]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
mtd: nand: Support controllers with custom page
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
5 *
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
8 *
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
11 *
12 * Credits:
13 * David Woodhouse for adding multichip support
14 *
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <common.h>
32 #if CONFIG_IS_ENABLED(OF_CONTROL)
33 #include <fdtdec.h>
34 #endif
35 #include <malloc.h>
36 #include <watchdog.h>
37 #include <linux/err.h>
38 #include <linux/compat.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #ifdef CONFIG_MTD_PARTITIONS
44 #include <linux/mtd/partitions.h>
45 #endif
46 #include <asm/io.h>
47 #include <linux/errno.h>
48
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
51 .eccbytes = 3,
52 .eccpos = {0, 1, 2},
53 .oobfree = {
54 {.offset = 3,
55 .length = 2},
56 {.offset = 6,
57 .length = 2} }
58 };
59
60 static struct nand_ecclayout nand_oob_16 = {
61 .eccbytes = 6,
62 .eccpos = {0, 1, 2, 3, 6, 7},
63 .oobfree = {
64 {.offset = 8,
65 . length = 8} }
66 };
67
68 static struct nand_ecclayout nand_oob_64 = {
69 .eccbytes = 24,
70 .eccpos = {
71 40, 41, 42, 43, 44, 45, 46, 47,
72 48, 49, 50, 51, 52, 53, 54, 55,
73 56, 57, 58, 59, 60, 61, 62, 63},
74 .oobfree = {
75 {.offset = 2,
76 .length = 38} }
77 };
78
79 static struct nand_ecclayout nand_oob_128 = {
80 .eccbytes = 48,
81 .eccpos = {
82 80, 81, 82, 83, 84, 85, 86, 87,
83 88, 89, 90, 91, 92, 93, 94, 95,
84 96, 97, 98, 99, 100, 101, 102, 103,
85 104, 105, 106, 107, 108, 109, 110, 111,
86 112, 113, 114, 115, 116, 117, 118, 119,
87 120, 121, 122, 123, 124, 125, 126, 127},
88 .oobfree = {
89 {.offset = 2,
90 .length = 78} }
91 };
92
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
94
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96 struct mtd_oob_ops *ops);
97
98 /*
99 * For devices which display every fart in the system on a separate LED. Is
100 * compiled away when LED support is disabled.
101 */
102 DEFINE_LED_TRIGGER(nand_led_trigger);
103
104 static int check_offs_len(struct mtd_info *mtd,
105 loff_t ofs, uint64_t len)
106 {
107 struct nand_chip *chip = mtd_to_nand(mtd);
108 int ret = 0;
109
110 /* Start address must align on block boundary */
111 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
112 pr_debug("%s: unaligned address\n", __func__);
113 ret = -EINVAL;
114 }
115
116 /* Length must align on block boundary */
117 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
118 pr_debug("%s: length not block aligned\n", __func__);
119 ret = -EINVAL;
120 }
121
122 return ret;
123 }
124
125 /**
126 * nand_release_device - [GENERIC] release chip
127 * @mtd: MTD device structure
128 *
129 * Release chip lock and wake up anyone waiting on the device.
130 */
131 static void nand_release_device(struct mtd_info *mtd)
132 {
133 struct nand_chip *chip = mtd_to_nand(mtd);
134
135 /* De-select the NAND device */
136 chip->select_chip(mtd, -1);
137 }
138
139 /**
140 * nand_read_byte - [DEFAULT] read one byte from the chip
141 * @mtd: MTD device structure
142 *
143 * Default read function for 8bit buswidth
144 */
145 uint8_t nand_read_byte(struct mtd_info *mtd)
146 {
147 struct nand_chip *chip = mtd_to_nand(mtd);
148 return readb(chip->IO_ADDR_R);
149 }
150
151 /**
152 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
153 * @mtd: MTD device structure
154 *
155 * Default read function for 16bit buswidth with endianness conversion.
156 *
157 */
158 static uint8_t nand_read_byte16(struct mtd_info *mtd)
159 {
160 struct nand_chip *chip = mtd_to_nand(mtd);
161 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
162 }
163
164 /**
165 * nand_read_word - [DEFAULT] read one word from the chip
166 * @mtd: MTD device structure
167 *
168 * Default read function for 16bit buswidth without endianness conversion.
169 */
170 static u16 nand_read_word(struct mtd_info *mtd)
171 {
172 struct nand_chip *chip = mtd_to_nand(mtd);
173 return readw(chip->IO_ADDR_R);
174 }
175
176 /**
177 * nand_select_chip - [DEFAULT] control CE line
178 * @mtd: MTD device structure
179 * @chipnr: chipnumber to select, -1 for deselect
180 *
181 * Default select function for 1 chip devices.
182 */
183 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
184 {
185 struct nand_chip *chip = mtd_to_nand(mtd);
186
187 switch (chipnr) {
188 case -1:
189 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
190 break;
191 case 0:
192 break;
193
194 default:
195 BUG();
196 }
197 }
198
199 /**
200 * nand_write_byte - [DEFAULT] write single byte to chip
201 * @mtd: MTD device structure
202 * @byte: value to write
203 *
204 * Default function to write a byte to I/O[7:0]
205 */
206 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
207 {
208 struct nand_chip *chip = mtd_to_nand(mtd);
209
210 chip->write_buf(mtd, &byte, 1);
211 }
212
213 /**
214 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
215 * @mtd: MTD device structure
216 * @byte: value to write
217 *
218 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
219 */
220 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
221 {
222 struct nand_chip *chip = mtd_to_nand(mtd);
223 uint16_t word = byte;
224
225 /*
226 * It's not entirely clear what should happen to I/O[15:8] when writing
227 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
228 *
229 * When the host supports a 16-bit bus width, only data is
230 * transferred at the 16-bit width. All address and command line
231 * transfers shall use only the lower 8-bits of the data bus. During
232 * command transfers, the host may place any value on the upper
233 * 8-bits of the data bus. During address transfers, the host shall
234 * set the upper 8-bits of the data bus to 00h.
235 *
236 * One user of the write_byte callback is nand_onfi_set_features. The
237 * four parameters are specified to be written to I/O[7:0], but this is
238 * neither an address nor a command transfer. Let's assume a 0 on the
239 * upper I/O lines is OK.
240 */
241 chip->write_buf(mtd, (uint8_t *)&word, 2);
242 }
243
244 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
245 {
246 int i;
247
248 for (i = 0; i < len; i++)
249 writeb(buf[i], addr);
250 }
251 static void ioread8_rep(void *addr, uint8_t *buf, int len)
252 {
253 int i;
254
255 for (i = 0; i < len; i++)
256 buf[i] = readb(addr);
257 }
258
259 static void ioread16_rep(void *addr, void *buf, int len)
260 {
261 int i;
262 u16 *p = (u16 *) buf;
263
264 for (i = 0; i < len; i++)
265 p[i] = readw(addr);
266 }
267
268 static void iowrite16_rep(void *addr, void *buf, int len)
269 {
270 int i;
271 u16 *p = (u16 *) buf;
272
273 for (i = 0; i < len; i++)
274 writew(p[i], addr);
275 }
276
277 /**
278 * nand_write_buf - [DEFAULT] write buffer to chip
279 * @mtd: MTD device structure
280 * @buf: data buffer
281 * @len: number of bytes to write
282 *
283 * Default write function for 8bit buswidth.
284 */
285 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
286 {
287 struct nand_chip *chip = mtd_to_nand(mtd);
288
289 iowrite8_rep(chip->IO_ADDR_W, buf, len);
290 }
291
292 /**
293 * nand_read_buf - [DEFAULT] read chip data into buffer
294 * @mtd: MTD device structure
295 * @buf: buffer to store date
296 * @len: number of bytes to read
297 *
298 * Default read function for 8bit buswidth.
299 */
300 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
301 {
302 struct nand_chip *chip = mtd_to_nand(mtd);
303
304 ioread8_rep(chip->IO_ADDR_R, buf, len);
305 }
306
307 /**
308 * nand_write_buf16 - [DEFAULT] write buffer to chip
309 * @mtd: MTD device structure
310 * @buf: data buffer
311 * @len: number of bytes to write
312 *
313 * Default write function for 16bit buswidth.
314 */
315 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
316 {
317 struct nand_chip *chip = mtd_to_nand(mtd);
318 u16 *p = (u16 *) buf;
319
320 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
321 }
322
323 /**
324 * nand_read_buf16 - [DEFAULT] read chip data into buffer
325 * @mtd: MTD device structure
326 * @buf: buffer to store date
327 * @len: number of bytes to read
328 *
329 * Default read function for 16bit buswidth.
330 */
331 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
332 {
333 struct nand_chip *chip = mtd_to_nand(mtd);
334 u16 *p = (u16 *) buf;
335
336 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
337 }
338
339 /**
340 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
341 * @mtd: MTD device structure
342 * @ofs: offset from device start
343 *
344 * Check, if the block is bad.
345 */
346 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
347 {
348 int page, res = 0, i = 0;
349 struct nand_chip *chip = mtd_to_nand(mtd);
350 u16 bad;
351
352 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
353 ofs += mtd->erasesize - mtd->writesize;
354
355 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
356
357 do {
358 if (chip->options & NAND_BUSWIDTH_16) {
359 chip->cmdfunc(mtd, NAND_CMD_READOOB,
360 chip->badblockpos & 0xFE, page);
361 bad = cpu_to_le16(chip->read_word(mtd));
362 if (chip->badblockpos & 0x1)
363 bad >>= 8;
364 else
365 bad &= 0xFF;
366 } else {
367 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
368 page);
369 bad = chip->read_byte(mtd);
370 }
371
372 if (likely(chip->badblockbits == 8))
373 res = bad != 0xFF;
374 else
375 res = hweight8(bad) < chip->badblockbits;
376 ofs += mtd->writesize;
377 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
378 i++;
379 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
380
381 return res;
382 }
383
384 /**
385 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
386 * @mtd: MTD device structure
387 * @ofs: offset from device start
388 *
389 * This is the default implementation, which can be overridden by a hardware
390 * specific driver. It provides the details for writing a bad block marker to a
391 * block.
392 */
393 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394 {
395 struct nand_chip *chip = mtd_to_nand(mtd);
396 struct mtd_oob_ops ops;
397 uint8_t buf[2] = { 0, 0 };
398 int ret = 0, res, i = 0;
399
400 memset(&ops, 0, sizeof(ops));
401 ops.oobbuf = buf;
402 ops.ooboffs = chip->badblockpos;
403 if (chip->options & NAND_BUSWIDTH_16) {
404 ops.ooboffs &= ~0x01;
405 ops.len = ops.ooblen = 2;
406 } else {
407 ops.len = ops.ooblen = 1;
408 }
409 ops.mode = MTD_OPS_PLACE_OOB;
410
411 /* Write to first/last page(s) if necessary */
412 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
413 ofs += mtd->erasesize - mtd->writesize;
414 do {
415 res = nand_do_write_oob(mtd, ofs, &ops);
416 if (!ret)
417 ret = res;
418
419 i++;
420 ofs += mtd->writesize;
421 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
422
423 return ret;
424 }
425
426 /**
427 * nand_block_markbad_lowlevel - mark a block bad
428 * @mtd: MTD device structure
429 * @ofs: offset from device start
430 *
431 * This function performs the generic NAND bad block marking steps (i.e., bad
432 * block table(s) and/or marker(s)). We only allow the hardware driver to
433 * specify how to write bad block markers to OOB (chip->block_markbad).
434 *
435 * We try operations in the following order:
436 * (1) erase the affected block, to allow OOB marker to be written cleanly
437 * (2) write bad block marker to OOB area of affected block (unless flag
438 * NAND_BBT_NO_OOB_BBM is present)
439 * (3) update the BBT
440 * Note that we retain the first error encountered in (2) or (3), finish the
441 * procedures, and dump the error in the end.
442 */
443 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
444 {
445 struct nand_chip *chip = mtd_to_nand(mtd);
446 int res, ret = 0;
447
448 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
449 struct erase_info einfo;
450
451 /* Attempt erase before marking OOB */
452 memset(&einfo, 0, sizeof(einfo));
453 einfo.mtd = mtd;
454 einfo.addr = ofs;
455 einfo.len = 1ULL << chip->phys_erase_shift;
456 nand_erase_nand(mtd, &einfo, 0);
457
458 /* Write bad block marker to OOB */
459 nand_get_device(mtd, FL_WRITING);
460 ret = chip->block_markbad(mtd, ofs);
461 nand_release_device(mtd);
462 }
463
464 /* Mark block bad in BBT */
465 if (chip->bbt) {
466 res = nand_markbad_bbt(mtd, ofs);
467 if (!ret)
468 ret = res;
469 }
470
471 if (!ret)
472 mtd->ecc_stats.badblocks++;
473
474 return ret;
475 }
476
477 /**
478 * nand_check_wp - [GENERIC] check if the chip is write protected
479 * @mtd: MTD device structure
480 *
481 * Check, if the device is write protected. The function expects, that the
482 * device is already selected.
483 */
484 static int nand_check_wp(struct mtd_info *mtd)
485 {
486 struct nand_chip *chip = mtd_to_nand(mtd);
487
488 /* Broken xD cards report WP despite being writable */
489 if (chip->options & NAND_BROKEN_XD)
490 return 0;
491
492 /* Check the WP bit */
493 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
494 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
495 }
496
497 /**
498 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
499 * @mtd: MTD device structure
500 * @ofs: offset from device start
501 *
502 * Check if the block is marked as reserved.
503 */
504 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
505 {
506 struct nand_chip *chip = mtd_to_nand(mtd);
507
508 if (!chip->bbt)
509 return 0;
510 /* Return info from the table */
511 return nand_isreserved_bbt(mtd, ofs);
512 }
513
514 /**
515 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
516 * @mtd: MTD device structure
517 * @ofs: offset from device start
518 * @allowbbt: 1, if its allowed to access the bbt area
519 *
520 * Check, if the block is bad. Either by reading the bad block table or
521 * calling of the scan function.
522 */
523 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
524 {
525 struct nand_chip *chip = mtd_to_nand(mtd);
526
527 if (!(chip->options & NAND_SKIP_BBTSCAN) &&
528 !(chip->options & NAND_BBT_SCANNED)) {
529 chip->options |= NAND_BBT_SCANNED;
530 chip->scan_bbt(mtd);
531 }
532
533 if (!chip->bbt)
534 return chip->block_bad(mtd, ofs);
535
536 /* Return info from the table */
537 return nand_isbad_bbt(mtd, ofs, allowbbt);
538 }
539
540 /**
541 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
542 * @mtd: MTD device structure
543 *
544 * Wait for the ready pin after a command, and warn if a timeout occurs.
545 */
546 void nand_wait_ready(struct mtd_info *mtd)
547 {
548 struct nand_chip *chip = mtd_to_nand(mtd);
549 u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
550 u32 time_start;
551
552 time_start = get_timer(0);
553 /* Wait until command is processed or timeout occurs */
554 while (get_timer(time_start) < timeo) {
555 if (chip->dev_ready)
556 if (chip->dev_ready(mtd))
557 break;
558 }
559
560 if (!chip->dev_ready(mtd))
561 pr_warn("timeout while waiting for chip to become ready\n");
562 }
563 EXPORT_SYMBOL_GPL(nand_wait_ready);
564
565 /**
566 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
567 * @mtd: MTD device structure
568 * @timeo: Timeout in ms
569 *
570 * Wait for status ready (i.e. command done) or timeout.
571 */
572 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
573 {
574 register struct nand_chip *chip = mtd_to_nand(mtd);
575 u32 time_start;
576
577 timeo = (CONFIG_SYS_HZ * timeo) / 1000;
578 time_start = get_timer(0);
579 while (get_timer(time_start) < timeo) {
580 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
581 break;
582 WATCHDOG_RESET();
583 }
584 };
585
586 /**
587 * nand_command - [DEFAULT] Send command to NAND device
588 * @mtd: MTD device structure
589 * @command: the command to be sent
590 * @column: the column address for this command, -1 if none
591 * @page_addr: the page address for this command, -1 if none
592 *
593 * Send command to NAND device. This function is used for small page devices
594 * (512 Bytes per page).
595 */
596 static void nand_command(struct mtd_info *mtd, unsigned int command,
597 int column, int page_addr)
598 {
599 register struct nand_chip *chip = mtd_to_nand(mtd);
600 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
601
602 /* Write out the command to the device */
603 if (command == NAND_CMD_SEQIN) {
604 int readcmd;
605
606 if (column >= mtd->writesize) {
607 /* OOB area */
608 column -= mtd->writesize;
609 readcmd = NAND_CMD_READOOB;
610 } else if (column < 256) {
611 /* First 256 bytes --> READ0 */
612 readcmd = NAND_CMD_READ0;
613 } else {
614 column -= 256;
615 readcmd = NAND_CMD_READ1;
616 }
617 chip->cmd_ctrl(mtd, readcmd, ctrl);
618 ctrl &= ~NAND_CTRL_CHANGE;
619 }
620 chip->cmd_ctrl(mtd, command, ctrl);
621
622 /* Address cycle, when necessary */
623 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
624 /* Serially input address */
625 if (column != -1) {
626 /* Adjust columns for 16 bit buswidth */
627 if (chip->options & NAND_BUSWIDTH_16 &&
628 !nand_opcode_8bits(command))
629 column >>= 1;
630 chip->cmd_ctrl(mtd, column, ctrl);
631 ctrl &= ~NAND_CTRL_CHANGE;
632 }
633 if (page_addr != -1) {
634 chip->cmd_ctrl(mtd, page_addr, ctrl);
635 ctrl &= ~NAND_CTRL_CHANGE;
636 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
637 /* One more address cycle for devices > 32MiB */
638 if (chip->chipsize > (32 << 20))
639 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
640 }
641 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
642
643 /*
644 * Program and erase have their own busy handlers status and sequential
645 * in needs no delay
646 */
647 switch (command) {
648
649 case NAND_CMD_PAGEPROG:
650 case NAND_CMD_ERASE1:
651 case NAND_CMD_ERASE2:
652 case NAND_CMD_SEQIN:
653 case NAND_CMD_STATUS:
654 case NAND_CMD_READID:
655 case NAND_CMD_SET_FEATURES:
656 return;
657
658 case NAND_CMD_RESET:
659 if (chip->dev_ready)
660 break;
661 udelay(chip->chip_delay);
662 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
663 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
664 chip->cmd_ctrl(mtd,
665 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
667 nand_wait_status_ready(mtd, 250);
668 return;
669
670 /* This applies to read commands */
671 default:
672 /*
673 * If we don't have access to the busy pin, we apply the given
674 * command delay
675 */
676 if (!chip->dev_ready) {
677 udelay(chip->chip_delay);
678 return;
679 }
680 }
681 /*
682 * Apply this short delay always to ensure that we do wait tWB in
683 * any case on any machine.
684 */
685 ndelay(100);
686
687 nand_wait_ready(mtd);
688 }
689
690 /**
691 * nand_command_lp - [DEFAULT] Send command to NAND large page device
692 * @mtd: MTD device structure
693 * @command: the command to be sent
694 * @column: the column address for this command, -1 if none
695 * @page_addr: the page address for this command, -1 if none
696 *
697 * Send command to NAND device. This is the version for the new large page
698 * devices. We don't have the separate regions as we have in the small page
699 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
700 */
701 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
702 int column, int page_addr)
703 {
704 register struct nand_chip *chip = mtd_to_nand(mtd);
705
706 /* Emulate NAND_CMD_READOOB */
707 if (command == NAND_CMD_READOOB) {
708 column += mtd->writesize;
709 command = NAND_CMD_READ0;
710 }
711
712 /* Command latch cycle */
713 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
714
715 if (column != -1 || page_addr != -1) {
716 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
717
718 /* Serially input address */
719 if (column != -1) {
720 /* Adjust columns for 16 bit buswidth */
721 if (chip->options & NAND_BUSWIDTH_16 &&
722 !nand_opcode_8bits(command))
723 column >>= 1;
724 chip->cmd_ctrl(mtd, column, ctrl);
725 ctrl &= ~NAND_CTRL_CHANGE;
726 chip->cmd_ctrl(mtd, column >> 8, ctrl);
727 }
728 if (page_addr != -1) {
729 chip->cmd_ctrl(mtd, page_addr, ctrl);
730 chip->cmd_ctrl(mtd, page_addr >> 8,
731 NAND_NCE | NAND_ALE);
732 /* One more address cycle for devices > 128MiB */
733 if (chip->chipsize > (128 << 20))
734 chip->cmd_ctrl(mtd, page_addr >> 16,
735 NAND_NCE | NAND_ALE);
736 }
737 }
738 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
739
740 /*
741 * Program and erase have their own busy handlers status, sequential
742 * in and status need no delay.
743 */
744 switch (command) {
745
746 case NAND_CMD_CACHEDPROG:
747 case NAND_CMD_PAGEPROG:
748 case NAND_CMD_ERASE1:
749 case NAND_CMD_ERASE2:
750 case NAND_CMD_SEQIN:
751 case NAND_CMD_RNDIN:
752 case NAND_CMD_STATUS:
753 case NAND_CMD_READID:
754 case NAND_CMD_SET_FEATURES:
755 return;
756
757 case NAND_CMD_RESET:
758 if (chip->dev_ready)
759 break;
760 udelay(chip->chip_delay);
761 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
762 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
763 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
764 NAND_NCE | NAND_CTRL_CHANGE);
765 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
766 nand_wait_status_ready(mtd, 250);
767 return;
768
769 case NAND_CMD_RNDOUT:
770 /* No ready / busy check necessary */
771 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
772 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
773 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
774 NAND_NCE | NAND_CTRL_CHANGE);
775 return;
776
777 case NAND_CMD_READ0:
778 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
779 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
780 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
781 NAND_NCE | NAND_CTRL_CHANGE);
782
783 /* This applies to read commands */
784 default:
785 /*
786 * If we don't have access to the busy pin, we apply the given
787 * command delay.
788 */
789 if (!chip->dev_ready) {
790 udelay(chip->chip_delay);
791 return;
792 }
793 }
794
795 /*
796 * Apply this short delay always to ensure that we do wait tWB in
797 * any case on any machine.
798 */
799 ndelay(100);
800
801 nand_wait_ready(mtd);
802 }
803
804 /**
805 * panic_nand_get_device - [GENERIC] Get chip for selected access
806 * @chip: the nand chip descriptor
807 * @mtd: MTD device structure
808 * @new_state: the state which is requested
809 *
810 * Used when in panic, no locks are taken.
811 */
812 static void panic_nand_get_device(struct nand_chip *chip,
813 struct mtd_info *mtd, int new_state)
814 {
815 /* Hardware controller shared among independent devices */
816 chip->controller->active = chip;
817 chip->state = new_state;
818 }
819
820 /**
821 * nand_get_device - [GENERIC] Get chip for selected access
822 * @mtd: MTD device structure
823 * @new_state: the state which is requested
824 *
825 * Get the device and lock it for exclusive access
826 */
827 static int
828 nand_get_device(struct mtd_info *mtd, int new_state)
829 {
830 struct nand_chip *chip = mtd_to_nand(mtd);
831 chip->state = new_state;
832 return 0;
833 }
834
835 /**
836 * panic_nand_wait - [GENERIC] wait until the command is done
837 * @mtd: MTD device structure
838 * @chip: NAND chip structure
839 * @timeo: timeout
840 *
841 * Wait for command done. This is a helper function for nand_wait used when
842 * we are in interrupt context. May happen when in panic and trying to write
843 * an oops through mtdoops.
844 */
845 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
846 unsigned long timeo)
847 {
848 int i;
849 for (i = 0; i < timeo; i++) {
850 if (chip->dev_ready) {
851 if (chip->dev_ready(mtd))
852 break;
853 } else {
854 if (chip->read_byte(mtd) & NAND_STATUS_READY)
855 break;
856 }
857 mdelay(1);
858 }
859 }
860
861 /**
862 * nand_wait - [DEFAULT] wait until the command is done
863 * @mtd: MTD device structure
864 * @chip: NAND chip structure
865 *
866 * Wait for command done. This applies to erase and program only.
867 */
868 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
869 {
870 int status;
871 unsigned long timeo = 400;
872
873 led_trigger_event(nand_led_trigger, LED_FULL);
874
875 /*
876 * Apply this short delay always to ensure that we do wait tWB in any
877 * case on any machine.
878 */
879 ndelay(100);
880
881 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
882
883 u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
884 u32 time_start;
885
886 time_start = get_timer(0);
887 while (get_timer(time_start) < timer) {
888 if (chip->dev_ready) {
889 if (chip->dev_ready(mtd))
890 break;
891 } else {
892 if (chip->read_byte(mtd) & NAND_STATUS_READY)
893 break;
894 }
895 }
896 led_trigger_event(nand_led_trigger, LED_OFF);
897
898 status = (int)chip->read_byte(mtd);
899 /* This can happen if in case of timeout or buggy dev_ready */
900 WARN_ON(!(status & NAND_STATUS_READY));
901 return status;
902 }
903
904 /**
905 * nand_reset_data_interface - Reset data interface and timings
906 * @chip: The NAND chip
907 *
908 * Reset the Data interface and timings to ONFI mode 0.
909 *
910 * Returns 0 for success or negative error code otherwise.
911 */
912 static int nand_reset_data_interface(struct nand_chip *chip)
913 {
914 struct mtd_info *mtd = nand_to_mtd(chip);
915 const struct nand_data_interface *conf;
916 int ret;
917
918 if (!chip->setup_data_interface)
919 return 0;
920
921 /*
922 * The ONFI specification says:
923 * "
924 * To transition from NV-DDR or NV-DDR2 to the SDR data
925 * interface, the host shall use the Reset (FFh) command
926 * using SDR timing mode 0. A device in any timing mode is
927 * required to recognize Reset (FFh) command issued in SDR
928 * timing mode 0.
929 * "
930 *
931 * Configure the data interface in SDR mode and set the
932 * timings to timing mode 0.
933 */
934
935 conf = nand_get_default_data_interface();
936 ret = chip->setup_data_interface(mtd, conf, false);
937 if (ret)
938 pr_err("Failed to configure data interface to SDR timing mode 0\n");
939
940 return ret;
941 }
942
943 /**
944 * nand_setup_data_interface - Setup the best data interface and timings
945 * @chip: The NAND chip
946 *
947 * Find and configure the best data interface and NAND timings supported by
948 * the chip and the driver.
949 * First tries to retrieve supported timing modes from ONFI information,
950 * and if the NAND chip does not support ONFI, relies on the
951 * ->onfi_timing_mode_default specified in the nand_ids table.
952 *
953 * Returns 0 for success or negative error code otherwise.
954 */
955 static int nand_setup_data_interface(struct nand_chip *chip)
956 {
957 struct mtd_info *mtd = nand_to_mtd(chip);
958 int ret;
959
960 if (!chip->setup_data_interface || !chip->data_interface)
961 return 0;
962
963 /*
964 * Ensure the timing mode has been changed on the chip side
965 * before changing timings on the controller side.
966 */
967 if (chip->onfi_version) {
968 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
969 chip->onfi_timing_mode_default,
970 };
971
972 ret = chip->onfi_set_features(mtd, chip,
973 ONFI_FEATURE_ADDR_TIMING_MODE,
974 tmode_param);
975 if (ret)
976 goto err;
977 }
978
979 ret = chip->setup_data_interface(mtd, chip->data_interface, false);
980 err:
981 return ret;
982 }
983
984 /**
985 * nand_init_data_interface - find the best data interface and timings
986 * @chip: The NAND chip
987 *
988 * Find the best data interface and NAND timings supported by the chip
989 * and the driver.
990 * First tries to retrieve supported timing modes from ONFI information,
991 * and if the NAND chip does not support ONFI, relies on the
992 * ->onfi_timing_mode_default specified in the nand_ids table. After this
993 * function nand_chip->data_interface is initialized with the best timing mode
994 * available.
995 *
996 * Returns 0 for success or negative error code otherwise.
997 */
998 static int nand_init_data_interface(struct nand_chip *chip)
999 {
1000 struct mtd_info *mtd = nand_to_mtd(chip);
1001 int modes, mode, ret;
1002
1003 if (!chip->setup_data_interface)
1004 return 0;
1005
1006 /*
1007 * First try to identify the best timings from ONFI parameters and
1008 * if the NAND does not support ONFI, fallback to the default ONFI
1009 * timing mode.
1010 */
1011 modes = onfi_get_async_timing_mode(chip);
1012 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1013 if (!chip->onfi_timing_mode_default)
1014 return 0;
1015
1016 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1017 }
1018
1019 chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1020 GFP_KERNEL);
1021 if (!chip->data_interface)
1022 return -ENOMEM;
1023
1024 for (mode = fls(modes) - 1; mode >= 0; mode--) {
1025 ret = onfi_init_data_interface(chip, chip->data_interface,
1026 NAND_SDR_IFACE, mode);
1027 if (ret)
1028 continue;
1029
1030 ret = chip->setup_data_interface(mtd, chip->data_interface,
1031 true);
1032 if (!ret) {
1033 chip->onfi_timing_mode_default = mode;
1034 break;
1035 }
1036 }
1037
1038 return 0;
1039 }
1040
1041 static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
1042 {
1043 kfree(chip->data_interface);
1044 }
1045
1046 /**
1047 * nand_reset - Reset and initialize a NAND device
1048 * @chip: The NAND chip
1049 * @chipnr: Internal die id
1050 *
1051 * Returns 0 for success or negative error code otherwise
1052 */
1053 int nand_reset(struct nand_chip *chip, int chipnr)
1054 {
1055 struct mtd_info *mtd = nand_to_mtd(chip);
1056 int ret;
1057
1058 ret = nand_reset_data_interface(chip);
1059 if (ret)
1060 return ret;
1061
1062 /*
1063 * The CS line has to be released before we can apply the new NAND
1064 * interface settings, hence this weird ->select_chip() dance.
1065 */
1066 chip->select_chip(mtd, chipnr);
1067 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1068 chip->select_chip(mtd, -1);
1069
1070 chip->select_chip(mtd, chipnr);
1071 ret = nand_setup_data_interface(chip);
1072 chip->select_chip(mtd, -1);
1073 if (ret)
1074 return ret;
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1081 * @buf: buffer to test
1082 * @len: buffer length
1083 * @bitflips_threshold: maximum number of bitflips
1084 *
1085 * Check if a buffer contains only 0xff, which means the underlying region
1086 * has been erased and is ready to be programmed.
1087 * The bitflips_threshold specify the maximum number of bitflips before
1088 * considering the region is not erased.
1089 * Note: The logic of this function has been extracted from the memweight
1090 * implementation, except that nand_check_erased_buf function exit before
1091 * testing the whole buffer if the number of bitflips exceed the
1092 * bitflips_threshold value.
1093 *
1094 * Returns a positive number of bitflips less than or equal to
1095 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1096 * threshold.
1097 */
1098 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1099 {
1100 const unsigned char *bitmap = buf;
1101 int bitflips = 0;
1102 int weight;
1103
1104 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1105 len--, bitmap++) {
1106 weight = hweight8(*bitmap);
1107 bitflips += BITS_PER_BYTE - weight;
1108 if (unlikely(bitflips > bitflips_threshold))
1109 return -EBADMSG;
1110 }
1111
1112 for (; len >= 4; len -= 4, bitmap += 4) {
1113 weight = hweight32(*((u32 *)bitmap));
1114 bitflips += 32 - weight;
1115 if (unlikely(bitflips > bitflips_threshold))
1116 return -EBADMSG;
1117 }
1118
1119 for (; len > 0; len--, bitmap++) {
1120 weight = hweight8(*bitmap);
1121 bitflips += BITS_PER_BYTE - weight;
1122 if (unlikely(bitflips > bitflips_threshold))
1123 return -EBADMSG;
1124 }
1125
1126 return bitflips;
1127 }
1128
1129 /**
1130 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1131 * 0xff data
1132 * @data: data buffer to test
1133 * @datalen: data length
1134 * @ecc: ECC buffer
1135 * @ecclen: ECC length
1136 * @extraoob: extra OOB buffer
1137 * @extraooblen: extra OOB length
1138 * @bitflips_threshold: maximum number of bitflips
1139 *
1140 * Check if a data buffer and its associated ECC and OOB data contains only
1141 * 0xff pattern, which means the underlying region has been erased and is
1142 * ready to be programmed.
1143 * The bitflips_threshold specify the maximum number of bitflips before
1144 * considering the region as not erased.
1145 *
1146 * Note:
1147 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1148 * different from the NAND page size. When fixing bitflips, ECC engines will
1149 * report the number of errors per chunk, and the NAND core infrastructure
1150 * expect you to return the maximum number of bitflips for the whole page.
1151 * This is why you should always use this function on a single chunk and
1152 * not on the whole page. After checking each chunk you should update your
1153 * max_bitflips value accordingly.
1154 * 2/ When checking for bitflips in erased pages you should not only check
1155 * the payload data but also their associated ECC data, because a user might
1156 * have programmed almost all bits to 1 but a few. In this case, we
1157 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1158 * this case.
1159 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1160 * data are protected by the ECC engine.
1161 * It could also be used if you support subpages and want to attach some
1162 * extra OOB data to an ECC chunk.
1163 *
1164 * Returns a positive number of bitflips less than or equal to
1165 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1166 * threshold. In case of success, the passed buffers are filled with 0xff.
1167 */
1168 int nand_check_erased_ecc_chunk(void *data, int datalen,
1169 void *ecc, int ecclen,
1170 void *extraoob, int extraooblen,
1171 int bitflips_threshold)
1172 {
1173 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1174
1175 data_bitflips = nand_check_erased_buf(data, datalen,
1176 bitflips_threshold);
1177 if (data_bitflips < 0)
1178 return data_bitflips;
1179
1180 bitflips_threshold -= data_bitflips;
1181
1182 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1183 if (ecc_bitflips < 0)
1184 return ecc_bitflips;
1185
1186 bitflips_threshold -= ecc_bitflips;
1187
1188 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1189 bitflips_threshold);
1190 if (extraoob_bitflips < 0)
1191 return extraoob_bitflips;
1192
1193 if (data_bitflips)
1194 memset(data, 0xff, datalen);
1195
1196 if (ecc_bitflips)
1197 memset(ecc, 0xff, ecclen);
1198
1199 if (extraoob_bitflips)
1200 memset(extraoob, 0xff, extraooblen);
1201
1202 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1203 }
1204 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1205
1206 /**
1207 * nand_read_page_raw - [INTERN] read raw page data without ecc
1208 * @mtd: mtd info structure
1209 * @chip: nand chip info structure
1210 * @buf: buffer to store read data
1211 * @oob_required: caller requires OOB data read to chip->oob_poi
1212 * @page: page number to read
1213 *
1214 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1215 */
1216 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1217 uint8_t *buf, int oob_required, int page)
1218 {
1219 chip->read_buf(mtd, buf, mtd->writesize);
1220 if (oob_required)
1221 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1222 return 0;
1223 }
1224
1225 /**
1226 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1227 * @mtd: mtd info structure
1228 * @chip: nand chip info structure
1229 * @buf: buffer to store read data
1230 * @oob_required: caller requires OOB data read to chip->oob_poi
1231 * @page: page number to read
1232 *
1233 * We need a special oob layout and handling even when OOB isn't used.
1234 */
1235 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1236 struct nand_chip *chip, uint8_t *buf,
1237 int oob_required, int page)
1238 {
1239 int eccsize = chip->ecc.size;
1240 int eccbytes = chip->ecc.bytes;
1241 uint8_t *oob = chip->oob_poi;
1242 int steps, size;
1243
1244 for (steps = chip->ecc.steps; steps > 0; steps--) {
1245 chip->read_buf(mtd, buf, eccsize);
1246 buf += eccsize;
1247
1248 if (chip->ecc.prepad) {
1249 chip->read_buf(mtd, oob, chip->ecc.prepad);
1250 oob += chip->ecc.prepad;
1251 }
1252
1253 chip->read_buf(mtd, oob, eccbytes);
1254 oob += eccbytes;
1255
1256 if (chip->ecc.postpad) {
1257 chip->read_buf(mtd, oob, chip->ecc.postpad);
1258 oob += chip->ecc.postpad;
1259 }
1260 }
1261
1262 size = mtd->oobsize - (oob - chip->oob_poi);
1263 if (size)
1264 chip->read_buf(mtd, oob, size);
1265
1266 return 0;
1267 }
1268
1269 /**
1270 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1271 * @mtd: mtd info structure
1272 * @chip: nand chip info structure
1273 * @buf: buffer to store read data
1274 * @oob_required: caller requires OOB data read to chip->oob_poi
1275 * @page: page number to read
1276 */
1277 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1278 uint8_t *buf, int oob_required, int page)
1279 {
1280 int i, eccsize = chip->ecc.size;
1281 int eccbytes = chip->ecc.bytes;
1282 int eccsteps = chip->ecc.steps;
1283 uint8_t *p = buf;
1284 uint8_t *ecc_calc = chip->buffers->ecccalc;
1285 uint8_t *ecc_code = chip->buffers->ecccode;
1286 uint32_t *eccpos = chip->ecc.layout->eccpos;
1287 unsigned int max_bitflips = 0;
1288
1289 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1290
1291 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1292 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1293
1294 for (i = 0; i < chip->ecc.total; i++)
1295 ecc_code[i] = chip->oob_poi[eccpos[i]];
1296
1297 eccsteps = chip->ecc.steps;
1298 p = buf;
1299
1300 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1301 int stat;
1302
1303 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1304 if (stat < 0) {
1305 mtd->ecc_stats.failed++;
1306 } else {
1307 mtd->ecc_stats.corrected += stat;
1308 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1309 }
1310 }
1311 return max_bitflips;
1312 }
1313
1314 /**
1315 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1316 * @mtd: mtd info structure
1317 * @chip: nand chip info structure
1318 * @data_offs: offset of requested data within the page
1319 * @readlen: data length
1320 * @bufpoi: buffer to store read data
1321 * @page: page number to read
1322 */
1323 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1324 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1325 int page)
1326 {
1327 int start_step, end_step, num_steps;
1328 uint32_t *eccpos = chip->ecc.layout->eccpos;
1329 uint8_t *p;
1330 int data_col_addr, i, gaps = 0;
1331 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1332 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1333 int index;
1334 unsigned int max_bitflips = 0;
1335
1336 /* Column address within the page aligned to ECC size (256bytes) */
1337 start_step = data_offs / chip->ecc.size;
1338 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1339 num_steps = end_step - start_step + 1;
1340 index = start_step * chip->ecc.bytes;
1341
1342 /* Data size aligned to ECC ecc.size */
1343 datafrag_len = num_steps * chip->ecc.size;
1344 eccfrag_len = num_steps * chip->ecc.bytes;
1345
1346 data_col_addr = start_step * chip->ecc.size;
1347 /* If we read not a page aligned data */
1348 if (data_col_addr != 0)
1349 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1350
1351 p = bufpoi + data_col_addr;
1352 chip->read_buf(mtd, p, datafrag_len);
1353
1354 /* Calculate ECC */
1355 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1356 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1357
1358 /*
1359 * The performance is faster if we position offsets according to
1360 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1361 */
1362 for (i = 0; i < eccfrag_len - 1; i++) {
1363 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1364 gaps = 1;
1365 break;
1366 }
1367 }
1368 if (gaps) {
1369 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1370 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1371 } else {
1372 /*
1373 * Send the command to read the particular ECC bytes take care
1374 * about buswidth alignment in read_buf.
1375 */
1376 aligned_pos = eccpos[index] & ~(busw - 1);
1377 aligned_len = eccfrag_len;
1378 if (eccpos[index] & (busw - 1))
1379 aligned_len++;
1380 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1381 aligned_len++;
1382
1383 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1384 mtd->writesize + aligned_pos, -1);
1385 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1386 }
1387
1388 for (i = 0; i < eccfrag_len; i++)
1389 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1390
1391 p = bufpoi + data_col_addr;
1392 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1393 int stat;
1394
1395 stat = chip->ecc.correct(mtd, p,
1396 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1397 if (stat == -EBADMSG &&
1398 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1399 /* check for empty pages with bitflips */
1400 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1401 &chip->buffers->ecccode[i],
1402 chip->ecc.bytes,
1403 NULL, 0,
1404 chip->ecc.strength);
1405 }
1406
1407 if (stat < 0) {
1408 mtd->ecc_stats.failed++;
1409 } else {
1410 mtd->ecc_stats.corrected += stat;
1411 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1412 }
1413 }
1414 return max_bitflips;
1415 }
1416
1417 /**
1418 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1419 * @mtd: mtd info structure
1420 * @chip: nand chip info structure
1421 * @buf: buffer to store read data
1422 * @oob_required: caller requires OOB data read to chip->oob_poi
1423 * @page: page number to read
1424 *
1425 * Not for syndrome calculating ECC controllers which need a special oob layout.
1426 */
1427 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1428 uint8_t *buf, int oob_required, int page)
1429 {
1430 int i, eccsize = chip->ecc.size;
1431 int eccbytes = chip->ecc.bytes;
1432 int eccsteps = chip->ecc.steps;
1433 uint8_t *p = buf;
1434 uint8_t *ecc_calc = chip->buffers->ecccalc;
1435 uint8_t *ecc_code = chip->buffers->ecccode;
1436 uint32_t *eccpos = chip->ecc.layout->eccpos;
1437 unsigned int max_bitflips = 0;
1438
1439 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1440 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1441 chip->read_buf(mtd, p, eccsize);
1442 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1443 }
1444 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1445
1446 for (i = 0; i < chip->ecc.total; i++)
1447 ecc_code[i] = chip->oob_poi[eccpos[i]];
1448
1449 eccsteps = chip->ecc.steps;
1450 p = buf;
1451
1452 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1453 int stat;
1454
1455 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1456 if (stat == -EBADMSG &&
1457 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1458 /* check for empty pages with bitflips */
1459 stat = nand_check_erased_ecc_chunk(p, eccsize,
1460 &ecc_code[i], eccbytes,
1461 NULL, 0,
1462 chip->ecc.strength);
1463 }
1464
1465 if (stat < 0) {
1466 mtd->ecc_stats.failed++;
1467 } else {
1468 mtd->ecc_stats.corrected += stat;
1469 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1470 }
1471 }
1472 return max_bitflips;
1473 }
1474
1475 /**
1476 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1477 * @mtd: mtd info structure
1478 * @chip: nand chip info structure
1479 * @buf: buffer to store read data
1480 * @oob_required: caller requires OOB data read to chip->oob_poi
1481 * @page: page number to read
1482 *
1483 * Hardware ECC for large page chips, require OOB to be read first. For this
1484 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1485 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1486 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1487 * the data area, by overwriting the NAND manufacturer bad block markings.
1488 */
1489 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1490 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1491 {
1492 int i, eccsize = chip->ecc.size;
1493 int eccbytes = chip->ecc.bytes;
1494 int eccsteps = chip->ecc.steps;
1495 uint8_t *p = buf;
1496 uint8_t *ecc_code = chip->buffers->ecccode;
1497 uint32_t *eccpos = chip->ecc.layout->eccpos;
1498 uint8_t *ecc_calc = chip->buffers->ecccalc;
1499 unsigned int max_bitflips = 0;
1500
1501 /* Read the OOB area first */
1502 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1503 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1504 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1505
1506 for (i = 0; i < chip->ecc.total; i++)
1507 ecc_code[i] = chip->oob_poi[eccpos[i]];
1508
1509 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1510 int stat;
1511
1512 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1513 chip->read_buf(mtd, p, eccsize);
1514 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1515
1516 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1517 if (stat == -EBADMSG &&
1518 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1519 /* check for empty pages with bitflips */
1520 stat = nand_check_erased_ecc_chunk(p, eccsize,
1521 &ecc_code[i], eccbytes,
1522 NULL, 0,
1523 chip->ecc.strength);
1524 }
1525
1526 if (stat < 0) {
1527 mtd->ecc_stats.failed++;
1528 } else {
1529 mtd->ecc_stats.corrected += stat;
1530 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1531 }
1532 }
1533 return max_bitflips;
1534 }
1535
1536 /**
1537 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1538 * @mtd: mtd info structure
1539 * @chip: nand chip info structure
1540 * @buf: buffer to store read data
1541 * @oob_required: caller requires OOB data read to chip->oob_poi
1542 * @page: page number to read
1543 *
1544 * The hw generator calculates the error syndrome automatically. Therefore we
1545 * need a special oob layout and handling.
1546 */
1547 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1548 uint8_t *buf, int oob_required, int page)
1549 {
1550 int i, eccsize = chip->ecc.size;
1551 int eccbytes = chip->ecc.bytes;
1552 int eccsteps = chip->ecc.steps;
1553 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1554 uint8_t *p = buf;
1555 uint8_t *oob = chip->oob_poi;
1556 unsigned int max_bitflips = 0;
1557
1558 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1559 int stat;
1560
1561 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1562 chip->read_buf(mtd, p, eccsize);
1563
1564 if (chip->ecc.prepad) {
1565 chip->read_buf(mtd, oob, chip->ecc.prepad);
1566 oob += chip->ecc.prepad;
1567 }
1568
1569 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1570 chip->read_buf(mtd, oob, eccbytes);
1571 stat = chip->ecc.correct(mtd, p, oob, NULL);
1572
1573 oob += eccbytes;
1574
1575 if (chip->ecc.postpad) {
1576 chip->read_buf(mtd, oob, chip->ecc.postpad);
1577 oob += chip->ecc.postpad;
1578 }
1579
1580 if (stat == -EBADMSG &&
1581 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1582 /* check for empty pages with bitflips */
1583 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1584 oob - eccpadbytes,
1585 eccpadbytes,
1586 NULL, 0,
1587 chip->ecc.strength);
1588 }
1589
1590 if (stat < 0) {
1591 mtd->ecc_stats.failed++;
1592 } else {
1593 mtd->ecc_stats.corrected += stat;
1594 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1595 }
1596 }
1597
1598 /* Calculate remaining oob bytes */
1599 i = mtd->oobsize - (oob - chip->oob_poi);
1600 if (i)
1601 chip->read_buf(mtd, oob, i);
1602
1603 return max_bitflips;
1604 }
1605
1606 /**
1607 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1608 * @chip: nand chip structure
1609 * @oob: oob destination address
1610 * @ops: oob ops structure
1611 * @len: size of oob to transfer
1612 */
1613 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1614 struct mtd_oob_ops *ops, size_t len)
1615 {
1616 switch (ops->mode) {
1617
1618 case MTD_OPS_PLACE_OOB:
1619 case MTD_OPS_RAW:
1620 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1621 return oob + len;
1622
1623 case MTD_OPS_AUTO_OOB: {
1624 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1625 uint32_t boffs = 0, roffs = ops->ooboffs;
1626 size_t bytes = 0;
1627
1628 for (; free->length && len; free++, len -= bytes) {
1629 /* Read request not from offset 0? */
1630 if (unlikely(roffs)) {
1631 if (roffs >= free->length) {
1632 roffs -= free->length;
1633 continue;
1634 }
1635 boffs = free->offset + roffs;
1636 bytes = min_t(size_t, len,
1637 (free->length - roffs));
1638 roffs = 0;
1639 } else {
1640 bytes = min_t(size_t, len, free->length);
1641 boffs = free->offset;
1642 }
1643 memcpy(oob, chip->oob_poi + boffs, bytes);
1644 oob += bytes;
1645 }
1646 return oob;
1647 }
1648 default:
1649 BUG();
1650 }
1651 return NULL;
1652 }
1653
1654 /**
1655 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1656 * @mtd: MTD device structure
1657 * @retry_mode: the retry mode to use
1658 *
1659 * Some vendors supply a special command to shift the Vt threshold, to be used
1660 * when there are too many bitflips in a page (i.e., ECC error). After setting
1661 * a new threshold, the host should retry reading the page.
1662 */
1663 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1664 {
1665 struct nand_chip *chip = mtd_to_nand(mtd);
1666
1667 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1668
1669 if (retry_mode >= chip->read_retries)
1670 return -EINVAL;
1671
1672 if (!chip->setup_read_retry)
1673 return -EOPNOTSUPP;
1674
1675 return chip->setup_read_retry(mtd, retry_mode);
1676 }
1677
1678 /**
1679 * nand_do_read_ops - [INTERN] Read data with ECC
1680 * @mtd: MTD device structure
1681 * @from: offset to read from
1682 * @ops: oob ops structure
1683 *
1684 * Internal function. Called with chip held.
1685 */
1686 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1687 struct mtd_oob_ops *ops)
1688 {
1689 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1690 struct nand_chip *chip = mtd_to_nand(mtd);
1691 int ret = 0;
1692 uint32_t readlen = ops->len;
1693 uint32_t oobreadlen = ops->ooblen;
1694 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1695
1696 uint8_t *bufpoi, *oob, *buf;
1697 int use_bufpoi;
1698 unsigned int max_bitflips = 0;
1699 int retry_mode = 0;
1700 bool ecc_fail = false;
1701
1702 chipnr = (int)(from >> chip->chip_shift);
1703 chip->select_chip(mtd, chipnr);
1704
1705 realpage = (int)(from >> chip->page_shift);
1706 page = realpage & chip->pagemask;
1707
1708 col = (int)(from & (mtd->writesize - 1));
1709
1710 buf = ops->datbuf;
1711 oob = ops->oobbuf;
1712 oob_required = oob ? 1 : 0;
1713
1714 while (1) {
1715 unsigned int ecc_failures = mtd->ecc_stats.failed;
1716
1717 WATCHDOG_RESET();
1718 bytes = min(mtd->writesize - col, readlen);
1719 aligned = (bytes == mtd->writesize);
1720
1721 if (!aligned)
1722 use_bufpoi = 1;
1723 else
1724 use_bufpoi = 0;
1725
1726 /* Is the current page in the buffer? */
1727 if (realpage != chip->pagebuf || oob) {
1728 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1729
1730 if (use_bufpoi && aligned)
1731 pr_debug("%s: using read bounce buffer for buf@%p\n",
1732 __func__, buf);
1733
1734 read_retry:
1735 if (nand_standard_page_accessors(&chip->ecc))
1736 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1737
1738 /*
1739 * Now read the page into the buffer. Absent an error,
1740 * the read methods return max bitflips per ecc step.
1741 */
1742 if (unlikely(ops->mode == MTD_OPS_RAW))
1743 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1744 oob_required,
1745 page);
1746 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1747 !oob)
1748 ret = chip->ecc.read_subpage(mtd, chip,
1749 col, bytes, bufpoi,
1750 page);
1751 else
1752 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1753 oob_required, page);
1754 if (ret < 0) {
1755 if (use_bufpoi)
1756 /* Invalidate page cache */
1757 chip->pagebuf = -1;
1758 break;
1759 }
1760
1761 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1762
1763 /* Transfer not aligned data */
1764 if (use_bufpoi) {
1765 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1766 !(mtd->ecc_stats.failed - ecc_failures) &&
1767 (ops->mode != MTD_OPS_RAW)) {
1768 chip->pagebuf = realpage;
1769 chip->pagebuf_bitflips = ret;
1770 } else {
1771 /* Invalidate page cache */
1772 chip->pagebuf = -1;
1773 }
1774 memcpy(buf, chip->buffers->databuf + col, bytes);
1775 }
1776
1777 if (unlikely(oob)) {
1778 int toread = min(oobreadlen, max_oobsize);
1779
1780 if (toread) {
1781 oob = nand_transfer_oob(chip,
1782 oob, ops, toread);
1783 oobreadlen -= toread;
1784 }
1785 }
1786
1787 if (chip->options & NAND_NEED_READRDY) {
1788 /* Apply delay or wait for ready/busy pin */
1789 if (!chip->dev_ready)
1790 udelay(chip->chip_delay);
1791 else
1792 nand_wait_ready(mtd);
1793 }
1794
1795 if (mtd->ecc_stats.failed - ecc_failures) {
1796 if (retry_mode + 1 < chip->read_retries) {
1797 retry_mode++;
1798 ret = nand_setup_read_retry(mtd,
1799 retry_mode);
1800 if (ret < 0)
1801 break;
1802
1803 /* Reset failures; retry */
1804 mtd->ecc_stats.failed = ecc_failures;
1805 goto read_retry;
1806 } else {
1807 /* No more retry modes; real failure */
1808 ecc_fail = true;
1809 }
1810 }
1811
1812 buf += bytes;
1813 } else {
1814 memcpy(buf, chip->buffers->databuf + col, bytes);
1815 buf += bytes;
1816 max_bitflips = max_t(unsigned int, max_bitflips,
1817 chip->pagebuf_bitflips);
1818 }
1819
1820 readlen -= bytes;
1821
1822 /* Reset to retry mode 0 */
1823 if (retry_mode) {
1824 ret = nand_setup_read_retry(mtd, 0);
1825 if (ret < 0)
1826 break;
1827 retry_mode = 0;
1828 }
1829
1830 if (!readlen)
1831 break;
1832
1833 /* For subsequent reads align to page boundary */
1834 col = 0;
1835 /* Increment page address */
1836 realpage++;
1837
1838 page = realpage & chip->pagemask;
1839 /* Check, if we cross a chip boundary */
1840 if (!page) {
1841 chipnr++;
1842 chip->select_chip(mtd, -1);
1843 chip->select_chip(mtd, chipnr);
1844 }
1845 }
1846 chip->select_chip(mtd, -1);
1847
1848 ops->retlen = ops->len - (size_t) readlen;
1849 if (oob)
1850 ops->oobretlen = ops->ooblen - oobreadlen;
1851
1852 if (ret < 0)
1853 return ret;
1854
1855 if (ecc_fail)
1856 return -EBADMSG;
1857
1858 return max_bitflips;
1859 }
1860
1861 /**
1862 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1863 * @mtd: MTD device structure
1864 * @from: offset to read from
1865 * @len: number of bytes to read
1866 * @retlen: pointer to variable to store the number of read bytes
1867 * @buf: the databuffer to put data
1868 *
1869 * Get hold of the chip and call nand_do_read.
1870 */
1871 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1872 size_t *retlen, uint8_t *buf)
1873 {
1874 struct mtd_oob_ops ops;
1875 int ret;
1876
1877 nand_get_device(mtd, FL_READING);
1878 memset(&ops, 0, sizeof(ops));
1879 ops.len = len;
1880 ops.datbuf = buf;
1881 ops.mode = MTD_OPS_PLACE_OOB;
1882 ret = nand_do_read_ops(mtd, from, &ops);
1883 *retlen = ops.retlen;
1884 nand_release_device(mtd);
1885 return ret;
1886 }
1887
1888 /**
1889 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1890 * @mtd: mtd info structure
1891 * @chip: nand chip info structure
1892 * @page: page number to read
1893 */
1894 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1895 int page)
1896 {
1897 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1898 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1899 return 0;
1900 }
1901
1902 /**
1903 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1904 * with syndromes
1905 * @mtd: mtd info structure
1906 * @chip: nand chip info structure
1907 * @page: page number to read
1908 */
1909 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1910 int page)
1911 {
1912 int length = mtd->oobsize;
1913 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1914 int eccsize = chip->ecc.size;
1915 uint8_t *bufpoi = chip->oob_poi;
1916 int i, toread, sndrnd = 0, pos;
1917
1918 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1919 for (i = 0; i < chip->ecc.steps; i++) {
1920 if (sndrnd) {
1921 pos = eccsize + i * (eccsize + chunk);
1922 if (mtd->writesize > 512)
1923 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1924 else
1925 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1926 } else
1927 sndrnd = 1;
1928 toread = min_t(int, length, chunk);
1929 chip->read_buf(mtd, bufpoi, toread);
1930 bufpoi += toread;
1931 length -= toread;
1932 }
1933 if (length > 0)
1934 chip->read_buf(mtd, bufpoi, length);
1935
1936 return 0;
1937 }
1938
1939 /**
1940 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1941 * @mtd: mtd info structure
1942 * @chip: nand chip info structure
1943 * @page: page number to write
1944 */
1945 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1946 int page)
1947 {
1948 int status = 0;
1949 const uint8_t *buf = chip->oob_poi;
1950 int length = mtd->oobsize;
1951
1952 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1953 chip->write_buf(mtd, buf, length);
1954 /* Send command to program the OOB data */
1955 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1956
1957 status = chip->waitfunc(mtd, chip);
1958
1959 return status & NAND_STATUS_FAIL ? -EIO : 0;
1960 }
1961
1962 /**
1963 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1964 * with syndrome - only for large page flash
1965 * @mtd: mtd info structure
1966 * @chip: nand chip info structure
1967 * @page: page number to write
1968 */
1969 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1970 struct nand_chip *chip, int page)
1971 {
1972 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1973 int eccsize = chip->ecc.size, length = mtd->oobsize;
1974 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1975 const uint8_t *bufpoi = chip->oob_poi;
1976
1977 /*
1978 * data-ecc-data-ecc ... ecc-oob
1979 * or
1980 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1981 */
1982 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1983 pos = steps * (eccsize + chunk);
1984 steps = 0;
1985 } else
1986 pos = eccsize;
1987
1988 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1989 for (i = 0; i < steps; i++) {
1990 if (sndcmd) {
1991 if (mtd->writesize <= 512) {
1992 uint32_t fill = 0xFFFFFFFF;
1993
1994 len = eccsize;
1995 while (len > 0) {
1996 int num = min_t(int, len, 4);
1997 chip->write_buf(mtd, (uint8_t *)&fill,
1998 num);
1999 len -= num;
2000 }
2001 } else {
2002 pos = eccsize + i * (eccsize + chunk);
2003 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2004 }
2005 } else
2006 sndcmd = 1;
2007 len = min_t(int, length, chunk);
2008 chip->write_buf(mtd, bufpoi, len);
2009 bufpoi += len;
2010 length -= len;
2011 }
2012 if (length > 0)
2013 chip->write_buf(mtd, bufpoi, length);
2014
2015 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2016 status = chip->waitfunc(mtd, chip);
2017
2018 return status & NAND_STATUS_FAIL ? -EIO : 0;
2019 }
2020
2021 /**
2022 * nand_do_read_oob - [INTERN] NAND read out-of-band
2023 * @mtd: MTD device structure
2024 * @from: offset to read from
2025 * @ops: oob operations description structure
2026 *
2027 * NAND read out-of-band data from the spare area.
2028 */
2029 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2030 struct mtd_oob_ops *ops)
2031 {
2032 int page, realpage, chipnr;
2033 struct nand_chip *chip = mtd_to_nand(mtd);
2034 struct mtd_ecc_stats stats;
2035 int readlen = ops->ooblen;
2036 int len;
2037 uint8_t *buf = ops->oobbuf;
2038 int ret = 0;
2039
2040 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2041 __func__, (unsigned long long)from, readlen);
2042
2043 stats = mtd->ecc_stats;
2044
2045 len = mtd_oobavail(mtd, ops);
2046
2047 if (unlikely(ops->ooboffs >= len)) {
2048 pr_debug("%s: attempt to start read outside oob\n",
2049 __func__);
2050 return -EINVAL;
2051 }
2052
2053 /* Do not allow reads past end of device */
2054 if (unlikely(from >= mtd->size ||
2055 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2056 (from >> chip->page_shift)) * len)) {
2057 pr_debug("%s: attempt to read beyond end of device\n",
2058 __func__);
2059 return -EINVAL;
2060 }
2061
2062 chipnr = (int)(from >> chip->chip_shift);
2063 chip->select_chip(mtd, chipnr);
2064
2065 /* Shift to get page */
2066 realpage = (int)(from >> chip->page_shift);
2067 page = realpage & chip->pagemask;
2068
2069 while (1) {
2070 WATCHDOG_RESET();
2071
2072 if (ops->mode == MTD_OPS_RAW)
2073 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2074 else
2075 ret = chip->ecc.read_oob(mtd, chip, page);
2076
2077 if (ret < 0)
2078 break;
2079
2080 len = min(len, readlen);
2081 buf = nand_transfer_oob(chip, buf, ops, len);
2082
2083 if (chip->options & NAND_NEED_READRDY) {
2084 /* Apply delay or wait for ready/busy pin */
2085 if (!chip->dev_ready)
2086 udelay(chip->chip_delay);
2087 else
2088 nand_wait_ready(mtd);
2089 }
2090
2091 readlen -= len;
2092 if (!readlen)
2093 break;
2094
2095 /* Increment page address */
2096 realpage++;
2097
2098 page = realpage & chip->pagemask;
2099 /* Check, if we cross a chip boundary */
2100 if (!page) {
2101 chipnr++;
2102 chip->select_chip(mtd, -1);
2103 chip->select_chip(mtd, chipnr);
2104 }
2105 }
2106 chip->select_chip(mtd, -1);
2107
2108 ops->oobretlen = ops->ooblen - readlen;
2109
2110 if (ret < 0)
2111 return ret;
2112
2113 if (mtd->ecc_stats.failed - stats.failed)
2114 return -EBADMSG;
2115
2116 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2117 }
2118
2119 /**
2120 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2121 * @mtd: MTD device structure
2122 * @from: offset to read from
2123 * @ops: oob operation description structure
2124 *
2125 * NAND read data and/or out-of-band data.
2126 */
2127 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2128 struct mtd_oob_ops *ops)
2129 {
2130 int ret = -ENOTSUPP;
2131
2132 ops->retlen = 0;
2133
2134 /* Do not allow reads past end of device */
2135 if (ops->datbuf && (from + ops->len) > mtd->size) {
2136 pr_debug("%s: attempt to read beyond end of device\n",
2137 __func__);
2138 return -EINVAL;
2139 }
2140
2141 nand_get_device(mtd, FL_READING);
2142
2143 switch (ops->mode) {
2144 case MTD_OPS_PLACE_OOB:
2145 case MTD_OPS_AUTO_OOB:
2146 case MTD_OPS_RAW:
2147 break;
2148
2149 default:
2150 goto out;
2151 }
2152
2153 if (!ops->datbuf)
2154 ret = nand_do_read_oob(mtd, from, ops);
2155 else
2156 ret = nand_do_read_ops(mtd, from, ops);
2157
2158 out:
2159 nand_release_device(mtd);
2160 return ret;
2161 }
2162
2163
2164 /**
2165 * nand_write_page_raw - [INTERN] raw page write function
2166 * @mtd: mtd info structure
2167 * @chip: nand chip info structure
2168 * @buf: data buffer
2169 * @oob_required: must write chip->oob_poi to OOB
2170 * @page: page number to write
2171 *
2172 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2173 */
2174 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2175 const uint8_t *buf, int oob_required, int page)
2176 {
2177 chip->write_buf(mtd, buf, mtd->writesize);
2178 if (oob_required)
2179 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2180
2181 return 0;
2182 }
2183
2184 /**
2185 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2186 * @mtd: mtd info structure
2187 * @chip: nand chip info structure
2188 * @buf: data buffer
2189 * @oob_required: must write chip->oob_poi to OOB
2190 * @page: page number to write
2191 *
2192 * We need a special oob layout and handling even when ECC isn't checked.
2193 */
2194 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2195 struct nand_chip *chip,
2196 const uint8_t *buf, int oob_required,
2197 int page)
2198 {
2199 int eccsize = chip->ecc.size;
2200 int eccbytes = chip->ecc.bytes;
2201 uint8_t *oob = chip->oob_poi;
2202 int steps, size;
2203
2204 for (steps = chip->ecc.steps; steps > 0; steps--) {
2205 chip->write_buf(mtd, buf, eccsize);
2206 buf += eccsize;
2207
2208 if (chip->ecc.prepad) {
2209 chip->write_buf(mtd, oob, chip->ecc.prepad);
2210 oob += chip->ecc.prepad;
2211 }
2212
2213 chip->write_buf(mtd, oob, eccbytes);
2214 oob += eccbytes;
2215
2216 if (chip->ecc.postpad) {
2217 chip->write_buf(mtd, oob, chip->ecc.postpad);
2218 oob += chip->ecc.postpad;
2219 }
2220 }
2221
2222 size = mtd->oobsize - (oob - chip->oob_poi);
2223 if (size)
2224 chip->write_buf(mtd, oob, size);
2225
2226 return 0;
2227 }
2228 /**
2229 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2230 * @mtd: mtd info structure
2231 * @chip: nand chip info structure
2232 * @buf: data buffer
2233 * @oob_required: must write chip->oob_poi to OOB
2234 * @page: page number to write
2235 */
2236 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2237 const uint8_t *buf, int oob_required,
2238 int page)
2239 {
2240 int i, eccsize = chip->ecc.size;
2241 int eccbytes = chip->ecc.bytes;
2242 int eccsteps = chip->ecc.steps;
2243 uint8_t *ecc_calc = chip->buffers->ecccalc;
2244 const uint8_t *p = buf;
2245 uint32_t *eccpos = chip->ecc.layout->eccpos;
2246
2247 /* Software ECC calculation */
2248 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2249 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2250
2251 for (i = 0; i < chip->ecc.total; i++)
2252 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2253
2254 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2255 }
2256
2257 /**
2258 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2259 * @mtd: mtd info structure
2260 * @chip: nand chip info structure
2261 * @buf: data buffer
2262 * @oob_required: must write chip->oob_poi to OOB
2263 * @page: page number to write
2264 */
2265 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2266 const uint8_t *buf, int oob_required,
2267 int page)
2268 {
2269 int i, eccsize = chip->ecc.size;
2270 int eccbytes = chip->ecc.bytes;
2271 int eccsteps = chip->ecc.steps;
2272 uint8_t *ecc_calc = chip->buffers->ecccalc;
2273 const uint8_t *p = buf;
2274 uint32_t *eccpos = chip->ecc.layout->eccpos;
2275
2276 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2277 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2278 chip->write_buf(mtd, p, eccsize);
2279 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2280 }
2281
2282 for (i = 0; i < chip->ecc.total; i++)
2283 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2284
2285 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2286
2287 return 0;
2288 }
2289
2290
2291 /**
2292 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2293 * @mtd: mtd info structure
2294 * @chip: nand chip info structure
2295 * @offset: column address of subpage within the page
2296 * @data_len: data length
2297 * @buf: data buffer
2298 * @oob_required: must write chip->oob_poi to OOB
2299 * @page: page number to write
2300 */
2301 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2302 struct nand_chip *chip, uint32_t offset,
2303 uint32_t data_len, const uint8_t *buf,
2304 int oob_required, int page)
2305 {
2306 uint8_t *oob_buf = chip->oob_poi;
2307 uint8_t *ecc_calc = chip->buffers->ecccalc;
2308 int ecc_size = chip->ecc.size;
2309 int ecc_bytes = chip->ecc.bytes;
2310 int ecc_steps = chip->ecc.steps;
2311 uint32_t *eccpos = chip->ecc.layout->eccpos;
2312 uint32_t start_step = offset / ecc_size;
2313 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2314 int oob_bytes = mtd->oobsize / ecc_steps;
2315 int step, i;
2316
2317 for (step = 0; step < ecc_steps; step++) {
2318 /* configure controller for WRITE access */
2319 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2320
2321 /* write data (untouched subpages already masked by 0xFF) */
2322 chip->write_buf(mtd, buf, ecc_size);
2323
2324 /* mask ECC of un-touched subpages by padding 0xFF */
2325 if ((step < start_step) || (step > end_step))
2326 memset(ecc_calc, 0xff, ecc_bytes);
2327 else
2328 chip->ecc.calculate(mtd, buf, ecc_calc);
2329
2330 /* mask OOB of un-touched subpages by padding 0xFF */
2331 /* if oob_required, preserve OOB metadata of written subpage */
2332 if (!oob_required || (step < start_step) || (step > end_step))
2333 memset(oob_buf, 0xff, oob_bytes);
2334
2335 buf += ecc_size;
2336 ecc_calc += ecc_bytes;
2337 oob_buf += oob_bytes;
2338 }
2339
2340 /* copy calculated ECC for whole page to chip->buffer->oob */
2341 /* this include masked-value(0xFF) for unwritten subpages */
2342 ecc_calc = chip->buffers->ecccalc;
2343 for (i = 0; i < chip->ecc.total; i++)
2344 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2345
2346 /* write OOB buffer to NAND device */
2347 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2348
2349 return 0;
2350 }
2351
2352
2353 /**
2354 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2355 * @mtd: mtd info structure
2356 * @chip: nand chip info structure
2357 * @buf: data buffer
2358 * @oob_required: must write chip->oob_poi to OOB
2359 * @page: page number to write
2360 *
2361 * The hw generator calculates the error syndrome automatically. Therefore we
2362 * need a special oob layout and handling.
2363 */
2364 static int nand_write_page_syndrome(struct mtd_info *mtd,
2365 struct nand_chip *chip,
2366 const uint8_t *buf, int oob_required,
2367 int page)
2368 {
2369 int i, eccsize = chip->ecc.size;
2370 int eccbytes = chip->ecc.bytes;
2371 int eccsteps = chip->ecc.steps;
2372 const uint8_t *p = buf;
2373 uint8_t *oob = chip->oob_poi;
2374
2375 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2376
2377 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2378 chip->write_buf(mtd, p, eccsize);
2379
2380 if (chip->ecc.prepad) {
2381 chip->write_buf(mtd, oob, chip->ecc.prepad);
2382 oob += chip->ecc.prepad;
2383 }
2384
2385 chip->ecc.calculate(mtd, p, oob);
2386 chip->write_buf(mtd, oob, eccbytes);
2387 oob += eccbytes;
2388
2389 if (chip->ecc.postpad) {
2390 chip->write_buf(mtd, oob, chip->ecc.postpad);
2391 oob += chip->ecc.postpad;
2392 }
2393 }
2394
2395 /* Calculate remaining oob bytes */
2396 i = mtd->oobsize - (oob - chip->oob_poi);
2397 if (i)
2398 chip->write_buf(mtd, oob, i);
2399
2400 return 0;
2401 }
2402
2403 /**
2404 * nand_write_page - [REPLACEABLE] write one page
2405 * @mtd: MTD device structure
2406 * @chip: NAND chip descriptor
2407 * @offset: address offset within the page
2408 * @data_len: length of actual data to be written
2409 * @buf: the data to write
2410 * @oob_required: must write chip->oob_poi to OOB
2411 * @page: page number to write
2412 * @cached: cached programming
2413 * @raw: use _raw version of write_page
2414 */
2415 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2416 uint32_t offset, int data_len, const uint8_t *buf,
2417 int oob_required, int page, int cached, int raw)
2418 {
2419 int status, subpage;
2420
2421 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2422 chip->ecc.write_subpage)
2423 subpage = offset || (data_len < mtd->writesize);
2424 else
2425 subpage = 0;
2426
2427 if (nand_standard_page_accessors(&chip->ecc))
2428 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2429
2430 if (unlikely(raw))
2431 status = chip->ecc.write_page_raw(mtd, chip, buf,
2432 oob_required, page);
2433 else if (subpage)
2434 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2435 buf, oob_required, page);
2436 else
2437 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2438 page);
2439
2440 if (status < 0)
2441 return status;
2442
2443 /*
2444 * Cached progamming disabled for now. Not sure if it's worth the
2445 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2446 */
2447 cached = 0;
2448
2449 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2450
2451 if (nand_standard_page_accessors(&chip->ecc))
2452 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2453 status = chip->waitfunc(mtd, chip);
2454 /*
2455 * See if operation failed and additional status checks are
2456 * available.
2457 */
2458 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2459 status = chip->errstat(mtd, chip, FL_WRITING, status,
2460 page);
2461
2462 if (status & NAND_STATUS_FAIL)
2463 return -EIO;
2464 } else {
2465 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2466 status = chip->waitfunc(mtd, chip);
2467 }
2468
2469 return 0;
2470 }
2471
2472 /**
2473 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2474 * @mtd: MTD device structure
2475 * @oob: oob data buffer
2476 * @len: oob data write length
2477 * @ops: oob ops structure
2478 */
2479 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2480 struct mtd_oob_ops *ops)
2481 {
2482 struct nand_chip *chip = mtd_to_nand(mtd);
2483
2484 /*
2485 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2486 * data from a previous OOB read.
2487 */
2488 memset(chip->oob_poi, 0xff, mtd->oobsize);
2489
2490 switch (ops->mode) {
2491
2492 case MTD_OPS_PLACE_OOB:
2493 case MTD_OPS_RAW:
2494 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2495 return oob + len;
2496
2497 case MTD_OPS_AUTO_OOB: {
2498 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2499 uint32_t boffs = 0, woffs = ops->ooboffs;
2500 size_t bytes = 0;
2501
2502 for (; free->length && len; free++, len -= bytes) {
2503 /* Write request not from offset 0? */
2504 if (unlikely(woffs)) {
2505 if (woffs >= free->length) {
2506 woffs -= free->length;
2507 continue;
2508 }
2509 boffs = free->offset + woffs;
2510 bytes = min_t(size_t, len,
2511 (free->length - woffs));
2512 woffs = 0;
2513 } else {
2514 bytes = min_t(size_t, len, free->length);
2515 boffs = free->offset;
2516 }
2517 memcpy(chip->oob_poi + boffs, oob, bytes);
2518 oob += bytes;
2519 }
2520 return oob;
2521 }
2522 default:
2523 BUG();
2524 }
2525 return NULL;
2526 }
2527
2528 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2529
2530 /**
2531 * nand_do_write_ops - [INTERN] NAND write with ECC
2532 * @mtd: MTD device structure
2533 * @to: offset to write to
2534 * @ops: oob operations description structure
2535 *
2536 * NAND write with ECC.
2537 */
2538 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2539 struct mtd_oob_ops *ops)
2540 {
2541 int chipnr, realpage, page, blockmask, column;
2542 struct nand_chip *chip = mtd_to_nand(mtd);
2543 uint32_t writelen = ops->len;
2544
2545 uint32_t oobwritelen = ops->ooblen;
2546 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2547
2548 uint8_t *oob = ops->oobbuf;
2549 uint8_t *buf = ops->datbuf;
2550 int ret;
2551 int oob_required = oob ? 1 : 0;
2552
2553 ops->retlen = 0;
2554 if (!writelen)
2555 return 0;
2556
2557 /* Reject writes, which are not page aligned */
2558 if (NOTALIGNED(to)) {
2559 pr_notice("%s: attempt to write non page aligned data\n",
2560 __func__);
2561 return -EINVAL;
2562 }
2563
2564 column = to & (mtd->writesize - 1);
2565
2566 chipnr = (int)(to >> chip->chip_shift);
2567 chip->select_chip(mtd, chipnr);
2568
2569 /* Check, if it is write protected */
2570 if (nand_check_wp(mtd)) {
2571 ret = -EIO;
2572 goto err_out;
2573 }
2574
2575 realpage = (int)(to >> chip->page_shift);
2576 page = realpage & chip->pagemask;
2577 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2578
2579 /* Invalidate the page cache, when we write to the cached page */
2580 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2581 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2582 chip->pagebuf = -1;
2583
2584 /* Don't allow multipage oob writes with offset */
2585 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2586 ret = -EINVAL;
2587 goto err_out;
2588 }
2589
2590 while (1) {
2591 int bytes = mtd->writesize;
2592 int cached = writelen > bytes && page != blockmask;
2593 uint8_t *wbuf = buf;
2594 int use_bufpoi;
2595 int part_pagewr = (column || writelen < mtd->writesize);
2596
2597 if (part_pagewr)
2598 use_bufpoi = 1;
2599 else
2600 use_bufpoi = 0;
2601
2602 WATCHDOG_RESET();
2603 /* Partial page write?, or need to use bounce buffer */
2604 if (use_bufpoi) {
2605 pr_debug("%s: using write bounce buffer for buf@%p\n",
2606 __func__, buf);
2607 cached = 0;
2608 if (part_pagewr)
2609 bytes = min_t(int, bytes - column, writelen);
2610 chip->pagebuf = -1;
2611 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2612 memcpy(&chip->buffers->databuf[column], buf, bytes);
2613 wbuf = chip->buffers->databuf;
2614 }
2615
2616 if (unlikely(oob)) {
2617 size_t len = min(oobwritelen, oobmaxlen);
2618 oob = nand_fill_oob(mtd, oob, len, ops);
2619 oobwritelen -= len;
2620 } else {
2621 /* We still need to erase leftover OOB data */
2622 memset(chip->oob_poi, 0xff, mtd->oobsize);
2623 }
2624 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2625 oob_required, page, cached,
2626 (ops->mode == MTD_OPS_RAW));
2627 if (ret)
2628 break;
2629
2630 writelen -= bytes;
2631 if (!writelen)
2632 break;
2633
2634 column = 0;
2635 buf += bytes;
2636 realpage++;
2637
2638 page = realpage & chip->pagemask;
2639 /* Check, if we cross a chip boundary */
2640 if (!page) {
2641 chipnr++;
2642 chip->select_chip(mtd, -1);
2643 chip->select_chip(mtd, chipnr);
2644 }
2645 }
2646
2647 ops->retlen = ops->len - writelen;
2648 if (unlikely(oob))
2649 ops->oobretlen = ops->ooblen;
2650
2651 err_out:
2652 chip->select_chip(mtd, -1);
2653 return ret;
2654 }
2655
2656 /**
2657 * panic_nand_write - [MTD Interface] NAND write with ECC
2658 * @mtd: MTD device structure
2659 * @to: offset to write to
2660 * @len: number of bytes to write
2661 * @retlen: pointer to variable to store the number of written bytes
2662 * @buf: the data to write
2663 *
2664 * NAND write with ECC. Used when performing writes in interrupt context, this
2665 * may for example be called by mtdoops when writing an oops while in panic.
2666 */
2667 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2668 size_t *retlen, const uint8_t *buf)
2669 {
2670 struct nand_chip *chip = mtd_to_nand(mtd);
2671 struct mtd_oob_ops ops;
2672 int ret;
2673
2674 /* Wait for the device to get ready */
2675 panic_nand_wait(mtd, chip, 400);
2676
2677 /* Grab the device */
2678 panic_nand_get_device(chip, mtd, FL_WRITING);
2679
2680 memset(&ops, 0, sizeof(ops));
2681 ops.len = len;
2682 ops.datbuf = (uint8_t *)buf;
2683 ops.mode = MTD_OPS_PLACE_OOB;
2684
2685 ret = nand_do_write_ops(mtd, to, &ops);
2686
2687 *retlen = ops.retlen;
2688 return ret;
2689 }
2690
2691 /**
2692 * nand_write - [MTD Interface] NAND write with ECC
2693 * @mtd: MTD device structure
2694 * @to: offset to write to
2695 * @len: number of bytes to write
2696 * @retlen: pointer to variable to store the number of written bytes
2697 * @buf: the data to write
2698 *
2699 * NAND write with ECC.
2700 */
2701 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2702 size_t *retlen, const uint8_t *buf)
2703 {
2704 struct mtd_oob_ops ops;
2705 int ret;
2706
2707 nand_get_device(mtd, FL_WRITING);
2708 memset(&ops, 0, sizeof(ops));
2709 ops.len = len;
2710 ops.datbuf = (uint8_t *)buf;
2711 ops.mode = MTD_OPS_PLACE_OOB;
2712 ret = nand_do_write_ops(mtd, to, &ops);
2713 *retlen = ops.retlen;
2714 nand_release_device(mtd);
2715 return ret;
2716 }
2717
2718 /**
2719 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2720 * @mtd: MTD device structure
2721 * @to: offset to write to
2722 * @ops: oob operation description structure
2723 *
2724 * NAND write out-of-band.
2725 */
2726 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2727 struct mtd_oob_ops *ops)
2728 {
2729 int chipnr, page, status, len;
2730 struct nand_chip *chip = mtd_to_nand(mtd);
2731
2732 pr_debug("%s: to = 0x%08x, len = %i\n",
2733 __func__, (unsigned int)to, (int)ops->ooblen);
2734
2735 len = mtd_oobavail(mtd, ops);
2736
2737 /* Do not allow write past end of page */
2738 if ((ops->ooboffs + ops->ooblen) > len) {
2739 pr_debug("%s: attempt to write past end of page\n",
2740 __func__);
2741 return -EINVAL;
2742 }
2743
2744 if (unlikely(ops->ooboffs >= len)) {
2745 pr_debug("%s: attempt to start write outside oob\n",
2746 __func__);
2747 return -EINVAL;
2748 }
2749
2750 /* Do not allow write past end of device */
2751 if (unlikely(to >= mtd->size ||
2752 ops->ooboffs + ops->ooblen >
2753 ((mtd->size >> chip->page_shift) -
2754 (to >> chip->page_shift)) * len)) {
2755 pr_debug("%s: attempt to write beyond end of device\n",
2756 __func__);
2757 return -EINVAL;
2758 }
2759
2760 chipnr = (int)(to >> chip->chip_shift);
2761
2762 /*
2763 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2764 * of my DiskOnChip 2000 test units) will clear the whole data page too
2765 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2766 * it in the doc2000 driver in August 1999. dwmw2.
2767 */
2768 nand_reset(chip, chipnr);
2769
2770 chip->select_chip(mtd, chipnr);
2771
2772 /* Shift to get page */
2773 page = (int)(to >> chip->page_shift);
2774
2775 /* Check, if it is write protected */
2776 if (nand_check_wp(mtd)) {
2777 chip->select_chip(mtd, -1);
2778 return -EROFS;
2779 }
2780
2781 /* Invalidate the page cache, if we write to the cached page */
2782 if (page == chip->pagebuf)
2783 chip->pagebuf = -1;
2784
2785 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2786
2787 if (ops->mode == MTD_OPS_RAW)
2788 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2789 else
2790 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2791
2792 chip->select_chip(mtd, -1);
2793
2794 if (status)
2795 return status;
2796
2797 ops->oobretlen = ops->ooblen;
2798
2799 return 0;
2800 }
2801
2802 /**
2803 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2804 * @mtd: MTD device structure
2805 * @to: offset to write to
2806 * @ops: oob operation description structure
2807 */
2808 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2809 struct mtd_oob_ops *ops)
2810 {
2811 int ret = -ENOTSUPP;
2812
2813 ops->retlen = 0;
2814
2815 /* Do not allow writes past end of device */
2816 if (ops->datbuf && (to + ops->len) > mtd->size) {
2817 pr_debug("%s: attempt to write beyond end of device\n",
2818 __func__);
2819 return -EINVAL;
2820 }
2821
2822 nand_get_device(mtd, FL_WRITING);
2823
2824 switch (ops->mode) {
2825 case MTD_OPS_PLACE_OOB:
2826 case MTD_OPS_AUTO_OOB:
2827 case MTD_OPS_RAW:
2828 break;
2829
2830 default:
2831 goto out;
2832 }
2833
2834 if (!ops->datbuf)
2835 ret = nand_do_write_oob(mtd, to, ops);
2836 else
2837 ret = nand_do_write_ops(mtd, to, ops);
2838
2839 out:
2840 nand_release_device(mtd);
2841 return ret;
2842 }
2843
2844 /**
2845 * single_erase - [GENERIC] NAND standard block erase command function
2846 * @mtd: MTD device structure
2847 * @page: the page address of the block which will be erased
2848 *
2849 * Standard erase command for NAND chips. Returns NAND status.
2850 */
2851 static int single_erase(struct mtd_info *mtd, int page)
2852 {
2853 struct nand_chip *chip = mtd_to_nand(mtd);
2854 /* Send commands to erase a block */
2855 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2856 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2857
2858 return chip->waitfunc(mtd, chip);
2859 }
2860
2861 /**
2862 * nand_erase - [MTD Interface] erase block(s)
2863 * @mtd: MTD device structure
2864 * @instr: erase instruction
2865 *
2866 * Erase one ore more blocks.
2867 */
2868 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2869 {
2870 return nand_erase_nand(mtd, instr, 0);
2871 }
2872
2873 /**
2874 * nand_erase_nand - [INTERN] erase block(s)
2875 * @mtd: MTD device structure
2876 * @instr: erase instruction
2877 * @allowbbt: allow erasing the bbt area
2878 *
2879 * Erase one ore more blocks.
2880 */
2881 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2882 int allowbbt)
2883 {
2884 int page, status, pages_per_block, ret, chipnr;
2885 struct nand_chip *chip = mtd_to_nand(mtd);
2886 loff_t len;
2887
2888 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2889 __func__, (unsigned long long)instr->addr,
2890 (unsigned long long)instr->len);
2891
2892 if (check_offs_len(mtd, instr->addr, instr->len))
2893 return -EINVAL;
2894
2895 /* Grab the lock and see if the device is available */
2896 nand_get_device(mtd, FL_ERASING);
2897
2898 /* Shift to get first page */
2899 page = (int)(instr->addr >> chip->page_shift);
2900 chipnr = (int)(instr->addr >> chip->chip_shift);
2901
2902 /* Calculate pages in each block */
2903 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2904
2905 /* Select the NAND device */
2906 chip->select_chip(mtd, chipnr);
2907
2908 /* Check, if it is write protected */
2909 if (nand_check_wp(mtd)) {
2910 pr_debug("%s: device is write protected!\n",
2911 __func__);
2912 instr->state = MTD_ERASE_FAILED;
2913 goto erase_exit;
2914 }
2915
2916 /* Loop through the pages */
2917 len = instr->len;
2918
2919 instr->state = MTD_ERASING;
2920
2921 while (len) {
2922 WATCHDOG_RESET();
2923
2924 /* Check if we have a bad block, we do not erase bad blocks! */
2925 if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2926 chip->page_shift, allowbbt)) {
2927 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2928 __func__, page);
2929 instr->state = MTD_ERASE_FAILED;
2930 goto erase_exit;
2931 }
2932
2933 /*
2934 * Invalidate the page cache, if we erase the block which
2935 * contains the current cached page.
2936 */
2937 if (page <= chip->pagebuf && chip->pagebuf <
2938 (page + pages_per_block))
2939 chip->pagebuf = -1;
2940
2941 status = chip->erase(mtd, page & chip->pagemask);
2942
2943 /*
2944 * See if operation failed and additional status checks are
2945 * available
2946 */
2947 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2948 status = chip->errstat(mtd, chip, FL_ERASING,
2949 status, page);
2950
2951 /* See if block erase succeeded */
2952 if (status & NAND_STATUS_FAIL) {
2953 pr_debug("%s: failed erase, page 0x%08x\n",
2954 __func__, page);
2955 instr->state = MTD_ERASE_FAILED;
2956 instr->fail_addr =
2957 ((loff_t)page << chip->page_shift);
2958 goto erase_exit;
2959 }
2960
2961 /* Increment page address and decrement length */
2962 len -= (1ULL << chip->phys_erase_shift);
2963 page += pages_per_block;
2964
2965 /* Check, if we cross a chip boundary */
2966 if (len && !(page & chip->pagemask)) {
2967 chipnr++;
2968 chip->select_chip(mtd, -1);
2969 chip->select_chip(mtd, chipnr);
2970 }
2971 }
2972 instr->state = MTD_ERASE_DONE;
2973
2974 erase_exit:
2975
2976 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2977
2978 /* Deselect and wake up anyone waiting on the device */
2979 chip->select_chip(mtd, -1);
2980 nand_release_device(mtd);
2981
2982 /* Do call back function */
2983 if (!ret)
2984 mtd_erase_callback(instr);
2985
2986 /* Return more or less happy */
2987 return ret;
2988 }
2989
2990 /**
2991 * nand_sync - [MTD Interface] sync
2992 * @mtd: MTD device structure
2993 *
2994 * Sync is actually a wait for chip ready function.
2995 */
2996 static void nand_sync(struct mtd_info *mtd)
2997 {
2998 pr_debug("%s: called\n", __func__);
2999
3000 /* Grab the lock and see if the device is available */
3001 nand_get_device(mtd, FL_SYNCING);
3002 /* Release it and go back */
3003 nand_release_device(mtd);
3004 }
3005
3006 /**
3007 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3008 * @mtd: MTD device structure
3009 * @offs: offset relative to mtd start
3010 */
3011 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3012 {
3013 struct nand_chip *chip = mtd_to_nand(mtd);
3014 int chipnr = (int)(offs >> chip->chip_shift);
3015 int ret;
3016
3017 /* Select the NAND device */
3018 nand_get_device(mtd, FL_READING);
3019 chip->select_chip(mtd, chipnr);
3020
3021 ret = nand_block_checkbad(mtd, offs, 0);
3022
3023 chip->select_chip(mtd, -1);
3024 nand_release_device(mtd);
3025
3026 return ret;
3027 }
3028
3029 /**
3030 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3031 * @mtd: MTD device structure
3032 * @ofs: offset relative to mtd start
3033 */
3034 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3035 {
3036 int ret;
3037
3038 ret = nand_block_isbad(mtd, ofs);
3039 if (ret) {
3040 /* If it was bad already, return success and do nothing */
3041 if (ret > 0)
3042 return 0;
3043 return ret;
3044 }
3045
3046 return nand_block_markbad_lowlevel(mtd, ofs);
3047 }
3048
3049 /**
3050 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3051 * @mtd: MTD device structure
3052 * @chip: nand chip info structure
3053 * @addr: feature address.
3054 * @subfeature_param: the subfeature parameters, a four bytes array.
3055 */
3056 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3057 int addr, uint8_t *subfeature_param)
3058 {
3059 int status;
3060 int i;
3061
3062 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3063 if (!chip->onfi_version ||
3064 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3065 & ONFI_OPT_CMD_SET_GET_FEATURES))
3066 return -EINVAL;
3067 #endif
3068
3069 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3070 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3071 chip->write_byte(mtd, subfeature_param[i]);
3072
3073 status = chip->waitfunc(mtd, chip);
3074 if (status & NAND_STATUS_FAIL)
3075 return -EIO;
3076 return 0;
3077 }
3078
3079 /**
3080 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3081 * @mtd: MTD device structure
3082 * @chip: nand chip info structure
3083 * @addr: feature address.
3084 * @subfeature_param: the subfeature parameters, a four bytes array.
3085 */
3086 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3087 int addr, uint8_t *subfeature_param)
3088 {
3089 int i;
3090
3091 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3092 if (!chip->onfi_version ||
3093 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3094 & ONFI_OPT_CMD_SET_GET_FEATURES))
3095 return -EINVAL;
3096 #endif
3097
3098 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3099 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3100 *subfeature_param++ = chip->read_byte(mtd);
3101 return 0;
3102 }
3103
3104 /* Set default functions */
3105 static void nand_set_defaults(struct nand_chip *chip, int busw)
3106 {
3107 /* check for proper chip_delay setup, set 20us if not */
3108 if (!chip->chip_delay)
3109 chip->chip_delay = 20;
3110
3111 /* check, if a user supplied command function given */
3112 if (chip->cmdfunc == NULL)
3113 chip->cmdfunc = nand_command;
3114
3115 /* check, if a user supplied wait function given */
3116 if (chip->waitfunc == NULL)
3117 chip->waitfunc = nand_wait;
3118
3119 if (!chip->select_chip)
3120 chip->select_chip = nand_select_chip;
3121
3122 /* set for ONFI nand */
3123 if (!chip->onfi_set_features)
3124 chip->onfi_set_features = nand_onfi_set_features;
3125 if (!chip->onfi_get_features)
3126 chip->onfi_get_features = nand_onfi_get_features;
3127
3128 /* If called twice, pointers that depend on busw may need to be reset */
3129 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3130 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3131 if (!chip->read_word)
3132 chip->read_word = nand_read_word;
3133 if (!chip->block_bad)
3134 chip->block_bad = nand_block_bad;
3135 if (!chip->block_markbad)
3136 chip->block_markbad = nand_default_block_markbad;
3137 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3138 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3139 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3140 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3141 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3142 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3143 if (!chip->scan_bbt)
3144 chip->scan_bbt = nand_default_bbt;
3145
3146 if (!chip->controller) {
3147 chip->controller = &chip->hwcontrol;
3148 spin_lock_init(&chip->controller->lock);
3149 init_waitqueue_head(&chip->controller->wq);
3150 }
3151
3152 }
3153
3154 /* Sanitize ONFI strings so we can safely print them */
3155 static void sanitize_string(char *s, size_t len)
3156 {
3157 ssize_t i;
3158
3159 /* Null terminate */
3160 s[len - 1] = 0;
3161
3162 /* Remove non printable chars */
3163 for (i = 0; i < len - 1; i++) {
3164 if (s[i] < ' ' || s[i] > 127)
3165 s[i] = '?';
3166 }
3167
3168 /* Remove trailing spaces */
3169 strim(s);
3170 }
3171
3172 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3173 {
3174 int i;
3175 while (len--) {
3176 crc ^= *p++ << 8;
3177 for (i = 0; i < 8; i++)
3178 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3179 }
3180
3181 return crc;
3182 }
3183
3184 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3185 /* Parse the Extended Parameter Page. */
3186 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3187 struct nand_chip *chip, struct nand_onfi_params *p)
3188 {
3189 struct onfi_ext_param_page *ep;
3190 struct onfi_ext_section *s;
3191 struct onfi_ext_ecc_info *ecc;
3192 uint8_t *cursor;
3193 int ret = -EINVAL;
3194 int len;
3195 int i;
3196
3197 len = le16_to_cpu(p->ext_param_page_length) * 16;
3198 ep = kmalloc(len, GFP_KERNEL);
3199 if (!ep)
3200 return -ENOMEM;
3201
3202 /* Send our own NAND_CMD_PARAM. */
3203 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3204
3205 /* Use the Change Read Column command to skip the ONFI param pages. */
3206 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3207 sizeof(*p) * p->num_of_param_pages , -1);
3208
3209 /* Read out the Extended Parameter Page. */
3210 chip->read_buf(mtd, (uint8_t *)ep, len);
3211 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3212 != le16_to_cpu(ep->crc))) {
3213 pr_debug("fail in the CRC.\n");
3214 goto ext_out;
3215 }
3216
3217 /*
3218 * Check the signature.
3219 * Do not strictly follow the ONFI spec, maybe changed in future.
3220 */
3221 if (strncmp((char *)ep->sig, "EPPS", 4)) {
3222 pr_debug("The signature is invalid.\n");
3223 goto ext_out;
3224 }
3225
3226 /* find the ECC section. */
3227 cursor = (uint8_t *)(ep + 1);
3228 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3229 s = ep->sections + i;
3230 if (s->type == ONFI_SECTION_TYPE_2)
3231 break;
3232 cursor += s->length * 16;
3233 }
3234 if (i == ONFI_EXT_SECTION_MAX) {
3235 pr_debug("We can not find the ECC section.\n");
3236 goto ext_out;
3237 }
3238
3239 /* get the info we want. */
3240 ecc = (struct onfi_ext_ecc_info *)cursor;
3241
3242 if (!ecc->codeword_size) {
3243 pr_debug("Invalid codeword size\n");
3244 goto ext_out;
3245 }
3246
3247 chip->ecc_strength_ds = ecc->ecc_bits;
3248 chip->ecc_step_ds = 1 << ecc->codeword_size;
3249 ret = 0;
3250
3251 ext_out:
3252 kfree(ep);
3253 return ret;
3254 }
3255
3256 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3257 {
3258 struct nand_chip *chip = mtd_to_nand(mtd);
3259 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3260
3261 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3262 feature);
3263 }
3264
3265 /*
3266 * Configure chip properties from Micron vendor-specific ONFI table
3267 */
3268 static void nand_onfi_detect_micron(struct nand_chip *chip,
3269 struct nand_onfi_params *p)
3270 {
3271 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3272
3273 if (le16_to_cpu(p->vendor_revision) < 1)
3274 return;
3275
3276 chip->read_retries = micron->read_retry_options;
3277 chip->setup_read_retry = nand_setup_read_retry_micron;
3278 }
3279
3280 /*
3281 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3282 */
3283 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3284 int *busw)
3285 {
3286 struct nand_onfi_params *p = &chip->onfi_params;
3287 int i, j;
3288 int val;
3289
3290 /* Try ONFI for unknown chip or LP */
3291 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3292 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3293 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3294 return 0;
3295
3296 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3297 for (i = 0; i < 3; i++) {
3298 for (j = 0; j < sizeof(*p); j++)
3299 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3300 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3301 le16_to_cpu(p->crc)) {
3302 break;
3303 }
3304 }
3305
3306 if (i == 3) {
3307 pr_err("Could not find valid ONFI parameter page; aborting\n");
3308 return 0;
3309 }
3310
3311 /* Check version */
3312 val = le16_to_cpu(p->revision);
3313 if (val & (1 << 5))
3314 chip->onfi_version = 23;
3315 else if (val & (1 << 4))
3316 chip->onfi_version = 22;
3317 else if (val & (1 << 3))
3318 chip->onfi_version = 21;
3319 else if (val & (1 << 2))
3320 chip->onfi_version = 20;
3321 else if (val & (1 << 1))
3322 chip->onfi_version = 10;
3323
3324 if (!chip->onfi_version) {
3325 pr_info("unsupported ONFI version: %d\n", val);
3326 return 0;
3327 }
3328
3329 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3330 sanitize_string(p->model, sizeof(p->model));
3331 if (!mtd->name)
3332 mtd->name = p->model;
3333
3334 mtd->writesize = le32_to_cpu(p->byte_per_page);
3335
3336 /*
3337 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3338 * (don't ask me who thought of this...). MTD assumes that these
3339 * dimensions will be power-of-2, so just truncate the remaining area.
3340 */
3341 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3342 mtd->erasesize *= mtd->writesize;
3343
3344 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3345
3346 /* See erasesize comment */
3347 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3348 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3349 chip->bits_per_cell = p->bits_per_cell;
3350
3351 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3352 *busw = NAND_BUSWIDTH_16;
3353 else
3354 *busw = 0;
3355
3356 if (p->ecc_bits != 0xff) {
3357 chip->ecc_strength_ds = p->ecc_bits;
3358 chip->ecc_step_ds = 512;
3359 } else if (chip->onfi_version >= 21 &&
3360 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3361
3362 /*
3363 * The nand_flash_detect_ext_param_page() uses the
3364 * Change Read Column command which maybe not supported
3365 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3366 * now. We do not replace user supplied command function.
3367 */
3368 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3369 chip->cmdfunc = nand_command_lp;
3370
3371 /* The Extended Parameter Page is supported since ONFI 2.1. */
3372 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3373 pr_warn("Failed to detect ONFI extended param page\n");
3374 } else {
3375 pr_warn("Could not retrieve ONFI ECC requirements\n");
3376 }
3377
3378 if (p->jedec_id == NAND_MFR_MICRON)
3379 nand_onfi_detect_micron(chip, p);
3380
3381 return 1;
3382 }
3383 #else
3384 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3385 int *busw)
3386 {
3387 return 0;
3388 }
3389 #endif
3390
3391 /*
3392 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3393 */
3394 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3395 int *busw)
3396 {
3397 struct nand_jedec_params *p = &chip->jedec_params;
3398 struct jedec_ecc_info *ecc;
3399 int val;
3400 int i, j;
3401
3402 /* Try JEDEC for unknown chip or LP */
3403 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3404 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3405 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3406 chip->read_byte(mtd) != 'C')
3407 return 0;
3408
3409 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3410 for (i = 0; i < 3; i++) {
3411 for (j = 0; j < sizeof(*p); j++)
3412 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3413
3414 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3415 le16_to_cpu(p->crc))
3416 break;
3417 }
3418
3419 if (i == 3) {
3420 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3421 return 0;
3422 }
3423
3424 /* Check version */
3425 val = le16_to_cpu(p->revision);
3426 if (val & (1 << 2))
3427 chip->jedec_version = 10;
3428 else if (val & (1 << 1))
3429 chip->jedec_version = 1; /* vendor specific version */
3430
3431 if (!chip->jedec_version) {
3432 pr_info("unsupported JEDEC version: %d\n", val);
3433 return 0;
3434 }
3435
3436 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3437 sanitize_string(p->model, sizeof(p->model));
3438 if (!mtd->name)
3439 mtd->name = p->model;
3440
3441 mtd->writesize = le32_to_cpu(p->byte_per_page);
3442
3443 /* Please reference to the comment for nand_flash_detect_onfi. */
3444 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3445 mtd->erasesize *= mtd->writesize;
3446
3447 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3448
3449 /* Please reference to the comment for nand_flash_detect_onfi. */
3450 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3451 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3452 chip->bits_per_cell = p->bits_per_cell;
3453
3454 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3455 *busw = NAND_BUSWIDTH_16;
3456 else
3457 *busw = 0;
3458
3459 /* ECC info */
3460 ecc = &p->ecc_info[0];
3461
3462 if (ecc->codeword_size >= 9) {
3463 chip->ecc_strength_ds = ecc->ecc_bits;
3464 chip->ecc_step_ds = 1 << ecc->codeword_size;
3465 } else {
3466 pr_warn("Invalid codeword size\n");
3467 }
3468
3469 return 1;
3470 }
3471
3472 /*
3473 * nand_id_has_period - Check if an ID string has a given wraparound period
3474 * @id_data: the ID string
3475 * @arrlen: the length of the @id_data array
3476 * @period: the period of repitition
3477 *
3478 * Check if an ID string is repeated within a given sequence of bytes at
3479 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3480 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3481 * if the repetition has a period of @period; otherwise, returns zero.
3482 */
3483 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3484 {
3485 int i, j;
3486 for (i = 0; i < period; i++)
3487 for (j = i + period; j < arrlen; j += period)
3488 if (id_data[i] != id_data[j])
3489 return 0;
3490 return 1;
3491 }
3492
3493 /*
3494 * nand_id_len - Get the length of an ID string returned by CMD_READID
3495 * @id_data: the ID string
3496 * @arrlen: the length of the @id_data array
3497
3498 * Returns the length of the ID string, according to known wraparound/trailing
3499 * zero patterns. If no pattern exists, returns the length of the array.
3500 */
3501 static int nand_id_len(u8 *id_data, int arrlen)
3502 {
3503 int last_nonzero, period;
3504
3505 /* Find last non-zero byte */
3506 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3507 if (id_data[last_nonzero])
3508 break;
3509
3510 /* All zeros */
3511 if (last_nonzero < 0)
3512 return 0;
3513
3514 /* Calculate wraparound period */
3515 for (period = 1; period < arrlen; period++)
3516 if (nand_id_has_period(id_data, arrlen, period))
3517 break;
3518
3519 /* There's a repeated pattern */
3520 if (period < arrlen)
3521 return period;
3522
3523 /* There are trailing zeros */
3524 if (last_nonzero < arrlen - 1)
3525 return last_nonzero + 1;
3526
3527 /* No pattern detected */
3528 return arrlen;
3529 }
3530
3531 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3532 static int nand_get_bits_per_cell(u8 cellinfo)
3533 {
3534 int bits;
3535
3536 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3537 bits >>= NAND_CI_CELLTYPE_SHIFT;
3538 return bits + 1;
3539 }
3540
3541 /*
3542 * Many new NAND share similar device ID codes, which represent the size of the
3543 * chip. The rest of the parameters must be decoded according to generic or
3544 * manufacturer-specific "extended ID" decoding patterns.
3545 */
3546 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3547 u8 id_data[8], int *busw)
3548 {
3549 int extid, id_len;
3550 /* The 3rd id byte holds MLC / multichip data */
3551 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3552 /* The 4th id byte is the important one */
3553 extid = id_data[3];
3554
3555 id_len = nand_id_len(id_data, 8);
3556
3557 /*
3558 * Field definitions are in the following datasheets:
3559 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3560 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3561 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3562 *
3563 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3564 * ID to decide what to do.
3565 */
3566 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3567 !nand_is_slc(chip) && id_data[5] != 0x00) {
3568 /* Calc pagesize */
3569 mtd->writesize = 2048 << (extid & 0x03);
3570 extid >>= 2;
3571 /* Calc oobsize */
3572 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3573 case 1:
3574 mtd->oobsize = 128;
3575 break;
3576 case 2:
3577 mtd->oobsize = 218;
3578 break;
3579 case 3:
3580 mtd->oobsize = 400;
3581 break;
3582 case 4:
3583 mtd->oobsize = 436;
3584 break;
3585 case 5:
3586 mtd->oobsize = 512;
3587 break;
3588 case 6:
3589 mtd->oobsize = 640;
3590 break;
3591 case 7:
3592 default: /* Other cases are "reserved" (unknown) */
3593 mtd->oobsize = 1024;
3594 break;
3595 }
3596 extid >>= 2;
3597 /* Calc blocksize */
3598 mtd->erasesize = (128 * 1024) <<
3599 (((extid >> 1) & 0x04) | (extid & 0x03));
3600 *busw = 0;
3601 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3602 !nand_is_slc(chip)) {
3603 unsigned int tmp;
3604
3605 /* Calc pagesize */
3606 mtd->writesize = 2048 << (extid & 0x03);
3607 extid >>= 2;
3608 /* Calc oobsize */
3609 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3610 case 0:
3611 mtd->oobsize = 128;
3612 break;
3613 case 1:
3614 mtd->oobsize = 224;
3615 break;
3616 case 2:
3617 mtd->oobsize = 448;
3618 break;
3619 case 3:
3620 mtd->oobsize = 64;
3621 break;
3622 case 4:
3623 mtd->oobsize = 32;
3624 break;
3625 case 5:
3626 mtd->oobsize = 16;
3627 break;
3628 default:
3629 mtd->oobsize = 640;
3630 break;
3631 }
3632 extid >>= 2;
3633 /* Calc blocksize */
3634 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3635 if (tmp < 0x03)
3636 mtd->erasesize = (128 * 1024) << tmp;
3637 else if (tmp == 0x03)
3638 mtd->erasesize = 768 * 1024;
3639 else
3640 mtd->erasesize = (64 * 1024) << tmp;
3641 *busw = 0;
3642 } else {
3643 /* Calc pagesize */
3644 mtd->writesize = 1024 << (extid & 0x03);
3645 extid >>= 2;
3646 /* Calc oobsize */
3647 mtd->oobsize = (8 << (extid & 0x01)) *
3648 (mtd->writesize >> 9);
3649 extid >>= 2;
3650 /* Calc blocksize. Blocksize is multiples of 64KiB */
3651 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3652 extid >>= 2;
3653 /* Get buswidth information */
3654 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3655
3656 /*
3657 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3658 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3659 * follows:
3660 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3661 * 110b -> 24nm
3662 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3663 */
3664 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3665 nand_is_slc(chip) &&
3666 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3667 !(id_data[4] & 0x80) /* !BENAND */) {
3668 mtd->oobsize = 32 * mtd->writesize >> 9;
3669 }
3670
3671 }
3672 }
3673
3674 /*
3675 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3676 * decodes a matching ID table entry and assigns the MTD size parameters for
3677 * the chip.
3678 */
3679 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3680 struct nand_flash_dev *type, u8 id_data[8],
3681 int *busw)
3682 {
3683 int maf_id = id_data[0];
3684
3685 mtd->erasesize = type->erasesize;
3686 mtd->writesize = type->pagesize;
3687 mtd->oobsize = mtd->writesize / 32;
3688 *busw = type->options & NAND_BUSWIDTH_16;
3689
3690 /* All legacy ID NAND are small-page, SLC */
3691 chip->bits_per_cell = 1;
3692
3693 /*
3694 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3695 * some Spansion chips have erasesize that conflicts with size
3696 * listed in nand_ids table.
3697 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3698 */
3699 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3700 && id_data[6] == 0x00 && id_data[7] == 0x00
3701 && mtd->writesize == 512) {
3702 mtd->erasesize = 128 * 1024;
3703 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3704 }
3705 }
3706
3707 /*
3708 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3709 * heuristic patterns using various detected parameters (e.g., manufacturer,
3710 * page size, cell-type information).
3711 */
3712 static void nand_decode_bbm_options(struct mtd_info *mtd,
3713 struct nand_chip *chip, u8 id_data[8])
3714 {
3715 int maf_id = id_data[0];
3716
3717 /* Set the bad block position */
3718 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3719 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3720 else
3721 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3722
3723 /*
3724 * Bad block marker is stored in the last page of each block on Samsung
3725 * and Hynix MLC devices; stored in first two pages of each block on
3726 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3727 * AMD/Spansion, and Macronix. All others scan only the first page.
3728 */
3729 if (!nand_is_slc(chip) &&
3730 (maf_id == NAND_MFR_SAMSUNG ||
3731 maf_id == NAND_MFR_HYNIX))
3732 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3733 else if ((nand_is_slc(chip) &&
3734 (maf_id == NAND_MFR_SAMSUNG ||
3735 maf_id == NAND_MFR_HYNIX ||
3736 maf_id == NAND_MFR_TOSHIBA ||
3737 maf_id == NAND_MFR_AMD ||
3738 maf_id == NAND_MFR_MACRONIX)) ||
3739 (mtd->writesize == 2048 &&
3740 maf_id == NAND_MFR_MICRON))
3741 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3742 }
3743
3744 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3745 {
3746 return type->id_len;
3747 }
3748
3749 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3750 struct nand_flash_dev *type, u8 *id_data, int *busw)
3751 {
3752 if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3753 mtd->writesize = type->pagesize;
3754 mtd->erasesize = type->erasesize;
3755 mtd->oobsize = type->oobsize;
3756
3757 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3758 chip->chipsize = (uint64_t)type->chipsize << 20;
3759 chip->options |= type->options;
3760 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3761 chip->ecc_step_ds = NAND_ECC_STEP(type);
3762 chip->onfi_timing_mode_default =
3763 type->onfi_timing_mode_default;
3764
3765 *busw = type->options & NAND_BUSWIDTH_16;
3766
3767 if (!mtd->name)
3768 mtd->name = type->name;
3769
3770 return true;
3771 }
3772 return false;
3773 }
3774
3775 /*
3776 * Get the flash and manufacturer id and lookup if the type is supported.
3777 */
3778 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3779 struct nand_chip *chip,
3780 int *maf_id, int *dev_id,
3781 struct nand_flash_dev *type)
3782 {
3783 int busw;
3784 int i, maf_idx;
3785 u8 id_data[8];
3786
3787 /*
3788 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3789 * after power-up.
3790 */
3791 nand_reset(chip, 0);
3792
3793 /* Select the device */
3794 chip->select_chip(mtd, 0);
3795
3796 /* Send the command for reading device ID */
3797 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3798
3799 /* Read manufacturer and device IDs */
3800 *maf_id = chip->read_byte(mtd);
3801 *dev_id = chip->read_byte(mtd);
3802
3803 /*
3804 * Try again to make sure, as some systems the bus-hold or other
3805 * interface concerns can cause random data which looks like a
3806 * possibly credible NAND flash to appear. If the two results do
3807 * not match, ignore the device completely.
3808 */
3809
3810 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3811
3812 /* Read entire ID string */
3813 for (i = 0; i < 8; i++)
3814 id_data[i] = chip->read_byte(mtd);
3815
3816 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3817 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3818 *maf_id, *dev_id, id_data[0], id_data[1]);
3819 return ERR_PTR(-ENODEV);
3820 }
3821
3822 if (!type)
3823 type = nand_flash_ids;
3824
3825 for (; type->name != NULL; type++) {
3826 if (is_full_id_nand(type)) {
3827 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3828 goto ident_done;
3829 } else if (*dev_id == type->dev_id) {
3830 break;
3831 }
3832 }
3833
3834 chip->onfi_version = 0;
3835 if (!type->name || !type->pagesize) {
3836 /* Check if the chip is ONFI compliant */
3837 if (nand_flash_detect_onfi(mtd, chip, &busw))
3838 goto ident_done;
3839
3840 /* Check if the chip is JEDEC compliant */
3841 if (nand_flash_detect_jedec(mtd, chip, &busw))
3842 goto ident_done;
3843 }
3844
3845 if (!type->name)
3846 return ERR_PTR(-ENODEV);
3847
3848 if (!mtd->name)
3849 mtd->name = type->name;
3850
3851 chip->chipsize = (uint64_t)type->chipsize << 20;
3852
3853 if (!type->pagesize) {
3854 /* Decode parameters from extended ID */
3855 nand_decode_ext_id(mtd, chip, id_data, &busw);
3856 } else {
3857 nand_decode_id(mtd, chip, type, id_data, &busw);
3858 }
3859 /* Get chip options */
3860 chip->options |= type->options;
3861
3862 /*
3863 * Check if chip is not a Samsung device. Do not clear the
3864 * options for chips which do not have an extended id.
3865 */
3866 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3867 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3868 ident_done:
3869
3870 /* Try to identify manufacturer */
3871 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3872 if (nand_manuf_ids[maf_idx].id == *maf_id)
3873 break;
3874 }
3875
3876 if (chip->options & NAND_BUSWIDTH_AUTO) {
3877 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3878 chip->options |= busw;
3879 nand_set_defaults(chip, busw);
3880 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3881 /*
3882 * Check, if buswidth is correct. Hardware drivers should set
3883 * chip correct!
3884 */
3885 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3886 *maf_id, *dev_id);
3887 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3888 pr_warn("bus width %d instead %d bit\n",
3889 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3890 busw ? 16 : 8);
3891 return ERR_PTR(-EINVAL);
3892 }
3893
3894 nand_decode_bbm_options(mtd, chip, id_data);
3895
3896 /* Calculate the address shift from the page size */
3897 chip->page_shift = ffs(mtd->writesize) - 1;
3898 /* Convert chipsize to number of pages per chip -1 */
3899 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3900
3901 chip->bbt_erase_shift = chip->phys_erase_shift =
3902 ffs(mtd->erasesize) - 1;
3903 if (chip->chipsize & 0xffffffff)
3904 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3905 else {
3906 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3907 chip->chip_shift += 32 - 1;
3908 }
3909
3910 chip->badblockbits = 8;
3911 chip->erase = single_erase;
3912
3913 /* Do not replace user supplied command function! */
3914 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3915 chip->cmdfunc = nand_command_lp;
3916
3917 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3918 *maf_id, *dev_id);
3919
3920 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3921 if (chip->onfi_version)
3922 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3923 chip->onfi_params.model);
3924 else if (chip->jedec_version)
3925 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3926 chip->jedec_params.model);
3927 else
3928 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3929 type->name);
3930 #else
3931 if (chip->jedec_version)
3932 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3933 chip->jedec_params.model);
3934 else
3935 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3936 type->name);
3937
3938 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3939 type->name);
3940 #endif
3941
3942 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3943 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3944 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3945 return type;
3946 }
3947
3948 #if CONFIG_IS_ENABLED(OF_CONTROL)
3949 DECLARE_GLOBAL_DATA_PTR;
3950
3951 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3952 {
3953 int ret, ecc_mode = -1, ecc_strength, ecc_step;
3954 const void *blob = gd->fdt_blob;
3955 const char *str;
3956
3957 ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
3958 if (ret == 16)
3959 chip->options |= NAND_BUSWIDTH_16;
3960
3961 if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
3962 chip->bbt_options |= NAND_BBT_USE_FLASH;
3963
3964 str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
3965 if (str) {
3966 if (!strcmp(str, "none"))
3967 ecc_mode = NAND_ECC_NONE;
3968 else if (!strcmp(str, "soft"))
3969 ecc_mode = NAND_ECC_SOFT;
3970 else if (!strcmp(str, "hw"))
3971 ecc_mode = NAND_ECC_HW;
3972 else if (!strcmp(str, "hw_syndrome"))
3973 ecc_mode = NAND_ECC_HW_SYNDROME;
3974 else if (!strcmp(str, "hw_oob_first"))
3975 ecc_mode = NAND_ECC_HW_OOB_FIRST;
3976 else if (!strcmp(str, "soft_bch"))
3977 ecc_mode = NAND_ECC_SOFT_BCH;
3978 }
3979
3980
3981 ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
3982 ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
3983
3984 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3985 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3986 pr_err("must set both strength and step size in DT\n");
3987 return -EINVAL;
3988 }
3989
3990 if (ecc_mode >= 0)
3991 chip->ecc.mode = ecc_mode;
3992
3993 if (ecc_strength >= 0)
3994 chip->ecc.strength = ecc_strength;
3995
3996 if (ecc_step > 0)
3997 chip->ecc.size = ecc_step;
3998
3999 if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
4000 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4001
4002 return 0;
4003 }
4004 #else
4005 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
4006 {
4007 return 0;
4008 }
4009 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
4010
4011 /**
4012 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4013 * @mtd: MTD device structure
4014 * @maxchips: number of chips to scan for
4015 * @table: alternative NAND ID table
4016 *
4017 * This is the first phase of the normal nand_scan() function. It reads the
4018 * flash ID and sets up MTD fields accordingly.
4019 *
4020 */
4021 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4022 struct nand_flash_dev *table)
4023 {
4024 int i, nand_maf_id, nand_dev_id;
4025 struct nand_chip *chip = mtd_to_nand(mtd);
4026 struct nand_flash_dev *type;
4027 int ret;
4028
4029 if (chip->flash_node) {
4030 ret = nand_dt_init(mtd, chip, chip->flash_node);
4031 if (ret)
4032 return ret;
4033 }
4034
4035 /* Set the default functions */
4036 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4037
4038 /* Read the flash type */
4039 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4040 &nand_dev_id, table);
4041
4042 if (IS_ERR(type)) {
4043 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4044 pr_warn("No NAND device found\n");
4045 chip->select_chip(mtd, -1);
4046 return PTR_ERR(type);
4047 }
4048
4049 /* Initialize the ->data_interface field. */
4050 ret = nand_init_data_interface(chip);
4051 if (ret)
4052 return ret;
4053
4054 /*
4055 * Setup the data interface correctly on the chip and controller side.
4056 * This explicit call to nand_setup_data_interface() is only required
4057 * for the first die, because nand_reset() has been called before
4058 * ->data_interface and ->default_onfi_timing_mode were set.
4059 * For the other dies, nand_reset() will automatically switch to the
4060 * best mode for us.
4061 */
4062 ret = nand_setup_data_interface(chip);
4063 if (ret)
4064 return ret;
4065
4066 chip->select_chip(mtd, -1);
4067
4068 /* Check for a chip array */
4069 for (i = 1; i < maxchips; i++) {
4070 /* See comment in nand_get_flash_type for reset */
4071 nand_reset(chip, i);
4072
4073 chip->select_chip(mtd, i);
4074 /* Send the command for reading device ID */
4075 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4076 /* Read manufacturer and device IDs */
4077 if (nand_maf_id != chip->read_byte(mtd) ||
4078 nand_dev_id != chip->read_byte(mtd)) {
4079 chip->select_chip(mtd, -1);
4080 break;
4081 }
4082 chip->select_chip(mtd, -1);
4083 }
4084
4085 #ifdef DEBUG
4086 if (i > 1)
4087 pr_info("%d chips detected\n", i);
4088 #endif
4089
4090 /* Store the number of chips and calc total size for mtd */
4091 chip->numchips = i;
4092 mtd->size = i * chip->chipsize;
4093
4094 return 0;
4095 }
4096 EXPORT_SYMBOL(nand_scan_ident);
4097
4098 /*
4099 * Check if the chip configuration meet the datasheet requirements.
4100
4101 * If our configuration corrects A bits per B bytes and the minimum
4102 * required correction level is X bits per Y bytes, then we must ensure
4103 * both of the following are true:
4104 *
4105 * (1) A / B >= X / Y
4106 * (2) A >= X
4107 *
4108 * Requirement (1) ensures we can correct for the required bitflip density.
4109 * Requirement (2) ensures we can correct even when all bitflips are clumped
4110 * in the same sector.
4111 */
4112 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4113 {
4114 struct nand_chip *chip = mtd_to_nand(mtd);
4115 struct nand_ecc_ctrl *ecc = &chip->ecc;
4116 int corr, ds_corr;
4117
4118 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4119 /* Not enough information */
4120 return true;
4121
4122 /*
4123 * We get the number of corrected bits per page to compare
4124 * the correction density.
4125 */
4126 corr = (mtd->writesize * ecc->strength) / ecc->size;
4127 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4128
4129 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4130 }
4131
4132 static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4133 {
4134 struct nand_ecc_ctrl *ecc = &chip->ecc;
4135
4136 if (nand_standard_page_accessors(ecc))
4137 return false;
4138
4139 /*
4140 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4141 * controller driver implements all the page accessors because
4142 * default helpers are not suitable when the core does not
4143 * send the READ0/PAGEPROG commands.
4144 */
4145 return (!ecc->read_page || !ecc->write_page ||
4146 !ecc->read_page_raw || !ecc->write_page_raw ||
4147 (NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4148 (NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4149 ecc->hwctl && ecc->calculate));
4150 }
4151
4152 /**
4153 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4154 * @mtd: MTD device structure
4155 *
4156 * This is the second phase of the normal nand_scan() function. It fills out
4157 * all the uninitialized function pointers with the defaults and scans for a
4158 * bad block table if appropriate.
4159 */
4160 int nand_scan_tail(struct mtd_info *mtd)
4161 {
4162 int i;
4163 struct nand_chip *chip = mtd_to_nand(mtd);
4164 struct nand_ecc_ctrl *ecc = &chip->ecc;
4165 struct nand_buffers *nbuf;
4166
4167 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4168 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4169 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4170
4171 if (invalid_ecc_page_accessors(chip)) {
4172 pr_err("Invalid ECC page accessors setup\n");
4173 return -EINVAL;
4174 }
4175
4176 if (!(chip->options & NAND_OWN_BUFFERS)) {
4177 nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
4178 chip->buffers = nbuf;
4179 } else {
4180 if (!chip->buffers)
4181 return -ENOMEM;
4182 }
4183
4184 /* Set the internal oob buffer location, just after the page data */
4185 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4186
4187 /*
4188 * If no default placement scheme is given, select an appropriate one.
4189 */
4190 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4191 switch (mtd->oobsize) {
4192 case 8:
4193 ecc->layout = &nand_oob_8;
4194 break;
4195 case 16:
4196 ecc->layout = &nand_oob_16;
4197 break;
4198 case 64:
4199 ecc->layout = &nand_oob_64;
4200 break;
4201 case 128:
4202 ecc->layout = &nand_oob_128;
4203 break;
4204 default:
4205 pr_warn("No oob scheme defined for oobsize %d\n",
4206 mtd->oobsize);
4207 BUG();
4208 }
4209 }
4210
4211 if (!chip->write_page)
4212 chip->write_page = nand_write_page;
4213
4214 /*
4215 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4216 * selected and we have 256 byte pagesize fallback to software ECC
4217 */
4218
4219 switch (ecc->mode) {
4220 case NAND_ECC_HW_OOB_FIRST:
4221 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4222 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4223 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4224 BUG();
4225 }
4226 if (!ecc->read_page)
4227 ecc->read_page = nand_read_page_hwecc_oob_first;
4228
4229 case NAND_ECC_HW:
4230 /* Use standard hwecc read page function? */
4231 if (!ecc->read_page)
4232 ecc->read_page = nand_read_page_hwecc;
4233 if (!ecc->write_page)
4234 ecc->write_page = nand_write_page_hwecc;
4235 if (!ecc->read_page_raw)
4236 ecc->read_page_raw = nand_read_page_raw;
4237 if (!ecc->write_page_raw)
4238 ecc->write_page_raw = nand_write_page_raw;
4239 if (!ecc->read_oob)
4240 ecc->read_oob = nand_read_oob_std;
4241 if (!ecc->write_oob)
4242 ecc->write_oob = nand_write_oob_std;
4243 if (!ecc->read_subpage)
4244 ecc->read_subpage = nand_read_subpage;
4245 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4246 ecc->write_subpage = nand_write_subpage_hwecc;
4247
4248 case NAND_ECC_HW_SYNDROME:
4249 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4250 (!ecc->read_page ||
4251 ecc->read_page == nand_read_page_hwecc ||
4252 !ecc->write_page ||
4253 ecc->write_page == nand_write_page_hwecc)) {
4254 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4255 BUG();
4256 }
4257 /* Use standard syndrome read/write page function? */
4258 if (!ecc->read_page)
4259 ecc->read_page = nand_read_page_syndrome;
4260 if (!ecc->write_page)
4261 ecc->write_page = nand_write_page_syndrome;
4262 if (!ecc->read_page_raw)
4263 ecc->read_page_raw = nand_read_page_raw_syndrome;
4264 if (!ecc->write_page_raw)
4265 ecc->write_page_raw = nand_write_page_raw_syndrome;
4266 if (!ecc->read_oob)
4267 ecc->read_oob = nand_read_oob_syndrome;
4268 if (!ecc->write_oob)
4269 ecc->write_oob = nand_write_oob_syndrome;
4270
4271 if (mtd->writesize >= ecc->size) {
4272 if (!ecc->strength) {
4273 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4274 BUG();
4275 }
4276 break;
4277 }
4278 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4279 ecc->size, mtd->writesize);
4280 ecc->mode = NAND_ECC_SOFT;
4281
4282 case NAND_ECC_SOFT:
4283 ecc->calculate = nand_calculate_ecc;
4284 ecc->correct = nand_correct_data;
4285 ecc->read_page = nand_read_page_swecc;
4286 ecc->read_subpage = nand_read_subpage;
4287 ecc->write_page = nand_write_page_swecc;
4288 ecc->read_page_raw = nand_read_page_raw;
4289 ecc->write_page_raw = nand_write_page_raw;
4290 ecc->read_oob = nand_read_oob_std;
4291 ecc->write_oob = nand_write_oob_std;
4292 if (!ecc->size)
4293 ecc->size = 256;
4294 ecc->bytes = 3;
4295 ecc->strength = 1;
4296 break;
4297
4298 case NAND_ECC_SOFT_BCH:
4299 if (!mtd_nand_has_bch()) {
4300 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4301 BUG();
4302 }
4303 ecc->calculate = nand_bch_calculate_ecc;
4304 ecc->correct = nand_bch_correct_data;
4305 ecc->read_page = nand_read_page_swecc;
4306 ecc->read_subpage = nand_read_subpage;
4307 ecc->write_page = nand_write_page_swecc;
4308 ecc->read_page_raw = nand_read_page_raw;
4309 ecc->write_page_raw = nand_write_page_raw;
4310 ecc->read_oob = nand_read_oob_std;
4311 ecc->write_oob = nand_write_oob_std;
4312 /*
4313 * Board driver should supply ecc.size and ecc.strength values
4314 * to select how many bits are correctable. Otherwise, default
4315 * to 4 bits for large page devices.
4316 */
4317 if (!ecc->size && (mtd->oobsize >= 64)) {
4318 ecc->size = 512;
4319 ecc->strength = 4;
4320 }
4321
4322 /* See nand_bch_init() for details. */
4323 ecc->bytes = 0;
4324 ecc->priv = nand_bch_init(mtd);
4325 if (!ecc->priv) {
4326 pr_warn("BCH ECC initialization failed!\n");
4327 BUG();
4328 }
4329 break;
4330
4331 case NAND_ECC_NONE:
4332 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4333 ecc->read_page = nand_read_page_raw;
4334 ecc->write_page = nand_write_page_raw;
4335 ecc->read_oob = nand_read_oob_std;
4336 ecc->read_page_raw = nand_read_page_raw;
4337 ecc->write_page_raw = nand_write_page_raw;
4338 ecc->write_oob = nand_write_oob_std;
4339 ecc->size = mtd->writesize;
4340 ecc->bytes = 0;
4341 ecc->strength = 0;
4342 break;
4343
4344 default:
4345 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4346 BUG();
4347 }
4348
4349 /* For many systems, the standard OOB write also works for raw */
4350 if (!ecc->read_oob_raw)
4351 ecc->read_oob_raw = ecc->read_oob;
4352 if (!ecc->write_oob_raw)
4353 ecc->write_oob_raw = ecc->write_oob;
4354
4355 /*
4356 * The number of bytes available for a client to place data into
4357 * the out of band area.
4358 */
4359 mtd->oobavail = 0;
4360 if (ecc->layout) {
4361 for (i = 0; ecc->layout->oobfree[i].length; i++)
4362 mtd->oobavail += ecc->layout->oobfree[i].length;
4363 }
4364
4365 /* ECC sanity check: warn if it's too weak */
4366 if (!nand_ecc_strength_good(mtd))
4367 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4368 mtd->name);
4369
4370 /*
4371 * Set the number of read / write steps for one page depending on ECC
4372 * mode.
4373 */
4374 ecc->steps = mtd->writesize / ecc->size;
4375 if (ecc->steps * ecc->size != mtd->writesize) {
4376 pr_warn("Invalid ECC parameters\n");
4377 BUG();
4378 }
4379 ecc->total = ecc->steps * ecc->bytes;
4380
4381 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4382 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4383 switch (ecc->steps) {
4384 case 2:
4385 mtd->subpage_sft = 1;
4386 break;
4387 case 4:
4388 case 8:
4389 case 16:
4390 mtd->subpage_sft = 2;
4391 break;
4392 }
4393 }
4394 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4395
4396 /* Initialize state */
4397 chip->state = FL_READY;
4398
4399 /* Invalidate the pagebuffer reference */
4400 chip->pagebuf = -1;
4401
4402 /* Large page NAND with SOFT_ECC should support subpage reads */
4403 switch (ecc->mode) {
4404 case NAND_ECC_SOFT:
4405 case NAND_ECC_SOFT_BCH:
4406 if (chip->page_shift > 9)
4407 chip->options |= NAND_SUBPAGE_READ;
4408 break;
4409
4410 default:
4411 break;
4412 }
4413
4414 /* Fill in remaining MTD driver data */
4415 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4416 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4417 MTD_CAP_NANDFLASH;
4418 mtd->_erase = nand_erase;
4419 mtd->_read = nand_read;
4420 mtd->_write = nand_write;
4421 mtd->_panic_write = panic_nand_write;
4422 mtd->_read_oob = nand_read_oob;
4423 mtd->_write_oob = nand_write_oob;
4424 mtd->_sync = nand_sync;
4425 mtd->_lock = NULL;
4426 mtd->_unlock = NULL;
4427 mtd->_block_isreserved = nand_block_isreserved;
4428 mtd->_block_isbad = nand_block_isbad;
4429 mtd->_block_markbad = nand_block_markbad;
4430 mtd->writebufsize = mtd->writesize;
4431
4432 /* propagate ecc info to mtd_info */
4433 mtd->ecclayout = ecc->layout;
4434 mtd->ecc_strength = ecc->strength;
4435 mtd->ecc_step_size = ecc->size;
4436 /*
4437 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4438 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4439 * properly set.
4440 */
4441 if (!mtd->bitflip_threshold)
4442 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4443
4444 return 0;
4445 }
4446 EXPORT_SYMBOL(nand_scan_tail);
4447
4448 /**
4449 * nand_scan - [NAND Interface] Scan for the NAND device
4450 * @mtd: MTD device structure
4451 * @maxchips: number of chips to scan for
4452 *
4453 * This fills out all the uninitialized function pointers with the defaults.
4454 * The flash ID is read and the mtd/chip structures are filled with the
4455 * appropriate values.
4456 */
4457 int nand_scan(struct mtd_info *mtd, int maxchips)
4458 {
4459 int ret;
4460
4461 ret = nand_scan_ident(mtd, maxchips, NULL);
4462 if (!ret)
4463 ret = nand_scan_tail(mtd);
4464 return ret;
4465 }
4466 EXPORT_SYMBOL(nand_scan);
4467
4468 MODULE_LICENSE("GPL");
4469 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4470 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4471 MODULE_DESCRIPTION("Generic NAND flash driver code");