to_felem(y_out, p->Y)) ||
1538 (!BN_to_felem(z_out, p->Z)))
1539 goto err;
1540 felem_assign(pre_comp[i][1][0], x_out);
1541 felem_assign(pre_comp[i][1][1], y_out);
1542 felem_assign(pre_comp[i][1][2], z_out);
1543 for (j = 2; j <= 16; ++j) {
1544 if (j & 1) {
1545 point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1546 pre_comp[i][j][2], pre_comp[i][1][0],
1547 pre_comp[i][1][1], pre_comp[i][1][2], 0,
1548 pre_comp[i][j - 1][0],
1549 pre_comp[i][j - 1][1],
1550 pre_comp[i][j - 1][2]);
1551 } else {
1552 point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1553 pre_comp[i][j][2], pre_comp[i][j / 2][0],
1554 pre_comp[i][j / 2][1],
1555 pre_comp[i][j / 2][2]);
1556 }
1557 }
1558 }
1559 }
1560 if (mixed)
1561 make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1562 }
1563
1564 /* the scalar for the generator */
1565 if ((scalar != NULL) && (have_pre_comp)) {
1566 memset(g_secret, 0, sizeof(g_secret));
1567 /* reduce scalar to 0 <= scalar < 2^224 */
1568 if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1569 /*
1570 * this is an unusual input, and we don't guarantee
1571 * constant-timeness
1572 */
1573 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1574 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1575 goto err;
1576 }
1577 num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1578 } else {
1579 num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1580 }
1581 /* do the multiplication with generator precomputation */
1582 batch_mul(x_out, y_out, z_out,
1583 (const felem_bytearray(*))secrets, num_points,
1584 g_secret,
1585 mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1586 } else {
1587 /* do the multiplication without generator precomputation */
1588 batch_mul(x_out, y_out, z_out,
1589 (const felem_bytearray(*))secrets, num_points,
1590 NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1591 }
1592 /* reduce the output to its unique minimal representation */
1593 felem_contract(x_in, x_out);
1594 felem_contract(y_in, y_out);
1595 felem_contract(z_in, z_out);
1596 if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1597 (!felem_to_BN(z, z_in))) {
1598 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1599 goto err;
1600 }
1601 ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1602
1603 err:
1604 BN_CTX_end(ctx);
1605 EC_POINT_free(generator);
1606 OPENSSL_free(secrets);
1607 OPENSSL_free(pre_comp);
1608 OPENSSL_free(tmp_felems);
1609 return ret;
1610 }
1611
1612 int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1613 {
1614 int ret = 0;
1615 NISTP224_PRE_COMP *pre = NULL;
1616 int i, j;
1617 BIGNUM *x, *y;
1618 EC_POINT *generator = NULL;
1619 felem tmp_felems[32];
1620 #ifndef FIPS_MODE
1621 BN_CTX *new_ctx = NULL;
1622 #endif
1623
1624 /* throw away old precomputation */
1625 EC_pre_comp_free(group);
1626
1627 #ifndef FIPS_MODE
1628 if (ctx == NULL)
1629 ctx = new_ctx = BN_CTX_new();
1630 #endif
1631 if (ctx == NULL)
1632 return 0;
1633
1634 BN_CTX_start(ctx);
1635 x = BN_CTX_get(ctx);
1636 y = BN_CTX_get(ctx);
1637 if (y == NULL)
1638 goto err;
1639 /* get the generator */
1640 if (group->generator == NULL)
1641 goto err;
1642 generator = EC_POINT_new(group);
1643 if (generator == NULL)
1644 goto err;
1645 BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1646 BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1647 if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1648 goto err;
1649 if ((pre = nistp224_pre_comp_new()) == NULL)
1650 goto err;
1651 /*
1652 * if the generator is the standard one, use built-in precomputation
1653 */
1654 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1655 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1656 goto done;
1657 }
1658 if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1659 (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1660 (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1661 goto err;
1662 /*
1663 * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1664 * 2^140*G, 2^196*G for the second one
1665 */
1666 for (i = 1; i <= 8; i <<= 1) {
1667 point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1668 pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1669 pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1670 for (j = 0; j < 27; ++j) {
1671 point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1672 pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1673 pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1674 }
1675 if (i == 8)
1676 break;
1677 point_double(pre->g_pre_comp[0][2 * i][0],
1678 pre->g_pre_comp[0][2 * i][1],
1679 pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1680 pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1681 for (j = 0; j < 27; ++j) {
1682 point_double(pre->g_pre_comp[0][2 * i][0],
1683 pre->g_pre_comp[0][2 * i][1],
1684 pre->g_pre_comp[0][2 * i][2],
1685 pre->g_pre_comp[0][2 * i][0],
1686 pre->g_pre_comp[0][2 * i][1],
1687 pre->g_pre_comp[0][2 * i][2]);
1688 }
1689 }
1690 for (i = 0; i < 2; i++) {
1691 /* g_pre_comp[i][0] is the point at infinity */
1692 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1693 /* the remaining multiples */
1694 /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1695 point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1696 pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1697 pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1698 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1699 pre->g_pre_comp[i][2][2]);
1700 /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1701 point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1702 pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1703 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1704 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1705 pre->g_pre_comp[i][2][2]);
1706 /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1707 point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1708 pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1709 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1710 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1711 pre->g_pre_comp[i][4][2]);
1712 /*
1713 * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1714 */
1715 point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1716 pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1717 pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1718 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1719 pre->g_pre_comp[i][2][2]);
1720 for (j = 1; j < 8; ++j) {
1721 /* odd multiples: add G resp. 2^28*G */
1722 point_add(pre->g_pre_comp[i][2 * j + 1][0],
1723 pre->g_pre_comp[i][2 * j + 1][1],
1724 pre->g_pre_comp[i][2 * j + 1][2],
1725 pre->g_pre_comp[i][2 * j][0],
1726 pre->g_pre_comp[i][2 * j][1],
1727 pre->g_pre_comp[i][2 * j][2], 0,
1728 pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1729 pre->g_pre_comp[i][1][2]);
1730 }
1731 }
1732 make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1733
1734 done:
1735 SETPRECOMP(group, nistp224, pre);
1736 pre = NULL;
1737 ret = 1;
1738 err:
1739 BN_CTX_end(ctx);
1740 EC_POINT_free(generator);
1741 #ifndef FIPS_MODE
1742 BN_CTX_free(new_ctx);
1743 #endif
1744 EC_nistp224_pre_comp_free(pre);
1745 return ret;
1746 }
1747
1748 int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1749 {
1750 return HAVEPRECOMP(group, nistp224);
1751 }
1752
1753 #endif