]> git.ipfire.org Git - thirdparty/bird.git/blob - filter/trie.c
Changes print-like filter commands to use a log instead of a stderr.
[thirdparty/bird.git] / filter / trie.c
1 /*
2 * Filters: Trie for prefix sets
3 *
4 * Copyright 2009 Ondrej Zajicek <santiago@crfreenet.org>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 /**
10 * DOC: Trie for prefix sets
11 *
12 * We use a (compressed) trie to represent prefix sets. Every node
13 * in the trie represents one prefix (&addr/&plen) and &plen also
14 * indicates the index of the bit in the address that is used to
15 * branch at the node. If we need to represent just a set of
16 * prefixes, it would be simple, but we have to represent a
17 * set of prefix patterns. Each prefix pattern consists of
18 * &ppaddr/&pplen and two integers: &low and &high, and a prefix
19 * &paddr/&plen matches that pattern if the first MIN(&plen, &pplen)
20 * bits of &paddr and &ppaddr are the same and &low <= &plen <= &high.
21 *
22 * We use a bitmask (&accept) to represent accepted prefix lengths
23 * at a node. As there are 33 prefix lengths (0..32 for IPv4), but
24 * there is just one prefix of zero length in the whole trie so we
25 * have &zero flag in &f_trie (indicating whether the trie accepts
26 * prefix 0.0.0.0/0) as a special case, and &accept bitmask
27 * represents accepted prefix lengths from 1 to 32.
28 *
29 * There are two cases in prefix matching - a match when the length
30 * of the prefix is smaller that the length of the prefix pattern,
31 * (&plen < &pplen) and otherwise. The second case is simple - we
32 * just walk through the trie and look at every visited node
33 * whether that prefix accepts our prefix length (&plen). The
34 * first case is tricky - we don't want to examine every descendant
35 * of a final node, so (when we create the trie) we have to propagate
36 * that information from nodes to their ascendants.
37 *
38 * Suppose that we have two masks (M1 and M2) for a node. Mask M1
39 * represents accepted prefix lengths by just the node and mask M2
40 * represents accepted prefix lengths by the node or any of its
41 * descendants. Therefore M2 is a bitwise or of M1 and children's
42 * M2 and this is a maintained invariant during trie building.
43 * Basically, when we want to match a prefix, we walk through the trie,
44 * check mask M1 for our prefix length and when we came to
45 * final node, we check mask M2.
46 *
47 * There are two differences in the real implementation. First,
48 * we use a compressed trie so there is a case that we skip our
49 * final node (if it is not in the trie) and we came to node that
50 * is either extension of our prefix, or completely out of path
51 * In the first case, we also have to check M2.
52 *
53 * Second, we really need not to maintain two separate bitmasks.
54 * Checks for mask M1 are always larger than &applen and we need
55 * just the first &pplen bits of mask M2 (if trie compression
56 * hadn't been used it would suffice to know just $applen-th bit),
57 * so we have to store them together in &accept mask - the first
58 * &pplen bits of mask M2 and then mask M1.
59 *
60 * There are four cases when we walk through a trie:
61 *
62 * - we are in NULL
63 * - we are out of path (prefixes are inconsistent)
64 * - we are in the wanted (final) node (node length == &plen)
65 * - we are beyond the end of path (node length > &plen)
66 * - we are still on path and keep walking (node length < &plen)
67 *
68 * The walking code in trie_match_prefix() is structured according to
69 * these cases.
70 */
71
72 #include "nest/bird.h"
73 #include "lib/string.h"
74 #include "conf/conf.h"
75 #include "filter/filter.h"
76
77 /**
78 * f_new_trie
79 *
80 * Allocates and returns a new empty trie.
81 */
82 struct f_trie *
83 f_new_trie(linpool *lp)
84 {
85 struct f_trie * ret;
86 ret = lp_allocz(lp, sizeof(struct f_trie));
87 ret->lp = lp;
88 return ret;
89 }
90
91 static inline struct f_trie_node *
92 new_node(struct f_trie *t, int plen, ip_addr paddr, ip_addr pmask, ip_addr amask)
93 {
94 struct f_trie_node *n = lp_allocz(t->lp, sizeof(struct f_trie_node));
95 n->plen = plen;
96 n->addr = paddr;
97 n->mask = pmask;
98 n->accept = amask;
99 return n;
100 }
101
102 static inline void
103 attach_node(struct f_trie_node *parent, struct f_trie_node *child)
104 {
105 parent->c[ipa_getbit(child->addr, parent->plen) ? 1 : 0] = child;
106 }
107
108 /**
109 * trie_add_prefix
110 * @t: trie to add to
111 * @px: prefix address
112 * @plen: prefix length
113 * @l: prefix lower bound
114 * @h: prefix upper bound
115 *
116 * Adds prefix (prefix pattern) @px/@plen to trie @t. @l and @h are lower
117 * and upper bounds on accepted prefix lengths, both inclusive.
118 * 0 <= l, h <= 32 (128 for IPv6).
119 */
120
121 void
122 trie_add_prefix(struct f_trie *t, ip_addr px, int plen, int l, int h)
123 {
124 if (l == 0)
125 t->zero = 1;
126 else
127 l--;
128
129 if (h < plen)
130 plen = h;
131
132 ip_addr amask = ipa_xor(ipa_mkmask(l), ipa_mkmask(h));
133 ip_addr pmask = ipa_mkmask(plen);
134 ip_addr paddr = ipa_and(px, pmask);
135 struct f_trie_node *o = NULL;
136 struct f_trie_node *n = &t->root;
137
138 while(n)
139 {
140 ip_addr cmask = ipa_and(n->mask, pmask);
141
142 if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
143 {
144 /* We are out of path - we have to add branching node 'b'
145 between node 'o' and node 'n', and attach new node 'a'
146 as the other child of 'b'. */
147 int blen = ipa_pxlen(paddr, n->addr);
148 ip_addr bmask = ipa_mkmask(blen);
149 ip_addr baddr = ipa_and(px, bmask);
150
151 /* Merge accept masks from children to get accept mask for node 'b' */
152 ip_addr baccm = ipa_and(ipa_or(amask, n->accept), bmask);
153
154 struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
155 struct f_trie_node *b = new_node(t, blen, baddr, bmask, baccm);
156 attach_node(o, b);
157 attach_node(b, n);
158 attach_node(b, a);
159 return;
160 }
161
162 if (plen < n->plen)
163 {
164 /* We add new node 'a' between node 'o' and node 'n' */
165 amask = ipa_or(amask, ipa_and(n->accept, pmask));
166 struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
167 attach_node(o, a);
168 attach_node(a, n);
169 return;
170 }
171
172 if (plen == n->plen)
173 {
174 /* We already found added node in trie. Just update accept mask */
175 n->accept = ipa_or(n->accept, amask);
176 return;
177 }
178
179 /* Update accept mask part M2 and go deeper */
180 n->accept = ipa_or(n->accept, ipa_and(amask, n->mask));
181
182 /* n->plen < plen and plen <= 32 (128) */
183 o = n;
184 n = n->c[ipa_getbit(paddr, n->plen) ? 1 : 0];
185 }
186
187 /* We add new tail node 'a' after node 'o' */
188 struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
189 attach_node(o, a);
190 }
191
192 /**
193 * trie_match
194 * @t: trie
195 * @px: prefix address
196 * @plen: prefix length
197 *
198 * Tries to find a matching prefix pattern in the trie such that
199 * prefix @px/@plen matches that prefix pattern. Returns 1 if there
200 * is such prefix pattern in the trie.
201 */
202 int
203 trie_match_prefix(struct f_trie *t, ip_addr px, int plen)
204 {
205 ip_addr pmask = ipa_mkmask(plen);
206 ip_addr paddr = ipa_and(px, pmask);
207
208 if (plen == 0)
209 return t->zero;
210
211 int plentest = plen - 1;
212 struct f_trie_node *n = &t->root;
213
214 while(n)
215 {
216 ip_addr cmask = ipa_and(n->mask, pmask);
217
218 /* We are out of path */
219 if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
220 return 0;
221
222 /* Check accept mask */
223 if (ipa_getbit(n->accept, plentest))
224 return 1;
225
226 /* We finished trie walk and still no match */
227 if (plen <= n->plen)
228 return 0;
229
230 /* Choose children */
231 n = n->c[(ipa_getbit(paddr, n->plen)) ? 1 : 0];
232 }
233
234 return 0;
235 }
236
237 static int
238 trie_node_same(struct f_trie_node *t1, struct f_trie_node *t2)
239 {
240 if ((t1 == NULL) && (t2 == NULL))
241 return 1;
242
243 if ((t1 == NULL) || (t2 == NULL))
244 return 0;
245
246 if ((t1->plen != t2->plen) ||
247 (! ipa_equal(t1->addr, t2->addr)) ||
248 (! ipa_equal(t1->accept, t2->accept)))
249 return 0;
250
251 return trie_node_same(t1->c[0], t2->c[0]) && trie_node_same(t1->c[1], t2->c[1]);
252 }
253
254 /**
255 * trie_same
256 * @t1: first trie to be compared
257 * @t2: second one
258 *
259 * Compares two tries and returns 1 if they are same
260 */
261 int
262 trie_same(struct f_trie *t1, struct f_trie *t2)
263 {
264 return (t1->zero == t2->zero) && trie_node_same(&t1->root, &t2->root);
265 }
266
267 static void
268 trie_node_print(struct f_trie_node *t, char **sep)
269 {
270 if (t == NULL)
271 return;
272
273 if (ipa_nonzero(t->accept))
274 {
275 logn("%s%I/%d{%I}", *sep, t->addr, t->plen, t->accept);
276 *sep = ", ";
277 }
278
279 trie_node_print(t->c[0], sep);
280 trie_node_print(t->c[1], sep);
281 }
282
283 /**
284 * trie_print
285 * @t: trie to be printed
286 *
287 * Prints the trie to the log buffer.
288 */
289 void
290 trie_print(struct f_trie *t)
291 {
292 char *sep = "";
293 logn("[");
294 if (t->zero)
295 {
296 logn("0.0.0.0/0");
297 sep = ", ";
298 }
299 trie_node_print(&t->root, &sep);
300 logn("]");
301 }