]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ecp_sm2p256.c
threads_pthread.c: change inline to ossl_inline
[thirdparty/openssl.git] / crypto / ec / ecp_sm2p256.c
1 /*
2 * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 *
9 */
10
11 /*
12 * SM2 low level APIs are deprecated for public use, but still ok for
13 * internal use.
14 */
15 #include "internal/deprecated.h"
16
17 #include <string.h>
18 #include <openssl/err.h>
19 #include "crypto/bn.h"
20 #include "ec_local.h"
21 #include "internal/common.h"
22 #include "internal/constant_time.h"
23
24 #define P256_LIMBS (256 / BN_BITS2)
25
26 #if !defined(OPENSSL_NO_SM2_PRECOMP)
27 extern const BN_ULONG ecp_sm2p256_precomputed[8 * 32 * 256];
28 #endif
29
30 typedef struct {
31 BN_ULONG X[P256_LIMBS];
32 BN_ULONG Y[P256_LIMBS];
33 BN_ULONG Z[P256_LIMBS];
34 } P256_POINT;
35
36 typedef struct {
37 BN_ULONG X[P256_LIMBS];
38 BN_ULONG Y[P256_LIMBS];
39 } P256_POINT_AFFINE;
40
41 #if !defined(OPENSSL_NO_SM2_PRECOMP)
42 /* Coordinates of G, for which we have precomputed tables */
43 ALIGN32 static const BN_ULONG def_xG[P256_LIMBS] = {
44 0x715a4589334c74c7, 0x8fe30bbff2660be1,
45 0x5f9904466a39c994, 0x32c4ae2c1f198119
46 };
47
48 ALIGN32 static const BN_ULONG def_yG[P256_LIMBS] = {
49 0x02df32e52139f0a0, 0xd0a9877cc62a4740,
50 0x59bdcee36b692153, 0xbc3736a2f4f6779c,
51 };
52 #endif
53
54 /* p and order for SM2 according to GB/T 32918.5-2017 */
55 ALIGN32 static const BN_ULONG def_p[P256_LIMBS] = {
56 0xffffffffffffffff, 0xffffffff00000000,
57 0xffffffffffffffff, 0xfffffffeffffffff
58 };
59 ALIGN32 static const BN_ULONG def_ord[P256_LIMBS] = {
60 0x53bbf40939d54123, 0x7203df6b21c6052b,
61 0xffffffffffffffff, 0xfffffffeffffffff
62 };
63
64 ALIGN32 static const BN_ULONG ONE[P256_LIMBS] = {1, 0, 0, 0};
65
66 /* Functions implemented in assembly */
67 /*
68 * Most of below mentioned functions *preserve* the property of inputs
69 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
70 * inputs are fully reduced, then output is too.
71 */
72 /* Right shift: a >> 1 */
73 void bn_rshift1(BN_ULONG *a);
74 /* Sub: r = a - b */
75 void bn_sub(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
76 /* Modular div by 2: r = a / 2 mod p */
77 void ecp_sm2p256_div_by_2(BN_ULONG *r, const BN_ULONG *a);
78 /* Modular div by 2: r = a / 2 mod n, where n = ord(p) */
79 void ecp_sm2p256_div_by_2_mod_ord(BN_ULONG *r, const BN_ULONG *a);
80 /* Modular add: r = a + b mod p */
81 void ecp_sm2p256_add(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
82 /* Modular sub: r = a - b mod p */
83 void ecp_sm2p256_sub(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
84 /* Modular sub: r = a - b mod n, where n = ord(p) */
85 void ecp_sm2p256_sub_mod_ord(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
86 /* Modular mul by 3: out = 3 * a mod p */
87 void ecp_sm2p256_mul_by_3(BN_ULONG *r, const BN_ULONG *a);
88 /* Modular mul: r = a * b mod p */
89 void ecp_sm2p256_mul(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
90 /* Modular sqr: r = a ^ 2 mod p */
91 void ecp_sm2p256_sqr(BN_ULONG *r, const BN_ULONG *a);
92
93 static ossl_inline BN_ULONG is_zeros(const BN_ULONG *a)
94 {
95 BN_ULONG res;
96
97 res = a[0] | a[1] | a[2] | a[3];
98
99 return constant_time_is_zero_64(res);
100 }
101
102 static ossl_inline int is_equal(const BN_ULONG *a, const BN_ULONG *b)
103 {
104 BN_ULONG res;
105
106 res = a[0] ^ b[0];
107 res |= a[1] ^ b[1];
108 res |= a[2] ^ b[2];
109 res |= a[3] ^ b[3];
110
111 return constant_time_is_zero_64(res);
112 }
113
114 static ossl_inline int is_greater(const BN_ULONG *a, const BN_ULONG *b)
115 {
116 int i;
117
118 for (i = P256_LIMBS - 1; i >= 0; --i) {
119 if (a[i] > b[i])
120 return 1;
121 if (a[i] < b[i])
122 return -1;
123 }
124
125 return 0;
126 }
127
128 #define is_one(a) is_equal(a, ONE)
129 #define is_even(a) !(a[0] & 1)
130 #define is_point_equal(a, b) \
131 is_equal(a->X, b->X) && \
132 is_equal(a->Y, b->Y) && \
133 is_equal(a->Z, b->Z)
134
135 /* Bignum and field elements conversion */
136 #define ecp_sm2p256_bignum_field_elem(out, in) \
137 bn_copy_words(out, in, P256_LIMBS)
138
139 /* Binary algorithm for inversion in Fp */
140 #define BN_MOD_INV(out, in, mod_div, mod_sub, mod) \
141 do { \
142 ALIGN32 BN_ULONG u[4]; \
143 ALIGN32 BN_ULONG v[4]; \
144 ALIGN32 BN_ULONG x1[4] = {1, 0, 0, 0}; \
145 ALIGN32 BN_ULONG x2[4] = {0}; \
146 \
147 if (is_zeros(in)) \
148 return; \
149 memcpy(u, in, 32); \
150 memcpy(v, mod, 32); \
151 while (!is_one(u) && !is_one(v)) { \
152 while (is_even(u)) { \
153 bn_rshift1(u); \
154 mod_div(x1, x1); \
155 } \
156 while (is_even(v)) { \
157 bn_rshift1(v); \
158 mod_div(x2, x2); \
159 } \
160 if (is_greater(u, v) == 1) { \
161 bn_sub(u, u, v); \
162 mod_sub(x1, x1, x2); \
163 } else { \
164 bn_sub(v, v, u); \
165 mod_sub(x2, x2, x1); \
166 } \
167 } \
168 if (is_one(u)) \
169 memcpy(out, x1, 32); \
170 else \
171 memcpy(out, x2, 32); \
172 } while (0)
173
174 /* Modular inverse |out| = |in|^(-1) mod |p|. */
175 static ossl_inline void ecp_sm2p256_mod_inverse(BN_ULONG* out,
176 const BN_ULONG* in) {
177 BN_MOD_INV(out, in, ecp_sm2p256_div_by_2, ecp_sm2p256_sub, def_p);
178 }
179
180 /* Modular inverse mod order |out| = |in|^(-1) % |ord|. */
181 static ossl_inline void ecp_sm2p256_mod_ord_inverse(BN_ULONG* out,
182 const BN_ULONG* in) {
183 BN_MOD_INV(out, in, ecp_sm2p256_div_by_2_mod_ord, ecp_sm2p256_sub_mod_ord,
184 def_ord);
185 }
186
187 /* Point double: R <- P + P */
188 static void ecp_sm2p256_point_double(P256_POINT *R, const P256_POINT *P)
189 {
190 unsigned int i;
191 ALIGN32 BN_ULONG tmp0[P256_LIMBS];
192 ALIGN32 BN_ULONG tmp1[P256_LIMBS];
193 ALIGN32 BN_ULONG tmp2[P256_LIMBS];
194
195 /* zero-check P->Z */
196 if (is_zeros(P->Z)) {
197 for (i = 0; i < P256_LIMBS; ++i)
198 R->Z[i] = 0;
199
200 return;
201 }
202
203 ecp_sm2p256_sqr(tmp0, P->Z);
204 ecp_sm2p256_sub(tmp1, P->X, tmp0);
205 ecp_sm2p256_add(tmp0, P->X, tmp0);
206 ecp_sm2p256_mul(tmp1, tmp1, tmp0);
207 ecp_sm2p256_mul_by_3(tmp1, tmp1);
208 ecp_sm2p256_add(R->Y, P->Y, P->Y);
209 ecp_sm2p256_mul(R->Z, R->Y, P->Z);
210 ecp_sm2p256_sqr(R->Y, R->Y);
211 ecp_sm2p256_mul(tmp2, R->Y, P->X);
212 ecp_sm2p256_sqr(R->Y, R->Y);
213 ecp_sm2p256_div_by_2(R->Y, R->Y);
214 ecp_sm2p256_sqr(R->X, tmp1);
215 ecp_sm2p256_add(tmp0, tmp2, tmp2);
216 ecp_sm2p256_sub(R->X, R->X, tmp0);
217 ecp_sm2p256_sub(tmp0, tmp2, R->X);
218 ecp_sm2p256_mul(tmp0, tmp0, tmp1);
219 ecp_sm2p256_sub(tmp1, tmp0, R->Y);
220 memcpy(R->Y, tmp1, 32);
221 }
222
223 /* Point add affine: R <- P + Q */
224 static void ecp_sm2p256_point_add_affine(P256_POINT *R, const P256_POINT *P,
225 const P256_POINT_AFFINE *Q)
226 {
227 unsigned int i;
228 ALIGN32 BN_ULONG tmp0[P256_LIMBS] = {0};
229 ALIGN32 BN_ULONG tmp1[P256_LIMBS] = {0};
230 ALIGN32 BN_ULONG tmp2[P256_LIMBS] = {0};
231 ALIGN32 BN_ULONG tmp3[P256_LIMBS] = {0};
232
233 /* zero-check P->Z */
234 if (is_zeros(P->Z)) {
235 for (i = 0; i < P256_LIMBS; ++i) {
236 R->X[i] = Q->X[i];
237 R->Y[i] = Q->Y[i];
238 R->Z[i] = 0;
239 }
240 R->Z[0] = 1;
241
242 return;
243 }
244
245 ecp_sm2p256_sqr(tmp0, P->Z);
246 ecp_sm2p256_mul(tmp1, tmp0, P->Z);
247 ecp_sm2p256_mul(tmp0, tmp0, Q->X);
248 ecp_sm2p256_mul(tmp1, tmp1, Q->Y);
249 ecp_sm2p256_sub(tmp0, tmp0, P->X);
250 ecp_sm2p256_sub(tmp1, tmp1, P->Y);
251
252 /* zero-check tmp0, tmp1 */
253 if (is_zeros(tmp0)) {
254 if (is_zeros(tmp1)) {
255 P256_POINT K;
256
257 for (i = 0; i < P256_LIMBS; ++i) {
258 K.X[i] = Q->X[i];
259 K.Y[i] = Q->Y[i];
260 K.Z[i] = 0;
261 }
262 K.Z[0] = 1;
263 ecp_sm2p256_point_double(R, &K);
264 } else {
265 for (i = 0; i < P256_LIMBS; ++i)
266 R->Z[i] = 0;
267 }
268
269 return;
270 }
271
272 ecp_sm2p256_mul(R->Z, P->Z, tmp0);
273 ecp_sm2p256_sqr(tmp2, tmp0);
274 ecp_sm2p256_mul(tmp3, tmp2, tmp0);
275 ecp_sm2p256_mul(tmp2, tmp2, P->X);
276 ecp_sm2p256_add(tmp0, tmp2, tmp2);
277 ecp_sm2p256_sqr(R->X, tmp1);
278 ecp_sm2p256_sub(R->X, R->X, tmp0);
279 ecp_sm2p256_sub(R->X, R->X, tmp3);
280 ecp_sm2p256_sub(tmp2, tmp2, R->X);
281 ecp_sm2p256_mul(tmp2, tmp2, tmp1);
282 ecp_sm2p256_mul(tmp3, tmp3, P->Y);
283 ecp_sm2p256_sub(R->Y, tmp2, tmp3);
284 }
285
286 /* Point add: R <- P + Q */
287 static void ecp_sm2p256_point_add(P256_POINT *R, const P256_POINT *P,
288 const P256_POINT *Q)
289 {
290 unsigned int i;
291 ALIGN32 BN_ULONG tmp0[P256_LIMBS] = {0};
292 ALIGN32 BN_ULONG tmp1[P256_LIMBS] = {0};
293 ALIGN32 BN_ULONG tmp2[P256_LIMBS] = {0};
294
295 /* zero-check P | Q ->Z */
296 if (is_zeros(P->Z)) {
297 for (i = 0; i < P256_LIMBS; ++i) {
298 R->X[i] = Q->X[i];
299 R->Y[i] = Q->Y[i];
300 R->Z[i] = Q->Z[i];
301 }
302
303 return;
304 } else if (is_zeros(Q->Z)) {
305 for (i = 0; i < P256_LIMBS; ++i) {
306 R->X[i] = P->X[i];
307 R->Y[i] = P->Y[i];
308 R->Z[i] = P->Z[i];
309 }
310
311 return;
312 } else if (is_point_equal(P, Q)) {
313 ecp_sm2p256_point_double(R, Q);
314
315 return;
316 }
317
318 ecp_sm2p256_sqr(tmp0, P->Z);
319 ecp_sm2p256_mul(tmp1, tmp0, P->Z);
320 ecp_sm2p256_mul(tmp0, tmp0, Q->X);
321 ecp_sm2p256_mul(tmp1, tmp1, Q->Y);
322 ecp_sm2p256_mul(R->Y, P->Y, Q->Z);
323 ecp_sm2p256_mul(R->Z, Q->Z, P->Z);
324 ecp_sm2p256_sqr(tmp2, Q->Z);
325 ecp_sm2p256_mul(R->Y, tmp2, R->Y);
326 ecp_sm2p256_mul(R->X, tmp2, P->X);
327 ecp_sm2p256_sub(tmp0, tmp0, R->X);
328 ecp_sm2p256_mul(R->Z, tmp0, R->Z);
329 ecp_sm2p256_sub(tmp1, tmp1, R->Y);
330 ecp_sm2p256_sqr(tmp2, tmp0);
331 ecp_sm2p256_mul(tmp0, tmp0, tmp2);
332 ecp_sm2p256_mul(tmp2, tmp2, R->X);
333 ecp_sm2p256_sqr(R->X, tmp1);
334 ecp_sm2p256_sub(R->X, R->X, tmp2);
335 ecp_sm2p256_sub(R->X, R->X, tmp2);
336 ecp_sm2p256_sub(R->X, R->X, tmp0);
337 ecp_sm2p256_sub(tmp2, tmp2, R->X);
338 ecp_sm2p256_mul(tmp2, tmp1, tmp2);
339 ecp_sm2p256_mul(tmp0, tmp0, R->Y);
340 ecp_sm2p256_sub(R->Y, tmp2, tmp0);
341 }
342
343 #if !defined(OPENSSL_NO_SM2_PRECOMP)
344 /* Base point mul by scalar: k - scalar, G - base point */
345 static void ecp_sm2p256_point_G_mul_by_scalar(P256_POINT *R, const BN_ULONG *k)
346 {
347 unsigned int i, index, mask = 0xff;
348 P256_POINT_AFFINE Q;
349
350 memset(R, 0, sizeof(P256_POINT));
351
352 if (is_zeros(k))
353 return;
354
355 index = k[0] & mask;
356 if (index) {
357 index = index * 8;
358 memcpy(R->X, ecp_sm2p256_precomputed + index, 32);
359 memcpy(R->Y, ecp_sm2p256_precomputed + index + P256_LIMBS, 32);
360 R->Z[0] = 1;
361 }
362
363 for (i = 1; i < 32; ++i) {
364 index = (k[i / 8] >> (8 * (i % 8))) & mask;
365
366 if (index) {
367 index = index + i * 256;
368 index = index * 8;
369 memcpy(Q.X, ecp_sm2p256_precomputed + index, 32);
370 memcpy(Q.Y, ecp_sm2p256_precomputed + index + P256_LIMBS, 32);
371 ecp_sm2p256_point_add_affine(R, R, &Q);
372 }
373 }
374 }
375 #endif
376
377 /*
378 * Affine point mul by scalar: k - scalar, P - affine point
379 */
380 static void ecp_sm2p256_point_P_mul_by_scalar(P256_POINT *R, const BN_ULONG *k,
381 P256_POINT_AFFINE P)
382 {
383 int i, init = 0;
384 unsigned int index, mask = 0x0f;
385 ALIGN64 P256_POINT precomputed[16];
386
387 memset(R, 0, sizeof(P256_POINT));
388
389 if (is_zeros(k))
390 return;
391
392 /* The first value of the precomputed table is P. */
393 memcpy(precomputed[1].X, P.X, 32);
394 memcpy(precomputed[1].Y, P.Y, 32);
395 precomputed[1].Z[0] = 1;
396 precomputed[1].Z[1] = 0;
397 precomputed[1].Z[2] = 0;
398 precomputed[1].Z[3] = 0;
399
400 /* The second value of the precomputed table is 2P. */
401 ecp_sm2p256_point_double(&precomputed[2], &precomputed[1]);
402
403 /* The subsequent elements are 3P, 4P, and so on. */
404 for (i = 3; i < 16; ++i)
405 ecp_sm2p256_point_add_affine(&precomputed[i], &precomputed[i - 1], &P);
406
407 for (i = 64 - 1; i >= 0; --i) {
408 index = (k[i / 16] >> (4 * (i % 16))) & mask;
409
410 if (init == 0) {
411 if (index) {
412 memcpy(R, &precomputed[index], sizeof(P256_POINT));
413 init = 1;
414 }
415 } else {
416 ecp_sm2p256_point_double(R, R);
417 ecp_sm2p256_point_double(R, R);
418 ecp_sm2p256_point_double(R, R);
419 ecp_sm2p256_point_double(R, R);
420 if (index)
421 ecp_sm2p256_point_add(R, R, &precomputed[index]);
422 }
423 }
424 }
425
426 /* Get affine point */
427 static void ecp_sm2p256_point_get_affine(P256_POINT_AFFINE *R,
428 const P256_POINT *P)
429 {
430 ALIGN32 BN_ULONG z_inv3[P256_LIMBS] = {0};
431 ALIGN32 BN_ULONG z_inv2[P256_LIMBS] = {0};
432
433 if (is_one(P->Z)) {
434 memcpy(R->X, P->X, 32);
435 memcpy(R->Y, P->Y, 32);
436 return;
437 }
438
439 ecp_sm2p256_mod_inverse(z_inv3, P->Z);
440 ecp_sm2p256_sqr(z_inv2, z_inv3);
441 ecp_sm2p256_mul(R->X, P->X, z_inv2);
442 ecp_sm2p256_mul(z_inv3, z_inv3, z_inv2);
443 ecp_sm2p256_mul(R->Y, P->Y, z_inv3);
444 }
445
446 #if !defined(OPENSSL_NO_SM2_PRECOMP)
447 static int ecp_sm2p256_is_affine_G(const EC_POINT *generator)
448 {
449 return (bn_get_top(generator->X) == P256_LIMBS)
450 && (bn_get_top(generator->Y) == P256_LIMBS)
451 && is_equal(bn_get_words(generator->X), def_xG)
452 && is_equal(bn_get_words(generator->Y), def_yG)
453 && (generator->Z_is_one == 1);
454 }
455 #endif
456
457 /*
458 * Convert Jacobian coordinate point into affine coordinate (x,y)
459 */
460 static int ecp_sm2p256_get_affine(const EC_GROUP *group,
461 const EC_POINT *point,
462 BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
463 {
464 ALIGN32 BN_ULONG z_inv2[P256_LIMBS] = {0};
465 ALIGN32 BN_ULONG z_inv3[P256_LIMBS] = {0};
466 ALIGN32 BN_ULONG x_aff[P256_LIMBS] = {0};
467 ALIGN32 BN_ULONG y_aff[P256_LIMBS] = {0};
468 ALIGN32 BN_ULONG point_x[P256_LIMBS] = {0};
469 ALIGN32 BN_ULONG point_y[P256_LIMBS] = {0};
470 ALIGN32 BN_ULONG point_z[P256_LIMBS] = {0};
471
472 if (EC_POINT_is_at_infinity(group, point)) {
473 ECerr(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
474 return 0;
475 }
476
477 if (ecp_sm2p256_bignum_field_elem(point_x, point->X) <= 0
478 || ecp_sm2p256_bignum_field_elem(point_y, point->Y) <= 0
479 || ecp_sm2p256_bignum_field_elem(point_z, point->Z) <= 0) {
480 ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
481 return 0;
482 }
483
484 ecp_sm2p256_mod_inverse(z_inv3, point_z);
485 ecp_sm2p256_sqr(z_inv2, z_inv3);
486
487 if (x != NULL) {
488 ecp_sm2p256_mul(x_aff, point_x, z_inv2);
489 if (!bn_set_words(x, x_aff, P256_LIMBS))
490 return 0;
491 }
492
493 if (y != NULL) {
494 ecp_sm2p256_mul(z_inv3, z_inv3, z_inv2);
495 ecp_sm2p256_mul(y_aff, point_y, z_inv3);
496 if (!bn_set_words(y, y_aff, P256_LIMBS))
497 return 0;
498 }
499
500 return 1;
501 }
502
503 /* r = sum(scalar[i]*point[i]) */
504 static int ecp_sm2p256_windowed_mul(const EC_GROUP *group,
505 P256_POINT *r,
506 const BIGNUM **scalar,
507 const EC_POINT **point,
508 size_t num, BN_CTX *ctx)
509 {
510 unsigned int i;
511 int ret = 0;
512 const BIGNUM **scalars = NULL;
513 ALIGN32 BN_ULONG k[P256_LIMBS] = {0};
514 P256_POINT kP;
515 ALIGN32 union {
516 P256_POINT p;
517 P256_POINT_AFFINE a;
518 } t, p;
519
520 if (num > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
521 || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
522 ECerr(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
523 goto err;
524 }
525
526 memset(r, 0, sizeof(P256_POINT));
527
528 for (i = 0; i < num; i++) {
529 if (EC_POINT_is_at_infinity(group, point[i]))
530 continue;
531
532 if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
533 BIGNUM *tmp;
534
535 if ((tmp = BN_CTX_get(ctx)) == NULL)
536 goto err;
537 if (!BN_nnmod(tmp, scalar[i], group->order, ctx)) {
538 ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
539 goto err;
540 }
541 scalars[i] = tmp;
542 } else {
543 scalars[i] = scalar[i];
544 }
545
546 if (ecp_sm2p256_bignum_field_elem(k, scalars[i]) <= 0
547 || ecp_sm2p256_bignum_field_elem(p.p.X, point[i]->X) <= 0
548 || ecp_sm2p256_bignum_field_elem(p.p.Y, point[i]->Y) <= 0
549 || ecp_sm2p256_bignum_field_elem(p.p.Z, point[i]->Z) <= 0) {
550 ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
551 goto err;
552 }
553
554 ecp_sm2p256_point_get_affine(&t.a, &p.p);
555 ecp_sm2p256_point_P_mul_by_scalar(&kP, k, t.a);
556 ecp_sm2p256_point_add(r, r, &kP);
557 }
558
559 ret = 1;
560 err:
561 OPENSSL_free(scalars);
562 return ret;
563 }
564
565 /* r = scalar*G + sum(scalars[i]*points[i]) */
566 static int ecp_sm2p256_points_mul(const EC_GROUP *group,
567 EC_POINT *r,
568 const BIGNUM *scalar,
569 size_t num,
570 const EC_POINT *points[],
571 const BIGNUM *scalars[], BN_CTX *ctx)
572 {
573 int ret = 0, p_is_infinity = 0;
574 const EC_POINT *generator = NULL;
575 ALIGN32 BN_ULONG k[P256_LIMBS] = {0};
576 ALIGN32 union {
577 P256_POINT p;
578 P256_POINT_AFFINE a;
579 } t, p;
580
581 if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
582 ECerr(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
583 goto err;
584 }
585
586 BN_CTX_start(ctx);
587
588 if (scalar) {
589 generator = EC_GROUP_get0_generator(group);
590 if (generator == NULL) {
591 ECerr(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
592 goto err;
593 }
594
595 if (!ecp_sm2p256_bignum_field_elem(k, scalar)) {
596 ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
597 goto err;
598 }
599 #if !defined(OPENSSL_NO_SM2_PRECOMP)
600 if (ecp_sm2p256_is_affine_G(generator)) {
601 ecp_sm2p256_point_G_mul_by_scalar(&p.p, k);
602 } else
603 #endif
604 {
605 /* if no precomputed table */
606 const EC_POINT *new_generator[1];
607 const BIGNUM *g_scalars[1];
608
609 new_generator[0] = generator;
610 g_scalars[0] = scalar;
611
612 if (!ecp_sm2p256_windowed_mul(group, &p.p, g_scalars, new_generator,
613 (new_generator[0] != NULL
614 && g_scalars[0] != NULL), ctx))
615 goto err;
616 }
617 } else {
618 p_is_infinity = 1;
619 }
620 if (num) {
621 P256_POINT *out = &t.p;
622
623 if (p_is_infinity)
624 out = &p.p;
625
626 if (!ecp_sm2p256_windowed_mul(group, out, scalars, points, num, ctx))
627 goto err;
628
629 if (!p_is_infinity)
630 ecp_sm2p256_point_add(&p.p, &p.p, out);
631 }
632
633 /* Not constant-time, but we're only operating on the public output. */
634 if (!bn_set_words(r->X, p.p.X, P256_LIMBS)
635 || !bn_set_words(r->Y, p.p.Y, P256_LIMBS)
636 || !bn_set_words(r->Z, p.p.Z, P256_LIMBS))
637 goto err;
638 r->Z_is_one = is_equal(bn_get_words(r->Z), ONE) & 1;
639
640 ret = 1;
641 err:
642 BN_CTX_end(ctx);
643 return ret;
644 }
645
646 static int ecp_sm2p256_field_mul(const EC_GROUP *group, BIGNUM *r,
647 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
648 {
649 ALIGN32 BN_ULONG a_fe[P256_LIMBS] = {0};
650 ALIGN32 BN_ULONG b_fe[P256_LIMBS] = {0};
651 ALIGN32 BN_ULONG r_fe[P256_LIMBS] = {0};
652
653 if (a == NULL || b == NULL || r == NULL)
654 return 0;
655
656 if (!ecp_sm2p256_bignum_field_elem(a_fe, a)
657 || !ecp_sm2p256_bignum_field_elem(b_fe, b)) {
658 ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
659 return 0;
660 }
661
662 ecp_sm2p256_mul(r_fe, a_fe, b_fe);
663
664 if (!bn_set_words(r, r_fe, P256_LIMBS))
665 return 0;
666
667 return 1;
668 }
669
670 static int ecp_sm2p256_field_sqr(const EC_GROUP *group, BIGNUM *r,
671 const BIGNUM *a, BN_CTX *ctx)
672 {
673 ALIGN32 BN_ULONG a_fe[P256_LIMBS] = {0};
674 ALIGN32 BN_ULONG r_fe[P256_LIMBS] = {0};
675
676 if (a == NULL || r == NULL)
677 return 0;
678
679 if (!ecp_sm2p256_bignum_field_elem(a_fe, a)) {
680 ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
681 return 0;
682 }
683
684 ecp_sm2p256_sqr(r_fe, a_fe);
685
686 if (!bn_set_words(r, r_fe, P256_LIMBS))
687 return 0;
688
689 return 1;
690 }
691
692 static int ecp_sm2p256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
693 const BIGNUM *x, BN_CTX *ctx)
694 {
695 int ret = 0;
696 ALIGN32 BN_ULONG t[P256_LIMBS] = {0};
697 ALIGN32 BN_ULONG out[P256_LIMBS] = {0};
698
699 if (bn_wexpand(r, P256_LIMBS) == NULL) {
700 ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
701 goto err;
702 }
703
704 if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
705 BIGNUM *tmp;
706
707 if ((tmp = BN_CTX_get(ctx)) == NULL
708 || !BN_nnmod(tmp, x, group->order, ctx)) {
709 ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
710 goto err;
711 }
712 x = tmp;
713 }
714
715 if (!ecp_sm2p256_bignum_field_elem(t, x)) {
716 ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
717 goto err;
718 }
719
720 ecp_sm2p256_mod_ord_inverse(out, t);
721
722 if (!bn_set_words(r, out, P256_LIMBS))
723 goto err;
724
725 ret = 1;
726 err:
727 return ret;
728 }
729
730 const EC_METHOD *EC_GFp_sm2p256_method(void)
731 {
732 static const EC_METHOD ret = {
733 EC_FLAGS_DEFAULT_OCT,
734 NID_X9_62_prime_field,
735 ossl_ec_GFp_simple_group_init,
736 ossl_ec_GFp_simple_group_finish,
737 ossl_ec_GFp_simple_group_clear_finish,
738 ossl_ec_GFp_simple_group_copy,
739 ossl_ec_GFp_simple_group_set_curve,
740 ossl_ec_GFp_simple_group_get_curve,
741 ossl_ec_GFp_simple_group_get_degree,
742 ossl_ec_group_simple_order_bits,
743 ossl_ec_GFp_simple_group_check_discriminant,
744 ossl_ec_GFp_simple_point_init,
745 ossl_ec_GFp_simple_point_finish,
746 ossl_ec_GFp_simple_point_clear_finish,
747 ossl_ec_GFp_simple_point_copy,
748 ossl_ec_GFp_simple_point_set_to_infinity,
749 ossl_ec_GFp_simple_point_set_affine_coordinates,
750 ecp_sm2p256_get_affine,
751 0, 0, 0,
752 ossl_ec_GFp_simple_add,
753 ossl_ec_GFp_simple_dbl,
754 ossl_ec_GFp_simple_invert,
755 ossl_ec_GFp_simple_is_at_infinity,
756 ossl_ec_GFp_simple_is_on_curve,
757 ossl_ec_GFp_simple_cmp,
758 ossl_ec_GFp_simple_make_affine,
759 ossl_ec_GFp_simple_points_make_affine,
760 ecp_sm2p256_points_mul, /* mul */
761 0 /* precompute_mult */,
762 0 /* have_precompute_mult */,
763 ecp_sm2p256_field_mul,
764 ecp_sm2p256_field_sqr,
765 0 /* field_div */,
766 0 /* field_inv */,
767 0 /* field_encode */,
768 0 /* field_decode */,
769 0 /* field_set_to_one */,
770 ossl_ec_key_simple_priv2oct,
771 ossl_ec_key_simple_oct2priv,
772 0, /* set private */
773 ossl_ec_key_simple_generate_key,
774 ossl_ec_key_simple_check_key,
775 ossl_ec_key_simple_generate_public_key,
776 0, /* keycopy */
777 0, /* keyfinish */
778 ossl_ecdh_simple_compute_key,
779 ossl_ecdsa_simple_sign_setup,
780 ossl_ecdsa_simple_sign_sig,
781 ossl_ecdsa_simple_verify_sig,
782 ecp_sm2p256_inv_mod_ord,
783 0, /* blind_coordinates */
784 0, /* ladder_pre */
785 0, /* ladder_step */
786 0 /* ladder_post */
787 };
788
789 return &ret;
790 }