]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/evp/e_aes_cbc_hmac_sha1.c
Remove obsolete defined(__INTEL__) condition.
[thirdparty/openssl.git] / crypto / evp / e_aes_cbc_hmac_sha1.c
1 /* ====================================================================
2 * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
48 */
49
50 #include <openssl/opensslconf.h>
51
52 #include <stdio.h>
53 #include <string.h>
54
55 #include <openssl/evp.h>
56 #include <openssl/objects.h>
57 #include <openssl/aes.h>
58 #include <openssl/sha.h>
59 #include <openssl/rand.h>
60 #include "modes_lcl.h"
61 #include "internal/evp_int.h"
62
63 #ifndef EVP_CIPH_FLAG_AEAD_CIPHER
64 # define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
65 # define EVP_CTRL_AEAD_TLS1_AAD 0x16
66 # define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
67 #endif
68
69 #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
70 # define EVP_CIPH_FLAG_DEFAULT_ASN1 0
71 #endif
72
73 #if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
74 # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
75 #endif
76
77 #define TLS1_1_VERSION 0x0302
78
79 typedef struct {
80 AES_KEY ks;
81 SHA_CTX head, tail, md;
82 size_t payload_length; /* AAD length in decrypt case */
83 union {
84 unsigned int tls_ver;
85 unsigned char tls_aad[16]; /* 13 used */
86 } aux;
87 } EVP_AES_HMAC_SHA1;
88
89 #define NO_PAYLOAD_LENGTH ((size_t)-1)
90
91 #if defined(AES_ASM) && ( \
92 defined(__x86_64) || defined(__x86_64__) || \
93 defined(_M_AMD64) || defined(_M_X64) )
94
95 extern unsigned int OPENSSL_ia32cap_P[];
96 # define AESNI_CAPABLE (1<<(57-32))
97
98 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
99 AES_KEY *key);
100 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
101 AES_KEY *key);
102
103 void aesni_cbc_encrypt(const unsigned char *in,
104 unsigned char *out,
105 size_t length,
106 const AES_KEY *key, unsigned char *ivec, int enc);
107
108 void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
109 const AES_KEY *key, unsigned char iv[16],
110 SHA_CTX *ctx, const void *in0);
111
112 void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
113 const AES_KEY *key, unsigned char iv[16],
114 SHA_CTX *ctx, const void *in0);
115
116 # define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
117
118 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
119 const unsigned char *inkey,
120 const unsigned char *iv, int enc)
121 {
122 EVP_AES_HMAC_SHA1 *key = data(ctx);
123 int ret;
124
125 if (enc)
126 ret = aesni_set_encrypt_key(inkey,
127 EVP_CIPHER_CTX_key_length(ctx) * 8,
128 &key->ks);
129 else
130 ret = aesni_set_decrypt_key(inkey,
131 EVP_CIPHER_CTX_key_length(ctx) * 8,
132 &key->ks);
133
134 SHA1_Init(&key->head); /* handy when benchmarking */
135 key->tail = key->head;
136 key->md = key->head;
137
138 key->payload_length = NO_PAYLOAD_LENGTH;
139
140 return ret < 0 ? 0 : 1;
141 }
142
143 # define STITCHED_CALL
144 # undef STITCHED_DECRYPT_CALL
145
146 # if !defined(STITCHED_CALL)
147 # define aes_off 0
148 # endif
149
150 void sha1_block_data_order(void *c, const void *p, size_t len);
151
152 static void sha1_update(SHA_CTX *c, const void *data, size_t len)
153 {
154 const unsigned char *ptr = data;
155 size_t res;
156
157 if ((res = c->num)) {
158 res = SHA_CBLOCK - res;
159 if (len < res)
160 res = len;
161 SHA1_Update(c, ptr, res);
162 ptr += res;
163 len -= res;
164 }
165
166 res = len % SHA_CBLOCK;
167 len -= res;
168
169 if (len) {
170 sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
171
172 ptr += len;
173 c->Nh += len >> 29;
174 c->Nl += len <<= 3;
175 if (c->Nl < (unsigned int)len)
176 c->Nh++;
177 }
178
179 if (res)
180 SHA1_Update(c, ptr, res);
181 }
182
183 # ifdef SHA1_Update
184 # undef SHA1_Update
185 # endif
186 # define SHA1_Update sha1_update
187
188 # if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
189
190 typedef struct {
191 unsigned int A[8], B[8], C[8], D[8], E[8];
192 } SHA1_MB_CTX;
193 typedef struct {
194 const unsigned char *ptr;
195 int blocks;
196 } HASH_DESC;
197
198 void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
199
200 typedef struct {
201 const unsigned char *inp;
202 unsigned char *out;
203 int blocks;
204 u64 iv[2];
205 } CIPH_DESC;
206
207 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
208
209 static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
210 unsigned char *out,
211 const unsigned char *inp,
212 size_t inp_len, int n4x)
213 { /* n4x is 1 or 2 */
214 HASH_DESC hash_d[8], edges[8];
215 CIPH_DESC ciph_d[8];
216 unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
217 union {
218 u64 q[16];
219 u32 d[32];
220 u8 c[128];
221 } blocks[8];
222 SHA1_MB_CTX *ctx;
223 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
224 0;
225 size_t ret = 0;
226 u8 *IVs;
227 # if defined(BSWAP8)
228 u64 seqnum;
229 # endif
230
231 /* ask for IVs in bulk */
232 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
233 return 0;
234
235 ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
236
237 frag = (unsigned int)inp_len >> (1 + n4x);
238 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
239 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
240 frag++;
241 last -= x4 - 1;
242 }
243
244 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
245
246 /* populate descriptors with pointers and IVs */
247 hash_d[0].ptr = inp;
248 ciph_d[0].inp = inp;
249 /* 5+16 is place for header and explicit IV */
250 ciph_d[0].out = out + 5 + 16;
251 memcpy(ciph_d[0].out - 16, IVs, 16);
252 memcpy(ciph_d[0].iv, IVs, 16);
253 IVs += 16;
254
255 for (i = 1; i < x4; i++) {
256 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
257 ciph_d[i].out = ciph_d[i - 1].out + packlen;
258 memcpy(ciph_d[i].out - 16, IVs, 16);
259 memcpy(ciph_d[i].iv, IVs, 16);
260 IVs += 16;
261 }
262
263 # if defined(BSWAP8)
264 memcpy(blocks[0].c, key->md.data, 8);
265 seqnum = BSWAP8(blocks[0].q[0]);
266 # endif
267 for (i = 0; i < x4; i++) {
268 unsigned int len = (i == (x4 - 1) ? last : frag);
269 # if !defined(BSWAP8)
270 unsigned int carry, j;
271 # endif
272
273 ctx->A[i] = key->md.h0;
274 ctx->B[i] = key->md.h1;
275 ctx->C[i] = key->md.h2;
276 ctx->D[i] = key->md.h3;
277 ctx->E[i] = key->md.h4;
278
279 /* fix seqnum */
280 # if defined(BSWAP8)
281 blocks[i].q[0] = BSWAP8(seqnum + i);
282 # else
283 for (carry = i, j = 8; j--;) {
284 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
285 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
286 }
287 # endif
288 blocks[i].c[8] = ((u8 *)key->md.data)[8];
289 blocks[i].c[9] = ((u8 *)key->md.data)[9];
290 blocks[i].c[10] = ((u8 *)key->md.data)[10];
291 /* fix length */
292 blocks[i].c[11] = (u8)(len >> 8);
293 blocks[i].c[12] = (u8)(len);
294
295 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
296 hash_d[i].ptr += 64 - 13;
297 hash_d[i].blocks = (len - (64 - 13)) / 64;
298
299 edges[i].ptr = blocks[i].c;
300 edges[i].blocks = 1;
301 }
302
303 /* hash 13-byte headers and first 64-13 bytes of inputs */
304 sha1_multi_block(ctx, edges, n4x);
305 /* hash bulk inputs */
306 # define MAXCHUNKSIZE 2048
307 # if MAXCHUNKSIZE%64
308 # error "MAXCHUNKSIZE is not divisible by 64"
309 # elif MAXCHUNKSIZE
310 /*
311 * goal is to minimize pressure on L1 cache by moving in shorter steps,
312 * so that hashed data is still in the cache by the time we encrypt it
313 */
314 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
315 if (minblocks > MAXCHUNKSIZE / 64) {
316 for (i = 0; i < x4; i++) {
317 edges[i].ptr = hash_d[i].ptr;
318 edges[i].blocks = MAXCHUNKSIZE / 64;
319 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
320 }
321 do {
322 sha1_multi_block(ctx, edges, n4x);
323 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
324
325 for (i = 0; i < x4; i++) {
326 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
327 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
328 edges[i].blocks = MAXCHUNKSIZE / 64;
329 ciph_d[i].inp += MAXCHUNKSIZE;
330 ciph_d[i].out += MAXCHUNKSIZE;
331 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
332 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
333 }
334 processed += MAXCHUNKSIZE;
335 minblocks -= MAXCHUNKSIZE / 64;
336 } while (minblocks > MAXCHUNKSIZE / 64);
337 }
338 # endif
339 # undef MAXCHUNKSIZE
340 sha1_multi_block(ctx, hash_d, n4x);
341
342 memset(blocks, 0, sizeof(blocks));
343 for (i = 0; i < x4; i++) {
344 unsigned int len = (i == (x4 - 1) ? last : frag),
345 off = hash_d[i].blocks * 64;
346 const unsigned char *ptr = hash_d[i].ptr + off;
347
348 off = (len - processed) - (64 - 13) - off; /* remainder actually */
349 memcpy(blocks[i].c, ptr, off);
350 blocks[i].c[off] = 0x80;
351 len += 64 + 13; /* 64 is HMAC header */
352 len *= 8; /* convert to bits */
353 if (off < (64 - 8)) {
354 # ifdef BSWAP4
355 blocks[i].d[15] = BSWAP4(len);
356 # else
357 PUTU32(blocks[i].c + 60, len);
358 # endif
359 edges[i].blocks = 1;
360 } else {
361 # ifdef BSWAP4
362 blocks[i].d[31] = BSWAP4(len);
363 # else
364 PUTU32(blocks[i].c + 124, len);
365 # endif
366 edges[i].blocks = 2;
367 }
368 edges[i].ptr = blocks[i].c;
369 }
370
371 /* hash input tails and finalize */
372 sha1_multi_block(ctx, edges, n4x);
373
374 memset(blocks, 0, sizeof(blocks));
375 for (i = 0; i < x4; i++) {
376 # ifdef BSWAP4
377 blocks[i].d[0] = BSWAP4(ctx->A[i]);
378 ctx->A[i] = key->tail.h0;
379 blocks[i].d[1] = BSWAP4(ctx->B[i]);
380 ctx->B[i] = key->tail.h1;
381 blocks[i].d[2] = BSWAP4(ctx->C[i]);
382 ctx->C[i] = key->tail.h2;
383 blocks[i].d[3] = BSWAP4(ctx->D[i]);
384 ctx->D[i] = key->tail.h3;
385 blocks[i].d[4] = BSWAP4(ctx->E[i]);
386 ctx->E[i] = key->tail.h4;
387 blocks[i].c[20] = 0x80;
388 blocks[i].d[15] = BSWAP4((64 + 20) * 8);
389 # else
390 PUTU32(blocks[i].c + 0, ctx->A[i]);
391 ctx->A[i] = key->tail.h0;
392 PUTU32(blocks[i].c + 4, ctx->B[i]);
393 ctx->B[i] = key->tail.h1;
394 PUTU32(blocks[i].c + 8, ctx->C[i]);
395 ctx->C[i] = key->tail.h2;
396 PUTU32(blocks[i].c + 12, ctx->D[i]);
397 ctx->D[i] = key->tail.h3;
398 PUTU32(blocks[i].c + 16, ctx->E[i]);
399 ctx->E[i] = key->tail.h4;
400 blocks[i].c[20] = 0x80;
401 PUTU32(blocks[i].c + 60, (64 + 20) * 8);
402 # endif
403 edges[i].ptr = blocks[i].c;
404 edges[i].blocks = 1;
405 }
406
407 /* finalize MACs */
408 sha1_multi_block(ctx, edges, n4x);
409
410 for (i = 0; i < x4; i++) {
411 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
412 unsigned char *out0 = out;
413
414 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
415 ciph_d[i].inp = ciph_d[i].out;
416
417 out += 5 + 16 + len;
418
419 /* write MAC */
420 PUTU32(out + 0, ctx->A[i]);
421 PUTU32(out + 4, ctx->B[i]);
422 PUTU32(out + 8, ctx->C[i]);
423 PUTU32(out + 12, ctx->D[i]);
424 PUTU32(out + 16, ctx->E[i]);
425 out += 20;
426 len += 20;
427
428 /* pad */
429 pad = 15 - len % 16;
430 for (j = 0; j <= pad; j++)
431 *(out++) = pad;
432 len += pad + 1;
433
434 ciph_d[i].blocks = (len - processed) / 16;
435 len += 16; /* account for explicit iv */
436
437 /* arrange header */
438 out0[0] = ((u8 *)key->md.data)[8];
439 out0[1] = ((u8 *)key->md.data)[9];
440 out0[2] = ((u8 *)key->md.data)[10];
441 out0[3] = (u8)(len >> 8);
442 out0[4] = (u8)(len);
443
444 ret += len + 5;
445 inp += frag;
446 }
447
448 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
449
450 OPENSSL_cleanse(blocks, sizeof(blocks));
451 OPENSSL_cleanse(ctx, sizeof(*ctx));
452
453 return ret;
454 }
455 # endif
456
457 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
458 const unsigned char *in, size_t len)
459 {
460 EVP_AES_HMAC_SHA1 *key = data(ctx);
461 unsigned int l;
462 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
463 * later */
464 sha_off = 0;
465 # if defined(STITCHED_CALL)
466 size_t aes_off = 0, blocks;
467
468 sha_off = SHA_CBLOCK - key->md.num;
469 # endif
470
471 key->payload_length = NO_PAYLOAD_LENGTH;
472
473 if (len % AES_BLOCK_SIZE)
474 return 0;
475
476 if (EVP_CIPHER_CTX_encrypting(ctx)) {
477 if (plen == NO_PAYLOAD_LENGTH)
478 plen = len;
479 else if (len !=
480 ((plen + SHA_DIGEST_LENGTH +
481 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
482 return 0;
483 else if (key->aux.tls_ver >= TLS1_1_VERSION)
484 iv = AES_BLOCK_SIZE;
485
486 # if defined(STITCHED_CALL)
487 if (plen > (sha_off + iv)
488 && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
489 SHA1_Update(&key->md, in + iv, sha_off);
490
491 aesni_cbc_sha1_enc(in, out, blocks, &key->ks,
492 EVP_CIPHER_CTX_iv_noconst(ctx),
493 &key->md, in + iv + sha_off);
494 blocks *= SHA_CBLOCK;
495 aes_off += blocks;
496 sha_off += blocks;
497 key->md.Nh += blocks >> 29;
498 key->md.Nl += blocks <<= 3;
499 if (key->md.Nl < (unsigned int)blocks)
500 key->md.Nh++;
501 } else {
502 sha_off = 0;
503 }
504 # endif
505 sha_off += iv;
506 SHA1_Update(&key->md, in + sha_off, plen - sha_off);
507
508 if (plen != len) { /* "TLS" mode of operation */
509 if (in != out)
510 memcpy(out + aes_off, in + aes_off, plen - aes_off);
511
512 /* calculate HMAC and append it to payload */
513 SHA1_Final(out + plen, &key->md);
514 key->md = key->tail;
515 SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
516 SHA1_Final(out + plen, &key->md);
517
518 /* pad the payload|hmac */
519 plen += SHA_DIGEST_LENGTH;
520 for (l = len - plen - 1; plen < len; plen++)
521 out[plen] = l;
522 /* encrypt HMAC|padding at once */
523 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
524 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
525 } else {
526 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
527 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
528 }
529 } else {
530 union {
531 unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
532 unsigned char c[32 + SHA_DIGEST_LENGTH];
533 } mac, *pmac;
534
535 /* arrange cache line alignment */
536 pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
537
538 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
539 size_t inp_len, mask, j, i;
540 unsigned int res, maxpad, pad, bitlen;
541 int ret = 1;
542 union {
543 unsigned int u[SHA_LBLOCK];
544 unsigned char c[SHA_CBLOCK];
545 } *data = (void *)key->md.data;
546 # if defined(STITCHED_DECRYPT_CALL)
547 unsigned char tail_iv[AES_BLOCK_SIZE];
548 int stitch = 0;
549 # endif
550
551 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
552 >= TLS1_1_VERSION) {
553 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
554 return 0;
555
556 /* omit explicit iv */
557 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), in, AES_BLOCK_SIZE);
558
559 in += AES_BLOCK_SIZE;
560 out += AES_BLOCK_SIZE;
561 len -= AES_BLOCK_SIZE;
562 } else if (len < (SHA_DIGEST_LENGTH + 1))
563 return 0;
564
565 # if defined(STITCHED_DECRYPT_CALL)
566 if (len >= 1024 && ctx->key_len == 32) {
567 /* decrypt last block */
568 memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
569 AES_BLOCK_SIZE);
570 aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
571 out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
572 &key->ks, tail_iv, 0);
573 stitch = 1;
574 } else
575 # endif
576 /* decrypt HMAC|padding at once */
577 aesni_cbc_encrypt(in, out, len, &key->ks,
578 EVP_CIPHER_CTX_iv_noconst(ctx), 0);
579
580 /* figure out payload length */
581 pad = out[len - 1];
582 maxpad = len - (SHA_DIGEST_LENGTH + 1);
583 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
584 maxpad &= 255;
585
586 inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
587 mask = (0 - ((inp_len - len) >> (sizeof(inp_len) * 8 - 1)));
588 inp_len &= mask;
589 ret &= (int)mask;
590
591 key->aux.tls_aad[plen - 2] = inp_len >> 8;
592 key->aux.tls_aad[plen - 1] = inp_len;
593
594 /* calculate HMAC */
595 key->md = key->head;
596 SHA1_Update(&key->md, key->aux.tls_aad, plen);
597
598 # if defined(STITCHED_DECRYPT_CALL)
599 if (stitch) {
600 blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
601 aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
602 sha_off = SHA_CBLOCK - plen;
603
604 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
605
606 SHA1_Update(&key->md, out, sha_off);
607 aesni256_cbc_sha1_dec(in + aes_off,
608 out + aes_off, blocks, &key->ks,
609 ctx->iv, &key->md, out + sha_off);
610
611 sha_off += blocks *= SHA_CBLOCK;
612 out += sha_off;
613 len -= sha_off;
614 inp_len -= sha_off;
615
616 key->md.Nl += (blocks << 3); /* at most 18 bits */
617 memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
618 }
619 # endif
620
621 # if 1
622 len -= SHA_DIGEST_LENGTH; /* amend mac */
623 if (len >= (256 + SHA_CBLOCK)) {
624 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
625 j += SHA_CBLOCK - key->md.num;
626 SHA1_Update(&key->md, out, j);
627 out += j;
628 len -= j;
629 inp_len -= j;
630 }
631
632 /* but pretend as if we hashed padded payload */
633 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
634 # ifdef BSWAP4
635 bitlen = BSWAP4(bitlen);
636 # else
637 mac.c[0] = 0;
638 mac.c[1] = (unsigned char)(bitlen >> 16);
639 mac.c[2] = (unsigned char)(bitlen >> 8);
640 mac.c[3] = (unsigned char)bitlen;
641 bitlen = mac.u[0];
642 # endif
643
644 pmac->u[0] = 0;
645 pmac->u[1] = 0;
646 pmac->u[2] = 0;
647 pmac->u[3] = 0;
648 pmac->u[4] = 0;
649
650 for (res = key->md.num, j = 0; j < len; j++) {
651 size_t c = out[j];
652 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
653 c &= mask;
654 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
655 data->c[res++] = (unsigned char)c;
656
657 if (res != SHA_CBLOCK)
658 continue;
659
660 /* j is not incremented yet */
661 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
662 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
663 sha1_block_data_order(&key->md, data, 1);
664 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
665 pmac->u[0] |= key->md.h0 & mask;
666 pmac->u[1] |= key->md.h1 & mask;
667 pmac->u[2] |= key->md.h2 & mask;
668 pmac->u[3] |= key->md.h3 & mask;
669 pmac->u[4] |= key->md.h4 & mask;
670 res = 0;
671 }
672
673 for (i = res; i < SHA_CBLOCK; i++, j++)
674 data->c[i] = 0;
675
676 if (res > SHA_CBLOCK - 8) {
677 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
678 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
679 sha1_block_data_order(&key->md, data, 1);
680 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
681 pmac->u[0] |= key->md.h0 & mask;
682 pmac->u[1] |= key->md.h1 & mask;
683 pmac->u[2] |= key->md.h2 & mask;
684 pmac->u[3] |= key->md.h3 & mask;
685 pmac->u[4] |= key->md.h4 & mask;
686
687 memset(data, 0, SHA_CBLOCK);
688 j += 64;
689 }
690 data->u[SHA_LBLOCK - 1] = bitlen;
691 sha1_block_data_order(&key->md, data, 1);
692 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
693 pmac->u[0] |= key->md.h0 & mask;
694 pmac->u[1] |= key->md.h1 & mask;
695 pmac->u[2] |= key->md.h2 & mask;
696 pmac->u[3] |= key->md.h3 & mask;
697 pmac->u[4] |= key->md.h4 & mask;
698
699 # ifdef BSWAP4
700 pmac->u[0] = BSWAP4(pmac->u[0]);
701 pmac->u[1] = BSWAP4(pmac->u[1]);
702 pmac->u[2] = BSWAP4(pmac->u[2]);
703 pmac->u[3] = BSWAP4(pmac->u[3]);
704 pmac->u[4] = BSWAP4(pmac->u[4]);
705 # else
706 for (i = 0; i < 5; i++) {
707 res = pmac->u[i];
708 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
709 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
710 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
711 pmac->c[4 * i + 3] = (unsigned char)res;
712 }
713 # endif
714 len += SHA_DIGEST_LENGTH;
715 # else
716 SHA1_Update(&key->md, out, inp_len);
717 res = key->md.num;
718 SHA1_Final(pmac->c, &key->md);
719
720 {
721 unsigned int inp_blocks, pad_blocks;
722
723 /* but pretend as if we hashed padded payload */
724 inp_blocks =
725 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
726 res += (unsigned int)(len - inp_len);
727 pad_blocks = res / SHA_CBLOCK;
728 res %= SHA_CBLOCK;
729 pad_blocks +=
730 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
731 for (; inp_blocks < pad_blocks; inp_blocks++)
732 sha1_block_data_order(&key->md, data, 1);
733 }
734 # endif
735 key->md = key->tail;
736 SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
737 SHA1_Final(pmac->c, &key->md);
738
739 /* verify HMAC */
740 out += inp_len;
741 len -= inp_len;
742 # if 1
743 {
744 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
745 size_t off = out - p;
746 unsigned int c, cmask;
747
748 maxpad += SHA_DIGEST_LENGTH;
749 for (res = 0, i = 0, j = 0; j < maxpad; j++) {
750 c = p[j];
751 cmask =
752 ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
753 8 - 1);
754 res |= (c ^ pad) & ~cmask; /* ... and padding */
755 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
756 res |= (c ^ pmac->c[i]) & cmask;
757 i += 1 & cmask;
758 }
759 maxpad -= SHA_DIGEST_LENGTH;
760
761 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
762 ret &= (int)~res;
763 }
764 # else
765 for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
766 res |= out[i] ^ pmac->c[i];
767 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
768 ret &= (int)~res;
769
770 /* verify padding */
771 pad = (pad & ~res) | (maxpad & res);
772 out = out + len - 1 - pad;
773 for (res = 0, i = 0; i < pad; i++)
774 res |= out[i] ^ pad;
775
776 res = (0 - res) >> (sizeof(res) * 8 - 1);
777 ret &= (int)~res;
778 # endif
779 return ret;
780 } else {
781 # if defined(STITCHED_DECRYPT_CALL)
782 if (len >= 1024 && ctx->key_len == 32) {
783 if (sha_off %= SHA_CBLOCK)
784 blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
785 else
786 blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
787 aes_off = len - blocks * SHA_CBLOCK;
788
789 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
790 SHA1_Update(&key->md, out, sha_off);
791 aesni256_cbc_sha1_dec(in + aes_off,
792 out + aes_off, blocks, &key->ks,
793 ctx->iv, &key->md, out + sha_off);
794
795 sha_off += blocks *= SHA_CBLOCK;
796 out += sha_off;
797 len -= sha_off;
798
799 key->md.Nh += blocks >> 29;
800 key->md.Nl += blocks <<= 3;
801 if (key->md.Nl < (unsigned int)blocks)
802 key->md.Nh++;
803 } else
804 # endif
805 /* decrypt HMAC|padding at once */
806 aesni_cbc_encrypt(in, out, len, &key->ks,
807 EVP_CIPHER_CTX_iv_noconst(ctx), 0);
808
809 SHA1_Update(&key->md, out, len);
810 }
811 }
812
813 return 1;
814 }
815
816 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
817 void *ptr)
818 {
819 EVP_AES_HMAC_SHA1 *key = data(ctx);
820
821 switch (type) {
822 case EVP_CTRL_AEAD_SET_MAC_KEY:
823 {
824 unsigned int i;
825 unsigned char hmac_key[64];
826
827 memset(hmac_key, 0, sizeof(hmac_key));
828
829 if (arg > (int)sizeof(hmac_key)) {
830 SHA1_Init(&key->head);
831 SHA1_Update(&key->head, ptr, arg);
832 SHA1_Final(hmac_key, &key->head);
833 } else {
834 memcpy(hmac_key, ptr, arg);
835 }
836
837 for (i = 0; i < sizeof(hmac_key); i++)
838 hmac_key[i] ^= 0x36; /* ipad */
839 SHA1_Init(&key->head);
840 SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
841
842 for (i = 0; i < sizeof(hmac_key); i++)
843 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
844 SHA1_Init(&key->tail);
845 SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
846
847 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
848
849 return 1;
850 }
851 case EVP_CTRL_AEAD_TLS1_AAD:
852 {
853 unsigned char *p = ptr;
854 unsigned int len;
855
856 if (arg != EVP_AEAD_TLS1_AAD_LEN)
857 return -1;
858
859 len = p[arg - 2] << 8 | p[arg - 1];
860
861 if (EVP_CIPHER_CTX_encrypting(ctx)) {
862 key->payload_length = len;
863 if ((key->aux.tls_ver =
864 p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
865 len -= AES_BLOCK_SIZE;
866 p[arg - 2] = len >> 8;
867 p[arg - 1] = len;
868 }
869 key->md = key->head;
870 SHA1_Update(&key->md, p, arg);
871
872 return (int)(((len + SHA_DIGEST_LENGTH +
873 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
874 - len);
875 } else {
876 memcpy(key->aux.tls_aad, ptr, arg);
877 key->payload_length = arg;
878
879 return SHA_DIGEST_LENGTH;
880 }
881 }
882 # if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
883 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
884 return (int)(5 + 16 + ((arg + 20 + 16) & -16));
885 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
886 {
887 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
888 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
889 unsigned int n4x = 1, x4;
890 unsigned int frag, last, packlen, inp_len;
891
892 if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
893 return -1;
894
895 inp_len = param->inp[11] << 8 | param->inp[12];
896
897 if (EVP_CIPHER_CTX_encrypting(ctx)) {
898 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
899 return -1;
900
901 if (inp_len) {
902 if (inp_len < 4096)
903 return 0; /* too short */
904
905 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
906 n4x = 2; /* AVX2 */
907 } else if ((n4x = param->interleave / 4) && n4x <= 2)
908 inp_len = param->len;
909 else
910 return -1;
911
912 key->md = key->head;
913 SHA1_Update(&key->md, param->inp, 13);
914
915 x4 = 4 * n4x;
916 n4x += 1;
917
918 frag = inp_len >> n4x;
919 last = inp_len + frag - (frag << n4x);
920 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
921 frag++;
922 last -= x4 - 1;
923 }
924
925 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
926 packlen = (packlen << n4x) - packlen;
927 packlen += 5 + 16 + ((last + 20 + 16) & -16);
928
929 param->interleave = x4;
930
931 return (int)packlen;
932 } else
933 return -1; /* not yet */
934 }
935 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
936 {
937 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
938 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
939
940 return (int)tls1_1_multi_block_encrypt(key, param->out,
941 param->inp, param->len,
942 param->interleave / 4);
943 }
944 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
945 # endif
946 default:
947 return -1;
948 }
949 }
950
951 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
952 # ifdef NID_aes_128_cbc_hmac_sha1
953 NID_aes_128_cbc_hmac_sha1,
954 # else
955 NID_undef,
956 # endif
957 AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
958 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
959 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
960 aesni_cbc_hmac_sha1_init_key,
961 aesni_cbc_hmac_sha1_cipher,
962 NULL,
963 sizeof(EVP_AES_HMAC_SHA1),
964 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
965 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
966 aesni_cbc_hmac_sha1_ctrl,
967 NULL
968 };
969
970 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
971 # ifdef NID_aes_256_cbc_hmac_sha1
972 NID_aes_256_cbc_hmac_sha1,
973 # else
974 NID_undef,
975 # endif
976 AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
977 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
978 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
979 aesni_cbc_hmac_sha1_init_key,
980 aesni_cbc_hmac_sha1_cipher,
981 NULL,
982 sizeof(EVP_AES_HMAC_SHA1),
983 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
984 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
985 aesni_cbc_hmac_sha1_ctrl,
986 NULL
987 };
988
989 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
990 {
991 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
992 &aesni_128_cbc_hmac_sha1_cipher : NULL);
993 }
994
995 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
996 {
997 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
998 &aesni_256_cbc_hmac_sha1_cipher : NULL);
999 }
1000 #else
1001 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
1002 {
1003 return NULL;
1004 }
1005
1006 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
1007 {
1008 return NULL;
1009 }
1010 #endif