]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ecp_nistz256.c
Add support for reference counting using C11 atomics
[thirdparty/openssl.git] / crypto / ec / ecp_nistz256.c
1 /*
2 * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /******************************************************************************
11 * *
12 * Copyright 2014 Intel Corporation *
13 * *
14 * Licensed under the Apache License, Version 2.0 (the "License"); *
15 * you may not use this file except in compliance with the License. *
16 * You may obtain a copy of the License at *
17 * *
18 * http://www.apache.org/licenses/LICENSE-2.0 *
19 * *
20 * Unless required by applicable law or agreed to in writing, software *
21 * distributed under the License is distributed on an "AS IS" BASIS, *
22 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
23 * See the License for the specific language governing permissions and *
24 * limitations under the License. *
25 * *
26 ******************************************************************************
27 * *
28 * Developers and authors: *
29 * Shay Gueron (1, 2), and Vlad Krasnov (1) *
30 * (1) Intel Corporation, Israel Development Center *
31 * (2) University of Haifa *
32 * Reference: *
33 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with *
34 * 256 Bit Primes" *
35 * *
36 ******************************************************************************/
37
38 #include <string.h>
39
40 #include "internal/cryptlib.h"
41 #include "internal/bn_int.h"
42 #include "ec_lcl.h"
43
44 #if BN_BITS2 != 64
45 # define TOBN(hi,lo) lo,hi
46 #else
47 # define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo)
48 #endif
49
50 #if defined(__GNUC__)
51 # define ALIGN32 __attribute((aligned(32)))
52 #elif defined(_MSC_VER)
53 # define ALIGN32 __declspec(align(32))
54 #else
55 # define ALIGN32
56 #endif
57
58 #define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N)
59 #define P256_LIMBS (256/BN_BITS2)
60
61 typedef unsigned short u16;
62
63 typedef struct {
64 BN_ULONG X[P256_LIMBS];
65 BN_ULONG Y[P256_LIMBS];
66 BN_ULONG Z[P256_LIMBS];
67 } P256_POINT;
68
69 typedef struct {
70 BN_ULONG X[P256_LIMBS];
71 BN_ULONG Y[P256_LIMBS];
72 } P256_POINT_AFFINE;
73
74 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
75
76 /* structure for precomputed multiples of the generator */
77 struct nistz256_pre_comp_st {
78 const EC_GROUP *group; /* Parent EC_GROUP object */
79 size_t w; /* Window size */
80 /*
81 * Constant time access to the X and Y coordinates of the pre-computed,
82 * generator multiplies, in the Montgomery domain. Pre-calculated
83 * multiplies are stored in affine form.
84 */
85 PRECOMP256_ROW *precomp;
86 void *precomp_storage;
87 CRYPTO_REF_COUNT references;
88 CRYPTO_RWLOCK *lock;
89 };
90
91 /* Functions implemented in assembly */
92 /*
93 * Most of below mentioned functions *preserve* the property of inputs
94 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
95 * inputs are fully reduced, then output is too. Note that reverse is
96 * not true, in sense that given partially reduced inputs output can be
97 * either, not unlikely reduced. And "most" in first sentence refers to
98 * the fact that given the calculations flow one can tolerate that
99 * addition, 1st function below, produces partially reduced result *if*
100 * multiplications by 2 and 3, which customarily use addition, fully
101 * reduce it. This effectively gives two options: a) addition produces
102 * fully reduced result [as long as inputs are, just like remaining
103 * functions]; b) addition is allowed to produce partially reduced
104 * result, but multiplications by 2 and 3 perform additional reduction
105 * step. Choice between the two can be platform-specific, but it was a)
106 * in all cases so far...
107 */
108 /* Modular add: res = a+b mod P */
109 void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
110 const BN_ULONG a[P256_LIMBS],
111 const BN_ULONG b[P256_LIMBS]);
112 /* Modular mul by 2: res = 2*a mod P */
113 void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
114 const BN_ULONG a[P256_LIMBS]);
115 /* Modular mul by 3: res = 3*a mod P */
116 void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
117 const BN_ULONG a[P256_LIMBS]);
118
119 /* Modular div by 2: res = a/2 mod P */
120 void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
121 const BN_ULONG a[P256_LIMBS]);
122 /* Modular sub: res = a-b mod P */
123 void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
124 const BN_ULONG a[P256_LIMBS],
125 const BN_ULONG b[P256_LIMBS]);
126 /* Modular neg: res = -a mod P */
127 void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
128 /* Montgomery mul: res = a*b*2^-256 mod P */
129 void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
130 const BN_ULONG a[P256_LIMBS],
131 const BN_ULONG b[P256_LIMBS]);
132 /* Montgomery sqr: res = a*a*2^-256 mod P */
133 void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
134 const BN_ULONG a[P256_LIMBS]);
135 /* Convert a number from Montgomery domain, by multiplying with 1 */
136 void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
137 const BN_ULONG in[P256_LIMBS]);
138 /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
139 void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
140 const BN_ULONG in[P256_LIMBS]);
141 /* Functions that perform constant time access to the precomputed tables */
142 void ecp_nistz256_scatter_w5(P256_POINT *val,
143 const P256_POINT *in_t, int idx);
144 void ecp_nistz256_gather_w5(P256_POINT *val,
145 const P256_POINT *in_t, int idx);
146 void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
147 const P256_POINT_AFFINE *in_t, int idx);
148 void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
149 const P256_POINT_AFFINE *in_t, int idx);
150
151 /* One converted into the Montgomery domain */
152 static const BN_ULONG ONE[P256_LIMBS] = {
153 TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
154 TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
155 };
156
157 static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
158
159 /* Precomputed tables for the default generator */
160 extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
161
162 /* Recode window to a signed digit, see ecp_nistputil.c for details */
163 static unsigned int _booth_recode_w5(unsigned int in)
164 {
165 unsigned int s, d;
166
167 s = ~((in >> 5) - 1);
168 d = (1 << 6) - in - 1;
169 d = (d & s) | (in & ~s);
170 d = (d >> 1) + (d & 1);
171
172 return (d << 1) + (s & 1);
173 }
174
175 static unsigned int _booth_recode_w7(unsigned int in)
176 {
177 unsigned int s, d;
178
179 s = ~((in >> 7) - 1);
180 d = (1 << 8) - in - 1;
181 d = (d & s) | (in & ~s);
182 d = (d >> 1) + (d & 1);
183
184 return (d << 1) + (s & 1);
185 }
186
187 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
188 const BN_ULONG src[P256_LIMBS], BN_ULONG move)
189 {
190 BN_ULONG mask1 = 0-move;
191 BN_ULONG mask2 = ~mask1;
192
193 dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
194 dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
195 dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
196 dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
197 if (P256_LIMBS == 8) {
198 dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
199 dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
200 dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
201 dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
202 }
203 }
204
205 static BN_ULONG is_zero(BN_ULONG in)
206 {
207 in |= (0 - in);
208 in = ~in;
209 in >>= BN_BITS2 - 1;
210 return in;
211 }
212
213 static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
214 const BN_ULONG b[P256_LIMBS])
215 {
216 BN_ULONG res;
217
218 res = a[0] ^ b[0];
219 res |= a[1] ^ b[1];
220 res |= a[2] ^ b[2];
221 res |= a[3] ^ b[3];
222 if (P256_LIMBS == 8) {
223 res |= a[4] ^ b[4];
224 res |= a[5] ^ b[5];
225 res |= a[6] ^ b[6];
226 res |= a[7] ^ b[7];
227 }
228
229 return is_zero(res);
230 }
231
232 static BN_ULONG is_one(const BIGNUM *z)
233 {
234 BN_ULONG res = 0;
235 BN_ULONG *a = bn_get_words(z);
236
237 if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
238 res = a[0] ^ ONE[0];
239 res |= a[1] ^ ONE[1];
240 res |= a[2] ^ ONE[2];
241 res |= a[3] ^ ONE[3];
242 if (P256_LIMBS == 8) {
243 res |= a[4] ^ ONE[4];
244 res |= a[5] ^ ONE[5];
245 res |= a[6] ^ ONE[6];
246 /*
247 * no check for a[7] (being zero) on 32-bit platforms,
248 * because value of "one" takes only 7 limbs.
249 */
250 }
251 res = is_zero(res);
252 }
253
254 return res;
255 }
256
257 /*
258 * For reference, this macro is used only when new ecp_nistz256 assembly
259 * module is being developed. For example, configure with
260 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
261 * performing simplest arithmetic operations on 256-bit vectors. Then
262 * work on implementation of higher-level functions performing point
263 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
264 * and never define it again. (The correct macro denoting presence of
265 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
266 */
267 #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
268 void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
269 void ecp_nistz256_point_add(P256_POINT *r,
270 const P256_POINT *a, const P256_POINT *b);
271 void ecp_nistz256_point_add_affine(P256_POINT *r,
272 const P256_POINT *a,
273 const P256_POINT_AFFINE *b);
274 #else
275 /* Point double: r = 2*a */
276 static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
277 {
278 BN_ULONG S[P256_LIMBS];
279 BN_ULONG M[P256_LIMBS];
280 BN_ULONG Zsqr[P256_LIMBS];
281 BN_ULONG tmp0[P256_LIMBS];
282
283 const BN_ULONG *in_x = a->X;
284 const BN_ULONG *in_y = a->Y;
285 const BN_ULONG *in_z = a->Z;
286
287 BN_ULONG *res_x = r->X;
288 BN_ULONG *res_y = r->Y;
289 BN_ULONG *res_z = r->Z;
290
291 ecp_nistz256_mul_by_2(S, in_y);
292
293 ecp_nistz256_sqr_mont(Zsqr, in_z);
294
295 ecp_nistz256_sqr_mont(S, S);
296
297 ecp_nistz256_mul_mont(res_z, in_z, in_y);
298 ecp_nistz256_mul_by_2(res_z, res_z);
299
300 ecp_nistz256_add(M, in_x, Zsqr);
301 ecp_nistz256_sub(Zsqr, in_x, Zsqr);
302
303 ecp_nistz256_sqr_mont(res_y, S);
304 ecp_nistz256_div_by_2(res_y, res_y);
305
306 ecp_nistz256_mul_mont(M, M, Zsqr);
307 ecp_nistz256_mul_by_3(M, M);
308
309 ecp_nistz256_mul_mont(S, S, in_x);
310 ecp_nistz256_mul_by_2(tmp0, S);
311
312 ecp_nistz256_sqr_mont(res_x, M);
313
314 ecp_nistz256_sub(res_x, res_x, tmp0);
315 ecp_nistz256_sub(S, S, res_x);
316
317 ecp_nistz256_mul_mont(S, S, M);
318 ecp_nistz256_sub(res_y, S, res_y);
319 }
320
321 /* Point addition: r = a+b */
322 static void ecp_nistz256_point_add(P256_POINT *r,
323 const P256_POINT *a, const P256_POINT *b)
324 {
325 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
326 BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
327 BN_ULONG Z1sqr[P256_LIMBS];
328 BN_ULONG Z2sqr[P256_LIMBS];
329 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
330 BN_ULONG Hsqr[P256_LIMBS];
331 BN_ULONG Rsqr[P256_LIMBS];
332 BN_ULONG Hcub[P256_LIMBS];
333
334 BN_ULONG res_x[P256_LIMBS];
335 BN_ULONG res_y[P256_LIMBS];
336 BN_ULONG res_z[P256_LIMBS];
337
338 BN_ULONG in1infty, in2infty;
339
340 const BN_ULONG *in1_x = a->X;
341 const BN_ULONG *in1_y = a->Y;
342 const BN_ULONG *in1_z = a->Z;
343
344 const BN_ULONG *in2_x = b->X;
345 const BN_ULONG *in2_y = b->Y;
346 const BN_ULONG *in2_z = b->Z;
347
348 /*
349 * Infinity in encoded as (,,0)
350 */
351 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
352 if (P256_LIMBS == 8)
353 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
354
355 in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
356 if (P256_LIMBS == 8)
357 in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
358
359 in1infty = is_zero(in1infty);
360 in2infty = is_zero(in2infty);
361
362 ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
363 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
364
365 ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
366 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
367
368 ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
369 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
370 ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
371
372 ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
373 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
374 ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
375
376 /*
377 * This should not happen during sign/ecdh, so no constant time violation
378 */
379 if (is_equal(U1, U2) && !in1infty && !in2infty) {
380 if (is_equal(S1, S2)) {
381 ecp_nistz256_point_double(r, a);
382 return;
383 } else {
384 memset(r, 0, sizeof(*r));
385 return;
386 }
387 }
388
389 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
390 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
391 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
392 ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
393 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
394
395 ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
396 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
397
398 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
399 ecp_nistz256_sub(res_x, res_x, Hcub);
400
401 ecp_nistz256_sub(res_y, U2, res_x);
402
403 ecp_nistz256_mul_mont(S2, S1, Hcub);
404 ecp_nistz256_mul_mont(res_y, R, res_y);
405 ecp_nistz256_sub(res_y, res_y, S2);
406
407 copy_conditional(res_x, in2_x, in1infty);
408 copy_conditional(res_y, in2_y, in1infty);
409 copy_conditional(res_z, in2_z, in1infty);
410
411 copy_conditional(res_x, in1_x, in2infty);
412 copy_conditional(res_y, in1_y, in2infty);
413 copy_conditional(res_z, in1_z, in2infty);
414
415 memcpy(r->X, res_x, sizeof(res_x));
416 memcpy(r->Y, res_y, sizeof(res_y));
417 memcpy(r->Z, res_z, sizeof(res_z));
418 }
419
420 /* Point addition when b is known to be affine: r = a+b */
421 static void ecp_nistz256_point_add_affine(P256_POINT *r,
422 const P256_POINT *a,
423 const P256_POINT_AFFINE *b)
424 {
425 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
426 BN_ULONG Z1sqr[P256_LIMBS];
427 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
428 BN_ULONG Hsqr[P256_LIMBS];
429 BN_ULONG Rsqr[P256_LIMBS];
430 BN_ULONG Hcub[P256_LIMBS];
431
432 BN_ULONG res_x[P256_LIMBS];
433 BN_ULONG res_y[P256_LIMBS];
434 BN_ULONG res_z[P256_LIMBS];
435
436 BN_ULONG in1infty, in2infty;
437
438 const BN_ULONG *in1_x = a->X;
439 const BN_ULONG *in1_y = a->Y;
440 const BN_ULONG *in1_z = a->Z;
441
442 const BN_ULONG *in2_x = b->X;
443 const BN_ULONG *in2_y = b->Y;
444
445 /*
446 * Infinity in encoded as (,,0)
447 */
448 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
449 if (P256_LIMBS == 8)
450 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
451
452 /*
453 * In affine representation we encode infinity as (0,0), which is
454 * not on the curve, so it is OK
455 */
456 in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
457 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
458 if (P256_LIMBS == 8)
459 in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
460 in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
461
462 in1infty = is_zero(in1infty);
463 in2infty = is_zero(in2infty);
464
465 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
466
467 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
468 ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
469
470 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
471
472 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
473
474 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
475 ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
476
477 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
478 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
479 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
480
481 ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
482 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
483
484 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
485 ecp_nistz256_sub(res_x, res_x, Hcub);
486 ecp_nistz256_sub(H, U2, res_x);
487
488 ecp_nistz256_mul_mont(S2, in1_y, Hcub);
489 ecp_nistz256_mul_mont(H, H, R);
490 ecp_nistz256_sub(res_y, H, S2);
491
492 copy_conditional(res_x, in2_x, in1infty);
493 copy_conditional(res_x, in1_x, in2infty);
494
495 copy_conditional(res_y, in2_y, in1infty);
496 copy_conditional(res_y, in1_y, in2infty);
497
498 copy_conditional(res_z, ONE, in1infty);
499 copy_conditional(res_z, in1_z, in2infty);
500
501 memcpy(r->X, res_x, sizeof(res_x));
502 memcpy(r->Y, res_y, sizeof(res_y));
503 memcpy(r->Z, res_z, sizeof(res_z));
504 }
505 #endif
506
507 /* r = in^-1 mod p */
508 static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
509 const BN_ULONG in[P256_LIMBS])
510 {
511 /*
512 * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
513 * ffffffff ffffffff We use FLT and used poly-2 as exponent
514 */
515 BN_ULONG p2[P256_LIMBS];
516 BN_ULONG p4[P256_LIMBS];
517 BN_ULONG p8[P256_LIMBS];
518 BN_ULONG p16[P256_LIMBS];
519 BN_ULONG p32[P256_LIMBS];
520 BN_ULONG res[P256_LIMBS];
521 int i;
522
523 ecp_nistz256_sqr_mont(res, in);
524 ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
525
526 ecp_nistz256_sqr_mont(res, p2);
527 ecp_nistz256_sqr_mont(res, res);
528 ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
529
530 ecp_nistz256_sqr_mont(res, p4);
531 ecp_nistz256_sqr_mont(res, res);
532 ecp_nistz256_sqr_mont(res, res);
533 ecp_nistz256_sqr_mont(res, res);
534 ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
535
536 ecp_nistz256_sqr_mont(res, p8);
537 for (i = 0; i < 7; i++)
538 ecp_nistz256_sqr_mont(res, res);
539 ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
540
541 ecp_nistz256_sqr_mont(res, p16);
542 for (i = 0; i < 15; i++)
543 ecp_nistz256_sqr_mont(res, res);
544 ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
545
546 ecp_nistz256_sqr_mont(res, p32);
547 for (i = 0; i < 31; i++)
548 ecp_nistz256_sqr_mont(res, res);
549 ecp_nistz256_mul_mont(res, res, in);
550
551 for (i = 0; i < 32 * 4; i++)
552 ecp_nistz256_sqr_mont(res, res);
553 ecp_nistz256_mul_mont(res, res, p32);
554
555 for (i = 0; i < 32; i++)
556 ecp_nistz256_sqr_mont(res, res);
557 ecp_nistz256_mul_mont(res, res, p32);
558
559 for (i = 0; i < 16; i++)
560 ecp_nistz256_sqr_mont(res, res);
561 ecp_nistz256_mul_mont(res, res, p16);
562
563 for (i = 0; i < 8; i++)
564 ecp_nistz256_sqr_mont(res, res);
565 ecp_nistz256_mul_mont(res, res, p8);
566
567 ecp_nistz256_sqr_mont(res, res);
568 ecp_nistz256_sqr_mont(res, res);
569 ecp_nistz256_sqr_mont(res, res);
570 ecp_nistz256_sqr_mont(res, res);
571 ecp_nistz256_mul_mont(res, res, p4);
572
573 ecp_nistz256_sqr_mont(res, res);
574 ecp_nistz256_sqr_mont(res, res);
575 ecp_nistz256_mul_mont(res, res, p2);
576
577 ecp_nistz256_sqr_mont(res, res);
578 ecp_nistz256_sqr_mont(res, res);
579 ecp_nistz256_mul_mont(res, res, in);
580
581 memcpy(r, res, sizeof(res));
582 }
583
584 /*
585 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
586 * returns one if it fits. Otherwise it returns zero.
587 */
588 __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
589 const BIGNUM *in)
590 {
591 return bn_copy_words(out, in, P256_LIMBS);
592 }
593
594 /* r = sum(scalar[i]*point[i]) */
595 __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
596 P256_POINT *r,
597 const BIGNUM **scalar,
598 const EC_POINT **point,
599 size_t num, BN_CTX *ctx)
600 {
601 size_t i;
602 int j, ret = 0;
603 unsigned int idx;
604 unsigned char (*p_str)[33] = NULL;
605 const unsigned int window_size = 5;
606 const unsigned int mask = (1 << (window_size + 1)) - 1;
607 unsigned int wvalue;
608 P256_POINT *temp; /* place for 5 temporary points */
609 const BIGNUM **scalars = NULL;
610 P256_POINT (*table)[16] = NULL;
611 void *table_storage = NULL;
612
613 if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
614 || (table_storage =
615 OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
616 || (p_str =
617 OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
618 || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
619 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
620 goto err;
621 }
622
623 table = (void *)ALIGNPTR(table_storage, 64);
624 temp = (P256_POINT *)(table + num);
625
626 for (i = 0; i < num; i++) {
627 P256_POINT *row = table[i];
628
629 /* This is an unusual input, we don't guarantee constant-timeness. */
630 if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
631 BIGNUM *mod;
632
633 if ((mod = BN_CTX_get(ctx)) == NULL)
634 goto err;
635 if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
636 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
637 goto err;
638 }
639 scalars[i] = mod;
640 } else
641 scalars[i] = scalar[i];
642
643 for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
644 BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
645
646 p_str[i][j + 0] = (unsigned char)d;
647 p_str[i][j + 1] = (unsigned char)(d >> 8);
648 p_str[i][j + 2] = (unsigned char)(d >> 16);
649 p_str[i][j + 3] = (unsigned char)(d >>= 24);
650 if (BN_BYTES == 8) {
651 d >>= 8;
652 p_str[i][j + 4] = (unsigned char)d;
653 p_str[i][j + 5] = (unsigned char)(d >> 8);
654 p_str[i][j + 6] = (unsigned char)(d >> 16);
655 p_str[i][j + 7] = (unsigned char)(d >> 24);
656 }
657 }
658 for (; j < 33; j++)
659 p_str[i][j] = 0;
660
661 if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
662 || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
663 || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
664 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
665 EC_R_COORDINATES_OUT_OF_RANGE);
666 goto err;
667 }
668
669 /*
670 * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
671 * is not stored. All other values are actually stored with an offset
672 * of -1 in table.
673 */
674
675 ecp_nistz256_scatter_w5 (row, &temp[0], 1);
676 ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */
677 ecp_nistz256_scatter_w5 (row, &temp[1], 2);
678 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */
679 ecp_nistz256_scatter_w5 (row, &temp[2], 3);
680 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */
681 ecp_nistz256_scatter_w5 (row, &temp[1], 4);
682 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */
683 ecp_nistz256_scatter_w5 (row, &temp[2], 6);
684 ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */
685 ecp_nistz256_scatter_w5 (row, &temp[3], 5);
686 ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */
687 ecp_nistz256_scatter_w5 (row, &temp[4], 7);
688 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */
689 ecp_nistz256_scatter_w5 (row, &temp[1], 8);
690 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
691 ecp_nistz256_scatter_w5 (row, &temp[2], 12);
692 ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
693 ecp_nistz256_scatter_w5 (row, &temp[3], 10);
694 ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
695 ecp_nistz256_scatter_w5 (row, &temp[4], 14);
696 ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/
697 ecp_nistz256_scatter_w5 (row, &temp[2], 13);
698 ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/
699 ecp_nistz256_scatter_w5 (row, &temp[3], 11);
700 ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/
701 ecp_nistz256_scatter_w5 (row, &temp[4], 15);
702 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */
703 ecp_nistz256_scatter_w5 (row, &temp[2], 9);
704 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
705 ecp_nistz256_scatter_w5 (row, &temp[1], 16);
706 }
707
708 idx = 255;
709
710 wvalue = p_str[0][(idx - 1) / 8];
711 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
712
713 /*
714 * We gather to temp[0], because we know it's position relative
715 * to table
716 */
717 ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
718 memcpy(r, &temp[0], sizeof(temp[0]));
719
720 while (idx >= 5) {
721 for (i = (idx == 255 ? 1 : 0); i < num; i++) {
722 unsigned int off = (idx - 1) / 8;
723
724 wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
725 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
726
727 wvalue = _booth_recode_w5(wvalue);
728
729 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
730
731 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
732 copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
733
734 ecp_nistz256_point_add(r, r, &temp[0]);
735 }
736
737 idx -= window_size;
738
739 ecp_nistz256_point_double(r, r);
740 ecp_nistz256_point_double(r, r);
741 ecp_nistz256_point_double(r, r);
742 ecp_nistz256_point_double(r, r);
743 ecp_nistz256_point_double(r, r);
744 }
745
746 /* Final window */
747 for (i = 0; i < num; i++) {
748 wvalue = p_str[i][0];
749 wvalue = (wvalue << 1) & mask;
750
751 wvalue = _booth_recode_w5(wvalue);
752
753 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
754
755 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
756 copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
757
758 ecp_nistz256_point_add(r, r, &temp[0]);
759 }
760
761 ret = 1;
762 err:
763 OPENSSL_free(table_storage);
764 OPENSSL_free(p_str);
765 OPENSSL_free(scalars);
766 return ret;
767 }
768
769 /* Coordinates of G, for which we have precomputed tables */
770 const static BN_ULONG def_xG[P256_LIMBS] = {
771 TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
772 TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
773 };
774
775 const static BN_ULONG def_yG[P256_LIMBS] = {
776 TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
777 TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
778 };
779
780 /*
781 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
782 * generator.
783 */
784 static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
785 {
786 return (bn_get_top(generator->X) == P256_LIMBS) &&
787 (bn_get_top(generator->Y) == P256_LIMBS) &&
788 is_equal(bn_get_words(generator->X), def_xG) &&
789 is_equal(bn_get_words(generator->Y), def_yG) &&
790 is_one(generator->Z);
791 }
792
793 __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
794 {
795 /*
796 * We precompute a table for a Booth encoded exponent (wNAF) based
797 * computation. Each table holds 64 values for safe access, with an
798 * implicit value of infinity at index zero. We use window of size 7, and
799 * therefore require ceil(256/7) = 37 tables.
800 */
801 const BIGNUM *order;
802 EC_POINT *P = NULL, *T = NULL;
803 const EC_POINT *generator;
804 NISTZ256_PRE_COMP *pre_comp;
805 BN_CTX *new_ctx = NULL;
806 int i, j, k, ret = 0;
807 size_t w;
808
809 PRECOMP256_ROW *preComputedTable = NULL;
810 unsigned char *precomp_storage = NULL;
811
812 /* if there is an old NISTZ256_PRE_COMP object, throw it away */
813 EC_pre_comp_free(group);
814 generator = EC_GROUP_get0_generator(group);
815 if (generator == NULL) {
816 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
817 return 0;
818 }
819
820 if (ecp_nistz256_is_affine_G(generator)) {
821 /*
822 * No need to calculate tables for the standard generator because we
823 * have them statically.
824 */
825 return 1;
826 }
827
828 if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
829 return 0;
830
831 if (ctx == NULL) {
832 ctx = new_ctx = BN_CTX_new();
833 if (ctx == NULL)
834 goto err;
835 }
836
837 BN_CTX_start(ctx);
838
839 order = EC_GROUP_get0_order(group);
840 if (order == NULL)
841 goto err;
842
843 if (BN_is_zero(order)) {
844 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
845 goto err;
846 }
847
848 w = 7;
849
850 if ((precomp_storage =
851 OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
852 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
853 goto err;
854 }
855
856 preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
857
858 P = EC_POINT_new(group);
859 T = EC_POINT_new(group);
860 if (P == NULL || T == NULL)
861 goto err;
862
863 /*
864 * The zero entry is implicitly infinity, and we skip it, storing other
865 * values with -1 offset.
866 */
867 if (!EC_POINT_copy(T, generator))
868 goto err;
869
870 for (k = 0; k < 64; k++) {
871 if (!EC_POINT_copy(P, T))
872 goto err;
873 for (j = 0; j < 37; j++) {
874 P256_POINT_AFFINE temp;
875 /*
876 * It would be faster to use EC_POINTs_make_affine and
877 * make multiple points affine at the same time.
878 */
879 if (!EC_POINT_make_affine(group, P, ctx))
880 goto err;
881 if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
882 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
883 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
884 EC_R_COORDINATES_OUT_OF_RANGE);
885 goto err;
886 }
887 ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
888 for (i = 0; i < 7; i++) {
889 if (!EC_POINT_dbl(group, P, P, ctx))
890 goto err;
891 }
892 }
893 if (!EC_POINT_add(group, T, T, generator, ctx))
894 goto err;
895 }
896
897 pre_comp->group = group;
898 pre_comp->w = w;
899 pre_comp->precomp = preComputedTable;
900 pre_comp->precomp_storage = precomp_storage;
901 precomp_storage = NULL;
902 SETPRECOMP(group, nistz256, pre_comp);
903 pre_comp = NULL;
904 ret = 1;
905
906 err:
907 if (ctx != NULL)
908 BN_CTX_end(ctx);
909 BN_CTX_free(new_ctx);
910
911 EC_nistz256_pre_comp_free(pre_comp);
912 OPENSSL_free(precomp_storage);
913 EC_POINT_free(P);
914 EC_POINT_free(T);
915 return ret;
916 }
917
918 /*
919 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
920 * code processing 4 points in parallel, corresponding serial operation
921 * is several times slower, because it uses 29x29=58-bit multiplication
922 * as opposite to 64x64=128-bit in integer-only scalar case. As result
923 * it doesn't provide *significant* performance improvement. Note that
924 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
925 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
926 */
927 #if defined(ECP_NISTZ256_AVX2)
928 # if !(defined(__x86_64) || defined(__x86_64__) || \
929 defined(_M_AMD64) || defined(_MX64)) || \
930 !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
931 # undef ECP_NISTZ256_AVX2
932 # else
933 /* Constant time access, loading four values, from four consecutive tables */
934 void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
935 int index0, int index1, int index2,
936 int index3);
937 void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
938 void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
939 void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
940 const void *Bx4);
941 void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
942 const void *Bx4);
943 void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
944 void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
945 void ecp_nistz256_avx2_set1(void *RESULTx4);
946 int ecp_nistz_avx2_eligible(void);
947
948 static void booth_recode_w7(unsigned char *sign,
949 unsigned char *digit, unsigned char in)
950 {
951 unsigned char s, d;
952
953 s = ~((in >> 7) - 1);
954 d = (1 << 8) - in - 1;
955 d = (d & s) | (in & ~s);
956 d = (d >> 1) + (d & 1);
957
958 *sign = s & 1;
959 *digit = d;
960 }
961
962 /*
963 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
964 * precomputed table. It does 4 affine point additions in parallel,
965 * significantly speeding up point multiplication for a fixed value.
966 */
967 static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
968 unsigned char p_str[33],
969 const P256_POINT_AFFINE(*preComputedTable)[64])
970 {
971 const unsigned int window_size = 7;
972 const unsigned int mask = (1 << (window_size + 1)) - 1;
973 unsigned int wvalue;
974 /* Using 4 windows at a time */
975 unsigned char sign0, digit0;
976 unsigned char sign1, digit1;
977 unsigned char sign2, digit2;
978 unsigned char sign3, digit3;
979 unsigned int idx = 0;
980 BN_ULONG tmp[P256_LIMBS];
981 int i;
982
983 ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
984 ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
985 ALIGN32 P256_POINT_AFFINE point_arr[4];
986 ALIGN32 P256_POINT res_point_arr[4];
987
988 /* Initial four windows */
989 wvalue = *((u16 *) & p_str[0]);
990 wvalue = (wvalue << 1) & mask;
991 idx += window_size;
992 booth_recode_w7(&sign0, &digit0, wvalue);
993 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
994 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
995 idx += window_size;
996 booth_recode_w7(&sign1, &digit1, wvalue);
997 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
998 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
999 idx += window_size;
1000 booth_recode_w7(&sign2, &digit2, wvalue);
1001 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1002 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1003 idx += window_size;
1004 booth_recode_w7(&sign3, &digit3, wvalue);
1005
1006 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
1007 digit0, digit1, digit2, digit3);
1008
1009 ecp_nistz256_neg(tmp, point_arr[0].Y);
1010 copy_conditional(point_arr[0].Y, tmp, sign0);
1011 ecp_nistz256_neg(tmp, point_arr[1].Y);
1012 copy_conditional(point_arr[1].Y, tmp, sign1);
1013 ecp_nistz256_neg(tmp, point_arr[2].Y);
1014 copy_conditional(point_arr[2].Y, tmp, sign2);
1015 ecp_nistz256_neg(tmp, point_arr[3].Y);
1016 copy_conditional(point_arr[3].Y, tmp, sign3);
1017
1018 ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
1019 ecp_nistz256_avx2_to_mont(aX4, aX4);
1020 ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
1021 ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
1022
1023 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1024 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1025 idx += window_size;
1026 booth_recode_w7(&sign0, &digit0, wvalue);
1027 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1028 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1029 idx += window_size;
1030 booth_recode_w7(&sign1, &digit1, wvalue);
1031 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1032 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1033 idx += window_size;
1034 booth_recode_w7(&sign2, &digit2, wvalue);
1035 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1036 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1037 idx += window_size;
1038 booth_recode_w7(&sign3, &digit3, wvalue);
1039
1040 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
1041 digit0, digit1, digit2, digit3);
1042
1043 ecp_nistz256_neg(tmp, point_arr[0].Y);
1044 copy_conditional(point_arr[0].Y, tmp, sign0);
1045 ecp_nistz256_neg(tmp, point_arr[1].Y);
1046 copy_conditional(point_arr[1].Y, tmp, sign1);
1047 ecp_nistz256_neg(tmp, point_arr[2].Y);
1048 copy_conditional(point_arr[2].Y, tmp, sign2);
1049 ecp_nistz256_neg(tmp, point_arr[3].Y);
1050 copy_conditional(point_arr[3].Y, tmp, sign3);
1051
1052 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1053 ecp_nistz256_avx2_to_mont(bX4, bX4);
1054 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1055 /* Optimized when both inputs are affine */
1056 ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
1057
1058 for (i = 2; i < 9; i++) {
1059 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1060 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1061 idx += window_size;
1062 booth_recode_w7(&sign0, &digit0, wvalue);
1063 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1064 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1065 idx += window_size;
1066 booth_recode_w7(&sign1, &digit1, wvalue);
1067 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1068 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1069 idx += window_size;
1070 booth_recode_w7(&sign2, &digit2, wvalue);
1071 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1072 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1073 idx += window_size;
1074 booth_recode_w7(&sign3, &digit3, wvalue);
1075
1076 ecp_nistz256_avx2_multi_gather_w7(point_arr,
1077 preComputedTable[4 * i],
1078 digit0, digit1, digit2, digit3);
1079
1080 ecp_nistz256_neg(tmp, point_arr[0].Y);
1081 copy_conditional(point_arr[0].Y, tmp, sign0);
1082 ecp_nistz256_neg(tmp, point_arr[1].Y);
1083 copy_conditional(point_arr[1].Y, tmp, sign1);
1084 ecp_nistz256_neg(tmp, point_arr[2].Y);
1085 copy_conditional(point_arr[2].Y, tmp, sign2);
1086 ecp_nistz256_neg(tmp, point_arr[3].Y);
1087 copy_conditional(point_arr[3].Y, tmp, sign3);
1088
1089 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1090 ecp_nistz256_avx2_to_mont(bX4, bX4);
1091 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1092
1093 ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
1094 }
1095
1096 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
1097 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
1098 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
1099
1100 ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
1101 /* Last window is performed serially */
1102 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1103 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1104 booth_recode_w7(&sign0, &digit0, wvalue);
1105 ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
1106 preComputedTable[36], digit0);
1107 ecp_nistz256_neg(tmp, r->Y);
1108 copy_conditional(r->Y, tmp, sign0);
1109 memcpy(r->Z, ONE, sizeof(ONE));
1110 /* Sum the four windows */
1111 ecp_nistz256_point_add(r, r, &res_point_arr[0]);
1112 ecp_nistz256_point_add(r, r, &res_point_arr[1]);
1113 ecp_nistz256_point_add(r, r, &res_point_arr[2]);
1114 ecp_nistz256_point_add(r, r, &res_point_arr[3]);
1115 }
1116 # endif
1117 #endif
1118
1119 __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
1120 const P256_POINT_AFFINE *in,
1121 BN_CTX *ctx)
1122 {
1123 BIGNUM *x, *y;
1124 BN_ULONG d_x[P256_LIMBS], d_y[P256_LIMBS];
1125 int ret = 0;
1126
1127 x = BN_new();
1128 if (x == NULL)
1129 return 0;
1130 y = BN_new();
1131 if (y == NULL) {
1132 BN_free(x);
1133 return 0;
1134 }
1135 memcpy(d_x, in->X, sizeof(d_x));
1136 bn_set_static_words(x, d_x, P256_LIMBS);
1137
1138 memcpy(d_y, in->Y, sizeof(d_y));
1139 bn_set_static_words(y, d_y, P256_LIMBS);
1140
1141 ret = EC_POINT_set_affine_coordinates_GFp(group, out, x, y, ctx);
1142
1143 BN_free(x);
1144 BN_free(y);
1145
1146 return ret;
1147 }
1148
1149 /* r = scalar*G + sum(scalars[i]*points[i]) */
1150 __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
1151 EC_POINT *r,
1152 const BIGNUM *scalar,
1153 size_t num,
1154 const EC_POINT *points[],
1155 const BIGNUM *scalars[], BN_CTX *ctx)
1156 {
1157 int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
1158 size_t j;
1159 unsigned char p_str[33] = { 0 };
1160 const PRECOMP256_ROW *preComputedTable = NULL;
1161 const NISTZ256_PRE_COMP *pre_comp = NULL;
1162 const EC_POINT *generator = NULL;
1163 BN_CTX *new_ctx = NULL;
1164 const BIGNUM **new_scalars = NULL;
1165 const EC_POINT **new_points = NULL;
1166 unsigned int idx = 0;
1167 const unsigned int window_size = 7;
1168 const unsigned int mask = (1 << (window_size + 1)) - 1;
1169 unsigned int wvalue;
1170 ALIGN32 union {
1171 P256_POINT p;
1172 P256_POINT_AFFINE a;
1173 } t, p;
1174 BIGNUM *tmp_scalar;
1175
1176 if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
1177 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1178 return 0;
1179 }
1180
1181 if (group->meth != r->meth) {
1182 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
1183 return 0;
1184 }
1185
1186 if ((scalar == NULL) && (num == 0))
1187 return EC_POINT_set_to_infinity(group, r);
1188
1189 for (j = 0; j < num; j++) {
1190 if (group->meth != points[j]->meth) {
1191 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
1192 return 0;
1193 }
1194 }
1195
1196 if (ctx == NULL) {
1197 ctx = new_ctx = BN_CTX_new();
1198 if (ctx == NULL)
1199 goto err;
1200 }
1201
1202 BN_CTX_start(ctx);
1203
1204 if (scalar) {
1205 generator = EC_GROUP_get0_generator(group);
1206 if (generator == NULL) {
1207 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
1208 goto err;
1209 }
1210
1211 /* look if we can use precomputed multiples of generator */
1212 pre_comp = group->pre_comp.nistz256;
1213
1214 if (pre_comp) {
1215 /*
1216 * If there is a precomputed table for the generator, check that
1217 * it was generated with the same generator.
1218 */
1219 EC_POINT *pre_comp_generator = EC_POINT_new(group);
1220 if (pre_comp_generator == NULL)
1221 goto err;
1222
1223 if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1224 group, pre_comp->precomp[0],
1225 ctx)) {
1226 EC_POINT_free(pre_comp_generator);
1227 goto err;
1228 }
1229
1230 if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1231 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1232
1233 EC_POINT_free(pre_comp_generator);
1234 }
1235
1236 if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1237 /*
1238 * If there is no precomputed data, but the generator is the
1239 * default, a hardcoded table of precomputed data is used. This
1240 * is because applications, such as Apache, do not use
1241 * EC_KEY_precompute_mult.
1242 */
1243 preComputedTable = ecp_nistz256_precomputed;
1244 }
1245
1246 if (preComputedTable) {
1247 if ((BN_num_bits(scalar) > 256)
1248 || BN_is_negative(scalar)) {
1249 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1250 goto err;
1251
1252 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1253 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
1254 goto err;
1255 }
1256 scalar = tmp_scalar;
1257 }
1258
1259 for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1260 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1261
1262 p_str[i + 0] = (unsigned char)d;
1263 p_str[i + 1] = (unsigned char)(d >> 8);
1264 p_str[i + 2] = (unsigned char)(d >> 16);
1265 p_str[i + 3] = (unsigned char)(d >>= 24);
1266 if (BN_BYTES == 8) {
1267 d >>= 8;
1268 p_str[i + 4] = (unsigned char)d;
1269 p_str[i + 5] = (unsigned char)(d >> 8);
1270 p_str[i + 6] = (unsigned char)(d >> 16);
1271 p_str[i + 7] = (unsigned char)(d >> 24);
1272 }
1273 }
1274
1275 for (; i < 33; i++)
1276 p_str[i] = 0;
1277
1278 #if defined(ECP_NISTZ256_AVX2)
1279 if (ecp_nistz_avx2_eligible()) {
1280 ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
1281 } else
1282 #endif
1283 {
1284 BN_ULONG infty;
1285
1286 /* First window */
1287 wvalue = (p_str[0] << 1) & mask;
1288 idx += window_size;
1289
1290 wvalue = _booth_recode_w7(wvalue);
1291
1292 ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1293 wvalue >> 1);
1294
1295 ecp_nistz256_neg(p.p.Z, p.p.Y);
1296 copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1297
1298 /*
1299 * Since affine infinity is encoded as (0,0) and
1300 * Jacobian ias (,,0), we need to harmonize them
1301 * by assigning "one" or zero to Z.
1302 */
1303 infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1304 p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1305 if (P256_LIMBS == 8)
1306 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1307 p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1308
1309 infty = 0 - is_zero(infty);
1310 infty = ~infty;
1311
1312 p.p.Z[0] = ONE[0] & infty;
1313 p.p.Z[1] = ONE[1] & infty;
1314 p.p.Z[2] = ONE[2] & infty;
1315 p.p.Z[3] = ONE[3] & infty;
1316 if (P256_LIMBS == 8) {
1317 p.p.Z[4] = ONE[4] & infty;
1318 p.p.Z[5] = ONE[5] & infty;
1319 p.p.Z[6] = ONE[6] & infty;
1320 p.p.Z[7] = ONE[7] & infty;
1321 }
1322
1323 for (i = 1; i < 37; i++) {
1324 unsigned int off = (idx - 1) / 8;
1325 wvalue = p_str[off] | p_str[off + 1] << 8;
1326 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1327 idx += window_size;
1328
1329 wvalue = _booth_recode_w7(wvalue);
1330
1331 ecp_nistz256_gather_w7(&t.a,
1332 preComputedTable[i], wvalue >> 1);
1333
1334 ecp_nistz256_neg(t.p.Z, t.a.Y);
1335 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1336
1337 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1338 }
1339 }
1340 } else {
1341 p_is_infinity = 1;
1342 no_precomp_for_generator = 1;
1343 }
1344 } else
1345 p_is_infinity = 1;
1346
1347 if (no_precomp_for_generator) {
1348 /*
1349 * Without a precomputed table for the generator, it has to be
1350 * handled like a normal point.
1351 */
1352 new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1353 if (new_scalars == NULL) {
1354 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1355 goto err;
1356 }
1357
1358 new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1359 if (new_points == NULL) {
1360 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1361 goto err;
1362 }
1363
1364 memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1365 new_scalars[num] = scalar;
1366 memcpy(new_points, points, num * sizeof(EC_POINT *));
1367 new_points[num] = generator;
1368
1369 scalars = new_scalars;
1370 points = new_points;
1371 num++;
1372 }
1373
1374 if (num) {
1375 P256_POINT *out = &t.p;
1376 if (p_is_infinity)
1377 out = &p.p;
1378
1379 if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1380 goto err;
1381
1382 if (!p_is_infinity)
1383 ecp_nistz256_point_add(&p.p, &p.p, out);
1384 }
1385
1386 /* Not constant-time, but we're only operating on the public output. */
1387 if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1388 !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1389 !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1390 goto err;
1391 }
1392 r->Z_is_one = is_one(r->Z) & 1;
1393
1394 ret = 1;
1395
1396 err:
1397 if (ctx)
1398 BN_CTX_end(ctx);
1399 BN_CTX_free(new_ctx);
1400 OPENSSL_free(new_points);
1401 OPENSSL_free(new_scalars);
1402 return ret;
1403 }
1404
1405 __owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1406 const EC_POINT *point,
1407 BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1408 {
1409 BN_ULONG z_inv2[P256_LIMBS];
1410 BN_ULONG z_inv3[P256_LIMBS];
1411 BN_ULONG x_aff[P256_LIMBS];
1412 BN_ULONG y_aff[P256_LIMBS];
1413 BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1414 BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1415
1416 if (EC_POINT_is_at_infinity(group, point)) {
1417 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
1418 return 0;
1419 }
1420
1421 if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1422 !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1423 !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1424 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
1425 return 0;
1426 }
1427
1428 ecp_nistz256_mod_inverse(z_inv3, point_z);
1429 ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1430 ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1431
1432 if (x != NULL) {
1433 ecp_nistz256_from_mont(x_ret, x_aff);
1434 if (!bn_set_words(x, x_ret, P256_LIMBS))
1435 return 0;
1436 }
1437
1438 if (y != NULL) {
1439 ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1440 ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1441 ecp_nistz256_from_mont(y_ret, y_aff);
1442 if (!bn_set_words(y, y_ret, P256_LIMBS))
1443 return 0;
1444 }
1445
1446 return 1;
1447 }
1448
1449 static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1450 {
1451 NISTZ256_PRE_COMP *ret = NULL;
1452
1453 if (!group)
1454 return NULL;
1455
1456 ret = OPENSSL_zalloc(sizeof(*ret));
1457
1458 if (ret == NULL) {
1459 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1460 return ret;
1461 }
1462
1463 ret->group = group;
1464 ret->w = 6; /* default */
1465 ret->references = 1;
1466
1467 ret->lock = CRYPTO_THREAD_lock_new();
1468 if (ret->lock == NULL) {
1469 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1470 OPENSSL_free(ret);
1471 return NULL;
1472 }
1473 return ret;
1474 }
1475
1476 NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1477 {
1478 int i;
1479 if (p != NULL)
1480 CRYPTO_UP_REF(&p->references, &i, p->lock);
1481 return p;
1482 }
1483
1484 void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1485 {
1486 int i;
1487
1488 if (pre == NULL)
1489 return;
1490
1491 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1492 REF_PRINT_COUNT("EC_nistz256", x);
1493 if (i > 0)
1494 return;
1495 REF_ASSERT_ISNT(i < 0);
1496
1497 OPENSSL_free(pre->precomp_storage);
1498 CRYPTO_THREAD_lock_free(pre->lock);
1499 OPENSSL_free(pre);
1500 }
1501
1502
1503 static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1504 {
1505 /* There is a hard-coded table for the default generator. */
1506 const EC_POINT *generator = EC_GROUP_get0_generator(group);
1507
1508 if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1509 /* There is a hard-coded table for the default generator. */
1510 return 1;
1511 }
1512
1513 return HAVEPRECOMP(group, nistz256);
1514 }
1515
1516 const EC_METHOD *EC_GFp_nistz256_method(void)
1517 {
1518 static const EC_METHOD ret = {
1519 EC_FLAGS_DEFAULT_OCT,
1520 NID_X9_62_prime_field,
1521 ec_GFp_mont_group_init,
1522 ec_GFp_mont_group_finish,
1523 ec_GFp_mont_group_clear_finish,
1524 ec_GFp_mont_group_copy,
1525 ec_GFp_mont_group_set_curve,
1526 ec_GFp_simple_group_get_curve,
1527 ec_GFp_simple_group_get_degree,
1528 ec_group_simple_order_bits,
1529 ec_GFp_simple_group_check_discriminant,
1530 ec_GFp_simple_point_init,
1531 ec_GFp_simple_point_finish,
1532 ec_GFp_simple_point_clear_finish,
1533 ec_GFp_simple_point_copy,
1534 ec_GFp_simple_point_set_to_infinity,
1535 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1536 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1537 ec_GFp_simple_point_set_affine_coordinates,
1538 ecp_nistz256_get_affine,
1539 0, 0, 0,
1540 ec_GFp_simple_add,
1541 ec_GFp_simple_dbl,
1542 ec_GFp_simple_invert,
1543 ec_GFp_simple_is_at_infinity,
1544 ec_GFp_simple_is_on_curve,
1545 ec_GFp_simple_cmp,
1546 ec_GFp_simple_make_affine,
1547 ec_GFp_simple_points_make_affine,
1548 ecp_nistz256_points_mul, /* mul */
1549 ecp_nistz256_mult_precompute, /* precompute_mult */
1550 ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
1551 ec_GFp_mont_field_mul,
1552 ec_GFp_mont_field_sqr,
1553 0, /* field_div */
1554 ec_GFp_mont_field_encode,
1555 ec_GFp_mont_field_decode,
1556 ec_GFp_mont_field_set_to_one,
1557 ec_key_simple_priv2oct,
1558 ec_key_simple_oct2priv,
1559 0, /* set private */
1560 ec_key_simple_generate_key,
1561 ec_key_simple_check_key,
1562 ec_key_simple_generate_public_key,
1563 0, /* keycopy */
1564 0, /* keyfinish */
1565 ecdh_simple_compute_key
1566 };
1567
1568 return &ret;
1569 }