]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/o_time.c
Make the fuzzers more reproducible
[thirdparty/openssl.git] / crypto / o_time.c
1 /*
2 * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/e_os2.h>
11 #include <string.h>
12 #include <openssl/crypto.h>
13
14 #ifdef OPENSSL_SYS_VMS
15 # if __CRTL_VER >= 70000000 && \
16 (defined _POSIX_C_SOURCE || !defined _ANSI_C_SOURCE)
17 # define VMS_GMTIME_OK
18 # endif
19 # ifndef VMS_GMTIME_OK
20 # include <libdtdef.h>
21 # include <lib$routines.h>
22 # include <lnmdef.h>
23 # include <starlet.h>
24 # include <descrip.h>
25 # include <stdlib.h>
26 # endif /* ndef VMS_GMTIME_OK */
27
28
29 /*
30 * Needed to pick up the correct definitions and declarations in some of the
31 * DEC C Header Files (*.H).
32 */
33 # define __NEW_STARLET 1
34
35 # if (defined(__alpha) || defined(__ia64))
36 # include <iledef.h>
37 # else
38
39 /* VAX */
40 typedef struct _ile3 { /* Copied from ILEDEF.H for Alpha */
41 # pragma __nomember_alignment
42 unsigned short int ile3$w_length; /* Length of buffer in bytes */
43 unsigned short int ile3$w_code; /* Item code value */
44 void *ile3$ps_bufaddr; /* Buffer address */
45 unsigned short int *ile3$ps_retlen_addr; /* Address of word for returned length */
46 } ILE3;
47 # endif /* alpha || ia64 */
48 #endif /* OPENSSL_SYS_VMS */
49
50 struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)
51 {
52 struct tm *ts = NULL;
53
54 #if defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && (!defined(OPENSSL_SYS_VMS) || defined(gmtime_r)) && !defined(OPENSSL_SYS_MACOSX)
55 /*
56 * should return &data, but doesn't on some systems, so we don't even
57 * look at the return value
58 */
59 gmtime_r(timer, result);
60 ts = result;
61 #elif !defined(OPENSSL_SYS_VMS) || defined(VMS_GMTIME_OK)
62 ts = gmtime(timer);
63 if (ts == NULL)
64 return NULL;
65
66 memcpy(result, ts, sizeof(struct tm));
67 ts = result;
68 #endif
69 #if defined( OPENSSL_SYS_VMS) && !defined( VMS_GMTIME_OK)
70 if (ts == NULL) {
71 static $DESCRIPTOR(tabnam, "LNM$DCL_LOGICAL");
72 static $DESCRIPTOR(lognam, "SYS$TIMEZONE_DIFFERENTIAL");
73 char logvalue[256];
74 unsigned int reslen = 0;
75 # if __INITIAL_POINTER_SIZE == 64
76 ILEB_64 itemlist[2], *pitem;
77 # else
78 ILE3 itemlist[2], *pitem;
79 # endif
80 int status;
81 time_t t;
82
83
84 /*
85 * Setup an itemlist for the call to $TRNLNM - Translate Logical Name.
86 */
87 pitem = itemlist;
88
89 # if __INITIAL_POINTER_SIZE == 64
90 pitem->ileb_64$w_mbo = 1;
91 pitem->ileb_64$w_code = LNM$_STRING;
92 pitem->ileb_64$l_mbmo = -1;
93 pitem->ileb_64$q_length = sizeof (logvalue);
94 pitem->ileb_64$pq_bufaddr = logvalue;
95 pitem->ileb_64$pq_retlen_addr = (unsigned __int64 *) &reslen;
96 pitem++;
97 /* Last item of the item list is null terminated */
98 pitem->ileb_64$q_length = pitem->ileb_64$w_code = 0;
99 # else
100 pitem->ile3$w_length = sizeof (logvalue);
101 pitem->ile3$w_code = LNM$_STRING;
102 pitem->ile3$ps_bufaddr = logvalue;
103 pitem->ile3$ps_retlen_addr = (unsigned short int *) &reslen;
104 pitem++;
105 /* Last item of the item list is null terminated */
106 pitem->ile3$w_length = pitem->ile3$w_code = 0;
107 # endif
108
109
110 /* Get the value for SYS$TIMEZONE_DIFFERENTIAL */
111 status = sys$trnlnm(0, &tabnam, &lognam, 0, itemlist);
112 if (!(status & 1))
113 return NULL;
114 logvalue[reslen] = '\0';
115
116 t = *timer;
117
118 /* The following is extracted from the DEC C header time.h */
119 /*
120 ** Beginning in OpenVMS Version 7.0 mktime, time, ctime, strftime
121 ** have two implementations. One implementation is provided
122 ** for compatibility and deals with time in terms of local time,
123 ** the other __utc_* deals with time in terms of UTC.
124 */
125 /*
126 * We use the same conditions as in said time.h to check if we should
127 * assume that t contains local time (and should therefore be
128 * adjusted) or UTC (and should therefore be left untouched).
129 */
130 # if __CRTL_VER < 70000000 || defined _VMS_V6_SOURCE
131 /* Get the numerical value of the equivalence string */
132 status = atoi(logvalue);
133
134 /* and use it to move time to GMT */
135 t -= status;
136 # endif
137
138 /* then convert the result to the time structure */
139
140 /*
141 * Since there was no gmtime_r() to do this stuff for us, we have to
142 * do it the hard way.
143 */
144 {
145 /*-
146 * The VMS epoch is the astronomical Smithsonian date,
147 if I remember correctly, which is November 17, 1858.
148 Furthermore, time is measure in tenths of microseconds
149 and stored in quadwords (64 bit integers). unix_epoch
150 below is January 1st 1970 expressed as a VMS time. The
151 following code was used to get this number:
152
153 #include <stdio.h>
154 #include <stdlib.h>
155 #include <lib$routines.h>
156 #include <starlet.h>
157
158 main()
159 {
160 unsigned long systime[2];
161 unsigned short epoch_values[7] =
162 { 1970, 1, 1, 0, 0, 0, 0 };
163
164 lib$cvt_vectim(epoch_values, systime);
165
166 printf("%u %u", systime[0], systime[1]);
167 }
168 */
169 unsigned long unix_epoch[2] = { 1273708544, 8164711 };
170 unsigned long deltatime[2];
171 unsigned long systime[2];
172 struct vms_vectime {
173 short year, month, day, hour, minute, second, centi_second;
174 } time_values;
175 long operation;
176
177 /*
178 * Turn the number of seconds since January 1st 1970 to an
179 * internal delta time. Note that lib$cvt_to_internal_time() will
180 * assume that t is signed, and will therefore break on 32-bit
181 * systems some time in 2038.
182 */
183 operation = LIB$K_DELTA_SECONDS;
184 status = lib$cvt_to_internal_time(&operation, &t, deltatime);
185
186 /*
187 * Add the delta time with the Unix epoch and we have the current
188 * UTC time in internal format
189 */
190 status = lib$add_times(unix_epoch, deltatime, systime);
191
192 /* Turn the internal time into a time vector */
193 status = sys$numtim(&time_values, systime);
194
195 /* Fill in the struct tm with the result */
196 result->tm_sec = time_values.second;
197 result->tm_min = time_values.minute;
198 result->tm_hour = time_values.hour;
199 result->tm_mday = time_values.day;
200 result->tm_mon = time_values.month - 1;
201 result->tm_year = time_values.year - 1900;
202
203 operation = LIB$K_DAY_OF_WEEK;
204 status = lib$cvt_from_internal_time(&operation,
205 &result->tm_wday, systime);
206 result->tm_wday %= 7;
207
208 operation = LIB$K_DAY_OF_YEAR;
209 status = lib$cvt_from_internal_time(&operation,
210 &result->tm_yday, systime);
211 result->tm_yday--;
212
213 result->tm_isdst = 0; /* There's no way to know... */
214
215 ts = result;
216 }
217 }
218 #endif
219 return ts;
220 }
221
222 /*
223 * Take a tm structure and add an offset to it. This avoids any OS issues
224 * with restricted date types and overflows which cause the year 2038
225 * problem.
226 */
227
228 #define SECS_PER_DAY (24 * 60 * 60)
229
230 static long date_to_julian(int y, int m, int d);
231 static void julian_to_date(long jd, int *y, int *m, int *d);
232 static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
233 long *pday, int *psec);
234
235 int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec)
236 {
237 int time_sec, time_year, time_month, time_day;
238 long time_jd;
239
240 /* Convert time and offset into Julian day and seconds */
241 if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec))
242 return 0;
243
244 /* Convert Julian day back to date */
245
246 julian_to_date(time_jd, &time_year, &time_month, &time_day);
247
248 if (time_year < 1900 || time_year > 9999)
249 return 0;
250
251 /* Update tm structure */
252
253 tm->tm_year = time_year - 1900;
254 tm->tm_mon = time_month - 1;
255 tm->tm_mday = time_day;
256
257 tm->tm_hour = time_sec / 3600;
258 tm->tm_min = (time_sec / 60) % 60;
259 tm->tm_sec = time_sec % 60;
260
261 return 1;
262
263 }
264
265 int OPENSSL_gmtime_diff(int *pday, int *psec,
266 const struct tm *from, const struct tm *to)
267 {
268 int from_sec, to_sec, diff_sec;
269 long from_jd, to_jd, diff_day;
270 if (!julian_adj(from, 0, 0, &from_jd, &from_sec))
271 return 0;
272 if (!julian_adj(to, 0, 0, &to_jd, &to_sec))
273 return 0;
274 diff_day = to_jd - from_jd;
275 diff_sec = to_sec - from_sec;
276 /* Adjust differences so both positive or both negative */
277 if (diff_day > 0 && diff_sec < 0) {
278 diff_day--;
279 diff_sec += SECS_PER_DAY;
280 }
281 if (diff_day < 0 && diff_sec > 0) {
282 diff_day++;
283 diff_sec -= SECS_PER_DAY;
284 }
285
286 if (pday)
287 *pday = (int)diff_day;
288 if (psec)
289 *psec = diff_sec;
290
291 return 1;
292
293 }
294
295 /* Convert tm structure and offset into julian day and seconds */
296 static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
297 long *pday, int *psec)
298 {
299 int offset_hms, offset_day;
300 long time_jd;
301 int time_year, time_month, time_day;
302 /* split offset into days and day seconds */
303 offset_day = offset_sec / SECS_PER_DAY;
304 /* Avoid sign issues with % operator */
305 offset_hms = offset_sec - (offset_day * SECS_PER_DAY);
306 offset_day += off_day;
307 /* Add current time seconds to offset */
308 offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
309 /* Adjust day seconds if overflow */
310 if (offset_hms >= SECS_PER_DAY) {
311 offset_day++;
312 offset_hms -= SECS_PER_DAY;
313 } else if (offset_hms < 0) {
314 offset_day--;
315 offset_hms += SECS_PER_DAY;
316 }
317
318 /*
319 * Convert date of time structure into a Julian day number.
320 */
321
322 time_year = tm->tm_year + 1900;
323 time_month = tm->tm_mon + 1;
324 time_day = tm->tm_mday;
325
326 time_jd = date_to_julian(time_year, time_month, time_day);
327
328 /* Work out Julian day of new date */
329 time_jd += offset_day;
330
331 if (time_jd < 0)
332 return 0;
333
334 *pday = time_jd;
335 *psec = offset_hms;
336 return 1;
337 }
338
339 /*
340 * Convert date to and from julian day Uses Fliegel & Van Flandern algorithm
341 */
342 static long date_to_julian(int y, int m, int d)
343 {
344 return (1461 * (y + 4800 + (m - 14) / 12)) / 4 +
345 (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 -
346 (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075;
347 }
348
349 static void julian_to_date(long jd, int *y, int *m, int *d)
350 {
351 long L = jd + 68569;
352 long n = (4 * L) / 146097;
353 long i, j;
354
355 L = L - (146097 * n + 3) / 4;
356 i = (4000 * (L + 1)) / 1461001;
357 L = L - (1461 * i) / 4 + 31;
358 j = (80 * L) / 2447;
359 *d = L - (2447 * j) / 80;
360 L = j / 11;
361 *m = j + 2 - (12 * L);
362 *y = 100 * (n - 49) + i + L;
363 }