]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/x509v3/v3_addr.c
More updates following review feedback
[thirdparty/openssl.git] / crypto / x509v3 / v3_addr.c
1 /*
2 * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * Implementation of RFC 3779 section 2.2.
12 */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16
17 #include "internal/cryptlib.h"
18 #include <openssl/conf.h>
19 #include <openssl/asn1.h>
20 #include <openssl/asn1t.h>
21 #include <openssl/buffer.h>
22 #include <openssl/x509v3.h>
23 #include "internal/x509_int.h"
24 #include "ext_dat.h"
25
26 #ifndef OPENSSL_NO_RFC3779
27
28 /*
29 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
30 */
31
32 ASN1_SEQUENCE(IPAddressRange) = {
33 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
34 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
35 } ASN1_SEQUENCE_END(IPAddressRange)
36
37 ASN1_CHOICE(IPAddressOrRange) = {
38 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
39 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
40 } ASN1_CHOICE_END(IPAddressOrRange)
41
42 ASN1_CHOICE(IPAddressChoice) = {
43 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
44 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
45 } ASN1_CHOICE_END(IPAddressChoice)
46
47 ASN1_SEQUENCE(IPAddressFamily) = {
48 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
49 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
50 } ASN1_SEQUENCE_END(IPAddressFamily)
51
52 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
53 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
54 IPAddrBlocks, IPAddressFamily)
55 static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
56
57 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
58 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
59 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
60 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
61
62 /*
63 * How much buffer space do we need for a raw address?
64 */
65 #define ADDR_RAW_BUF_LEN 16
66
67 /*
68 * What's the address length associated with this AFI?
69 */
70 static int length_from_afi(const unsigned afi)
71 {
72 switch (afi) {
73 case IANA_AFI_IPV4:
74 return 4;
75 case IANA_AFI_IPV6:
76 return 16;
77 default:
78 return 0;
79 }
80 }
81
82 /*
83 * Extract the AFI from an IPAddressFamily.
84 */
85 unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
86 {
87 return ((f != NULL &&
88 f->addressFamily != NULL && f->addressFamily->data != NULL)
89 ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
90 : 0);
91 }
92
93 /*
94 * Expand the bitstring form of an address into a raw byte array.
95 * At the moment this is coded for simplicity, not speed.
96 */
97 static int addr_expand(unsigned char *addr,
98 const ASN1_BIT_STRING *bs,
99 const int length, const unsigned char fill)
100 {
101 if (bs->length < 0 || bs->length > length)
102 return 0;
103 if (bs->length > 0) {
104 memcpy(addr, bs->data, bs->length);
105 if ((bs->flags & 7) != 0) {
106 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
107 if (fill == 0)
108 addr[bs->length - 1] &= ~mask;
109 else
110 addr[bs->length - 1] |= mask;
111 }
112 }
113 memset(addr + bs->length, fill, length - bs->length);
114 return 1;
115 }
116
117 /*
118 * Extract the prefix length from a bitstring.
119 */
120 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
121
122 /*
123 * i2r handler for one address bitstring.
124 */
125 static int i2r_address(BIO *out,
126 const unsigned afi,
127 const unsigned char fill, const ASN1_BIT_STRING *bs)
128 {
129 unsigned char addr[ADDR_RAW_BUF_LEN];
130 int i, n;
131
132 if (bs->length < 0)
133 return 0;
134 switch (afi) {
135 case IANA_AFI_IPV4:
136 if (!addr_expand(addr, bs, 4, fill))
137 return 0;
138 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
139 break;
140 case IANA_AFI_IPV6:
141 if (!addr_expand(addr, bs, 16, fill))
142 return 0;
143 for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
144 n -= 2) ;
145 for (i = 0; i < n; i += 2)
146 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
147 (i < 14 ? ":" : ""));
148 if (i < 16)
149 BIO_puts(out, ":");
150 if (i == 0)
151 BIO_puts(out, ":");
152 break;
153 default:
154 for (i = 0; i < bs->length; i++)
155 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
156 BIO_printf(out, "[%d]", (int)(bs->flags & 7));
157 break;
158 }
159 return 1;
160 }
161
162 /*
163 * i2r handler for a sequence of addresses and ranges.
164 */
165 static int i2r_IPAddressOrRanges(BIO *out,
166 const int indent,
167 const IPAddressOrRanges *aors,
168 const unsigned afi)
169 {
170 int i;
171 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
172 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
173 BIO_printf(out, "%*s", indent, "");
174 switch (aor->type) {
175 case IPAddressOrRange_addressPrefix:
176 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
177 return 0;
178 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
179 continue;
180 case IPAddressOrRange_addressRange:
181 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
182 return 0;
183 BIO_puts(out, "-");
184 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
185 return 0;
186 BIO_puts(out, "\n");
187 continue;
188 }
189 }
190 return 1;
191 }
192
193 /*
194 * i2r handler for an IPAddrBlocks extension.
195 */
196 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
197 void *ext, BIO *out, int indent)
198 {
199 const IPAddrBlocks *addr = ext;
200 int i;
201 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
202 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
203 const unsigned int afi = X509v3_addr_get_afi(f);
204 switch (afi) {
205 case IANA_AFI_IPV4:
206 BIO_printf(out, "%*sIPv4", indent, "");
207 break;
208 case IANA_AFI_IPV6:
209 BIO_printf(out, "%*sIPv6", indent, "");
210 break;
211 default:
212 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
213 break;
214 }
215 if (f->addressFamily->length > 2) {
216 switch (f->addressFamily->data[2]) {
217 case 1:
218 BIO_puts(out, " (Unicast)");
219 break;
220 case 2:
221 BIO_puts(out, " (Multicast)");
222 break;
223 case 3:
224 BIO_puts(out, " (Unicast/Multicast)");
225 break;
226 case 4:
227 BIO_puts(out, " (MPLS)");
228 break;
229 case 64:
230 BIO_puts(out, " (Tunnel)");
231 break;
232 case 65:
233 BIO_puts(out, " (VPLS)");
234 break;
235 case 66:
236 BIO_puts(out, " (BGP MDT)");
237 break;
238 case 128:
239 BIO_puts(out, " (MPLS-labeled VPN)");
240 break;
241 default:
242 BIO_printf(out, " (Unknown SAFI %u)",
243 (unsigned)f->addressFamily->data[2]);
244 break;
245 }
246 }
247 switch (f->ipAddressChoice->type) {
248 case IPAddressChoice_inherit:
249 BIO_puts(out, ": inherit\n");
250 break;
251 case IPAddressChoice_addressesOrRanges:
252 BIO_puts(out, ":\n");
253 if (!i2r_IPAddressOrRanges(out,
254 indent + 2,
255 f->ipAddressChoice->
256 u.addressesOrRanges, afi))
257 return 0;
258 break;
259 }
260 }
261 return 1;
262 }
263
264 /*
265 * Sort comparison function for a sequence of IPAddressOrRange
266 * elements.
267 *
268 * There's no sane answer we can give if addr_expand() fails, and an
269 * assertion failure on externally supplied data is seriously uncool,
270 * so we just arbitrarily declare that if given invalid inputs this
271 * function returns -1. If this messes up your preferred sort order
272 * for garbage input, tough noogies.
273 */
274 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
275 const IPAddressOrRange *b, const int length)
276 {
277 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
278 int prefixlen_a = 0, prefixlen_b = 0;
279 int r;
280
281 switch (a->type) {
282 case IPAddressOrRange_addressPrefix:
283 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
284 return -1;
285 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
286 break;
287 case IPAddressOrRange_addressRange:
288 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
289 return -1;
290 prefixlen_a = length * 8;
291 break;
292 }
293
294 switch (b->type) {
295 case IPAddressOrRange_addressPrefix:
296 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
297 return -1;
298 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
299 break;
300 case IPAddressOrRange_addressRange:
301 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
302 return -1;
303 prefixlen_b = length * 8;
304 break;
305 }
306
307 if ((r = memcmp(addr_a, addr_b, length)) != 0)
308 return r;
309 else
310 return prefixlen_a - prefixlen_b;
311 }
312
313 /*
314 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
315 * comparison routines are only allowed two arguments.
316 */
317 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
318 const IPAddressOrRange *const *b)
319 {
320 return IPAddressOrRange_cmp(*a, *b, 4);
321 }
322
323 /*
324 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
325 * comparison routines are only allowed two arguments.
326 */
327 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
328 const IPAddressOrRange *const *b)
329 {
330 return IPAddressOrRange_cmp(*a, *b, 16);
331 }
332
333 /*
334 * Calculate whether a range collapses to a prefix.
335 * See last paragraph of RFC 3779 2.2.3.7.
336 */
337 static int range_should_be_prefix(const unsigned char *min,
338 const unsigned char *max, const int length)
339 {
340 unsigned char mask;
341 int i, j;
342
343 if (memcmp(min, max, length) <= 0)
344 return -1;
345 for (i = 0; i < length && min[i] == max[i]; i++) ;
346 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
347 if (i < j)
348 return -1;
349 if (i > j)
350 return i * 8;
351 mask = min[i] ^ max[i];
352 switch (mask) {
353 case 0x01:
354 j = 7;
355 break;
356 case 0x03:
357 j = 6;
358 break;
359 case 0x07:
360 j = 5;
361 break;
362 case 0x0F:
363 j = 4;
364 break;
365 case 0x1F:
366 j = 3;
367 break;
368 case 0x3F:
369 j = 2;
370 break;
371 case 0x7F:
372 j = 1;
373 break;
374 default:
375 return -1;
376 }
377 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
378 return -1;
379 else
380 return i * 8 + j;
381 }
382
383 /*
384 * Construct a prefix.
385 */
386 static int make_addressPrefix(IPAddressOrRange **result,
387 unsigned char *addr, const int prefixlen)
388 {
389 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
390 IPAddressOrRange *aor = IPAddressOrRange_new();
391
392 if (aor == NULL)
393 return 0;
394 aor->type = IPAddressOrRange_addressPrefix;
395 if (aor->u.addressPrefix == NULL &&
396 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
397 goto err;
398 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
399 goto err;
400 aor->u.addressPrefix->flags &= ~7;
401 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
402 if (bitlen > 0) {
403 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
404 aor->u.addressPrefix->flags |= 8 - bitlen;
405 }
406
407 *result = aor;
408 return 1;
409
410 err:
411 IPAddressOrRange_free(aor);
412 return 0;
413 }
414
415 /*
416 * Construct a range. If it can be expressed as a prefix,
417 * return a prefix instead. Doing this here simplifies
418 * the rest of the code considerably.
419 */
420 static int make_addressRange(IPAddressOrRange **result,
421 unsigned char *min,
422 unsigned char *max, const int length)
423 {
424 IPAddressOrRange *aor;
425 int i, prefixlen;
426
427 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
428 return make_addressPrefix(result, min, prefixlen);
429
430 if ((aor = IPAddressOrRange_new()) == NULL)
431 return 0;
432 aor->type = IPAddressOrRange_addressRange;
433 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
434 goto err;
435 if (aor->u.addressRange->min == NULL &&
436 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
437 goto err;
438 if (aor->u.addressRange->max == NULL &&
439 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
440 goto err;
441
442 for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
443 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
444 goto err;
445 aor->u.addressRange->min->flags &= ~7;
446 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
447 if (i > 0) {
448 unsigned char b = min[i - 1];
449 int j = 1;
450 while ((b & (0xFFU >> j)) != 0)
451 ++j;
452 aor->u.addressRange->min->flags |= 8 - j;
453 }
454
455 for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
456 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
457 goto err;
458 aor->u.addressRange->max->flags &= ~7;
459 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
460 if (i > 0) {
461 unsigned char b = max[i - 1];
462 int j = 1;
463 while ((b & (0xFFU >> j)) != (0xFFU >> j))
464 ++j;
465 aor->u.addressRange->max->flags |= 8 - j;
466 }
467
468 *result = aor;
469 return 1;
470
471 err:
472 IPAddressOrRange_free(aor);
473 return 0;
474 }
475
476 /*
477 * Construct a new address family or find an existing one.
478 */
479 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
480 const unsigned afi,
481 const unsigned *safi)
482 {
483 IPAddressFamily *f;
484 unsigned char key[3];
485 int keylen;
486 int i;
487
488 key[0] = (afi >> 8) & 0xFF;
489 key[1] = afi & 0xFF;
490 if (safi != NULL) {
491 key[2] = *safi & 0xFF;
492 keylen = 3;
493 } else {
494 keylen = 2;
495 }
496
497 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
498 f = sk_IPAddressFamily_value(addr, i);
499 if (f->addressFamily->length == keylen &&
500 !memcmp(f->addressFamily->data, key, keylen))
501 return f;
502 }
503
504 if ((f = IPAddressFamily_new()) == NULL)
505 goto err;
506 if (f->ipAddressChoice == NULL &&
507 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
508 goto err;
509 if (f->addressFamily == NULL &&
510 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
511 goto err;
512 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
513 goto err;
514 if (!sk_IPAddressFamily_push(addr, f))
515 goto err;
516
517 return f;
518
519 err:
520 IPAddressFamily_free(f);
521 return NULL;
522 }
523
524 /*
525 * Add an inheritance element.
526 */
527 int X509v3_addr_add_inherit(IPAddrBlocks *addr,
528 const unsigned afi, const unsigned *safi)
529 {
530 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
531 if (f == NULL ||
532 f->ipAddressChoice == NULL ||
533 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
534 f->ipAddressChoice->u.addressesOrRanges != NULL))
535 return 0;
536 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
537 f->ipAddressChoice->u.inherit != NULL)
538 return 1;
539 if (f->ipAddressChoice->u.inherit == NULL &&
540 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
541 return 0;
542 f->ipAddressChoice->type = IPAddressChoice_inherit;
543 return 1;
544 }
545
546 /*
547 * Construct an IPAddressOrRange sequence, or return an existing one.
548 */
549 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
550 const unsigned afi,
551 const unsigned *safi)
552 {
553 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
554 IPAddressOrRanges *aors = NULL;
555
556 if (f == NULL ||
557 f->ipAddressChoice == NULL ||
558 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
559 f->ipAddressChoice->u.inherit != NULL))
560 return NULL;
561 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
562 aors = f->ipAddressChoice->u.addressesOrRanges;
563 if (aors != NULL)
564 return aors;
565 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
566 return NULL;
567 switch (afi) {
568 case IANA_AFI_IPV4:
569 (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
570 break;
571 case IANA_AFI_IPV6:
572 (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
573 break;
574 }
575 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
576 f->ipAddressChoice->u.addressesOrRanges = aors;
577 return aors;
578 }
579
580 /*
581 * Add a prefix.
582 */
583 int X509v3_addr_add_prefix(IPAddrBlocks *addr,
584 const unsigned afi,
585 const unsigned *safi,
586 unsigned char *a, const int prefixlen)
587 {
588 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
589 IPAddressOrRange *aor;
590 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
591 return 0;
592 if (sk_IPAddressOrRange_push(aors, aor))
593 return 1;
594 IPAddressOrRange_free(aor);
595 return 0;
596 }
597
598 /*
599 * Add a range.
600 */
601 int X509v3_addr_add_range(IPAddrBlocks *addr,
602 const unsigned afi,
603 const unsigned *safi,
604 unsigned char *min, unsigned char *max)
605 {
606 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
607 IPAddressOrRange *aor;
608 int length = length_from_afi(afi);
609 if (aors == NULL)
610 return 0;
611 if (!make_addressRange(&aor, min, max, length))
612 return 0;
613 if (sk_IPAddressOrRange_push(aors, aor))
614 return 1;
615 IPAddressOrRange_free(aor);
616 return 0;
617 }
618
619 /*
620 * Extract min and max values from an IPAddressOrRange.
621 */
622 static int extract_min_max(IPAddressOrRange *aor,
623 unsigned char *min, unsigned char *max, int length)
624 {
625 if (aor == NULL || min == NULL || max == NULL)
626 return 0;
627 switch (aor->type) {
628 case IPAddressOrRange_addressPrefix:
629 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
630 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
631 case IPAddressOrRange_addressRange:
632 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
633 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
634 }
635 return 0;
636 }
637
638 /*
639 * Public wrapper for extract_min_max().
640 */
641 int X509v3_addr_get_range(IPAddressOrRange *aor,
642 const unsigned afi,
643 unsigned char *min,
644 unsigned char *max, const int length)
645 {
646 int afi_length = length_from_afi(afi);
647 if (aor == NULL || min == NULL || max == NULL ||
648 afi_length == 0 || length < afi_length ||
649 (aor->type != IPAddressOrRange_addressPrefix &&
650 aor->type != IPAddressOrRange_addressRange) ||
651 !extract_min_max(aor, min, max, afi_length))
652 return 0;
653
654 return afi_length;
655 }
656
657 /*
658 * Sort comparison function for a sequence of IPAddressFamily.
659 *
660 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
661 * the ordering: I can read it as meaning that IPv6 without a SAFI
662 * comes before IPv4 with a SAFI, which seems pretty weird. The
663 * examples in appendix B suggest that the author intended the
664 * null-SAFI rule to apply only within a single AFI, which is what I
665 * would have expected and is what the following code implements.
666 */
667 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
668 const IPAddressFamily *const *b_)
669 {
670 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
671 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
672 int len = ((a->length <= b->length) ? a->length : b->length);
673 int cmp = memcmp(a->data, b->data, len);
674 return cmp ? cmp : a->length - b->length;
675 }
676
677 /*
678 * Check whether an IPAddrBLocks is in canonical form.
679 */
680 int X509v3_addr_is_canonical(IPAddrBlocks *addr)
681 {
682 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
683 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
684 IPAddressOrRanges *aors;
685 int i, j, k;
686
687 /*
688 * Empty extension is canonical.
689 */
690 if (addr == NULL)
691 return 1;
692
693 /*
694 * Check whether the top-level list is in order.
695 */
696 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
697 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
698 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
699 if (IPAddressFamily_cmp(&a, &b) >= 0)
700 return 0;
701 }
702
703 /*
704 * Top level's ok, now check each address family.
705 */
706 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
707 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
708 int length = length_from_afi(X509v3_addr_get_afi(f));
709
710 /*
711 * Inheritance is canonical. Anything other than inheritance or
712 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
713 */
714 if (f == NULL || f->ipAddressChoice == NULL)
715 return 0;
716 switch (f->ipAddressChoice->type) {
717 case IPAddressChoice_inherit:
718 continue;
719 case IPAddressChoice_addressesOrRanges:
720 break;
721 default:
722 return 0;
723 }
724
725 /*
726 * It's an IPAddressOrRanges sequence, check it.
727 */
728 aors = f->ipAddressChoice->u.addressesOrRanges;
729 if (sk_IPAddressOrRange_num(aors) == 0)
730 return 0;
731 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
732 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
733 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
734
735 if (!extract_min_max(a, a_min, a_max, length) ||
736 !extract_min_max(b, b_min, b_max, length))
737 return 0;
738
739 /*
740 * Punt misordered list, overlapping start, or inverted range.
741 */
742 if (memcmp(a_min, b_min, length) >= 0 ||
743 memcmp(a_min, a_max, length) > 0 ||
744 memcmp(b_min, b_max, length) > 0)
745 return 0;
746
747 /*
748 * Punt if adjacent or overlapping. Check for adjacency by
749 * subtracting one from b_min first.
750 */
751 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
752 if (memcmp(a_max, b_min, length) >= 0)
753 return 0;
754
755 /*
756 * Check for range that should be expressed as a prefix.
757 */
758 if (a->type == IPAddressOrRange_addressRange &&
759 range_should_be_prefix(a_min, a_max, length) >= 0)
760 return 0;
761 }
762
763 /*
764 * Check range to see if it's inverted or should be a
765 * prefix.
766 */
767 j = sk_IPAddressOrRange_num(aors) - 1;
768 {
769 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
770 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
771 if (!extract_min_max(a, a_min, a_max, length))
772 return 0;
773 if (memcmp(a_min, a_max, length) > 0 ||
774 range_should_be_prefix(a_min, a_max, length) >= 0)
775 return 0;
776 }
777 }
778 }
779
780 /*
781 * If we made it through all that, we're happy.
782 */
783 return 1;
784 }
785
786 /*
787 * Whack an IPAddressOrRanges into canonical form.
788 */
789 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
790 const unsigned afi)
791 {
792 int i, j, length = length_from_afi(afi);
793
794 /*
795 * Sort the IPAddressOrRanges sequence.
796 */
797 sk_IPAddressOrRange_sort(aors);
798
799 /*
800 * Clean up representation issues, punt on duplicates or overlaps.
801 */
802 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
803 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
804 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
805 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
806 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
807
808 if (!extract_min_max(a, a_min, a_max, length) ||
809 !extract_min_max(b, b_min, b_max, length))
810 return 0;
811
812 /*
813 * Punt inverted ranges.
814 */
815 if (memcmp(a_min, a_max, length) > 0 ||
816 memcmp(b_min, b_max, length) > 0)
817 return 0;
818
819 /*
820 * Punt overlaps.
821 */
822 if (memcmp(a_max, b_min, length) >= 0)
823 return 0;
824
825 /*
826 * Merge if a and b are adjacent. We check for
827 * adjacency by subtracting one from b_min first.
828 */
829 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
830 if (memcmp(a_max, b_min, length) == 0) {
831 IPAddressOrRange *merged;
832 if (!make_addressRange(&merged, a_min, b_max, length))
833 return 0;
834 (void)sk_IPAddressOrRange_set(aors, i, merged);
835 (void)sk_IPAddressOrRange_delete(aors, i + 1);
836 IPAddressOrRange_free(a);
837 IPAddressOrRange_free(b);
838 --i;
839 continue;
840 }
841 }
842
843 /*
844 * Check for inverted final range.
845 */
846 j = sk_IPAddressOrRange_num(aors) - 1;
847 {
848 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
849 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
850 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
851 if (!extract_min_max(a, a_min, a_max, length))
852 return 0;
853 if (memcmp(a_min, a_max, length) > 0)
854 return 0;
855 }
856 }
857
858 return 1;
859 }
860
861 /*
862 * Whack an IPAddrBlocks extension into canonical form.
863 */
864 int X509v3_addr_canonize(IPAddrBlocks *addr)
865 {
866 int i;
867 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
868 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
869 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
870 !IPAddressOrRanges_canonize(f->ipAddressChoice->
871 u.addressesOrRanges,
872 X509v3_addr_get_afi(f)))
873 return 0;
874 }
875 (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
876 sk_IPAddressFamily_sort(addr);
877 if (!ossl_assert(X509v3_addr_is_canonical(addr)))
878 return 0;
879 return 1;
880 }
881
882 /*
883 * v2i handler for the IPAddrBlocks extension.
884 */
885 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
886 struct v3_ext_ctx *ctx,
887 STACK_OF(CONF_VALUE) *values)
888 {
889 static const char v4addr_chars[] = "0123456789.";
890 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
891 IPAddrBlocks *addr = NULL;
892 char *s = NULL, *t;
893 int i;
894
895 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
896 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
897 return NULL;
898 }
899
900 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
901 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
902 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
903 unsigned afi, *safi = NULL, safi_;
904 const char *addr_chars = NULL;
905 int prefixlen, i1, i2, delim, length;
906
907 if (!name_cmp(val->name, "IPv4")) {
908 afi = IANA_AFI_IPV4;
909 } else if (!name_cmp(val->name, "IPv6")) {
910 afi = IANA_AFI_IPV6;
911 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
912 afi = IANA_AFI_IPV4;
913 safi = &safi_;
914 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
915 afi = IANA_AFI_IPV6;
916 safi = &safi_;
917 } else {
918 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
919 X509V3_R_EXTENSION_NAME_ERROR);
920 X509V3_conf_err(val);
921 goto err;
922 }
923
924 switch (afi) {
925 case IANA_AFI_IPV4:
926 addr_chars = v4addr_chars;
927 break;
928 case IANA_AFI_IPV6:
929 addr_chars = v6addr_chars;
930 break;
931 }
932
933 length = length_from_afi(afi);
934
935 /*
936 * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
937 * the other input values.
938 */
939 if (safi != NULL) {
940 *safi = strtoul(val->value, &t, 0);
941 t += strspn(t, " \t");
942 if (*safi > 0xFF || *t++ != ':') {
943 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
944 X509V3_conf_err(val);
945 goto err;
946 }
947 t += strspn(t, " \t");
948 s = OPENSSL_strdup(t);
949 } else {
950 s = OPENSSL_strdup(val->value);
951 }
952 if (s == NULL) {
953 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
954 goto err;
955 }
956
957 /*
958 * Check for inheritance. Not worth additional complexity to
959 * optimize this (seldom-used) case.
960 */
961 if (strcmp(s, "inherit") == 0) {
962 if (!X509v3_addr_add_inherit(addr, afi, safi)) {
963 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
964 X509V3_R_INVALID_INHERITANCE);
965 X509V3_conf_err(val);
966 goto err;
967 }
968 OPENSSL_free(s);
969 s = NULL;
970 continue;
971 }
972
973 i1 = strspn(s, addr_chars);
974 i2 = i1 + strspn(s + i1, " \t");
975 delim = s[i2++];
976 s[i1] = '\0';
977
978 if (a2i_ipadd(min, s) != length) {
979 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
980 X509V3_conf_err(val);
981 goto err;
982 }
983
984 switch (delim) {
985 case '/':
986 prefixlen = (int)strtoul(s + i2, &t, 10);
987 if (t == s + i2 || *t != '\0') {
988 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
989 X509V3_R_EXTENSION_VALUE_ERROR);
990 X509V3_conf_err(val);
991 goto err;
992 }
993 if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
994 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
995 goto err;
996 }
997 break;
998 case '-':
999 i1 = i2 + strspn(s + i2, " \t");
1000 i2 = i1 + strspn(s + i1, addr_chars);
1001 if (i1 == i2 || s[i2] != '\0') {
1002 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1003 X509V3_R_EXTENSION_VALUE_ERROR);
1004 X509V3_conf_err(val);
1005 goto err;
1006 }
1007 if (a2i_ipadd(max, s + i1) != length) {
1008 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1009 X509V3_R_INVALID_IPADDRESS);
1010 X509V3_conf_err(val);
1011 goto err;
1012 }
1013 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1014 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1015 X509V3_R_EXTENSION_VALUE_ERROR);
1016 X509V3_conf_err(val);
1017 goto err;
1018 }
1019 if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1020 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1021 goto err;
1022 }
1023 break;
1024 case '\0':
1025 if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1026 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1027 goto err;
1028 }
1029 break;
1030 default:
1031 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1032 X509V3_R_EXTENSION_VALUE_ERROR);
1033 X509V3_conf_err(val);
1034 goto err;
1035 }
1036
1037 OPENSSL_free(s);
1038 s = NULL;
1039 }
1040
1041 /*
1042 * Canonize the result, then we're done.
1043 */
1044 if (!X509v3_addr_canonize(addr))
1045 goto err;
1046 return addr;
1047
1048 err:
1049 OPENSSL_free(s);
1050 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1051 return NULL;
1052 }
1053
1054 /*
1055 * OpenSSL dispatch
1056 */
1057 const X509V3_EXT_METHOD v3_addr = {
1058 NID_sbgp_ipAddrBlock, /* nid */
1059 0, /* flags */
1060 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1061 0, 0, 0, 0, /* old functions, ignored */
1062 0, /* i2s */
1063 0, /* s2i */
1064 0, /* i2v */
1065 v2i_IPAddrBlocks, /* v2i */
1066 i2r_IPAddrBlocks, /* i2r */
1067 0, /* r2i */
1068 NULL /* extension-specific data */
1069 };
1070
1071 /*
1072 * Figure out whether extension sues inheritance.
1073 */
1074 int X509v3_addr_inherits(IPAddrBlocks *addr)
1075 {
1076 int i;
1077 if (addr == NULL)
1078 return 0;
1079 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1080 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1081 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1082 return 1;
1083 }
1084 return 0;
1085 }
1086
1087 /*
1088 * Figure out whether parent contains child.
1089 */
1090 static int addr_contains(IPAddressOrRanges *parent,
1091 IPAddressOrRanges *child, int length)
1092 {
1093 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1094 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1095 int p, c;
1096
1097 if (child == NULL || parent == child)
1098 return 1;
1099 if (parent == NULL)
1100 return 0;
1101
1102 p = 0;
1103 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1104 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1105 c_min, c_max, length))
1106 return -1;
1107 for (;; p++) {
1108 if (p >= sk_IPAddressOrRange_num(parent))
1109 return 0;
1110 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1111 p_min, p_max, length))
1112 return 0;
1113 if (memcmp(p_max, c_max, length) < 0)
1114 continue;
1115 if (memcmp(p_min, c_min, length) > 0)
1116 return 0;
1117 break;
1118 }
1119 }
1120
1121 return 1;
1122 }
1123
1124 /*
1125 * Test whether a is a subset of b.
1126 */
1127 int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1128 {
1129 int i;
1130 if (a == NULL || a == b)
1131 return 1;
1132 if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1133 return 0;
1134 (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1135 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1136 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1137 int j = sk_IPAddressFamily_find(b, fa);
1138 IPAddressFamily *fb;
1139 fb = sk_IPAddressFamily_value(b, j);
1140 if (fb == NULL)
1141 return 0;
1142 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1143 fa->ipAddressChoice->u.addressesOrRanges,
1144 length_from_afi(X509v3_addr_get_afi(fb))))
1145 return 0;
1146 }
1147 return 1;
1148 }
1149
1150 /*
1151 * Validation error handling via callback.
1152 */
1153 #define validation_err(_err_) \
1154 do { \
1155 if (ctx != NULL) { \
1156 ctx->error = _err_; \
1157 ctx->error_depth = i; \
1158 ctx->current_cert = x; \
1159 ret = ctx->verify_cb(0, ctx); \
1160 } else { \
1161 ret = 0; \
1162 } \
1163 if (!ret) \
1164 goto done; \
1165 } while (0)
1166
1167 /*
1168 * Core code for RFC 3779 2.3 path validation.
1169 *
1170 * Returns 1 for success, 0 on error.
1171 *
1172 * When returning 0, ctx->error MUST be set to an appropriate value other than
1173 * X509_V_OK.
1174 */
1175 static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1176 STACK_OF(X509) *chain,
1177 IPAddrBlocks *ext)
1178 {
1179 IPAddrBlocks *child = NULL;
1180 int i, j, ret = 1;
1181 X509 *x;
1182
1183 if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1184 || !ossl_assert(ctx != NULL || ext != NULL)
1185 || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1186 if (ctx != NULL)
1187 ctx->error = X509_V_ERR_UNSPECIFIED;
1188 return 0;
1189 }
1190
1191 /*
1192 * Figure out where to start. If we don't have an extension to
1193 * check, we're done. Otherwise, check canonical form and
1194 * set up for walking up the chain.
1195 */
1196 if (ext != NULL) {
1197 i = -1;
1198 x = NULL;
1199 } else {
1200 i = 0;
1201 x = sk_X509_value(chain, i);
1202 if ((ext = x->rfc3779_addr) == NULL)
1203 goto done;
1204 }
1205 if (!X509v3_addr_is_canonical(ext))
1206 validation_err(X509_V_ERR_INVALID_EXTENSION);
1207 (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1208 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1209 X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
1210 ERR_R_MALLOC_FAILURE);
1211 if (ctx != NULL)
1212 ctx->error = X509_V_ERR_OUT_OF_MEM;
1213 ret = 0;
1214 goto done;
1215 }
1216
1217 /*
1218 * Now walk up the chain. No cert may list resources that its
1219 * parent doesn't list.
1220 */
1221 for (i++; i < sk_X509_num(chain); i++) {
1222 x = sk_X509_value(chain, i);
1223 if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1224 validation_err(X509_V_ERR_INVALID_EXTENSION);
1225 if (x->rfc3779_addr == NULL) {
1226 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1227 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1228 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1229 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1230 break;
1231 }
1232 }
1233 continue;
1234 }
1235 (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1236 IPAddressFamily_cmp);
1237 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1238 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1239 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1240 IPAddressFamily *fp =
1241 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1242 if (fp == NULL) {
1243 if (fc->ipAddressChoice->type ==
1244 IPAddressChoice_addressesOrRanges) {
1245 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1246 break;
1247 }
1248 continue;
1249 }
1250 if (fp->ipAddressChoice->type ==
1251 IPAddressChoice_addressesOrRanges) {
1252 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1253 || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1254 fc->ipAddressChoice->u.addressesOrRanges,
1255 length_from_afi(X509v3_addr_get_afi(fc))))
1256 sk_IPAddressFamily_set(child, j, fp);
1257 else
1258 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1259 }
1260 }
1261 }
1262
1263 /*
1264 * Trust anchor can't inherit.
1265 */
1266 if (x->rfc3779_addr != NULL) {
1267 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1268 IPAddressFamily *fp =
1269 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1270 if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1271 && sk_IPAddressFamily_find(child, fp) >= 0)
1272 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1273 }
1274 }
1275
1276 done:
1277 sk_IPAddressFamily_free(child);
1278 return ret;
1279 }
1280
1281 #undef validation_err
1282
1283 /*
1284 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1285 */
1286 int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1287 {
1288 if (ctx->chain == NULL
1289 || sk_X509_num(ctx->chain) == 0
1290 || ctx->verify_cb == NULL) {
1291 ctx->error = X509_V_ERR_UNSPECIFIED;
1292 return 0;
1293 }
1294 return addr_validate_path_internal(ctx, ctx->chain, NULL);
1295 }
1296
1297 /*
1298 * RFC 3779 2.3 path validation of an extension.
1299 * Test whether chain covers extension.
1300 */
1301 int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1302 IPAddrBlocks *ext, int allow_inheritance)
1303 {
1304 if (ext == NULL)
1305 return 1;
1306 if (chain == NULL || sk_X509_num(chain) == 0)
1307 return 0;
1308 if (!allow_inheritance && X509v3_addr_inherits(ext))
1309 return 0;
1310 return addr_validate_path_internal(NULL, chain, ext);
1311 }
1312
1313 #endif /* OPENSSL_NO_RFC3779 */