]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/md_rand.c
remove OPENSSL_FIPSAPI
[thirdparty/openssl.git] / crypto / rand / md_rand.c
1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112
113
114 #ifdef MD_RAND_DEBUG
115 # ifndef NDEBUG
116 # define NDEBUG
117 # endif
118 #endif
119
120 #include <assert.h>
121 #include <stdio.h>
122 #include <string.h>
123
124 #include "e_os.h"
125
126 #if !(defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYSNAME_DSPBIOS))
127 # include <sys/time.h>
128 #endif
129 #if defined(OPENSSL_SYS_VXWORKS)
130 # include <time.h>
131 #endif
132
133 #include <openssl/crypto.h>
134 #include <openssl/rand.h>
135 #include "rand_lcl.h"
136
137 #include <openssl/err.h>
138
139 #ifdef OPENSSL_FIPS
140 #include <openssl/fips.h>
141 #endif
142
143 #ifdef BN_DEBUG
144 # define PREDICT
145 #endif
146
147 /* #define PREDICT 1 */
148
149 #define STATE_SIZE 1023
150 static int state_num=0,state_index=0;
151 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
152 static unsigned char md[MD_DIGEST_LENGTH];
153 static long md_count[2]={0,0};
154 static double entropy=0;
155 static int initialized=0;
156
157 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
158 * holds CRYPTO_LOCK_RAND
159 * (to prevent double locking) */
160 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
161 static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
162
163
164 #ifdef PREDICT
165 int rand_predictable=0;
166 #endif
167
168 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
169
170 static void rand_hw_seed(EVP_MD_CTX *ctx);
171
172 static void ssleay_rand_cleanup(void);
173 static int ssleay_rand_seed(const void *buf, int num);
174 static int ssleay_rand_add(const void *buf, int num, double add_entropy);
175 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo);
176 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
177 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
178 static int ssleay_rand_status(void);
179
180 static RAND_METHOD rand_ssleay_meth={
181 ssleay_rand_seed,
182 ssleay_rand_nopseudo_bytes,
183 ssleay_rand_cleanup,
184 ssleay_rand_add,
185 ssleay_rand_pseudo_bytes,
186 ssleay_rand_status
187 };
188
189 RAND_METHOD *RAND_SSLeay(void)
190 {
191 return(&rand_ssleay_meth);
192 }
193
194 static void ssleay_rand_cleanup(void)
195 {
196 OPENSSL_cleanse(state,sizeof(state));
197 state_num=0;
198 state_index=0;
199 OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
200 md_count[0]=0;
201 md_count[1]=0;
202 entropy=0;
203 initialized=0;
204 }
205
206 static int ssleay_rand_add(const void *buf, int num, double add)
207 {
208 int i,j,k,st_idx;
209 long md_c[2];
210 unsigned char local_md[MD_DIGEST_LENGTH];
211 EVP_MD_CTX m;
212 int do_not_lock;
213 int rv = 0;
214
215 if (!num)
216 return 1;
217
218 /*
219 * (Based on the rand(3) manpage)
220 *
221 * The input is chopped up into units of 20 bytes (or less for
222 * the last block). Each of these blocks is run through the hash
223 * function as follows: The data passed to the hash function
224 * is the current 'md', the same number of bytes from the 'state'
225 * (the location determined by in incremented looping index) as
226 * the current 'block', the new key data 'block', and 'count'
227 * (which is incremented after each use).
228 * The result of this is kept in 'md' and also xored into the
229 * 'state' at the same locations that were used as input into the
230 * hash function.
231 */
232
233 EVP_MD_CTX_init(&m);
234 /* check if we already have the lock */
235 if (crypto_lock_rand)
236 {
237 CRYPTO_THREADID cur;
238 CRYPTO_THREADID_current(&cur);
239 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
240 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
241 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
242 }
243 else
244 do_not_lock = 0;
245
246 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
247 st_idx=state_index;
248
249 /* use our own copies of the counters so that even
250 * if a concurrent thread seeds with exactly the
251 * same data and uses the same subarray there's _some_
252 * difference */
253 md_c[0] = md_count[0];
254 md_c[1] = md_count[1];
255
256 memcpy(local_md, md, sizeof md);
257
258 /* state_index <= state_num <= STATE_SIZE */
259 state_index += num;
260 if (state_index >= STATE_SIZE)
261 {
262 state_index%=STATE_SIZE;
263 state_num=STATE_SIZE;
264 }
265 else if (state_num < STATE_SIZE)
266 {
267 if (state_index > state_num)
268 state_num=state_index;
269 }
270 /* state_index <= state_num <= STATE_SIZE */
271
272 /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
273 * are what we will use now, but other threads may use them
274 * as well */
275
276 md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
277
278 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
279
280 for (i=0; i<num; i+=MD_DIGEST_LENGTH)
281 {
282 j=(num-i);
283 j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
284
285 if (!MD_Init(&m))
286 goto err;
287 if (!MD_Update(&m,local_md,MD_DIGEST_LENGTH))
288 goto err;
289 k=(st_idx+j)-STATE_SIZE;
290 if (k > 0)
291 {
292 if (!MD_Update(&m,&(state[st_idx]),j-k))
293 goto err;
294 if (!MD_Update(&m,&(state[0]),k))
295 goto err;
296 }
297 else
298 if (!MD_Update(&m,&(state[st_idx]),j))
299 goto err;
300
301 /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
302 if (!MD_Update(&m,buf,j))
303 goto err;
304 /* We know that line may cause programs such as
305 purify and valgrind to complain about use of
306 uninitialized data. The problem is not, it's
307 with the caller. Removing that line will make
308 sure you get really bad randomness and thereby
309 other problems such as very insecure keys. */
310
311 if (!MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)))
312 goto err;
313 if (!MD_Final(&m,local_md))
314 goto err;
315 md_c[1]++;
316
317 buf=(const char *)buf + j;
318
319 for (k=0; k<j; k++)
320 {
321 /* Parallel threads may interfere with this,
322 * but always each byte of the new state is
323 * the XOR of some previous value of its
324 * and local_md (itermediate values may be lost).
325 * Alway using locking could hurt performance more
326 * than necessary given that conflicts occur only
327 * when the total seeding is longer than the random
328 * state. */
329 state[st_idx++]^=local_md[k];
330 if (st_idx >= STATE_SIZE)
331 st_idx=0;
332 }
333 }
334
335 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
336 /* Don't just copy back local_md into md -- this could mean that
337 * other thread's seeding remains without effect (except for
338 * the incremented counter). By XORing it we keep at least as
339 * much entropy as fits into md. */
340 for (k = 0; k < (int)sizeof(md); k++)
341 {
342 md[k] ^= local_md[k];
343 }
344 if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
345 entropy += add;
346 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
347
348 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
349 assert(md_c[1] == md_count[1]);
350 #endif
351 rv = 1;
352 err:
353 EVP_MD_CTX_cleanup(&m);
354 return rv;
355 }
356
357 static int ssleay_rand_seed(const void *buf, int num)
358 {
359 return ssleay_rand_add(buf, num, (double)num);
360 }
361
362 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo)
363 {
364 static volatile int stirred_pool = 0;
365 int i,j,k,st_num,st_idx;
366 int num_ceil;
367 int ok;
368 long md_c[2];
369 unsigned char local_md[MD_DIGEST_LENGTH];
370 EVP_MD_CTX m;
371 #ifndef GETPID_IS_MEANINGLESS
372 pid_t curr_pid = getpid();
373 #endif
374 time_t curr_time = time(NULL);
375 int do_stir_pool = 0;
376 /* time value for various platforms */
377 #ifdef OPENSSL_SYS_WIN32
378 FILETIME tv;
379 # ifdef _WIN32_WCE
380 SYSTEMTIME t;
381 GetSystemTime(&t);
382 SystemTimeToFileTime(&t, &tv);
383 # else
384 GetSystemTimeAsFileTime(&tv);
385 # endif
386 #elif defined(OPENSSL_SYS_VXWORKS)
387 struct timespec tv;
388 clock_gettime(CLOCK_REALTIME, &ts);
389 #elif defined(OPENSSL_SYSNAME_DSPBIOS)
390 unsigned long long tv, OPENSSL_rdtsc();
391 tv = OPENSSL_rdtsc();
392 #else
393 struct timeval tv;
394 gettimeofday(&tv, NULL);
395 #endif
396
397 #ifdef PREDICT
398 if (rand_predictable)
399 {
400 static unsigned char val=0;
401
402 for (i=0; i<num; i++)
403 buf[i]=val++;
404 return(1);
405 }
406 #endif
407
408 if (num <= 0)
409 return 1;
410
411 EVP_MD_CTX_init(&m);
412 /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
413 num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
414
415 /*
416 * (Based on the rand(3) manpage:)
417 *
418 * For each group of 10 bytes (or less), we do the following:
419 *
420 * Input into the hash function the local 'md' (which is initialized from
421 * the global 'md' before any bytes are generated), the bytes that are to
422 * be overwritten by the random bytes, and bytes from the 'state'
423 * (incrementing looping index). From this digest output (which is kept
424 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
425 * bottom 10 bytes are xored into the 'state'.
426 *
427 * Finally, after we have finished 'num' random bytes for the
428 * caller, 'count' (which is incremented) and the local and global 'md'
429 * are fed into the hash function and the results are kept in the
430 * global 'md'.
431 */
432
433 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
434
435 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
436 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
437 CRYPTO_THREADID_current(&locking_threadid);
438 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
439 crypto_lock_rand = 1;
440
441 if (!initialized)
442 {
443 RAND_poll();
444 initialized = 1;
445 }
446
447 if (!stirred_pool)
448 do_stir_pool = 1;
449
450 ok = (entropy >= ENTROPY_NEEDED);
451 if (!ok)
452 {
453 /* If the PRNG state is not yet unpredictable, then seeing
454 * the PRNG output may help attackers to determine the new
455 * state; thus we have to decrease the entropy estimate.
456 * Once we've had enough initial seeding we don't bother to
457 * adjust the entropy count, though, because we're not ambitious
458 * to provide *information-theoretic* randomness.
459 *
460 * NOTE: This approach fails if the program forks before
461 * we have enough entropy. Entropy should be collected
462 * in a separate input pool and be transferred to the
463 * output pool only when the entropy limit has been reached.
464 */
465 entropy -= num;
466 if (entropy < 0)
467 entropy = 0;
468 }
469
470 if (do_stir_pool)
471 {
472 /* In the output function only half of 'md' remains secret,
473 * so we better make sure that the required entropy gets
474 * 'evenly distributed' through 'state', our randomness pool.
475 * The input function (ssleay_rand_add) chains all of 'md',
476 * which makes it more suitable for this purpose.
477 */
478
479 int n = STATE_SIZE; /* so that the complete pool gets accessed */
480 while (n > 0)
481 {
482 #if MD_DIGEST_LENGTH > 20
483 # error "Please adjust DUMMY_SEED."
484 #endif
485 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
486 /* Note that the seed does not matter, it's just that
487 * ssleay_rand_add expects to have something to hash. */
488 ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
489 n -= MD_DIGEST_LENGTH;
490 }
491 if (ok)
492 stirred_pool = 1;
493 }
494
495 st_idx=state_index;
496 st_num=state_num;
497 md_c[0] = md_count[0];
498 md_c[1] = md_count[1];
499 memcpy(local_md, md, sizeof md);
500
501 state_index+=num_ceil;
502 if (state_index > state_num)
503 state_index %= state_num;
504
505 /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
506 * are now ours (but other threads may use them too) */
507
508 md_count[0] += 1;
509
510 /* before unlocking, we must clear 'crypto_lock_rand' */
511 crypto_lock_rand = 0;
512 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
513
514 while (num > 0)
515 {
516 /* num_ceil -= MD_DIGEST_LENGTH/2 */
517 j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
518 num-=j;
519 if (!MD_Init(&m))
520 goto err;
521 #ifndef GETPID_IS_MEANINGLESS
522 if (curr_pid) /* just in the first iteration to save time */
523 {
524 if (!MD_Update(&m,(unsigned char*)&curr_pid,
525 sizeof curr_pid))
526 goto err;
527 curr_pid = 0;
528 }
529 #endif
530 if (curr_time) /* just in the first iteration to save time */
531 {
532 if (!MD_Update(&m,(unsigned char*)&curr_time,
533 sizeof curr_time))
534 goto err;
535 if (!MD_Update(&m,(unsigned char*)&tv,
536 sizeof tv))
537 goto err;
538 curr_time = 0;
539 rand_hw_seed(&m);
540 }
541 if (!MD_Update(&m,local_md,MD_DIGEST_LENGTH))
542 goto err;
543 if (!MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)))
544 goto err;
545
546 #ifndef PURIFY /* purify complains */
547 /* The following line uses the supplied buffer as a small
548 * source of entropy: since this buffer is often uninitialised
549 * it may cause programs such as purify or valgrind to
550 * complain. So for those builds it is not used: the removal
551 * of such a small source of entropy has negligible impact on
552 * security.
553 */
554 if (!MD_Update(&m,buf,j))
555 goto err;
556 #endif
557
558 k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
559 if (k > 0)
560 {
561 if (!MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k))
562 goto err;
563 if (!MD_Update(&m,&(state[0]),k))
564 goto err;
565 }
566 else
567 if (!MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2))
568 goto err;
569 if (!MD_Final(&m,local_md))
570 goto err;
571
572 for (i=0; i<MD_DIGEST_LENGTH/2; i++)
573 {
574 state[st_idx++]^=local_md[i]; /* may compete with other threads */
575 if (st_idx >= st_num)
576 st_idx=0;
577 if (i < j)
578 *(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
579 }
580 }
581
582 if (!MD_Init(&m)
583 || !MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c))
584 || !MD_Update(&m,local_md,MD_DIGEST_LENGTH))
585 goto err;
586 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
587 if (!MD_Update(&m,md,MD_DIGEST_LENGTH) || !MD_Final(&m,md))
588 {
589 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
590 goto err;
591 }
592 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
593
594 EVP_MD_CTX_cleanup(&m);
595 if (ok)
596 return(1);
597 else if (pseudo)
598 return 0;
599 else
600 {
601 RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
602 ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
603 "http://www.openssl.org/support/faq.html");
604 return(0);
605 }
606 err:
607 EVP_MD_CTX_cleanup(&m);
608 RANDerr(RAND_F_SSLEAY_RAND_BYTES,ERR_R_EVP_LIB);
609 return 0;
610
611 }
612
613 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
614 {
615 return ssleay_rand_bytes(buf, num, 0);
616 }
617
618 /* pseudo-random bytes that are guaranteed to be unique but not
619 unpredictable */
620 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
621 {
622 return ssleay_rand_bytes(buf, num, 1);
623 }
624
625 static int ssleay_rand_status(void)
626 {
627 CRYPTO_THREADID cur;
628 int ret;
629 int do_not_lock;
630
631 CRYPTO_THREADID_current(&cur);
632 /* check if we already have the lock
633 * (could happen if a RAND_poll() implementation calls RAND_status()) */
634 if (crypto_lock_rand)
635 {
636 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
637 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
638 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
639 }
640 else
641 do_not_lock = 0;
642
643 if (!do_not_lock)
644 {
645 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
646
647 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
648 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
649 CRYPTO_THREADID_cpy(&locking_threadid, &cur);
650 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
651 crypto_lock_rand = 1;
652 }
653
654 if (!initialized)
655 {
656 RAND_poll();
657 initialized = 1;
658 }
659
660 ret = entropy >= ENTROPY_NEEDED;
661
662 if (!do_not_lock)
663 {
664 /* before unlocking, we must clear 'crypto_lock_rand' */
665 crypto_lock_rand = 0;
666
667 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
668 }
669
670 return ret;
671 }
672
673 /* rand_hw_seed: get seed data from any available hardware RNG.
674 * only currently supports rdrand.
675 */
676
677 /* Adapted from eng_rdrand.c */
678
679 #if (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
680 defined(__x86_64) || defined(__x86_64__) || \
681 defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ)
682
683 #define RDRAND_CALLS 4
684
685 size_t OPENSSL_ia32_rdrand(void);
686 extern unsigned int OPENSSL_ia32cap_P[];
687
688 static void rand_hw_seed(EVP_MD_CTX *ctx)
689 {
690 int i;
691 if (!(OPENSSL_ia32cap_P[1] & (1<<(62-32))))
692 return;
693 for (i = 0; i < RDRAND_CALLS; i++)
694 {
695 size_t rnd;
696 rnd = OPENSSL_ia32_rdrand();
697 if (rnd == 0)
698 return;
699 MD_Update(ctx, (unsigned char *)&rnd, sizeof(size_t));
700 }
701 }
702
703 /* XOR an existing buffer with random data */
704
705 void rand_hw_xor(unsigned char *buf, size_t num)
706 {
707 size_t rnd;
708 if (!(OPENSSL_ia32cap_P[1] & (1<<(62-32))))
709 return;
710 while (num >= sizeof(size_t))
711 {
712 rnd = OPENSSL_ia32_rdrand();
713 if (rnd == 0)
714 return;
715 *((size_t *)buf) ^= rnd;
716 buf += sizeof(size_t);
717 num -= sizeof(size_t);
718 }
719 if (num)
720 {
721 rnd = OPENSSL_ia32_rdrand();
722 if (rnd == 0)
723 return;
724 while(num)
725 {
726 *buf ^= rnd & 0xff;
727 rnd >>= 8;
728 buf++;
729 num--;
730 }
731 }
732 }
733
734
735 #else
736
737 static void rand_hw_seed(EVP_MD_CTX *ctx)
738 {
739 return;
740 }
741
742 void rand_hw_xor(unsigned char *buf, size_t num)
743 {
744 return;
745 }
746
747 #endif