]> git.ipfire.org Git - thirdparty/glibc.git/blob - elf/dl-deps.c
Update.
[thirdparty/glibc.git] / elf / dl-deps.c
1 /* Load the dependencies of a mapped object.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
14
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If not,
17 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 Boston, MA 02111-1307, USA. */
19
20 #include <assert.h>
21 #include <dlfcn.h>
22 #include <errno.h>
23 #include <libintl.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 #include <sys/param.h>
28 #include <ldsodefs.h>
29
30 #include <dl-dst.h>
31
32 /* Whether an shared object references one or more auxiliary objects
33 is signaled by the AUXTAG entry in l_info. */
34 #define AUXTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM \
35 + DT_EXTRATAGIDX (DT_AUXILIARY))
36 /* Whether an shared object references one or more auxiliary objects
37 is signaled by the AUXTAG entry in l_info. */
38 #define FILTERTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM \
39 + DT_EXTRATAGIDX (DT_FILTER))
40
41 /* This is zero at program start to signal that the global scope map is
42 allocated by rtld. Later it keeps the size of the map. It might be
43 reset if in _dl_close if the last global object is removed. */
44 size_t _dl_global_scope_alloc;
45
46 extern size_t _dl_platformlen;
47
48 /* When loading auxiliary objects we must ignore errors. It's ok if
49 an object is missing. */
50 struct openaux_args
51 {
52 /* The arguments to openaux. */
53 struct link_map *map;
54 int trace_mode;
55 const char *strtab;
56 const char *name;
57
58 /* The return value of openaux. */
59 struct link_map *aux;
60 };
61
62 static void
63 openaux (void *a)
64 {
65 struct openaux_args *args = (struct openaux_args *) a;
66
67 args->aux = _dl_map_object (args->map, args->name, 0,
68 (args->map->l_type == lt_executable
69 ? lt_library : args->map->l_type),
70 args->trace_mode, 0);
71 }
72
73
74
75 /* We use a very special kind of list to track the two kinds paths
76 through the list of loaded shared objects. We have to
77
78 - produce a flat list with unique members of all involved objects
79
80 - produce a flat list of all shared objects.
81 */
82 struct list
83 {
84 int done; /* Nonzero if this map was processed. */
85 struct link_map *map; /* The data. */
86
87 struct list *unique; /* Elements for normal list. */
88 struct list *dup; /* Elements in complete list. */
89 };
90
91
92 /* Macro to expand DST. It is an macro since we use `alloca'. */
93 #define expand_dst(l, str, fatal) \
94 ({ \
95 const char *__str = (str); \
96 const char *__result = __str; \
97 size_t __cnt = DL_DST_COUNT(__str, 0); \
98 \
99 if (__cnt != 0) \
100 { \
101 char *__newp; \
102 \
103 /* DST must not appear in SUID/SGID programs. */ \
104 if (__libc_enable_secure) \
105 _dl_signal_error (0, __str, \
106 N_("DST not allowed in SUID/SGID programs")); \
107 \
108 __newp = (char *) alloca (DL_DST_REQUIRED (l, __str, strlen (__str), \
109 __cnt)); \
110 \
111 __result = DL_DST_SUBSTITUTE (l, __str, __newp, 0); \
112 \
113 if (*__result == '\0') \
114 { \
115 /* The replacement for the DST is not known. We can't \
116 processed. */ \
117 if (fatal) \
118 _dl_signal_error (0, __str, N_("\
119 empty dynamics string token substitution")); \
120 else \
121 { \
122 /* This is for DT_AUXILIARY. */ \
123 if (__builtin_expect (_dl_debug_libs, 0)) \
124 _dl_debug_message (1, "cannot load auxiliary `", __str, \
125 "' because of empty dynamic string" \
126 " token substitution\n", NULL); \
127 continue; \
128 } \
129 } \
130 } \
131 \
132 __result; })
133
134
135 void
136 internal_function
137 _dl_map_object_deps (struct link_map *map,
138 struct link_map **preloads, unsigned int npreloads,
139 int trace_mode)
140 {
141 struct list known[1 + npreloads + 1];
142 struct list *runp, *utail, *dtail;
143 unsigned int nlist, nduplist, i;
144
145 inline void preload (struct link_map *map)
146 {
147 known[nlist].done = 0;
148 known[nlist].map = map;
149
150 known[nlist].unique = &known[nlist + 1];
151 known[nlist].dup = &known[nlist + 1];
152
153 ++nlist;
154 /* We use `l_reserved' as a mark bit to detect objects we have
155 already put in the search list and avoid adding duplicate
156 elements later in the list. */
157 map->l_reserved = 1;
158 }
159
160 /* No loaded object so far. */
161 nlist = 0;
162
163 /* First load MAP itself. */
164 preload (map);
165
166 /* Add the preloaded items after MAP but before any of its dependencies. */
167 for (i = 0; i < npreloads; ++i)
168 preload (preloads[i]);
169
170 /* Terminate the lists. */
171 known[nlist - 1].unique = NULL;
172 known[nlist - 1].dup = NULL;
173
174 /* Pointer to last unique object. */
175 utail = &known[nlist - 1];
176 /* Pointer to last loaded object. */
177 dtail = &known[nlist - 1];
178
179 /* Until now we have the same number of libraries in the normal and
180 the list with duplicates. */
181 nduplist = nlist;
182
183 /* Process each element of the search list, loading each of its
184 auxiliary objects and immediate dependencies. Auxiliary objects
185 will be added in the list before the object itself and
186 dependencies will be appended to the list as we step through it.
187 This produces a flat, ordered list that represents a
188 breadth-first search of the dependency tree.
189
190 The whole process is complicated by the fact that we better
191 should use alloca for the temporary list elements. But using
192 alloca means we cannot use recursive function calls. */
193 for (runp = known; runp; )
194 {
195 struct link_map *l = runp->map;
196 struct link_map **needed = NULL;
197 unsigned int nneeded = 0;
198
199 /* Unless otherwise stated, this object is handled. */
200 runp->done = 1;
201
202 /* Allocate a temporary record to contain the references to the
203 dependencies of this object. */
204 if (l->l_searchlist.r_list == NULL && l != map && l->l_ldnum > 0)
205 needed = (struct link_map **) alloca (l->l_ldnum
206 * sizeof (struct link_map *));
207
208 if (l->l_info[DT_NEEDED] || l->l_info[AUXTAG] || l->l_info[FILTERTAG])
209 {
210 const char *strtab = (const void *) D_PTR (l, l_info[DT_STRTAB]);
211 struct openaux_args args;
212 struct list *orig;
213 const ElfW(Dyn) *d;
214
215 args.strtab = strtab;
216 args.map = l;
217 args.trace_mode = trace_mode;
218 orig = runp;
219
220 for (d = l->l_ld; d->d_tag != DT_NULL; ++d)
221 if (__builtin_expect (d->d_tag, DT_NEEDED) == DT_NEEDED)
222 {
223 /* Map in the needed object. */
224 struct link_map *dep;
225 /* Allocate new entry. */
226 struct list *newp;
227 /* Object name. */
228 const char *name;
229
230 /* Recognize DSTs. */
231 name = expand_dst (l, strtab + d->d_un.d_val, 0);
232
233 dep = _dl_map_object (l, name, 0,
234 l->l_type == lt_executable ? lt_library :
235 l->l_type, trace_mode, 0);
236
237 /* Add it in any case to the duplicate list. */
238 newp = alloca (sizeof (struct list));
239 newp->map = dep;
240 newp->dup = NULL;
241 dtail->dup = newp;
242 dtail = newp;
243 ++nduplist;
244
245 if (dep->l_reserved)
246 /* This object is already in the search list we are
247 building. Don't add a duplicate pointer.
248 Release the reference just added by
249 _dl_map_object. */
250 --dep->l_opencount;
251 else
252 {
253 /* Append DEP to the unique list. */
254 newp->done = 0;
255 newp->unique = NULL;
256 utail->unique = newp;
257 utail = newp;
258 ++nlist;
259 /* Set the mark bit that says it's already in the list. */
260 dep->l_reserved = 1;
261 }
262
263 /* Remember this dependency. */
264 if (needed != NULL)
265 needed[nneeded++] = dep;
266 }
267 else if (d->d_tag == DT_AUXILIARY || d->d_tag == DT_FILTER)
268 {
269 const char *objname;
270 const char *errstring;
271 struct list *newp;
272 /* Object name. */
273 const char *name;
274
275 /* Recognize DSTs. */
276 name = expand_dst (l, strtab + d->d_un.d_val,
277 d->d_tag == DT_AUXILIARY);
278
279 if (d->d_tag == DT_AUXILIARY)
280 {
281 /* Store the tag in the argument structure. */
282 args.name = name;
283
284 /* Say that we are about to load an auxiliary library. */
285 if (__builtin_expect (_dl_debug_libs, 0))
286 _dl_debug_message (1, "load auxiliary object=",
287 name, " requested by file=",
288 l->l_name[0]
289 ? l->l_name : _dl_argv[0],
290 "\n", NULL);
291
292 /* We must be prepared that the addressed shared
293 object is not available. */
294 if (_dl_catch_error (&objname, &errstring, openaux, &args))
295 {
296 /* We are not interested in the error message. */
297 assert (errstring != NULL);
298 if (errstring != _dl_out_of_memory)
299 free ((char *) errstring);
300
301 /* Simply ignore this error and continue the work. */
302 continue;
303 }
304 }
305 else
306 {
307 /* Say that we are about to load an auxiliary library. */
308 if (__builtin_expect (_dl_debug_libs, 0))
309 _dl_debug_message (1, "load filtered object=", name,
310 " requested by file=",
311 l->l_name[0]
312 ? l->l_name : _dl_argv[0],
313 "\n", NULL);
314
315 /* For filter objects the dependency must be available. */
316 args.aux = _dl_map_object (l, name, 0,
317 (l->l_type == lt_executable
318 ? lt_library : l->l_type),
319 trace_mode, 0);
320 }
321
322 /* The auxiliary object is actually available.
323 Incorporate the map in all the lists. */
324
325 /* Allocate new entry. This always has to be done. */
326 newp = alloca (sizeof (struct list));
327
328 /* We want to insert the new map before the current one,
329 but we have no back links. So we copy the contents of
330 the current entry over. Note that ORIG and NEWP now
331 have switched their meanings. */
332 orig->dup = memcpy (newp, orig, sizeof (*newp));
333
334 /* Initialize new entry. */
335 orig->done = 0;
336 orig->map = args.aux;
337
338 /* Remember this dependency. */
339 if (needed != NULL)
340 needed[nneeded++] = args.aux;
341
342 /* We must handle two situations here: the map is new,
343 so we must add it in all three lists. If the map
344 is already known, we have two further possibilities:
345 - if the object is before the current map in the
346 search list, we do nothing. It is already found
347 early
348 - if the object is after the current one, we must
349 move it just before the current map to make sure
350 the symbols are found early enough
351 */
352 if (args.aux->l_reserved)
353 {
354 /* The object is already somewhere in the list.
355 Locate it first. */
356 struct list *late;
357
358 /* This object is already in the search list we
359 are building. Don't add a duplicate pointer.
360 Release the reference just added by
361 _dl_map_object. */
362 --args.aux->l_opencount;
363
364 for (late = newp; late->unique; late = late->unique)
365 if (late->unique->map == args.aux)
366 break;
367
368 if (late->unique)
369 {
370 /* The object is somewhere behind the current
371 position in the search path. We have to
372 move it to this earlier position. */
373 orig->unique = newp;
374
375 /* Now remove the later entry from the unique list
376 and adjust the tail pointer. */
377 if (utail == late->unique)
378 utail = late;
379 late->unique = late->unique->unique;
380
381 /* We must move the object earlier in the chain. */
382 if (args.aux->l_prev)
383 args.aux->l_prev->l_next = args.aux->l_next;
384 if (args.aux->l_next)
385 args.aux->l_next->l_prev = args.aux->l_prev;
386
387 args.aux->l_prev = newp->map->l_prev;
388 newp->map->l_prev = args.aux;
389 if (args.aux->l_prev != NULL)
390 args.aux->l_prev->l_next = args.aux;
391 args.aux->l_next = newp->map;
392 }
393 else
394 {
395 /* The object must be somewhere earlier in the
396 list. That's good, we only have to insert
397 an entry for the duplicate list. */
398 orig->unique = NULL; /* Never used. */
399
400 /* Now we have a problem. The element
401 pointing to ORIG in the unique list must
402 point to NEWP now. This is the only place
403 where we need this backreference and this
404 situation is really not that frequent. So
405 we don't use a double-linked list but
406 instead search for the preceding element. */
407 late = known;
408 while (late->unique != orig)
409 late = late->unique;
410 late->unique = newp;
411 }
412 }
413 else
414 {
415 /* This is easy. We just add the symbol right here. */
416 orig->unique = newp;
417 ++nlist;
418 /* Set the mark bit that says it's already in the list. */
419 args.aux->l_reserved = 1;
420
421 /* The only problem is that in the double linked
422 list of all objects we don't have this new
423 object at the correct place. Correct this here. */
424 if (args.aux->l_prev)
425 args.aux->l_prev->l_next = args.aux->l_next;
426 if (args.aux->l_next)
427 args.aux->l_next->l_prev = args.aux->l_prev;
428
429 args.aux->l_prev = newp->map->l_prev;
430 newp->map->l_prev = args.aux;
431 if (args.aux->l_prev != NULL)
432 args.aux->l_prev->l_next = args.aux;
433 args.aux->l_next = newp->map;
434 }
435
436 /* Move the tail pointers if necessary. */
437 if (orig == utail)
438 utail = newp;
439 if (orig == dtail)
440 dtail = newp;
441
442 /* Move on the insert point. */
443 orig = newp;
444
445 /* We always add an entry to the duplicate list. */
446 ++nduplist;
447 }
448 }
449
450 /* Terminate the list of dependencies and store the array address. */
451 if (needed != NULL)
452 {
453 needed[nneeded++] = NULL;
454
455 l->l_initfini = malloc (nneeded * sizeof needed[0]);
456 if (l->l_initfini == NULL)
457 _dl_signal_error (ENOMEM, map->l_name,
458 N_("cannot allocate dependency list"));
459 memcpy (l->l_initfini, needed, nneeded * sizeof needed[0]);
460 }
461
462 /* If we have no auxiliary objects just go on to the next map. */
463 if (runp->done)
464 do
465 runp = runp->unique;
466 while (runp != NULL && runp->done);
467 }
468
469 /* Store the search list we built in the object. It will be used for
470 searches in the scope of this object. */
471 map->l_searchlist.r_list = malloc ((2 * nlist + 1
472 + (nlist == nduplist ? 0 : nduplist))
473 * sizeof (struct link_map *));
474 if (map->l_searchlist.r_list == NULL)
475 _dl_signal_error (ENOMEM, map->l_name,
476 N_("cannot allocate symbol search list"));
477 map->l_searchlist.r_nlist = nlist;
478
479 for (nlist = 0, runp = known; runp; runp = runp->unique)
480 {
481 if (trace_mode && runp->map->l_opencount == 0)
482 /* This can happen when we trace the loading. */
483 --map->l_searchlist.r_nlist;
484 else
485 map->l_searchlist.r_list[nlist++] = runp->map;
486
487 /* Now clear all the mark bits we set in the objects on the search list
488 to avoid duplicates, so the next call starts fresh. */
489 runp->map->l_reserved = 0;
490 }
491
492 map->l_searchlist.r_nduplist = nduplist;
493 if (nlist == nduplist)
494 map->l_searchlist.r_duplist = map->l_searchlist.r_list;
495 else
496 {
497 unsigned int cnt;
498
499 map->l_searchlist.r_duplist = map->l_searchlist.r_list + nlist;
500
501 for (cnt = 0, runp = known; runp; runp = runp->dup)
502 if (trace_mode && runp->map->l_opencount == 0)
503 /* This can happen when we trace the loading. */
504 --map->l_searchlist.r_nduplist;
505 else
506 map->l_searchlist.r_duplist[cnt++] = runp->map;
507 }
508
509 /* Now determine the order in which the initialization has to happen. */
510 map->l_initfini =
511 (struct link_map **) memcpy (map->l_searchlist.r_duplist + nduplist,
512 map->l_searchlist.r_list,
513 nlist * sizeof (struct link_map *));
514 /* We can skip looking for the binary itself which is at the front
515 of the search list. Look through the list backward so that circular
516 dependencies are not changing the order. */
517 for (i = 1; i < nlist; ++i)
518 {
519 struct link_map *l = map->l_searchlist.r_list[i];
520 unsigned int j;
521 unsigned int k;
522
523 /* Find the place in the initfini list where the map is currently
524 located. */
525 for (j = 1; map->l_initfini[j] != l; ++j)
526 ;
527
528 /* Find all object for which the current one is a dependency and
529 move the found object (if necessary) in front. */
530 for (k = j + 1; k < nlist; ++k)
531 {
532 struct link_map **runp;
533
534 runp = map->l_initfini[k]->l_initfini;
535 if (runp != NULL)
536 {
537 while (*runp != NULL)
538 if (*runp == l)
539 {
540 struct link_map *here = map->l_initfini[k];
541
542 /* Move it now. */
543 memmove (&map->l_initfini[j] + 1,
544 &map->l_initfini[j],
545 (k - j) * sizeof (struct link_map *));
546 map->l_initfini[j] = here;
547
548 break;
549 }
550 else
551 ++runp;
552 }
553 }
554 }
555 /* Terminate the list of dependencies. */
556 map->l_initfini[nlist] = NULL;
557 }