]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/sha/sha_locl.h
Run util/openssl-format-source -v -c .
[thirdparty/openssl.git] / crypto / sha / sha_locl.h
1 /* crypto/sha/sha_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59 #include <stdlib.h>
60 #include <string.h>
61
62 #include <openssl/opensslconf.h>
63 #include <openssl/sha.h>
64
65 #define DATA_ORDER_IS_BIG_ENDIAN
66
67 #define HASH_LONG SHA_LONG
68 #define HASH_CTX SHA_CTX
69 #define HASH_CBLOCK SHA_CBLOCK
70 #define HASH_MAKE_STRING(c,s) do { \
71 unsigned long ll; \
72 ll=(c)->h0; (void)HOST_l2c(ll,(s)); \
73 ll=(c)->h1; (void)HOST_l2c(ll,(s)); \
74 ll=(c)->h2; (void)HOST_l2c(ll,(s)); \
75 ll=(c)->h3; (void)HOST_l2c(ll,(s)); \
76 ll=(c)->h4; (void)HOST_l2c(ll,(s)); \
77 } while (0)
78
79 #if defined(SHA_0)
80
81 # define HASH_UPDATE SHA_Update
82 # define HASH_TRANSFORM SHA_Transform
83 # define HASH_FINAL SHA_Final
84 # define HASH_INIT SHA_Init
85 # define HASH_BLOCK_DATA_ORDER sha_block_data_order
86 # define Xupdate(a,ix,ia,ib,ic,id) (ix=(a)=(ia^ib^ic^id))
87
88 static void sha_block_data_order(SHA_CTX *c, const void *p, size_t num);
89
90 #elif defined(SHA_1)
91
92 # define HASH_UPDATE SHA1_Update
93 # define HASH_TRANSFORM SHA1_Transform
94 # define HASH_FINAL SHA1_Final
95 # define HASH_INIT SHA1_Init
96 # define HASH_BLOCK_DATA_ORDER sha1_block_data_order
97 # if defined(__MWERKS__) && defined(__MC68K__)
98 /* Metrowerks for Motorola fails otherwise:-( <appro@fy.chalmers.se> */
99 # define Xupdate(a,ix,ia,ib,ic,id) do { (a)=(ia^ib^ic^id); \
100 ix=(a)=ROTATE((a),1); \
101 } while (0)
102 # else
103 # define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \
104 ix=(a)=ROTATE((a),1) \
105 )
106 # endif
107
108 # ifndef SHA1_ASM
109 static
110 # endif
111 void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
112
113 #else
114 # error "Either SHA_0 or SHA_1 must be defined."
115 #endif
116
117 #include "md32_common.h"
118
119 #define INIT_DATA_h0 0x67452301UL
120 #define INIT_DATA_h1 0xefcdab89UL
121 #define INIT_DATA_h2 0x98badcfeUL
122 #define INIT_DATA_h3 0x10325476UL
123 #define INIT_DATA_h4 0xc3d2e1f0UL
124
125 #ifdef SHA_0
126 fips_md_init(SHA)
127 #else
128 fips_md_init_ctx(SHA1, SHA)
129 #endif
130 {
131 memset(c, 0, sizeof(*c));
132 c->h0 = INIT_DATA_h0;
133 c->h1 = INIT_DATA_h1;
134 c->h2 = INIT_DATA_h2;
135 c->h3 = INIT_DATA_h3;
136 c->h4 = INIT_DATA_h4;
137 return 1;
138 }
139
140 #define K_00_19 0x5a827999UL
141 #define K_20_39 0x6ed9eba1UL
142 #define K_40_59 0x8f1bbcdcUL
143 #define K_60_79 0xca62c1d6UL
144
145 /*
146 * As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be simplified
147 * to the code in F_00_19. Wei attributes these optimisations to Peter
148 * Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define
149 * F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) I've just become aware of another
150 * tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a
151 */
152 #define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
153 #define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
154 #define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
155 #define F_60_79(b,c,d) F_20_39(b,c,d)
156
157 #ifndef OPENSSL_SMALL_FOOTPRINT
158
159 # define BODY_00_15(i,a,b,c,d,e,f,xi) \
160 (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
161 (b)=ROTATE((b),30);
162
163 # define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
164 Xupdate(f,xi,xa,xb,xc,xd); \
165 (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
166 (b)=ROTATE((b),30);
167
168 # define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
169 Xupdate(f,xi,xa,xb,xc,xd); \
170 (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
171 (b)=ROTATE((b),30);
172
173 # define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
174 Xupdate(f,xa,xa,xb,xc,xd); \
175 (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
176 (b)=ROTATE((b),30);
177
178 # define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
179 Xupdate(f,xa,xa,xb,xc,xd); \
180 (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
181 (b)=ROTATE((b),30);
182
183 # define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
184 Xupdate(f,xa,xa,xb,xc,xd); \
185 (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
186 (b)=ROTATE((b),30);
187
188 # ifdef X
189 # undef X
190 # endif
191 # ifndef MD32_XARRAY
192 /*
193 * Originally X was an array. As it's automatic it's natural
194 * to expect RISC compiler to accomodate at least part of it in
195 * the register bank, isn't it? Unfortunately not all compilers
196 * "find" this expectation reasonable:-( On order to make such
197 * compilers generate better code I replace X[] with a bunch of
198 * X0, X1, etc. See the function body below...
199 * <appro@fy.chalmers.se>
200 */
201 # define X(i) XX##i
202 # else
203 /*
204 * However! Some compilers (most notably HP C) get overwhelmed by
205 * that many local variables so that we have to have the way to
206 * fall down to the original behavior.
207 */
208 # define X(i) XX[i]
209 # endif
210
211 # if !defined(SHA_1) || !defined(SHA1_ASM)
212 static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
213 {
214 const unsigned char *data = p;
215 register unsigned MD32_REG_T A, B, C, D, E, T, l;
216 # ifndef MD32_XARRAY
217 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
218 XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
219 # else
220 SHA_LONG XX[16];
221 # endif
222
223 A = c->h0;
224 B = c->h1;
225 C = c->h2;
226 D = c->h3;
227 E = c->h4;
228
229 for (;;) {
230 const union {
231 long one;
232 char little;
233 } is_endian = {
234 1
235 };
236
237 if (!is_endian.little && sizeof(SHA_LONG) == 4
238 && ((size_t)p % 4) == 0) {
239 const SHA_LONG *W = (const SHA_LONG *)data;
240
241 X(0) = W[0];
242 X(1) = W[1];
243 BODY_00_15(0, A, B, C, D, E, T, X(0));
244 X(2) = W[2];
245 BODY_00_15(1, T, A, B, C, D, E, X(1));
246 X(3) = W[3];
247 BODY_00_15(2, E, T, A, B, C, D, X(2));
248 X(4) = W[4];
249 BODY_00_15(3, D, E, T, A, B, C, X(3));
250 X(5) = W[5];
251 BODY_00_15(4, C, D, E, T, A, B, X(4));
252 X(6) = W[6];
253 BODY_00_15(5, B, C, D, E, T, A, X(5));
254 X(7) = W[7];
255 BODY_00_15(6, A, B, C, D, E, T, X(6));
256 X(8) = W[8];
257 BODY_00_15(7, T, A, B, C, D, E, X(7));
258 X(9) = W[9];
259 BODY_00_15(8, E, T, A, B, C, D, X(8));
260 X(10) = W[10];
261 BODY_00_15(9, D, E, T, A, B, C, X(9));
262 X(11) = W[11];
263 BODY_00_15(10, C, D, E, T, A, B, X(10));
264 X(12) = W[12];
265 BODY_00_15(11, B, C, D, E, T, A, X(11));
266 X(13) = W[13];
267 BODY_00_15(12, A, B, C, D, E, T, X(12));
268 X(14) = W[14];
269 BODY_00_15(13, T, A, B, C, D, E, X(13));
270 X(15) = W[15];
271 BODY_00_15(14, E, T, A, B, C, D, X(14));
272 BODY_00_15(15, D, E, T, A, B, C, X(15));
273
274 data += SHA_CBLOCK;
275 } else {
276 (void)HOST_c2l(data, l);
277 X(0) = l;
278 (void)HOST_c2l(data, l);
279 X(1) = l;
280 BODY_00_15(0, A, B, C, D, E, T, X(0));
281 (void)HOST_c2l(data, l);
282 X(2) = l;
283 BODY_00_15(1, T, A, B, C, D, E, X(1));
284 (void)HOST_c2l(data, l);
285 X(3) = l;
286 BODY_00_15(2, E, T, A, B, C, D, X(2));
287 (void)HOST_c2l(data, l);
288 X(4) = l;
289 BODY_00_15(3, D, E, T, A, B, C, X(3));
290 (void)HOST_c2l(data, l);
291 X(5) = l;
292 BODY_00_15(4, C, D, E, T, A, B, X(4));
293 (void)HOST_c2l(data, l);
294 X(6) = l;
295 BODY_00_15(5, B, C, D, E, T, A, X(5));
296 (void)HOST_c2l(data, l);
297 X(7) = l;
298 BODY_00_15(6, A, B, C, D, E, T, X(6));
299 (void)HOST_c2l(data, l);
300 X(8) = l;
301 BODY_00_15(7, T, A, B, C, D, E, X(7));
302 (void)HOST_c2l(data, l);
303 X(9) = l;
304 BODY_00_15(8, E, T, A, B, C, D, X(8));
305 (void)HOST_c2l(data, l);
306 X(10) = l;
307 BODY_00_15(9, D, E, T, A, B, C, X(9));
308 (void)HOST_c2l(data, l);
309 X(11) = l;
310 BODY_00_15(10, C, D, E, T, A, B, X(10));
311 (void)HOST_c2l(data, l);
312 X(12) = l;
313 BODY_00_15(11, B, C, D, E, T, A, X(11));
314 (void)HOST_c2l(data, l);
315 X(13) = l;
316 BODY_00_15(12, A, B, C, D, E, T, X(12));
317 (void)HOST_c2l(data, l);
318 X(14) = l;
319 BODY_00_15(13, T, A, B, C, D, E, X(13));
320 (void)HOST_c2l(data, l);
321 X(15) = l;
322 BODY_00_15(14, E, T, A, B, C, D, X(14));
323 BODY_00_15(15, D, E, T, A, B, C, X(15));
324 }
325
326 BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
327 BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
328 BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
329 BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
330
331 BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
332 BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
333 BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
334 BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
335 BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
336 BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
337 BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
338 BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
339 BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
340 BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
341 BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
342 BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
343
344 BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
345 BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
346 BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
347 BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
348 BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
349 BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
350 BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
351 BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
352
353 BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
354 BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
355 BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
356 BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
357 BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
358 BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
359 BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
360 BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
361 BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
362 BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
363 BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
364 BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
365 BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
366 BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
367 BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
368 BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
369 BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
370 BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
371 BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
372 BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
373
374 BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
375 BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
376 BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
377 BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
378 BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
379 BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
380 BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
381 BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
382 BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
383 BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
384 BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
385 BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
386 BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
387 BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
388 BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
389 BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
390 BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
391 BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
392 BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
393 BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
394
395 c->h0 = (c->h0 + E) & 0xffffffffL;
396 c->h1 = (c->h1 + T) & 0xffffffffL;
397 c->h2 = (c->h2 + A) & 0xffffffffL;
398 c->h3 = (c->h3 + B) & 0xffffffffL;
399 c->h4 = (c->h4 + C) & 0xffffffffL;
400
401 if (--num == 0)
402 break;
403
404 A = c->h0;
405 B = c->h1;
406 C = c->h2;
407 D = c->h3;
408 E = c->h4;
409
410 }
411 }
412 # endif
413
414 #else /* OPENSSL_SMALL_FOOTPRINT */
415
416 # define BODY_00_15(xi) do { \
417 T=E+K_00_19+F_00_19(B,C,D); \
418 E=D, D=C, C=ROTATE(B,30), B=A; \
419 A=ROTATE(A,5)+T+xi; } while(0)
420
421 # define BODY_16_19(xa,xb,xc,xd) do { \
422 Xupdate(T,xa,xa,xb,xc,xd); \
423 T+=E+K_00_19+F_00_19(B,C,D); \
424 E=D, D=C, C=ROTATE(B,30), B=A; \
425 A=ROTATE(A,5)+T; } while(0)
426
427 # define BODY_20_39(xa,xb,xc,xd) do { \
428 Xupdate(T,xa,xa,xb,xc,xd); \
429 T+=E+K_20_39+F_20_39(B,C,D); \
430 E=D, D=C, C=ROTATE(B,30), B=A; \
431 A=ROTATE(A,5)+T; } while(0)
432
433 # define BODY_40_59(xa,xb,xc,xd) do { \
434 Xupdate(T,xa,xa,xb,xc,xd); \
435 T+=E+K_40_59+F_40_59(B,C,D); \
436 E=D, D=C, C=ROTATE(B,30), B=A; \
437 A=ROTATE(A,5)+T; } while(0)
438
439 # define BODY_60_79(xa,xb,xc,xd) do { \
440 Xupdate(T,xa,xa,xb,xc,xd); \
441 T=E+K_60_79+F_60_79(B,C,D); \
442 E=D, D=C, C=ROTATE(B,30), B=A; \
443 A=ROTATE(A,5)+T+xa; } while(0)
444
445 # if !defined(SHA_1) || !defined(SHA1_ASM)
446 static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
447 {
448 const unsigned char *data = p;
449 register unsigned MD32_REG_T A, B, C, D, E, T, l;
450 int i;
451 SHA_LONG X[16];
452
453 A = c->h0;
454 B = c->h1;
455 C = c->h2;
456 D = c->h3;
457 E = c->h4;
458
459 for (;;) {
460 for (i = 0; i < 16; i++) {
461 HOST_c2l(data, l);
462 X[i] = l;
463 BODY_00_15(X[i]);
464 }
465 for (i = 0; i < 4; i++) {
466 BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
467 }
468 for (; i < 24; i++) {
469 BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
470 X[(i + 13) & 15]);
471 }
472 for (i = 0; i < 20; i++) {
473 BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
474 X[(i + 5) & 15]);
475 }
476 for (i = 4; i < 24; i++) {
477 BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
478 X[(i + 5) & 15]);
479 }
480
481 c->h0 = (c->h0 + A) & 0xffffffffL;
482 c->h1 = (c->h1 + B) & 0xffffffffL;
483 c->h2 = (c->h2 + C) & 0xffffffffL;
484 c->h3 = (c->h3 + D) & 0xffffffffL;
485 c->h4 = (c->h4 + E) & 0xffffffffL;
486
487 if (--num == 0)
488 break;
489
490 A = c->h0;
491 B = c->h1;
492 C = c->h2;
493 D = c->h3;
494 E = c->h4;
495
496 }
497 }
498 # endif
499
500 #endif