]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - db/metadump.c
libxfs: sanitize agcount on load
[thirdparty/xfsprogs-dev.git] / db / metadump.c
1 /*
2 * Copyright (c) 2007, 2011 SGI
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include "libxfs.h"
20 #include "libxlog.h"
21 #include "bmap.h"
22 #include "command.h"
23 #include "metadump.h"
24 #include "io.h"
25 #include "output.h"
26 #include "type.h"
27 #include "init.h"
28 #include "sig.h"
29 #include "xfs_metadump.h"
30 #include "fprint.h"
31 #include "faddr.h"
32 #include "field.h"
33 #include "dir2.h"
34
35 #define DEFAULT_MAX_EXT_SIZE 1000
36
37 /*
38 * It's possible that multiple files in a directory (or attributes
39 * in a file) produce the same obfuscated name. If that happens, we
40 * try to create another one. After several rounds of this though,
41 * we just give up and leave the original name as-is.
42 */
43 #define DUP_MAX 5 /* Max duplicates before we give up */
44
45 /* copy all metadata structures to/from a file */
46
47 static int metadump_f(int argc, char **argv);
48 static void metadump_help(void);
49
50 /*
51 * metadump commands issue info/wornings/errors to standard error as
52 * metadump supports stdout as a destination.
53 *
54 * All static functions return zero on failure, while the public functions
55 * return zero on success.
56 */
57
58 static const cmdinfo_t metadump_cmd =
59 { "metadump", NULL, metadump_f, 0, -1, 0,
60 N_("[-a] [-e] [-g] [-m max_extent] [-w] [-o] filename"),
61 N_("dump metadata to a file"), metadump_help };
62
63 static FILE *outf; /* metadump file */
64
65 static xfs_metablock_t *metablock; /* header + index + buffers */
66 static __be64 *block_index;
67 static char *block_buffer;
68
69 static int num_indices;
70 static int cur_index;
71
72 static xfs_ino_t cur_ino;
73
74 static int show_progress = 0;
75 static int stop_on_read_error = 0;
76 static int max_extent_size = DEFAULT_MAX_EXT_SIZE;
77 static int obfuscate = 1;
78 static int zero_stale_data = 1;
79 static int show_warnings = 0;
80 static int progress_since_warning = 0;
81
82 void
83 metadump_init(void)
84 {
85 add_command(&metadump_cmd);
86 }
87
88 static void
89 metadump_help(void)
90 {
91 dbprintf(_(
92 "\n"
93 " The 'metadump' command dumps the known metadata to a compact file suitable\n"
94 " for compressing and sending to an XFS maintainer for corruption analysis \n"
95 " or xfs_repair failures.\n\n"
96 " Options:\n"
97 " -a -- Copy full metadata blocks without zeroing unused space\n"
98 " -e -- Ignore read errors and keep going\n"
99 " -g -- Display dump progress\n"
100 " -m -- Specify max extent size in blocks to copy (default = %d blocks)\n"
101 " -o -- Don't obfuscate names and extended attributes\n"
102 " -w -- Show warnings of bad metadata information\n"
103 "\n"), DEFAULT_MAX_EXT_SIZE);
104 }
105
106 static void
107 print_warning(const char *fmt, ...)
108 {
109 char buf[200];
110 va_list ap;
111
112 if (seenint())
113 return;
114
115 va_start(ap, fmt);
116 vsnprintf(buf, sizeof(buf), fmt, ap);
117 va_end(ap);
118 buf[sizeof(buf)-1] = '\0';
119
120 fprintf(stderr, "%s%s: %s\n", progress_since_warning ? "\n" : "",
121 progname, buf);
122 progress_since_warning = 0;
123 }
124
125 static void
126 print_progress(const char *fmt, ...)
127 {
128 char buf[60];
129 va_list ap;
130 FILE *f;
131
132 if (seenint())
133 return;
134
135 va_start(ap, fmt);
136 vsnprintf(buf, sizeof(buf), fmt, ap);
137 va_end(ap);
138 buf[sizeof(buf)-1] = '\0';
139
140 f = (outf == stdout) ? stderr : stdout;
141 fprintf(f, "\r%-59s", buf);
142 fflush(f);
143 progress_since_warning = 1;
144 }
145
146 /*
147 * A complete dump file will have a "zero" entry in the last index block,
148 * even if the dump is exactly aligned, the last index will be full of
149 * zeros. If the last index entry is non-zero, the dump is incomplete.
150 * Correspondingly, the last chunk will have a count < num_indices.
151 *
152 * Return 0 for success, -1 for failure.
153 */
154
155 static int
156 write_index(void)
157 {
158 /*
159 * write index block and following data blocks (streaming)
160 */
161 metablock->mb_count = cpu_to_be16(cur_index);
162 if (fwrite(metablock, (cur_index + 1) << BBSHIFT, 1, outf) != 1) {
163 print_warning("error writing to file: %s", strerror(errno));
164 return -errno;
165 }
166
167 memset(block_index, 0, num_indices * sizeof(__be64));
168 cur_index = 0;
169 return 0;
170 }
171
172 /*
173 * Return 0 for success, -errno for failure.
174 */
175 static int
176 write_buf_segment(
177 char *data,
178 __int64_t off,
179 int len)
180 {
181 int i;
182 int ret;
183
184 for (i = 0; i < len; i++, off++, data += BBSIZE) {
185 block_index[cur_index] = cpu_to_be64(off);
186 memcpy(&block_buffer[cur_index << BBSHIFT], data, BBSIZE);
187 if (++cur_index == num_indices) {
188 ret = write_index();
189 if (ret)
190 return -EIO;
191 }
192 }
193 return 0;
194 }
195
196 /*
197 * we want to preserve the state of the metadata in the dump - whether it is
198 * intact or corrupt, so even if the buffer has a verifier attached to it we
199 * don't want to run it prior to writing the buffer to the metadump image.
200 *
201 * The only reason for running the verifier is to recalculate the CRCs on a
202 * buffer that has been obfuscated. i.e. a buffer than metadump modified itself.
203 * In this case, we only run the verifier if the buffer was not corrupt to begin
204 * with so that we don't accidentally correct buffers with CRC or errors in them
205 * when we are obfuscating them.
206 */
207 static int
208 write_buf(
209 iocur_t *buf)
210 {
211 struct xfs_buf *bp = buf->bp;
212 int i;
213 int ret;
214
215 /*
216 * Run the write verifier to recalculate the buffer CRCs and check
217 * metadump didn't introduce a new corruption. Warn if the verifier
218 * failed, but still continue to dump it into the output file.
219 */
220 if (buf->need_crc && bp && bp->b_ops && !bp->b_error) {
221 bp->b_ops->verify_write(bp);
222 if (bp->b_error) {
223 print_warning(
224 "obfuscation corrupted block at %s bno 0x%llx/0x%x",
225 bp->b_ops->name,
226 (long long)bp->b_bn, bp->b_bcount);
227 }
228 }
229
230 /* handle discontiguous buffers */
231 if (!buf->bbmap) {
232 ret = write_buf_segment(buf->data, buf->bb, buf->blen);
233 if (ret)
234 return ret;
235 } else {
236 int len = 0;
237 for (i = 0; i < buf->bbmap->nmaps; i++) {
238 ret = write_buf_segment(buf->data + BBTOB(len),
239 buf->bbmap->b[i].bm_bn,
240 buf->bbmap->b[i].bm_len);
241 if (ret)
242 return ret;
243 len += buf->bbmap->b[i].bm_len;
244 }
245 }
246 return seenint() ? -EINTR : 0;
247 }
248
249 /*
250 * We could be processing a corrupt block, so we can't trust any of
251 * the offsets or lengths to be within the buffer range. Hence check
252 * carefully!
253 */
254 static void
255 zero_btree_node(
256 struct xfs_btree_block *block,
257 typnm_t btype)
258 {
259 int nrecs;
260 xfs_bmbt_ptr_t *bpp;
261 xfs_bmbt_key_t *bkp;
262 xfs_inobt_ptr_t *ipp;
263 xfs_inobt_key_t *ikp;
264 xfs_alloc_ptr_t *app;
265 xfs_alloc_key_t *akp;
266 char *zp1, *zp2;
267 char *key_end;
268
269 nrecs = be16_to_cpu(block->bb_numrecs);
270 if (nrecs < 0)
271 return;
272
273 switch (btype) {
274 case TYP_BMAPBTA:
275 case TYP_BMAPBTD:
276 if (nrecs > mp->m_bmap_dmxr[1])
277 return;
278
279 bkp = XFS_BMBT_KEY_ADDR(mp, block, 1);
280 bpp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
281 zp1 = (char *)&bkp[nrecs];
282 zp2 = (char *)&bpp[nrecs];
283 key_end = (char *)bpp;
284 break;
285 case TYP_INOBT:
286 case TYP_FINOBT:
287 if (nrecs > mp->m_inobt_mxr[1])
288 return;
289
290 ikp = XFS_INOBT_KEY_ADDR(mp, block, 1);
291 ipp = XFS_INOBT_PTR_ADDR(mp, block, 1, mp->m_inobt_mxr[1]);
292 zp1 = (char *)&ikp[nrecs];
293 zp2 = (char *)&ipp[nrecs];
294 key_end = (char *)ipp;
295 break;
296 case TYP_BNOBT:
297 case TYP_CNTBT:
298 if (nrecs > mp->m_alloc_mxr[1])
299 return;
300
301 akp = XFS_ALLOC_KEY_ADDR(mp, block, 1);
302 app = XFS_ALLOC_PTR_ADDR(mp, block, 1, mp->m_alloc_mxr[1]);
303 zp1 = (char *)&akp[nrecs];
304 zp2 = (char *)&app[nrecs];
305 key_end = (char *)app;
306 break;
307 default:
308 return;
309 }
310
311
312 /* Zero from end of keys to beginning of pointers */
313 memset(zp1, 0, key_end - zp1);
314
315 /* Zero from end of pointers to end of block */
316 memset(zp2, 0, (char *)block + mp->m_sb.sb_blocksize - zp2);
317 }
318
319 /*
320 * We could be processing a corrupt block, so we can't trust any of
321 * the offsets or lengths to be within the buffer range. Hence check
322 * carefully!
323 */
324 static void
325 zero_btree_leaf(
326 struct xfs_btree_block *block,
327 typnm_t btype)
328 {
329 int nrecs;
330 struct xfs_bmbt_rec *brp;
331 struct xfs_inobt_rec *irp;
332 struct xfs_alloc_rec *arp;
333 char *zp;
334
335 nrecs = be16_to_cpu(block->bb_numrecs);
336 if (nrecs < 0)
337 return;
338
339 switch (btype) {
340 case TYP_BMAPBTA:
341 case TYP_BMAPBTD:
342 if (nrecs > mp->m_bmap_dmxr[0])
343 return;
344
345 brp = XFS_BMBT_REC_ADDR(mp, block, 1);
346 zp = (char *)&brp[nrecs];
347 break;
348 case TYP_INOBT:
349 case TYP_FINOBT:
350 if (nrecs > mp->m_inobt_mxr[0])
351 return;
352
353 irp = XFS_INOBT_REC_ADDR(mp, block, 1);
354 zp = (char *)&irp[nrecs];
355 break;
356 case TYP_BNOBT:
357 case TYP_CNTBT:
358 if (nrecs > mp->m_alloc_mxr[0])
359 return;
360
361 arp = XFS_ALLOC_REC_ADDR(mp, block, 1);
362 zp = (char *)&arp[nrecs];
363 break;
364 default:
365 return;
366 }
367
368 /* Zero from end of records to end of block */
369 memset(zp, 0, (char *)block + mp->m_sb.sb_blocksize - zp);
370 }
371
372 static void
373 zero_btree_block(
374 struct xfs_btree_block *block,
375 typnm_t btype)
376 {
377 int level;
378
379 level = be16_to_cpu(block->bb_level);
380
381 if (level > 0)
382 zero_btree_node(block, btype);
383 else
384 zero_btree_leaf(block, btype);
385 }
386
387 static int
388 scan_btree(
389 xfs_agnumber_t agno,
390 xfs_agblock_t agbno,
391 int level,
392 typnm_t btype,
393 void *arg,
394 int (*func)(struct xfs_btree_block *block,
395 xfs_agnumber_t agno,
396 xfs_agblock_t agbno,
397 int level,
398 typnm_t btype,
399 void *arg))
400 {
401 int rval = 0;
402
403 push_cur();
404 set_cur(&typtab[btype], XFS_AGB_TO_DADDR(mp, agno, agbno), blkbb,
405 DB_RING_IGN, NULL);
406 if (iocur_top->data == NULL) {
407 print_warning("cannot read %s block %u/%u", typtab[btype].name,
408 agno, agbno);
409 rval = !stop_on_read_error;
410 goto pop_out;
411 }
412
413 if (zero_stale_data) {
414 zero_btree_block(iocur_top->data, btype);
415 iocur_top->need_crc = 1;
416 }
417
418 if (write_buf(iocur_top))
419 goto pop_out;
420
421 if (!(*func)(iocur_top->data, agno, agbno, level - 1, btype, arg))
422 goto pop_out;
423 rval = 1;
424 pop_out:
425 pop_cur();
426 return rval;
427 }
428
429 /* free space tree copy routines */
430
431 static int
432 valid_bno(
433 xfs_agnumber_t agno,
434 xfs_agblock_t agbno)
435 {
436 if (agno < (mp->m_sb.sb_agcount - 1) && agbno > 0 &&
437 agbno <= mp->m_sb.sb_agblocks)
438 return 1;
439 if (agno == (mp->m_sb.sb_agcount - 1) && agbno > 0 &&
440 agbno <= (mp->m_sb.sb_dblocks -
441 (xfs_rfsblock_t)(mp->m_sb.sb_agcount - 1) *
442 mp->m_sb.sb_agblocks))
443 return 1;
444
445 return 0;
446 }
447
448
449 static int
450 scanfunc_freesp(
451 struct xfs_btree_block *block,
452 xfs_agnumber_t agno,
453 xfs_agblock_t agbno,
454 int level,
455 typnm_t btype,
456 void *arg)
457 {
458 xfs_alloc_ptr_t *pp;
459 int i;
460 int numrecs;
461
462 if (level == 0)
463 return 1;
464
465 numrecs = be16_to_cpu(block->bb_numrecs);
466 if (numrecs > mp->m_alloc_mxr[1]) {
467 if (show_warnings)
468 print_warning("invalid numrecs (%u) in %s block %u/%u",
469 numrecs, typtab[btype].name, agno, agbno);
470 return 1;
471 }
472
473 pp = XFS_ALLOC_PTR_ADDR(mp, block, 1, mp->m_alloc_mxr[1]);
474 for (i = 0; i < numrecs; i++) {
475 if (!valid_bno(agno, be32_to_cpu(pp[i]))) {
476 if (show_warnings)
477 print_warning("invalid block number (%u/%u) "
478 "in %s block %u/%u",
479 agno, be32_to_cpu(pp[i]),
480 typtab[btype].name, agno, agbno);
481 continue;
482 }
483 if (!scan_btree(agno, be32_to_cpu(pp[i]), level, btype, arg,
484 scanfunc_freesp))
485 return 0;
486 }
487 return 1;
488 }
489
490 static int
491 copy_free_bno_btree(
492 xfs_agnumber_t agno,
493 xfs_agf_t *agf)
494 {
495 xfs_agblock_t root;
496 int levels;
497
498 root = be32_to_cpu(agf->agf_roots[XFS_BTNUM_BNO]);
499 levels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
500
501 /* validate root and levels before processing the tree */
502 if (root == 0 || root > mp->m_sb.sb_agblocks) {
503 if (show_warnings)
504 print_warning("invalid block number (%u) in bnobt "
505 "root in agf %u", root, agno);
506 return 1;
507 }
508 if (levels >= XFS_BTREE_MAXLEVELS) {
509 if (show_warnings)
510 print_warning("invalid level (%u) in bnobt root "
511 "in agf %u", levels, agno);
512 return 1;
513 }
514
515 return scan_btree(agno, root, levels, TYP_BNOBT, agf, scanfunc_freesp);
516 }
517
518 static int
519 copy_free_cnt_btree(
520 xfs_agnumber_t agno,
521 xfs_agf_t *agf)
522 {
523 xfs_agblock_t root;
524 int levels;
525
526 root = be32_to_cpu(agf->agf_roots[XFS_BTNUM_CNT]);
527 levels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
528
529 /* validate root and levels before processing the tree */
530 if (root == 0 || root > mp->m_sb.sb_agblocks) {
531 if (show_warnings)
532 print_warning("invalid block number (%u) in cntbt "
533 "root in agf %u", root, agno);
534 return 1;
535 }
536 if (levels >= XFS_BTREE_MAXLEVELS) {
537 if (show_warnings)
538 print_warning("invalid level (%u) in cntbt root "
539 "in agf %u", levels, agno);
540 return 1;
541 }
542
543 return scan_btree(agno, root, levels, TYP_CNTBT, agf, scanfunc_freesp);
544 }
545
546 static int
547 scanfunc_rmapbt(
548 struct xfs_btree_block *block,
549 xfs_agnumber_t agno,
550 xfs_agblock_t agbno,
551 int level,
552 typnm_t btype,
553 void *arg)
554 {
555 xfs_rmap_ptr_t *pp;
556 int i;
557 int numrecs;
558
559 if (level == 0)
560 return 1;
561
562 numrecs = be16_to_cpu(block->bb_numrecs);
563 if (numrecs > mp->m_rmap_mxr[1]) {
564 if (show_warnings)
565 print_warning("invalid numrecs (%u) in %s block %u/%u",
566 numrecs, typtab[btype].name, agno, agbno);
567 return 1;
568 }
569
570 pp = XFS_RMAP_PTR_ADDR(block, 1, mp->m_rmap_mxr[1]);
571 for (i = 0; i < numrecs; i++) {
572 if (!valid_bno(agno, be32_to_cpu(pp[i]))) {
573 if (show_warnings)
574 print_warning("invalid block number (%u/%u) "
575 "in %s block %u/%u",
576 agno, be32_to_cpu(pp[i]),
577 typtab[btype].name, agno, agbno);
578 continue;
579 }
580 if (!scan_btree(agno, be32_to_cpu(pp[i]), level, btype, arg,
581 scanfunc_rmapbt))
582 return 0;
583 }
584 return 1;
585 }
586
587 static int
588 copy_rmap_btree(
589 xfs_agnumber_t agno,
590 struct xfs_agf *agf)
591 {
592 xfs_agblock_t root;
593 int levels;
594
595 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
596 return 1;
597
598 root = be32_to_cpu(agf->agf_roots[XFS_BTNUM_RMAP]);
599 levels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
600
601 /* validate root and levels before processing the tree */
602 if (root == 0 || root > mp->m_sb.sb_agblocks) {
603 if (show_warnings)
604 print_warning("invalid block number (%u) in rmapbt "
605 "root in agf %u", root, agno);
606 return 1;
607 }
608 if (levels >= XFS_BTREE_MAXLEVELS) {
609 if (show_warnings)
610 print_warning("invalid level (%u) in rmapbt root "
611 "in agf %u", levels, agno);
612 return 1;
613 }
614
615 return scan_btree(agno, root, levels, TYP_RMAPBT, agf, scanfunc_rmapbt);
616 }
617
618 static int
619 scanfunc_refcntbt(
620 struct xfs_btree_block *block,
621 xfs_agnumber_t agno,
622 xfs_agblock_t agbno,
623 int level,
624 typnm_t btype,
625 void *arg)
626 {
627 xfs_refcount_ptr_t *pp;
628 int i;
629 int numrecs;
630
631 if (level == 0)
632 return 1;
633
634 numrecs = be16_to_cpu(block->bb_numrecs);
635 if (numrecs > mp->m_refc_mxr[1]) {
636 if (show_warnings)
637 print_warning("invalid numrecs (%u) in %s block %u/%u",
638 numrecs, typtab[btype].name, agno, agbno);
639 return 1;
640 }
641
642 pp = XFS_REFCOUNT_PTR_ADDR(block, 1, mp->m_refc_mxr[1]);
643 for (i = 0; i < numrecs; i++) {
644 if (!valid_bno(agno, be32_to_cpu(pp[i]))) {
645 if (show_warnings)
646 print_warning("invalid block number (%u/%u) "
647 "in %s block %u/%u",
648 agno, be32_to_cpu(pp[i]),
649 typtab[btype].name, agno, agbno);
650 continue;
651 }
652 if (!scan_btree(agno, be32_to_cpu(pp[i]), level, btype, arg,
653 scanfunc_refcntbt))
654 return 0;
655 }
656 return 1;
657 }
658
659 static int
660 copy_refcount_btree(
661 xfs_agnumber_t agno,
662 struct xfs_agf *agf)
663 {
664 xfs_agblock_t root;
665 int levels;
666
667 if (!xfs_sb_version_hasreflink(&mp->m_sb))
668 return 1;
669
670 root = be32_to_cpu(agf->agf_refcount_root);
671 levels = be32_to_cpu(agf->agf_refcount_level);
672
673 /* validate root and levels before processing the tree */
674 if (root == 0 || root > mp->m_sb.sb_agblocks) {
675 if (show_warnings)
676 print_warning("invalid block number (%u) in refcntbt "
677 "root in agf %u", root, agno);
678 return 1;
679 }
680 if (levels >= XFS_BTREE_MAXLEVELS) {
681 if (show_warnings)
682 print_warning("invalid level (%u) in refcntbt root "
683 "in agf %u", levels, agno);
684 return 1;
685 }
686
687 return scan_btree(agno, root, levels, TYP_REFCBT, agf, scanfunc_refcntbt);
688 }
689
690 /* filename and extended attribute obfuscation routines */
691
692 struct name_ent {
693 struct name_ent *next;
694 xfs_dahash_t hash;
695 int namelen;
696 unsigned char name[1];
697 };
698
699 #define NAME_TABLE_SIZE 4096
700
701 static struct name_ent *nametable[NAME_TABLE_SIZE];
702
703 static void
704 nametable_clear(void)
705 {
706 int i;
707 struct name_ent *ent;
708
709 for (i = 0; i < NAME_TABLE_SIZE; i++) {
710 while ((ent = nametable[i])) {
711 nametable[i] = ent->next;
712 free(ent);
713 }
714 }
715 }
716
717 /*
718 * See if the given name is already in the name table. If so,
719 * return a pointer to its entry, otherwise return a null pointer.
720 */
721 static struct name_ent *
722 nametable_find(xfs_dahash_t hash, int namelen, unsigned char *name)
723 {
724 struct name_ent *ent;
725
726 for (ent = nametable[hash % NAME_TABLE_SIZE]; ent; ent = ent->next) {
727 if (ent->hash == hash && ent->namelen == namelen &&
728 !memcmp(ent->name, name, namelen))
729 return ent;
730 }
731 return NULL;
732 }
733
734 /*
735 * Add the given name to the name table. Returns a pointer to the
736 * name's new entry, or a null pointer if an error occurs.
737 */
738 static struct name_ent *
739 nametable_add(xfs_dahash_t hash, int namelen, unsigned char *name)
740 {
741 struct name_ent *ent;
742
743 ent = malloc(sizeof *ent + namelen);
744 if (!ent)
745 return NULL;
746
747 ent->namelen = namelen;
748 memcpy(ent->name, name, namelen);
749 ent->hash = hash;
750 ent->next = nametable[hash % NAME_TABLE_SIZE];
751
752 nametable[hash % NAME_TABLE_SIZE] = ent;
753
754 return ent;
755 }
756
757 #define is_invalid_char(c) ((c) == '/' || (c) == '\0')
758 #define rol32(x,y) (((x) << (y)) | ((x) >> (32 - (y))))
759
760 static inline unsigned char
761 random_filename_char(void)
762 {
763 static unsigned char filename_alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
764 "abcdefghijklmnopqrstuvwxyz"
765 "0123456789-_";
766
767 return filename_alphabet[random() % (sizeof filename_alphabet - 1)];
768 }
769
770 #define ORPHANAGE "lost+found"
771 #define ORPHANAGE_LEN (sizeof (ORPHANAGE) - 1)
772
773 static inline int
774 is_orphanage_dir(
775 struct xfs_mount *mp,
776 xfs_ino_t dir_ino,
777 size_t name_len,
778 unsigned char *name)
779 {
780 return dir_ino == mp->m_sb.sb_rootino &&
781 name_len == ORPHANAGE_LEN &&
782 !memcmp(name, ORPHANAGE, ORPHANAGE_LEN);
783 }
784
785 /*
786 * Determine whether a name is one we shouldn't obfuscate because
787 * it's an orphan (or the "lost+found" directory itself). Note
788 * "cur_ino" is the inode for the directory currently being
789 * processed.
790 *
791 * Returns 1 if the name should NOT be obfuscated or 0 otherwise.
792 */
793 static int
794 in_lost_found(
795 xfs_ino_t ino,
796 int namelen,
797 unsigned char *name)
798 {
799 static xfs_ino_t orphanage_ino = 0;
800 char s[24]; /* 21 is enough (64 bits in decimal) */
801 int slen;
802
803 /* Record the "lost+found" inode if we haven't done so already */
804
805 ASSERT(ino != 0);
806 if (!orphanage_ino && is_orphanage_dir(mp, cur_ino, namelen, name))
807 orphanage_ino = ino;
808
809 /* We don't obfuscate the "lost+found" directory itself */
810
811 if (ino == orphanage_ino)
812 return 1;
813
814 /* Most files aren't in "lost+found" at all */
815
816 if (cur_ino != orphanage_ino)
817 return 0;
818
819 /*
820 * Within "lost+found", we don't obfuscate any file whose
821 * name is the same as its inode number. Any others are
822 * stray files and can be obfuscated.
823 */
824 slen = snprintf(s, sizeof (s), "%llu", (unsigned long long) ino);
825
826 return slen == namelen && !memcmp(name, s, namelen);
827 }
828
829 /*
830 * Given a name and its hash value, massage the name in such a way
831 * that the result is another name of equal length which shares the
832 * same hash value.
833 */
834 static void
835 obfuscate_name(
836 xfs_dahash_t hash,
837 size_t name_len,
838 unsigned char *name)
839 {
840 unsigned char *newp = name;
841 int i;
842 xfs_dahash_t new_hash = 0;
843 unsigned char *first;
844 unsigned char high_bit;
845 int shift;
846
847 /*
848 * Our obfuscation algorithm requires at least 5-character
849 * names, so don't bother if the name is too short. We
850 * work backward from a hash value to determine the last
851 * five bytes in a name required to produce a new name
852 * with the same hash.
853 */
854 if (name_len < 5)
855 return;
856
857 /*
858 * The beginning of the obfuscated name can be pretty much
859 * anything, so fill it in with random characters.
860 * Accumulate its new hash value as we go.
861 */
862 for (i = 0; i < name_len - 5; i++) {
863 *newp = random_filename_char();
864 new_hash = *newp ^ rol32(new_hash, 7);
865 newp++;
866 }
867
868 /*
869 * Compute which five bytes need to be used at the end of
870 * the name so the hash of the obfuscated name is the same
871 * as the hash of the original. If any result in an invalid
872 * character, flip a bit and arrange for a corresponding bit
873 * in a neighboring byte to be flipped as well. For the
874 * last byte, the "neighbor" to change is the first byte
875 * we're computing here.
876 */
877 new_hash = rol32(new_hash, 3) ^ hash;
878
879 first = newp;
880 high_bit = 0;
881 for (shift = 28; shift >= 0; shift -= 7) {
882 *newp = (new_hash >> shift & 0x7f) ^ high_bit;
883 if (is_invalid_char(*newp)) {
884 *newp ^= 1;
885 high_bit = 0x80;
886 } else
887 high_bit = 0;
888 ASSERT(!is_invalid_char(*newp));
889 newp++;
890 }
891
892 /*
893 * If we flipped a bit on the last byte, we need to fix up
894 * the matching bit in the first byte. The result will
895 * be a valid character, because we know that first byte
896 * has 0's in its upper four bits (it was produced by a
897 * 28-bit right-shift of a 32-bit unsigned value).
898 */
899 if (high_bit) {
900 *first ^= 0x10;
901 ASSERT(!is_invalid_char(*first));
902 }
903 ASSERT(libxfs_da_hashname(name, name_len) == hash);
904 }
905
906 /*
907 * Flip a bit in each of two bytes at the end of the given name.
908 * This is used in generating a series of alternate names to be used
909 * in the event a duplicate is found.
910 *
911 * The bits flipped are selected such that they both affect the same
912 * bit in the name's computed hash value, so flipping them both will
913 * preserve the hash.
914 *
915 * The following diagram aims to show the portion of a computed
916 * hash that a given byte of a name affects.
917 *
918 * 31 28 24 21 14 8 7 3 0
919 * +-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-+
920 * hash: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
921 * +-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-+
922 * last-4 ->| |<-- last-2 --->| |<--- last ---->|
923 * |<-- last-3 --->| |<-- last-1 --->| |<- last-4
924 * |<-- last-7 --->| |<-- last-5 --->|
925 * |<-- last-8 --->| |<-- last-6 --->|
926 * . . . and so on
927 *
928 * The last byte of the name directly affects the low-order byte of
929 * the hash. The next-to-last affects bits 7-14, the next one back
930 * affects bits 14-21, and so on. The effect wraps around when it
931 * goes beyond the top of the hash (as happens for byte last-4).
932 *
933 * Bits that are flipped together "overlap" on the hash value. As
934 * an example of overlap, the last two bytes both affect bit 7 in
935 * the hash. That pair of bytes (and their overlapping bits) can be
936 * used for this "flip bit" operation (it's the first pair tried,
937 * actually).
938 *
939 * A table defines overlapping pairs--the bytes involved and bits
940 * within them--that can be used this way. The byte offset is
941 * relative to a starting point within the name, which will be set
942 * to affect the bytes at the end of the name. The function is
943 * called with a "bitseq" value which indicates which bit flip is
944 * desired, and this translates directly into selecting which entry
945 * in the bit_to_flip[] table to apply.
946 *
947 * The function returns 1 if the operation was successful. It
948 * returns 0 if the result produced a character that's not valid in
949 * a name (either '/' or a '\0'). Finally, it returns -1 if the bit
950 * sequence number is beyond what is supported for a name of this
951 * length.
952 *
953 * Discussion
954 * ----------
955 * (Also see the discussion above find_alternate(), below.)
956 *
957 * In order to make this function work for any length name, the
958 * table is ordered by increasing byte offset, so that the earliest
959 * entries can apply to the shortest strings. This way all names
960 * are done consistently.
961 *
962 * When bit flips occur, they can convert printable characters
963 * into non-printable ones. In an effort to reduce the impact of
964 * this, the first bit flips are chosen to affect bytes the end of
965 * the name (and furthermore, toward the low bits of a byte). Those
966 * bytes are often non-printable anyway because of the way they are
967 * initially selected by obfuscate_name()). This is accomplished,
968 * using later table entries first.
969 *
970 * Each row in the table doubles the number of alternates that
971 * can be generated. A two-byte name is limited to using only
972 * the first row, so it's possible to generate two alternates
973 * (the original name, plus the alternate produced by flipping
974 * the one pair of bits). In a 5-byte name, the effect of the
975 * first byte overlaps the last by 4 its, and there are 8 bits
976 * to flip, allowing for 256 possible alternates.
977 *
978 * Short names (less than 5 bytes) are never even obfuscated, so for
979 * such names the relatively small number of alternates should never
980 * really be a problem.
981 *
982 * Long names (more than 6 bytes, say) are not likely to exhaust
983 * the number of available alternates. In fact, the table could
984 * probably have stopped at 8 entries, on the assumption that 256
985 * alternates should be enough for most any situation. The entries
986 * beyond those are present mostly for demonstration of how it could
987 * be populated with more entries, should it ever be necessary to do
988 * so.
989 */
990 static int
991 flip_bit(
992 size_t name_len,
993 unsigned char *name,
994 uint32_t bitseq)
995 {
996 int index;
997 size_t offset;
998 unsigned char *p0, *p1;
999 unsigned char m0, m1;
1000 struct {
1001 int byte; /* Offset from start within name */
1002 unsigned char bit; /* Bit within that byte */
1003 } bit_to_flip[][2] = { /* Sorted by second entry's byte */
1004 { { 0, 0 }, { 1, 7 } }, /* Each row defines a pair */
1005 { { 1, 0 }, { 2, 7 } }, /* of bytes and a bit within */
1006 { { 2, 0 }, { 3, 7 } }, /* each byte. Each bit in */
1007 { { 0, 4 }, { 4, 0 } }, /* a pair affects the same */
1008 { { 0, 5 }, { 4, 1 } }, /* bit in the hash, so flipping */
1009 { { 0, 6 }, { 4, 2 } }, /* both will change the name */
1010 { { 0, 7 }, { 4, 3 } }, /* while preserving the hash. */
1011 { { 3, 0 }, { 4, 7 } },
1012 { { 0, 0 }, { 5, 3 } }, /* The first entry's byte offset */
1013 { { 0, 1 }, { 5, 4 } }, /* must be less than the second. */
1014 { { 0, 2 }, { 5, 5 } },
1015 { { 0, 3 }, { 5, 6 } }, /* The table can be extended to */
1016 { { 0, 4 }, { 5, 7 } }, /* an arbitrary number of entries */
1017 { { 4, 0 }, { 5, 7 } }, /* but there's not much point. */
1018 /* . . . */
1019 };
1020
1021 /* Find the first entry *not* usable for name of this length */
1022
1023 for (index = 0; index < ARRAY_SIZE(bit_to_flip); index++)
1024 if (bit_to_flip[index][1].byte >= name_len)
1025 break;
1026
1027 /*
1028 * Back up to the last usable entry. If that number is
1029 * smaller than the bit sequence number, inform the caller
1030 * that nothing this large (or larger) will work.
1031 */
1032 if (bitseq > --index)
1033 return -1;
1034
1035 /*
1036 * We will be switching bits at the end of name, with a
1037 * preference for affecting the last bytes first. Compute
1038 * where in the name we'll start applying the changes.
1039 */
1040 offset = name_len - (bit_to_flip[index][1].byte + 1);
1041 index -= bitseq; /* Use later table entries first */
1042
1043 p0 = name + offset + bit_to_flip[index][0].byte;
1044 p1 = name + offset + bit_to_flip[index][1].byte;
1045 m0 = 1 << bit_to_flip[index][0].bit;
1046 m1 = 1 << bit_to_flip[index][1].bit;
1047
1048 /* Only change the bytes if it produces valid characters */
1049
1050 if (is_invalid_char(*p0 ^ m0) || is_invalid_char(*p1 ^ m1))
1051 return 0;
1052
1053 *p0 ^= m0;
1054 *p1 ^= m1;
1055
1056 return 1;
1057 }
1058
1059 /*
1060 * This function generates a well-defined sequence of "alternate"
1061 * names for a given name. An alternate is a name having the same
1062 * length and same hash value as the original name. This is needed
1063 * because the algorithm produces only one obfuscated name to use
1064 * for a given original name, and it's possible that result matches
1065 * a name already seen. This function checks for this, and if it
1066 * occurs, finds another suitable obfuscated name to use.
1067 *
1068 * Each bit in the binary representation of the sequence number is
1069 * used to select one possible "bit flip" operation to perform on
1070 * the name. So for example:
1071 * seq = 0: selects no bits to flip
1072 * seq = 1: selects the 0th bit to flip
1073 * seq = 2: selects the 1st bit to flip
1074 * seq = 3: selects the 0th and 1st bit to flip
1075 * ... and so on.
1076 *
1077 * The flip_bit() function takes care of the details of the bit
1078 * flipping within the name. Note that the "1st bit" in this
1079 * context is a bit sequence number; i.e. it doesn't necessarily
1080 * mean bit 0x02 will be changed.
1081 *
1082 * If a valid name (one that contains no '/' or '\0' characters) is
1083 * produced by this process for the given sequence number, this
1084 * function returns 1. If the result is not valid, it returns 0.
1085 * Returns -1 if the sequence number is beyond the the maximum for
1086 * names of the given length.
1087 *
1088 *
1089 * Discussion
1090 * ----------
1091 * The number of alternates available for a given name is dependent
1092 * on its length. A "bit flip" involves inverting two bits in
1093 * a name--the two bits being selected such that their values
1094 * affect the name's hash value in the same way. Alternates are
1095 * thus generated by inverting the value of pairs of such
1096 * "overlapping" bits in the original name. Each byte after the
1097 * first in a name adds at least one bit of overlap to work with.
1098 * (See comments above flip_bit() for more discussion on this.)
1099 *
1100 * So the number of alternates is dependent on the number of such
1101 * overlapping bits in a name. If there are N bit overlaps, there
1102 * 2^N alternates for that hash value.
1103 *
1104 * Here are the number of overlapping bits available for generating
1105 * alternates for names of specific lengths:
1106 * 1 0 (must have 2 bytes to have any overlap)
1107 * 2 1 One bit overlaps--so 2 possible alternates
1108 * 3 2 Two bits overlap--so 4 possible alternates
1109 * 4 4 Three bits overlap, so 2^3 alternates
1110 * 5 8 8 bits overlap (due to wrapping), 256 alternates
1111 * 6 18 2^18 alternates
1112 * 7 28 2^28 alternates
1113 * ...
1114 * It's clear that the number of alternates grows very quickly with
1115 * the length of the name. But note that the set of alternates
1116 * includes invalid names. And for certain (contrived) names, the
1117 * number of valid names is a fairly small fraction of the total
1118 * number of alternates.
1119 *
1120 * The main driver for this infrastructure for coming up with
1121 * alternate names is really related to names 5 (or possibly 6)
1122 * bytes in length. 5-byte obfuscated names contain no randomly-
1123 * generated bytes in them, and the chance of an obfuscated name
1124 * matching an already-seen name is too high to just ignore. This
1125 * methodical selection of alternates ensures we don't produce
1126 * duplicate names unless we have exhausted our options.
1127 */
1128 static int
1129 find_alternate(
1130 size_t name_len,
1131 unsigned char *name,
1132 uint32_t seq)
1133 {
1134 uint32_t bitseq = 0;
1135 uint32_t bits = seq;
1136
1137 if (!seq)
1138 return 1; /* alternate 0 is the original name */
1139 if (name_len < 2) /* Must have 2 bytes to flip */
1140 return -1;
1141
1142 for (bitseq = 0; bits; bitseq++) {
1143 uint32_t mask = 1 << bitseq;
1144 int fb;
1145
1146 if (!(bits & mask))
1147 continue;
1148
1149 fb = flip_bit(name_len, name, bitseq);
1150 if (fb < 1)
1151 return fb ? -1 : 0;
1152 bits ^= mask;
1153 }
1154
1155 return 1;
1156 }
1157
1158 /*
1159 * Look up the given name in the name table. If it is already
1160 * present, iterate through a well-defined sequence of alternate
1161 * names and attempt to use an alternate name instead.
1162 *
1163 * Returns 1 if the (possibly modified) name is not present in the
1164 * name table. Returns 0 if the name and all possible alternates
1165 * are already in the table.
1166 */
1167 static int
1168 handle_duplicate_name(xfs_dahash_t hash, size_t name_len, unsigned char *name)
1169 {
1170 unsigned char new_name[name_len + 1];
1171 uint32_t seq = 1;
1172
1173 if (!nametable_find(hash, name_len, name))
1174 return 1; /* No duplicate */
1175
1176 /* Name is already in use. Need to find an alternate. */
1177
1178 do {
1179 int found;
1180
1181 /* Only change incoming name if we find an alternate */
1182 do {
1183 memcpy(new_name, name, name_len);
1184 found = find_alternate(name_len, new_name, seq++);
1185 if (found < 0)
1186 return 0; /* No more to check */
1187 } while (!found);
1188 } while (nametable_find(hash, name_len, new_name));
1189
1190 /*
1191 * The alternate wasn't in the table already. Pass it back
1192 * to the caller.
1193 */
1194 memcpy(name, new_name, name_len);
1195
1196 return 1;
1197 }
1198
1199 static void
1200 generate_obfuscated_name(
1201 xfs_ino_t ino,
1202 int namelen,
1203 unsigned char *name)
1204 {
1205 xfs_dahash_t hash;
1206
1207 /*
1208 * We don't obfuscate "lost+found" or any orphan files
1209 * therein. When the name table is used for extended
1210 * attributes, the inode number provided is 0, in which
1211 * case we don't need to make this check.
1212 */
1213 if (ino && in_lost_found(ino, namelen, name))
1214 return;
1215
1216 /*
1217 * If the name starts with a slash, just skip over it. It
1218 * isn't included in the hash and we don't record it in the
1219 * name table. Note that the namelen value passed in does
1220 * not count the leading slash (if one is present).
1221 */
1222 if (*name == '/')
1223 name++;
1224
1225 /* Obfuscate the name (if possible) */
1226
1227 hash = libxfs_da_hashname(name, namelen);
1228 obfuscate_name(hash, namelen, name);
1229
1230 /*
1231 * Make sure the name is not something already seen. If we
1232 * fail to find a suitable alternate, we're dealing with a
1233 * very pathological situation, and we may end up creating
1234 * a duplicate name in the metadump, so issue a warning.
1235 */
1236 if (!handle_duplicate_name(hash, namelen, name)) {
1237 print_warning("duplicate name for inode %llu "
1238 "in dir inode %llu\n",
1239 (unsigned long long) ino,
1240 (unsigned long long) cur_ino);
1241 return;
1242 }
1243
1244 /* Create an entry for the new name in the name table. */
1245
1246 if (!nametable_add(hash, namelen, name))
1247 print_warning("unable to record name for inode %llu "
1248 "in dir inode %llu\n",
1249 (unsigned long long) ino,
1250 (unsigned long long) cur_ino);
1251 }
1252
1253 static void
1254 process_sf_dir(
1255 xfs_dinode_t *dip)
1256 {
1257 struct xfs_dir2_sf_hdr *sfp;
1258 xfs_dir2_sf_entry_t *sfep;
1259 __uint64_t ino_dir_size;
1260 int i;
1261
1262 sfp = (struct xfs_dir2_sf_hdr *)XFS_DFORK_DPTR(dip);
1263 ino_dir_size = be64_to_cpu(dip->di_size);
1264 if (ino_dir_size > XFS_DFORK_DSIZE(dip, mp)) {
1265 ino_dir_size = XFS_DFORK_DSIZE(dip, mp);
1266 if (show_warnings)
1267 print_warning("invalid size in dir inode %llu",
1268 (long long)cur_ino);
1269 }
1270
1271 sfep = xfs_dir2_sf_firstentry(sfp);
1272 for (i = 0; (i < sfp->count) &&
1273 ((char *)sfep - (char *)sfp < ino_dir_size); i++) {
1274
1275 /*
1276 * first check for bad name lengths. If they are bad, we
1277 * have limitations to how much can be obfuscated.
1278 */
1279 int namelen = sfep->namelen;
1280
1281 if (namelen == 0) {
1282 if (show_warnings)
1283 print_warning("zero length entry in dir inode "
1284 "%llu", (long long)cur_ino);
1285 if (i != sfp->count - 1)
1286 break;
1287 namelen = ino_dir_size - ((char *)&sfep->name[0] -
1288 (char *)sfp);
1289 } else if ((char *)sfep - (char *)sfp +
1290 M_DIROPS(mp)->sf_entsize(sfp, sfep->namelen) >
1291 ino_dir_size) {
1292 if (show_warnings)
1293 print_warning("entry length in dir inode %llu "
1294 "overflows space", (long long)cur_ino);
1295 if (i != sfp->count - 1)
1296 break;
1297 namelen = ino_dir_size - ((char *)&sfep->name[0] -
1298 (char *)sfp);
1299 }
1300
1301 if (obfuscate)
1302 generate_obfuscated_name(
1303 M_DIROPS(mp)->sf_get_ino(sfp, sfep),
1304 namelen, &sfep->name[0]);
1305
1306 sfep = (xfs_dir2_sf_entry_t *)((char *)sfep +
1307 M_DIROPS(mp)->sf_entsize(sfp, namelen));
1308 }
1309
1310 /* zero stale data in rest of space in data fork, if any */
1311 if (zero_stale_data && (ino_dir_size < XFS_DFORK_DSIZE(dip, mp)))
1312 memset(sfep, 0, XFS_DFORK_DSIZE(dip, mp) - ino_dir_size);
1313 }
1314
1315 /*
1316 * The pathname may not be null terminated. It may be terminated by the end of
1317 * a buffer or inode literal area, and the start of the next region contains
1318 * unknown data. Therefore, when we get to the last component of the symlink, we
1319 * cannot assume that strlen() will give us the right result. Hence we need to
1320 * track the remaining pathname length and use that instead.
1321 */
1322 static void
1323 obfuscate_path_components(
1324 char *buf,
1325 __uint64_t len)
1326 {
1327 unsigned char *comp = (unsigned char *)buf;
1328 unsigned char *end = comp + len;
1329 xfs_dahash_t hash;
1330
1331 while (comp < end) {
1332 char *slash;
1333 int namelen;
1334
1335 /* find slash at end of this component */
1336 slash = strchr((char *)comp, '/');
1337 if (!slash) {
1338 /* last (or single) component */
1339 namelen = strnlen((char *)comp, len);
1340 hash = libxfs_da_hashname(comp, namelen);
1341 obfuscate_name(hash, namelen, comp);
1342 break;
1343 }
1344 namelen = slash - (char *)comp;
1345 /* handle leading or consecutive slashes */
1346 if (!namelen) {
1347 comp++;
1348 len--;
1349 continue;
1350 }
1351 hash = libxfs_da_hashname(comp, namelen);
1352 obfuscate_name(hash, namelen, comp);
1353 comp += namelen + 1;
1354 len -= namelen + 1;
1355 }
1356 }
1357
1358 static void
1359 process_sf_symlink(
1360 xfs_dinode_t *dip)
1361 {
1362 __uint64_t len;
1363 char *buf;
1364
1365 len = be64_to_cpu(dip->di_size);
1366 if (len > XFS_DFORK_DSIZE(dip, mp)) {
1367 if (show_warnings)
1368 print_warning("invalid size (%d) in symlink inode %llu",
1369 len, (long long)cur_ino);
1370 len = XFS_DFORK_DSIZE(dip, mp);
1371 }
1372
1373 buf = (char *)XFS_DFORK_DPTR(dip);
1374 if (obfuscate)
1375 obfuscate_path_components(buf, len);
1376
1377 /* zero stale data in rest of space in data fork, if any */
1378 if (zero_stale_data && len < XFS_DFORK_DSIZE(dip, mp))
1379 memset(&buf[len], 0, XFS_DFORK_DSIZE(dip, mp) - len);
1380 }
1381
1382 static void
1383 process_sf_attr(
1384 xfs_dinode_t *dip)
1385 {
1386 /*
1387 * with extended attributes, obfuscate the names and fill the actual
1388 * values with 'v' (to see a valid string length, as opposed to NULLs)
1389 */
1390
1391 xfs_attr_shortform_t *asfp;
1392 xfs_attr_sf_entry_t *asfep;
1393 int ino_attr_size;
1394 int i;
1395
1396 asfp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
1397 if (asfp->hdr.count == 0)
1398 return;
1399
1400 ino_attr_size = be16_to_cpu(asfp->hdr.totsize);
1401 if (ino_attr_size > XFS_DFORK_ASIZE(dip, mp)) {
1402 ino_attr_size = XFS_DFORK_ASIZE(dip, mp);
1403 if (show_warnings)
1404 print_warning("invalid attr size in inode %llu",
1405 (long long)cur_ino);
1406 }
1407
1408 asfep = &asfp->list[0];
1409 for (i = 0; (i < asfp->hdr.count) &&
1410 ((char *)asfep - (char *)asfp < ino_attr_size); i++) {
1411
1412 int namelen = asfep->namelen;
1413
1414 if (namelen == 0) {
1415 if (show_warnings)
1416 print_warning("zero length attr entry in inode "
1417 "%llu", (long long)cur_ino);
1418 break;
1419 } else if ((char *)asfep - (char *)asfp +
1420 XFS_ATTR_SF_ENTSIZE(asfep) > ino_attr_size) {
1421 if (show_warnings)
1422 print_warning("attr entry length in inode %llu "
1423 "overflows space", (long long)cur_ino);
1424 break;
1425 }
1426
1427 if (obfuscate) {
1428 generate_obfuscated_name(0, asfep->namelen,
1429 &asfep->nameval[0]);
1430 memset(&asfep->nameval[asfep->namelen], 'v',
1431 asfep->valuelen);
1432 }
1433
1434 asfep = (xfs_attr_sf_entry_t *)((char *)asfep +
1435 XFS_ATTR_SF_ENTSIZE(asfep));
1436 }
1437
1438 /* zero stale data in rest of space in attr fork, if any */
1439 if (zero_stale_data && (ino_attr_size < XFS_DFORK_ASIZE(dip, mp)))
1440 memset(asfep, 0, XFS_DFORK_ASIZE(dip, mp) - ino_attr_size);
1441 }
1442
1443 static void
1444 process_dir_data_block(
1445 char *block,
1446 xfs_fileoff_t offset,
1447 int is_block_format)
1448 {
1449 /*
1450 * we have to rely on the fileoffset and signature of the block to
1451 * handle it's contents. If it's invalid, leave it alone.
1452 * for multi-fsblock dir blocks, if a name crosses an extent boundary,
1453 * ignore it and continue.
1454 */
1455 int dir_offset;
1456 char *ptr;
1457 char *endptr;
1458 int end_of_data;
1459 int wantmagic;
1460 struct xfs_dir2_data_hdr *datahdr;
1461
1462 datahdr = (struct xfs_dir2_data_hdr *)block;
1463
1464 if (is_block_format) {
1465 xfs_dir2_leaf_entry_t *blp;
1466 xfs_dir2_block_tail_t *btp;
1467
1468 btp = xfs_dir2_block_tail_p(mp->m_dir_geo, datahdr);
1469 blp = xfs_dir2_block_leaf_p(btp);
1470 if ((char *)blp > (char *)btp)
1471 blp = (xfs_dir2_leaf_entry_t *)btp;
1472
1473 end_of_data = (char *)blp - block;
1474 if (xfs_sb_version_hascrc(&mp->m_sb))
1475 wantmagic = XFS_DIR3_BLOCK_MAGIC;
1476 else
1477 wantmagic = XFS_DIR2_BLOCK_MAGIC;
1478 } else { /* leaf/node format */
1479 end_of_data = mp->m_dir_geo->fsbcount << mp->m_sb.sb_blocklog;
1480 if (xfs_sb_version_hascrc(&mp->m_sb))
1481 wantmagic = XFS_DIR3_DATA_MAGIC;
1482 else
1483 wantmagic = XFS_DIR2_DATA_MAGIC;
1484 }
1485
1486 if (be32_to_cpu(datahdr->magic) != wantmagic) {
1487 if (show_warnings)
1488 print_warning(
1489 "invalid magic in dir inode %llu block %ld",
1490 (long long)cur_ino, (long)offset);
1491 return;
1492 }
1493
1494 dir_offset = M_DIROPS(mp)->data_entry_offset;
1495 ptr = block + dir_offset;
1496 endptr = block + mp->m_dir_geo->blksize;
1497
1498 while (ptr < endptr && dir_offset < end_of_data) {
1499 xfs_dir2_data_entry_t *dep;
1500 xfs_dir2_data_unused_t *dup;
1501 int length;
1502
1503 dup = (xfs_dir2_data_unused_t *)ptr;
1504
1505 if (be16_to_cpu(dup->freetag) == XFS_DIR2_DATA_FREE_TAG) {
1506 int length = be16_to_cpu(dup->length);
1507 if (dir_offset + length > end_of_data ||
1508 !length || (length & (XFS_DIR2_DATA_ALIGN - 1))) {
1509 if (show_warnings)
1510 print_warning(
1511 "invalid length for dir free space in inode %llu",
1512 (long long)cur_ino);
1513 return;
1514 }
1515 if (be16_to_cpu(*xfs_dir2_data_unused_tag_p(dup)) !=
1516 dir_offset)
1517 return;
1518 dir_offset += length;
1519 ptr += length;
1520 /*
1521 * Zero the unused space up to the tag - the tag is
1522 * actually at a variable offset, so zeroing &dup->tag
1523 * is zeroing the free space in between
1524 */
1525 if (zero_stale_data) {
1526 int zlen = length -
1527 sizeof(xfs_dir2_data_unused_t);
1528
1529 if (zlen > 0) {
1530 memset(&dup->tag, 0, zlen);
1531 iocur_top->need_crc = 1;
1532 }
1533 }
1534 if (dir_offset >= end_of_data || ptr >= endptr)
1535 return;
1536 }
1537
1538 dep = (xfs_dir2_data_entry_t *)ptr;
1539 length = M_DIROPS(mp)->data_entsize(dep->namelen);
1540
1541 if (dir_offset + length > end_of_data ||
1542 ptr + length > endptr) {
1543 if (show_warnings)
1544 print_warning(
1545 "invalid length for dir entry name in inode %llu",
1546 (long long)cur_ino);
1547 return;
1548 }
1549 if (be16_to_cpu(*M_DIROPS(mp)->data_entry_tag_p(dep)) !=
1550 dir_offset)
1551 return;
1552
1553 if (obfuscate)
1554 generate_obfuscated_name(be64_to_cpu(dep->inumber),
1555 dep->namelen, &dep->name[0]);
1556 dir_offset += length;
1557 ptr += length;
1558 /* Zero the unused space after name, up to the tag */
1559 if (zero_stale_data) {
1560 /* 1 byte for ftype; don't bother with conditional */
1561 int zlen =
1562 (char *)M_DIROPS(mp)->data_entry_tag_p(dep) -
1563 (char *)&dep->name[dep->namelen] - 1;
1564 if (zlen > 0) {
1565 memset(&dep->name[dep->namelen] + 1, 0, zlen);
1566 iocur_top->need_crc = 1;
1567 }
1568 }
1569 }
1570 }
1571
1572 static void
1573 process_symlink_block(
1574 char *block)
1575 {
1576 char *link = block;
1577
1578 if (xfs_sb_version_hascrc(&(mp)->m_sb))
1579 link += sizeof(struct xfs_dsymlink_hdr);
1580
1581 if (obfuscate)
1582 obfuscate_path_components(link, XFS_SYMLINK_BUF_SPACE(mp,
1583 mp->m_sb.sb_blocksize));
1584 if (zero_stale_data) {
1585 size_t linklen, zlen;
1586
1587 linklen = strlen(link);
1588 zlen = mp->m_sb.sb_blocksize - linklen;
1589 if (xfs_sb_version_hascrc(&mp->m_sb))
1590 zlen -= sizeof(struct xfs_dsymlink_hdr);
1591 if (zlen < mp->m_sb.sb_blocksize)
1592 memset(link + linklen, 0, zlen);
1593 }
1594 }
1595
1596 #define MAX_REMOTE_VALS 4095
1597
1598 static struct attr_data_s {
1599 int remote_val_count;
1600 xfs_dablk_t remote_vals[MAX_REMOTE_VALS];
1601 } attr_data;
1602
1603 static inline void
1604 add_remote_vals(
1605 xfs_dablk_t blockidx,
1606 int length)
1607 {
1608 while (length > 0 && attr_data.remote_val_count < MAX_REMOTE_VALS) {
1609 attr_data.remote_vals[attr_data.remote_val_count] = blockidx;
1610 attr_data.remote_val_count++;
1611 blockidx++;
1612 length -= mp->m_sb.sb_blocksize;
1613 }
1614
1615 if (attr_data.remote_val_count >= MAX_REMOTE_VALS) {
1616 print_warning(
1617 "Overflowed attr obfuscation array. No longer obfuscating remote attrs.");
1618 }
1619 }
1620
1621 /* Handle remote and leaf attributes */
1622 static void
1623 process_attr_block(
1624 char *block,
1625 xfs_fileoff_t offset)
1626 {
1627 struct xfs_attr_leafblock *leaf;
1628 struct xfs_attr3_icleaf_hdr hdr;
1629 int i;
1630 int nentries;
1631 xfs_attr_leaf_entry_t *entry;
1632 xfs_attr_leaf_name_local_t *local;
1633 xfs_attr_leaf_name_remote_t *remote;
1634 __uint32_t bs = mp->m_sb.sb_blocksize;
1635 char *first_name;
1636
1637
1638 leaf = (xfs_attr_leafblock_t *)block;
1639
1640 /* Remote attributes - attr3 has XFS_ATTR3_RMT_MAGIC, attr has none */
1641 if ((be16_to_cpu(leaf->hdr.info.magic) != XFS_ATTR_LEAF_MAGIC) &&
1642 (be16_to_cpu(leaf->hdr.info.magic) != XFS_ATTR3_LEAF_MAGIC)) {
1643 for (i = 0; i < attr_data.remote_val_count; i++) {
1644 if (obfuscate && attr_data.remote_vals[i] == offset)
1645 /* Macros to handle both attr and attr3 */
1646 memset(block +
1647 (bs - XFS_ATTR3_RMT_BUF_SPACE(mp, bs)),
1648 'v', XFS_ATTR3_RMT_BUF_SPACE(mp, bs));
1649 }
1650 return;
1651 }
1652
1653 /* Ok, it's a leaf - get header; accounts for crc & non-crc */
1654 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &hdr, leaf);
1655
1656 nentries = hdr.count;
1657 if (nentries * sizeof(xfs_attr_leaf_entry_t) +
1658 xfs_attr3_leaf_hdr_size(leaf) >
1659 XFS_ATTR3_RMT_BUF_SPACE(mp, bs)) {
1660 if (show_warnings)
1661 print_warning("invalid attr count in inode %llu",
1662 (long long)cur_ino);
1663 return;
1664 }
1665
1666 entry = xfs_attr3_leaf_entryp(leaf);
1667 /* We will move this as we parse */
1668 first_name = NULL;
1669 for (i = 0; i < nentries; i++, entry++) {
1670 int nlen, vlen, zlen;
1671
1672 /* Grows up; if this name is topmost, move first_name */
1673 if (!first_name || xfs_attr3_leaf_name(leaf, i) < first_name)
1674 first_name = xfs_attr3_leaf_name(leaf, i);
1675
1676 if (be16_to_cpu(entry->nameidx) > mp->m_sb.sb_blocksize) {
1677 if (show_warnings)
1678 print_warning(
1679 "invalid attr nameidx in inode %llu",
1680 (long long)cur_ino);
1681 break;
1682 }
1683 if (entry->flags & XFS_ATTR_LOCAL) {
1684 local = xfs_attr3_leaf_name_local(leaf, i);
1685 if (local->namelen == 0) {
1686 if (show_warnings)
1687 print_warning(
1688 "zero length for attr name in inode %llu",
1689 (long long)cur_ino);
1690 break;
1691 }
1692 if (obfuscate) {
1693 generate_obfuscated_name(0, local->namelen,
1694 &local->nameval[0]);
1695 memset(&local->nameval[local->namelen], 'v',
1696 be16_to_cpu(local->valuelen));
1697 }
1698 /* zero from end of nameval[] to next name start */
1699 nlen = local->namelen;
1700 vlen = be16_to_cpu(local->valuelen);
1701 zlen = xfs_attr_leaf_entsize_local(nlen, vlen) -
1702 (sizeof(xfs_attr_leaf_name_local_t) - 1 +
1703 nlen + vlen);
1704 if (zero_stale_data)
1705 memset(&local->nameval[nlen + vlen], 0, zlen);
1706 } else {
1707 remote = xfs_attr3_leaf_name_remote(leaf, i);
1708 if (remote->namelen == 0 || remote->valueblk == 0) {
1709 if (show_warnings)
1710 print_warning(
1711 "invalid attr entry in inode %llu",
1712 (long long)cur_ino);
1713 break;
1714 }
1715 if (obfuscate) {
1716 generate_obfuscated_name(0, remote->namelen,
1717 &remote->name[0]);
1718 add_remote_vals(be32_to_cpu(remote->valueblk),
1719 be32_to_cpu(remote->valuelen));
1720 }
1721 /* zero from end of name[] to next name start */
1722 nlen = remote->namelen;
1723 zlen = xfs_attr_leaf_entsize_remote(nlen) -
1724 (sizeof(xfs_attr_leaf_name_remote_t) - 1 +
1725 nlen);
1726 if (zero_stale_data)
1727 memset(&remote->name[nlen], 0, zlen);
1728 }
1729 }
1730
1731 /* Zero from end of entries array to the first name/val */
1732 if (zero_stale_data) {
1733 struct xfs_attr_leaf_entry *entries;
1734
1735 entries = xfs_attr3_leaf_entryp(leaf);
1736 memset(&entries[nentries], 0,
1737 first_name - (char *)&entries[nentries]);
1738 }
1739 }
1740
1741 /* Processes symlinks, attrs, directories ... */
1742 static int
1743 process_single_fsb_objects(
1744 xfs_fileoff_t o,
1745 xfs_fsblock_t s,
1746 xfs_filblks_t c,
1747 typnm_t btype,
1748 xfs_fileoff_t last)
1749 {
1750 char *dp;
1751 int ret = 0;
1752 int i;
1753
1754 for (i = 0; i < c; i++) {
1755 push_cur();
1756 set_cur(&typtab[btype], XFS_FSB_TO_DADDR(mp, s), blkbb,
1757 DB_RING_IGN, NULL);
1758
1759 if (!iocur_top->data) {
1760 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, s);
1761 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, s);
1762
1763 print_warning("cannot read %s block %u/%u (%llu)",
1764 typtab[btype].name, agno, agbno, s);
1765 if (stop_on_read_error)
1766 ret = -EIO;
1767 goto out_pop;
1768
1769 }
1770
1771 if (!obfuscate && !zero_stale_data)
1772 goto write;
1773
1774 /* Zero unused part of interior nodes */
1775 if (zero_stale_data) {
1776 xfs_da_intnode_t *node = iocur_top->data;
1777 int magic = be16_to_cpu(node->hdr.info.magic);
1778
1779 if (magic == XFS_DA_NODE_MAGIC ||
1780 magic == XFS_DA3_NODE_MAGIC) {
1781 struct xfs_da3_icnode_hdr hdr;
1782 int used;
1783
1784 M_DIROPS(mp)->node_hdr_from_disk(&hdr, node);
1785 used = M_DIROPS(mp)->node_hdr_size;
1786
1787 used += hdr.count
1788 * sizeof(struct xfs_da_node_entry);
1789
1790 if (used < mp->m_sb.sb_blocksize) {
1791 memset((char *)node + used, 0,
1792 mp->m_sb.sb_blocksize - used);
1793 iocur_top->need_crc = 1;
1794 }
1795 }
1796 }
1797
1798 /* Handle leaf nodes */
1799 dp = iocur_top->data;
1800 switch (btype) {
1801 case TYP_DIR2:
1802 if (o >= mp->m_dir_geo->leafblk)
1803 break;
1804
1805 process_dir_data_block(dp, o,
1806 last == mp->m_dir_geo->fsbcount);
1807 iocur_top->need_crc = 1;
1808 break;
1809 case TYP_SYMLINK:
1810 process_symlink_block(dp);
1811 iocur_top->need_crc = 1;
1812 break;
1813 case TYP_ATTR:
1814 process_attr_block(dp, o);
1815 iocur_top->need_crc = 1;
1816 break;
1817 default:
1818 break;
1819 }
1820
1821 write:
1822 ret = write_buf(iocur_top);
1823 out_pop:
1824 pop_cur();
1825 if (ret)
1826 break;
1827 o++;
1828 s++;
1829 }
1830
1831 return ret;
1832 }
1833
1834 /*
1835 * Static map to aggregate multiple extents into a single directory block.
1836 */
1837 static struct bbmap mfsb_map;
1838 static int mfsb_length;
1839
1840 static int
1841 process_multi_fsb_objects(
1842 xfs_fileoff_t o,
1843 xfs_fsblock_t s,
1844 xfs_filblks_t c,
1845 typnm_t btype,
1846 xfs_fileoff_t last)
1847 {
1848 int ret = 0;
1849
1850 switch (btype) {
1851 case TYP_DIR2:
1852 break;
1853 default:
1854 print_warning("bad type for multi-fsb object %d", btype);
1855 return -EINVAL;
1856 }
1857
1858 while (c > 0) {
1859 unsigned int bm_len;
1860
1861 if (mfsb_length + c >= mp->m_dir_geo->fsbcount) {
1862 bm_len = mp->m_dir_geo->fsbcount - mfsb_length;
1863 mfsb_length = 0;
1864 } else {
1865 mfsb_length += c;
1866 bm_len = c;
1867 }
1868
1869 mfsb_map.b[mfsb_map.nmaps].bm_bn = XFS_FSB_TO_DADDR(mp, s);
1870 mfsb_map.b[mfsb_map.nmaps].bm_len = XFS_FSB_TO_BB(mp, bm_len);
1871 mfsb_map.nmaps++;
1872
1873 if (mfsb_length == 0) {
1874 push_cur();
1875 set_cur(&typtab[btype], 0, 0, DB_RING_IGN, &mfsb_map);
1876 if (!iocur_top->data) {
1877 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, s);
1878 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, s);
1879
1880 print_warning("cannot read %s block %u/%u (%llu)",
1881 typtab[btype].name, agno, agbno, s);
1882 if (stop_on_read_error)
1883 ret = -1;
1884 goto out_pop;
1885
1886 }
1887
1888 if ((!obfuscate && !zero_stale_data) ||
1889 o >= mp->m_dir_geo->leafblk) {
1890 ret = write_buf(iocur_top);
1891 goto out_pop;
1892 }
1893
1894 process_dir_data_block(iocur_top->data, o,
1895 last == mp->m_dir_geo->fsbcount);
1896 iocur_top->need_crc = 1;
1897 ret = write_buf(iocur_top);
1898 out_pop:
1899 pop_cur();
1900 mfsb_map.nmaps = 0;
1901 if (ret)
1902 break;
1903 }
1904 c -= bm_len;
1905 s += bm_len;
1906 }
1907
1908 return ret;
1909 }
1910
1911 /* inode copy routines */
1912 static int
1913 process_bmbt_reclist(
1914 xfs_bmbt_rec_t *rp,
1915 int numrecs,
1916 typnm_t btype)
1917 {
1918 int i;
1919 xfs_fileoff_t o, op = NULLFILEOFF;
1920 xfs_fsblock_t s;
1921 xfs_filblks_t c, cp = NULLFILEOFF;
1922 int f;
1923 xfs_fileoff_t last;
1924 xfs_agnumber_t agno;
1925 xfs_agblock_t agbno;
1926 int error;
1927
1928 if (btype == TYP_DATA)
1929 return 1;
1930
1931 convert_extent(&rp[numrecs - 1], &o, &s, &c, &f);
1932 last = o + c;
1933
1934 for (i = 0; i < numrecs; i++, rp++) {
1935 convert_extent(rp, &o, &s, &c, &f);
1936
1937 /*
1938 * ignore extents that are clearly bogus, and if a bogus
1939 * one is found, stop processing remaining extents
1940 */
1941 if (i > 0 && op + cp > o) {
1942 if (show_warnings)
1943 print_warning("bmap extent %d in %s ino %llu "
1944 "starts at %llu, previous extent "
1945 "ended at %llu", i,
1946 typtab[btype].name, (long long)cur_ino,
1947 o, op + cp - 1);
1948 break;
1949 }
1950
1951 if (c > max_extent_size) {
1952 /*
1953 * since we are only processing non-data extents,
1954 * large numbers of blocks in a metadata extent is
1955 * extremely rare and more than likely to be corrupt.
1956 */
1957 if (show_warnings)
1958 print_warning("suspicious count %u in bmap "
1959 "extent %d in %s ino %llu", c, i,
1960 typtab[btype].name, (long long)cur_ino);
1961 break;
1962 }
1963
1964 op = o;
1965 cp = c;
1966
1967 agno = XFS_FSB_TO_AGNO(mp, s);
1968 agbno = XFS_FSB_TO_AGBNO(mp, s);
1969
1970 if (!valid_bno(agno, agbno)) {
1971 if (show_warnings)
1972 print_warning("invalid block number %u/%u "
1973 "(%llu) in bmap extent %d in %s ino "
1974 "%llu", agno, agbno, s, i,
1975 typtab[btype].name, (long long)cur_ino);
1976 break;
1977 }
1978
1979 if (!valid_bno(agno, agbno + c - 1)) {
1980 if (show_warnings)
1981 print_warning("bmap extent %i in %s inode %llu "
1982 "overflows AG (end is %u/%u)", i,
1983 typtab[btype].name, (long long)cur_ino,
1984 agno, agbno + c - 1);
1985 break;
1986 }
1987
1988 /* multi-extent blocks require special handling */
1989 if (btype != TYP_DIR2 || mp->m_dir_geo->fsbcount == 1) {
1990 error = process_single_fsb_objects(o, s, c, btype, last);
1991 } else {
1992 error = process_multi_fsb_objects(o, s, c, btype, last);
1993 }
1994 if (error)
1995 return 0;
1996 }
1997
1998 return 1;
1999 }
2000
2001 static int
2002 scanfunc_bmap(
2003 struct xfs_btree_block *block,
2004 xfs_agnumber_t agno,
2005 xfs_agblock_t agbno,
2006 int level,
2007 typnm_t btype,
2008 void *arg) /* ptr to itype */
2009 {
2010 int i;
2011 xfs_bmbt_ptr_t *pp;
2012 int nrecs;
2013
2014 nrecs = be16_to_cpu(block->bb_numrecs);
2015
2016 if (level == 0) {
2017 if (nrecs > mp->m_bmap_dmxr[0]) {
2018 if (show_warnings)
2019 print_warning("invalid numrecs (%u) in %s "
2020 "block %u/%u", nrecs,
2021 typtab[btype].name, agno, agbno);
2022 return 1;
2023 }
2024 return process_bmbt_reclist(XFS_BMBT_REC_ADDR(mp, block, 1),
2025 nrecs, *(typnm_t*)arg);
2026 }
2027
2028 if (nrecs > mp->m_bmap_dmxr[1]) {
2029 if (show_warnings)
2030 print_warning("invalid numrecs (%u) in %s block %u/%u",
2031 nrecs, typtab[btype].name, agno, agbno);
2032 return 1;
2033 }
2034 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
2035 for (i = 0; i < nrecs; i++) {
2036 xfs_agnumber_t ag;
2037 xfs_agblock_t bno;
2038
2039 ag = XFS_FSB_TO_AGNO(mp, get_unaligned_be64(&pp[i]));
2040 bno = XFS_FSB_TO_AGBNO(mp, get_unaligned_be64(&pp[i]));
2041
2042 if (bno == 0 || bno > mp->m_sb.sb_agblocks ||
2043 ag > mp->m_sb.sb_agcount) {
2044 if (show_warnings)
2045 print_warning("invalid block number (%u/%u) "
2046 "in %s block %u/%u", ag, bno,
2047 typtab[btype].name, agno, agbno);
2048 continue;
2049 }
2050
2051 if (!scan_btree(ag, bno, level, btype, arg, scanfunc_bmap))
2052 return 0;
2053 }
2054 return 1;
2055 }
2056
2057 static int
2058 process_btinode(
2059 xfs_dinode_t *dip,
2060 typnm_t itype)
2061 {
2062 xfs_bmdr_block_t *dib;
2063 int i;
2064 xfs_bmbt_ptr_t *pp;
2065 int level;
2066 int nrecs;
2067 int maxrecs;
2068 int whichfork;
2069 typnm_t btype;
2070
2071 whichfork = (itype == TYP_ATTR) ? XFS_ATTR_FORK : XFS_DATA_FORK;
2072 btype = (itype == TYP_ATTR) ? TYP_BMAPBTA : TYP_BMAPBTD;
2073
2074 dib = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
2075 level = be16_to_cpu(dib->bb_level);
2076 nrecs = be16_to_cpu(dib->bb_numrecs);
2077
2078 if (level > XFS_BM_MAXLEVELS(mp, whichfork)) {
2079 if (show_warnings)
2080 print_warning("invalid level (%u) in inode %lld %s "
2081 "root", level, (long long)cur_ino,
2082 typtab[btype].name);
2083 return 1;
2084 }
2085
2086 if (level == 0) {
2087 return process_bmbt_reclist(XFS_BMDR_REC_ADDR(dib, 1),
2088 nrecs, itype);
2089 }
2090
2091 maxrecs = libxfs_bmdr_maxrecs(XFS_DFORK_SIZE(dip, mp, whichfork), 0);
2092 if (nrecs > maxrecs) {
2093 if (show_warnings)
2094 print_warning("invalid numrecs (%u) in inode %lld %s "
2095 "root", nrecs, (long long)cur_ino,
2096 typtab[btype].name);
2097 return 1;
2098 }
2099
2100 pp = XFS_BMDR_PTR_ADDR(dib, 1, maxrecs);
2101 for (i = 0; i < nrecs; i++) {
2102 xfs_agnumber_t ag;
2103 xfs_agblock_t bno;
2104
2105 ag = XFS_FSB_TO_AGNO(mp, get_unaligned_be64(&pp[i]));
2106 bno = XFS_FSB_TO_AGBNO(mp, get_unaligned_be64(&pp[i]));
2107
2108 if (bno == 0 || bno > mp->m_sb.sb_agblocks ||
2109 ag > mp->m_sb.sb_agcount) {
2110 if (show_warnings)
2111 print_warning("invalid block number (%u/%u) "
2112 "in inode %llu %s root", ag,
2113 bno, (long long)cur_ino,
2114 typtab[btype].name);
2115 continue;
2116 }
2117
2118 if (!scan_btree(ag, bno, level, btype, &itype, scanfunc_bmap))
2119 return 0;
2120 }
2121 return 1;
2122 }
2123
2124 static int
2125 process_exinode(
2126 xfs_dinode_t *dip,
2127 typnm_t itype)
2128 {
2129 int whichfork;
2130 int used;
2131 xfs_extnum_t nex;
2132
2133 whichfork = (itype == TYP_ATTR) ? XFS_ATTR_FORK : XFS_DATA_FORK;
2134
2135 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
2136 used = nex * sizeof(xfs_bmbt_rec_t);
2137 if (nex < 0 || used > XFS_DFORK_SIZE(dip, mp, whichfork)) {
2138 if (show_warnings)
2139 print_warning("bad number of extents %d in inode %lld",
2140 nex, (long long)cur_ino);
2141 return 1;
2142 }
2143
2144 /* Zero unused data fork past used extents */
2145 if (zero_stale_data && (used < XFS_DFORK_SIZE(dip, mp, whichfork)))
2146 memset(XFS_DFORK_PTR(dip, whichfork) + used, 0,
2147 XFS_DFORK_SIZE(dip, mp, whichfork) - used);
2148
2149
2150 return process_bmbt_reclist((xfs_bmbt_rec_t *)XFS_DFORK_PTR(dip,
2151 whichfork), nex, itype);
2152 }
2153
2154 static int
2155 process_inode_data(
2156 xfs_dinode_t *dip,
2157 typnm_t itype)
2158 {
2159 switch (dip->di_format) {
2160 case XFS_DINODE_FMT_LOCAL:
2161 if (obfuscate || zero_stale_data)
2162 switch (itype) {
2163 case TYP_DIR2:
2164 process_sf_dir(dip);
2165 break;
2166
2167 case TYP_SYMLINK:
2168 process_sf_symlink(dip);
2169 break;
2170
2171 default: ;
2172 }
2173 break;
2174
2175 case XFS_DINODE_FMT_EXTENTS:
2176 return process_exinode(dip, itype);
2177
2178 case XFS_DINODE_FMT_BTREE:
2179 return process_btinode(dip, itype);
2180 }
2181 return 1;
2182 }
2183
2184 /*
2185 * when we process the inode, we may change the data in the data and/or
2186 * attribute fork if they are in short form and we are obfuscating names.
2187 * In this case we need to recalculate the CRC of the inode, but we should
2188 * only do that if the CRC in the inode is good to begin with. If the crc
2189 * is not ok, we just leave it alone.
2190 */
2191 static int
2192 process_inode(
2193 xfs_agnumber_t agno,
2194 xfs_agino_t agino,
2195 xfs_dinode_t *dip,
2196 bool free_inode)
2197 {
2198 int success;
2199 bool crc_was_ok = false; /* no recalc by default */
2200 bool need_new_crc = false;
2201
2202 success = 1;
2203 cur_ino = XFS_AGINO_TO_INO(mp, agno, agino);
2204
2205 /* we only care about crc recalculation if we will modify the inode. */
2206 if (obfuscate || zero_stale_data) {
2207 crc_was_ok = libxfs_verify_cksum((char *)dip,
2208 mp->m_sb.sb_inodesize,
2209 offsetof(struct xfs_dinode, di_crc));
2210 }
2211
2212 if (free_inode) {
2213 if (zero_stale_data) {
2214 /* Zero all of the inode literal area */
2215 memset(XFS_DFORK_DPTR(dip), 0,
2216 XFS_LITINO(mp, dip->di_version));
2217 }
2218 goto done;
2219 }
2220
2221 /* copy appropriate data fork metadata */
2222 switch (be16_to_cpu(dip->di_mode) & S_IFMT) {
2223 case S_IFDIR:
2224 success = process_inode_data(dip, TYP_DIR2);
2225 if (dip->di_format == XFS_DINODE_FMT_LOCAL)
2226 need_new_crc = 1;
2227 break;
2228 case S_IFLNK:
2229 success = process_inode_data(dip, TYP_SYMLINK);
2230 if (dip->di_format == XFS_DINODE_FMT_LOCAL)
2231 need_new_crc = 1;
2232 break;
2233 case S_IFREG:
2234 success = process_inode_data(dip, TYP_DATA);
2235 break;
2236 default: ;
2237 }
2238 nametable_clear();
2239
2240 /* copy extended attributes if they exist and forkoff is valid */
2241 if (success &&
2242 XFS_DFORK_DSIZE(dip, mp) < XFS_LITINO(mp, dip->di_version)) {
2243 attr_data.remote_val_count = 0;
2244 switch (dip->di_aformat) {
2245 case XFS_DINODE_FMT_LOCAL:
2246 need_new_crc = 1;
2247 if (obfuscate || zero_stale_data)
2248 process_sf_attr(dip);
2249 break;
2250
2251 case XFS_DINODE_FMT_EXTENTS:
2252 success = process_exinode(dip, TYP_ATTR);
2253 break;
2254
2255 case XFS_DINODE_FMT_BTREE:
2256 success = process_btinode(dip, TYP_ATTR);
2257 break;
2258 }
2259 nametable_clear();
2260 }
2261
2262 done:
2263 /* Heavy handed but low cost; just do it as a catch-all. */
2264 if (zero_stale_data)
2265 need_new_crc = 1;
2266
2267 if (crc_was_ok && need_new_crc)
2268 libxfs_dinode_calc_crc(mp, dip);
2269 return success;
2270 }
2271
2272 static __uint32_t inodes_copied = 0;
2273
2274 static int
2275 copy_inode_chunk(
2276 xfs_agnumber_t agno,
2277 xfs_inobt_rec_t *rp)
2278 {
2279 xfs_agino_t agino;
2280 int off;
2281 xfs_agblock_t agbno;
2282 xfs_agblock_t end_agbno;
2283 int i;
2284 int rval = 0;
2285 int blks_per_buf;
2286 int inodes_per_buf;
2287 int ioff;
2288
2289 agino = be32_to_cpu(rp->ir_startino);
2290 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2291 end_agbno = agbno + mp->m_ialloc_blks;
2292 off = XFS_INO_TO_OFFSET(mp, agino);
2293
2294 /*
2295 * If the fs supports sparse inode records, we must process inodes a
2296 * cluster at a time because that is the sparse allocation granularity.
2297 * Otherwise, we risk CRC corruption errors on reads of inode chunks.
2298 *
2299 * Also make sure that that we don't process more than the single record
2300 * we've been passed (large block sizes can hold multiple inode chunks).
2301 */
2302 if (xfs_sb_version_hassparseinodes(&mp->m_sb))
2303 blks_per_buf = xfs_icluster_size_fsb(mp);
2304 else
2305 blks_per_buf = mp->m_ialloc_blks;
2306 inodes_per_buf = min(blks_per_buf << mp->m_sb.sb_inopblog,
2307 XFS_INODES_PER_CHUNK);
2308
2309 /*
2310 * Sanity check that we only process a single buffer if ir_startino has
2311 * a buffer offset. A non-zero offset implies that the entire chunk lies
2312 * within a block.
2313 */
2314 if (off && inodes_per_buf != XFS_INODES_PER_CHUNK) {
2315 print_warning("bad starting inode offset %d", off);
2316 return 0;
2317 }
2318
2319 if (agino == 0 || agino == NULLAGINO || !valid_bno(agno, agbno) ||
2320 !valid_bno(agno, XFS_AGINO_TO_AGBNO(mp,
2321 agino + XFS_INODES_PER_CHUNK - 1))) {
2322 if (show_warnings)
2323 print_warning("bad inode number %llu (%u/%u)",
2324 XFS_AGINO_TO_INO(mp, agno, agino), agno, agino);
2325 return 1;
2326 }
2327
2328 /*
2329 * check for basic assumptions about inode chunks, and if any
2330 * assumptions fail, don't process the inode chunk.
2331 */
2332 if ((mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && off != 0) ||
2333 (mp->m_sb.sb_inopblock > XFS_INODES_PER_CHUNK &&
2334 off % XFS_INODES_PER_CHUNK != 0) ||
2335 (xfs_sb_version_hasalign(&mp->m_sb) &&
2336 mp->m_sb.sb_inoalignmt != 0 &&
2337 agbno % mp->m_sb.sb_inoalignmt != 0)) {
2338 if (show_warnings)
2339 print_warning("badly aligned inode (start = %llu)",
2340 XFS_AGINO_TO_INO(mp, agno, agino));
2341 return 1;
2342 }
2343
2344 push_cur();
2345 ioff = 0;
2346 while (agbno < end_agbno && ioff < XFS_INODES_PER_CHUNK) {
2347 if (xfs_inobt_is_sparse_disk(rp, ioff))
2348 goto next_bp;
2349
2350 set_cur(&typtab[TYP_INODE], XFS_AGB_TO_DADDR(mp, agno, agbno),
2351 XFS_FSB_TO_BB(mp, blks_per_buf), DB_RING_IGN, NULL);
2352 if (iocur_top->data == NULL) {
2353 print_warning("cannot read inode block %u/%u",
2354 agno, agbno);
2355 rval = !stop_on_read_error;
2356 goto pop_out;
2357 }
2358
2359 for (i = 0; i < inodes_per_buf; i++) {
2360 xfs_dinode_t *dip;
2361
2362 dip = (xfs_dinode_t *)((char *)iocur_top->data +
2363 ((off + i) << mp->m_sb.sb_inodelog));
2364
2365 /* process_inode handles free inodes, too */
2366 if (!process_inode(agno, agino + ioff + i, dip,
2367 XFS_INOBT_IS_FREE_DISK(rp, ioff + i)))
2368 goto pop_out;
2369
2370 inodes_copied++;
2371 }
2372
2373 if (write_buf(iocur_top))
2374 goto pop_out;
2375
2376 next_bp:
2377 agbno += blks_per_buf;
2378 ioff += inodes_per_buf;
2379 }
2380
2381 if (show_progress)
2382 print_progress("Copied %u of %u inodes (%u of %u AGs)",
2383 inodes_copied, mp->m_sb.sb_icount, agno,
2384 mp->m_sb.sb_agcount);
2385 rval = 1;
2386 pop_out:
2387 pop_cur();
2388 return rval;
2389 }
2390
2391 static int
2392 scanfunc_ino(
2393 struct xfs_btree_block *block,
2394 xfs_agnumber_t agno,
2395 xfs_agblock_t agbno,
2396 int level,
2397 typnm_t btype,
2398 void *arg)
2399 {
2400 xfs_inobt_rec_t *rp;
2401 xfs_inobt_ptr_t *pp;
2402 int i;
2403 int numrecs;
2404 int finobt = *(int *) arg;
2405
2406 numrecs = be16_to_cpu(block->bb_numrecs);
2407
2408 if (level == 0) {
2409 if (numrecs > mp->m_inobt_mxr[0]) {
2410 if (show_warnings)
2411 print_warning("invalid numrecs %d in %s "
2412 "block %u/%u", numrecs,
2413 typtab[btype].name, agno, agbno);
2414 numrecs = mp->m_inobt_mxr[0];
2415 }
2416
2417 /*
2418 * Only copy the btree blocks for the finobt. The inobt scan
2419 * copies the inode chunks.
2420 */
2421 if (finobt)
2422 return 1;
2423
2424 rp = XFS_INOBT_REC_ADDR(mp, block, 1);
2425 for (i = 0; i < numrecs; i++, rp++) {
2426 if (!copy_inode_chunk(agno, rp))
2427 return 0;
2428 }
2429 return 1;
2430 }
2431
2432 if (numrecs > mp->m_inobt_mxr[1]) {
2433 if (show_warnings)
2434 print_warning("invalid numrecs %d in %s block %u/%u",
2435 numrecs, typtab[btype].name, agno, agbno);
2436 numrecs = mp->m_inobt_mxr[1];
2437 }
2438
2439 pp = XFS_INOBT_PTR_ADDR(mp, block, 1, mp->m_inobt_mxr[1]);
2440 for (i = 0; i < numrecs; i++) {
2441 if (!valid_bno(agno, be32_to_cpu(pp[i]))) {
2442 if (show_warnings)
2443 print_warning("invalid block number (%u/%u) "
2444 "in %s block %u/%u",
2445 agno, be32_to_cpu(pp[i]),
2446 typtab[btype].name, agno, agbno);
2447 continue;
2448 }
2449 if (!scan_btree(agno, be32_to_cpu(pp[i]), level,
2450 btype, arg, scanfunc_ino))
2451 return 0;
2452 }
2453 return 1;
2454 }
2455
2456 static int
2457 copy_inodes(
2458 xfs_agnumber_t agno,
2459 xfs_agi_t *agi)
2460 {
2461 xfs_agblock_t root;
2462 int levels;
2463 int finobt = 0;
2464
2465 root = be32_to_cpu(agi->agi_root);
2466 levels = be32_to_cpu(agi->agi_level);
2467
2468 /* validate root and levels before processing the tree */
2469 if (root == 0 || root > mp->m_sb.sb_agblocks) {
2470 if (show_warnings)
2471 print_warning("invalid block number (%u) in inobt "
2472 "root in agi %u", root, agno);
2473 return 1;
2474 }
2475 if (levels >= XFS_BTREE_MAXLEVELS) {
2476 if (show_warnings)
2477 print_warning("invalid level (%u) in inobt root "
2478 "in agi %u", levels, agno);
2479 return 1;
2480 }
2481
2482 if (!scan_btree(agno, root, levels, TYP_INOBT, &finobt, scanfunc_ino))
2483 return 0;
2484
2485 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2486 root = be32_to_cpu(agi->agi_free_root);
2487 levels = be32_to_cpu(agi->agi_free_level);
2488
2489 finobt = 1;
2490 if (!scan_btree(agno, root, levels, TYP_INOBT, &finobt,
2491 scanfunc_ino))
2492 return 0;
2493 }
2494
2495 return 1;
2496 }
2497
2498 static int
2499 scan_ag(
2500 xfs_agnumber_t agno)
2501 {
2502 xfs_agf_t *agf;
2503 xfs_agi_t *agi;
2504 int stack_count = 0;
2505 int rval = 0;
2506
2507 /* copy the superblock of the AG */
2508 push_cur();
2509 stack_count++;
2510 set_cur(&typtab[TYP_SB], XFS_AG_DADDR(mp, agno, XFS_SB_DADDR),
2511 XFS_FSS_TO_BB(mp, 1), DB_RING_IGN, NULL);
2512 if (!iocur_top->data) {
2513 print_warning("cannot read superblock for ag %u", agno);
2514 if (stop_on_read_error)
2515 goto pop_out;
2516 } else {
2517 /* Replace any filesystem label with "L's" */
2518 if (obfuscate) {
2519 struct xfs_sb *sb = iocur_top->data;
2520 memset(sb->sb_fname, 'L',
2521 min(strlen(sb->sb_fname), sizeof(sb->sb_fname)));
2522 iocur_top->need_crc = 1;
2523 }
2524 if (write_buf(iocur_top))
2525 goto pop_out;
2526 }
2527
2528 /* copy the AG free space btree root */
2529 push_cur();
2530 stack_count++;
2531 set_cur(&typtab[TYP_AGF], XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)),
2532 XFS_FSS_TO_BB(mp, 1), DB_RING_IGN, NULL);
2533 agf = iocur_top->data;
2534 if (iocur_top->data == NULL) {
2535 print_warning("cannot read agf block for ag %u", agno);
2536 if (stop_on_read_error)
2537 goto pop_out;
2538 } else {
2539 if (write_buf(iocur_top))
2540 goto pop_out;
2541 }
2542
2543 /* copy the AG inode btree root */
2544 push_cur();
2545 stack_count++;
2546 set_cur(&typtab[TYP_AGI], XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2547 XFS_FSS_TO_BB(mp, 1), DB_RING_IGN, NULL);
2548 agi = iocur_top->data;
2549 if (iocur_top->data == NULL) {
2550 print_warning("cannot read agi block for ag %u", agno);
2551 if (stop_on_read_error)
2552 goto pop_out;
2553 } else {
2554 if (write_buf(iocur_top))
2555 goto pop_out;
2556 }
2557
2558 /* copy the AG free list header */
2559 push_cur();
2560 stack_count++;
2561 set_cur(&typtab[TYP_AGFL], XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)),
2562 XFS_FSS_TO_BB(mp, 1), DB_RING_IGN, NULL);
2563 if (iocur_top->data == NULL) {
2564 print_warning("cannot read agfl block for ag %u", agno);
2565 if (stop_on_read_error)
2566 goto pop_out;
2567 } else {
2568 if (agf && zero_stale_data) {
2569 /* Zero out unused bits of agfl */
2570 int i;
2571 __be32 *agfl_bno;
2572
2573 agfl_bno = XFS_BUF_TO_AGFL_BNO(mp, iocur_top->bp);
2574 i = be32_to_cpu(agf->agf_fllast);
2575
2576 for (;;) {
2577 if (++i == XFS_AGFL_SIZE(mp))
2578 i = 0;
2579 if (i == be32_to_cpu(agf->agf_flfirst))
2580 break;
2581 agfl_bno[i] = cpu_to_be32(NULLAGBLOCK);
2582 }
2583 iocur_top->need_crc = 1;
2584 }
2585 if (write_buf(iocur_top))
2586 goto pop_out;
2587 }
2588
2589 /* copy AG free space btrees */
2590 if (agf) {
2591 if (show_progress)
2592 print_progress("Copying free space trees of AG %u",
2593 agno);
2594 if (!copy_free_bno_btree(agno, agf))
2595 goto pop_out;
2596 if (!copy_free_cnt_btree(agno, agf))
2597 goto pop_out;
2598 if (!copy_rmap_btree(agno, agf))
2599 goto pop_out;
2600 if (!copy_refcount_btree(agno, agf))
2601 goto pop_out;
2602 }
2603
2604 /* copy inode btrees and the inodes and their associated metadata */
2605 if (agi) {
2606 if (!copy_inodes(agno, agi))
2607 goto pop_out;
2608 }
2609 rval = 1;
2610 pop_out:
2611 while (stack_count--)
2612 pop_cur();
2613 return rval;
2614 }
2615
2616 static int
2617 copy_ino(
2618 xfs_ino_t ino,
2619 typnm_t itype)
2620 {
2621 xfs_agnumber_t agno;
2622 xfs_agblock_t agbno;
2623 xfs_agino_t agino;
2624 int offset;
2625 int rval = 0;
2626
2627 if (ino == 0 || ino == NULLFSINO)
2628 return 1;
2629
2630 agno = XFS_INO_TO_AGNO(mp, ino);
2631 agino = XFS_INO_TO_AGINO(mp, ino);
2632 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2633 offset = XFS_AGINO_TO_OFFSET(mp, agino);
2634
2635 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2636 offset >= mp->m_sb.sb_inopblock) {
2637 if (show_warnings)
2638 print_warning("invalid %s inode number (%lld)",
2639 typtab[itype].name, (long long)ino);
2640 return 1;
2641 }
2642
2643 push_cur();
2644 set_cur(&typtab[TYP_INODE], XFS_AGB_TO_DADDR(mp, agno, agbno),
2645 blkbb, DB_RING_IGN, NULL);
2646 if (iocur_top->data == NULL) {
2647 print_warning("cannot read %s inode %lld",
2648 typtab[itype].name, (long long)ino);
2649 rval = !stop_on_read_error;
2650 goto pop_out;
2651 }
2652 off_cur(offset << mp->m_sb.sb_inodelog, mp->m_sb.sb_inodesize);
2653
2654 cur_ino = ino;
2655 rval = process_inode_data(iocur_top->data, itype);
2656 pop_out:
2657 pop_cur();
2658 return rval;
2659 }
2660
2661
2662 static int
2663 copy_sb_inodes(void)
2664 {
2665 if (!copy_ino(mp->m_sb.sb_rbmino, TYP_RTBITMAP))
2666 return 0;
2667
2668 if (!copy_ino(mp->m_sb.sb_rsumino, TYP_RTSUMMARY))
2669 return 0;
2670
2671 if (!copy_ino(mp->m_sb.sb_uquotino, TYP_DQBLK))
2672 return 0;
2673
2674 if (!copy_ino(mp->m_sb.sb_gquotino, TYP_DQBLK))
2675 return 0;
2676
2677 return copy_ino(mp->m_sb.sb_pquotino, TYP_DQBLK);
2678 }
2679
2680 static int
2681 copy_log(void)
2682 {
2683 struct xlog log;
2684 int dirty;
2685 xfs_daddr_t logstart;
2686 int logblocks;
2687 int logversion;
2688 int cycle = XLOG_INIT_CYCLE;
2689
2690 if (show_progress)
2691 print_progress("Copying log");
2692
2693 push_cur();
2694 set_cur(&typtab[TYP_LOG], XFS_FSB_TO_DADDR(mp, mp->m_sb.sb_logstart),
2695 mp->m_sb.sb_logblocks * blkbb, DB_RING_IGN, NULL);
2696 if (iocur_top->data == NULL) {
2697 pop_cur();
2698 print_warning("cannot read log");
2699 return !stop_on_read_error;
2700 }
2701
2702 /* If not obfuscating or zeroing, just copy the log as it is */
2703 if (!obfuscate && !zero_stale_data)
2704 goto done;
2705
2706 dirty = xlog_is_dirty(mp, &log, &x, 0);
2707
2708 switch (dirty) {
2709 case 0:
2710 /* clear out a clean log */
2711 if (show_progress)
2712 print_progress("Zeroing clean log");
2713
2714 logstart = XFS_FSB_TO_DADDR(mp, mp->m_sb.sb_logstart);
2715 logblocks = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
2716 logversion = xfs_sb_version_haslogv2(&mp->m_sb) ? 2 : 1;
2717 if (xfs_sb_version_hascrc(&mp->m_sb))
2718 cycle = log.l_curr_cycle + 1;
2719
2720 libxfs_log_clear(NULL, iocur_top->data, logstart, logblocks,
2721 &mp->m_sb.sb_uuid, logversion,
2722 mp->m_sb.sb_logsunit, XLOG_FMT, cycle, true);
2723 break;
2724 case 1:
2725 /* keep the dirty log */
2726 if (obfuscate)
2727 print_warning(
2728 _("Filesystem log is dirty; image will contain unobfuscated metadata in log."));
2729 break;
2730 case -1:
2731 /* log detection error */
2732 if (obfuscate)
2733 print_warning(
2734 _("Could not discern log; image will contain unobfuscated metadata in log."));
2735 break;
2736 }
2737
2738 done:
2739 return !write_buf(iocur_top);
2740 }
2741
2742 static int
2743 metadump_f(
2744 int argc,
2745 char **argv)
2746 {
2747 xfs_agnumber_t agno;
2748 int c;
2749 int start_iocur_sp;
2750 char *p;
2751
2752 exitcode = 1;
2753 show_progress = 0;
2754 show_warnings = 0;
2755 stop_on_read_error = 0;
2756
2757 if (mp->m_sb.sb_magicnum != XFS_SB_MAGIC) {
2758 print_warning("bad superblock magic number %x, giving up",
2759 mp->m_sb.sb_magicnum);
2760 return 0;
2761 }
2762
2763 /*
2764 * on load, we sanity-checked agcount and possibly set to 1
2765 * if it was corrupted and large.
2766 */
2767 if (mp->m_sb.sb_agcount == 1 &&
2768 XFS_MAX_DBLOCKS(&mp->m_sb) < mp->m_sb.sb_dblocks) {
2769 print_warning("truncated agcount, giving up");
2770 return 0;
2771 }
2772
2773 while ((c = getopt(argc, argv, "aegm:ow")) != EOF) {
2774 switch (c) {
2775 case 'a':
2776 zero_stale_data = 0;
2777 break;
2778 case 'e':
2779 stop_on_read_error = 1;
2780 break;
2781 case 'g':
2782 show_progress = 1;
2783 break;
2784 case 'm':
2785 max_extent_size = (int)strtol(optarg, &p, 0);
2786 if (*p != '\0' || max_extent_size <= 0) {
2787 print_warning("bad max extent size %s",
2788 optarg);
2789 return 0;
2790 }
2791 break;
2792 case 'o':
2793 obfuscate = 0;
2794 break;
2795 case 'w':
2796 show_warnings = 1;
2797 break;
2798 default:
2799 print_warning("bad option for metadump command");
2800 return 0;
2801 }
2802 }
2803
2804 if (optind != argc - 1) {
2805 print_warning("too few options for metadump (no filename given)");
2806 return 0;
2807 }
2808
2809 metablock = (xfs_metablock_t *)calloc(BBSIZE + 1, BBSIZE);
2810 if (metablock == NULL) {
2811 print_warning("memory allocation failure");
2812 return 0;
2813 }
2814 metablock->mb_blocklog = BBSHIFT;
2815 metablock->mb_magic = cpu_to_be32(XFS_MD_MAGIC);
2816
2817 block_index = (__be64 *)((char *)metablock + sizeof(xfs_metablock_t));
2818 block_buffer = (char *)metablock + BBSIZE;
2819 num_indices = (BBSIZE - sizeof(xfs_metablock_t)) / sizeof(__be64);
2820
2821 /*
2822 * A metadump block can hold at most num_indices of BBSIZE sectors;
2823 * do not try to dump a filesystem with a sector size which does not
2824 * fit within num_indices (i.e. within a single metablock).
2825 */
2826 if (mp->m_sb.sb_sectsize > num_indices * BBSIZE) {
2827 print_warning("Cannot dump filesystem with sector size %u",
2828 mp->m_sb.sb_sectsize);
2829 free(metablock);
2830 return 0;
2831 }
2832
2833 cur_index = 0;
2834 start_iocur_sp = iocur_sp;
2835
2836 if (strcmp(argv[optind], "-") == 0) {
2837 if (isatty(fileno(stdout))) {
2838 print_warning("cannot write to a terminal");
2839 free(metablock);
2840 return 0;
2841 }
2842 outf = stdout;
2843 } else {
2844 outf = fopen(argv[optind], "wb");
2845 if (outf == NULL) {
2846 print_warning("cannot create dump file");
2847 free(metablock);
2848 return 0;
2849 }
2850 }
2851
2852 exitcode = 0;
2853
2854 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
2855 if (!scan_ag(agno)) {
2856 exitcode = 1;
2857 break;
2858 }
2859 }
2860
2861 /* copy realtime and quota inode contents */
2862 if (!exitcode)
2863 exitcode = !copy_sb_inodes();
2864
2865 /* copy log if it's internal */
2866 if ((mp->m_sb.sb_logstart != 0) && !exitcode)
2867 exitcode = !copy_log();
2868
2869 /* write the remaining index */
2870 if (!exitcode)
2871 exitcode = write_index() < 0;
2872
2873 if (progress_since_warning)
2874 fputc('\n', (outf == stdout) ? stderr : stdout);
2875
2876 if (outf != stdout)
2877 fclose(outf);
2878
2879 /* cleanup iocur stack */
2880 while (iocur_sp > start_iocur_sp)
2881 pop_cur();
2882
2883 free(metablock);
2884
2885 return 0;
2886 }