]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/pem/pvkfmt.c
Fix SCA vulnerability when using PVK and MSBLOB key formats
[thirdparty/openssl.git] / crypto / pem / pvkfmt.c
1 /*
2 * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
3 * 2005.
4 */
5 /* ====================================================================
6 * Copyright (c) 2005-2018 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58
59 /*
60 * Support for PVK format keys and related structures (such a PUBLICKEYBLOB
61 * and PRIVATEKEYBLOB).
62 */
63
64 #include "cryptlib.h"
65 #include <openssl/pem.h>
66 #include <openssl/rand.h>
67 #include <openssl/bn.h>
68 #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
69 # include <openssl/dsa.h>
70 # include <openssl/rsa.h>
71
72 /*
73 * Utility function: read a DWORD (4 byte unsigned integer) in little endian
74 * format
75 */
76
77 static unsigned int read_ledword(const unsigned char **in)
78 {
79 const unsigned char *p = *in;
80 unsigned int ret;
81 ret = *p++;
82 ret |= (*p++ << 8);
83 ret |= (*p++ << 16);
84 ret |= (*p++ << 24);
85 *in = p;
86 return ret;
87 }
88
89 /*
90 * Read a BIGNUM in little endian format. The docs say that this should take
91 * up bitlen/8 bytes.
92 */
93
94 static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
95 {
96 const unsigned char *p;
97 unsigned char *tmpbuf, *q;
98 unsigned int i;
99 p = *in + nbyte - 1;
100 tmpbuf = OPENSSL_malloc(nbyte);
101 if (!tmpbuf)
102 return 0;
103 q = tmpbuf;
104 for (i = 0; i < nbyte; i++)
105 *q++ = *p--;
106 *r = BN_bin2bn(tmpbuf, nbyte, NULL);
107 OPENSSL_free(tmpbuf);
108 if (*r) {
109 *in += nbyte;
110 return 1;
111 } else
112 return 0;
113 }
114
115 /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
116
117 # define MS_PUBLICKEYBLOB 0x6
118 # define MS_PRIVATEKEYBLOB 0x7
119 # define MS_RSA1MAGIC 0x31415352L
120 # define MS_RSA2MAGIC 0x32415352L
121 # define MS_DSS1MAGIC 0x31535344L
122 # define MS_DSS2MAGIC 0x32535344L
123
124 # define MS_KEYALG_RSA_KEYX 0xa400
125 # define MS_KEYALG_DSS_SIGN 0x2200
126
127 # define MS_KEYTYPE_KEYX 0x1
128 # define MS_KEYTYPE_SIGN 0x2
129
130 /* Maximum length of a blob after header */
131 # define BLOB_MAX_LENGTH 102400
132
133 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
134 # define MS_PVKMAGIC 0xb0b5f11eL
135 /* Salt length for PVK files */
136 # define PVK_SALTLEN 0x10
137 /* Maximum length in PVK header */
138 # define PVK_MAX_KEYLEN 102400
139 /* Maximum salt length */
140 # define PVK_MAX_SALTLEN 10240
141
142 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
143 unsigned int bitlen, int ispub);
144 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
145 unsigned int bitlen, int ispub);
146
147 static int do_blob_header(const unsigned char **in, unsigned int length,
148 unsigned int *pmagic, unsigned int *pbitlen,
149 int *pisdss, int *pispub)
150 {
151 const unsigned char *p = *in;
152 if (length < 16)
153 return 0;
154 /* bType */
155 if (*p == MS_PUBLICKEYBLOB) {
156 if (*pispub == 0) {
157 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
158 return 0;
159 }
160 *pispub = 1;
161 } else if (*p == MS_PRIVATEKEYBLOB) {
162 if (*pispub == 1) {
163 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
164 return 0;
165 }
166 *pispub = 0;
167 } else
168 return 0;
169 p++;
170 /* Version */
171 if (*p++ != 0x2) {
172 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
173 return 0;
174 }
175 /* Ignore reserved, aiKeyAlg */
176 p += 6;
177 *pmagic = read_ledword(&p);
178 *pbitlen = read_ledword(&p);
179 *pisdss = 0;
180 switch (*pmagic) {
181
182 case MS_DSS1MAGIC:
183 *pisdss = 1;
184 case MS_RSA1MAGIC:
185 if (*pispub == 0) {
186 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
187 return 0;
188 }
189 break;
190
191 case MS_DSS2MAGIC:
192 *pisdss = 1;
193 case MS_RSA2MAGIC:
194 if (*pispub == 1) {
195 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
196 return 0;
197 }
198 break;
199
200 default:
201 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
202 return -1;
203 }
204 *in = p;
205 return 1;
206 }
207
208 static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
209 {
210 unsigned int nbyte, hnbyte;
211 nbyte = (bitlen + 7) >> 3;
212 hnbyte = (bitlen + 15) >> 4;
213 if (isdss) {
214
215 /*
216 * Expected length: 20 for q + 3 components bitlen each + 24 for seed
217 * structure.
218 */
219 if (ispub)
220 return 44 + 3 * nbyte;
221 /*
222 * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed
223 * structure.
224 */
225 else
226 return 64 + 2 * nbyte;
227 } else {
228 /* Expected length: 4 for 'e' + 'n' */
229 if (ispub)
230 return 4 + nbyte;
231 else
232 /*
233 * Expected length: 4 for 'e' and 7 other components. 2
234 * components are bitlen size, 5 are bitlen/2
235 */
236 return 4 + 2 * nbyte + 5 * hnbyte;
237 }
238
239 }
240
241 static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
242 int ispub)
243 {
244 const unsigned char *p = *in;
245 unsigned int bitlen, magic;
246 int isdss;
247 if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) {
248 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
249 return NULL;
250 }
251 length -= 16;
252 if (length < blob_length(bitlen, isdss, ispub)) {
253 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
254 return NULL;
255 }
256 if (isdss)
257 return b2i_dss(&p, length, bitlen, ispub);
258 else
259 return b2i_rsa(&p, length, bitlen, ispub);
260 }
261
262 static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
263 {
264 const unsigned char *p;
265 unsigned char hdr_buf[16], *buf = NULL;
266 unsigned int bitlen, magic, length;
267 int isdss;
268 EVP_PKEY *ret = NULL;
269 if (BIO_read(in, hdr_buf, 16) != 16) {
270 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
271 return NULL;
272 }
273 p = hdr_buf;
274 if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
275 return NULL;
276
277 length = blob_length(bitlen, isdss, ispub);
278 if (length > BLOB_MAX_LENGTH) {
279 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_HEADER_TOO_LONG);
280 return NULL;
281 }
282 buf = OPENSSL_malloc(length);
283 if (!buf) {
284 PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
285 goto err;
286 }
287 p = buf;
288 if (BIO_read(in, buf, length) != (int)length) {
289 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
290 goto err;
291 }
292
293 if (isdss)
294 ret = b2i_dss(&p, length, bitlen, ispub);
295 else
296 ret = b2i_rsa(&p, length, bitlen, ispub);
297
298 err:
299 if (buf)
300 OPENSSL_free(buf);
301 return ret;
302 }
303
304 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
305 unsigned int bitlen, int ispub)
306 {
307 const unsigned char *p = *in;
308 EVP_PKEY *ret = NULL;
309 DSA *dsa = NULL;
310 BN_CTX *ctx = NULL;
311 unsigned int nbyte;
312 nbyte = (bitlen + 7) >> 3;
313
314 dsa = DSA_new();
315 ret = EVP_PKEY_new();
316 if (!dsa || !ret)
317 goto memerr;
318 if (!read_lebn(&p, nbyte, &dsa->p))
319 goto memerr;
320 if (!read_lebn(&p, 20, &dsa->q))
321 goto memerr;
322 if (!read_lebn(&p, nbyte, &dsa->g))
323 goto memerr;
324 if (ispub) {
325 if (!read_lebn(&p, nbyte, &dsa->pub_key))
326 goto memerr;
327 } else {
328 if (!read_lebn(&p, 20, &dsa->priv_key))
329 goto memerr;
330 /* Set constant time flag before public key calculation */
331 BN_set_flags(dsa->priv_key, BN_FLG_CONSTTIME);
332 /* Calculate public key */
333 if (!(dsa->pub_key = BN_new()))
334 goto memerr;
335 if (!(ctx = BN_CTX_new()))
336 goto memerr;
337
338 if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx))
339
340 goto memerr;
341 BN_CTX_free(ctx);
342 }
343
344 EVP_PKEY_set1_DSA(ret, dsa);
345 DSA_free(dsa);
346 *in = p;
347 return ret;
348
349 memerr:
350 PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
351 if (dsa)
352 DSA_free(dsa);
353 if (ret)
354 EVP_PKEY_free(ret);
355 if (ctx)
356 BN_CTX_free(ctx);
357 return NULL;
358 }
359
360 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
361 unsigned int bitlen, int ispub)
362 {
363 const unsigned char *p = *in;
364 EVP_PKEY *ret = NULL;
365 RSA *rsa = NULL;
366 unsigned int nbyte, hnbyte;
367 nbyte = (bitlen + 7) >> 3;
368 hnbyte = (bitlen + 15) >> 4;
369 rsa = RSA_new();
370 ret = EVP_PKEY_new();
371 if (!rsa || !ret)
372 goto memerr;
373 rsa->e = BN_new();
374 if (!rsa->e)
375 goto memerr;
376 if (!BN_set_word(rsa->e, read_ledword(&p)))
377 goto memerr;
378 if (!read_lebn(&p, nbyte, &rsa->n))
379 goto memerr;
380 if (!ispub) {
381 if (!read_lebn(&p, hnbyte, &rsa->p))
382 goto memerr;
383 if (!read_lebn(&p, hnbyte, &rsa->q))
384 goto memerr;
385 if (!read_lebn(&p, hnbyte, &rsa->dmp1))
386 goto memerr;
387 if (!read_lebn(&p, hnbyte, &rsa->dmq1))
388 goto memerr;
389 if (!read_lebn(&p, hnbyte, &rsa->iqmp))
390 goto memerr;
391 if (!read_lebn(&p, nbyte, &rsa->d))
392 goto memerr;
393 }
394
395 EVP_PKEY_set1_RSA(ret, rsa);
396 RSA_free(rsa);
397 *in = p;
398 return ret;
399 memerr:
400 PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
401 if (rsa)
402 RSA_free(rsa);
403 if (ret)
404 EVP_PKEY_free(ret);
405 return NULL;
406 }
407
408 EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
409 {
410 return do_b2i(in, length, 0);
411 }
412
413 EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
414 {
415 return do_b2i(in, length, 1);
416 }
417
418 EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
419 {
420 return do_b2i_bio(in, 0);
421 }
422
423 EVP_PKEY *b2i_PublicKey_bio(BIO *in)
424 {
425 return do_b2i_bio(in, 1);
426 }
427
428 static void write_ledword(unsigned char **out, unsigned int dw)
429 {
430 unsigned char *p = *out;
431 *p++ = dw & 0xff;
432 *p++ = (dw >> 8) & 0xff;
433 *p++ = (dw >> 16) & 0xff;
434 *p++ = (dw >> 24) & 0xff;
435 *out = p;
436 }
437
438 static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
439 {
440 int nb, i;
441 unsigned char *p = *out, *q, c;
442 nb = BN_num_bytes(bn);
443 BN_bn2bin(bn, p);
444 q = p + nb - 1;
445 /* In place byte order reversal */
446 for (i = 0; i < nb / 2; i++) {
447 c = *p;
448 *p++ = *q;
449 *q-- = c;
450 }
451 *out += nb;
452 /* Pad with zeroes if we have to */
453 if (len > 0) {
454 len -= nb;
455 if (len > 0) {
456 memset(*out, 0, len);
457 *out += len;
458 }
459 }
460 }
461
462 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
463 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
464
465 static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
466 static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
467
468 static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
469 {
470 unsigned char *p;
471 unsigned int bitlen, magic = 0, keyalg;
472 int outlen, noinc = 0;
473 if (pk->type == EVP_PKEY_DSA) {
474 bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
475 keyalg = MS_KEYALG_DSS_SIGN;
476 } else if (pk->type == EVP_PKEY_RSA) {
477 bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
478 keyalg = MS_KEYALG_RSA_KEYX;
479 } else
480 return -1;
481 if (bitlen == 0)
482 return -1;
483 outlen = 16 + blob_length(bitlen,
484 keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
485 if (out == NULL)
486 return outlen;
487 if (*out)
488 p = *out;
489 else {
490 p = OPENSSL_malloc(outlen);
491 if (!p)
492 return -1;
493 *out = p;
494 noinc = 1;
495 }
496 if (ispub)
497 *p++ = MS_PUBLICKEYBLOB;
498 else
499 *p++ = MS_PRIVATEKEYBLOB;
500 *p++ = 0x2;
501 *p++ = 0;
502 *p++ = 0;
503 write_ledword(&p, keyalg);
504 write_ledword(&p, magic);
505 write_ledword(&p, bitlen);
506 if (keyalg == MS_KEYALG_DSS_SIGN)
507 write_dsa(&p, pk->pkey.dsa, ispub);
508 else
509 write_rsa(&p, pk->pkey.rsa, ispub);
510 if (!noinc)
511 *out += outlen;
512 return outlen;
513 }
514
515 static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
516 {
517 unsigned char *tmp = NULL;
518 int outlen, wrlen;
519 outlen = do_i2b(&tmp, pk, ispub);
520 if (outlen < 0)
521 return -1;
522 wrlen = BIO_write(out, tmp, outlen);
523 OPENSSL_free(tmp);
524 if (wrlen == outlen)
525 return outlen;
526 return -1;
527 }
528
529 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
530 {
531 int bitlen;
532 bitlen = BN_num_bits(dsa->p);
533 if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
534 || (BN_num_bits(dsa->g) > bitlen))
535 goto badkey;
536 if (ispub) {
537 if (BN_num_bits(dsa->pub_key) > bitlen)
538 goto badkey;
539 *pmagic = MS_DSS1MAGIC;
540 } else {
541 if (BN_num_bits(dsa->priv_key) > 160)
542 goto badkey;
543 *pmagic = MS_DSS2MAGIC;
544 }
545
546 return bitlen;
547 badkey:
548 PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
549 return 0;
550 }
551
552 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
553 {
554 int nbyte, hnbyte, bitlen;
555 if (BN_num_bits(rsa->e) > 32)
556 goto badkey;
557 bitlen = BN_num_bits(rsa->n);
558 nbyte = BN_num_bytes(rsa->n);
559 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
560 if (ispub) {
561 *pmagic = MS_RSA1MAGIC;
562 return bitlen;
563 } else {
564 *pmagic = MS_RSA2MAGIC;
565 /*
566 * For private key each component must fit within nbyte or hnbyte.
567 */
568 if (BN_num_bytes(rsa->d) > nbyte)
569 goto badkey;
570 if ((BN_num_bytes(rsa->iqmp) > hnbyte)
571 || (BN_num_bytes(rsa->p) > hnbyte)
572 || (BN_num_bytes(rsa->q) > hnbyte)
573 || (BN_num_bytes(rsa->dmp1) > hnbyte)
574 || (BN_num_bytes(rsa->dmq1) > hnbyte))
575 goto badkey;
576 }
577 return bitlen;
578 badkey:
579 PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
580 return 0;
581 }
582
583 static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
584 {
585 int nbyte, hnbyte;
586 nbyte = BN_num_bytes(rsa->n);
587 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
588 write_lebn(out, rsa->e, 4);
589 write_lebn(out, rsa->n, -1);
590 if (ispub)
591 return;
592 write_lebn(out, rsa->p, hnbyte);
593 write_lebn(out, rsa->q, hnbyte);
594 write_lebn(out, rsa->dmp1, hnbyte);
595 write_lebn(out, rsa->dmq1, hnbyte);
596 write_lebn(out, rsa->iqmp, hnbyte);
597 write_lebn(out, rsa->d, nbyte);
598 }
599
600 static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
601 {
602 int nbyte;
603 nbyte = BN_num_bytes(dsa->p);
604 write_lebn(out, dsa->p, nbyte);
605 write_lebn(out, dsa->q, 20);
606 write_lebn(out, dsa->g, nbyte);
607 if (ispub)
608 write_lebn(out, dsa->pub_key, nbyte);
609 else
610 write_lebn(out, dsa->priv_key, 20);
611 /* Set "invalid" for seed structure values */
612 memset(*out, 0xff, 24);
613 *out += 24;
614 return;
615 }
616
617 int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
618 {
619 return do_i2b_bio(out, pk, 0);
620 }
621
622 int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
623 {
624 return do_i2b_bio(out, pk, 1);
625 }
626
627 # ifndef OPENSSL_NO_RC4
628
629 static int do_PVK_header(const unsigned char **in, unsigned int length,
630 int skip_magic,
631 unsigned int *psaltlen, unsigned int *pkeylen)
632 {
633 const unsigned char *p = *in;
634 unsigned int pvk_magic, is_encrypted;
635 if (skip_magic) {
636 if (length < 20) {
637 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
638 return 0;
639 }
640 } else {
641 if (length < 24) {
642 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
643 return 0;
644 }
645 pvk_magic = read_ledword(&p);
646 if (pvk_magic != MS_PVKMAGIC) {
647 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
648 return 0;
649 }
650 }
651 /* Skip reserved */
652 p += 4;
653 /*
654 * keytype =
655 */ read_ledword(&p);
656 is_encrypted = read_ledword(&p);
657 *psaltlen = read_ledword(&p);
658 *pkeylen = read_ledword(&p);
659
660 if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN)
661 return 0;
662
663 if (is_encrypted && !*psaltlen) {
664 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
665 return 0;
666 }
667
668 *in = p;
669 return 1;
670 }
671
672 static int derive_pvk_key(unsigned char *key,
673 const unsigned char *salt, unsigned int saltlen,
674 const unsigned char *pass, int passlen)
675 {
676 EVP_MD_CTX mctx;
677 int rv = 1;
678 EVP_MD_CTX_init(&mctx);
679 if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL)
680 || !EVP_DigestUpdate(&mctx, salt, saltlen)
681 || !EVP_DigestUpdate(&mctx, pass, passlen)
682 || !EVP_DigestFinal_ex(&mctx, key, NULL))
683 rv = 0;
684
685 EVP_MD_CTX_cleanup(&mctx);
686 return rv;
687 }
688
689 static EVP_PKEY *do_PVK_body(const unsigned char **in,
690 unsigned int saltlen, unsigned int keylen,
691 pem_password_cb *cb, void *u)
692 {
693 EVP_PKEY *ret = NULL;
694 const unsigned char *p = *in;
695 unsigned int magic;
696 unsigned char *enctmp = NULL, *q;
697 EVP_CIPHER_CTX cctx;
698 EVP_CIPHER_CTX_init(&cctx);
699 if (saltlen) {
700 char psbuf[PEM_BUFSIZE];
701 unsigned char keybuf[20];
702 int enctmplen, inlen;
703 if (cb)
704 inlen = cb(psbuf, PEM_BUFSIZE, 0, u);
705 else
706 inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
707 if (inlen < 0) {
708 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ);
709 goto err;
710 }
711 enctmp = OPENSSL_malloc(keylen + 8);
712 if (!enctmp) {
713 PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
714 goto err;
715 }
716 if (!derive_pvk_key(keybuf, p, saltlen,
717 (unsigned char *)psbuf, inlen))
718 goto err;
719 p += saltlen;
720 /* Copy BLOBHEADER across, decrypt rest */
721 memcpy(enctmp, p, 8);
722 p += 8;
723 if (keylen < 8) {
724 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT);
725 goto err;
726 }
727 inlen = keylen - 8;
728 q = enctmp + 8;
729 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
730 goto err;
731 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
732 goto err;
733 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
734 goto err;
735 magic = read_ledword((const unsigned char **)&q);
736 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
737 q = enctmp + 8;
738 memset(keybuf + 5, 0, 11);
739 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
740 goto err;
741 OPENSSL_cleanse(keybuf, 20);
742 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
743 goto err;
744 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
745 goto err;
746 magic = read_ledword((const unsigned char **)&q);
747 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
748 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
749 goto err;
750 }
751 } else
752 OPENSSL_cleanse(keybuf, 20);
753 p = enctmp;
754 }
755
756 ret = b2i_PrivateKey(&p, keylen);
757 err:
758 EVP_CIPHER_CTX_cleanup(&cctx);
759 if (enctmp && saltlen)
760 OPENSSL_free(enctmp);
761 return ret;
762 }
763
764 EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
765 {
766 unsigned char pvk_hdr[24], *buf = NULL;
767 const unsigned char *p;
768 int buflen;
769 EVP_PKEY *ret = NULL;
770 unsigned int saltlen, keylen;
771 if (BIO_read(in, pvk_hdr, 24) != 24) {
772 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
773 return NULL;
774 }
775 p = pvk_hdr;
776
777 if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
778 return 0;
779 buflen = (int)keylen + saltlen;
780 buf = OPENSSL_malloc(buflen);
781 if (!buf) {
782 PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
783 return 0;
784 }
785 p = buf;
786 if (BIO_read(in, buf, buflen) != buflen) {
787 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
788 goto err;
789 }
790 ret = do_PVK_body(&p, saltlen, keylen, cb, u);
791
792 err:
793 if (buf) {
794 OPENSSL_cleanse(buf, buflen);
795 OPENSSL_free(buf);
796 }
797 return ret;
798 }
799
800 static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel,
801 pem_password_cb *cb, void *u)
802 {
803 int outlen = 24, pklen;
804 unsigned char *p, *salt = NULL;
805 EVP_CIPHER_CTX cctx;
806 EVP_CIPHER_CTX_init(&cctx);
807 if (enclevel)
808 outlen += PVK_SALTLEN;
809 pklen = do_i2b(NULL, pk, 0);
810 if (pklen < 0)
811 return -1;
812 outlen += pklen;
813 if (!out)
814 return outlen;
815 if (*out)
816 p = *out;
817 else {
818 p = OPENSSL_malloc(outlen);
819 if (!p) {
820 PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE);
821 return -1;
822 }
823 *out = p;
824 }
825
826 write_ledword(&p, MS_PVKMAGIC);
827 write_ledword(&p, 0);
828 if (pk->type == EVP_PKEY_DSA)
829 write_ledword(&p, MS_KEYTYPE_SIGN);
830 else
831 write_ledword(&p, MS_KEYTYPE_KEYX);
832 write_ledword(&p, enclevel ? 1 : 0);
833 write_ledword(&p, enclevel ? PVK_SALTLEN : 0);
834 write_ledword(&p, pklen);
835 if (enclevel) {
836 if (RAND_bytes(p, PVK_SALTLEN) <= 0)
837 goto error;
838 salt = p;
839 p += PVK_SALTLEN;
840 }
841 do_i2b(&p, pk, 0);
842 if (enclevel == 0)
843 return outlen;
844 else {
845 char psbuf[PEM_BUFSIZE];
846 unsigned char keybuf[20];
847 int enctmplen, inlen;
848 if (cb)
849 inlen = cb(psbuf, PEM_BUFSIZE, 1, u);
850 else
851 inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u);
852 if (inlen <= 0) {
853 PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ);
854 goto error;
855 }
856 if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
857 (unsigned char *)psbuf, inlen))
858 goto error;
859 if (enclevel == 1)
860 memset(keybuf + 5, 0, 11);
861 p = salt + PVK_SALTLEN + 8;
862 if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
863 goto error;
864 OPENSSL_cleanse(keybuf, 20);
865 if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
866 goto error;
867 if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))
868 goto error;
869 }
870 EVP_CIPHER_CTX_cleanup(&cctx);
871 return outlen;
872
873 error:
874 EVP_CIPHER_CTX_cleanup(&cctx);
875 return -1;
876 }
877
878 int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
879 pem_password_cb *cb, void *u)
880 {
881 unsigned char *tmp = NULL;
882 int outlen, wrlen;
883 outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
884 if (outlen < 0)
885 return -1;
886 wrlen = BIO_write(out, tmp, outlen);
887 OPENSSL_free(tmp);
888 if (wrlen == outlen) {
889 PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
890 return outlen;
891 }
892 return -1;
893 }
894
895 # endif
896
897 #endif