]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/sha/asm/sha1-sparcv9a.pl
Following the license change, modify the boilerplates in crypto/sha/
[thirdparty/openssl.git] / crypto / sha / asm / sha1-sparcv9a.pl
1 #! /usr/bin/env perl
2 # Copyright 2009-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9
10 # ====================================================================
11 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16
17 # January 2009
18 #
19 # Provided that UltraSPARC VIS instructions are pipe-lined(*) and
20 # pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
21 # Graphic Unit would make it possible to achieve higher instruction-
22 # level parallelism, ILP, and thus higher performance. It should be
23 # explicitly noted that ILP is the keyword, and it means that this
24 # code would be unsuitable for cores like UltraSPARC-Tx. The idea is
25 # not really novel, Sun had VIS-powered implementation for a while.
26 # Unlike Sun's implementation this one can process multiple unaligned
27 # input blocks, and as such works as drop-in replacement for OpenSSL
28 # sha1_block_data_order. Performance improvement was measured to be
29 # 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
30 # UltraSPARC-III. See below for discussion...
31 #
32 # The module does not present direct interest for OpenSSL, because
33 # it doesn't provide better performance on contemporary SPARCv9 CPUs,
34 # UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
35 # absolutely must score on UltraSPARC-I-IV can simply replace
36 # crypto/sha/asm/sha1-sparcv9.pl with this module.
37 #
38 # (*) "Pipe-lined" means that even if it takes several cycles to
39 # complete, next instruction using same functional unit [but not
40 # depending on the result of the current instruction] can start
41 # execution without having to wait for the unit. "Pairable"
42 # means that two [or more] independent instructions can be
43 # issued at the very same time.
44
45 $bits=32;
46 for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
47 if ($bits==64) { $bias=2047; $frame=192; }
48 else { $bias=0; $frame=112; }
49
50 $output=shift;
51 open STDOUT,">$output";
52
53 $ctx="%i0";
54 $inp="%i1";
55 $len="%i2";
56 $tmp0="%i3";
57 $tmp1="%i4";
58 $tmp2="%i5";
59 $tmp3="%g5";
60
61 $base="%g1";
62 $align="%g4";
63 $Xfer="%o5";
64 $nXfer=$tmp3;
65 $Xi="%o7";
66
67 $A="%l0";
68 $B="%l1";
69 $C="%l2";
70 $D="%l3";
71 $E="%l4";
72 @V=($A,$B,$C,$D,$E);
73
74 $Actx="%o0";
75 $Bctx="%o1";
76 $Cctx="%o2";
77 $Dctx="%o3";
78 $Ectx="%o4";
79
80 $fmul="%f32";
81 $VK_00_19="%f34";
82 $VK_20_39="%f36";
83 $VK_40_59="%f38";
84 $VK_60_79="%f40";
85 @VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
86 @X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
87 "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
88
89 # This is reference 2x-parallelized VIS-powered Xupdate procedure. It
90 # covers even K_NN_MM addition...
91 sub Xupdate {
92 my ($i)=@_;
93 my $K=@VK[($i+16)/20];
94 my $j=($i+16)%16;
95
96 # [ provided that GSR.alignaddr_offset is 5, $mul contains
97 # 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
98 # chosen registers... ]
99 $code.=<<___;
100 fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13]
101 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
102 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
103 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
104 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
105 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
106 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
107 ![fxors %f15,%f2,%f2]
108 for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
109 ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency
110 fpadd32 $K,@X[$j],%f20
111 std %f20,[$Xfer+`4*$j`]
112 ___
113 # The numbers delimited with slash are the earliest possible dispatch
114 # cycles for given instruction assuming 1 cycle latency for simple VIS
115 # instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
116 # on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
117 # 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
118 # round. As [long as] FPU/VIS instructions are perfectly pairable with
119 # IALU ones, the round timing is defined by the maximum between VIS
120 # and IALU timings. The latter varies from round to round and averages
121 # out at 6.25 ticks. This means that USI&II should operate at IALU
122 # rate, while USIII&IV - at VIS rate. This explains why performance
123 # improvement varies among processors. Well, given that pure IALU
124 # sha1-sparcv9.pl module exhibits virtually uniform performance of
125 # ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
126 # lower limits. Real-life performance was measured to be 6.6 cycles
127 # per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
128 # half-round VIS timing, because there are 16 Xupdate-free rounds,
129 # which "push down" average theoretical timing to 8 cycles...
130
131 # (*) SPARC64-V[II] was originally believed to have 2 cycles VIS
132 # latency. Well, it might have, but it doesn't have dedicated
133 # VIS-unit. Instead, VIS instructions are executed by other
134 # functional units, ones used here - by IALU. This doesn't
135 # improve effective ILP...
136 }
137
138 # The reference Xupdate procedure is then "strained" over *pairs* of
139 # BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
140 # and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
141 # plenty of room to amortize for read-after-write hazard, as well as
142 # to fetch and align input for the next spin. The VIS instructions are
143 # scheduled for latency of 2 cycles, because there are not enough IALU
144 # instructions to schedule for latency of 3, while scheduling for 1
145 # would give no gain on USI&II anyway.
146
147 sub BODY_00_19 {
148 my ($i,$a,$b,$c,$d,$e)=@_;
149 my $j=$i&~1;
150 my $k=($j+16+2)%16; # ahead reference
151 my $l=($j+16-2)%16; # behind reference
152 my $K=@VK[($j+16-2)/20];
153
154 $j=($j+16)%16;
155
156 $code.=<<___ if (!($i&1));
157 sll $a,5,$tmp0 !! $i
158 and $c,$b,$tmp3
159 ld [$Xfer+`4*($i%16)`],$Xi
160 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
161 srl $a,27,$tmp1
162 add $tmp0,$e,$e
163 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
164 sll $b,30,$tmp2
165 add $tmp1,$e,$e
166 andn $d,$b,$tmp1
167 add $Xi,$e,$e
168 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
169 srl $b,2,$b
170 or $tmp1,$tmp3,$tmp1
171 or $tmp2,$b,$b
172 add $tmp1,$e,$e
173 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
174 ___
175 $code.=<<___ if ($i&1);
176 sll $a,5,$tmp0 !! $i
177 and $c,$b,$tmp3
178 ld [$Xfer+`4*($i%16)`],$Xi
179 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
180 srl $a,27,$tmp1
181 add $tmp0,$e,$e
182 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
183 sll $b,30,$tmp2
184 add $tmp1,$e,$e
185 fpadd32 $K,@X[$l],%f20 !
186 andn $d,$b,$tmp1
187 add $Xi,$e,$e
188 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
189 srl $b,2,$b
190 or $tmp1,$tmp3,$tmp1
191 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
192 or $tmp2,$b,$b
193 add $tmp1,$e,$e
194 ___
195 $code.=<<___ if ($i&1 && $i>=2);
196 std %f20,[$Xfer+`4*$l`] !
197 ___
198 }
199
200 sub BODY_20_39 {
201 my ($i,$a,$b,$c,$d,$e)=@_;
202 my $j=$i&~1;
203 my $k=($j+16+2)%16; # ahead reference
204 my $l=($j+16-2)%16; # behind reference
205 my $K=@VK[($j+16-2)/20];
206
207 $j=($j+16)%16;
208
209 $code.=<<___ if (!($i&1) && $i<64);
210 sll $a,5,$tmp0 !! $i
211 ld [$Xfer+`4*($i%16)`],$Xi
212 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
213 srl $a,27,$tmp1
214 add $tmp0,$e,$e
215 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
216 xor $c,$b,$tmp0
217 add $tmp1,$e,$e
218 sll $b,30,$tmp2
219 xor $d,$tmp0,$tmp1
220 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
221 srl $b,2,$b
222 add $tmp1,$e,$e
223 or $tmp2,$b,$b
224 add $Xi,$e,$e
225 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
226 ___
227 $code.=<<___ if ($i&1 && $i<64);
228 sll $a,5,$tmp0 !! $i
229 ld [$Xfer+`4*($i%16)`],$Xi
230 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
231 srl $a,27,$tmp1
232 add $tmp0,$e,$e
233 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
234 xor $c,$b,$tmp0
235 add $tmp1,$e,$e
236 fpadd32 $K,@X[$l],%f20 !
237 sll $b,30,$tmp2
238 xor $d,$tmp0,$tmp1
239 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
240 srl $b,2,$b
241 add $tmp1,$e,$e
242 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
243 or $tmp2,$b,$b
244 add $Xi,$e,$e
245 std %f20,[$Xfer+`4*$l`] !
246 ___
247 $code.=<<___ if ($i==64);
248 sll $a,5,$tmp0 !! $i
249 ld [$Xfer+`4*($i%16)`],$Xi
250 fpadd32 $K,@X[$l],%f20
251 srl $a,27,$tmp1
252 add $tmp0,$e,$e
253 xor $c,$b,$tmp0
254 add $tmp1,$e,$e
255 sll $b,30,$tmp2
256 xor $d,$tmp0,$tmp1
257 std %f20,[$Xfer+`4*$l`]
258 srl $b,2,$b
259 add $tmp1,$e,$e
260 or $tmp2,$b,$b
261 add $Xi,$e,$e
262 ___
263 $code.=<<___ if ($i>64);
264 sll $a,5,$tmp0 !! $i
265 ld [$Xfer+`4*($i%16)`],$Xi
266 srl $a,27,$tmp1
267 add $tmp0,$e,$e
268 xor $c,$b,$tmp0
269 add $tmp1,$e,$e
270 sll $b,30,$tmp2
271 xor $d,$tmp0,$tmp1
272 srl $b,2,$b
273 add $tmp1,$e,$e
274 or $tmp2,$b,$b
275 add $Xi,$e,$e
276 ___
277 }
278
279 sub BODY_40_59 {
280 my ($i,$a,$b,$c,$d,$e)=@_;
281 my $j=$i&~1;
282 my $k=($j+16+2)%16; # ahead reference
283 my $l=($j+16-2)%16; # behind reference
284 my $K=@VK[($j+16-2)/20];
285
286 $j=($j+16)%16;
287
288 $code.=<<___ if (!($i&1));
289 sll $a,5,$tmp0 !! $i
290 ld [$Xfer+`4*($i%16)`],$Xi
291 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
292 srl $a,27,$tmp1
293 add $tmp0,$e,$e
294 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
295 and $c,$b,$tmp0
296 add $tmp1,$e,$e
297 sll $b,30,$tmp2
298 or $c,$b,$tmp1
299 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
300 srl $b,2,$b
301 and $d,$tmp1,$tmp1
302 add $Xi,$e,$e
303 or $tmp1,$tmp0,$tmp1
304 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
305 or $tmp2,$b,$b
306 add $tmp1,$e,$e
307 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
308 ___
309 $code.=<<___ if ($i&1);
310 sll $a,5,$tmp0 !! $i
311 ld [$Xfer+`4*($i%16)`],$Xi
312 srl $a,27,$tmp1
313 add $tmp0,$e,$e
314 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
315 and $c,$b,$tmp0
316 add $tmp1,$e,$e
317 fpadd32 $K,@X[$l],%f20 !
318 sll $b,30,$tmp2
319 or $c,$b,$tmp1
320 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
321 srl $b,2,$b
322 and $d,$tmp1,$tmp1
323 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
324 add $Xi,$e,$e
325 or $tmp1,$tmp0,$tmp1
326 or $tmp2,$b,$b
327 add $tmp1,$e,$e
328 std %f20,[$Xfer+`4*$l`] !
329 ___
330 }
331
332 # If there is more data to process, then we pre-fetch the data for
333 # next iteration in last ten rounds...
334 sub BODY_70_79 {
335 my ($i,$a,$b,$c,$d,$e)=@_;
336 my $j=$i&~1;
337 my $m=($i%8)*2;
338
339 $j=($j+16)%16;
340
341 $code.=<<___ if ($i==70);
342 sll $a,5,$tmp0 !! $i
343 ld [$Xfer+`4*($i%16)`],$Xi
344 srl $a,27,$tmp1
345 add $tmp0,$e,$e
346 ldd [$inp+64],@X[0]
347 xor $c,$b,$tmp0
348 add $tmp1,$e,$e
349 sll $b,30,$tmp2
350 xor $d,$tmp0,$tmp1
351 srl $b,2,$b
352 add $tmp1,$e,$e
353 or $tmp2,$b,$b
354 add $Xi,$e,$e
355
356 and $inp,-64,$nXfer
357 inc 64,$inp
358 and $nXfer,255,$nXfer
359 alignaddr %g0,$align,%g0
360 add $base,$nXfer,$nXfer
361 ___
362 $code.=<<___ if ($i==71);
363 sll $a,5,$tmp0 !! $i
364 ld [$Xfer+`4*($i%16)`],$Xi
365 srl $a,27,$tmp1
366 add $tmp0,$e,$e
367 xor $c,$b,$tmp0
368 add $tmp1,$e,$e
369 sll $b,30,$tmp2
370 xor $d,$tmp0,$tmp1
371 srl $b,2,$b
372 add $tmp1,$e,$e
373 or $tmp2,$b,$b
374 add $Xi,$e,$e
375 ___
376 $code.=<<___ if ($i>=72);
377 faligndata @X[$m],@X[$m+2],@X[$m]
378 sll $a,5,$tmp0 !! $i
379 ld [$Xfer+`4*($i%16)`],$Xi
380 srl $a,27,$tmp1
381 add $tmp0,$e,$e
382 xor $c,$b,$tmp0
383 add $tmp1,$e,$e
384 fpadd32 $VK_00_19,@X[$m],%f20
385 sll $b,30,$tmp2
386 xor $d,$tmp0,$tmp1
387 srl $b,2,$b
388 add $tmp1,$e,$e
389 or $tmp2,$b,$b
390 add $Xi,$e,$e
391 ___
392 $code.=<<___ if ($i<77);
393 ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
394 ___
395 $code.=<<___ if ($i==77); # redundant if $inp was aligned
396 add $align,63,$tmp0
397 and $tmp0,-8,$tmp0
398 ldd [$inp+$tmp0],@X[16]
399 ___
400 $code.=<<___ if ($i>=72);
401 std %f20,[$nXfer+`4*$m`]
402 ___
403 }
404
405 $code.=<<___;
406 .section ".text",#alloc,#execinstr
407
408 .align 64
409 vis_const:
410 .long 0x5a827999,0x5a827999 ! K_00_19
411 .long 0x6ed9eba1,0x6ed9eba1 ! K_20_39
412 .long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59
413 .long 0xca62c1d6,0xca62c1d6 ! K_60_79
414 .long 0x00000100,0x00000100
415 .align 64
416 .type vis_const,#object
417 .size vis_const,(.-vis_const)
418
419 .globl sha1_block_data_order
420 sha1_block_data_order:
421 save %sp,-$frame,%sp
422 add %fp,$bias-256,$base
423
424 1: call .+8
425 add %o7,vis_const-1b,$tmp0
426
427 ldd [$tmp0+0],$VK_00_19
428 ldd [$tmp0+8],$VK_20_39
429 ldd [$tmp0+16],$VK_40_59
430 ldd [$tmp0+24],$VK_60_79
431 ldd [$tmp0+32],$fmul
432
433 ld [$ctx+0],$Actx
434 and $base,-256,$base
435 ld [$ctx+4],$Bctx
436 sub $base,$bias+$frame,%sp
437 ld [$ctx+8],$Cctx
438 and $inp,7,$align
439 ld [$ctx+12],$Dctx
440 and $inp,-8,$inp
441 ld [$ctx+16],$Ectx
442
443 ! X[16] is maintained in FP register bank
444 alignaddr %g0,$align,%g0
445 ldd [$inp+0],@X[0]
446 sub $inp,-64,$Xfer
447 ldd [$inp+8],@X[2]
448 and $Xfer,-64,$Xfer
449 ldd [$inp+16],@X[4]
450 and $Xfer,255,$Xfer
451 ldd [$inp+24],@X[6]
452 add $base,$Xfer,$Xfer
453 ldd [$inp+32],@X[8]
454 ldd [$inp+40],@X[10]
455 ldd [$inp+48],@X[12]
456 brz,pt $align,.Laligned
457 ldd [$inp+56],@X[14]
458
459 ldd [$inp+64],@X[16]
460 faligndata @X[0],@X[2],@X[0]
461 faligndata @X[2],@X[4],@X[2]
462 faligndata @X[4],@X[6],@X[4]
463 faligndata @X[6],@X[8],@X[6]
464 faligndata @X[8],@X[10],@X[8]
465 faligndata @X[10],@X[12],@X[10]
466 faligndata @X[12],@X[14],@X[12]
467 faligndata @X[14],@X[16],@X[14]
468
469 .Laligned:
470 mov 5,$tmp0
471 dec 1,$len
472 alignaddr %g0,$tmp0,%g0
473 fpadd32 $VK_00_19,@X[0],%f16
474 fpadd32 $VK_00_19,@X[2],%f18
475 fpadd32 $VK_00_19,@X[4],%f20
476 fpadd32 $VK_00_19,@X[6],%f22
477 fpadd32 $VK_00_19,@X[8],%f24
478 fpadd32 $VK_00_19,@X[10],%f26
479 fpadd32 $VK_00_19,@X[12],%f28
480 fpadd32 $VK_00_19,@X[14],%f30
481 std %f16,[$Xfer+0]
482 mov $Actx,$A
483 std %f18,[$Xfer+8]
484 mov $Bctx,$B
485 std %f20,[$Xfer+16]
486 mov $Cctx,$C
487 std %f22,[$Xfer+24]
488 mov $Dctx,$D
489 std %f24,[$Xfer+32]
490 mov $Ectx,$E
491 std %f26,[$Xfer+40]
492 fxors @X[13],@X[0],@X[0]
493 std %f28,[$Xfer+48]
494 ba .Loop
495 std %f30,[$Xfer+56]
496 .align 32
497 .Loop:
498 ___
499 for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
500 for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
501 for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
502 for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
503 $code.=<<___;
504 tst $len
505 bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail
506 nop
507 ___
508 for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
509 $code.=<<___;
510 add $A,$Actx,$Actx
511 add $B,$Bctx,$Bctx
512 add $C,$Cctx,$Cctx
513 add $D,$Dctx,$Dctx
514 add $E,$Ectx,$Ectx
515 mov 5,$tmp0
516 fxors @X[13],@X[0],@X[0]
517 mov $Actx,$A
518 mov $Bctx,$B
519 mov $Cctx,$C
520 mov $Dctx,$D
521 mov $Ectx,$E
522 alignaddr %g0,$tmp0,%g0
523 dec 1,$len
524 ba .Loop
525 mov $nXfer,$Xfer
526
527 .align 32
528 .Ltail:
529 ___
530 for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
531 $code.=<<___;
532 add $A,$Actx,$Actx
533 add $B,$Bctx,$Bctx
534 add $C,$Cctx,$Cctx
535 add $D,$Dctx,$Dctx
536 add $E,$Ectx,$Ectx
537
538 st $Actx,[$ctx+0]
539 st $Bctx,[$ctx+4]
540 st $Cctx,[$ctx+8]
541 st $Dctx,[$ctx+12]
542 st $Ectx,[$ctx+16]
543
544 ret
545 restore
546 .type sha1_block_data_order,#function
547 .size sha1_block_data_order,(.-sha1_block_data_order)
548 .asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
549 .align 4
550 ___
551
552 # Purpose of these subroutines is to explicitly encode VIS instructions,
553 # so that one can compile the module without having to specify VIS
554 # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
555 # Idea is to reserve for option to produce "universal" binary and let
556 # programmer detect if current CPU is VIS capable at run-time.
557 sub unvis {
558 my ($mnemonic,$rs1,$rs2,$rd)=@_;
559 my ($ref,$opf);
560 my %visopf = ( "fmul8ulx16" => 0x037,
561 "faligndata" => 0x048,
562 "fpadd32" => 0x052,
563 "fxor" => 0x06c,
564 "fxors" => 0x06d );
565
566 $ref = "$mnemonic\t$rs1,$rs2,$rd";
567
568 if ($opf=$visopf{$mnemonic}) {
569 foreach ($rs1,$rs2,$rd) {
570 return $ref if (!/%f([0-9]{1,2})/);
571 $_=$1;
572 if ($1>=32) {
573 return $ref if ($1&1);
574 # re-encode for upper double register addressing
575 $_=($1|$1>>5)&31;
576 }
577 }
578
579 return sprintf ".word\t0x%08x !%s",
580 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
581 $ref;
582 } else {
583 return $ref;
584 }
585 }
586 sub unalignaddr {
587 my ($mnemonic,$rs1,$rs2,$rd)=@_;
588 my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
589 my $ref="$mnemonic\t$rs1,$rs2,$rd";
590
591 foreach ($rs1,$rs2,$rd) {
592 if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
593 else { return $ref; }
594 }
595 return sprintf ".word\t0x%08x !%s",
596 0x81b00300|$rd<<25|$rs1<<14|$rs2,
597 $ref;
598 }
599
600 $code =~ s/\`([^\`]*)\`/eval $1/gem;
601 $code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
602 &unvis($1,$2,$3,$4)
603 /gem;
604 $code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
605 &unalignaddr($1,$2,$3,$4)
606 /gem;
607 print $code;
608 close STDOUT;