]> git.ipfire.org Git - thirdparty/openssl.git/blob - demos/keyexch/x25519.c
Copyright year updates
[thirdparty/openssl.git] / demos / keyexch / x25519.c
1 /*
2 * Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <openssl/core_names.h>
13 #include <openssl/evp.h>
14
15 /*
16 * This is a demonstration of key exchange using X25519.
17 *
18 * The variables beginning `peer1_` / `peer2_` are data which would normally be
19 * accessible to that peer.
20 *
21 * Ordinarily you would use random keys, which are demonstrated
22 * below when use_kat=0. A known answer test is demonstrated
23 * when use_kat=1.
24 */
25
26 /* A property query used for selecting the X25519 implementation. */
27 static const char *propq = NULL;
28
29 static const unsigned char peer1_privk_data[32] = {
30 0x80, 0x5b, 0x30, 0x20, 0x25, 0x4a, 0x70, 0x2c,
31 0xad, 0xa9, 0x8d, 0x7d, 0x47, 0xf8, 0x1b, 0x20,
32 0x89, 0xd2, 0xf9, 0x14, 0xac, 0x92, 0x27, 0xf2,
33 0x10, 0x7e, 0xdb, 0x21, 0xbd, 0x73, 0x73, 0x5d
34 };
35
36 static const unsigned char peer2_privk_data[32] = {
37 0xf8, 0x84, 0x19, 0x69, 0x79, 0x13, 0x0d, 0xbd,
38 0xb1, 0x76, 0xd7, 0x0e, 0x7e, 0x0f, 0xb6, 0xf4,
39 0x8c, 0x4a, 0x8c, 0x5f, 0xd8, 0x15, 0x09, 0x0a,
40 0x71, 0x78, 0x74, 0x92, 0x0f, 0x85, 0xc8, 0x43
41 };
42
43 static const unsigned char expected_result[32] = {
44 0x19, 0x71, 0x26, 0x12, 0x74, 0xb5, 0xb1, 0xce,
45 0x77, 0xd0, 0x79, 0x24, 0xb6, 0x0a, 0x5c, 0x72,
46 0x0c, 0xa6, 0x56, 0xc0, 0x11, 0xeb, 0x43, 0x11,
47 0x94, 0x3b, 0x01, 0x45, 0xca, 0x19, 0xfe, 0x09
48 };
49
50 typedef struct peer_data_st {
51 const char *name; /* name of peer */
52 EVP_PKEY *privk; /* privk generated for peer */
53 unsigned char pubk_data[32]; /* generated pubk to send to other peer */
54
55 unsigned char *secret; /* allocated shared secret buffer */
56 size_t secret_len;
57 } PEER_DATA;
58
59 /*
60 * Prepare for X25519 key exchange. The public key to be sent to the remote peer
61 * is put in pubk_data, which should be a 32-byte buffer. Returns 1 on success.
62 */
63 static int keyexch_x25519_before(
64 OSSL_LIB_CTX *libctx,
65 const unsigned char *kat_privk_data,
66 PEER_DATA *local_peer)
67 {
68 int ret = 0;
69 size_t pubk_data_len = 0;
70
71 /* Generate or load X25519 key for the peer */
72 if (kat_privk_data != NULL)
73 local_peer->privk =
74 EVP_PKEY_new_raw_private_key_ex(libctx, "X25519", propq,
75 kat_privk_data,
76 sizeof(peer1_privk_data));
77 else
78 local_peer->privk = EVP_PKEY_Q_keygen(libctx, propq, "X25519");
79
80 if (local_peer->privk == NULL) {
81 fprintf(stderr, "Could not load or generate private key\n");
82 goto end;
83 }
84
85 /* Get public key corresponding to the private key */
86 if (EVP_PKEY_get_octet_string_param(local_peer->privk,
87 OSSL_PKEY_PARAM_PUB_KEY,
88 local_peer->pubk_data,
89 sizeof(local_peer->pubk_data),
90 &pubk_data_len) == 0) {
91 fprintf(stderr, "EVP_PKEY_get_octet_string_param() failed\n");
92 goto end;
93 }
94
95 /* X25519 public keys are always 32 bytes */
96 if (pubk_data_len != 32) {
97 fprintf(stderr, "EVP_PKEY_get_octet_string_param() "
98 "yielded wrong length\n");
99 goto end;
100 }
101
102 ret = 1;
103 end:
104 if (ret == 0) {
105 EVP_PKEY_free(local_peer->privk);
106 local_peer->privk = NULL;
107 }
108
109 return ret;
110 }
111
112 /*
113 * Complete X25519 key exchange. remote_peer_pubk_data should be the 32 byte
114 * public key value received from the remote peer. On success, returns 1 and the
115 * secret is pointed to by *secret. The caller must free it.
116 */
117 static int keyexch_x25519_after(
118 OSSL_LIB_CTX *libctx,
119 int use_kat,
120 PEER_DATA *local_peer,
121 const unsigned char *remote_peer_pubk_data)
122 {
123 int ret = 0;
124 EVP_PKEY *remote_peer_pubk = NULL;
125 EVP_PKEY_CTX *ctx = NULL;
126
127 local_peer->secret = NULL;
128
129 /* Load public key for remote peer. */
130 remote_peer_pubk =
131 EVP_PKEY_new_raw_public_key_ex(libctx, "X25519", propq,
132 remote_peer_pubk_data, 32);
133 if (remote_peer_pubk == NULL) {
134 fprintf(stderr, "EVP_PKEY_new_raw_public_key_ex() failed\n");
135 goto end;
136 }
137
138 /* Create key exchange context. */
139 ctx = EVP_PKEY_CTX_new_from_pkey(libctx, local_peer->privk, propq);
140 if (ctx == NULL) {
141 fprintf(stderr, "EVP_PKEY_CTX_new_from_pkey() failed\n");
142 goto end;
143 }
144
145 /* Initialize derivation process. */
146 if (EVP_PKEY_derive_init(ctx) == 0) {
147 fprintf(stderr, "EVP_PKEY_derive_init() failed\n");
148 goto end;
149 }
150
151 /* Configure each peer with the other peer's public key. */
152 if (EVP_PKEY_derive_set_peer(ctx, remote_peer_pubk) == 0) {
153 fprintf(stderr, "EVP_PKEY_derive_set_peer() failed\n");
154 goto end;
155 }
156
157 /* Determine the secret length. */
158 if (EVP_PKEY_derive(ctx, NULL, &local_peer->secret_len) == 0) {
159 fprintf(stderr, "EVP_PKEY_derive() failed\n");
160 goto end;
161 }
162
163 /*
164 * We are using X25519, so the secret generated will always be 32 bytes.
165 * However for exposition, the code below demonstrates a generic
166 * implementation for arbitrary lengths.
167 */
168 if (local_peer->secret_len != 32) { /* unreachable */
169 fprintf(stderr, "Secret is always 32 bytes for X25519\n");
170 goto end;
171 }
172
173 /* Allocate memory for shared secrets. */
174 local_peer->secret = OPENSSL_malloc(local_peer->secret_len);
175 if (local_peer->secret == NULL) {
176 fprintf(stderr, "Could not allocate memory for secret\n");
177 goto end;
178 }
179
180 /* Derive the shared secret. */
181 if (EVP_PKEY_derive(ctx, local_peer->secret,
182 &local_peer->secret_len) == 0) {
183 fprintf(stderr, "EVP_PKEY_derive() failed\n");
184 goto end;
185 }
186
187 printf("Shared secret (%s):\n", local_peer->name);
188 BIO_dump_indent_fp(stdout, local_peer->secret, local_peer->secret_len, 2);
189 putchar('\n');
190
191 ret = 1;
192 end:
193 EVP_PKEY_CTX_free(ctx);
194 EVP_PKEY_free(remote_peer_pubk);
195 if (ret == 0) {
196 OPENSSL_clear_free(local_peer->secret, local_peer->secret_len);
197 local_peer->secret = NULL;
198 }
199
200 return ret;
201 }
202
203 static int keyexch_x25519(int use_kat)
204 {
205 int ret = 0;
206 OSSL_LIB_CTX *libctx = NULL;
207 PEER_DATA peer1 = {"peer 1"}, peer2 = {"peer 2"};
208
209 /*
210 * Each peer generates its private key and sends its public key
211 * to the other peer. The private key is stored locally for
212 * later use.
213 */
214 if (keyexch_x25519_before(libctx, use_kat ? peer1_privk_data : NULL,
215 &peer1) == 0)
216 return 0;
217
218 if (keyexch_x25519_before(libctx, use_kat ? peer2_privk_data : NULL,
219 &peer2) == 0)
220 return 0;
221
222 /*
223 * Each peer uses the other peer's public key to perform key exchange.
224 * After this succeeds, each peer has the same secret in its
225 * PEER_DATA.
226 */
227 if (keyexch_x25519_after(libctx, use_kat, &peer1, peer2.pubk_data) == 0)
228 return 0;
229
230 if (keyexch_x25519_after(libctx, use_kat, &peer2, peer1.pubk_data) == 0)
231 return 0;
232
233 /*
234 * Here we demonstrate the secrets are equal for exposition purposes.
235 *
236 * Although in practice you will generally not need to compare secrets
237 * produced through key exchange, if you do compare cryptographic secrets,
238 * always do so using a constant-time function such as CRYPTO_memcmp, never
239 * using memcmp(3).
240 */
241 if (CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secret_len) != 0) {
242 fprintf(stderr, "Negotiated secrets do not match\n");
243 goto end;
244 }
245
246 /* If we are doing the KAT, the secret should equal our reference result. */
247 if (use_kat && CRYPTO_memcmp(peer1.secret, expected_result,
248 peer1.secret_len) != 0) {
249 fprintf(stderr, "Did not get expected result\n");
250 goto end;
251 }
252
253 ret = 1;
254 end:
255 /* The secrets are sensitive, so ensure they are erased before freeing. */
256 OPENSSL_clear_free(peer1.secret, peer1.secret_len);
257 OPENSSL_clear_free(peer2.secret, peer2.secret_len);
258
259 EVP_PKEY_free(peer1.privk);
260 EVP_PKEY_free(peer2.privk);
261 OSSL_LIB_CTX_free(libctx);
262 return ret;
263 }
264
265 int main(int argc, char **argv)
266 {
267 /* Test X25519 key exchange with known result. */
268 printf("Key exchange using known answer (deterministic):\n");
269 if (keyexch_x25519(1) == 0)
270 return EXIT_FAILURE;
271
272 /* Test X25519 key exchange with random keys. */
273 printf("Key exchange using random keys:\n");
274 if (keyexch_x25519(0) == 0)
275 return EXIT_FAILURE;
276
277 return EXIT_SUCCESS;
278 }