]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rc4/asm/rc4-x86_64.pl
Rename amd64 modules to x86_64 and update RC4 implementation.
[thirdparty/openssl.git] / crypto / rc4 / asm / rc4-x86_64.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ====================================================================
8 #
9 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
10 # "hand-coded assembler"] doesn't stand for the whole improvement
11 # coefficient. It turned out that eliminating RC4_CHAR from config
12 # line results in ~40% improvement (yes, even for C implementation).
13 # Presumably it has everything to do with AMD cache architecture and
14 # RAW or whatever penalties. Once again! The module *requires* config
15 # line *without* RC4_CHAR! As for coding "secret," I bet on partial
16 # register arithmetics. For example instead of 'inc %r8; and $255,%r8'
17 # I simply 'inc %r8b'. Even though optimization manual discourages
18 # to operate on partial registers, it turned out to be the best bet.
19 # At least for AMD... How IA32E would perform remains to be seen...
20
21 # As was shown by Marc Bevand reordering of couple of load operations
22 # results in even higher performance gain of 3.3x:-) At least on
23 # Opteron... For reference, 1x in this case is RC4_CHAR C-code
24 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
25 # Latter means that if you want to *estimate* what to expect from
26 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
27
28 # Intel P4 EM64T core was found to run the AMD64 code really slow...
29 # The only way to achieve comparable performance on P4 was to keep
30 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
31 # compose blended code, which would perform even within 30% marginal
32 # on either AMD and Intel platforms, I implement both cases. See
33 # rc4_skey.c for further details...
34
35 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
36 # those with add/sub results in 50% performance improvement of folded
37 # loop...
38
39 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
40 # performance by >30% [unlike P4 32-bit case that is]. But this is
41 # provided that loads are reordered even more aggressively! Both code
42 # pathes, AMD64 and EM64T, reorder loads in essentially same manner
43 # as my IA-64 implementation. On Opteron this resulted in modest 5%
44 # improvement [I had to test it], while final Intel P4 performance
45 # achieves respectful 432MBps on 2.8GHz processor now. For reference.
46 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
47 # RC4_INT code-path. While if executed on Opteron, it's is only 25%
48 # slower than the latter...
49
50 $output=shift;
51 open STDOUT,"| $^X ../perlasm/x86_64-xlate.pl $output";
52
53 $dat="%rdi"; # arg1
54 $len="%rsi"; # arg2
55 $inp="%rdx"; # arg3
56 $out="%rcx"; # arg4
57
58 @XX=("%r8","%r10");
59 @TX=("%r9","%r11");
60 $YY="%r12";
61 $TY="%r13";
62
63 $code=<<___;
64 .text
65
66 .globl RC4
67 .type RC4,\@function,4
68 .align 16
69 RC4: or $len,$len
70 jne .Lentry
71 ret
72 .Lentry:
73 push %r12
74 push %r13
75
76 add \$8,$dat
77 movl -8($dat),$XX[0]#d
78 movl -4($dat),$YY#d
79 cmpl \$-1,256($dat)
80 je .LRC4_CHAR
81 inc $XX[0]#b
82 movl ($dat,$XX[0],4),$TX[0]#d
83 test \$-8,$len
84 jz .Lloop1
85 jmp .Lloop8
86 .align 16
87 .Lloop8:
88 ___
89 for ($i=0;$i<8;$i++) {
90 $code.=<<___;
91 add $TX[0]#b,$YY#b
92 mov $XX[0],$XX[1]
93 movl ($dat,$YY,4),$TY#d
94 ror \$8,%rax # ror is redundant when $i=0
95 inc $XX[1]#b
96 movl ($dat,$XX[1],4),$TX[1]#d
97 cmp $XX[1],$YY
98 movl $TX[0]#d,($dat,$YY,4)
99 cmove $TX[0],$TX[1]
100 movl $TY#d,($dat,$XX[0],4)
101 add $TX[0]#b,$TY#b
102 movb ($dat,$TY,4),%al
103 ___
104 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
105 }
106 $code.=<<___;
107 ror \$8,%rax
108 sub \$8,$len
109
110 xor ($inp),%rax
111 add \$8,$inp
112 mov %rax,($out)
113 add \$8,$out
114
115 test \$-8,$len
116 jnz .Lloop8
117 cmp \$0,$len
118 jne .Lloop1
119 ___
120 $code.=<<___;
121 .Lexit:
122 sub \$1,$XX[0]#b
123 movl $XX[0]#d,-8($dat)
124 movl $YY#d,-4($dat)
125
126 pop %r13
127 pop %r12
128 ret
129 .align 16
130 .Lloop1:
131 add $TX[0]#b,$YY#b
132 movl ($dat,$YY,4),$TY#d
133 movl $TX[0]#d,($dat,$YY,4)
134 movl $TY#d,($dat,$XX[0],4)
135 add $TY#b,$TX[0]#b
136 inc $XX[0]#b
137 movl ($dat,$TX[0],4),$TY#d
138 movl ($dat,$XX[0],4),$TX[0]#d
139 xorb ($inp),$TY#b
140 inc $inp
141 movb $TY#b,($out)
142 inc $out
143 dec $len
144 jnz .Lloop1
145 jmp .Lexit
146
147 .align 16
148 .LRC4_CHAR:
149 add \$1,$XX[0]#b
150 movzb ($dat,$XX[0]),$TX[0]#d
151 test \$-8,$len
152 jz .Lcloop1
153 push %rbx
154 jmp .Lcloop8
155 .align 16
156 .Lcloop8:
157 mov ($inp),%eax
158 mov 4($inp),%ebx
159 ___
160 # unroll 2x4-wise, because 64-bit rotates kill Intel P4...
161 for ($i=0;$i<4;$i++) {
162 $code.=<<___;
163 add $TX[0]#b,$YY#b
164 lea 1($XX[0]),$XX[1]
165 movzb ($dat,$YY),$TY#d
166 movzb $XX[1]#b,$XX[1]#d
167 movzb ($dat,$XX[1]),$TX[1]#d
168 movb $TX[0]#b,($dat,$YY)
169 cmp $XX[1],$YY
170 movb $TY#b,($dat,$XX[0])
171 jne .Lcmov$i # Intel cmov is sloooow...
172 mov $TX[0],$TX[1]
173 .Lcmov$i:
174 add $TX[0]#b,$TY#b
175 xor ($dat,$TY),%al
176 ror \$8,%eax
177 ___
178 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
179 }
180 for ($i=4;$i<8;$i++) {
181 $code.=<<___;
182 add $TX[0]#b,$YY#b
183 lea 1($XX[0]),$XX[1]
184 movzb ($dat,$YY),$TY#d
185 movzb $XX[1]#b,$XX[1]
186 movzb ($dat,$XX[1]),$TX[1]#d
187 movb $TX[0]#b,($dat,$YY)
188 cmp $XX[1],$YY
189 movb $TY#b,($dat,$XX[0])
190 jne .Lcmov$i # Intel cmov is sloooow...
191 mov $TX[0],$TX[1]
192 .Lcmov$i:
193 add $TX[0]#b,$TY#b
194 xor ($dat,$TY),%bl
195 ror \$8,%ebx
196 ___
197 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
198 }
199 $code.=<<___;
200 lea -8($len),$len
201 mov %eax,($out)
202 lea 8($inp),$inp
203 mov %ebx,4($out)
204 lea 8($out),$out
205
206 test \$-8,$len
207 jnz .Lcloop8
208 pop %rbx
209 cmp \$0,$len
210 jne .Lcloop1
211 jmp .Lexit
212 ___
213 $code.=<<___;
214 .align 16
215 .Lcloop1:
216 add $TX[0]#b,$YY#b
217 movzb ($dat,$YY),$TY#d
218 movb $TX[0]#b,($dat,$YY)
219 movb $TY#b,($dat,$XX[0])
220 add $TX[0]#b,$TY#b
221 add \$1,$XX[0]#b
222 movzb ($dat,$TY),$TY#d
223 movzb ($dat,$XX[0]),$TX[0]#d
224 xorb ($inp),$TY#b
225 lea 1($inp),$inp
226 movb $TY#b,($out)
227 lea 1($out),$out
228 sub \$1,$len
229 jnz .Lcloop1
230 jmp .Lexit
231 .size RC4,.-RC4
232 ___
233
234 $code =~ s/#([bwd])/$1/gm;
235
236 print $code;
237
238 close STDOUT;