]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/usb/host/ehci-hcd.c
usb: ehci: add weak-aliased function for PORTSC
[people/ms/u-boot.git] / drivers / usb / host / ehci-hcd.c
1 /*-
2 * Copyright (c) 2007-2008, Juniper Networks, Inc.
3 * Copyright (c) 2008, Excito Elektronik i Skåne AB
4 * Copyright (c) 2008, Michael Trimarchi <trimarchimichael@yahoo.it>
5 *
6 * All rights reserved.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation version 2 of
11 * the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23 #include <common.h>
24 #include <errno.h>
25 #include <asm/byteorder.h>
26 #include <asm/unaligned.h>
27 #include <usb.h>
28 #include <asm/io.h>
29 #include <malloc.h>
30 #include <watchdog.h>
31 #include <linux/compiler.h>
32
33 #include "ehci.h"
34
35 #ifndef CONFIG_USB_MAX_CONTROLLER_COUNT
36 #define CONFIG_USB_MAX_CONTROLLER_COUNT 1
37 #endif
38
39 static struct ehci_ctrl {
40 struct ehci_hccr *hccr; /* R/O registers, not need for volatile */
41 struct ehci_hcor *hcor;
42 int rootdev;
43 uint16_t portreset;
44 struct QH qh_list __aligned(USB_DMA_MINALIGN);
45 struct QH periodic_queue __aligned(USB_DMA_MINALIGN);
46 uint32_t *periodic_list;
47 int ntds;
48 } ehcic[CONFIG_USB_MAX_CONTROLLER_COUNT];
49
50 #define ALIGN_END_ADDR(type, ptr, size) \
51 ((uint32_t)(ptr) + roundup((size) * sizeof(type), USB_DMA_MINALIGN))
52
53 static struct descriptor {
54 struct usb_hub_descriptor hub;
55 struct usb_device_descriptor device;
56 struct usb_linux_config_descriptor config;
57 struct usb_linux_interface_descriptor interface;
58 struct usb_endpoint_descriptor endpoint;
59 } __attribute__ ((packed)) descriptor = {
60 {
61 0x8, /* bDescLength */
62 0x29, /* bDescriptorType: hub descriptor */
63 2, /* bNrPorts -- runtime modified */
64 0, /* wHubCharacteristics */
65 10, /* bPwrOn2PwrGood */
66 0, /* bHubCntrCurrent */
67 {}, /* Device removable */
68 {} /* at most 7 ports! XXX */
69 },
70 {
71 0x12, /* bLength */
72 1, /* bDescriptorType: UDESC_DEVICE */
73 cpu_to_le16(0x0200), /* bcdUSB: v2.0 */
74 9, /* bDeviceClass: UDCLASS_HUB */
75 0, /* bDeviceSubClass: UDSUBCLASS_HUB */
76 1, /* bDeviceProtocol: UDPROTO_HSHUBSTT */
77 64, /* bMaxPacketSize: 64 bytes */
78 0x0000, /* idVendor */
79 0x0000, /* idProduct */
80 cpu_to_le16(0x0100), /* bcdDevice */
81 1, /* iManufacturer */
82 2, /* iProduct */
83 0, /* iSerialNumber */
84 1 /* bNumConfigurations: 1 */
85 },
86 {
87 0x9,
88 2, /* bDescriptorType: UDESC_CONFIG */
89 cpu_to_le16(0x19),
90 1, /* bNumInterface */
91 1, /* bConfigurationValue */
92 0, /* iConfiguration */
93 0x40, /* bmAttributes: UC_SELF_POWER */
94 0 /* bMaxPower */
95 },
96 {
97 0x9, /* bLength */
98 4, /* bDescriptorType: UDESC_INTERFACE */
99 0, /* bInterfaceNumber */
100 0, /* bAlternateSetting */
101 1, /* bNumEndpoints */
102 9, /* bInterfaceClass: UICLASS_HUB */
103 0, /* bInterfaceSubClass: UISUBCLASS_HUB */
104 0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */
105 0 /* iInterface */
106 },
107 {
108 0x7, /* bLength */
109 5, /* bDescriptorType: UDESC_ENDPOINT */
110 0x81, /* bEndpointAddress:
111 * UE_DIR_IN | EHCI_INTR_ENDPT
112 */
113 3, /* bmAttributes: UE_INTERRUPT */
114 8, /* wMaxPacketSize */
115 255 /* bInterval */
116 },
117 };
118
119 #if defined(CONFIG_EHCI_IS_TDI)
120 #define ehci_is_TDI() (1)
121 #else
122 #define ehci_is_TDI() (0)
123 #endif
124
125 int __ehci_get_port_speed(struct ehci_hcor *hcor, uint32_t reg)
126 {
127 return PORTSC_PSPD(reg);
128 }
129
130 int ehci_get_port_speed(struct ehci_hcor *hcor, uint32_t reg)
131 __attribute__((weak, alias("__ehci_get_port_speed")));
132
133 void __ehci_set_usbmode(int index)
134 {
135 uint32_t tmp;
136 uint32_t *reg_ptr;
137
138 reg_ptr = (uint32_t *)((u8 *)&ehcic[index].hcor->or_usbcmd + USBMODE);
139 tmp = ehci_readl(reg_ptr);
140 tmp |= USBMODE_CM_HC;
141 #if defined(CONFIG_EHCI_MMIO_BIG_ENDIAN)
142 tmp |= USBMODE_BE;
143 #endif
144 ehci_writel(reg_ptr, tmp);
145 }
146
147 void ehci_set_usbmode(int index)
148 __attribute__((weak, alias("__ehci_set_usbmode")));
149
150 void __ehci_powerup_fixup(uint32_t *status_reg, uint32_t *reg)
151 {
152 mdelay(50);
153 }
154
155 void ehci_powerup_fixup(uint32_t *status_reg, uint32_t *reg)
156 __attribute__((weak, alias("__ehci_powerup_fixup")));
157
158 static int handshake(uint32_t *ptr, uint32_t mask, uint32_t done, int usec)
159 {
160 uint32_t result;
161 do {
162 result = ehci_readl(ptr);
163 udelay(5);
164 if (result == ~(uint32_t)0)
165 return -1;
166 result &= mask;
167 if (result == done)
168 return 0;
169 usec--;
170 } while (usec > 0);
171 return -1;
172 }
173
174 static int ehci_reset(int index)
175 {
176 uint32_t cmd;
177 int ret = 0;
178
179 cmd = ehci_readl(&ehcic[index].hcor->or_usbcmd);
180 cmd = (cmd & ~CMD_RUN) | CMD_RESET;
181 ehci_writel(&ehcic[index].hcor->or_usbcmd, cmd);
182 ret = handshake((uint32_t *)&ehcic[index].hcor->or_usbcmd,
183 CMD_RESET, 0, 250 * 1000);
184 if (ret < 0) {
185 printf("EHCI fail to reset\n");
186 goto out;
187 }
188
189 if (ehci_is_TDI())
190 ehci_set_usbmode(index);
191
192 #ifdef CONFIG_USB_EHCI_TXFIFO_THRESH
193 cmd = ehci_readl(&ehcic[index].hcor->or_txfilltuning);
194 cmd &= ~TXFIFO_THRESH_MASK;
195 cmd |= TXFIFO_THRESH(CONFIG_USB_EHCI_TXFIFO_THRESH);
196 ehci_writel(&ehcic[index].hcor->or_txfilltuning, cmd);
197 #endif
198 out:
199 return ret;
200 }
201
202 static int ehci_td_buffer(struct qTD *td, void *buf, size_t sz)
203 {
204 uint32_t delta, next;
205 uint32_t addr = (uint32_t)buf;
206 int idx;
207
208 if (addr != ALIGN(addr, ARCH_DMA_MINALIGN))
209 debug("EHCI-HCD: Misaligned buffer address (%p)\n", buf);
210
211 flush_dcache_range(addr, ALIGN(addr + sz, ARCH_DMA_MINALIGN));
212
213 idx = 0;
214 while (idx < QT_BUFFER_CNT) {
215 td->qt_buffer[idx] = cpu_to_hc32(addr);
216 td->qt_buffer_hi[idx] = 0;
217 next = (addr + EHCI_PAGE_SIZE) & ~(EHCI_PAGE_SIZE - 1);
218 delta = next - addr;
219 if (delta >= sz)
220 break;
221 sz -= delta;
222 addr = next;
223 idx++;
224 }
225
226 if (idx == QT_BUFFER_CNT) {
227 printf("out of buffer pointers (%u bytes left)\n", sz);
228 return -1;
229 }
230
231 return 0;
232 }
233
234 static inline u8 ehci_encode_speed(enum usb_device_speed speed)
235 {
236 #define QH_HIGH_SPEED 2
237 #define QH_FULL_SPEED 0
238 #define QH_LOW_SPEED 1
239 if (speed == USB_SPEED_HIGH)
240 return QH_HIGH_SPEED;
241 if (speed == USB_SPEED_LOW)
242 return QH_LOW_SPEED;
243 return QH_FULL_SPEED;
244 }
245
246 static int
247 ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer,
248 int length, struct devrequest *req)
249 {
250 ALLOC_ALIGN_BUFFER(struct QH, qh, 1, USB_DMA_MINALIGN);
251 struct qTD *qtd;
252 int qtd_count = 0;
253 int qtd_counter = 0;
254 volatile struct qTD *vtd;
255 unsigned long ts;
256 uint32_t *tdp;
257 uint32_t endpt, maxpacket, token, usbsts;
258 uint32_t c, toggle;
259 uint32_t cmd;
260 int timeout;
261 int ret = 0;
262 struct ehci_ctrl *ctrl = dev->controller;
263
264 debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe,
265 buffer, length, req);
266 if (req != NULL)
267 debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n",
268 req->request, req->request,
269 req->requesttype, req->requesttype,
270 le16_to_cpu(req->value), le16_to_cpu(req->value),
271 le16_to_cpu(req->index));
272
273 #define PKT_ALIGN 512
274 /*
275 * The USB transfer is split into qTD transfers. Eeach qTD transfer is
276 * described by a transfer descriptor (the qTD). The qTDs form a linked
277 * list with a queue head (QH).
278 *
279 * Each qTD transfer starts with a new USB packet, i.e. a packet cannot
280 * have its beginning in a qTD transfer and its end in the following
281 * one, so the qTD transfer lengths have to be chosen accordingly.
282 *
283 * Each qTD transfer uses up to QT_BUFFER_CNT data buffers, mapped to
284 * single pages. The first data buffer can start at any offset within a
285 * page (not considering the cache-line alignment issues), while the
286 * following buffers must be page-aligned. There is no alignment
287 * constraint on the size of a qTD transfer.
288 */
289 if (req != NULL)
290 /* 1 qTD will be needed for SETUP, and 1 for ACK. */
291 qtd_count += 1 + 1;
292 if (length > 0 || req == NULL) {
293 /*
294 * Determine the qTD transfer size that will be used for the
295 * data payload (not considering the first qTD transfer, which
296 * may be longer or shorter, and the final one, which may be
297 * shorter).
298 *
299 * In order to keep each packet within a qTD transfer, the qTD
300 * transfer size is aligned to PKT_ALIGN, which is a multiple of
301 * wMaxPacketSize (except in some cases for interrupt transfers,
302 * see comment in submit_int_msg()).
303 *
304 * By default, i.e. if the input buffer is aligned to PKT_ALIGN,
305 * QT_BUFFER_CNT full pages will be used.
306 */
307 int xfr_sz = QT_BUFFER_CNT;
308 /*
309 * However, if the input buffer is not aligned to PKT_ALIGN, the
310 * qTD transfer size will be one page shorter, and the first qTD
311 * data buffer of each transfer will be page-unaligned.
312 */
313 if ((uint32_t)buffer & (PKT_ALIGN - 1))
314 xfr_sz--;
315 /* Convert the qTD transfer size to bytes. */
316 xfr_sz *= EHCI_PAGE_SIZE;
317 /*
318 * Approximate by excess the number of qTDs that will be
319 * required for the data payload. The exact formula is way more
320 * complicated and saves at most 2 qTDs, i.e. a total of 128
321 * bytes.
322 */
323 qtd_count += 2 + length / xfr_sz;
324 }
325 /*
326 * Threshold value based on the worst-case total size of the allocated qTDs for
327 * a mass-storage transfer of 65535 blocks of 512 bytes.
328 */
329 #if CONFIG_SYS_MALLOC_LEN <= 64 + 128 * 1024
330 #warning CONFIG_SYS_MALLOC_LEN may be too small for EHCI
331 #endif
332 qtd = memalign(USB_DMA_MINALIGN, qtd_count * sizeof(struct qTD));
333 if (qtd == NULL) {
334 printf("unable to allocate TDs\n");
335 return -1;
336 }
337
338 memset(qh, 0, sizeof(struct QH));
339 memset(qtd, 0, qtd_count * sizeof(*qtd));
340
341 toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));
342
343 /*
344 * Setup QH (3.6 in ehci-r10.pdf)
345 *
346 * qh_link ................. 03-00 H
347 * qh_endpt1 ............... 07-04 H
348 * qh_endpt2 ............... 0B-08 H
349 * - qh_curtd
350 * qh_overlay.qt_next ...... 13-10 H
351 * - qh_overlay.qt_altnext
352 */
353 qh->qh_link = cpu_to_hc32((uint32_t)&ctrl->qh_list | QH_LINK_TYPE_QH);
354 c = (dev->speed != USB_SPEED_HIGH) && !usb_pipeendpoint(pipe);
355 maxpacket = usb_maxpacket(dev, pipe);
356 endpt = QH_ENDPT1_RL(8) | QH_ENDPT1_C(c) |
357 QH_ENDPT1_MAXPKTLEN(maxpacket) | QH_ENDPT1_H(0) |
358 QH_ENDPT1_DTC(QH_ENDPT1_DTC_DT_FROM_QTD) |
359 QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) |
360 QH_ENDPT1_ENDPT(usb_pipeendpoint(pipe)) | QH_ENDPT1_I(0) |
361 QH_ENDPT1_DEVADDR(usb_pipedevice(pipe));
362 qh->qh_endpt1 = cpu_to_hc32(endpt);
363 endpt = QH_ENDPT2_MULT(1) | QH_ENDPT2_PORTNUM(dev->portnr) |
364 QH_ENDPT2_HUBADDR(dev->parent->devnum) |
365 QH_ENDPT2_UFCMASK(0) | QH_ENDPT2_UFSMASK(0);
366 qh->qh_endpt2 = cpu_to_hc32(endpt);
367 qh->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
368
369 tdp = &qh->qh_overlay.qt_next;
370
371 if (req != NULL) {
372 /*
373 * Setup request qTD (3.5 in ehci-r10.pdf)
374 *
375 * qt_next ................ 03-00 H
376 * qt_altnext ............. 07-04 H
377 * qt_token ............... 0B-08 H
378 *
379 * [ buffer, buffer_hi ] loaded with "req".
380 */
381 qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
382 qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
383 token = QT_TOKEN_DT(0) | QT_TOKEN_TOTALBYTES(sizeof(*req)) |
384 QT_TOKEN_IOC(0) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) |
385 QT_TOKEN_PID(QT_TOKEN_PID_SETUP) |
386 QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
387 qtd[qtd_counter].qt_token = cpu_to_hc32(token);
388 if (ehci_td_buffer(&qtd[qtd_counter], req, sizeof(*req))) {
389 printf("unable to construct SETUP TD\n");
390 goto fail;
391 }
392 /* Update previous qTD! */
393 *tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
394 tdp = &qtd[qtd_counter++].qt_next;
395 toggle = 1;
396 }
397
398 if (length > 0 || req == NULL) {
399 uint8_t *buf_ptr = buffer;
400 int left_length = length;
401
402 do {
403 /*
404 * Determine the size of this qTD transfer. By default,
405 * QT_BUFFER_CNT full pages can be used.
406 */
407 int xfr_bytes = QT_BUFFER_CNT * EHCI_PAGE_SIZE;
408 /*
409 * However, if the input buffer is not page-aligned, the
410 * portion of the first page before the buffer start
411 * offset within that page is unusable.
412 */
413 xfr_bytes -= (uint32_t)buf_ptr & (EHCI_PAGE_SIZE - 1);
414 /*
415 * In order to keep each packet within a qTD transfer,
416 * align the qTD transfer size to PKT_ALIGN.
417 */
418 xfr_bytes &= ~(PKT_ALIGN - 1);
419 /*
420 * This transfer may be shorter than the available qTD
421 * transfer size that has just been computed.
422 */
423 xfr_bytes = min(xfr_bytes, left_length);
424
425 /*
426 * Setup request qTD (3.5 in ehci-r10.pdf)
427 *
428 * qt_next ................ 03-00 H
429 * qt_altnext ............. 07-04 H
430 * qt_token ............... 0B-08 H
431 *
432 * [ buffer, buffer_hi ] loaded with "buffer".
433 */
434 qtd[qtd_counter].qt_next =
435 cpu_to_hc32(QT_NEXT_TERMINATE);
436 qtd[qtd_counter].qt_altnext =
437 cpu_to_hc32(QT_NEXT_TERMINATE);
438 token = QT_TOKEN_DT(toggle) |
439 QT_TOKEN_TOTALBYTES(xfr_bytes) |
440 QT_TOKEN_IOC(req == NULL) | QT_TOKEN_CPAGE(0) |
441 QT_TOKEN_CERR(3) |
442 QT_TOKEN_PID(usb_pipein(pipe) ?
443 QT_TOKEN_PID_IN : QT_TOKEN_PID_OUT) |
444 QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
445 qtd[qtd_counter].qt_token = cpu_to_hc32(token);
446 if (ehci_td_buffer(&qtd[qtd_counter], buf_ptr,
447 xfr_bytes)) {
448 printf("unable to construct DATA TD\n");
449 goto fail;
450 }
451 /* Update previous qTD! */
452 *tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
453 tdp = &qtd[qtd_counter++].qt_next;
454 /*
455 * Data toggle has to be adjusted since the qTD transfer
456 * size is not always an even multiple of
457 * wMaxPacketSize.
458 */
459 if ((xfr_bytes / maxpacket) & 1)
460 toggle ^= 1;
461 buf_ptr += xfr_bytes;
462 left_length -= xfr_bytes;
463 } while (left_length > 0);
464 }
465
466 if (req != NULL) {
467 /*
468 * Setup request qTD (3.5 in ehci-r10.pdf)
469 *
470 * qt_next ................ 03-00 H
471 * qt_altnext ............. 07-04 H
472 * qt_token ............... 0B-08 H
473 */
474 qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
475 qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
476 token = QT_TOKEN_DT(1) | QT_TOKEN_TOTALBYTES(0) |
477 QT_TOKEN_IOC(1) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) |
478 QT_TOKEN_PID(usb_pipein(pipe) ?
479 QT_TOKEN_PID_OUT : QT_TOKEN_PID_IN) |
480 QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
481 qtd[qtd_counter].qt_token = cpu_to_hc32(token);
482 /* Update previous qTD! */
483 *tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
484 tdp = &qtd[qtd_counter++].qt_next;
485 }
486
487 ctrl->qh_list.qh_link = cpu_to_hc32((uint32_t)qh | QH_LINK_TYPE_QH);
488
489 /* Flush dcache */
490 flush_dcache_range((uint32_t)&ctrl->qh_list,
491 ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1));
492 flush_dcache_range((uint32_t)qh, ALIGN_END_ADDR(struct QH, qh, 1));
493 flush_dcache_range((uint32_t)qtd,
494 ALIGN_END_ADDR(struct qTD, qtd, qtd_count));
495
496 /* Set async. queue head pointer. */
497 ehci_writel(&ctrl->hcor->or_asynclistaddr, (uint32_t)&ctrl->qh_list);
498
499 usbsts = ehci_readl(&ctrl->hcor->or_usbsts);
500 ehci_writel(&ctrl->hcor->or_usbsts, (usbsts & 0x3f));
501
502 /* Enable async. schedule. */
503 cmd = ehci_readl(&ctrl->hcor->or_usbcmd);
504 cmd |= CMD_ASE;
505 ehci_writel(&ctrl->hcor->or_usbcmd, cmd);
506
507 ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, STS_ASS,
508 100 * 1000);
509 if (ret < 0) {
510 printf("EHCI fail timeout STS_ASS set\n");
511 goto fail;
512 }
513
514 /* Wait for TDs to be processed. */
515 ts = get_timer(0);
516 vtd = &qtd[qtd_counter - 1];
517 timeout = USB_TIMEOUT_MS(pipe);
518 do {
519 /* Invalidate dcache */
520 invalidate_dcache_range((uint32_t)&ctrl->qh_list,
521 ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1));
522 invalidate_dcache_range((uint32_t)qh,
523 ALIGN_END_ADDR(struct QH, qh, 1));
524 invalidate_dcache_range((uint32_t)qtd,
525 ALIGN_END_ADDR(struct qTD, qtd, qtd_count));
526
527 token = hc32_to_cpu(vtd->qt_token);
528 if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE))
529 break;
530 WATCHDOG_RESET();
531 } while (get_timer(ts) < timeout);
532
533 /*
534 * Invalidate the memory area occupied by buffer
535 * Don't try to fix the buffer alignment, if it isn't properly
536 * aligned it's upper layer's fault so let invalidate_dcache_range()
537 * vow about it. But we have to fix the length as it's actual
538 * transfer length and can be unaligned. This is potentially
539 * dangerous operation, it's responsibility of the calling
540 * code to make sure enough space is reserved.
541 */
542 invalidate_dcache_range((uint32_t)buffer,
543 ALIGN((uint32_t)buffer + length, ARCH_DMA_MINALIGN));
544
545 /* Check that the TD processing happened */
546 if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)
547 printf("EHCI timed out on TD - token=%#x\n", token);
548
549 /* Disable async schedule. */
550 cmd = ehci_readl(&ctrl->hcor->or_usbcmd);
551 cmd &= ~CMD_ASE;
552 ehci_writel(&ctrl->hcor->or_usbcmd, cmd);
553
554 ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, 0,
555 100 * 1000);
556 if (ret < 0) {
557 printf("EHCI fail timeout STS_ASS reset\n");
558 goto fail;
559 }
560
561 token = hc32_to_cpu(qh->qh_overlay.qt_token);
562 if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)) {
563 debug("TOKEN=%#x\n", token);
564 switch (QT_TOKEN_GET_STATUS(token) &
565 ~(QT_TOKEN_STATUS_SPLITXSTATE | QT_TOKEN_STATUS_PERR)) {
566 case 0:
567 toggle = QT_TOKEN_GET_DT(token);
568 usb_settoggle(dev, usb_pipeendpoint(pipe),
569 usb_pipeout(pipe), toggle);
570 dev->status = 0;
571 break;
572 case QT_TOKEN_STATUS_HALTED:
573 dev->status = USB_ST_STALLED;
574 break;
575 case QT_TOKEN_STATUS_ACTIVE | QT_TOKEN_STATUS_DATBUFERR:
576 case QT_TOKEN_STATUS_DATBUFERR:
577 dev->status = USB_ST_BUF_ERR;
578 break;
579 case QT_TOKEN_STATUS_HALTED | QT_TOKEN_STATUS_BABBLEDET:
580 case QT_TOKEN_STATUS_BABBLEDET:
581 dev->status = USB_ST_BABBLE_DET;
582 break;
583 default:
584 dev->status = USB_ST_CRC_ERR;
585 if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_HALTED)
586 dev->status |= USB_ST_STALLED;
587 break;
588 }
589 dev->act_len = length - QT_TOKEN_GET_TOTALBYTES(token);
590 } else {
591 dev->act_len = 0;
592 debug("dev=%u, usbsts=%#x, p[1]=%#x, p[2]=%#x\n",
593 dev->devnum, ehci_readl(&ctrl->hcor->or_usbsts),
594 ehci_readl(&ctrl->hcor->or_portsc[0]),
595 ehci_readl(&ctrl->hcor->or_portsc[1]));
596 }
597
598 free(qtd);
599 return (dev->status != USB_ST_NOT_PROC) ? 0 : -1;
600
601 fail:
602 free(qtd);
603 return -1;
604 }
605
606 __weak uint32_t *ehci_get_portsc_register(struct ehci_hcor *hcor, int port)
607 {
608 if (port < 0 || port >= CONFIG_SYS_USB_EHCI_MAX_ROOT_PORTS) {
609 /* Printing the message would cause a scan failure! */
610 debug("The request port(%u) is not configured\n", port);
611 return NULL;
612 }
613
614 return (uint32_t *)&hcor->or_portsc[port];
615 }
616
617 int
618 ehci_submit_root(struct usb_device *dev, unsigned long pipe, void *buffer,
619 int length, struct devrequest *req)
620 {
621 uint8_t tmpbuf[4];
622 u16 typeReq;
623 void *srcptr = NULL;
624 int len, srclen;
625 uint32_t reg;
626 uint32_t *status_reg;
627 int port = le16_to_cpu(req->index) & 0xff;
628 struct ehci_ctrl *ctrl = dev->controller;
629
630 srclen = 0;
631
632 debug("req=%u (%#x), type=%u (%#x), value=%u, index=%u\n",
633 req->request, req->request,
634 req->requesttype, req->requesttype,
635 le16_to_cpu(req->value), le16_to_cpu(req->index));
636
637 typeReq = req->request | req->requesttype << 8;
638
639 switch (typeReq) {
640 case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
641 case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
642 case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
643 status_reg = ehci_get_portsc_register(ctrl->hcor, port - 1);
644 if (!status_reg)
645 return -1;
646 break;
647 default:
648 status_reg = NULL;
649 break;
650 }
651
652 switch (typeReq) {
653 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
654 switch (le16_to_cpu(req->value) >> 8) {
655 case USB_DT_DEVICE:
656 debug("USB_DT_DEVICE request\n");
657 srcptr = &descriptor.device;
658 srclen = descriptor.device.bLength;
659 break;
660 case USB_DT_CONFIG:
661 debug("USB_DT_CONFIG config\n");
662 srcptr = &descriptor.config;
663 srclen = descriptor.config.bLength +
664 descriptor.interface.bLength +
665 descriptor.endpoint.bLength;
666 break;
667 case USB_DT_STRING:
668 debug("USB_DT_STRING config\n");
669 switch (le16_to_cpu(req->value) & 0xff) {
670 case 0: /* Language */
671 srcptr = "\4\3\1\0";
672 srclen = 4;
673 break;
674 case 1: /* Vendor */
675 srcptr = "\16\3u\0-\0b\0o\0o\0t\0";
676 srclen = 14;
677 break;
678 case 2: /* Product */
679 srcptr = "\52\3E\0H\0C\0I\0 "
680 "\0H\0o\0s\0t\0 "
681 "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
682 srclen = 42;
683 break;
684 default:
685 debug("unknown value DT_STRING %x\n",
686 le16_to_cpu(req->value));
687 goto unknown;
688 }
689 break;
690 default:
691 debug("unknown value %x\n", le16_to_cpu(req->value));
692 goto unknown;
693 }
694 break;
695 case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
696 switch (le16_to_cpu(req->value) >> 8) {
697 case USB_DT_HUB:
698 debug("USB_DT_HUB config\n");
699 srcptr = &descriptor.hub;
700 srclen = descriptor.hub.bLength;
701 break;
702 default:
703 debug("unknown value %x\n", le16_to_cpu(req->value));
704 goto unknown;
705 }
706 break;
707 case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
708 debug("USB_REQ_SET_ADDRESS\n");
709 ctrl->rootdev = le16_to_cpu(req->value);
710 break;
711 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
712 debug("USB_REQ_SET_CONFIGURATION\n");
713 /* Nothing to do */
714 break;
715 case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
716 tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */
717 tmpbuf[1] = 0;
718 srcptr = tmpbuf;
719 srclen = 2;
720 break;
721 case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
722 memset(tmpbuf, 0, 4);
723 reg = ehci_readl(status_reg);
724 if (reg & EHCI_PS_CS)
725 tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
726 if (reg & EHCI_PS_PE)
727 tmpbuf[0] |= USB_PORT_STAT_ENABLE;
728 if (reg & EHCI_PS_SUSP)
729 tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
730 if (reg & EHCI_PS_OCA)
731 tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
732 if (reg & EHCI_PS_PR)
733 tmpbuf[0] |= USB_PORT_STAT_RESET;
734 if (reg & EHCI_PS_PP)
735 tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
736
737 if (ehci_is_TDI()) {
738 switch (ehci_get_port_speed(ctrl->hcor, reg)) {
739 case PORTSC_PSPD_FS:
740 break;
741 case PORTSC_PSPD_LS:
742 tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
743 break;
744 case PORTSC_PSPD_HS:
745 default:
746 tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
747 break;
748 }
749 } else {
750 tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
751 }
752
753 if (reg & EHCI_PS_CSC)
754 tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
755 if (reg & EHCI_PS_PEC)
756 tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
757 if (reg & EHCI_PS_OCC)
758 tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
759 if (ctrl->portreset & (1 << port))
760 tmpbuf[2] |= USB_PORT_STAT_C_RESET;
761
762 srcptr = tmpbuf;
763 srclen = 4;
764 break;
765 case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
766 reg = ehci_readl(status_reg);
767 reg &= ~EHCI_PS_CLEAR;
768 switch (le16_to_cpu(req->value)) {
769 case USB_PORT_FEAT_ENABLE:
770 reg |= EHCI_PS_PE;
771 ehci_writel(status_reg, reg);
772 break;
773 case USB_PORT_FEAT_POWER:
774 if (HCS_PPC(ehci_readl(&ctrl->hccr->cr_hcsparams))) {
775 reg |= EHCI_PS_PP;
776 ehci_writel(status_reg, reg);
777 }
778 break;
779 case USB_PORT_FEAT_RESET:
780 if ((reg & (EHCI_PS_PE | EHCI_PS_CS)) == EHCI_PS_CS &&
781 !ehci_is_TDI() &&
782 EHCI_PS_IS_LOWSPEED(reg)) {
783 /* Low speed device, give up ownership. */
784 debug("port %d low speed --> companion\n",
785 port - 1);
786 reg |= EHCI_PS_PO;
787 ehci_writel(status_reg, reg);
788 break;
789 } else {
790 int ret;
791
792 reg |= EHCI_PS_PR;
793 reg &= ~EHCI_PS_PE;
794 ehci_writel(status_reg, reg);
795 /*
796 * caller must wait, then call GetPortStatus
797 * usb 2.0 specification say 50 ms resets on
798 * root
799 */
800 ehci_powerup_fixup(status_reg, &reg);
801
802 ehci_writel(status_reg, reg & ~EHCI_PS_PR);
803 /*
804 * A host controller must terminate the reset
805 * and stabilize the state of the port within
806 * 2 milliseconds
807 */
808 ret = handshake(status_reg, EHCI_PS_PR, 0,
809 2 * 1000);
810 if (!ret)
811 ctrl->portreset |= 1 << port;
812 else
813 printf("port(%d) reset error\n",
814 port - 1);
815 }
816 break;
817 case USB_PORT_FEAT_TEST:
818 reg &= ~(0xf << 16);
819 reg |= ((le16_to_cpu(req->index) >> 8) & 0xf) << 16;
820 ehci_writel(status_reg, reg);
821 break;
822 default:
823 debug("unknown feature %x\n", le16_to_cpu(req->value));
824 goto unknown;
825 }
826 /* unblock posted writes */
827 (void) ehci_readl(&ctrl->hcor->or_usbcmd);
828 break;
829 case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
830 reg = ehci_readl(status_reg);
831 reg &= ~EHCI_PS_CLEAR;
832 switch (le16_to_cpu(req->value)) {
833 case USB_PORT_FEAT_ENABLE:
834 reg &= ~EHCI_PS_PE;
835 break;
836 case USB_PORT_FEAT_C_ENABLE:
837 reg |= EHCI_PS_PE;
838 break;
839 case USB_PORT_FEAT_POWER:
840 if (HCS_PPC(ehci_readl(&ctrl->hccr->cr_hcsparams)))
841 reg &= ~EHCI_PS_PP;
842 break;
843 case USB_PORT_FEAT_C_CONNECTION:
844 reg |= EHCI_PS_CSC;
845 break;
846 case USB_PORT_FEAT_OVER_CURRENT:
847 reg |= EHCI_PS_OCC;
848 break;
849 case USB_PORT_FEAT_C_RESET:
850 ctrl->portreset &= ~(1 << port);
851 break;
852 default:
853 debug("unknown feature %x\n", le16_to_cpu(req->value));
854 goto unknown;
855 }
856 ehci_writel(status_reg, reg);
857 /* unblock posted write */
858 (void) ehci_readl(&ctrl->hcor->or_usbcmd);
859 break;
860 default:
861 debug("Unknown request\n");
862 goto unknown;
863 }
864
865 mdelay(1);
866 len = min3(srclen, le16_to_cpu(req->length), length);
867 if (srcptr != NULL && len > 0)
868 memcpy(buffer, srcptr, len);
869 else
870 debug("Len is 0\n");
871
872 dev->act_len = len;
873 dev->status = 0;
874 return 0;
875
876 unknown:
877 debug("requesttype=%x, request=%x, value=%x, index=%x, length=%x\n",
878 req->requesttype, req->request, le16_to_cpu(req->value),
879 le16_to_cpu(req->index), le16_to_cpu(req->length));
880
881 dev->act_len = 0;
882 dev->status = USB_ST_STALLED;
883 return -1;
884 }
885
886 int usb_lowlevel_stop(int index)
887 {
888 return ehci_hcd_stop(index);
889 }
890
891 int usb_lowlevel_init(int index, void **controller)
892 {
893 uint32_t reg;
894 uint32_t cmd;
895 struct QH *qh_list;
896 struct QH *periodic;
897 int i;
898
899 if (ehci_hcd_init(index, &ehcic[index].hccr, &ehcic[index].hcor))
900 return -1;
901
902 /* EHCI spec section 4.1 */
903 if (ehci_reset(index))
904 return -1;
905
906 #if defined(CONFIG_EHCI_HCD_INIT_AFTER_RESET)
907 if (ehci_hcd_init(index, &ehcic[index].hccr, &ehcic[index].hcor))
908 return -1;
909 #endif
910 /* Set the high address word (aka segment) for 64-bit controller */
911 if (ehci_readl(&ehcic[index].hccr->cr_hccparams) & 1)
912 ehci_writel(ehcic[index].hcor->or_ctrldssegment, 0);
913
914 qh_list = &ehcic[index].qh_list;
915
916 /* Set head of reclaim list */
917 memset(qh_list, 0, sizeof(*qh_list));
918 qh_list->qh_link = cpu_to_hc32((uint32_t)qh_list | QH_LINK_TYPE_QH);
919 qh_list->qh_endpt1 = cpu_to_hc32(QH_ENDPT1_H(1) |
920 QH_ENDPT1_EPS(USB_SPEED_HIGH));
921 qh_list->qh_curtd = cpu_to_hc32(QT_NEXT_TERMINATE);
922 qh_list->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
923 qh_list->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
924 qh_list->qh_overlay.qt_token =
925 cpu_to_hc32(QT_TOKEN_STATUS(QT_TOKEN_STATUS_HALTED));
926
927 /* Set async. queue head pointer. */
928 ehci_writel(&ehcic[index].hcor->or_asynclistaddr, (uint32_t)qh_list);
929
930 /*
931 * Set up periodic list
932 * Step 1: Parent QH for all periodic transfers.
933 */
934 periodic = &ehcic[index].periodic_queue;
935 memset(periodic, 0, sizeof(*periodic));
936 periodic->qh_link = cpu_to_hc32(QH_LINK_TERMINATE);
937 periodic->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
938 periodic->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
939
940 /*
941 * Step 2: Setup frame-list: Every microframe, USB tries the same list.
942 * In particular, device specifications on polling frequency
943 * are disregarded. Keyboards seem to send NAK/NYet reliably
944 * when polled with an empty buffer.
945 *
946 * Split Transactions will be spread across microframes using
947 * S-mask and C-mask.
948 */
949 ehcic[index].periodic_list = memalign(4096, 1024*4);
950 if (!ehcic[index].periodic_list)
951 return -ENOMEM;
952 for (i = 0; i < 1024; i++) {
953 ehcic[index].periodic_list[i] = (uint32_t)periodic
954 | QH_LINK_TYPE_QH;
955 }
956
957 /* Set periodic list base address */
958 ehci_writel(&ehcic[index].hcor->or_periodiclistbase,
959 (uint32_t)ehcic[index].periodic_list);
960
961 reg = ehci_readl(&ehcic[index].hccr->cr_hcsparams);
962 descriptor.hub.bNbrPorts = HCS_N_PORTS(reg);
963 debug("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts);
964 /* Port Indicators */
965 if (HCS_INDICATOR(reg))
966 put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
967 | 0x80, &descriptor.hub.wHubCharacteristics);
968 /* Port Power Control */
969 if (HCS_PPC(reg))
970 put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
971 | 0x01, &descriptor.hub.wHubCharacteristics);
972
973 /* Start the host controller. */
974 cmd = ehci_readl(&ehcic[index].hcor->or_usbcmd);
975 /*
976 * Philips, Intel, and maybe others need CMD_RUN before the
977 * root hub will detect new devices (why?); NEC doesn't
978 */
979 cmd &= ~(CMD_LRESET|CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
980 cmd |= CMD_RUN;
981 ehci_writel(&ehcic[index].hcor->or_usbcmd, cmd);
982
983 /* take control over the ports */
984 cmd = ehci_readl(&ehcic[index].hcor->or_configflag);
985 cmd |= FLAG_CF;
986 ehci_writel(&ehcic[index].hcor->or_configflag, cmd);
987 /* unblock posted write */
988 cmd = ehci_readl(&ehcic[index].hcor->or_usbcmd);
989 mdelay(5);
990 reg = HC_VERSION(ehci_readl(&ehcic[index].hccr->cr_capbase));
991 printf("USB EHCI %x.%02x\n", reg >> 8, reg & 0xff);
992
993 ehcic[index].rootdev = 0;
994
995 *controller = &ehcic[index];
996 return 0;
997 }
998
999 int
1000 submit_bulk_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
1001 int length)
1002 {
1003
1004 if (usb_pipetype(pipe) != PIPE_BULK) {
1005 debug("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
1006 return -1;
1007 }
1008 return ehci_submit_async(dev, pipe, buffer, length, NULL);
1009 }
1010
1011 int
1012 submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
1013 int length, struct devrequest *setup)
1014 {
1015 struct ehci_ctrl *ctrl = dev->controller;
1016
1017 if (usb_pipetype(pipe) != PIPE_CONTROL) {
1018 debug("non-control pipe (type=%lu)", usb_pipetype(pipe));
1019 return -1;
1020 }
1021
1022 if (usb_pipedevice(pipe) == ctrl->rootdev) {
1023 if (!ctrl->rootdev)
1024 dev->speed = USB_SPEED_HIGH;
1025 return ehci_submit_root(dev, pipe, buffer, length, setup);
1026 }
1027 return ehci_submit_async(dev, pipe, buffer, length, setup);
1028 }
1029
1030 struct int_queue {
1031 struct QH *first;
1032 struct QH *current;
1033 struct QH *last;
1034 struct qTD *tds;
1035 };
1036
1037 #define NEXT_QH(qh) (struct QH *)((qh)->qh_link & ~0x1f)
1038
1039 static int
1040 enable_periodic(struct ehci_ctrl *ctrl)
1041 {
1042 uint32_t cmd;
1043 struct ehci_hcor *hcor = ctrl->hcor;
1044 int ret;
1045
1046 cmd = ehci_readl(&hcor->or_usbcmd);
1047 cmd |= CMD_PSE;
1048 ehci_writel(&hcor->or_usbcmd, cmd);
1049
1050 ret = handshake((uint32_t *)&hcor->or_usbsts,
1051 STS_PSS, STS_PSS, 100 * 1000);
1052 if (ret < 0) {
1053 printf("EHCI failed: timeout when enabling periodic list\n");
1054 return -ETIMEDOUT;
1055 }
1056 udelay(1000);
1057 return 0;
1058 }
1059
1060 static int
1061 disable_periodic(struct ehci_ctrl *ctrl)
1062 {
1063 uint32_t cmd;
1064 struct ehci_hcor *hcor = ctrl->hcor;
1065 int ret;
1066
1067 cmd = ehci_readl(&hcor->or_usbcmd);
1068 cmd &= ~CMD_PSE;
1069 ehci_writel(&hcor->or_usbcmd, cmd);
1070
1071 ret = handshake((uint32_t *)&hcor->or_usbsts,
1072 STS_PSS, 0, 100 * 1000);
1073 if (ret < 0) {
1074 printf("EHCI failed: timeout when disabling periodic list\n");
1075 return -ETIMEDOUT;
1076 }
1077 return 0;
1078 }
1079
1080 static int periodic_schedules;
1081
1082 struct int_queue *
1083 create_int_queue(struct usb_device *dev, unsigned long pipe, int queuesize,
1084 int elementsize, void *buffer)
1085 {
1086 struct ehci_ctrl *ctrl = dev->controller;
1087 struct int_queue *result = NULL;
1088 int i;
1089
1090 debug("Enter create_int_queue\n");
1091 if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
1092 debug("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
1093 return NULL;
1094 }
1095
1096 /* limit to 4 full pages worth of data -
1097 * we can safely fit them in a single TD,
1098 * no matter the alignment
1099 */
1100 if (elementsize >= 16384) {
1101 debug("too large elements for interrupt transfers\n");
1102 return NULL;
1103 }
1104
1105 result = malloc(sizeof(*result));
1106 if (!result) {
1107 debug("ehci intr queue: out of memory\n");
1108 goto fail1;
1109 }
1110 result->first = memalign(32, sizeof(struct QH) * queuesize);
1111 if (!result->first) {
1112 debug("ehci intr queue: out of memory\n");
1113 goto fail2;
1114 }
1115 result->current = result->first;
1116 result->last = result->first + queuesize - 1;
1117 result->tds = memalign(32, sizeof(struct qTD) * queuesize);
1118 if (!result->tds) {
1119 debug("ehci intr queue: out of memory\n");
1120 goto fail3;
1121 }
1122 memset(result->first, 0, sizeof(struct QH) * queuesize);
1123 memset(result->tds, 0, sizeof(struct qTD) * queuesize);
1124
1125 for (i = 0; i < queuesize; i++) {
1126 struct QH *qh = result->first + i;
1127 struct qTD *td = result->tds + i;
1128 void **buf = &qh->buffer;
1129
1130 qh->qh_link = (uint32_t)(qh+1) | QH_LINK_TYPE_QH;
1131 if (i == queuesize - 1)
1132 qh->qh_link = QH_LINK_TERMINATE;
1133
1134 qh->qh_overlay.qt_next = (uint32_t)td;
1135 qh->qh_endpt1 = (0 << 28) | /* No NAK reload (ehci 4.9) */
1136 (usb_maxpacket(dev, pipe) << 16) | /* MPS */
1137 (1 << 14) |
1138 QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) |
1139 (usb_pipeendpoint(pipe) << 8) | /* Endpoint Number */
1140 (usb_pipedevice(pipe) << 0);
1141 qh->qh_endpt2 = (1 << 30) | /* 1 Tx per mframe */
1142 (1 << 0); /* S-mask: microframe 0 */
1143 if (dev->speed == USB_SPEED_LOW ||
1144 dev->speed == USB_SPEED_FULL) {
1145 debug("TT: port: %d, hub address: %d\n",
1146 dev->portnr, dev->parent->devnum);
1147 qh->qh_endpt2 |= (dev->portnr << 23) |
1148 (dev->parent->devnum << 16) |
1149 (0x1c << 8); /* C-mask: microframes 2-4 */
1150 }
1151
1152 td->qt_next = QT_NEXT_TERMINATE;
1153 td->qt_altnext = QT_NEXT_TERMINATE;
1154 debug("communication direction is '%s'\n",
1155 usb_pipein(pipe) ? "in" : "out");
1156 td->qt_token = (elementsize << 16) |
1157 ((usb_pipein(pipe) ? 1 : 0) << 8) | /* IN/OUT token */
1158 0x80; /* active */
1159 td->qt_buffer[0] = (uint32_t)buffer + i * elementsize;
1160 td->qt_buffer[1] = (td->qt_buffer[0] + 0x1000) & ~0xfff;
1161 td->qt_buffer[2] = (td->qt_buffer[0] + 0x2000) & ~0xfff;
1162 td->qt_buffer[3] = (td->qt_buffer[0] + 0x3000) & ~0xfff;
1163 td->qt_buffer[4] = (td->qt_buffer[0] + 0x4000) & ~0xfff;
1164
1165 *buf = buffer + i * elementsize;
1166 }
1167
1168 if (disable_periodic(ctrl) < 0) {
1169 debug("FATAL: periodic should never fail, but did");
1170 goto fail3;
1171 }
1172
1173 /* hook up to periodic list */
1174 struct QH *list = &ctrl->periodic_queue;
1175 result->last->qh_link = list->qh_link;
1176 list->qh_link = (uint32_t)result->first | QH_LINK_TYPE_QH;
1177
1178 if (enable_periodic(ctrl) < 0) {
1179 debug("FATAL: periodic should never fail, but did");
1180 goto fail3;
1181 }
1182 periodic_schedules++;
1183
1184 debug("Exit create_int_queue\n");
1185 return result;
1186 fail3:
1187 if (result->tds)
1188 free(result->tds);
1189 fail2:
1190 if (result->first)
1191 free(result->first);
1192 if (result)
1193 free(result);
1194 fail1:
1195 return NULL;
1196 }
1197
1198 void *poll_int_queue(struct usb_device *dev, struct int_queue *queue)
1199 {
1200 struct QH *cur = queue->current;
1201
1202 /* depleted queue */
1203 if (cur == NULL) {
1204 debug("Exit poll_int_queue with completed queue\n");
1205 return NULL;
1206 }
1207 /* still active */
1208 if (cur->qh_overlay.qt_token & 0x80) {
1209 debug("Exit poll_int_queue with no completed intr transfer. "
1210 "token is %x\n", cur->qh_overlay.qt_token);
1211 return NULL;
1212 }
1213 if (!(cur->qh_link & QH_LINK_TERMINATE))
1214 queue->current++;
1215 else
1216 queue->current = NULL;
1217 debug("Exit poll_int_queue with completed intr transfer. "
1218 "token is %x at %p (first at %p)\n", cur->qh_overlay.qt_token,
1219 &cur->qh_overlay.qt_token, queue->first);
1220 return cur->buffer;
1221 }
1222
1223 /* Do not free buffers associated with QHs, they're owned by someone else */
1224 int
1225 destroy_int_queue(struct usb_device *dev, struct int_queue *queue)
1226 {
1227 struct ehci_ctrl *ctrl = dev->controller;
1228 int result = -1;
1229 unsigned long timeout;
1230
1231 if (disable_periodic(ctrl) < 0) {
1232 debug("FATAL: periodic should never fail, but did");
1233 goto out;
1234 }
1235 periodic_schedules--;
1236
1237 struct QH *cur = &ctrl->periodic_queue;
1238 timeout = get_timer(0) + 500; /* abort after 500ms */
1239 while (!(cur->qh_link & QH_LINK_TERMINATE)) {
1240 debug("considering %p, with qh_link %x\n", cur, cur->qh_link);
1241 if (NEXT_QH(cur) == queue->first) {
1242 debug("found candidate. removing from chain\n");
1243 cur->qh_link = queue->last->qh_link;
1244 result = 0;
1245 break;
1246 }
1247 cur = NEXT_QH(cur);
1248 if (get_timer(0) > timeout) {
1249 printf("Timeout destroying interrupt endpoint queue\n");
1250 result = -1;
1251 goto out;
1252 }
1253 }
1254
1255 if (periodic_schedules > 0) {
1256 result = enable_periodic(ctrl);
1257 if (result < 0)
1258 debug("FATAL: periodic should never fail, but did");
1259 }
1260
1261 out:
1262 free(queue->tds);
1263 free(queue->first);
1264 free(queue);
1265
1266 return result;
1267 }
1268
1269 int
1270 submit_int_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
1271 int length, int interval)
1272 {
1273 void *backbuffer;
1274 struct int_queue *queue;
1275 unsigned long timeout;
1276 int result = 0, ret;
1277
1278 debug("dev=%p, pipe=%lu, buffer=%p, length=%d, interval=%d",
1279 dev, pipe, buffer, length, interval);
1280
1281 /*
1282 * Interrupt transfers requiring several transactions are not supported
1283 * because bInterval is ignored.
1284 *
1285 * Also, ehci_submit_async() relies on wMaxPacketSize being a power of 2
1286 * <= PKT_ALIGN if several qTDs are required, while the USB
1287 * specification does not constrain this for interrupt transfers. That
1288 * means that ehci_submit_async() would support interrupt transfers
1289 * requiring several transactions only as long as the transfer size does
1290 * not require more than a single qTD.
1291 */
1292 if (length > usb_maxpacket(dev, pipe)) {
1293 printf("%s: Interrupt transfers requiring several "
1294 "transactions are not supported.\n", __func__);
1295 return -1;
1296 }
1297
1298 queue = create_int_queue(dev, pipe, 1, length, buffer);
1299
1300 timeout = get_timer(0) + USB_TIMEOUT_MS(pipe);
1301 while ((backbuffer = poll_int_queue(dev, queue)) == NULL)
1302 if (get_timer(0) > timeout) {
1303 printf("Timeout poll on interrupt endpoint\n");
1304 result = -ETIMEDOUT;
1305 break;
1306 }
1307
1308 if (backbuffer != buffer) {
1309 debug("got wrong buffer back (%x instead of %x)\n",
1310 (uint32_t)backbuffer, (uint32_t)buffer);
1311 return -EINVAL;
1312 }
1313
1314 ret = destroy_int_queue(dev, queue);
1315 if (ret < 0)
1316 return ret;
1317
1318 /* everything worked out fine */
1319 return result;
1320 }