]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/engine/eng_rsax.c
Revert "Remove engine_rsax and its asm file."
[thirdparty/openssl.git] / crypto / engine / eng_rsax.c
1 /* crypto/engine/eng_rsax.c */
2 /* Copyright (c) 2010-2010 Intel Corp.
3 * Author: Vinodh.Gopal@intel.com
4 * Jim Guilford
5 * Erdinc.Ozturk@intel.com
6 * Maxim.Perminov@intel.com
7 * Ying.Huang@intel.com
8 *
9 * More information about algorithm used can be found at:
10 * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
11 */
12 /* ====================================================================
13 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 *
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 *
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in
24 * the documentation and/or other materials provided with the
25 * distribution.
26 *
27 * 3. All advertising materials mentioning features or use of this
28 * software must display the following acknowledgment:
29 * "This product includes software developed by the OpenSSL Project
30 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
31 *
32 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
33 * endorse or promote products derived from this software without
34 * prior written permission. For written permission, please contact
35 * licensing@OpenSSL.org.
36 *
37 * 5. Products derived from this software may not be called "OpenSSL"
38 * nor may "OpenSSL" appear in their names without prior written
39 * permission of the OpenSSL Project.
40 *
41 * 6. Redistributions of any form whatsoever must retain the following
42 * acknowledgment:
43 * "This product includes software developed by the OpenSSL Project
44 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
47 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
50 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
51 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
52 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
55 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
57 * OF THE POSSIBILITY OF SUCH DAMAGE.
58 * ====================================================================
59 *
60 * This product includes cryptographic software written by Eric Young
61 * (eay@cryptsoft.com). This product includes software written by Tim
62 * Hudson (tjh@cryptsoft.com).
63 */
64
65 #include <openssl/opensslconf.h>
66
67 #include <stdio.h>
68 #include <string.h>
69 #include <openssl/crypto.h>
70 #include <openssl/buffer.h>
71 #include <openssl/engine.h>
72 #ifndef OPENSSL_NO_RSA
73 # include <openssl/rsa.h>
74 #endif
75 #include <openssl/bn.h>
76 #include <openssl/err.h>
77
78 /* RSAX is available **ONLY* on x86_64 CPUs */
79 #undef COMPILE_RSAX
80
81 #if (defined(__x86_64) || defined(__x86_64__) || \
82 defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
83 # define COMPILE_RSAX
84 static ENGINE *ENGINE_rsax(void);
85 #endif
86
87 void ENGINE_load_rsax(void)
88 {
89 /* On non-x86 CPUs it just returns. */
90 #ifdef COMPILE_RSAX
91 ENGINE *toadd = ENGINE_rsax();
92 if (!toadd)
93 return;
94 ENGINE_add(toadd);
95 ENGINE_free(toadd);
96 ERR_clear_error();
97 #endif
98 }
99
100 #ifdef COMPILE_RSAX
101 # define E_RSAX_LIB_NAME "rsax engine"
102
103 static int e_rsax_destroy(ENGINE *e);
104 static int e_rsax_init(ENGINE *e);
105 static int e_rsax_finish(ENGINE *e);
106 static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
107
108 # ifndef OPENSSL_NO_RSA
109 /* RSA stuff */
110 static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa,
111 BN_CTX *ctx);
112 static int e_rsax_rsa_finish(RSA *r);
113 # endif
114
115 static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
116 {0, NULL, NULL, 0}
117 };
118
119 # ifndef OPENSSL_NO_RSA
120 /* Our internal RSA_METHOD that we provide pointers to */
121 static RSA_METHOD e_rsax_rsa = {
122 "Intel RSA-X method",
123 NULL,
124 NULL,
125 NULL,
126 NULL,
127 e_rsax_rsa_mod_exp,
128 NULL,
129 NULL,
130 e_rsax_rsa_finish,
131 RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE,
132 NULL,
133 NULL,
134 NULL
135 };
136 # endif
137
138 /* Constants used when creating the ENGINE */
139 static const char *engine_e_rsax_id = "rsax";
140 static const char *engine_e_rsax_name = "RSAX engine support";
141
142 /* This internal function is used by ENGINE_rsax() */
143 static int bind_helper(ENGINE *e)
144 {
145 # ifndef OPENSSL_NO_RSA
146 const RSA_METHOD *meth1;
147 # endif
148 if (!ENGINE_set_id(e, engine_e_rsax_id) ||
149 !ENGINE_set_name(e, engine_e_rsax_name) ||
150 # ifndef OPENSSL_NO_RSA
151 !ENGINE_set_RSA(e, &e_rsax_rsa) ||
152 # endif
153 !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
154 !ENGINE_set_init_function(e, e_rsax_init) ||
155 !ENGINE_set_finish_function(e, e_rsax_finish) ||
156 !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
157 !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
158 return 0;
159
160 # ifndef OPENSSL_NO_RSA
161 meth1 = RSA_PKCS1_SSLeay();
162 e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
163 e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
164 e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
165 e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
166 e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
167 # endif
168 return 1;
169 }
170
171 static ENGINE *ENGINE_rsax(void)
172 {
173 ENGINE *ret = ENGINE_new();
174 if (!ret)
175 return NULL;
176 if (!bind_helper(ret)) {
177 ENGINE_free(ret);
178 return NULL;
179 }
180 return ret;
181 }
182
183 # ifndef OPENSSL_NO_RSA
184 /* Used to attach our own key-data to an RSA structure */
185 static int rsax_ex_data_idx = -1;
186 # endif
187
188 static int e_rsax_destroy(ENGINE *e)
189 {
190 return 1;
191 }
192
193 /* (de)initialisation functions. */
194 static int e_rsax_init(ENGINE *e)
195 {
196 # ifndef OPENSSL_NO_RSA
197 if (rsax_ex_data_idx == -1)
198 rsax_ex_data_idx = RSA_get_ex_new_index(0, NULL, NULL, NULL, NULL);
199 # endif
200 if (rsax_ex_data_idx == -1)
201 return 0;
202 return 1;
203 }
204
205 static int e_rsax_finish(ENGINE *e)
206 {
207 return 1;
208 }
209
210 static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
211 {
212 int to_return = 1;
213
214 switch (cmd) {
215 /* The command isn't understood by this engine */
216 default:
217 to_return = 0;
218 break;
219 }
220
221 return to_return;
222 }
223
224 # ifndef OPENSSL_NO_RSA
225
226 # ifdef _WIN32
227 typedef unsigned __int64 UINT64;
228 # else
229 typedef unsigned long long UINT64;
230 # endif
231 typedef unsigned short UINT16;
232
233 /*
234 * Table t is interleaved in the following manner: The order in memory is
235 * t[0][0], t[0][1], ..., t[0][7], t[1][0], ... A particular 512-bit value is
236 * stored in t[][index] rather than the more normal t[index][]; i.e. the
237 * qwords of a particular entry in t are not adjacent in memory
238 */
239
240 /* Init BIGNUM b from the interleaved UINT64 array */
241 static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array);
242
243 /*
244 * Extract array elements from BIGNUM b To set the whole array from b, call
245 * with n=8
246 */
247 static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
248 UINT64 *array);
249
250 struct mod_ctx_512 {
251 UINT64 t[8][8];
252 UINT64 m[8];
253 UINT64 m1[8]; /* 2^278 % m */
254 UINT64 m2[8]; /* 2^640 % m */
255 UINT64 k1[2]; /* (- 1/m) % 2^128 */
256 };
257
258 static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);
259
260 void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
261 UINT64 *g, /* 512 bits, 8 qwords */
262 UINT64 *exp, /* 512 bits, 8 qwords */
263 struct mod_ctx_512 *data);
264
265 typedef struct st_e_rsax_mod_ctx {
266 UINT64 type;
267 union {
268 struct mod_ctx_512 b512;
269 } ctx;
270
271 } E_RSAX_MOD_CTX;
272
273 static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM *m)
274 {
275 E_RSAX_MOD_CTX *hptr;
276
277 if (idx < 0 || idx > 2)
278 return NULL;
279
280 hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
281 if (!hptr) {
282 hptr = OPENSSL_malloc(3 * sizeof(E_RSAX_MOD_CTX));
283 if (!hptr)
284 return NULL;
285 hptr[2].type = hptr[1].type = hptr[0].type = 0;
286 RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
287 }
288
289 if (hptr[idx].type == (UINT64)BN_num_bits(m))
290 return hptr + idx;
291
292 if (BN_num_bits(m) == 512) {
293 UINT64 _m[8];
294 bn_extract_to_array_512(m, 8, _m);
295 memset(&hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
296 mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
297 }
298
299 hptr[idx].type = BN_num_bits(m);
300 return hptr + idx;
301 }
302
303 static int e_rsax_rsa_finish(RSA *rsa)
304 {
305 E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
306 if (hptr) {
307 OPENSSL_free(hptr);
308 RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
309 }
310 if (rsa->_method_mod_n)
311 BN_MONT_CTX_free(rsa->_method_mod_n);
312 if (rsa->_method_mod_p)
313 BN_MONT_CTX_free(rsa->_method_mod_p);
314 if (rsa->_method_mod_q)
315 BN_MONT_CTX_free(rsa->_method_mod_q);
316 return 1;
317 }
318
319 static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
320 const BIGNUM *m, BN_CTX *ctx,
321 BN_MONT_CTX *in_mont,
322 E_RSAX_MOD_CTX *rsax_mod_ctx)
323 {
324 if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
325 if (BN_num_bits(m) == 512) {
326 UINT64 _r[8];
327 UINT64 _g[8];
328 UINT64 _e[8];
329
330 /* Init the arrays from the BIGNUMs */
331 bn_extract_to_array_512(g, 8, _g);
332 bn_extract_to_array_512(e, 8, _e);
333
334 mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
335 /* Return the result in the BIGNUM */
336 interleaved_array_to_bn_512(r, _r);
337 return 1;
338 }
339 }
340
341 return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
342 }
343
344 /*
345 * Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
346 * exponentiation routine precalculations and a structure to hold the
347 * necessary values. These files are meant to live in crypto/rsa/ in the
348 * target openssl.
349 */
350
351 /*
352 * Local method: extracts a piece from a BIGNUM, to fit it into
353 * an array. Call with n=8 to extract an entire 512-bit BIGNUM
354 */
355 static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
356 UINT64 *array)
357 {
358 int i;
359 UINT64 tmp;
360 unsigned char bn_buff[64];
361 memset(bn_buff, 0, 64);
362 if (BN_num_bytes(b) > 64) {
363 printf("Can't support this byte size\n");
364 return 0;
365 }
366 if (BN_num_bytes(b) != 0) {
367 if (!BN_bn2bin(b, bn_buff + (64 - BN_num_bytes(b)))) {
368 printf("Error's in bn2bin\n");
369 /* We have to error, here */
370 return 0;
371 }
372 }
373 while (n-- > 0) {
374 array[n] = 0;
375 for (i = 7; i >= 0; i--) {
376 tmp = bn_buff[63 - (n * 8 + i)];
377 array[n] |= tmp << (8 * i);
378 }
379 }
380 return 1;
381 }
382
383 /* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
384 static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array)
385 {
386 unsigned char tmp[64];
387 int n = 8;
388 int i;
389 while (n-- > 0) {
390 for (i = 7; i >= 0; i--) {
391 tmp[63 - (n * 8 + i)] = (unsigned char)(array[n] >> (8 * i));
392 }}
393 BN_bin2bn(tmp, 64, b);
394 return 0;
395 }
396
397 /* The main 512bit precompute call */
398 static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
399 {
400 BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;
401
402 /* We need a BN_CTX for the modulo functions */
403 BN_CTX *ctx;
404 /* Some tmps */
405 UINT64 _t[8];
406 int i, j, ret = 0;
407
408 /* Init _m with m */
409 BN_init(&_m);
410 interleaved_array_to_bn_512(&_m, m);
411 memset(_t, 0, 64);
412
413 /* Inits */
414 BN_init(&two_768);
415 BN_init(&two_640);
416 BN_init(&two_128);
417 BN_init(&two_512);
418 BN_init(&tmp);
419 BN_init(&tmp2);
420
421 /* Create our context */
422 if ((ctx = BN_CTX_new()) == NULL) {
423 goto err;
424 }
425 BN_CTX_start(ctx);
426
427 /*
428 * For production, if you care, these only need to be set once,
429 * and may be made constants.
430 */
431 BN_lshift(&two_768, BN_value_one(), 768);
432 BN_lshift(&two_640, BN_value_one(), 640);
433 BN_lshift(&two_128, BN_value_one(), 128);
434 BN_lshift(&two_512, BN_value_one(), 512);
435
436 if (0 == (m[7] & 0x8000000000000000)) {
437 exit(1);
438 }
439 if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */
440 exit(1);
441 }
442
443 /* Precompute m1 */
444 BN_mod(&tmp, &two_768, &_m, ctx);
445 if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
446 goto err;
447 }
448
449 /* Precompute m2 */
450 BN_mod(&tmp, &two_640, &_m, ctx);
451 if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
452 goto err;
453 }
454
455 /*
456 * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
457 * be non-negative.
458 */
459 BN_mod_inverse(&tmp, &_m, &two_128, ctx);
460 if (!BN_is_zero(&tmp)) {
461 BN_sub(&tmp, &two_128, &tmp);
462 }
463 if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
464 goto err;
465 }
466
467 /* Precompute t */
468 for (i = 0; i < 8; i++) {
469 BN_zero(&tmp);
470 if (i & 1) {
471 BN_add(&tmp, &two_512, &tmp);
472 }
473 if (i & 2) {
474 BN_add(&tmp, &two_512, &tmp);
475 }
476 if (i & 4) {
477 BN_add(&tmp, &two_640, &tmp);
478 }
479
480 BN_nnmod(&tmp2, &tmp, &_m, ctx);
481 if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
482 goto err;
483 }
484 for (j = 0; j < 8; j++)
485 data->t[j][i] = _t[j];
486 }
487
488 /* Precompute m */
489 for (i = 0; i < 8; i++) {
490 data->m[i] = m[i];
491 }
492
493 ret = 1;
494
495 err:
496 /* Cleanup */
497 if (ctx != NULL) {
498 BN_CTX_end(ctx);
499 BN_CTX_free(ctx);
500 }
501 BN_free(&two_768);
502 BN_free(&two_640);
503 BN_free(&two_128);
504 BN_free(&two_512);
505 BN_free(&tmp);
506 BN_free(&tmp2);
507 BN_free(&_m);
508
509 return ret;
510 }
511
512 static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
513 BN_CTX *ctx)
514 {
515 BIGNUM *r1, *m1, *vrfy;
516 BIGNUM local_dmp1, local_dmq1, local_c, local_r1;
517 BIGNUM *dmp1, *dmq1, *c, *pr1;
518 int ret = 0;
519
520 BN_CTX_start(ctx);
521 r1 = BN_CTX_get(ctx);
522 m1 = BN_CTX_get(ctx);
523 vrfy = BN_CTX_get(ctx);
524
525 {
526 BIGNUM local_p, local_q;
527 BIGNUM *p = NULL, *q = NULL;
528 int error = 0;
529
530 /*
531 * Make sure BN_mod_inverse in Montgomery intialization uses the
532 * BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set)
533 */
534 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
535 BN_init(&local_p);
536 p = &local_p;
537 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
538
539 BN_init(&local_q);
540 q = &local_q;
541 BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
542 } else {
543 p = rsa->p;
544 q = rsa->q;
545 }
546
547 if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
548 if (!BN_MONT_CTX_set_locked
549 (&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
550 error = 1;
551 if (!BN_MONT_CTX_set_locked
552 (&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
553 error = 1;
554 }
555
556 /* clean up */
557 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
558 BN_free(&local_p);
559 BN_free(&local_q);
560 }
561 if (error)
562 goto err;
563 }
564
565 if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
566 if (!BN_MONT_CTX_set_locked
567 (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
568 goto err;
569
570 /* compute I mod q */
571 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
572 c = &local_c;
573 BN_with_flags(c, I, BN_FLG_CONSTTIME);
574 if (!BN_mod(r1, c, rsa->q, ctx))
575 goto err;
576 } else {
577 if (!BN_mod(r1, I, rsa->q, ctx))
578 goto err;
579 }
580
581 /* compute r1^dmq1 mod q */
582 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
583 dmq1 = &local_dmq1;
584 BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
585 } else
586 dmq1 = rsa->dmq1;
587
588 if (!e_rsax_bn_mod_exp(m1, r1, dmq1, rsa->q, ctx,
589 rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0,
590 rsa->q)))
591 goto err;
592
593 /* compute I mod p */
594 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
595 c = &local_c;
596 BN_with_flags(c, I, BN_FLG_CONSTTIME);
597 if (!BN_mod(r1, c, rsa->p, ctx))
598 goto err;
599 } else {
600 if (!BN_mod(r1, I, rsa->p, ctx))
601 goto err;
602 }
603
604 /* compute r1^dmp1 mod p */
605 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
606 dmp1 = &local_dmp1;
607 BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
608 } else
609 dmp1 = rsa->dmp1;
610
611 if (!e_rsax_bn_mod_exp(r0, r1, dmp1, rsa->p, ctx,
612 rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1,
613 rsa->p)))
614 goto err;
615
616 if (!BN_sub(r0, r0, m1))
617 goto err;
618 /*
619 * This will help stop the size of r0 increasing, which does affect the
620 * multiply if it optimised for a power of 2 size
621 */
622 if (BN_is_negative(r0))
623 if (!BN_add(r0, r0, rsa->p))
624 goto err;
625
626 if (!BN_mul(r1, r0, rsa->iqmp, ctx))
627 goto err;
628
629 /* Turn BN_FLG_CONSTTIME flag on before division operation */
630 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
631 pr1 = &local_r1;
632 BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
633 } else
634 pr1 = r1;
635 if (!BN_mod(r0, pr1, rsa->p, ctx))
636 goto err;
637
638 /*
639 * If p < q it is occasionally possible for the correction of adding 'p'
640 * if r0 is negative above to leave the result still negative. This can
641 * break the private key operations: the following second correction
642 * should *always* correct this rare occurrence. This will *never* happen
643 * with OpenSSL generated keys because they ensure p > q [steve]
644 */
645 if (BN_is_negative(r0))
646 if (!BN_add(r0, r0, rsa->p))
647 goto err;
648 if (!BN_mul(r1, r0, rsa->q, ctx))
649 goto err;
650 if (!BN_add(r0, r1, m1))
651 goto err;
652
653 if (rsa->e && rsa->n) {
654 if (!e_rsax_bn_mod_exp
655 (vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n,
656 e_rsax_get_ctx(rsa, 2, rsa->n)))
657 goto err;
658
659 /*
660 * If 'I' was greater than (or equal to) rsa->n, the operation will
661 * be equivalent to using 'I mod n'. However, the result of the
662 * verify will *always* be less than 'n' so we don't check for
663 * absolute equality, just congruency.
664 */
665 if (!BN_sub(vrfy, vrfy, I))
666 goto err;
667 if (!BN_mod(vrfy, vrfy, rsa->n, ctx))
668 goto err;
669 if (BN_is_negative(vrfy))
670 if (!BN_add(vrfy, vrfy, rsa->n))
671 goto err;
672 if (!BN_is_zero(vrfy)) {
673 /*
674 * 'I' and 'vrfy' aren't congruent mod n. Don't leak
675 * miscalculated CRT output, just do a raw (slower) mod_exp and
676 * return that instead.
677 */
678
679 BIGNUM local_d;
680 BIGNUM *d = NULL;
681
682 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
683 d = &local_d;
684 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
685 } else
686 d = rsa->d;
687 if (!e_rsax_bn_mod_exp(r0, I, d, rsa->n, ctx,
688 rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2,
689 rsa->n)))
690 goto err;
691 }
692 }
693 ret = 1;
694
695 err:
696 BN_CTX_end(ctx);
697
698 return ret;
699 }
700 # endif /* !OPENSSL_NO_RSA */
701 #endif /* !COMPILE_RSAX */