]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/sha/keccak1600.c
Many spelling fixes/typo's corrected.
[thirdparty/openssl.git] / crypto / sha / keccak1600.c
1 /*
2 * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/e_os2.h>
11 #include <string.h>
12 #include <assert.h>
13
14 size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
15 size_t r);
16 void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r);
17
18 #if !defined(KECCAK1600_ASM) || !defined(SELFTEST)
19
20 /*
21 * Choose some sensible defaults
22 */
23 #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \
24 !defined(KECCAK_2X) && !defined(KECCAK_INPLACE)
25 # define KECCAK_2X /* default to KECCAK_2X variant */
26 #endif
27
28 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
29 # define KECCAK_COMPLEMENTING_TRANSFORM
30 #endif
31
32 #if defined(__x86_64__) || defined(__aarch64__) || \
33 defined(__mips64) || defined(__ia64) || \
34 (defined(__VMS) && !defined(__vax))
35 /*
36 * These are available even in ILP32 flavours, but even then they are
37 * capable of performing 64-bit operations as efficiently as in *P64.
38 * Since it's not given that we can use sizeof(void *), just shunt it.
39 */
40 # define BIT_INTERLEAVE (0)
41 #else
42 # define BIT_INTERLEAVE (sizeof(void *) < 8)
43 #endif
44
45 #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31)))
46
47 static uint64_t ROL64(uint64_t val, int offset)
48 {
49 if (offset == 0) {
50 return val;
51 } else if (!BIT_INTERLEAVE) {
52 return (val << offset) | (val >> (64-offset));
53 } else {
54 uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val;
55
56 if (offset & 1) {
57 uint32_t tmp = hi;
58
59 offset >>= 1;
60 hi = ROL32(lo, offset);
61 lo = ROL32(tmp, offset + 1);
62 } else {
63 offset >>= 1;
64 lo = ROL32(lo, offset);
65 hi = ROL32(hi, offset);
66 }
67
68 return ((uint64_t)hi << 32) | lo;
69 }
70 }
71
72 static const unsigned char rhotates[5][5] = {
73 { 0, 1, 62, 28, 27 },
74 { 36, 44, 6, 55, 20 },
75 { 3, 10, 43, 25, 39 },
76 { 41, 45, 15, 21, 8 },
77 { 18, 2, 61, 56, 14 }
78 };
79
80 static const uint64_t iotas[] = {
81 BIT_INTERLEAVE ? 0x0000000000000001U : 0x0000000000000001U,
82 BIT_INTERLEAVE ? 0x0000008900000000U : 0x0000000000008082U,
83 BIT_INTERLEAVE ? 0x8000008b00000000U : 0x800000000000808aU,
84 BIT_INTERLEAVE ? 0x8000808000000000U : 0x8000000080008000U,
85 BIT_INTERLEAVE ? 0x0000008b00000001U : 0x000000000000808bU,
86 BIT_INTERLEAVE ? 0x0000800000000001U : 0x0000000080000001U,
87 BIT_INTERLEAVE ? 0x8000808800000001U : 0x8000000080008081U,
88 BIT_INTERLEAVE ? 0x8000008200000001U : 0x8000000000008009U,
89 BIT_INTERLEAVE ? 0x0000000b00000000U : 0x000000000000008aU,
90 BIT_INTERLEAVE ? 0x0000000a00000000U : 0x0000000000000088U,
91 BIT_INTERLEAVE ? 0x0000808200000001U : 0x0000000080008009U,
92 BIT_INTERLEAVE ? 0x0000800300000000U : 0x000000008000000aU,
93 BIT_INTERLEAVE ? 0x0000808b00000001U : 0x000000008000808bU,
94 BIT_INTERLEAVE ? 0x8000000b00000001U : 0x800000000000008bU,
95 BIT_INTERLEAVE ? 0x8000008a00000001U : 0x8000000000008089U,
96 BIT_INTERLEAVE ? 0x8000008100000001U : 0x8000000000008003U,
97 BIT_INTERLEAVE ? 0x8000008100000000U : 0x8000000000008002U,
98 BIT_INTERLEAVE ? 0x8000000800000000U : 0x8000000000000080U,
99 BIT_INTERLEAVE ? 0x0000008300000000U : 0x000000000000800aU,
100 BIT_INTERLEAVE ? 0x8000800300000000U : 0x800000008000000aU,
101 BIT_INTERLEAVE ? 0x8000808800000001U : 0x8000000080008081U,
102 BIT_INTERLEAVE ? 0x8000008800000000U : 0x8000000000008080U,
103 BIT_INTERLEAVE ? 0x0000800000000001U : 0x0000000080000001U,
104 BIT_INTERLEAVE ? 0x8000808200000000U : 0x8000000080008008U
105 };
106
107 #if defined(KECCAK_REF)
108 /*
109 * This is straightforward or "maximum clarity" implementation aiming
110 * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard:
111 * Permutation-Based Hash and Extendible-Output Functions" as much as
112 * possible. With one caveat. Because of the way C stores matrices,
113 * references to A[x,y] in the specification are presented as A[y][x].
114 * Implementation unrolls inner x-loops so that modulo 5 operations are
115 * explicitly pre-computed.
116 */
117 static void Theta(uint64_t A[5][5])
118 {
119 uint64_t C[5], D[5];
120 size_t y;
121
122 C[0] = A[0][0];
123 C[1] = A[0][1];
124 C[2] = A[0][2];
125 C[3] = A[0][3];
126 C[4] = A[0][4];
127
128 for (y = 1; y < 5; y++) {
129 C[0] ^= A[y][0];
130 C[1] ^= A[y][1];
131 C[2] ^= A[y][2];
132 C[3] ^= A[y][3];
133 C[4] ^= A[y][4];
134 }
135
136 D[0] = ROL64(C[1], 1) ^ C[4];
137 D[1] = ROL64(C[2], 1) ^ C[0];
138 D[2] = ROL64(C[3], 1) ^ C[1];
139 D[3] = ROL64(C[4], 1) ^ C[2];
140 D[4] = ROL64(C[0], 1) ^ C[3];
141
142 for (y = 0; y < 5; y++) {
143 A[y][0] ^= D[0];
144 A[y][1] ^= D[1];
145 A[y][2] ^= D[2];
146 A[y][3] ^= D[3];
147 A[y][4] ^= D[4];
148 }
149 }
150
151 static void Rho(uint64_t A[5][5])
152 {
153 size_t y;
154
155 for (y = 0; y < 5; y++) {
156 A[y][0] = ROL64(A[y][0], rhotates[y][0]);
157 A[y][1] = ROL64(A[y][1], rhotates[y][1]);
158 A[y][2] = ROL64(A[y][2], rhotates[y][2]);
159 A[y][3] = ROL64(A[y][3], rhotates[y][3]);
160 A[y][4] = ROL64(A[y][4], rhotates[y][4]);
161 }
162 }
163
164 static void Pi(uint64_t A[5][5])
165 {
166 uint64_t T[5][5];
167
168 /*
169 * T = A
170 * A[y][x] = T[x][(3*y+x)%5]
171 */
172 memcpy(T, A, sizeof(T));
173
174 A[0][0] = T[0][0];
175 A[0][1] = T[1][1];
176 A[0][2] = T[2][2];
177 A[0][3] = T[3][3];
178 A[0][4] = T[4][4];
179
180 A[1][0] = T[0][3];
181 A[1][1] = T[1][4];
182 A[1][2] = T[2][0];
183 A[1][3] = T[3][1];
184 A[1][4] = T[4][2];
185
186 A[2][0] = T[0][1];
187 A[2][1] = T[1][2];
188 A[2][2] = T[2][3];
189 A[2][3] = T[3][4];
190 A[2][4] = T[4][0];
191
192 A[3][0] = T[0][4];
193 A[3][1] = T[1][0];
194 A[3][2] = T[2][1];
195 A[3][3] = T[3][2];
196 A[3][4] = T[4][3];
197
198 A[4][0] = T[0][2];
199 A[4][1] = T[1][3];
200 A[4][2] = T[2][4];
201 A[4][3] = T[3][0];
202 A[4][4] = T[4][1];
203 }
204
205 static void Chi(uint64_t A[5][5])
206 {
207 uint64_t C[5];
208 size_t y;
209
210 for (y = 0; y < 5; y++) {
211 C[0] = A[y][0] ^ (~A[y][1] & A[y][2]);
212 C[1] = A[y][1] ^ (~A[y][2] & A[y][3]);
213 C[2] = A[y][2] ^ (~A[y][3] & A[y][4]);
214 C[3] = A[y][3] ^ (~A[y][4] & A[y][0]);
215 C[4] = A[y][4] ^ (~A[y][0] & A[y][1]);
216
217 A[y][0] = C[0];
218 A[y][1] = C[1];
219 A[y][2] = C[2];
220 A[y][3] = C[3];
221 A[y][4] = C[4];
222 }
223 }
224
225 static void Iota(uint64_t A[5][5], size_t i)
226 {
227 assert(i < (sizeof(iotas) / sizeof(iotas[0])));
228 A[0][0] ^= iotas[i];
229 }
230
231 static void KeccakF1600(uint64_t A[5][5])
232 {
233 size_t i;
234
235 for (i = 0; i < 24; i++) {
236 Theta(A);
237 Rho(A);
238 Pi(A);
239 Chi(A);
240 Iota(A, i);
241 }
242 }
243
244 #elif defined(KECCAK_1X)
245 /*
246 * This implementation is optimization of above code featuring unroll
247 * of even y-loops, their fusion and code motion. It also minimizes
248 * temporary storage. Compiler would normally do all these things for
249 * you, purpose of manual optimization is to provide "unobscured"
250 * reference for assembly implementation [in case this approach is
251 * chosen for implementation on some platform]. In the nutshell it's
252 * equivalent of "plane-per-plane processing" approach discussed in
253 * section 2.4 of "Keccak implementation overview".
254 */
255 static void Round(uint64_t A[5][5], size_t i)
256 {
257 uint64_t C[5], E[2]; /* registers */
258 uint64_t D[5], T[2][5]; /* memory */
259
260 assert(i < (sizeof(iotas) / sizeof(iotas[0])));
261
262 C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
263 C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
264 C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
265 C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
266 C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
267
268 #if defined(__arm__)
269 D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
270 D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
271 D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
272 D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
273 D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
274
275 T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */
276 T[0][1] = A[0][1] ^ E[0]; /* D[1] */
277 T[0][2] = A[0][2] ^ C[1]; /* D[2] */
278 T[0][3] = A[0][3] ^ C[2]; /* D[3] */
279 T[0][4] = A[0][4] ^ E[1]; /* D[4] */
280
281 C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */
282 C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */
283 C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */
284 C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */
285 C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */
286 #else
287 D[0] = ROL64(C[1], 1) ^ C[4];
288 D[1] = ROL64(C[2], 1) ^ C[0];
289 D[2] = ROL64(C[3], 1) ^ C[1];
290 D[3] = ROL64(C[4], 1) ^ C[2];
291 D[4] = ROL64(C[0], 1) ^ C[3];
292
293 T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */
294 T[0][1] = A[0][1] ^ D[1];
295 T[0][2] = A[0][2] ^ D[2];
296 T[0][3] = A[0][3] ^ D[3];
297 T[0][4] = A[0][4] ^ D[4];
298
299 C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
300 C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
301 C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
302 C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
303 C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
304 #endif
305 A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
306 A[0][1] = C[1] ^ (~C[2] & C[3]);
307 A[0][2] = C[2] ^ (~C[3] & C[4]);
308 A[0][3] = C[3] ^ (~C[4] & C[0]);
309 A[0][4] = C[4] ^ (~C[0] & C[1]);
310
311 T[1][0] = A[1][0] ^ (C[3] = D[0]);
312 T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */
313 T[1][2] = A[1][2] ^ (E[0] = D[2]);
314 T[1][3] = A[1][3] ^ (E[1] = D[3]);
315 T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */
316
317 C[0] = ROL64(T[0][3], rhotates[0][3]);
318 C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */
319 C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */
320 C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */
321 C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */
322
323 A[1][0] = C[0] ^ (~C[1] & C[2]);
324 A[1][1] = C[1] ^ (~C[2] & C[3]);
325 A[1][2] = C[2] ^ (~C[3] & C[4]);
326 A[1][3] = C[3] ^ (~C[4] & C[0]);
327 A[1][4] = C[4] ^ (~C[0] & C[1]);
328
329 C[0] = ROL64(T[0][1], rhotates[0][1]);
330 C[1] = ROL64(T[1][2], rhotates[1][2]);
331 C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
332 C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
333 C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
334
335 A[2][0] = C[0] ^ (~C[1] & C[2]);
336 A[2][1] = C[1] ^ (~C[2] & C[3]);
337 A[2][2] = C[2] ^ (~C[3] & C[4]);
338 A[2][3] = C[3] ^ (~C[4] & C[0]);
339 A[2][4] = C[4] ^ (~C[0] & C[1]);
340
341 C[0] = ROL64(T[0][4], rhotates[0][4]);
342 C[1] = ROL64(T[1][0], rhotates[1][0]);
343 C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */
344 C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
345 C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
346
347 A[3][0] = C[0] ^ (~C[1] & C[2]);
348 A[3][1] = C[1] ^ (~C[2] & C[3]);
349 A[3][2] = C[2] ^ (~C[3] & C[4]);
350 A[3][3] = C[3] ^ (~C[4] & C[0]);
351 A[3][4] = C[4] ^ (~C[0] & C[1]);
352
353 C[0] = ROL64(T[0][2], rhotates[0][2]);
354 C[1] = ROL64(T[1][3], rhotates[1][3]);
355 C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */
356 C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */
357 C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
358
359 A[4][0] = C[0] ^ (~C[1] & C[2]);
360 A[4][1] = C[1] ^ (~C[2] & C[3]);
361 A[4][2] = C[2] ^ (~C[3] & C[4]);
362 A[4][3] = C[3] ^ (~C[4] & C[0]);
363 A[4][4] = C[4] ^ (~C[0] & C[1]);
364 }
365
366 static void KeccakF1600(uint64_t A[5][5])
367 {
368 size_t i;
369
370 for (i = 0; i < 24; i++) {
371 Round(A, i);
372 }
373 }
374
375 #elif defined(KECCAK_1X_ALT)
376 /*
377 * This is variant of above KECCAK_1X that reduces requirement for
378 * temporary storage even further, but at cost of more updates to A[][].
379 * It's less suitable if A[][] is memory bound, but better if it's
380 * register bound.
381 */
382
383 static void Round(uint64_t A[5][5], size_t i)
384 {
385 uint64_t C[5], D[5];
386
387 assert(i < (sizeof(iotas) / sizeof(iotas[0])));
388
389 C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
390 C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
391 C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
392 C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
393 C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
394
395 D[1] = C[0] ^ ROL64(C[2], 1);
396 D[2] = C[1] ^ ROL64(C[3], 1);
397 D[3] = C[2] ^= ROL64(C[4], 1);
398 D[4] = C[3] ^= ROL64(C[0], 1);
399 D[0] = C[4] ^= ROL64(C[1], 1);
400
401 A[0][1] ^= D[1];
402 A[1][1] ^= D[1];
403 A[2][1] ^= D[1];
404 A[3][1] ^= D[1];
405 A[4][1] ^= D[1];
406
407 A[0][2] ^= D[2];
408 A[1][2] ^= D[2];
409 A[2][2] ^= D[2];
410 A[3][2] ^= D[2];
411 A[4][2] ^= D[2];
412
413 A[0][3] ^= C[2];
414 A[1][3] ^= C[2];
415 A[2][3] ^= C[2];
416 A[3][3] ^= C[2];
417 A[4][3] ^= C[2];
418
419 A[0][4] ^= C[3];
420 A[1][4] ^= C[3];
421 A[2][4] ^= C[3];
422 A[3][4] ^= C[3];
423 A[4][4] ^= C[3];
424
425 A[0][0] ^= C[4];
426 A[1][0] ^= C[4];
427 A[2][0] ^= C[4];
428 A[3][0] ^= C[4];
429 A[4][0] ^= C[4];
430
431 C[1] = A[0][1];
432 C[2] = A[0][2];
433 C[3] = A[0][3];
434 C[4] = A[0][4];
435
436 A[0][1] = ROL64(A[1][1], rhotates[1][1]);
437 A[0][2] = ROL64(A[2][2], rhotates[2][2]);
438 A[0][3] = ROL64(A[3][3], rhotates[3][3]);
439 A[0][4] = ROL64(A[4][4], rhotates[4][4]);
440
441 A[1][1] = ROL64(A[1][4], rhotates[1][4]);
442 A[2][2] = ROL64(A[2][3], rhotates[2][3]);
443 A[3][3] = ROL64(A[3][2], rhotates[3][2]);
444 A[4][4] = ROL64(A[4][1], rhotates[4][1]);
445
446 A[1][4] = ROL64(A[4][2], rhotates[4][2]);
447 A[2][3] = ROL64(A[3][4], rhotates[3][4]);
448 A[3][2] = ROL64(A[2][1], rhotates[2][1]);
449 A[4][1] = ROL64(A[1][3], rhotates[1][3]);
450
451 A[4][2] = ROL64(A[2][4], rhotates[2][4]);
452 A[3][4] = ROL64(A[4][3], rhotates[4][3]);
453 A[2][1] = ROL64(A[1][2], rhotates[1][2]);
454 A[1][3] = ROL64(A[3][1], rhotates[3][1]);
455
456 A[2][4] = ROL64(A[4][0], rhotates[4][0]);
457 A[4][3] = ROL64(A[3][0], rhotates[3][0]);
458 A[1][2] = ROL64(A[2][0], rhotates[2][0]);
459 A[3][1] = ROL64(A[1][0], rhotates[1][0]);
460
461 A[1][0] = ROL64(C[3], rhotates[0][3]);
462 A[2][0] = ROL64(C[1], rhotates[0][1]);
463 A[3][0] = ROL64(C[4], rhotates[0][4]);
464 A[4][0] = ROL64(C[2], rhotates[0][2]);
465
466 C[0] = A[0][0];
467 C[1] = A[1][0];
468 D[0] = A[0][1];
469 D[1] = A[1][1];
470
471 A[0][0] ^= (~A[0][1] & A[0][2]);
472 A[1][0] ^= (~A[1][1] & A[1][2]);
473 A[0][1] ^= (~A[0][2] & A[0][3]);
474 A[1][1] ^= (~A[1][2] & A[1][3]);
475 A[0][2] ^= (~A[0][3] & A[0][4]);
476 A[1][2] ^= (~A[1][3] & A[1][4]);
477 A[0][3] ^= (~A[0][4] & C[0]);
478 A[1][3] ^= (~A[1][4] & C[1]);
479 A[0][4] ^= (~C[0] & D[0]);
480 A[1][4] ^= (~C[1] & D[1]);
481
482 C[2] = A[2][0];
483 C[3] = A[3][0];
484 D[2] = A[2][1];
485 D[3] = A[3][1];
486
487 A[2][0] ^= (~A[2][1] & A[2][2]);
488 A[3][0] ^= (~A[3][1] & A[3][2]);
489 A[2][1] ^= (~A[2][2] & A[2][3]);
490 A[3][1] ^= (~A[3][2] & A[3][3]);
491 A[2][2] ^= (~A[2][3] & A[2][4]);
492 A[3][2] ^= (~A[3][3] & A[3][4]);
493 A[2][3] ^= (~A[2][4] & C[2]);
494 A[3][3] ^= (~A[3][4] & C[3]);
495 A[2][4] ^= (~C[2] & D[2]);
496 A[3][4] ^= (~C[3] & D[3]);
497
498 C[4] = A[4][0];
499 D[4] = A[4][1];
500
501 A[4][0] ^= (~A[4][1] & A[4][2]);
502 A[4][1] ^= (~A[4][2] & A[4][3]);
503 A[4][2] ^= (~A[4][3] & A[4][4]);
504 A[4][3] ^= (~A[4][4] & C[4]);
505 A[4][4] ^= (~C[4] & D[4]);
506 A[0][0] ^= iotas[i];
507 }
508
509 static void KeccakF1600(uint64_t A[5][5])
510 {
511 size_t i;
512
513 for (i = 0; i < 24; i++) {
514 Round(A, i);
515 }
516 }
517
518 #elif defined(KECCAK_2X)
519 /*
520 * This implementation is variant of KECCAK_1X above with outer-most
521 * round loop unrolled twice. This allows to take temporary storage
522 * out of round procedure and simplify references to it by alternating
523 * it with actual data (see round loop below). Originally it was meant
524 * rather as reference for an assembly implementation, but it seems to
525 * play best with compilers [as well as provide best instruction per
526 * processed byte ratio at minimal round unroll factor]...
527 */
528 static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i)
529 {
530 uint64_t C[5], D[5];
531
532 assert(i < (sizeof(iotas) / sizeof(iotas[0])));
533
534 C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
535 C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
536 C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
537 C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
538 C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
539
540 D[0] = ROL64(C[1], 1) ^ C[4];
541 D[1] = ROL64(C[2], 1) ^ C[0];
542 D[2] = ROL64(C[3], 1) ^ C[1];
543 D[3] = ROL64(C[4], 1) ^ C[2];
544 D[4] = ROL64(C[0], 1) ^ C[3];
545
546 C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
547 C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
548 C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
549 C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
550 C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
551
552 #ifdef KECCAK_COMPLEMENTING_TRANSFORM
553 R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i];
554 R[0][1] = C[1] ^ (~C[2] | C[3]);
555 R[0][2] = C[2] ^ ( C[3] & C[4]);
556 R[0][3] = C[3] ^ ( C[4] | C[0]);
557 R[0][4] = C[4] ^ ( C[0] & C[1]);
558 #else
559 R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
560 R[0][1] = C[1] ^ (~C[2] & C[3]);
561 R[0][2] = C[2] ^ (~C[3] & C[4]);
562 R[0][3] = C[3] ^ (~C[4] & C[0]);
563 R[0][4] = C[4] ^ (~C[0] & C[1]);
564 #endif
565
566 C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
567 C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
568 C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
569 C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
570 C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
571
572 #ifdef KECCAK_COMPLEMENTING_TRANSFORM
573 R[1][0] = C[0] ^ (C[1] | C[2]);
574 R[1][1] = C[1] ^ (C[2] & C[3]);
575 R[1][2] = C[2] ^ (C[3] | ~C[4]);
576 R[1][3] = C[3] ^ (C[4] | C[0]);
577 R[1][4] = C[4] ^ (C[0] & C[1]);
578 #else
579 R[1][0] = C[0] ^ (~C[1] & C[2]);
580 R[1][1] = C[1] ^ (~C[2] & C[3]);
581 R[1][2] = C[2] ^ (~C[3] & C[4]);
582 R[1][3] = C[3] ^ (~C[4] & C[0]);
583 R[1][4] = C[4] ^ (~C[0] & C[1]);
584 #endif
585
586 C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
587 C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
588 C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
589 C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
590 C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
591
592 #ifdef KECCAK_COMPLEMENTING_TRANSFORM
593 R[2][0] = C[0] ^ ( C[1] | C[2]);
594 R[2][1] = C[1] ^ ( C[2] & C[3]);
595 R[2][2] = C[2] ^ (~C[3] & C[4]);
596 R[2][3] = ~C[3] ^ ( C[4] | C[0]);
597 R[2][4] = C[4] ^ ( C[0] & C[1]);
598 #else
599 R[2][0] = C[0] ^ (~C[1] & C[2]);
600 R[2][1] = C[1] ^ (~C[2] & C[3]);
601 R[2][2] = C[2] ^ (~C[3] & C[4]);
602 R[2][3] = C[3] ^ (~C[4] & C[0]);
603 R[2][4] = C[4] ^ (~C[0] & C[1]);
604 #endif
605
606 C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
607 C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
608 C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
609 C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
610 C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
611
612 #ifdef KECCAK_COMPLEMENTING_TRANSFORM
613 R[3][0] = C[0] ^ ( C[1] & C[2]);
614 R[3][1] = C[1] ^ ( C[2] | C[3]);
615 R[3][2] = C[2] ^ (~C[3] | C[4]);
616 R[3][3] = ~C[3] ^ ( C[4] & C[0]);
617 R[3][4] = C[4] ^ ( C[0] | C[1]);
618 #else
619 R[3][0] = C[0] ^ (~C[1] & C[2]);
620 R[3][1] = C[1] ^ (~C[2] & C[3]);
621 R[3][2] = C[2] ^ (~C[3] & C[4]);
622 R[3][3] = C[3] ^ (~C[4] & C[0]);
623 R[3][4] = C[4] ^ (~C[0] & C[1]);
624 #endif
625
626 C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
627 C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
628 C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
629 C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
630 C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
631
632 #ifdef KECCAK_COMPLEMENTING_TRANSFORM
633 R[4][0] = C[0] ^ (~C[1] & C[2]);
634 R[4][1] = ~C[1] ^ ( C[2] | C[3]);
635 R[4][2] = C[2] ^ ( C[3] & C[4]);
636 R[4][3] = C[3] ^ ( C[4] | C[0]);
637 R[4][4] = C[4] ^ ( C[0] & C[1]);
638 #else
639 R[4][0] = C[0] ^ (~C[1] & C[2]);
640 R[4][1] = C[1] ^ (~C[2] & C[3]);
641 R[4][2] = C[2] ^ (~C[3] & C[4]);
642 R[4][3] = C[3] ^ (~C[4] & C[0]);
643 R[4][4] = C[4] ^ (~C[0] & C[1]);
644 #endif
645 }
646
647 static void KeccakF1600(uint64_t A[5][5])
648 {
649 uint64_t T[5][5];
650 size_t i;
651
652 #ifdef KECCAK_COMPLEMENTING_TRANSFORM
653 A[0][1] = ~A[0][1];
654 A[0][2] = ~A[0][2];
655 A[1][3] = ~A[1][3];
656 A[2][2] = ~A[2][2];
657 A[3][2] = ~A[3][2];
658 A[4][0] = ~A[4][0];
659 #endif
660
661 for (i = 0; i < 24; i += 2) {
662 Round(T, A, i);
663 Round(A, T, i + 1);
664 }
665
666 #ifdef KECCAK_COMPLEMENTING_TRANSFORM
667 A[0][1] = ~A[0][1];
668 A[0][2] = ~A[0][2];
669 A[1][3] = ~A[1][3];
670 A[2][2] = ~A[2][2];
671 A[3][2] = ~A[3][2];
672 A[4][0] = ~A[4][0];
673 #endif
674 }
675
676 #else /* define KECCAK_INPLACE to compile this code path */
677 /*
678 * This implementation is KECCAK_1X from above combined 4 times with
679 * a twist that allows to omit temporary storage and perform in-place
680 * processing. It's discussed in section 2.5 of "Keccak implementation
681 * overview". It's likely to be best suited for processors with large
682 * register bank... On the other hand processor with large register
683 * bank can as well use KECCAK_1X_ALT, it would be as fast but much
684 * more compact...
685 */
686 static void FourRounds(uint64_t A[5][5], size_t i)
687 {
688 uint64_t B[5], C[5], D[5];
689
690 assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4));
691
692 /* Round 4*n */
693 C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
694 C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
695 C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
696 C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
697 C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
698
699 D[0] = ROL64(C[1], 1) ^ C[4];
700 D[1] = ROL64(C[2], 1) ^ C[0];
701 D[2] = ROL64(C[3], 1) ^ C[1];
702 D[3] = ROL64(C[4], 1) ^ C[2];
703 D[4] = ROL64(C[0], 1) ^ C[3];
704
705 B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
706 B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
707 B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
708 B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
709 B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
710
711 C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i];
712 C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]);
713 C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]);
714 C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]);
715 C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]);
716
717 B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
718 B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
719 B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
720 B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
721 B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
722
723 C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
724 C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
725 C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
726 C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
727 C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
728
729 B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
730 B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
731 B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
732 B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
733 B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
734
735 C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
736 C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
737 C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
738 C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
739 C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
740
741 B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
742 B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
743 B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
744 B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
745 B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
746
747 C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
748 C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
749 C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
750 C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
751 C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
752
753 B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
754 B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
755 B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
756 B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
757 B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
758
759 C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
760 C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
761 C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
762 C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
763 C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
764
765 /* Round 4*n+1 */
766 D[0] = ROL64(C[1], 1) ^ C[4];
767 D[1] = ROL64(C[2], 1) ^ C[0];
768 D[2] = ROL64(C[3], 1) ^ C[1];
769 D[3] = ROL64(C[4], 1) ^ C[2];
770 D[4] = ROL64(C[0], 1) ^ C[3];
771
772 B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
773 B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]);
774 B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]);
775 B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]);
776 B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]);
777
778 C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1];
779 C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]);
780 C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]);
781 C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]);
782 C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]);
783
784 B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]);
785 B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
786 B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]);
787 B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]);
788 B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]);
789
790 C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
791 C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
792 C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
793 C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
794 C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
795
796 B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]);
797 B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]);
798 B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
799 B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]);
800 B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]);
801
802 C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
803 C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
804 C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
805 C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
806 C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
807
808 B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]);
809 B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]);
810 B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]);
811 B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
812 B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]);
813
814 C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
815 C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
816 C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
817 C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
818 C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
819
820 B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]);
821 B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]);
822 B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]);
823 B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]);
824 B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
825
826 C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
827 C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
828 C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
829 C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
830 C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
831
832 /* Round 4*n+2 */
833 D[0] = ROL64(C[1], 1) ^ C[4];
834 D[1] = ROL64(C[2], 1) ^ C[0];
835 D[2] = ROL64(C[3], 1) ^ C[1];
836 D[3] = ROL64(C[4], 1) ^ C[2];
837 D[4] = ROL64(C[0], 1) ^ C[3];
838
839 B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
840 B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]);
841 B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]);
842 B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]);
843 B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]);
844
845 C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2];
846 C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]);
847 C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]);
848 C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]);
849 C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]);
850
851 B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]);
852 B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
853 B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]);
854 B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]);
855 B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]);
856
857 C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
858 C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
859 C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
860 C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
861 C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
862
863 B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]);
864 B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]);
865 B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
866 B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]);
867 B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]);
868
869 C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
870 C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
871 C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
872 C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
873 C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
874
875 B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]);
876 B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]);
877 B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]);
878 B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
879 B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]);
880
881 C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
882 C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
883 C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
884 C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
885 C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
886
887 B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]);
888 B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]);
889 B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]);
890 B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]);
891 B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
892
893 C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
894 C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
895 C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
896 C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
897 C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
898
899 /* Round 4*n+3 */
900 D[0] = ROL64(C[1], 1) ^ C[4];
901 D[1] = ROL64(C[2], 1) ^ C[0];
902 D[2] = ROL64(C[3], 1) ^ C[1];
903 D[3] = ROL64(C[4], 1) ^ C[2];
904 D[4] = ROL64(C[0], 1) ^ C[3];
905
906 B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
907 B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]);
908 B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]);
909 B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]);
910 B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]);
911
912 /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3];
913 /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]);
914 /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]);
915 /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]);
916 /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]);
917
918 B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]);
919 B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
920 B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]);
921 B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]);
922 B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]);
923
924 /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]);
925 /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]);
926 /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]);
927 /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]);
928 /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]);
929
930 B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]);
931 B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]);
932 B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
933 B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]);
934 B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]);
935
936 /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]);
937 /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]);
938 /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]);
939 /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]);
940 /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]);
941
942 B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]);
943 B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]);
944 B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]);
945 B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
946 B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]);
947
948 /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]);
949 /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]);
950 /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]);
951 /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]);
952 /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]);
953
954 B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]);
955 B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]);
956 B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]);
957 B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]);
958 B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
959
960 /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]);
961 /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]);
962 /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]);
963 /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]);
964 /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]);
965 }
966
967 static void KeccakF1600(uint64_t A[5][5])
968 {
969 size_t i;
970
971 for (i = 0; i < 24; i += 4) {
972 FourRounds(A, i);
973 }
974 }
975
976 #endif
977
978 static uint64_t BitInterleave(uint64_t Ai)
979 {
980 if (BIT_INTERLEAVE) {
981 uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
982 uint32_t t0, t1;
983
984 t0 = lo & 0x55555555;
985 t0 |= t0 >> 1; t0 &= 0x33333333;
986 t0 |= t0 >> 2; t0 &= 0x0f0f0f0f;
987 t0 |= t0 >> 4; t0 &= 0x00ff00ff;
988 t0 |= t0 >> 8; t0 &= 0x0000ffff;
989
990 t1 = hi & 0x55555555;
991 t1 |= t1 >> 1; t1 &= 0x33333333;
992 t1 |= t1 >> 2; t1 &= 0x0f0f0f0f;
993 t1 |= t1 >> 4; t1 &= 0x00ff00ff;
994 t1 |= t1 >> 8; t1 <<= 16;
995
996 lo &= 0xaaaaaaaa;
997 lo |= lo << 1; lo &= 0xcccccccc;
998 lo |= lo << 2; lo &= 0xf0f0f0f0;
999 lo |= lo << 4; lo &= 0xff00ff00;
1000 lo |= lo << 8; lo >>= 16;
1001
1002 hi &= 0xaaaaaaaa;
1003 hi |= hi << 1; hi &= 0xcccccccc;
1004 hi |= hi << 2; hi &= 0xf0f0f0f0;
1005 hi |= hi << 4; hi &= 0xff00ff00;
1006 hi |= hi << 8; hi &= 0xffff0000;
1007
1008 Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
1009 }
1010
1011 return Ai;
1012 }
1013
1014 static uint64_t BitDeinterleave(uint64_t Ai)
1015 {
1016 if (BIT_INTERLEAVE) {
1017 uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
1018 uint32_t t0, t1;
1019
1020 t0 = lo & 0x0000ffff;
1021 t0 |= t0 << 8; t0 &= 0x00ff00ff;
1022 t0 |= t0 << 4; t0 &= 0x0f0f0f0f;
1023 t0 |= t0 << 2; t0 &= 0x33333333;
1024 t0 |= t0 << 1; t0 &= 0x55555555;
1025
1026 t1 = hi << 16;
1027 t1 |= t1 >> 8; t1 &= 0xff00ff00;
1028 t1 |= t1 >> 4; t1 &= 0xf0f0f0f0;
1029 t1 |= t1 >> 2; t1 &= 0xcccccccc;
1030 t1 |= t1 >> 1; t1 &= 0xaaaaaaaa;
1031
1032 lo >>= 16;
1033 lo |= lo << 8; lo &= 0x00ff00ff;
1034 lo |= lo << 4; lo &= 0x0f0f0f0f;
1035 lo |= lo << 2; lo &= 0x33333333;
1036 lo |= lo << 1; lo &= 0x55555555;
1037
1038 hi &= 0xffff0000;
1039 hi |= hi >> 8; hi &= 0xff00ff00;
1040 hi |= hi >> 4; hi &= 0xf0f0f0f0;
1041 hi |= hi >> 2; hi &= 0xcccccccc;
1042 hi |= hi >> 1; hi &= 0xaaaaaaaa;
1043
1044 Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
1045 }
1046
1047 return Ai;
1048 }
1049
1050 /*
1051 * SHA3_absorb can be called multiple times, but at each invocation
1052 * largest multiple of |r| out of |len| bytes are processed. Then
1053 * remaining amount of bytes is returned. This is done to spare caller
1054 * trouble of calculating the largest multiple of |r|. |r| can be viewed
1055 * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104,
1056 * 72, but can also be (1600 - 448)/8 = 144. All this means that message
1057 * padding and intermediate sub-block buffering, byte- or bitwise, is
1058 * caller's responsibility.
1059 */
1060 size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
1061 size_t r)
1062 {
1063 uint64_t *A_flat = (uint64_t *)A;
1064 size_t i, w = r / 8;
1065
1066 assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
1067
1068 while (len >= r) {
1069 for (i = 0; i < w; i++) {
1070 uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 |
1071 (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 |
1072 (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 |
1073 (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56;
1074 inp += 8;
1075
1076 A_flat[i] ^= BitInterleave(Ai);
1077 }
1078 KeccakF1600(A);
1079 len -= r;
1080 }
1081
1082 return len;
1083 }
1084
1085 /*
1086 * SHA3_squeeze is called once at the end to generate |out| hash value
1087 * of |len| bytes.
1088 */
1089 void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r)
1090 {
1091 uint64_t *A_flat = (uint64_t *)A;
1092 size_t i, w = r / 8;
1093
1094 assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
1095
1096 while (len != 0) {
1097 for (i = 0; i < w && len != 0; i++) {
1098 uint64_t Ai = BitDeinterleave(A_flat[i]);
1099
1100 if (len < 8) {
1101 for (i = 0; i < len; i++) {
1102 *out++ = (unsigned char)Ai;
1103 Ai >>= 8;
1104 }
1105 return;
1106 }
1107
1108 out[0] = (unsigned char)(Ai);
1109 out[1] = (unsigned char)(Ai >> 8);
1110 out[2] = (unsigned char)(Ai >> 16);
1111 out[3] = (unsigned char)(Ai >> 24);
1112 out[4] = (unsigned char)(Ai >> 32);
1113 out[5] = (unsigned char)(Ai >> 40);
1114 out[6] = (unsigned char)(Ai >> 48);
1115 out[7] = (unsigned char)(Ai >> 56);
1116 out += 8;
1117 len -= 8;
1118 }
1119 if (len)
1120 KeccakF1600(A);
1121 }
1122 }
1123 #endif
1124
1125 #ifdef SELFTEST
1126 /*
1127 * Post-padding one-shot implementations would look as following:
1128 *
1129 * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8);
1130 * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8);
1131 * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8);
1132 * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8);
1133 * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8);
1134 * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8);
1135 */
1136
1137 void SHA3_sponge(const unsigned char *inp, size_t len,
1138 unsigned char *out, size_t d, size_t r)
1139 {
1140 uint64_t A[5][5];
1141
1142 memset(A, 0, sizeof(A));
1143 SHA3_absorb(A, inp, len, r);
1144 SHA3_squeeze(A, out, d, r);
1145 }
1146
1147 # include <stdio.h>
1148
1149 int main()
1150 {
1151 /*
1152 * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing
1153 */
1154 unsigned char test[168] = { '\xf3', '\x3' };
1155 unsigned char out[512];
1156 size_t i;
1157 static const unsigned char result[512] = {
1158 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B,
1159 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF,
1160 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98,
1161 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA,
1162 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB,
1163 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C,
1164 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C,
1165 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D,
1166 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD,
1167 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F,
1168 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC,
1169 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C,
1170 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6,
1171 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE,
1172 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3,
1173 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64,
1174 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6,
1175 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5,
1176 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38,
1177 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05,
1178 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98,
1179 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2,
1180 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50,
1181 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75,
1182 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0,
1183 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04,
1184 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8,
1185 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03,
1186 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9,
1187 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B,
1188 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B,
1189 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73,
1190 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6,
1191 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C,
1192 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D,
1193 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20,
1194 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D,
1195 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F,
1196 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A,
1197 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15,
1198 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D,
1199 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6,
1200 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2,
1201 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D,
1202 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30,
1203 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C,
1204 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E,
1205 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28,
1206 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A,
1207 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25,
1208 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28,
1209 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C,
1210 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41,
1211 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B,
1212 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C,
1213 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C,
1214 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA,
1215 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F,
1216 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A,
1217 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60,
1218 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6,
1219 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50,
1220 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF,
1221 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9
1222 };
1223
1224 test[167] = '\x80';
1225 SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test));
1226
1227 /*
1228 * Rationale behind keeping output [formatted as below] is that
1229 * one should be able to redirect it to a file, then copy-n-paste
1230 * final "output val" from official example to another file, and
1231 * compare the two with diff(1).
1232 */
1233 for (i = 0; i < sizeof(out);) {
1234 printf("%02X", out[i]);
1235 printf(++i % 16 && i != sizeof(out) ? " " : "\n");
1236 }
1237
1238 if (memcmp(out,result,sizeof(out))) {
1239 fprintf(stderr,"failure\n");
1240 return 1;
1241 } else {
1242 fprintf(stderr,"success\n");
1243 return 0;
1244 }
1245 }
1246 #endif