]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rsa/rsa_gen.c
Update RSA keygen to use sp800-56b by default
[thirdparty/openssl.git] / crypto / rsa / rsa_gen.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * NB: these functions have been "upgraded", the deprecated versions (which
12 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13 * Geoff
14 */
15
16 /*
17 * RSA low level APIs are deprecated for public use, but still ok for
18 * internal use.
19 */
20 #include "internal/deprecated.h"
21
22 #include <stdio.h>
23 #include <time.h>
24 #include "internal/cryptlib.h"
25 #include <openssl/bn.h>
26 #include <openssl/self_test.h>
27 #include "rsa_local.h"
28
29 static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
30 static int rsa_keygen(OPENSSL_CTX *libctx, RSA *rsa, int bits, int primes,
31 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);
32
33 /*
34 * NB: this wrapper would normally be placed in rsa_lib.c and the static
35 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
36 * so that we don't introduce a new linker dependency. Eg. any application
37 * that wasn't previously linking object code related to key-generation won't
38 * have to now just because key-generation is part of RSA_METHOD.
39 */
40 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
41 {
42 if (rsa->meth->rsa_keygen != NULL)
43 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
44
45 return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
46 e_value, cb);
47 }
48
49 int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
50 BIGNUM *e_value, BN_GENCB *cb)
51 {
52 #ifndef FIPS_MODULE
53 /* multi-prime is only supported with the builtin key generation */
54 if (rsa->meth->rsa_multi_prime_keygen != NULL) {
55 return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
56 e_value, cb);
57 } else if (rsa->meth->rsa_keygen != NULL) {
58 /*
59 * However, if rsa->meth implements only rsa_keygen, then we
60 * have to honour it in 2-prime case and assume that it wouldn't
61 * know what to do with multi-prime key generated by builtin
62 * subroutine...
63 */
64 if (primes == 2)
65 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
66 else
67 return 0;
68 }
69 #endif /* FIPS_MODULE */
70 return rsa_keygen(NULL, rsa, bits, primes, e_value, cb, 0);
71 }
72
73 #ifndef FIPS_MODULE
74 static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
75 BIGNUM *e_value, BN_GENCB *cb)
76 {
77 BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
78 int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
79 int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
80 RSA_PRIME_INFO *pinfo = NULL;
81 STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
82 BN_CTX *ctx = NULL;
83 BN_ULONG bitst = 0;
84 unsigned long error = 0;
85 int ok = -1;
86
87 if (bits < RSA_MIN_MODULUS_BITS) {
88 ok = 0; /* we set our own err */
89 RSAerr(0, RSA_R_KEY_SIZE_TOO_SMALL);
90 goto err;
91 }
92
93 /* A bad value for e can cause infinite loops */
94 if (e_value != NULL && !rsa_check_public_exponent(e_value)) {
95 RSAerr(0, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
96 return 0;
97 }
98
99 if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
100 ok = 0; /* we set our own err */
101 RSAerr(0, RSA_R_KEY_PRIME_NUM_INVALID);
102 goto err;
103 }
104
105 ctx = BN_CTX_new();
106 if (ctx == NULL)
107 goto err;
108 BN_CTX_start(ctx);
109 r0 = BN_CTX_get(ctx);
110 r1 = BN_CTX_get(ctx);
111 r2 = BN_CTX_get(ctx);
112 if (r2 == NULL)
113 goto err;
114
115 /* divide bits into 'primes' pieces evenly */
116 quo = bits / primes;
117 rmd = bits % primes;
118
119 for (i = 0; i < primes; i++)
120 bitsr[i] = (i < rmd) ? quo + 1 : quo;
121
122 rsa->dirty_cnt++;
123
124 /* We need the RSA components non-NULL */
125 if (!rsa->n && ((rsa->n = BN_new()) == NULL))
126 goto err;
127 if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
128 goto err;
129 if (!rsa->e && ((rsa->e = BN_new()) == NULL))
130 goto err;
131 if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
132 goto err;
133 if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
134 goto err;
135 if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
136 goto err;
137 if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
138 goto err;
139 if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
140 goto err;
141
142 /* initialize multi-prime components */
143 if (primes > RSA_DEFAULT_PRIME_NUM) {
144 rsa->version = RSA_ASN1_VERSION_MULTI;
145 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
146 if (prime_infos == NULL)
147 goto err;
148 if (rsa->prime_infos != NULL) {
149 /* could this happen? */
150 sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
151 }
152 rsa->prime_infos = prime_infos;
153
154 /* prime_info from 2 to |primes| -1 */
155 for (i = 2; i < primes; i++) {
156 pinfo = rsa_multip_info_new();
157 if (pinfo == NULL)
158 goto err;
159 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
160 }
161 }
162
163 if (BN_copy(rsa->e, e_value) == NULL)
164 goto err;
165
166 /* generate p, q and other primes (if any) */
167 for (i = 0; i < primes; i++) {
168 adj = 0;
169 retries = 0;
170
171 if (i == 0) {
172 prime = rsa->p;
173 } else if (i == 1) {
174 prime = rsa->q;
175 } else {
176 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
177 prime = pinfo->r;
178 }
179 BN_set_flags(prime, BN_FLG_CONSTTIME);
180
181 for (;;) {
182 redo:
183 if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
184 goto err;
185 /*
186 * prime should not be equal to p, q, r_3...
187 * (those primes prior to this one)
188 */
189 {
190 int j;
191
192 for (j = 0; j < i; j++) {
193 BIGNUM *prev_prime;
194
195 if (j == 0)
196 prev_prime = rsa->p;
197 else if (j == 1)
198 prev_prime = rsa->q;
199 else
200 prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
201 j - 2)->r;
202
203 if (!BN_cmp(prime, prev_prime)) {
204 goto redo;
205 }
206 }
207 }
208 if (!BN_sub(r2, prime, BN_value_one()))
209 goto err;
210 ERR_set_mark();
211 BN_set_flags(r2, BN_FLG_CONSTTIME);
212 if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
213 /* GCD == 1 since inverse exists */
214 break;
215 }
216 error = ERR_peek_last_error();
217 if (ERR_GET_LIB(error) == ERR_LIB_BN
218 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
219 /* GCD != 1 */
220 ERR_pop_to_mark();
221 } else {
222 goto err;
223 }
224 if (!BN_GENCB_call(cb, 2, n++))
225 goto err;
226 }
227
228 bitse += bitsr[i];
229
230 /* calculate n immediately to see if it's sufficient */
231 if (i == 1) {
232 /* we get at least 2 primes */
233 if (!BN_mul(r1, rsa->p, rsa->q, ctx))
234 goto err;
235 } else if (i != 0) {
236 /* modulus n = p * q * r_3 * r_4 ... */
237 if (!BN_mul(r1, rsa->n, prime, ctx))
238 goto err;
239 } else {
240 /* i == 0, do nothing */
241 if (!BN_GENCB_call(cb, 3, i))
242 goto err;
243 continue;
244 }
245 /*
246 * if |r1|, product of factors so far, is not as long as expected
247 * (by checking the first 4 bits are less than 0x9 or greater than
248 * 0xF). If so, re-generate the last prime.
249 *
250 * NOTE: This actually can't happen in two-prime case, because of
251 * the way factors are generated.
252 *
253 * Besides, another consideration is, for multi-prime case, even the
254 * length modulus is as long as expected, the modulus could start at
255 * 0x8, which could be utilized to distinguish a multi-prime private
256 * key by using the modulus in a certificate. This is also covered
257 * by checking the length should not be less than 0x9.
258 */
259 if (!BN_rshift(r2, r1, bitse - 4))
260 goto err;
261 bitst = BN_get_word(r2);
262
263 if (bitst < 0x9 || bitst > 0xF) {
264 /*
265 * For keys with more than 4 primes, we attempt longer factor to
266 * meet length requirement.
267 *
268 * Otherwise, we just re-generate the prime with the same length.
269 *
270 * This strategy has the following goals:
271 *
272 * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
273 * 2. stay the same logic with normal 2-prime key
274 */
275 bitse -= bitsr[i];
276 if (!BN_GENCB_call(cb, 2, n++))
277 goto err;
278 if (primes > 4) {
279 if (bitst < 0x9)
280 adj++;
281 else
282 adj--;
283 } else if (retries == 4) {
284 /*
285 * re-generate all primes from scratch, mainly used
286 * in 4 prime case to avoid long loop. Max retry times
287 * is set to 4.
288 */
289 i = -1;
290 bitse = 0;
291 continue;
292 }
293 retries++;
294 goto redo;
295 }
296 /* save product of primes for further use, for multi-prime only */
297 if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
298 goto err;
299 if (BN_copy(rsa->n, r1) == NULL)
300 goto err;
301 if (!BN_GENCB_call(cb, 3, i))
302 goto err;
303 }
304
305 if (BN_cmp(rsa->p, rsa->q) < 0) {
306 tmp = rsa->p;
307 rsa->p = rsa->q;
308 rsa->q = tmp;
309 }
310
311 /* calculate d */
312
313 /* p - 1 */
314 if (!BN_sub(r1, rsa->p, BN_value_one()))
315 goto err;
316 /* q - 1 */
317 if (!BN_sub(r2, rsa->q, BN_value_one()))
318 goto err;
319 /* (p - 1)(q - 1) */
320 if (!BN_mul(r0, r1, r2, ctx))
321 goto err;
322 /* multi-prime */
323 for (i = 2; i < primes; i++) {
324 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
325 /* save r_i - 1 to pinfo->d temporarily */
326 if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
327 goto err;
328 if (!BN_mul(r0, r0, pinfo->d, ctx))
329 goto err;
330 }
331
332 {
333 BIGNUM *pr0 = BN_new();
334
335 if (pr0 == NULL)
336 goto err;
337
338 BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
339 if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
340 BN_free(pr0);
341 goto err; /* d */
342 }
343 /* We MUST free pr0 before any further use of r0 */
344 BN_free(pr0);
345 }
346
347 {
348 BIGNUM *d = BN_new();
349
350 if (d == NULL)
351 goto err;
352
353 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
354
355 /* calculate d mod (p-1) and d mod (q - 1) */
356 if (!BN_mod(rsa->dmp1, d, r1, ctx)
357 || !BN_mod(rsa->dmq1, d, r2, ctx)) {
358 BN_free(d);
359 goto err;
360 }
361
362 /* calculate CRT exponents */
363 for (i = 2; i < primes; i++) {
364 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
365 /* pinfo->d == r_i - 1 */
366 if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
367 BN_free(d);
368 goto err;
369 }
370 }
371
372 /* We MUST free d before any further use of rsa->d */
373 BN_free(d);
374 }
375
376 {
377 BIGNUM *p = BN_new();
378
379 if (p == NULL)
380 goto err;
381 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
382
383 /* calculate inverse of q mod p */
384 if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
385 BN_free(p);
386 goto err;
387 }
388
389 /* calculate CRT coefficient for other primes */
390 for (i = 2; i < primes; i++) {
391 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
392 BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
393 if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
394 BN_free(p);
395 goto err;
396 }
397 }
398
399 /* We MUST free p before any further use of rsa->p */
400 BN_free(p);
401 }
402
403 ok = 1;
404 err:
405 if (ok == -1) {
406 RSAerr(0, ERR_LIB_BN);
407 ok = 0;
408 }
409 BN_CTX_end(ctx);
410 BN_CTX_free(ctx);
411 return ok;
412 }
413 #endif /* FIPS_MODULE */
414
415 static int rsa_keygen(OPENSSL_CTX *libctx, RSA *rsa, int bits, int primes,
416 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)
417 {
418 int ok = 0;
419
420 /*
421 * Only multi-prime keys or insecure keys with a small key length will use
422 * the older rsa_multiprime_keygen().
423 */
424 if (primes == 2 && bits >= 2048)
425 ok = rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
426 #ifndef FIPS_MODULE
427 else
428 ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
429 #endif /* FIPS_MODULE */
430
431 #ifdef FIPS_MODULE
432 pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
433 #endif
434 if (pairwise_test && ok > 0) {
435 OSSL_CALLBACK *stcb = NULL;
436 void *stcbarg = NULL;
437
438 OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
439 ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
440 if (!ok) {
441 /* Clear intermediate results */
442 BN_clear_free(rsa->d);
443 BN_clear_free(rsa->p);
444 BN_clear_free(rsa->q);
445 BN_clear_free(rsa->dmp1);
446 BN_clear_free(rsa->dmq1);
447 BN_clear_free(rsa->iqmp);
448 }
449 }
450 return ok;
451 }
452
453 /*
454 * For RSA key generation it is not known whether the key pair will be used
455 * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case
456 * either a signature verification OR an encryption operation may be used to
457 * perform the pairwise consistency check. The simpler encrypt/decrypt operation
458 * has been chosen for this case.
459 */
460 static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
461 {
462 int ret = 0;
463 unsigned int ciphertxt_len;
464 unsigned char *ciphertxt = NULL;
465 const unsigned char plaintxt[16] = {0};
466 unsigned char decoded[256];
467 unsigned int decoded_len;
468 unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);
469 int padding = RSA_PKCS1_PADDING;
470 OSSL_SELF_TEST *st = NULL;
471
472 st = OSSL_SELF_TEST_new(cb, cbarg);
473 if (st == NULL)
474 goto err;
475 OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
476 OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);
477
478 ciphertxt_len = RSA_size(rsa);
479 ciphertxt = OPENSSL_zalloc(ciphertxt_len);
480 if (ciphertxt == NULL)
481 goto err;
482
483 ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
484 padding);
485 if (ciphertxt_len <= 0)
486 goto err;
487 if (ciphertxt_len == plaintxt_len
488 && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)
489 goto err;
490
491 OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
492
493 decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
494 padding);
495 if (decoded_len != plaintxt_len
496 || memcmp(decoded, plaintxt, decoded_len) != 0)
497 goto err;
498
499 ret = 1;
500 err:
501 OSSL_SELF_TEST_onend(st, ret);
502 OSSL_SELF_TEST_free(st);
503 OPENSSL_free(ciphertxt);
504
505 return ret;
506 }