]> git.ipfire.org Git - thirdparty/bird.git/blob - filter/f-inst.c
Filter: fixed omitted overflow check in EC constructor
[thirdparty/bird.git] / filter / f-inst.c
1 /*
2 * Filters: Instructions themselves
3 *
4 * Copyright 1998 Pavel Machek <pavel@ucw.cz>
5 * Copyright 2018 Maria Matejka <mq@jmq.cz>
6 * Copyright 2018 CZ.NIC z.s.p.o.
7 *
8 * Can be freely distributed and used under the terms of the GNU GPL.
9 *
10 * The filter code goes through several phases:
11 *
12 * 1 Parsing
13 * Flex- and Bison-generated parser decodes the human-readable data into
14 * a struct f_inst tree. This is an infix tree that was interpreted by
15 * depth-first search execution in previous versions of the interpreter.
16 * All instructions have their constructor: f_new_inst(FI_EXAMPLE, ...)
17 * translates into f_new_inst_FI_EXAMPLE(...) and the types are checked in
18 * compile time. If the result of the instruction is always the same,
19 * it's reduced to FI_CONSTANT directly in constructor. This phase also
20 * counts how many instructions are underlying in means of f_line_item
21 * fields to know how much we have to allocate in the next phase.
22 *
23 * 2 Linearize before interpreting
24 * The infix tree is always interpreted in the same order. Therefore we
25 * sort the instructions one after another into struct f_line. Results
26 * and arguments of these instructions are implicitly put on a value
27 * stack; e.g. the + operation just takes two arguments from the value
28 * stack and puts the result on there.
29 *
30 * 3 Interpret
31 * The given line is put on a custom execution stack. If needed (FI_CALL,
32 * FI_SWITCH, FI_AND, FI_OR, FI_CONDITION, ...), another line is put on top
33 * of the stack; when that line finishes, the execution continues on the
34 * older lines on the stack where it stopped before.
35 *
36 * 4 Same
37 * On config reload, the filters have to be compared whether channel
38 * reload is needed or not. The comparison is done by comparing the
39 * struct f_line's recursively.
40 *
41 * The main purpose of this rework was to improve filter performance
42 * by making the interpreter non-recursive.
43 *
44 * The other outcome is concentration of instruction definitions to
45 * one place -- right here. You shall define your instruction only here
46 * and nowhere else.
47 *
48 * Beware. This file is interpreted by M4 macros. These macros
49 * may be more stupid than you could imagine. If something strange
50 * happens after changing this file, compare the results before and
51 * after your change (see the Makefile to find out where the results are)
52 * and see what really happened.
53 *
54 * This file is not directly a C source code -> it is a generator input
55 * for several C sources; every instruction block gets expanded into many
56 * different places.
57 *
58 * All the arguments are processed literally; if you need an argument including comma,
59 * you have to quote it by [[ ... ]]
60 *
61 * What is the syntax here?
62 * m4_dnl INST(FI_NOP, in, out) { enum value, input args, output args
63 * m4_dnl ARG(num, type); argument, its id (in data fields) and type accessible by v1, v2, v3
64 * m4_dnl ARG_ANY(num); argument with no type check accessible by v1, v2, v3
65 * m4_dnl VARARG; variable-length argument list; accessible by vv(i) and whati->varcount
66 * m4_dnl LINE(num, unused); this argument has to be converted to its own f_line
67 * m4_dnl SYMBOL; symbol handed from config
68 * m4_dnl STATIC_ATTR; static attribute definition
69 * m4_dnl DYNAMIC_ATTR; dynamic attribute definition
70 * m4_dnl RTC; route table config
71 * m4_dnl ACCESS_RTE; this instruction needs route
72 * m4_dnl ACCESS_EATTRS; this instruction needs extended attributes
73 *
74 * m4_dnl FID_MEMBER( custom instruction member
75 * m4_dnl C type, for storage in structs
76 * m4_dnl name, how the member is named
77 * m4_dnl comparator for same(), if different, this should be TRUE (CAVEAT)
78 * m4_dnl dump format string debug -> format string for bvsnprintf
79 * m4_dnl dump format args appropriate args
80 * m4_dnl )
81 *
82 * m4_dnl RESULT(type, union-field, value); putting this on value stack
83 * m4_dnl RESULT_VAL(value-struct); pass the struct f_val directly
84 * m4_dnl RESULT_VOID; return undef
85 * m4_dnl }
86 *
87 * Also note that the { ... } blocks are not respected by M4 at all.
88 * If you get weird unmatched-brace-pair errors, check what it generated and why.
89 * What is really considered as one instruction is not the { ... } block
90 * after m4_dnl INST() but all the code between them.
91 *
92 * Other code is just copied into the interpreter part.
93 *
94 * If you are satisfied with this, you don't need to read the following
95 * detailed description of what is really done with the instruction definitions.
96 *
97 * m4_dnl Now let's look under the cover. The code between each INST()
98 * m4_dnl is copied to several places, namely these (numbered by the M4 diversions
99 * m4_dnl used in filter/decl.m4):
100 *
101 * m4_dnl (102) struct f_inst *f_new_inst(FI_EXAMPLE [[ put it here ]])
102 * m4_dnl {
103 * m4_dnl ... (common code)
104 * m4_dnl (103) [[ put it here ]]
105 * m4_dnl ...
106 * m4_dnl if (all arguments are constant)
107 * m4_dnl (108) [[ put it here ]]
108 * m4_dnl }
109 * m4_dnl For writing directly to constructor argument list, use FID_NEW_ARGS.
110 * m4_dnl For computing something in constructor (103), use FID_NEW_BODY.
111 * m4_dnl For constant pre-interpretation (108), see below at FID_INTERPRET_BODY.
112 *
113 * m4_dnl struct f_inst {
114 * m4_dnl ... (common fields)
115 * m4_dnl union {
116 * m4_dnl struct {
117 * m4_dnl (101) [[ put it here ]]
118 * m4_dnl } i_FI_EXAMPLE;
119 * m4_dnl ...
120 * m4_dnl };
121 * m4_dnl };
122 * m4_dnl This structure is returned from constructor.
123 * m4_dnl For writing directly to this structure, use FID_STRUCT_IN.
124 *
125 * m4_dnl linearize(struct f_line *dest, const struct f_inst *what, uint pos) {
126 * m4_dnl ...
127 * m4_dnl switch (what->fi_code) {
128 * m4_dnl case FI_EXAMPLE:
129 * m4_dnl (105) [[ put it here ]]
130 * m4_dnl break;
131 * m4_dnl }
132 * m4_dnl }
133 * m4_dnl This is called when translating from struct f_inst to struct f_line_item.
134 * m4_dnl For accessing your custom instruction data, use following macros:
135 * m4_dnl whati -> for accessing (struct f_inst).i_FI_EXAMPLE
136 * m4_dnl item -> for accessing (struct f_line)[pos].i_FI_EXAMPLE
137 * m4_dnl For writing directly here, use FID_LINEARIZE_BODY.
138 *
139 * m4_dnl (107) struct f_line_item {
140 * m4_dnl ... (common fields)
141 * m4_dnl union {
142 * m4_dnl struct {
143 * m4_dnl (101) [[ put it here ]]
144 * m4_dnl } i_FI_EXAMPLE;
145 * m4_dnl ...
146 * m4_dnl };
147 * m4_dnl };
148 * m4_dnl The same as FID_STRUCT_IN (101) but for the other structure.
149 * m4_dnl This structure is returned from the linearizer (105).
150 * m4_dnl For writing directly to this structure, use FID_LINE_IN.
151 *
152 * m4_dnl f_dump_line_item_FI_EXAMPLE(const struct f_line_item *item, const int indent)
153 * m4_dnl {
154 * m4_dnl (104) [[ put it here ]]
155 * m4_dnl }
156 * m4_dnl This code dumps the instruction on debug. Note that the argument
157 * m4_dnl is the linearized instruction; if the instruction has arguments,
158 * m4_dnl their code has already been linearized and their value is taken
159 * m4_dnl from the value stack.
160 * m4_dnl For writing directly here, use FID_DUMP_BODY.
161 *
162 * m4_dnl f_same(...)
163 * m4_dnl {
164 * m4_dnl switch (f1_->fi_code) {
165 * m4_dnl case FI_EXAMPLE:
166 * m4_dnl (106) [[ put it here ]]
167 * m4_dnl break;
168 * m4_dnl }
169 * m4_dnl }
170 * m4_dnl This code compares the two given instrucions (f1_ and f2_)
171 * m4_dnl on reconfigure. For accessing your custom instruction data,
172 * m4_dnl use macros f1 and f2.
173 * m4_dnl For writing directly here, use FID_SAME_BODY.
174 *
175 * m4_dnl interpret(...)
176 * m4_dnl {
177 * m4_dnl switch (what->fi_code) {
178 * m4_dnl case FI_EXAMPLE:
179 * m4_dnl (108) [[ put it here ]]
180 * m4_dnl break;
181 * m4_dnl }
182 * m4_dnl }
183 * m4_dnl This code executes the instruction. Every pre-defined macro
184 * m4_dnl resets the output here. For setting it explicitly,
185 * m4_dnl use FID_INTERPRET_BODY.
186 * m4_dnl This code is put on two places; one is the interpreter, the other
187 * m4_dnl is instruction constructor. If you need to distinguish between
188 * m4_dnl these two, use FID_INTERPRET_EXEC or FID_INTERPRET_NEW respectively.
189 * m4_dnl To address the difference between interpreter and constructor
190 * m4_dnl environments, there are several convenience macros defined:
191 * m4_dnl runtime() -> for spitting out runtime error like division by zero
192 * m4_dnl RESULT(...) -> declare result; may overwrite arguments
193 * m4_dnl v1, v2, v3 -> positional arguments, may be overwritten by RESULT()
194 * m4_dnl falloc(size) -> allocate memory from the appropriate linpool
195 * m4_dnl fpool -> the current linpool
196 * m4_dnl NEVER_CONSTANT-> don't generate pre-interpretation code at all
197 * m4_dnl ACCESS_RTE -> check that route is available, also NEVER_CONSTANT
198 * m4_dnl ACCESS_EATTRS -> pre-cache the eattrs; use only with ACCESS_RTE
199 * m4_dnl f_rta_cow(fs) -> function to call before any change to route should be done
200 *
201 * m4_dnl If you are stymied, see FI_CALL or FI_CONSTANT or just search for
202 * m4_dnl the mentioned macros in this file to see what is happening there in wild.
203 */
204
205 /* Binary operators */
206 INST(FI_ADD, 2, 1) {
207 ARG(1,T_INT);
208 ARG(2,T_INT);
209 RESULT(T_INT, i, v1.val.i + v2.val.i);
210 }
211 INST(FI_SUBTRACT, 2, 1) {
212 ARG(1,T_INT);
213 ARG(2,T_INT);
214 RESULT(T_INT, i, v1.val.i - v2.val.i);
215 }
216 INST(FI_MULTIPLY, 2, 1) {
217 ARG(1,T_INT);
218 ARG(2,T_INT);
219 RESULT(T_INT, i, v1.val.i * v2.val.i);
220 }
221 INST(FI_DIVIDE, 2, 1) {
222 ARG(1,T_INT);
223 ARG(2,T_INT);
224 if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
225 RESULT(T_INT, i, v1.val.i / v2.val.i);
226 }
227 INST(FI_AND, 1, 1) {
228 ARG(1,T_BOOL);
229 ARG_TYPE_STATIC(2,T_BOOL);
230 RESULT_TYPE(T_BOOL);
231
232 if (v1.val.i)
233 LINE(2,0);
234 else
235 RESULT_VAL(v1);
236 }
237 INST(FI_OR, 1, 1) {
238 ARG(1,T_BOOL);
239 ARG_TYPE_STATIC(2,T_BOOL);
240 RESULT_TYPE(T_BOOL);
241
242 if (!v1.val.i)
243 LINE(2,0);
244 else
245 RESULT_VAL(v1);
246 }
247
248 INST(FI_PAIR_CONSTRUCT, 2, 1) {
249 ARG(1,T_INT);
250 ARG(2,T_INT);
251 uint u1 = v1.val.i;
252 uint u2 = v2.val.i;
253 if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
254 runtime( "Can't operate with value out of bounds in pair constructor" );
255 RESULT(T_PAIR, i, (u1 << 16) | u2);
256 }
257
258 INST(FI_EC_CONSTRUCT, 2, 1) {
259 ARG_ANY(1);
260 ARG(2, T_INT);
261
262 FID_MEMBER(enum ec_subtype, ecs, f1->ecs != f2->ecs, "ec subtype %s", ec_subtype_str(item->ecs));
263
264 int ipv4_used;
265 u32 key, val;
266
267 if (v1.type == T_INT) {
268 ipv4_used = 0; key = v1.val.i;
269 }
270 else if (v1.type == T_QUAD) {
271 ipv4_used = 1; key = v1.val.i;
272 }
273 /* IP->Quad implicit conversion */
274 else if (val_is_ip4(&v1)) {
275 ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
276 }
277 else
278 runtime("Argument 1 of EC constructor must be integer or IPv4 address, got 0x%02x", v1.type);
279
280 val = v2.val.i;
281
282 if (ecs == EC_GENERIC)
283 RESULT(T_EC, ec, ec_generic(key, val));
284 else if (ipv4_used)
285 if (val <= 0xFFFF)
286 RESULT(T_EC, ec, ec_ip4(ecs, key, val));
287 else
288 runtime("4-byte value %u can't be used with IP-address key in extended community", val);
289 else if (key < 0x10000)
290 RESULT(T_EC, ec, ec_as2(ecs, key, val));
291 else
292 if (val <= 0xFFFF)
293 RESULT(T_EC, ec, ec_as4(ecs, key, val));
294 else
295 runtime("4-byte value %u can't be used with 4-byte ASN in extended community", val);
296 }
297
298 INST(FI_LC_CONSTRUCT, 3, 1) {
299 ARG(1, T_INT);
300 ARG(2, T_INT);
301 ARG(3, T_INT);
302 RESULT(T_LC, lc, [[(lcomm) { v1.val.i, v2.val.i, v3.val.i }]]);
303 }
304
305 INST(FI_PATHMASK_CONSTRUCT, 0, 1) {
306 VARARG;
307
308 struct f_path_mask *pm = falloc(sizeof(struct f_path_mask) + whati->varcount * sizeof(struct f_path_mask_item));
309 pm->len = whati->varcount;
310
311 for (uint i=0; i<whati->varcount; i++) {
312 switch (vv(i).type) {
313 case T_PATH_MASK_ITEM:
314 pm->item[i] = vv(i).val.pmi;
315 break;
316
317 case T_INT:
318 pm->item[i] = (struct f_path_mask_item) {
319 .asn = vv(i).val.i,
320 .kind = PM_ASN,
321 };
322 break;
323
324 case T_SET:
325 if (vv(i).val.t->from.type != T_INT)
326 runtime("Only integer sets allowed in path mask");
327
328 pm->item[i] = (struct f_path_mask_item) {
329 .set = vv(i).val.t,
330 .kind = PM_ASN_SET,
331 };
332 break;
333
334 default:
335 runtime( "Error resolving path mask template: value not an integer" );
336 }
337 }
338
339 RESULT(T_PATH_MASK, path_mask, pm);
340 }
341
342 /* Relational operators */
343
344 INST(FI_NEQ, 2, 1) {
345 ARG_ANY(1);
346 ARG_ANY(2);
347 RESULT(T_BOOL, i, !val_same(&v1, &v2));
348 }
349
350 INST(FI_EQ, 2, 1) {
351 ARG_ANY(1);
352 ARG_ANY(2);
353 RESULT(T_BOOL, i, val_same(&v1, &v2));
354 }
355
356 INST(FI_LT, 2, 1) {
357 ARG_ANY(1);
358 ARG_ANY(2);
359 ARG_SAME_TYPE(1, 2);
360
361 int i = val_compare(&v1, &v2);
362 if (i == F_CMP_ERROR)
363 runtime( "Can't compare values of incompatible types" );
364 RESULT(T_BOOL, i, (i == -1));
365 }
366
367 INST(FI_LTE, 2, 1) {
368 ARG_ANY(1);
369 ARG_ANY(2);
370 ARG_SAME_TYPE(1, 2);
371
372 int i = val_compare(&v1, &v2);
373 if (i == F_CMP_ERROR)
374 runtime( "Can't compare values of incompatible types" );
375 RESULT(T_BOOL, i, (i != 1));
376 }
377
378 INST(FI_NOT, 1, 1) {
379 ARG(1,T_BOOL);
380 RESULT(T_BOOL, i, !v1.val.i);
381 }
382
383 INST(FI_MATCH, 2, 1) {
384 ARG_ANY(1);
385 ARG_ANY(2);
386 int i = val_in_range(&v1, &v2);
387 if (i == F_CMP_ERROR)
388 runtime( "~ applied on unknown type pair" );
389 RESULT(T_BOOL, i, !!i);
390 }
391
392 INST(FI_NOT_MATCH, 2, 1) {
393 ARG_ANY(1);
394 ARG_ANY(2);
395 int i = val_in_range(&v1, &v2);
396 if (i == F_CMP_ERROR)
397 runtime( "!~ applied on unknown type pair" );
398 RESULT(T_BOOL, i, !i);
399 }
400
401 INST(FI_DEFINED, 1, 1) {
402 ARG_ANY(1);
403 RESULT(T_BOOL, i, (v1.type != T_VOID) && !undef_value(v1));
404 }
405
406 INST(FI_TYPE, 1, 1) {
407 ARG_ANY(1); /* There may be more types supporting this operation */
408 switch (v1.type)
409 {
410 case T_NET:
411 RESULT(T_ENUM_NETTYPE, i, v1.val.net->type);
412 break;
413 default:
414 runtime( "Can't determine type of this item" );
415 }
416 }
417
418 INST(FI_IS_V4, 1, 1) {
419 ARG(1, T_IP);
420 RESULT(T_BOOL, i, ipa_is_ip4(v1.val.ip));
421 }
422
423 /* Set to indirect value prepared in v1 */
424 INST(FI_VAR_SET, 1, 0) {
425 NEVER_CONSTANT;
426 ARG_ANY(1);
427 SYMBOL;
428 ARG_TYPE(1, sym->class & 0xff);
429
430 fstk->vstk[curline.vbase + sym->offset] = v1;
431 }
432
433 INST(FI_VAR_GET, 0, 1) {
434 SYMBOL;
435 NEVER_CONSTANT;
436 RESULT_TYPE(sym->class & 0xff);
437 RESULT_VAL(fstk->vstk[curline.vbase + sym->offset]);
438 }
439
440 INST(FI_CONSTANT, 0, 1) {
441 FID_MEMBER(
442 struct f_val,
443 val,
444 [[ !val_same(&(f1->val), &(f2->val)) ]],
445 "value %s",
446 val_dump(&(item->val))
447 );
448
449 RESULT_TYPE(val.type);
450 RESULT_VAL(val);
451 }
452
453 INST(FI_CONDITION, 1, 0) {
454 ARG(1, T_BOOL);
455 if (v1.val.i)
456 LINE(2,0);
457 else
458 LINE(3,1);
459 }
460
461 INST(FI_PRINT, 0, 0) {
462 NEVER_CONSTANT;
463 VARARG;
464
465 if (whati->varcount && !(fs->flags & FF_SILENT))
466 for (uint i=0; i<whati->varcount; i++)
467 val_format(&(vv(i)), &fs->buf);
468 }
469
470 INST(FI_FLUSH, 0, 0) {
471 NEVER_CONSTANT;
472 if (!(fs->flags & FF_SILENT))
473 /* After log_commit, the buffer is reset */
474 log_commit(*L_INFO, &fs->buf);
475 }
476
477 INST(FI_DIE, 0, 0) {
478 NEVER_CONSTANT;
479 FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, "%s", filter_return_str(item->fret));
480
481 switch (whati->fret) {
482 case F_QUITBIRD:
483 die( "Filter asked me to die" );
484 case F_ACCEPT: /* Should take care about turning ACCEPT into MODIFY */
485 case F_ERROR:
486 case F_REJECT: /* Maybe print complete route along with reason to reject route? */
487 return fret; /* We have to return now, no more processing. */
488 default:
489 bug( "unknown return type: Can't happen");
490 }
491 }
492
493 INST(FI_RTA_GET, 0, 1) {
494 {
495 STATIC_ATTR;
496 ACCESS_RTE;
497 struct rta *rta = (*fs->rte)->attrs;
498
499 switch (sa.sa_code)
500 {
501 case SA_FROM: RESULT(sa.f_type, ip, rta->from); break;
502 case SA_GW: RESULT(sa.f_type, ip, rta->nh.gw); break;
503 case SA_NET: RESULT(sa.f_type, net, (*fs->rte)->net->n.addr); break;
504 case SA_PROTO: RESULT(sa.f_type, s, rta->src->proto->name); break;
505 case SA_SOURCE: RESULT(sa.f_type, i, rta->source); break;
506 case SA_SCOPE: RESULT(sa.f_type, i, rta->scope); break;
507 case SA_DEST: RESULT(sa.f_type, i, rta->dest); break;
508 case SA_IFNAME: RESULT(sa.f_type, s, rta->nh.iface ? rta->nh.iface->name : ""); break;
509 case SA_IFINDEX: RESULT(sa.f_type, i, rta->nh.iface ? rta->nh.iface->index : 0); break;
510
511 default:
512 bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
513 }
514 }
515 }
516
517 INST(FI_RTA_SET, 1, 0) {
518 ACCESS_RTE;
519 ARG_ANY(1);
520 STATIC_ATTR;
521 ARG_TYPE(1, sa.f_type);
522
523 f_rta_cow(fs);
524 {
525 struct rta *rta = (*fs->rte)->attrs;
526
527 switch (sa.sa_code)
528 {
529 case SA_FROM:
530 rta->from = v1.val.ip;
531 break;
532
533 case SA_GW:
534 {
535 ip_addr ip = v1.val.ip;
536 neighbor *n = neigh_find(rta->src->proto, ip, NULL, 0);
537 if (!n || (n->scope == SCOPE_HOST))
538 runtime( "Invalid gw address" );
539
540 rta->dest = RTD_UNICAST;
541 rta->nh.gw = ip;
542 rta->nh.iface = n->iface;
543 rta->nh.next = NULL;
544 rta->hostentry = NULL;
545 }
546 break;
547
548 case SA_SCOPE:
549 rta->scope = v1.val.i;
550 break;
551
552 case SA_DEST:
553 {
554 int i = v1.val.i;
555 if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
556 runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
557
558 rta->dest = i;
559 rta->nh.gw = IPA_NONE;
560 rta->nh.iface = NULL;
561 rta->nh.next = NULL;
562 rta->hostentry = NULL;
563 }
564 break;
565
566 case SA_IFNAME:
567 {
568 struct iface *ifa = if_find_by_name(v1.val.s);
569 if (!ifa)
570 runtime( "Invalid iface name" );
571
572 rta->dest = RTD_UNICAST;
573 rta->nh.gw = IPA_NONE;
574 rta->nh.iface = ifa;
575 rta->nh.next = NULL;
576 rta->hostentry = NULL;
577 }
578 break;
579
580 default:
581 bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
582 }
583 }
584 }
585
586 INST(FI_EA_GET, 0, 1) { /* Access to extended attributes */
587 DYNAMIC_ATTR;
588 ACCESS_RTE;
589 ACCESS_EATTRS;
590 RESULT_TYPE(da.f_type);
591 {
592 eattr *e = ea_find(*fs->eattrs, da.ea_code);
593
594 if (!e) {
595 /* A special case: undefined as_path looks like empty as_path */
596 if (da.type == EAF_TYPE_AS_PATH) {
597 RESULT_(T_PATH, ad, &null_adata);
598 break;
599 }
600
601 /* The same special case for int_set */
602 if (da.type == EAF_TYPE_INT_SET) {
603 RESULT_(T_CLIST, ad, &null_adata);
604 break;
605 }
606
607 /* The same special case for ec_set */
608 if (da.type == EAF_TYPE_EC_SET) {
609 RESULT_(T_ECLIST, ad, &null_adata);
610 break;
611 }
612
613 /* The same special case for lc_set */
614 if (da.type == EAF_TYPE_LC_SET) {
615 RESULT_(T_LCLIST, ad, &null_adata);
616 break;
617 }
618
619 /* Undefined value */
620 RESULT_VOID;
621 break;
622 }
623
624 switch (e->type & EAF_TYPE_MASK) {
625 case EAF_TYPE_INT:
626 RESULT_(da.f_type, i, e->u.data);
627 break;
628 case EAF_TYPE_ROUTER_ID:
629 RESULT_(T_QUAD, i, e->u.data);
630 break;
631 case EAF_TYPE_OPAQUE:
632 RESULT_(T_ENUM_EMPTY, i, 0);
633 break;
634 case EAF_TYPE_IP_ADDRESS:
635 RESULT_(T_IP, ip, *((ip_addr *) e->u.ptr->data));
636 break;
637 case EAF_TYPE_AS_PATH:
638 RESULT_(T_PATH, ad, e->u.ptr);
639 break;
640 case EAF_TYPE_BITFIELD:
641 RESULT_(T_BOOL, i, !!(e->u.data & (1u << da.bit)));
642 break;
643 case EAF_TYPE_INT_SET:
644 RESULT_(T_CLIST, ad, e->u.ptr);
645 break;
646 case EAF_TYPE_EC_SET:
647 RESULT_(T_ECLIST, ad, e->u.ptr);
648 break;
649 case EAF_TYPE_LC_SET:
650 RESULT_(T_LCLIST, ad, e->u.ptr);
651 break;
652 case EAF_TYPE_UNDEF:
653 RESULT_VOID;
654 break;
655 default:
656 bug("Unknown dynamic attribute type");
657 }
658 }
659 }
660
661 INST(FI_EA_SET, 1, 0) {
662 ACCESS_RTE;
663 ACCESS_EATTRS;
664 ARG_ANY(1);
665 DYNAMIC_ATTR;
666 ARG_TYPE(1, da.f_type);
667 {
668 struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
669
670 l->next = NULL;
671 l->flags = EALF_SORTED;
672 l->count = 1;
673 l->attrs[0].id = da.ea_code;
674 l->attrs[0].flags = 0;
675 l->attrs[0].type = da.type | EAF_ORIGINATED | EAF_FRESH;
676
677 switch (da.type) {
678 case EAF_TYPE_INT:
679 case EAF_TYPE_ROUTER_ID:
680 l->attrs[0].u.data = v1.val.i;
681 break;
682
683 case EAF_TYPE_OPAQUE:
684 runtime( "Setting opaque attribute is not allowed" );
685 break;
686
687 case EAF_TYPE_IP_ADDRESS:;
688 int len = sizeof(ip_addr);
689 struct adata *ad = lp_alloc(fs->pool, sizeof(struct adata) + len);
690 ad->length = len;
691 (* (ip_addr *) ad->data) = v1.val.ip;
692 l->attrs[0].u.ptr = ad;
693 break;
694
695 case EAF_TYPE_AS_PATH:
696 case EAF_TYPE_INT_SET:
697 case EAF_TYPE_EC_SET:
698 case EAF_TYPE_LC_SET:
699 l->attrs[0].u.ptr = v1.val.ad;
700 break;
701
702 case EAF_TYPE_BITFIELD:
703 {
704 /* First, we have to find the old value */
705 eattr *e = ea_find(*fs->eattrs, da.ea_code);
706 u32 data = e ? e->u.data : 0;
707
708 if (v1.val.i)
709 l->attrs[0].u.data = data | (1u << da.bit);
710 else
711 l->attrs[0].u.data = data & ~(1u << da.bit);
712 }
713 break;
714
715 default:
716 bug("Unknown dynamic attribute type");
717 }
718
719 f_rta_cow(fs);
720 l->next = *fs->eattrs;
721 *fs->eattrs = l;
722 }
723 }
724
725 INST(FI_EA_UNSET, 0, 0) {
726 DYNAMIC_ATTR;
727 ACCESS_RTE;
728 ACCESS_EATTRS;
729
730 {
731 struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
732
733 l->next = NULL;
734 l->flags = EALF_SORTED;
735 l->count = 1;
736 l->attrs[0].id = da.ea_code;
737 l->attrs[0].flags = 0;
738 l->attrs[0].type = EAF_TYPE_UNDEF | EAF_ORIGINATED | EAF_FRESH;
739 l->attrs[0].u.data = 0;
740
741 f_rta_cow(fs);
742 l->next = *fs->eattrs;
743 *fs->eattrs = l;
744 }
745 }
746
747 INST(FI_PREF_GET, 0, 1) {
748 ACCESS_RTE;
749 RESULT(T_INT, i, (*fs->rte)->pref);
750 }
751
752 INST(FI_PREF_SET, 1, 0) {
753 ACCESS_RTE;
754 ARG(1,T_INT);
755 if (v1.val.i > 0xFFFF)
756 runtime( "Setting preference value out of bounds" );
757 f_rte_cow(fs);
758 (*fs->rte)->pref = v1.val.i;
759 }
760
761 INST(FI_LENGTH, 1, 1) { /* Get length of */
762 ARG_ANY(1);
763 switch(v1.type) {
764 case T_NET: RESULT(T_INT, i, net_pxlen(v1.val.net)); break;
765 case T_PATH: RESULT(T_INT, i, as_path_getlen(v1.val.ad)); break;
766 case T_CLIST: RESULT(T_INT, i, int_set_get_size(v1.val.ad)); break;
767 case T_ECLIST: RESULT(T_INT, i, ec_set_get_size(v1.val.ad)); break;
768 case T_LCLIST: RESULT(T_INT, i, lc_set_get_size(v1.val.ad)); break;
769 default: runtime( "Prefix, path, clist or eclist expected" );
770 }
771 }
772
773 INST(FI_NET_SRC, 1, 1) { /* Get src prefix */
774 ARG(1, T_NET);
775
776 net_addr_union *net = (void *) v1.val.net;
777 net_addr *src = falloc(sizeof(net_addr_ip6));
778 const byte *part;
779
780 switch(v1.val.net->type) {
781 case NET_FLOW4:
782 part = flow4_get_part(&net->flow4, FLOW_TYPE_SRC_PREFIX);
783 if (part)
784 net_fill_ip4(src, flow_read_ip4_part(part), flow_read_pxlen(part));
785 else
786 net_fill_ip4(src, IP4_NONE, 0);
787 break;
788
789 case NET_FLOW6:
790 part = flow6_get_part(&net->flow6, FLOW_TYPE_SRC_PREFIX);
791 if (part)
792 net_fill_ip6(src, flow_read_ip6_part(part), flow_read_pxlen(part));
793 else
794 net_fill_ip6(src, IP6_NONE, 0);
795 break;
796
797 case NET_IP6_SADR:
798 net_fill_ip6(src, net->ip6_sadr.src_prefix, net->ip6_sadr.src_pxlen);
799 break;
800
801 default:
802 runtime( "Flow or SADR expected" );
803 }
804
805 RESULT(T_NET, net, src);
806 }
807
808 INST(FI_NET_DST, 1, 1) { /* Get dst prefix */
809 ARG(1, T_NET);
810
811 net_addr_union *net = (void *) v1.val.net;
812 net_addr *dst = falloc(sizeof(net_addr_ip6));
813 const byte *part;
814
815 switch(v1.val.net->type) {
816 case NET_FLOW4:
817 part = flow4_get_part(&net->flow4, FLOW_TYPE_DST_PREFIX);
818 if (part)
819 net_fill_ip4(dst, flow_read_ip4_part(part), flow_read_pxlen(part));
820 else
821 net_fill_ip4(dst, IP4_NONE, 0);
822 break;
823
824 case NET_FLOW6:
825 part = flow6_get_part(&net->flow6, FLOW_TYPE_DST_PREFIX);
826 if (part)
827 net_fill_ip6(dst, flow_read_ip6_part(part), flow_read_pxlen(part));
828 else
829 net_fill_ip6(dst, IP6_NONE, 0);
830 break;
831
832 case NET_IP6_SADR:
833 net_fill_ip6(dst, net->ip6_sadr.dst_prefix, net->ip6_sadr.dst_pxlen);
834 break;
835
836 default:
837 runtime( "Flow or SADR expected" );
838 }
839
840 RESULT(T_NET, net, dst);
841 }
842
843 INST(FI_ROA_MAXLEN, 1, 1) { /* Get ROA max prefix length */
844 ARG(1, T_NET);
845 if (!net_is_roa(v1.val.net))
846 runtime( "ROA expected" );
847
848 RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
849 ((net_addr_roa4 *) v1.val.net)->max_pxlen :
850 ((net_addr_roa6 *) v1.val.net)->max_pxlen);
851 }
852
853 INST(FI_ROA_ASN, 1, 1) { /* Get ROA ASN */
854 ARG(1, T_NET);
855 if (!net_is_roa(v1.val.net))
856 runtime( "ROA expected" );
857
858 RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
859 ((net_addr_roa4 *) v1.val.net)->asn :
860 ((net_addr_roa6 *) v1.val.net)->asn);
861 }
862
863 INST(FI_IP, 1, 1) { /* Convert prefix to ... */
864 ARG(1, T_NET);
865 RESULT(T_IP, ip, net_prefix(v1.val.net));
866 }
867
868 INST(FI_ROUTE_DISTINGUISHER, 1, 1) {
869 ARG(1, T_NET);
870 if (!net_is_vpn(v1.val.net))
871 runtime( "VPN address expected" );
872 RESULT(T_RD, ec, net_rd(v1.val.net));
873 }
874
875 INST(FI_AS_PATH_FIRST, 1, 1) { /* Get first ASN from AS PATH */
876 ARG(1, T_PATH);
877 u32 as = 0;
878 as_path_get_first(v1.val.ad, &as);
879 RESULT(T_INT, i, as);
880 }
881
882 INST(FI_AS_PATH_LAST, 1, 1) { /* Get last ASN from AS PATH */
883 ARG(1, T_PATH);
884 u32 as = 0;
885 as_path_get_last(v1.val.ad, &as);
886 RESULT(T_INT, i, as);
887 }
888
889 INST(FI_AS_PATH_LAST_NAG, 1, 1) { /* Get last ASN from non-aggregated part of AS PATH */
890 ARG(1, T_PATH);
891 RESULT(T_INT, i, as_path_get_last_nonaggregated(v1.val.ad));
892 }
893
894 INST(FI_RETURN, 1, 1) {
895 NEVER_CONSTANT;
896 /* Acquire the return value */
897 ARG_ANY(1);
898 uint retpos = fstk->vcnt;
899
900 /* Drop every sub-block including ourselves */
901 while ((fstk->ecnt-- > 0) && !(fstk->estk[fstk->ecnt].emask & FE_RETURN))
902 ;
903
904 /* Now we are at the caller frame; if no such, try to convert to accept/reject. */
905 if (!fstk->ecnt)
906 if (fstk->vstk[retpos].type == T_BOOL)
907 if (fstk->vstk[retpos].val.i)
908 return F_ACCEPT;
909 else
910 return F_REJECT;
911 else
912 runtime("Can't return non-bool from non-function");
913
914 /* Set the value stack position, overwriting the former implicit void */
915 fstk->vcnt = fstk->estk[fstk->ecnt].ventry - 1;
916
917 /* Copy the return value */
918 RESULT_VAL(fstk->vstk[retpos]);
919 }
920
921 INST(FI_CALL, 0, 1) {
922 NEVER_CONSTANT;
923 SYMBOL;
924
925 FID_SAME_BODY()
926 if (!(f1->sym->flags & SYM_FLAG_SAME))
927 return 0;
928 FID_INTERPRET_BODY()
929
930 /* Push the body on stack */
931 LINEX(sym->function);
932 curline.emask |= FE_RETURN;
933
934 /* Before this instruction was called, there was the T_VOID
935 * automatic return value pushed on value stack and also
936 * sym->function->args function arguments. Setting the
937 * vbase to point to first argument. */
938 ASSERT(curline.ventry >= sym->function->args);
939 curline.ventry -= sym->function->args;
940 curline.vbase = curline.ventry;
941
942 /* Storage for local variables */
943 memset(&(fstk->vstk[fstk->vcnt]), 0, sizeof(struct f_val) * sym->function->vars);
944 fstk->vcnt += sym->function->vars;
945 }
946
947 INST(FI_DROP_RESULT, 1, 0) {
948 NEVER_CONSTANT;
949 ARG_ANY(1);
950 }
951
952 INST(FI_SWITCH, 1, 0) {
953 ARG_ANY(1);
954
955 FID_MEMBER(struct f_tree *, tree, [[!same_tree(f1->tree, f2->tree)]], "tree %p", item->tree);
956
957 const struct f_tree *t = find_tree(tree, &v1);
958 if (!t) {
959 v1.type = T_VOID;
960 t = find_tree(tree, &v1);
961 if (!t) {
962 debug( "No else statement?\n");
963 FID_HIC(,break,return NULL);
964 }
965 }
966 /* It is actually possible to have t->data NULL */
967
968 LINEX(t->data);
969 }
970
971 INST(FI_IP_MASK, 2, 1) { /* IP.MASK(val) */
972 ARG(1, T_IP);
973 ARG(2, T_INT);
974 RESULT(T_IP, ip, [[ ipa_is_ip4(v1.val.ip) ?
975 ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
976 ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i))) ]]);
977 }
978
979 INST(FI_PATH_PREPEND, 2, 1) { /* Path prepend */
980 ARG(1, T_PATH);
981 ARG(2, T_INT);
982 RESULT(T_PATH, ad, [[ as_path_prepend(fpool, v1.val.ad, v2.val.i) ]]);
983 }
984
985 INST(FI_CLIST_ADD, 2, 1) { /* (Extended) Community list add */
986 ARG_ANY(1);
987 ARG_ANY(2);
988 RESULT_TYPE(f1->type);
989
990 if (v1.type == T_PATH)
991 runtime("Can't add to path");
992
993 else if (v1.type == T_CLIST)
994 {
995 /* Community (or cluster) list */
996 struct f_val dummy;
997
998 if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
999 RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
1000 /* IP->Quad implicit conversion */
1001 else if (val_is_ip4(&v2))
1002 RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
1003 else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy))
1004 runtime("Can't add set");
1005 else if (v2.type == T_CLIST)
1006 RESULT_(T_CLIST, ad, [[ int_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1007 else
1008 runtime("Can't add non-pair");
1009 }
1010
1011 else if (v1.type == T_ECLIST)
1012 {
1013 /* v2.val is either EC or EC-set */
1014 if ((v2.type == T_SET) && eclist_set_type(v2.val.t))
1015 runtime("Can't add set");
1016 else if (v2.type == T_ECLIST)
1017 RESULT_(T_ECLIST, ad, [[ ec_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1018 else if (v2.type != T_EC)
1019 runtime("Can't add non-ec");
1020 else
1021 RESULT_(T_ECLIST, ad, [[ ec_set_add(fpool, v1.val.ad, v2.val.ec) ]]);
1022 }
1023
1024 else if (v1.type == T_LCLIST)
1025 {
1026 /* v2.val is either LC or LC-set */
1027 if ((v2.type == T_SET) && lclist_set_type(v2.val.t))
1028 runtime("Can't add set");
1029 else if (v2.type == T_LCLIST)
1030 RESULT_(T_LCLIST, ad, [[ lc_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1031 else if (v2.type != T_LC)
1032 runtime("Can't add non-lc");
1033 else
1034 RESULT_(T_LCLIST, ad, [[ lc_set_add(fpool, v1.val.ad, v2.val.lc) ]]);
1035
1036 }
1037
1038 else
1039 runtime("Can't add to non-[e|l]clist");
1040 }
1041
1042 INST(FI_CLIST_DEL, 2, 1) { /* (Extended) Community list add or delete */
1043 ARG_ANY(1);
1044 ARG_ANY(2);
1045 RESULT_TYPE(f1->type);
1046
1047 if (v1.type == T_PATH)
1048 {
1049 const struct f_tree *set = NULL;
1050 u32 key = 0;
1051
1052 if (v2.type == T_INT)
1053 key = v2.val.i;
1054 else if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
1055 set = v2.val.t;
1056 else
1057 runtime("Can't delete non-integer (set)");
1058
1059 RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, set, key, 0) ]]);
1060 }
1061
1062 else if (v1.type == T_CLIST)
1063 {
1064 /* Community (or cluster) list */
1065 struct f_val dummy;
1066
1067 if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
1068 RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
1069 /* IP->Quad implicit conversion */
1070 else if (val_is_ip4(&v2))
1071 RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
1072 else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
1073 RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1074 else
1075 runtime("Can't delete non-pair");
1076 }
1077
1078 else if (v1.type == T_ECLIST)
1079 {
1080 /* v2.val is either EC or EC-set */
1081 if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
1082 RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1083 else if (v2.type != T_EC)
1084 runtime("Can't delete non-ec");
1085 else
1086 RESULT_(T_ECLIST, ad, [[ ec_set_del(fpool, v1.val.ad, v2.val.ec) ]]);
1087 }
1088
1089 else if (v1.type == T_LCLIST)
1090 {
1091 /* v2.val is either LC or LC-set */
1092 if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
1093 RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1094 else if (v2.type != T_LC)
1095 runtime("Can't delete non-lc");
1096 else
1097 RESULT_(T_LCLIST, ad, [[ lc_set_del(fpool, v1.val.ad, v2.val.lc) ]]);
1098 }
1099
1100 else
1101 runtime("Can't delete in non-[e|l]clist");
1102 }
1103
1104 INST(FI_CLIST_FILTER, 2, 1) { /* (Extended) Community list add or delete */
1105 ARG_ANY(1);
1106 ARG_ANY(2);
1107 RESULT_TYPE(f1->type);
1108
1109 if (v1.type == T_PATH)
1110 {
1111 u32 key = 0;
1112
1113 if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
1114 RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, v2.val.t, key, 1) ]]);
1115 else
1116 runtime("Can't filter integer");
1117 }
1118
1119 else if (v1.type == T_CLIST)
1120 {
1121 /* Community (or cluster) list */
1122 struct f_val dummy;
1123
1124 if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
1125 RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1126 else
1127 runtime("Can't filter pair");
1128 }
1129
1130 else if (v1.type == T_ECLIST)
1131 {
1132 /* v2.val is either EC or EC-set */
1133 if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
1134 RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1135 else
1136 runtime("Can't filter ec");
1137 }
1138
1139 else if (v1.type == T_LCLIST)
1140 {
1141 /* v2.val is either LC or LC-set */
1142 if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
1143 RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1144 else
1145 runtime("Can't filter lc");
1146 }
1147
1148 else
1149 runtime("Can't filter non-[e|l]clist");
1150 }
1151
1152 INST(FI_ROA_CHECK_IMPLICIT, 0, 1) { /* ROA Check */
1153 NEVER_CONSTANT;
1154 RTC(1);
1155 struct rtable *table = rtc->table;
1156 ACCESS_RTE;
1157 ACCESS_EATTRS;
1158 const net_addr *net = (*fs->rte)->net->n.addr;
1159
1160 /* We ignore temporary attributes, probably not a problem here */
1161 /* 0x02 is a value of BA_AS_PATH, we don't want to include BGP headers */
1162 eattr *e = ea_find(*fs->eattrs, EA_CODE(PROTOCOL_BGP, 0x02));
1163
1164 if (!e || ((e->type & EAF_TYPE_MASK) != EAF_TYPE_AS_PATH))
1165 runtime("Missing AS_PATH attribute");
1166
1167 u32 as = 0;
1168 as_path_get_last(e->u.ptr, &as);
1169
1170 if (!table)
1171 runtime("Missing ROA table");
1172
1173 if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
1174 runtime("Table type must be either ROA4 or ROA6");
1175
1176 if (table->addr_type != (net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
1177 RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
1178 else
1179 RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, net, as) ]]);
1180 }
1181
1182 INST(FI_ROA_CHECK_EXPLICIT, 2, 1) { /* ROA Check */
1183 NEVER_CONSTANT;
1184 ARG(1, T_NET);
1185 ARG(2, T_INT);
1186 RTC(3);
1187 struct rtable *table = rtc->table;
1188
1189 u32 as = v2.val.i;
1190
1191 if (!table)
1192 runtime("Missing ROA table");
1193
1194 if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
1195 runtime("Table type must be either ROA4 or ROA6");
1196
1197 if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
1198 RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
1199 else
1200 RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, v1.val.net, as) ]]);
1201
1202 }
1203
1204 INST(FI_FORMAT, 1, 0) { /* Format */
1205 ARG_ANY(1);
1206 RESULT(T_STRING, s, val_format_str(fpool, &v1));
1207 }
1208
1209 INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
1210 NEVER_CONSTANT;
1211 ARG(1, T_BOOL);
1212
1213 FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], "string %s", item->s);
1214
1215 ASSERT(s);
1216
1217 if (!bt_assert_hook)
1218 runtime("No bt_assert hook registered, can't assert");
1219
1220 bt_assert_hook(v1.val.i, what);
1221 }