]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/exp_aggr.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / exp_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Util; use Exp_Util;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Tss; use Exp_Tss;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Ttypes; use Ttypes;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Ch3; use Sem_Ch3;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sinfo; use Sinfo;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Uintp; use Uintp;
63
64 package body Exp_Aggr is
65
66 type Case_Bounds is record
67 Choice_Lo : Node_Id;
68 Choice_Hi : Node_Id;
69 Choice_Node : Node_Id;
70 end record;
71
72 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
73 -- Table type used by Check_Case_Choices procedure
74
75 function Must_Slide
76 (Obj_Type : Entity_Id;
77 Typ : Entity_Id) return Boolean;
78 -- A static array aggregate in an object declaration can in most cases be
79 -- expanded in place. The one exception is when the aggregate is given
80 -- with component associations that specify different bounds from those of
81 -- the type definition in the object declaration. In this pathological
82 -- case the aggregate must slide, and we must introduce an intermediate
83 -- temporary to hold it.
84 --
85 -- The same holds in an assignment to one-dimensional array of arrays,
86 -- when a component may be given with bounds that differ from those of the
87 -- component type.
88
89 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
90 -- Sort the Case Table using the Lower Bound of each Choice as the key.
91 -- A simple insertion sort is used since the number of choices in a case
92 -- statement of variant part will usually be small and probably in near
93 -- sorted order.
94
95 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
96 -- N is an aggregate (record or array). Checks the presence of default
97 -- initialization (<>) in any component (Ada 2005: AI-287).
98
99 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
100 -- Returns true if N is an aggregate used to initialize the components
101 -- of an statically allocated dispatch table.
102
103 ------------------------------------------------------
104 -- Local subprograms for Record Aggregate Expansion --
105 ------------------------------------------------------
106
107 procedure Expand_Record_Aggregate
108 (N : Node_Id;
109 Orig_Tag : Node_Id := Empty;
110 Parent_Expr : Node_Id := Empty);
111 -- This is the top level procedure for record aggregate expansion.
112 -- Expansion for record aggregates needs expand aggregates for tagged
113 -- record types. Specifically Expand_Record_Aggregate adds the Tag
114 -- field in front of the Component_Association list that was created
115 -- during resolution by Resolve_Record_Aggregate.
116 --
117 -- N is the record aggregate node.
118 -- Orig_Tag is the value of the Tag that has to be provided for this
119 -- specific aggregate. It carries the tag corresponding to the type
120 -- of the outermost aggregate during the recursive expansion
121 -- Parent_Expr is the ancestor part of the original extension
122 -- aggregate
123
124 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
125 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
126 -- aggregate (which can only be a record type, this procedure is only used
127 -- for record types). Transform the given aggregate into a sequence of
128 -- assignments performed component by component.
129
130 function Build_Record_Aggr_Code
131 (N : Node_Id;
132 Typ : Entity_Id;
133 Lhs : Node_Id;
134 Flist : Node_Id := Empty;
135 Obj : Entity_Id := Empty;
136 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id;
137 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
138 -- aggregate. Target is an expression containing the location on which the
139 -- component by component assignments will take place. Returns the list of
140 -- assignments plus all other adjustments needed for tagged and controlled
141 -- types. Flist is an expression representing the finalization list on
142 -- which to attach the controlled components if any. Obj is present in the
143 -- object declaration and dynamic allocation cases, it contains an entity
144 -- that allows to know if the value being created needs to be attached to
145 -- the final list in case of pragma Finalize_Storage_Only.
146 --
147 -- ???
148 -- The meaning of the Obj formal is extremely unclear. *What* entity
149 -- should be passed? For the object declaration case we may guess that
150 -- this is the object being declared, but what about the allocator case?
151 --
152 -- Is_Limited_Ancestor_Expansion indicates that the function has been
153 -- called recursively to expand the limited ancestor to avoid copying it.
154
155 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
156 -- Return true if one of the component is of a discriminated type with
157 -- defaults. An aggregate for a type with mutable components must be
158 -- expanded into individual assignments.
159
160 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
161 -- If the type of the aggregate is a type extension with renamed discrimi-
162 -- nants, we must initialize the hidden discriminants of the parent.
163 -- Otherwise, the target object must not be initialized. The discriminants
164 -- are initialized by calling the initialization procedure for the type.
165 -- This is incorrect if the initialization of other components has any
166 -- side effects. We restrict this call to the case where the parent type
167 -- has a variant part, because this is the only case where the hidden
168 -- discriminants are accessed, namely when calling discriminant checking
169 -- functions of the parent type, and when applying a stream attribute to
170 -- an object of the derived type.
171
172 -----------------------------------------------------
173 -- Local Subprograms for Array Aggregate Expansion --
174 -----------------------------------------------------
175
176 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
177 -- Very large static aggregates present problems to the back-end, and are
178 -- transformed into assignments and loops. This function verifies that the
179 -- total number of components of an aggregate is acceptable for rewriting
180 -- into a purely positional static form. Aggr_Size_OK must be called before
181 -- calling Flatten.
182 --
183 -- This function also detects and warns about one-component aggregates that
184 -- appear in a non-static context. Even if the component value is static,
185 -- such an aggregate must be expanded into an assignment.
186
187 procedure Convert_Array_Aggr_In_Allocator
188 (Decl : Node_Id;
189 Aggr : Node_Id;
190 Target : Node_Id);
191 -- If the aggregate appears within an allocator and can be expanded in
192 -- place, this routine generates the individual assignments to components
193 -- of the designated object. This is an optimization over the general
194 -- case, where a temporary is first created on the stack and then used to
195 -- construct the allocated object on the heap.
196
197 procedure Convert_To_Positional
198 (N : Node_Id;
199 Max_Others_Replicate : Nat := 5;
200 Handle_Bit_Packed : Boolean := False);
201 -- If possible, convert named notation to positional notation. This
202 -- conversion is possible only in some static cases. If the conversion is
203 -- possible, then N is rewritten with the analyzed converted aggregate.
204 -- The parameter Max_Others_Replicate controls the maximum number of
205 -- values corresponding to an others choice that will be converted to
206 -- positional notation (the default of 5 is the normal limit, and reflects
207 -- the fact that normally the loop is better than a lot of separate
208 -- assignments). Note that this limit gets overridden in any case if
209 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
210 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
211 -- not expect the back end to handle bit packed arrays, so the normal case
212 -- of conversion is pointless), but in the special case of a call from
213 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
214 -- these are cases we handle in there.
215
216 procedure Expand_Array_Aggregate (N : Node_Id);
217 -- This is the top-level routine to perform array aggregate expansion.
218 -- N is the N_Aggregate node to be expanded.
219
220 function Backend_Processing_Possible (N : Node_Id) return Boolean;
221 -- This function checks if array aggregate N can be processed directly
222 -- by the backend. If this is the case True is returned.
223
224 function Build_Array_Aggr_Code
225 (N : Node_Id;
226 Ctype : Entity_Id;
227 Index : Node_Id;
228 Into : Node_Id;
229 Scalar_Comp : Boolean;
230 Indices : List_Id := No_List;
231 Flist : Node_Id := Empty) return List_Id;
232 -- This recursive routine returns a list of statements containing the
233 -- loops and assignments that are needed for the expansion of the array
234 -- aggregate N.
235 --
236 -- N is the (sub-)aggregate node to be expanded into code. This node
237 -- has been fully analyzed, and its Etype is properly set.
238 --
239 -- Index is the index node corresponding to the array sub-aggregate N.
240 --
241 -- Into is the target expression into which we are copying the aggregate.
242 -- Note that this node may not have been analyzed yet, and so the Etype
243 -- field may not be set.
244 --
245 -- Scalar_Comp is True if the component type of the aggregate is scalar.
246 --
247 -- Indices is the current list of expressions used to index the
248 -- object we are writing into.
249 --
250 -- Flist is an expression representing the finalization list on which
251 -- to attach the controlled components if any.
252
253 function Number_Of_Choices (N : Node_Id) return Nat;
254 -- Returns the number of discrete choices (not including the others choice
255 -- if present) contained in (sub-)aggregate N.
256
257 function Late_Expansion
258 (N : Node_Id;
259 Typ : Entity_Id;
260 Target : Node_Id;
261 Flist : Node_Id := Empty;
262 Obj : Entity_Id := Empty) return List_Id;
263 -- N is a nested (record or array) aggregate that has been marked with
264 -- 'Delay_Expansion'. Typ is the expected type of the aggregate and Target
265 -- is a (duplicable) expression that will hold the result of the aggregate
266 -- expansion. Flist is the finalization list to be used to attach
267 -- controlled components. 'Obj' when non empty, carries the original
268 -- object being initialized in order to know if it needs to be attached to
269 -- the previous parameter which may not be the case in the case where
270 -- Finalize_Storage_Only is set. Basically this procedure is used to
271 -- implement top-down expansions of nested aggregates. This is necessary
272 -- for avoiding temporaries at each level as well as for propagating the
273 -- right internal finalization list.
274
275 function Make_OK_Assignment_Statement
276 (Sloc : Source_Ptr;
277 Name : Node_Id;
278 Expression : Node_Id) return Node_Id;
279 -- This is like Make_Assignment_Statement, except that Assignment_OK
280 -- is set in the left operand. All assignments built by this unit
281 -- use this routine. This is needed to deal with assignments to
282 -- initialized constants that are done in place.
283
284 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
285 -- Given an array aggregate, this function handles the case of a packed
286 -- array aggregate with all constant values, where the aggregate can be
287 -- evaluated at compile time. If this is possible, then N is rewritten
288 -- to be its proper compile time value with all the components properly
289 -- assembled. The expression is analyzed and resolved and True is
290 -- returned. If this transformation is not possible, N is unchanged
291 -- and False is returned
292
293 function Safe_Slice_Assignment (N : Node_Id) return Boolean;
294 -- If a slice assignment has an aggregate with a single others_choice,
295 -- the assignment can be done in place even if bounds are not static,
296 -- by converting it into a loop over the discrete range of the slice.
297
298 ------------------
299 -- Aggr_Size_OK --
300 ------------------
301
302 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
303 Lo : Node_Id;
304 Hi : Node_Id;
305 Indx : Node_Id;
306 Siz : Int;
307 Lov : Uint;
308 Hiv : Uint;
309
310 -- The following constant determines the maximum size of an
311 -- array aggregate produced by converting named to positional
312 -- notation (e.g. from others clauses). This avoids running
313 -- away with attempts to convert huge aggregates, which hit
314 -- memory limits in the backend.
315
316 -- The normal limit is 5000, but we increase this limit to
317 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code)
318 -- or Restrictions (No_Implicit_Loops) is specified, since in
319 -- either case, we are at risk of declaring the program illegal
320 -- because of this limit.
321
322 Max_Aggr_Size : constant Nat :=
323 5000 + (2 ** 24 - 5000) *
324 Boolean'Pos
325 (Restriction_Active (No_Elaboration_Code)
326 or else
327 Restriction_Active (No_Implicit_Loops));
328
329 function Component_Count (T : Entity_Id) return Int;
330 -- The limit is applied to the total number of components that the
331 -- aggregate will have, which is the number of static expressions
332 -- that will appear in the flattened array. This requires a recursive
333 -- computation of the number of scalar components of the structure.
334
335 ---------------------
336 -- Component_Count --
337 ---------------------
338
339 function Component_Count (T : Entity_Id) return Int is
340 Res : Int := 0;
341 Comp : Entity_Id;
342
343 begin
344 if Is_Scalar_Type (T) then
345 return 1;
346
347 elsif Is_Record_Type (T) then
348 Comp := First_Component (T);
349 while Present (Comp) loop
350 Res := Res + Component_Count (Etype (Comp));
351 Next_Component (Comp);
352 end loop;
353
354 return Res;
355
356 elsif Is_Array_Type (T) then
357 declare
358 Lo : constant Node_Id :=
359 Type_Low_Bound (Etype (First_Index (T)));
360 Hi : constant Node_Id :=
361 Type_High_Bound (Etype (First_Index (T)));
362
363 Siz : constant Int := Component_Count (Component_Type (T));
364
365 begin
366 if not Compile_Time_Known_Value (Lo)
367 or else not Compile_Time_Known_Value (Hi)
368 then
369 return 0;
370 else
371 return
372 Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
373 end if;
374 end;
375
376 else
377 -- Can only be a null for an access type
378
379 return 1;
380 end if;
381 end Component_Count;
382
383 -- Start of processing for Aggr_Size_OK
384
385 begin
386 Siz := Component_Count (Component_Type (Typ));
387
388 Indx := First_Index (Typ);
389 while Present (Indx) loop
390 Lo := Type_Low_Bound (Etype (Indx));
391 Hi := Type_High_Bound (Etype (Indx));
392
393 -- Bounds need to be known at compile time
394
395 if not Compile_Time_Known_Value (Lo)
396 or else not Compile_Time_Known_Value (Hi)
397 then
398 return False;
399 end if;
400
401 Lov := Expr_Value (Lo);
402 Hiv := Expr_Value (Hi);
403
404 -- A flat array is always safe
405
406 if Hiv < Lov then
407 return True;
408 end if;
409
410 -- One-component aggregates are suspicious, and if the context type
411 -- is an object declaration with non-static bounds it will trip gcc;
412 -- such an aggregate must be expanded into a single assignment.
413
414 if Hiv = Lov
415 and then Nkind (Parent (N)) = N_Object_Declaration
416 then
417 declare
418 Index_Type : constant Entity_Id :=
419 Etype
420 (First_Index
421 (Etype (Defining_Identifier (Parent (N)))));
422 Indx : Node_Id;
423
424 begin
425 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
426 or else not Compile_Time_Known_Value
427 (Type_High_Bound (Index_Type))
428 then
429 if Present (Component_Associations (N)) then
430 Indx :=
431 First (Choices (First (Component_Associations (N))));
432 if Is_Entity_Name (Indx)
433 and then not Is_Type (Entity (Indx))
434 then
435 Error_Msg_N
436 ("single component aggregate in non-static context?",
437 Indx);
438 Error_Msg_N ("\maybe subtype name was meant?", Indx);
439 end if;
440 end if;
441
442 return False;
443 end if;
444 end;
445 end if;
446
447 declare
448 Rng : constant Uint := Hiv - Lov + 1;
449
450 begin
451 -- Check if size is too large
452
453 if not UI_Is_In_Int_Range (Rng) then
454 return False;
455 end if;
456
457 Siz := Siz * UI_To_Int (Rng);
458 end;
459
460 if Siz <= 0
461 or else Siz > Max_Aggr_Size
462 then
463 return False;
464 end if;
465
466 -- Bounds must be in integer range, for later array construction
467
468 if not UI_Is_In_Int_Range (Lov)
469 or else
470 not UI_Is_In_Int_Range (Hiv)
471 then
472 return False;
473 end if;
474
475 Next_Index (Indx);
476 end loop;
477
478 return True;
479 end Aggr_Size_OK;
480
481 ---------------------------------
482 -- Backend_Processing_Possible --
483 ---------------------------------
484
485 -- Backend processing by Gigi/gcc is possible only if all the following
486 -- conditions are met:
487
488 -- 1. N is fully positional
489
490 -- 2. N is not a bit-packed array aggregate;
491
492 -- 3. The size of N's array type must be known at compile time. Note
493 -- that this implies that the component size is also known
494
495 -- 4. The array type of N does not follow the Fortran layout convention
496 -- or if it does it must be 1 dimensional.
497
498 -- 5. The array component type may not be tagged (which could necessitate
499 -- reassignment of proper tags).
500
501 -- 6. The array component type must not have unaligned bit components
502
503 -- 7. None of the components of the aggregate may be bit unaligned
504 -- components.
505
506 -- 8. There cannot be delayed components, since we do not know enough
507 -- at this stage to know if back end processing is possible.
508
509 -- 9. There cannot be any discriminated record components, since the
510 -- back end cannot handle this complex case.
511
512 -- 10. No controlled actions need to be generated for components
513
514 -- 11. For a VM back end, the array should have no aliased components
515
516 function Backend_Processing_Possible (N : Node_Id) return Boolean is
517 Typ : constant Entity_Id := Etype (N);
518 -- Typ is the correct constrained array subtype of the aggregate
519
520 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
521 -- This routine checks components of aggregate N, enforcing checks
522 -- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
523 -- performed on subaggregates. The Index value is the current index
524 -- being checked in the multi-dimensional case.
525
526 ---------------------
527 -- Component_Check --
528 ---------------------
529
530 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
531 Expr : Node_Id;
532
533 begin
534 -- Checks 1: (no component associations)
535
536 if Present (Component_Associations (N)) then
537 return False;
538 end if;
539
540 -- Checks on components
541
542 -- Recurse to check subaggregates, which may appear in qualified
543 -- expressions. If delayed, the front-end will have to expand.
544 -- If the component is a discriminated record, treat as non-static,
545 -- as the back-end cannot handle this properly.
546
547 Expr := First (Expressions (N));
548 while Present (Expr) loop
549
550 -- Checks 8: (no delayed components)
551
552 if Is_Delayed_Aggregate (Expr) then
553 return False;
554 end if;
555
556 -- Checks 9: (no discriminated records)
557
558 if Present (Etype (Expr))
559 and then Is_Record_Type (Etype (Expr))
560 and then Has_Discriminants (Etype (Expr))
561 then
562 return False;
563 end if;
564
565 -- Checks 7. Component must not be bit aligned component
566
567 if Possible_Bit_Aligned_Component (Expr) then
568 return False;
569 end if;
570
571 -- Recursion to following indexes for multiple dimension case
572
573 if Present (Next_Index (Index))
574 and then not Component_Check (Expr, Next_Index (Index))
575 then
576 return False;
577 end if;
578
579 -- All checks for that component finished, on to next
580
581 Next (Expr);
582 end loop;
583
584 return True;
585 end Component_Check;
586
587 -- Start of processing for Backend_Processing_Possible
588
589 begin
590 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
591
592 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
593 return False;
594 end if;
595
596 -- If component is limited, aggregate must be expanded because each
597 -- component assignment must be built in place.
598
599 if Is_Inherently_Limited_Type (Component_Type (Typ)) then
600 return False;
601 end if;
602
603 -- Checks 4 (array must not be multi-dimensional Fortran case)
604
605 if Convention (Typ) = Convention_Fortran
606 and then Number_Dimensions (Typ) > 1
607 then
608 return False;
609 end if;
610
611 -- Checks 3 (size of array must be known at compile time)
612
613 if not Size_Known_At_Compile_Time (Typ) then
614 return False;
615 end if;
616
617 -- Checks on components
618
619 if not Component_Check (N, First_Index (Typ)) then
620 return False;
621 end if;
622
623 -- Checks 5 (if the component type is tagged, then we may need to do
624 -- tag adjustments. Perhaps this should be refined to check for any
625 -- component associations that actually need tag adjustment, similar
626 -- to the test in Component_Not_OK_For_Backend for record aggregates
627 -- with tagged components, but not clear whether it's worthwhile ???;
628 -- in the case of the JVM, object tags are handled implicitly)
629
630 if Is_Tagged_Type (Component_Type (Typ))
631 and then Tagged_Type_Expansion
632 then
633 return False;
634 end if;
635
636 -- Checks 6 (component type must not have bit aligned components)
637
638 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
639 return False;
640 end if;
641
642 -- Checks 11: Array aggregates with aliased components are currently
643 -- not well supported by the VM backend; disable temporarily this
644 -- backend processing until it is definitely supported.
645
646 if VM_Target /= No_VM
647 and then Has_Aliased_Components (Base_Type (Typ))
648 then
649 return False;
650 end if;
651
652 -- Backend processing is possible
653
654 Set_Size_Known_At_Compile_Time (Etype (N), True);
655 return True;
656 end Backend_Processing_Possible;
657
658 ---------------------------
659 -- Build_Array_Aggr_Code --
660 ---------------------------
661
662 -- The code that we generate from a one dimensional aggregate is
663
664 -- 1. If the sub-aggregate contains discrete choices we
665
666 -- (a) Sort the discrete choices
667
668 -- (b) Otherwise for each discrete choice that specifies a range we
669 -- emit a loop. If a range specifies a maximum of three values, or
670 -- we are dealing with an expression we emit a sequence of
671 -- assignments instead of a loop.
672
673 -- (c) Generate the remaining loops to cover the others choice if any
674
675 -- 2. If the aggregate contains positional elements we
676
677 -- (a) translate the positional elements in a series of assignments
678
679 -- (b) Generate a final loop to cover the others choice if any.
680 -- Note that this final loop has to be a while loop since the case
681
682 -- L : Integer := Integer'Last;
683 -- H : Integer := Integer'Last;
684 -- A : array (L .. H) := (1, others =>0);
685
686 -- cannot be handled by a for loop. Thus for the following
687
688 -- array (L .. H) := (.. positional elements.., others =>E);
689
690 -- we always generate something like:
691
692 -- J : Index_Type := Index_Of_Last_Positional_Element;
693 -- while J < H loop
694 -- J := Index_Base'Succ (J)
695 -- Tmp (J) := E;
696 -- end loop;
697
698 function Build_Array_Aggr_Code
699 (N : Node_Id;
700 Ctype : Entity_Id;
701 Index : Node_Id;
702 Into : Node_Id;
703 Scalar_Comp : Boolean;
704 Indices : List_Id := No_List;
705 Flist : Node_Id := Empty) return List_Id
706 is
707 Loc : constant Source_Ptr := Sloc (N);
708 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
709 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
710 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
711
712 function Add (Val : Int; To : Node_Id) return Node_Id;
713 -- Returns an expression where Val is added to expression To, unless
714 -- To+Val is provably out of To's base type range. To must be an
715 -- already analyzed expression.
716
717 function Empty_Range (L, H : Node_Id) return Boolean;
718 -- Returns True if the range defined by L .. H is certainly empty
719
720 function Equal (L, H : Node_Id) return Boolean;
721 -- Returns True if L = H for sure
722
723 function Index_Base_Name return Node_Id;
724 -- Returns a new reference to the index type name
725
726 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
727 -- Ind must be a side-effect free expression. If the input aggregate
728 -- N to Build_Loop contains no sub-aggregates, then this function
729 -- returns the assignment statement:
730 --
731 -- Into (Indices, Ind) := Expr;
732 --
733 -- Otherwise we call Build_Code recursively
734 --
735 -- Ada 2005 (AI-287): In case of default initialized component, Expr
736 -- is empty and we generate a call to the corresponding IP subprogram.
737
738 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
739 -- Nodes L and H must be side-effect free expressions.
740 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
741 -- This routine returns the for loop statement
742 --
743 -- for J in Index_Base'(L) .. Index_Base'(H) loop
744 -- Into (Indices, J) := Expr;
745 -- end loop;
746 --
747 -- Otherwise we call Build_Code recursively.
748 -- As an optimization if the loop covers 3 or less scalar elements we
749 -- generate a sequence of assignments.
750
751 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
752 -- Nodes L and H must be side-effect free expressions.
753 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
754 -- This routine returns the while loop statement
755 --
756 -- J : Index_Base := L;
757 -- while J < H loop
758 -- J := Index_Base'Succ (J);
759 -- Into (Indices, J) := Expr;
760 -- end loop;
761 --
762 -- Otherwise we call Build_Code recursively
763
764 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
765 function Local_Expr_Value (E : Node_Id) return Uint;
766 -- These two Local routines are used to replace the corresponding ones
767 -- in sem_eval because while processing the bounds of an aggregate with
768 -- discrete choices whose index type is an enumeration, we build static
769 -- expressions not recognized by Compile_Time_Known_Value as such since
770 -- they have not yet been analyzed and resolved. All the expressions in
771 -- question are things like Index_Base_Name'Val (Const) which we can
772 -- easily recognize as being constant.
773
774 ---------
775 -- Add --
776 ---------
777
778 function Add (Val : Int; To : Node_Id) return Node_Id is
779 Expr_Pos : Node_Id;
780 Expr : Node_Id;
781 To_Pos : Node_Id;
782 U_To : Uint;
783 U_Val : constant Uint := UI_From_Int (Val);
784
785 begin
786 -- Note: do not try to optimize the case of Val = 0, because
787 -- we need to build a new node with the proper Sloc value anyway.
788
789 -- First test if we can do constant folding
790
791 if Local_Compile_Time_Known_Value (To) then
792 U_To := Local_Expr_Value (To) + Val;
793
794 -- Determine if our constant is outside the range of the index.
795 -- If so return an Empty node. This empty node will be caught
796 -- by Empty_Range below.
797
798 if Compile_Time_Known_Value (Index_Base_L)
799 and then U_To < Expr_Value (Index_Base_L)
800 then
801 return Empty;
802
803 elsif Compile_Time_Known_Value (Index_Base_H)
804 and then U_To > Expr_Value (Index_Base_H)
805 then
806 return Empty;
807 end if;
808
809 Expr_Pos := Make_Integer_Literal (Loc, U_To);
810 Set_Is_Static_Expression (Expr_Pos);
811
812 if not Is_Enumeration_Type (Index_Base) then
813 Expr := Expr_Pos;
814
815 -- If we are dealing with enumeration return
816 -- Index_Base'Val (Expr_Pos)
817
818 else
819 Expr :=
820 Make_Attribute_Reference
821 (Loc,
822 Prefix => Index_Base_Name,
823 Attribute_Name => Name_Val,
824 Expressions => New_List (Expr_Pos));
825 end if;
826
827 return Expr;
828 end if;
829
830 -- If we are here no constant folding possible
831
832 if not Is_Enumeration_Type (Index_Base) then
833 Expr :=
834 Make_Op_Add (Loc,
835 Left_Opnd => Duplicate_Subexpr (To),
836 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
837
838 -- If we are dealing with enumeration return
839 -- Index_Base'Val (Index_Base'Pos (To) + Val)
840
841 else
842 To_Pos :=
843 Make_Attribute_Reference
844 (Loc,
845 Prefix => Index_Base_Name,
846 Attribute_Name => Name_Pos,
847 Expressions => New_List (Duplicate_Subexpr (To)));
848
849 Expr_Pos :=
850 Make_Op_Add (Loc,
851 Left_Opnd => To_Pos,
852 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
853
854 Expr :=
855 Make_Attribute_Reference
856 (Loc,
857 Prefix => Index_Base_Name,
858 Attribute_Name => Name_Val,
859 Expressions => New_List (Expr_Pos));
860 end if;
861
862 return Expr;
863 end Add;
864
865 -----------------
866 -- Empty_Range --
867 -----------------
868
869 function Empty_Range (L, H : Node_Id) return Boolean is
870 Is_Empty : Boolean := False;
871 Low : Node_Id;
872 High : Node_Id;
873
874 begin
875 -- First check if L or H were already detected as overflowing the
876 -- index base range type by function Add above. If this is so Add
877 -- returns the empty node.
878
879 if No (L) or else No (H) then
880 return True;
881 end if;
882
883 for J in 1 .. 3 loop
884 case J is
885
886 -- L > H range is empty
887
888 when 1 =>
889 Low := L;
890 High := H;
891
892 -- B_L > H range must be empty
893
894 when 2 =>
895 Low := Index_Base_L;
896 High := H;
897
898 -- L > B_H range must be empty
899
900 when 3 =>
901 Low := L;
902 High := Index_Base_H;
903 end case;
904
905 if Local_Compile_Time_Known_Value (Low)
906 and then Local_Compile_Time_Known_Value (High)
907 then
908 Is_Empty :=
909 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
910 end if;
911
912 exit when Is_Empty;
913 end loop;
914
915 return Is_Empty;
916 end Empty_Range;
917
918 -----------
919 -- Equal --
920 -----------
921
922 function Equal (L, H : Node_Id) return Boolean is
923 begin
924 if L = H then
925 return True;
926
927 elsif Local_Compile_Time_Known_Value (L)
928 and then Local_Compile_Time_Known_Value (H)
929 then
930 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
931 end if;
932
933 return False;
934 end Equal;
935
936 ----------------
937 -- Gen_Assign --
938 ----------------
939
940 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
941 L : constant List_Id := New_List;
942 F : Entity_Id;
943 A : Node_Id;
944
945 New_Indices : List_Id;
946 Indexed_Comp : Node_Id;
947 Expr_Q : Node_Id;
948 Comp_Type : Entity_Id := Empty;
949
950 function Add_Loop_Actions (Lis : List_Id) return List_Id;
951 -- Collect insert_actions generated in the construction of a
952 -- loop, and prepend them to the sequence of assignments to
953 -- complete the eventual body of the loop.
954
955 ----------------------
956 -- Add_Loop_Actions --
957 ----------------------
958
959 function Add_Loop_Actions (Lis : List_Id) return List_Id is
960 Res : List_Id;
961
962 begin
963 -- Ada 2005 (AI-287): Do nothing else in case of default
964 -- initialized component.
965
966 if No (Expr) then
967 return Lis;
968
969 elsif Nkind (Parent (Expr)) = N_Component_Association
970 and then Present (Loop_Actions (Parent (Expr)))
971 then
972 Append_List (Lis, Loop_Actions (Parent (Expr)));
973 Res := Loop_Actions (Parent (Expr));
974 Set_Loop_Actions (Parent (Expr), No_List);
975 return Res;
976
977 else
978 return Lis;
979 end if;
980 end Add_Loop_Actions;
981
982 -- Start of processing for Gen_Assign
983
984 begin
985 if No (Indices) then
986 New_Indices := New_List;
987 else
988 New_Indices := New_Copy_List_Tree (Indices);
989 end if;
990
991 Append_To (New_Indices, Ind);
992
993 if Present (Flist) then
994 F := New_Copy_Tree (Flist);
995
996 elsif Present (Etype (N)) and then Needs_Finalization (Etype (N)) then
997 if Is_Entity_Name (Into)
998 and then Present (Scope (Entity (Into)))
999 then
1000 F := Find_Final_List (Scope (Entity (Into)));
1001 else
1002 F := Find_Final_List (Current_Scope);
1003 end if;
1004 else
1005 F := Empty;
1006 end if;
1007
1008 if Present (Next_Index (Index)) then
1009 return
1010 Add_Loop_Actions (
1011 Build_Array_Aggr_Code
1012 (N => Expr,
1013 Ctype => Ctype,
1014 Index => Next_Index (Index),
1015 Into => Into,
1016 Scalar_Comp => Scalar_Comp,
1017 Indices => New_Indices,
1018 Flist => F));
1019 end if;
1020
1021 -- If we get here then we are at a bottom-level (sub-)aggregate
1022
1023 Indexed_Comp :=
1024 Checks_Off
1025 (Make_Indexed_Component (Loc,
1026 Prefix => New_Copy_Tree (Into),
1027 Expressions => New_Indices));
1028
1029 Set_Assignment_OK (Indexed_Comp);
1030
1031 -- Ada 2005 (AI-287): In case of default initialized component, Expr
1032 -- is not present (and therefore we also initialize Expr_Q to empty).
1033
1034 if No (Expr) then
1035 Expr_Q := Empty;
1036 elsif Nkind (Expr) = N_Qualified_Expression then
1037 Expr_Q := Expression (Expr);
1038 else
1039 Expr_Q := Expr;
1040 end if;
1041
1042 if Present (Etype (N))
1043 and then Etype (N) /= Any_Composite
1044 then
1045 Comp_Type := Component_Type (Etype (N));
1046 pragma Assert (Comp_Type = Ctype); -- AI-287
1047
1048 elsif Present (Next (First (New_Indices))) then
1049
1050 -- Ada 2005 (AI-287): Do nothing in case of default initialized
1051 -- component because we have received the component type in
1052 -- the formal parameter Ctype.
1053
1054 -- ??? Some assert pragmas have been added to check if this new
1055 -- formal can be used to replace this code in all cases.
1056
1057 if Present (Expr) then
1058
1059 -- This is a multidimensional array. Recover the component
1060 -- type from the outermost aggregate, because subaggregates
1061 -- do not have an assigned type.
1062
1063 declare
1064 P : Node_Id;
1065
1066 begin
1067 P := Parent (Expr);
1068 while Present (P) loop
1069 if Nkind (P) = N_Aggregate
1070 and then Present (Etype (P))
1071 then
1072 Comp_Type := Component_Type (Etype (P));
1073 exit;
1074
1075 else
1076 P := Parent (P);
1077 end if;
1078 end loop;
1079
1080 pragma Assert (Comp_Type = Ctype); -- AI-287
1081 end;
1082 end if;
1083 end if;
1084
1085 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
1086 -- default initialized components (otherwise Expr_Q is not present).
1087
1088 if Present (Expr_Q)
1089 and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1090 then
1091 -- At this stage the Expression may not have been analyzed yet
1092 -- because the array aggregate code has not been updated to use
1093 -- the Expansion_Delayed flag and avoid analysis altogether to
1094 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1095 -- the analysis of non-array aggregates now in order to get the
1096 -- value of Expansion_Delayed flag for the inner aggregate ???
1097
1098 if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1099 Analyze_And_Resolve (Expr_Q, Comp_Type);
1100 end if;
1101
1102 if Is_Delayed_Aggregate (Expr_Q) then
1103
1104 -- This is either a subaggregate of a multidimentional array,
1105 -- or a component of an array type whose component type is
1106 -- also an array. In the latter case, the expression may have
1107 -- component associations that provide different bounds from
1108 -- those of the component type, and sliding must occur. Instead
1109 -- of decomposing the current aggregate assignment, force the
1110 -- re-analysis of the assignment, so that a temporary will be
1111 -- generated in the usual fashion, and sliding will take place.
1112
1113 if Nkind (Parent (N)) = N_Assignment_Statement
1114 and then Is_Array_Type (Comp_Type)
1115 and then Present (Component_Associations (Expr_Q))
1116 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1117 then
1118 Set_Expansion_Delayed (Expr_Q, False);
1119 Set_Analyzed (Expr_Q, False);
1120
1121 else
1122 return
1123 Add_Loop_Actions (
1124 Late_Expansion (
1125 Expr_Q, Etype (Expr_Q), Indexed_Comp, F));
1126 end if;
1127 end if;
1128 end if;
1129
1130 -- Ada 2005 (AI-287): In case of default initialized component, call
1131 -- the initialization subprogram associated with the component type.
1132 -- If the component type is an access type, add an explicit null
1133 -- assignment, because for the back-end there is an initialization
1134 -- present for the whole aggregate, and no default initialization
1135 -- will take place.
1136
1137 -- In addition, if the component type is controlled, we must call
1138 -- its Initialize procedure explicitly, because there is no explicit
1139 -- object creation that will invoke it otherwise.
1140
1141 if No (Expr) then
1142 if Present (Base_Init_Proc (Base_Type (Ctype)))
1143 or else Has_Task (Base_Type (Ctype))
1144 then
1145 Append_List_To (L,
1146 Build_Initialization_Call (Loc,
1147 Id_Ref => Indexed_Comp,
1148 Typ => Ctype,
1149 With_Default_Init => True));
1150
1151 elsif Is_Access_Type (Ctype) then
1152 Append_To (L,
1153 Make_Assignment_Statement (Loc,
1154 Name => Indexed_Comp,
1155 Expression => Make_Null (Loc)));
1156 end if;
1157
1158 if Needs_Finalization (Ctype) then
1159 Append_List_To (L,
1160 Make_Init_Call (
1161 Ref => New_Copy_Tree (Indexed_Comp),
1162 Typ => Ctype,
1163 Flist_Ref => Find_Final_List (Current_Scope),
1164 With_Attach => Make_Integer_Literal (Loc, 1)));
1165 end if;
1166
1167 else
1168 -- Now generate the assignment with no associated controlled
1169 -- actions since the target of the assignment may not have been
1170 -- initialized, it is not possible to Finalize it as expected by
1171 -- normal controlled assignment. The rest of the controlled
1172 -- actions are done manually with the proper finalization list
1173 -- coming from the context.
1174
1175 A :=
1176 Make_OK_Assignment_Statement (Loc,
1177 Name => Indexed_Comp,
1178 Expression => New_Copy_Tree (Expr));
1179
1180 if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
1181 Set_No_Ctrl_Actions (A);
1182
1183 -- If this is an aggregate for an array of arrays, each
1184 -- sub-aggregate will be expanded as well, and even with
1185 -- No_Ctrl_Actions the assignments of inner components will
1186 -- require attachment in their assignments to temporaries.
1187 -- These temporaries must be finalized for each subaggregate,
1188 -- to prevent multiple attachments of the same temporary
1189 -- location to same finalization chain (and consequently
1190 -- circular lists). To ensure that finalization takes place
1191 -- for each subaggregate we wrap the assignment in a block.
1192
1193 if Is_Array_Type (Comp_Type)
1194 and then Nkind (Expr) = N_Aggregate
1195 then
1196 A :=
1197 Make_Block_Statement (Loc,
1198 Handled_Statement_Sequence =>
1199 Make_Handled_Sequence_Of_Statements (Loc,
1200 Statements => New_List (A)));
1201 end if;
1202 end if;
1203
1204 Append_To (L, A);
1205
1206 -- Adjust the tag if tagged (because of possible view
1207 -- conversions), unless compiling for a VM where
1208 -- tags are implicit.
1209
1210 if Present (Comp_Type)
1211 and then Is_Tagged_Type (Comp_Type)
1212 and then Tagged_Type_Expansion
1213 then
1214 A :=
1215 Make_OK_Assignment_Statement (Loc,
1216 Name =>
1217 Make_Selected_Component (Loc,
1218 Prefix => New_Copy_Tree (Indexed_Comp),
1219 Selector_Name =>
1220 New_Reference_To
1221 (First_Tag_Component (Comp_Type), Loc)),
1222
1223 Expression =>
1224 Unchecked_Convert_To (RTE (RE_Tag),
1225 New_Reference_To
1226 (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
1227 Loc)));
1228
1229 Append_To (L, A);
1230 end if;
1231
1232 -- Adjust and attach the component to the proper final list, which
1233 -- can be the controller of the outer record object or the final
1234 -- list associated with the scope.
1235
1236 -- If the component is itself an array of controlled types, whose
1237 -- value is given by a sub-aggregate, then the attach calls have
1238 -- been generated when individual subcomponent are assigned, and
1239 -- must not be done again to prevent malformed finalization chains
1240 -- (see comments above, concerning the creation of a block to hold
1241 -- inner finalization actions).
1242
1243 if Present (Comp_Type)
1244 and then Needs_Finalization (Comp_Type)
1245 and then not Is_Limited_Type (Comp_Type)
1246 and then not
1247 (Is_Array_Type (Comp_Type)
1248 and then Is_Controlled (Component_Type (Comp_Type))
1249 and then Nkind (Expr) = N_Aggregate)
1250 then
1251 Append_List_To (L,
1252 Make_Adjust_Call (
1253 Ref => New_Copy_Tree (Indexed_Comp),
1254 Typ => Comp_Type,
1255 Flist_Ref => F,
1256 With_Attach => Make_Integer_Literal (Loc, 1)));
1257 end if;
1258 end if;
1259
1260 return Add_Loop_Actions (L);
1261 end Gen_Assign;
1262
1263 --------------
1264 -- Gen_Loop --
1265 --------------
1266
1267 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1268 L_J : Node_Id;
1269
1270 L_L : Node_Id;
1271 -- Index_Base'(L)
1272
1273 L_H : Node_Id;
1274 -- Index_Base'(H)
1275
1276 L_Range : Node_Id;
1277 -- Index_Base'(L) .. Index_Base'(H)
1278
1279 L_Iteration_Scheme : Node_Id;
1280 -- L_J in Index_Base'(L) .. Index_Base'(H)
1281
1282 L_Body : List_Id;
1283 -- The statements to execute in the loop
1284
1285 S : constant List_Id := New_List;
1286 -- List of statements
1287
1288 Tcopy : Node_Id;
1289 -- Copy of expression tree, used for checking purposes
1290
1291 begin
1292 -- If loop bounds define an empty range return the null statement
1293
1294 if Empty_Range (L, H) then
1295 Append_To (S, Make_Null_Statement (Loc));
1296
1297 -- Ada 2005 (AI-287): Nothing else need to be done in case of
1298 -- default initialized component.
1299
1300 if No (Expr) then
1301 null;
1302
1303 else
1304 -- The expression must be type-checked even though no component
1305 -- of the aggregate will have this value. This is done only for
1306 -- actual components of the array, not for subaggregates. Do
1307 -- the check on a copy, because the expression may be shared
1308 -- among several choices, some of which might be non-null.
1309
1310 if Present (Etype (N))
1311 and then Is_Array_Type (Etype (N))
1312 and then No (Next_Index (Index))
1313 then
1314 Expander_Mode_Save_And_Set (False);
1315 Tcopy := New_Copy_Tree (Expr);
1316 Set_Parent (Tcopy, N);
1317 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1318 Expander_Mode_Restore;
1319 end if;
1320 end if;
1321
1322 return S;
1323
1324 -- If loop bounds are the same then generate an assignment
1325
1326 elsif Equal (L, H) then
1327 return Gen_Assign (New_Copy_Tree (L), Expr);
1328
1329 -- If H - L <= 2 then generate a sequence of assignments when we are
1330 -- processing the bottom most aggregate and it contains scalar
1331 -- components.
1332
1333 elsif No (Next_Index (Index))
1334 and then Scalar_Comp
1335 and then Local_Compile_Time_Known_Value (L)
1336 and then Local_Compile_Time_Known_Value (H)
1337 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1338 then
1339
1340 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1341 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1342
1343 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1344 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1345 end if;
1346
1347 return S;
1348 end if;
1349
1350 -- Otherwise construct the loop, starting with the loop index L_J
1351
1352 L_J := Make_Temporary (Loc, 'J', L);
1353
1354 -- Construct "L .. H" in Index_Base. We use a qualified expression
1355 -- for the bound to convert to the index base, but we don't need
1356 -- to do that if we already have the base type at hand.
1357
1358 if Etype (L) = Index_Base then
1359 L_L := L;
1360 else
1361 L_L :=
1362 Make_Qualified_Expression (Loc,
1363 Subtype_Mark => Index_Base_Name,
1364 Expression => L);
1365 end if;
1366
1367 if Etype (H) = Index_Base then
1368 L_H := H;
1369 else
1370 L_H :=
1371 Make_Qualified_Expression (Loc,
1372 Subtype_Mark => Index_Base_Name,
1373 Expression => H);
1374 end if;
1375
1376 L_Range :=
1377 Make_Range (Loc,
1378 Low_Bound => L_L,
1379 High_Bound => L_H);
1380
1381 -- Construct "for L_J in Index_Base range L .. H"
1382
1383 L_Iteration_Scheme :=
1384 Make_Iteration_Scheme
1385 (Loc,
1386 Loop_Parameter_Specification =>
1387 Make_Loop_Parameter_Specification
1388 (Loc,
1389 Defining_Identifier => L_J,
1390 Discrete_Subtype_Definition => L_Range));
1391
1392 -- Construct the statements to execute in the loop body
1393
1394 L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
1395
1396 -- Construct the final loop
1397
1398 Append_To (S, Make_Implicit_Loop_Statement
1399 (Node => N,
1400 Identifier => Empty,
1401 Iteration_Scheme => L_Iteration_Scheme,
1402 Statements => L_Body));
1403
1404 -- A small optimization: if the aggregate is initialized with a box
1405 -- and the component type has no initialization procedure, remove the
1406 -- useless empty loop.
1407
1408 if Nkind (First (S)) = N_Loop_Statement
1409 and then Is_Empty_List (Statements (First (S)))
1410 then
1411 return New_List (Make_Null_Statement (Loc));
1412 else
1413 return S;
1414 end if;
1415 end Gen_Loop;
1416
1417 ---------------
1418 -- Gen_While --
1419 ---------------
1420
1421 -- The code built is
1422
1423 -- W_J : Index_Base := L;
1424 -- while W_J < H loop
1425 -- W_J := Index_Base'Succ (W);
1426 -- L_Body;
1427 -- end loop;
1428
1429 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1430 W_J : Node_Id;
1431
1432 W_Decl : Node_Id;
1433 -- W_J : Base_Type := L;
1434
1435 W_Iteration_Scheme : Node_Id;
1436 -- while W_J < H
1437
1438 W_Index_Succ : Node_Id;
1439 -- Index_Base'Succ (J)
1440
1441 W_Increment : Node_Id;
1442 -- W_J := Index_Base'Succ (W)
1443
1444 W_Body : constant List_Id := New_List;
1445 -- The statements to execute in the loop
1446
1447 S : constant List_Id := New_List;
1448 -- list of statement
1449
1450 begin
1451 -- If loop bounds define an empty range or are equal return null
1452
1453 if Empty_Range (L, H) or else Equal (L, H) then
1454 Append_To (S, Make_Null_Statement (Loc));
1455 return S;
1456 end if;
1457
1458 -- Build the decl of W_J
1459
1460 W_J := Make_Temporary (Loc, 'J', L);
1461 W_Decl :=
1462 Make_Object_Declaration
1463 (Loc,
1464 Defining_Identifier => W_J,
1465 Object_Definition => Index_Base_Name,
1466 Expression => L);
1467
1468 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1469 -- that in this particular case L is a fresh Expr generated by
1470 -- Add which we are the only ones to use.
1471
1472 Append_To (S, W_Decl);
1473
1474 -- Construct " while W_J < H"
1475
1476 W_Iteration_Scheme :=
1477 Make_Iteration_Scheme
1478 (Loc,
1479 Condition => Make_Op_Lt
1480 (Loc,
1481 Left_Opnd => New_Reference_To (W_J, Loc),
1482 Right_Opnd => New_Copy_Tree (H)));
1483
1484 -- Construct the statements to execute in the loop body
1485
1486 W_Index_Succ :=
1487 Make_Attribute_Reference
1488 (Loc,
1489 Prefix => Index_Base_Name,
1490 Attribute_Name => Name_Succ,
1491 Expressions => New_List (New_Reference_To (W_J, Loc)));
1492
1493 W_Increment :=
1494 Make_OK_Assignment_Statement
1495 (Loc,
1496 Name => New_Reference_To (W_J, Loc),
1497 Expression => W_Index_Succ);
1498
1499 Append_To (W_Body, W_Increment);
1500 Append_List_To (W_Body,
1501 Gen_Assign (New_Reference_To (W_J, Loc), Expr));
1502
1503 -- Construct the final loop
1504
1505 Append_To (S, Make_Implicit_Loop_Statement
1506 (Node => N,
1507 Identifier => Empty,
1508 Iteration_Scheme => W_Iteration_Scheme,
1509 Statements => W_Body));
1510
1511 return S;
1512 end Gen_While;
1513
1514 ---------------------
1515 -- Index_Base_Name --
1516 ---------------------
1517
1518 function Index_Base_Name return Node_Id is
1519 begin
1520 return New_Reference_To (Index_Base, Sloc (N));
1521 end Index_Base_Name;
1522
1523 ------------------------------------
1524 -- Local_Compile_Time_Known_Value --
1525 ------------------------------------
1526
1527 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1528 begin
1529 return Compile_Time_Known_Value (E)
1530 or else
1531 (Nkind (E) = N_Attribute_Reference
1532 and then Attribute_Name (E) = Name_Val
1533 and then Compile_Time_Known_Value (First (Expressions (E))));
1534 end Local_Compile_Time_Known_Value;
1535
1536 ----------------------
1537 -- Local_Expr_Value --
1538 ----------------------
1539
1540 function Local_Expr_Value (E : Node_Id) return Uint is
1541 begin
1542 if Compile_Time_Known_Value (E) then
1543 return Expr_Value (E);
1544 else
1545 return Expr_Value (First (Expressions (E)));
1546 end if;
1547 end Local_Expr_Value;
1548
1549 -- Build_Array_Aggr_Code Variables
1550
1551 Assoc : Node_Id;
1552 Choice : Node_Id;
1553 Expr : Node_Id;
1554 Typ : Entity_Id;
1555
1556 Others_Expr : Node_Id := Empty;
1557 Others_Box_Present : Boolean := False;
1558
1559 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1560 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1561 -- The aggregate bounds of this specific sub-aggregate. Note that if
1562 -- the code generated by Build_Array_Aggr_Code is executed then these
1563 -- bounds are OK. Otherwise a Constraint_Error would have been raised.
1564
1565 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1566 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1567 -- After Duplicate_Subexpr these are side-effect free
1568
1569 Low : Node_Id;
1570 High : Node_Id;
1571
1572 Nb_Choices : Nat := 0;
1573 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1574 -- Used to sort all the different choice values
1575
1576 Nb_Elements : Int;
1577 -- Number of elements in the positional aggregate
1578
1579 New_Code : constant List_Id := New_List;
1580
1581 -- Start of processing for Build_Array_Aggr_Code
1582
1583 begin
1584 -- First before we start, a special case. if we have a bit packed
1585 -- array represented as a modular type, then clear the value to
1586 -- zero first, to ensure that unused bits are properly cleared.
1587
1588 Typ := Etype (N);
1589
1590 if Present (Typ)
1591 and then Is_Bit_Packed_Array (Typ)
1592 and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
1593 then
1594 Append_To (New_Code,
1595 Make_Assignment_Statement (Loc,
1596 Name => New_Copy_Tree (Into),
1597 Expression =>
1598 Unchecked_Convert_To (Typ,
1599 Make_Integer_Literal (Loc, Uint_0))));
1600 end if;
1601
1602 -- If the component type contains tasks, we need to build a Master
1603 -- entity in the current scope, because it will be needed if build-
1604 -- in-place functions are called in the expanded code.
1605
1606 if Nkind (Parent (N)) = N_Object_Declaration
1607 and then Has_Task (Typ)
1608 then
1609 Build_Master_Entity (Defining_Identifier (Parent (N)));
1610 end if;
1611
1612 -- STEP 1: Process component associations
1613
1614 -- For those associations that may generate a loop, initialize
1615 -- Loop_Actions to collect inserted actions that may be crated.
1616
1617 -- Skip this if no component associations
1618
1619 if No (Expressions (N)) then
1620
1621 -- STEP 1 (a): Sort the discrete choices
1622
1623 Assoc := First (Component_Associations (N));
1624 while Present (Assoc) loop
1625 Choice := First (Choices (Assoc));
1626 while Present (Choice) loop
1627 if Nkind (Choice) = N_Others_Choice then
1628 Set_Loop_Actions (Assoc, New_List);
1629
1630 if Box_Present (Assoc) then
1631 Others_Box_Present := True;
1632 else
1633 Others_Expr := Expression (Assoc);
1634 end if;
1635 exit;
1636 end if;
1637
1638 Get_Index_Bounds (Choice, Low, High);
1639
1640 if Low /= High then
1641 Set_Loop_Actions (Assoc, New_List);
1642 end if;
1643
1644 Nb_Choices := Nb_Choices + 1;
1645 if Box_Present (Assoc) then
1646 Table (Nb_Choices) := (Choice_Lo => Low,
1647 Choice_Hi => High,
1648 Choice_Node => Empty);
1649 else
1650 Table (Nb_Choices) := (Choice_Lo => Low,
1651 Choice_Hi => High,
1652 Choice_Node => Expression (Assoc));
1653 end if;
1654 Next (Choice);
1655 end loop;
1656
1657 Next (Assoc);
1658 end loop;
1659
1660 -- If there is more than one set of choices these must be static
1661 -- and we can therefore sort them. Remember that Nb_Choices does not
1662 -- account for an others choice.
1663
1664 if Nb_Choices > 1 then
1665 Sort_Case_Table (Table);
1666 end if;
1667
1668 -- STEP 1 (b): take care of the whole set of discrete choices
1669
1670 for J in 1 .. Nb_Choices loop
1671 Low := Table (J).Choice_Lo;
1672 High := Table (J).Choice_Hi;
1673 Expr := Table (J).Choice_Node;
1674 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1675 end loop;
1676
1677 -- STEP 1 (c): generate the remaining loops to cover others choice
1678 -- We don't need to generate loops over empty gaps, but if there is
1679 -- a single empty range we must analyze the expression for semantics
1680
1681 if Present (Others_Expr) or else Others_Box_Present then
1682 declare
1683 First : Boolean := True;
1684
1685 begin
1686 for J in 0 .. Nb_Choices loop
1687 if J = 0 then
1688 Low := Aggr_Low;
1689 else
1690 Low := Add (1, To => Table (J).Choice_Hi);
1691 end if;
1692
1693 if J = Nb_Choices then
1694 High := Aggr_High;
1695 else
1696 High := Add (-1, To => Table (J + 1).Choice_Lo);
1697 end if;
1698
1699 -- If this is an expansion within an init proc, make
1700 -- sure that discriminant references are replaced by
1701 -- the corresponding discriminal.
1702
1703 if Inside_Init_Proc then
1704 if Is_Entity_Name (Low)
1705 and then Ekind (Entity (Low)) = E_Discriminant
1706 then
1707 Set_Entity (Low, Discriminal (Entity (Low)));
1708 end if;
1709
1710 if Is_Entity_Name (High)
1711 and then Ekind (Entity (High)) = E_Discriminant
1712 then
1713 Set_Entity (High, Discriminal (Entity (High)));
1714 end if;
1715 end if;
1716
1717 if First
1718 or else not Empty_Range (Low, High)
1719 then
1720 First := False;
1721 Append_List
1722 (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1723 end if;
1724 end loop;
1725 end;
1726 end if;
1727
1728 -- STEP 2: Process positional components
1729
1730 else
1731 -- STEP 2 (a): Generate the assignments for each positional element
1732 -- Note that here we have to use Aggr_L rather than Aggr_Low because
1733 -- Aggr_L is analyzed and Add wants an analyzed expression.
1734
1735 Expr := First (Expressions (N));
1736 Nb_Elements := -1;
1737 while Present (Expr) loop
1738 Nb_Elements := Nb_Elements + 1;
1739 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1740 To => New_Code);
1741 Next (Expr);
1742 end loop;
1743
1744 -- STEP 2 (b): Generate final loop if an others choice is present
1745 -- Here Nb_Elements gives the offset of the last positional element.
1746
1747 if Present (Component_Associations (N)) then
1748 Assoc := Last (Component_Associations (N));
1749
1750 -- Ada 2005 (AI-287)
1751
1752 if Box_Present (Assoc) then
1753 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1754 Aggr_High,
1755 Empty),
1756 To => New_Code);
1757 else
1758 Expr := Expression (Assoc);
1759
1760 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1761 Aggr_High,
1762 Expr), -- AI-287
1763 To => New_Code);
1764 end if;
1765 end if;
1766 end if;
1767
1768 return New_Code;
1769 end Build_Array_Aggr_Code;
1770
1771 ----------------------------
1772 -- Build_Record_Aggr_Code --
1773 ----------------------------
1774
1775 function Build_Record_Aggr_Code
1776 (N : Node_Id;
1777 Typ : Entity_Id;
1778 Lhs : Node_Id;
1779 Flist : Node_Id := Empty;
1780 Obj : Entity_Id := Empty;
1781 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id
1782 is
1783 Loc : constant Source_Ptr := Sloc (N);
1784 L : constant List_Id := New_List;
1785 N_Typ : constant Entity_Id := Etype (N);
1786
1787 Comp : Node_Id;
1788 Instr : Node_Id;
1789 Ref : Node_Id;
1790 Target : Entity_Id;
1791 F : Node_Id;
1792 Comp_Type : Entity_Id;
1793 Selector : Entity_Id;
1794 Comp_Expr : Node_Id;
1795 Expr_Q : Node_Id;
1796
1797 Internal_Final_List : Node_Id := Empty;
1798
1799 -- If this is an internal aggregate, the External_Final_List is an
1800 -- expression for the controller record of the enclosing type.
1801
1802 -- If the current aggregate has several controlled components, this
1803 -- expression will appear in several calls to attach to the finali-
1804 -- zation list, and it must not be shared.
1805
1806 External_Final_List : Node_Id;
1807 Ancestor_Is_Expression : Boolean := False;
1808 Ancestor_Is_Subtype_Mark : Boolean := False;
1809
1810 Init_Typ : Entity_Id := Empty;
1811 Attach : Node_Id;
1812
1813 Ctrl_Stuff_Done : Boolean := False;
1814 -- True if Gen_Ctrl_Actions_For_Aggr has already been called; calls
1815 -- after the first do nothing.
1816
1817 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1818 -- Returns the value that the given discriminant of an ancestor type
1819 -- should receive (in the absence of a conflict with the value provided
1820 -- by an ancestor part of an extension aggregate).
1821
1822 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1823 -- Check that each of the discriminant values defined by the ancestor
1824 -- part of an extension aggregate match the corresponding values
1825 -- provided by either an association of the aggregate or by the
1826 -- constraint imposed by a parent type (RM95-4.3.2(8)).
1827
1828 function Compatible_Int_Bounds
1829 (Agg_Bounds : Node_Id;
1830 Typ_Bounds : Node_Id) return Boolean;
1831 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1832 -- assumed that both bounds are integer ranges.
1833
1834 procedure Gen_Ctrl_Actions_For_Aggr;
1835 -- Deal with the various controlled type data structure initializations
1836 -- (but only if it hasn't been done already).
1837
1838 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1839 -- Returns the first discriminant association in the constraint
1840 -- associated with T, if any, otherwise returns Empty.
1841
1842 function Init_Controller
1843 (Target : Node_Id;
1844 Typ : Entity_Id;
1845 F : Node_Id;
1846 Attach : Node_Id;
1847 Init_Pr : Boolean) return List_Id;
1848 -- Returns the list of statements necessary to initialize the internal
1849 -- controller of the (possible) ancestor typ into target and attach it
1850 -- to finalization list F. Init_Pr conditions the call to the init proc
1851 -- since it may already be done due to ancestor initialization.
1852
1853 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1854 -- Check whether Bounds is a range node and its lower and higher bounds
1855 -- are integers literals.
1856
1857 ---------------------------------
1858 -- Ancestor_Discriminant_Value --
1859 ---------------------------------
1860
1861 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1862 Assoc : Node_Id;
1863 Assoc_Elmt : Elmt_Id;
1864 Aggr_Comp : Entity_Id;
1865 Corresp_Disc : Entity_Id;
1866 Current_Typ : Entity_Id := Base_Type (Typ);
1867 Parent_Typ : Entity_Id;
1868 Parent_Disc : Entity_Id;
1869 Save_Assoc : Node_Id := Empty;
1870
1871 begin
1872 -- First check any discriminant associations to see if any of them
1873 -- provide a value for the discriminant.
1874
1875 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1876 Assoc := First (Component_Associations (N));
1877 while Present (Assoc) loop
1878 Aggr_Comp := Entity (First (Choices (Assoc)));
1879
1880 if Ekind (Aggr_Comp) = E_Discriminant then
1881 Save_Assoc := Expression (Assoc);
1882
1883 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1884 while Present (Corresp_Disc) loop
1885
1886 -- If found a corresponding discriminant then return the
1887 -- value given in the aggregate. (Note: this is not
1888 -- correct in the presence of side effects. ???)
1889
1890 if Disc = Corresp_Disc then
1891 return Duplicate_Subexpr (Expression (Assoc));
1892 end if;
1893
1894 Corresp_Disc :=
1895 Corresponding_Discriminant (Corresp_Disc);
1896 end loop;
1897 end if;
1898
1899 Next (Assoc);
1900 end loop;
1901 end if;
1902
1903 -- No match found in aggregate, so chain up parent types to find
1904 -- a constraint that defines the value of the discriminant.
1905
1906 Parent_Typ := Etype (Current_Typ);
1907 while Current_Typ /= Parent_Typ loop
1908 if Has_Discriminants (Parent_Typ)
1909 and then not Has_Unknown_Discriminants (Parent_Typ)
1910 then
1911 Parent_Disc := First_Discriminant (Parent_Typ);
1912
1913 -- We either get the association from the subtype indication
1914 -- of the type definition itself, or from the discriminant
1915 -- constraint associated with the type entity (which is
1916 -- preferable, but it's not always present ???)
1917
1918 if Is_Empty_Elmt_List (
1919 Discriminant_Constraint (Current_Typ))
1920 then
1921 Assoc := Get_Constraint_Association (Current_Typ);
1922 Assoc_Elmt := No_Elmt;
1923 else
1924 Assoc_Elmt :=
1925 First_Elmt (Discriminant_Constraint (Current_Typ));
1926 Assoc := Node (Assoc_Elmt);
1927 end if;
1928
1929 -- Traverse the discriminants of the parent type looking
1930 -- for one that corresponds.
1931
1932 while Present (Parent_Disc) and then Present (Assoc) loop
1933 Corresp_Disc := Parent_Disc;
1934 while Present (Corresp_Disc)
1935 and then Disc /= Corresp_Disc
1936 loop
1937 Corresp_Disc :=
1938 Corresponding_Discriminant (Corresp_Disc);
1939 end loop;
1940
1941 if Disc = Corresp_Disc then
1942 if Nkind (Assoc) = N_Discriminant_Association then
1943 Assoc := Expression (Assoc);
1944 end if;
1945
1946 -- If the located association directly denotes a
1947 -- discriminant, then use the value of a saved
1948 -- association of the aggregate. This is a kludge to
1949 -- handle certain cases involving multiple discriminants
1950 -- mapped to a single discriminant of a descendant. It's
1951 -- not clear how to locate the appropriate discriminant
1952 -- value for such cases. ???
1953
1954 if Is_Entity_Name (Assoc)
1955 and then Ekind (Entity (Assoc)) = E_Discriminant
1956 then
1957 Assoc := Save_Assoc;
1958 end if;
1959
1960 return Duplicate_Subexpr (Assoc);
1961 end if;
1962
1963 Next_Discriminant (Parent_Disc);
1964
1965 if No (Assoc_Elmt) then
1966 Next (Assoc);
1967 else
1968 Next_Elmt (Assoc_Elmt);
1969 if Present (Assoc_Elmt) then
1970 Assoc := Node (Assoc_Elmt);
1971 else
1972 Assoc := Empty;
1973 end if;
1974 end if;
1975 end loop;
1976 end if;
1977
1978 Current_Typ := Parent_Typ;
1979 Parent_Typ := Etype (Current_Typ);
1980 end loop;
1981
1982 -- In some cases there's no ancestor value to locate (such as
1983 -- when an ancestor part given by an expression defines the
1984 -- discriminant value).
1985
1986 return Empty;
1987 end Ancestor_Discriminant_Value;
1988
1989 ----------------------------------
1990 -- Check_Ancestor_Discriminants --
1991 ----------------------------------
1992
1993 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
1994 Discr : Entity_Id;
1995 Disc_Value : Node_Id;
1996 Cond : Node_Id;
1997
1998 begin
1999 Discr := First_Discriminant (Base_Type (Anc_Typ));
2000 while Present (Discr) loop
2001 Disc_Value := Ancestor_Discriminant_Value (Discr);
2002
2003 if Present (Disc_Value) then
2004 Cond := Make_Op_Ne (Loc,
2005 Left_Opnd =>
2006 Make_Selected_Component (Loc,
2007 Prefix => New_Copy_Tree (Target),
2008 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2009 Right_Opnd => Disc_Value);
2010
2011 Append_To (L,
2012 Make_Raise_Constraint_Error (Loc,
2013 Condition => Cond,
2014 Reason => CE_Discriminant_Check_Failed));
2015 end if;
2016
2017 Next_Discriminant (Discr);
2018 end loop;
2019 end Check_Ancestor_Discriminants;
2020
2021 ---------------------------
2022 -- Compatible_Int_Bounds --
2023 ---------------------------
2024
2025 function Compatible_Int_Bounds
2026 (Agg_Bounds : Node_Id;
2027 Typ_Bounds : Node_Id) return Boolean
2028 is
2029 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
2030 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2031 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
2032 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2033 begin
2034 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2035 end Compatible_Int_Bounds;
2036
2037 --------------------------------
2038 -- Get_Constraint_Association --
2039 --------------------------------
2040
2041 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2042 Typ_Def : constant Node_Id := Type_Definition (Parent (T));
2043 Indic : constant Node_Id := Subtype_Indication (Typ_Def);
2044
2045 begin
2046 -- ??? Also need to cover case of a type mark denoting a subtype
2047 -- with constraint.
2048
2049 if Nkind (Indic) = N_Subtype_Indication
2050 and then Present (Constraint (Indic))
2051 then
2052 return First (Constraints (Constraint (Indic)));
2053 end if;
2054
2055 return Empty;
2056 end Get_Constraint_Association;
2057
2058 ---------------------
2059 -- Init_Controller --
2060 ---------------------
2061
2062 function Init_Controller
2063 (Target : Node_Id;
2064 Typ : Entity_Id;
2065 F : Node_Id;
2066 Attach : Node_Id;
2067 Init_Pr : Boolean) return List_Id
2068 is
2069 L : constant List_Id := New_List;
2070 Ref : Node_Id;
2071 RC : RE_Id;
2072 Target_Type : Entity_Id;
2073
2074 begin
2075 -- Generate:
2076 -- init-proc (target._controller);
2077 -- initialize (target._controller);
2078 -- Attach_to_Final_List (target._controller, F);
2079
2080 Ref :=
2081 Make_Selected_Component (Loc,
2082 Prefix => Convert_To (Typ, New_Copy_Tree (Target)),
2083 Selector_Name => Make_Identifier (Loc, Name_uController));
2084 Set_Assignment_OK (Ref);
2085
2086 -- Ada 2005 (AI-287): Give support to aggregates of limited types.
2087 -- If the type is intrinsically limited the controller is limited as
2088 -- well. If it is tagged and limited then so is the controller.
2089 -- Otherwise an untagged type may have limited components without its
2090 -- full view being limited, so the controller is not limited.
2091
2092 if Nkind (Target) = N_Identifier then
2093 Target_Type := Etype (Target);
2094
2095 elsif Nkind (Target) = N_Selected_Component then
2096 Target_Type := Etype (Selector_Name (Target));
2097
2098 elsif Nkind (Target) = N_Unchecked_Type_Conversion then
2099 Target_Type := Etype (Target);
2100
2101 elsif Nkind (Target) = N_Unchecked_Expression
2102 and then Nkind (Expression (Target)) = N_Indexed_Component
2103 then
2104 Target_Type := Etype (Prefix (Expression (Target)));
2105
2106 else
2107 Target_Type := Etype (Target);
2108 end if;
2109
2110 -- If the target has not been analyzed yet, as will happen with
2111 -- delayed expansion, use the given type (either the aggregate type
2112 -- or an ancestor) to determine limitedness.
2113
2114 if No (Target_Type) then
2115 Target_Type := Typ;
2116 end if;
2117
2118 if (Is_Tagged_Type (Target_Type))
2119 and then Is_Limited_Type (Target_Type)
2120 then
2121 RC := RE_Limited_Record_Controller;
2122
2123 elsif Is_Inherently_Limited_Type (Target_Type) then
2124 RC := RE_Limited_Record_Controller;
2125
2126 else
2127 RC := RE_Record_Controller;
2128 end if;
2129
2130 if Init_Pr then
2131 Append_List_To (L,
2132 Build_Initialization_Call (Loc,
2133 Id_Ref => Ref,
2134 Typ => RTE (RC),
2135 In_Init_Proc => Within_Init_Proc));
2136 end if;
2137
2138 Append_To (L,
2139 Make_Procedure_Call_Statement (Loc,
2140 Name =>
2141 New_Reference_To (
2142 Find_Prim_Op (RTE (RC), Name_Initialize), Loc),
2143 Parameter_Associations =>
2144 New_List (New_Copy_Tree (Ref))));
2145
2146 Append_To (L,
2147 Make_Attach_Call (
2148 Obj_Ref => New_Copy_Tree (Ref),
2149 Flist_Ref => F,
2150 With_Attach => Attach));
2151
2152 return L;
2153 end Init_Controller;
2154
2155 -------------------------
2156 -- Is_Int_Range_Bounds --
2157 -------------------------
2158
2159 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2160 begin
2161 return Nkind (Bounds) = N_Range
2162 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2163 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2164 end Is_Int_Range_Bounds;
2165
2166 -------------------------------
2167 -- Gen_Ctrl_Actions_For_Aggr --
2168 -------------------------------
2169
2170 procedure Gen_Ctrl_Actions_For_Aggr is
2171 Alloc : Node_Id := Empty;
2172
2173 begin
2174 -- Do the work only the first time this is called
2175
2176 if Ctrl_Stuff_Done then
2177 return;
2178 end if;
2179
2180 Ctrl_Stuff_Done := True;
2181
2182 if Present (Obj)
2183 and then Finalize_Storage_Only (Typ)
2184 and then
2185 (Is_Library_Level_Entity (Obj)
2186 or else Entity (Constant_Value (RTE (RE_Garbage_Collected))) =
2187 Standard_True)
2188
2189 -- why not Is_True (Expr_Value (RTE (RE_Garbaage_Collected) ???
2190 then
2191 Attach := Make_Integer_Literal (Loc, 0);
2192
2193 elsif Nkind (Parent (N)) = N_Qualified_Expression
2194 and then Nkind (Parent (Parent (N))) = N_Allocator
2195 then
2196 Alloc := Parent (Parent (N));
2197 Attach := Make_Integer_Literal (Loc, 2);
2198
2199 else
2200 Attach := Make_Integer_Literal (Loc, 1);
2201 end if;
2202
2203 -- Determine the external finalization list. It is either the
2204 -- finalization list of the outer-scope or the one coming from
2205 -- an outer aggregate. When the target is not a temporary, the
2206 -- proper scope is the scope of the target rather than the
2207 -- potentially transient current scope.
2208
2209 if Needs_Finalization (Typ) then
2210
2211 -- The current aggregate belongs to an allocator which creates
2212 -- an object through an anonymous access type or acts as the root
2213 -- of a coextension chain.
2214
2215 if Present (Alloc)
2216 and then
2217 (Is_Coextension_Root (Alloc)
2218 or else Ekind (Etype (Alloc)) = E_Anonymous_Access_Type)
2219 then
2220 if No (Associated_Final_Chain (Etype (Alloc))) then
2221 Build_Final_List (Alloc, Etype (Alloc));
2222 end if;
2223
2224 External_Final_List :=
2225 Make_Selected_Component (Loc,
2226 Prefix =>
2227 New_Reference_To (
2228 Associated_Final_Chain (Etype (Alloc)), Loc),
2229 Selector_Name =>
2230 Make_Identifier (Loc, Name_F));
2231
2232 elsif Present (Flist) then
2233 External_Final_List := New_Copy_Tree (Flist);
2234
2235 elsif Is_Entity_Name (Target)
2236 and then Present (Scope (Entity (Target)))
2237 then
2238 External_Final_List :=
2239 Find_Final_List (Scope (Entity (Target)));
2240
2241 else
2242 External_Final_List := Find_Final_List (Current_Scope);
2243 end if;
2244 else
2245 External_Final_List := Empty;
2246 end if;
2247
2248 -- Initialize and attach the outer object in the is_controlled case
2249
2250 if Is_Controlled (Typ) then
2251 if Ancestor_Is_Subtype_Mark then
2252 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2253 Set_Assignment_OK (Ref);
2254 Append_To (L,
2255 Make_Procedure_Call_Statement (Loc,
2256 Name =>
2257 New_Reference_To
2258 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2259 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2260 end if;
2261
2262 if not Has_Controlled_Component (Typ) then
2263 Ref := New_Copy_Tree (Target);
2264 Set_Assignment_OK (Ref);
2265
2266 -- This is an aggregate of a coextension. Do not produce a
2267 -- finalization call, but rather attach the reference of the
2268 -- aggregate to its coextension chain.
2269
2270 if Present (Alloc)
2271 and then Is_Dynamic_Coextension (Alloc)
2272 then
2273 if No (Coextensions (Alloc)) then
2274 Set_Coextensions (Alloc, New_Elmt_List);
2275 end if;
2276
2277 Append_Elmt (Ref, Coextensions (Alloc));
2278 else
2279 Append_To (L,
2280 Make_Attach_Call (
2281 Obj_Ref => Ref,
2282 Flist_Ref => New_Copy_Tree (External_Final_List),
2283 With_Attach => Attach));
2284 end if;
2285 end if;
2286 end if;
2287
2288 -- In the Has_Controlled component case, all the intermediate
2289 -- controllers must be initialized.
2290
2291 if Has_Controlled_Component (Typ)
2292 and not Is_Limited_Ancestor_Expansion
2293 then
2294 declare
2295 Inner_Typ : Entity_Id;
2296 Outer_Typ : Entity_Id;
2297 At_Root : Boolean;
2298
2299 begin
2300 -- Find outer type with a controller
2301
2302 Outer_Typ := Base_Type (Typ);
2303 while Outer_Typ /= Init_Typ
2304 and then not Has_New_Controlled_Component (Outer_Typ)
2305 loop
2306 Outer_Typ := Etype (Outer_Typ);
2307 end loop;
2308
2309 -- Attach it to the outer record controller to the external
2310 -- final list.
2311
2312 if Outer_Typ = Init_Typ then
2313 Append_List_To (L,
2314 Init_Controller (
2315 Target => Target,
2316 Typ => Outer_Typ,
2317 F => External_Final_List,
2318 Attach => Attach,
2319 Init_Pr => False));
2320
2321 At_Root := True;
2322 Inner_Typ := Init_Typ;
2323
2324 else
2325 Append_List_To (L,
2326 Init_Controller (
2327 Target => Target,
2328 Typ => Outer_Typ,
2329 F => External_Final_List,
2330 Attach => Attach,
2331 Init_Pr => True));
2332
2333 Inner_Typ := Etype (Outer_Typ);
2334 At_Root :=
2335 not Is_Tagged_Type (Typ) or else Inner_Typ = Outer_Typ;
2336 end if;
2337
2338 -- The outer object has to be attached as well
2339
2340 if Is_Controlled (Typ) then
2341 Ref := New_Copy_Tree (Target);
2342 Set_Assignment_OK (Ref);
2343 Append_To (L,
2344 Make_Attach_Call (
2345 Obj_Ref => Ref,
2346 Flist_Ref => New_Copy_Tree (External_Final_List),
2347 With_Attach => New_Copy_Tree (Attach)));
2348 end if;
2349
2350 -- Initialize the internal controllers for tagged types with
2351 -- more than one controller.
2352
2353 while not At_Root and then Inner_Typ /= Init_Typ loop
2354 if Has_New_Controlled_Component (Inner_Typ) then
2355 F :=
2356 Make_Selected_Component (Loc,
2357 Prefix =>
2358 Convert_To (Outer_Typ, New_Copy_Tree (Target)),
2359 Selector_Name =>
2360 Make_Identifier (Loc, Name_uController));
2361 F :=
2362 Make_Selected_Component (Loc,
2363 Prefix => F,
2364 Selector_Name => Make_Identifier (Loc, Name_F));
2365
2366 Append_List_To (L,
2367 Init_Controller (
2368 Target => Target,
2369 Typ => Inner_Typ,
2370 F => F,
2371 Attach => Make_Integer_Literal (Loc, 1),
2372 Init_Pr => True));
2373 Outer_Typ := Inner_Typ;
2374 end if;
2375
2376 -- Stop at the root
2377
2378 At_Root := Inner_Typ = Etype (Inner_Typ);
2379 Inner_Typ := Etype (Inner_Typ);
2380 end loop;
2381
2382 -- If not done yet attach the controller of the ancestor part
2383
2384 if Outer_Typ /= Init_Typ
2385 and then Inner_Typ = Init_Typ
2386 and then Has_Controlled_Component (Init_Typ)
2387 then
2388 F :=
2389 Make_Selected_Component (Loc,
2390 Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
2391 Selector_Name =>
2392 Make_Identifier (Loc, Name_uController));
2393 F :=
2394 Make_Selected_Component (Loc,
2395 Prefix => F,
2396 Selector_Name => Make_Identifier (Loc, Name_F));
2397
2398 Attach := Make_Integer_Literal (Loc, 1);
2399 Append_List_To (L,
2400 Init_Controller (
2401 Target => Target,
2402 Typ => Init_Typ,
2403 F => F,
2404 Attach => Attach,
2405 Init_Pr => False));
2406
2407 -- Note: Init_Pr is False because the ancestor part has
2408 -- already been initialized either way (by default, if
2409 -- given by a type name, otherwise from the expression).
2410
2411 end if;
2412 end;
2413 end if;
2414 end Gen_Ctrl_Actions_For_Aggr;
2415
2416 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2417 -- If default expression of a component mentions a discriminant of the
2418 -- type, it must be rewritten as the discriminant of the target object.
2419
2420 function Replace_Type (Expr : Node_Id) return Traverse_Result;
2421 -- If the aggregate contains a self-reference, traverse each expression
2422 -- to replace a possible self-reference with a reference to the proper
2423 -- component of the target of the assignment.
2424
2425 --------------------------
2426 -- Rewrite_Discriminant --
2427 --------------------------
2428
2429 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2430 begin
2431 if Is_Entity_Name (Expr)
2432 and then Present (Entity (Expr))
2433 and then Ekind (Entity (Expr)) = E_In_Parameter
2434 and then Present (Discriminal_Link (Entity (Expr)))
2435 and then Scope (Discriminal_Link (Entity (Expr)))
2436 = Base_Type (Etype (N))
2437 then
2438 Rewrite (Expr,
2439 Make_Selected_Component (Loc,
2440 Prefix => New_Copy_Tree (Lhs),
2441 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2442 end if;
2443 return OK;
2444 end Rewrite_Discriminant;
2445
2446 ------------------
2447 -- Replace_Type --
2448 ------------------
2449
2450 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2451 begin
2452 -- Note regarding the Root_Type test below: Aggregate components for
2453 -- self-referential types include attribute references to the current
2454 -- instance, of the form: Typ'access, etc.. These references are
2455 -- rewritten as references to the target of the aggregate: the
2456 -- left-hand side of an assignment, the entity in a declaration,
2457 -- or a temporary. Without this test, we would improperly extended
2458 -- this rewriting to attribute references whose prefix was not the
2459 -- type of the aggregate.
2460
2461 if Nkind (Expr) = N_Attribute_Reference
2462 and then Is_Entity_Name (Prefix (Expr))
2463 and then Is_Type (Entity (Prefix (Expr)))
2464 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2465 then
2466 if Is_Entity_Name (Lhs) then
2467 Rewrite (Prefix (Expr),
2468 New_Occurrence_Of (Entity (Lhs), Loc));
2469
2470 elsif Nkind (Lhs) = N_Selected_Component then
2471 Rewrite (Expr,
2472 Make_Attribute_Reference (Loc,
2473 Attribute_Name => Name_Unrestricted_Access,
2474 Prefix => New_Copy_Tree (Prefix (Lhs))));
2475 Set_Analyzed (Parent (Expr), False);
2476
2477 else
2478 Rewrite (Expr,
2479 Make_Attribute_Reference (Loc,
2480 Attribute_Name => Name_Unrestricted_Access,
2481 Prefix => New_Copy_Tree (Lhs)));
2482 Set_Analyzed (Parent (Expr), False);
2483 end if;
2484 end if;
2485
2486 return OK;
2487 end Replace_Type;
2488
2489 procedure Replace_Self_Reference is
2490 new Traverse_Proc (Replace_Type);
2491
2492 procedure Replace_Discriminants is
2493 new Traverse_Proc (Rewrite_Discriminant);
2494
2495 -- Start of processing for Build_Record_Aggr_Code
2496
2497 begin
2498 if Has_Self_Reference (N) then
2499 Replace_Self_Reference (N);
2500 end if;
2501
2502 -- If the target of the aggregate is class-wide, we must convert it
2503 -- to the actual type of the aggregate, so that the proper components
2504 -- are visible. We know already that the types are compatible.
2505
2506 if Present (Etype (Lhs))
2507 and then Is_Class_Wide_Type (Etype (Lhs))
2508 then
2509 Target := Unchecked_Convert_To (Typ, Lhs);
2510 else
2511 Target := Lhs;
2512 end if;
2513
2514 -- Deal with the ancestor part of extension aggregates or with the
2515 -- discriminants of the root type.
2516
2517 if Nkind (N) = N_Extension_Aggregate then
2518 declare
2519 A : constant Node_Id := Ancestor_Part (N);
2520 Assign : List_Id;
2521
2522 begin
2523 -- If the ancestor part is a subtype mark "T", we generate
2524
2525 -- init-proc (T(tmp)); if T is constrained and
2526 -- init-proc (S(tmp)); where S applies an appropriate
2527 -- constraint if T is unconstrained
2528
2529 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2530 Ancestor_Is_Subtype_Mark := True;
2531
2532 if Is_Constrained (Entity (A)) then
2533 Init_Typ := Entity (A);
2534
2535 -- For an ancestor part given by an unconstrained type mark,
2536 -- create a subtype constrained by appropriate corresponding
2537 -- discriminant values coming from either associations of the
2538 -- aggregate or a constraint on a parent type. The subtype will
2539 -- be used to generate the correct default value for the
2540 -- ancestor part.
2541
2542 elsif Has_Discriminants (Entity (A)) then
2543 declare
2544 Anc_Typ : constant Entity_Id := Entity (A);
2545 Anc_Constr : constant List_Id := New_List;
2546 Discrim : Entity_Id;
2547 Disc_Value : Node_Id;
2548 New_Indic : Node_Id;
2549 Subt_Decl : Node_Id;
2550
2551 begin
2552 Discrim := First_Discriminant (Anc_Typ);
2553 while Present (Discrim) loop
2554 Disc_Value := Ancestor_Discriminant_Value (Discrim);
2555 Append_To (Anc_Constr, Disc_Value);
2556 Next_Discriminant (Discrim);
2557 end loop;
2558
2559 New_Indic :=
2560 Make_Subtype_Indication (Loc,
2561 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2562 Constraint =>
2563 Make_Index_Or_Discriminant_Constraint (Loc,
2564 Constraints => Anc_Constr));
2565
2566 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2567
2568 Subt_Decl :=
2569 Make_Subtype_Declaration (Loc,
2570 Defining_Identifier => Init_Typ,
2571 Subtype_Indication => New_Indic);
2572
2573 -- Itypes must be analyzed with checks off Declaration
2574 -- must have a parent for proper handling of subsidiary
2575 -- actions.
2576
2577 Set_Parent (Subt_Decl, N);
2578 Analyze (Subt_Decl, Suppress => All_Checks);
2579 end;
2580 end if;
2581
2582 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2583 Set_Assignment_OK (Ref);
2584
2585 if not Is_Interface (Init_Typ) then
2586 Append_List_To (L,
2587 Build_Initialization_Call (Loc,
2588 Id_Ref => Ref,
2589 Typ => Init_Typ,
2590 In_Init_Proc => Within_Init_Proc,
2591 With_Default_Init => Has_Default_Init_Comps (N)
2592 or else
2593 Has_Task (Base_Type (Init_Typ))));
2594
2595 if Is_Constrained (Entity (A))
2596 and then Has_Discriminants (Entity (A))
2597 then
2598 Check_Ancestor_Discriminants (Entity (A));
2599 end if;
2600 end if;
2601
2602 -- Handle calls to C++ constructors
2603
2604 elsif Is_CPP_Constructor_Call (A) then
2605 Init_Typ := Etype (A);
2606 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2607 Set_Assignment_OK (Ref);
2608
2609 Append_List_To (L,
2610 Build_Initialization_Call (Loc,
2611 Id_Ref => Ref,
2612 Typ => Init_Typ,
2613 In_Init_Proc => Within_Init_Proc,
2614 With_Default_Init => Has_Default_Init_Comps (N),
2615 Constructor_Ref => A));
2616
2617 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2618 -- limited type, a recursive call expands the ancestor. Note that
2619 -- in the limited case, the ancestor part must be either a
2620 -- function call (possibly qualified, or wrapped in an unchecked
2621 -- conversion) or aggregate (definitely qualified).
2622 -- The ancestor part can also be a function call (that may be
2623 -- transformed into an explicit dereference) or a qualification
2624 -- of one such.
2625
2626 elsif Is_Limited_Type (Etype (A))
2627 and then Nkind_In (Unqualify (A), N_Aggregate,
2628 N_Extension_Aggregate)
2629 then
2630 Ancestor_Is_Expression := True;
2631
2632 -- Set up finalization data for enclosing record, because
2633 -- controlled subcomponents of the ancestor part will be
2634 -- attached to it.
2635
2636 Gen_Ctrl_Actions_For_Aggr;
2637
2638 Append_List_To (L,
2639 Build_Record_Aggr_Code (
2640 N => Unqualify (A),
2641 Typ => Etype (Unqualify (A)),
2642 Lhs => Target,
2643 Flist => Flist,
2644 Obj => Obj,
2645 Is_Limited_Ancestor_Expansion => True));
2646
2647 -- If the ancestor part is an expression "E", we generate
2648
2649 -- T(tmp) := E;
2650
2651 -- In Ada 2005, this includes the case of a (possibly qualified)
2652 -- limited function call. The assignment will turn into a
2653 -- build-in-place function call (for further details, see
2654 -- Make_Build_In_Place_Call_In_Assignment).
2655
2656 else
2657 Ancestor_Is_Expression := True;
2658 Init_Typ := Etype (A);
2659
2660 -- If the ancestor part is an aggregate, force its full
2661 -- expansion, which was delayed.
2662
2663 if Nkind_In (Unqualify (A), N_Aggregate,
2664 N_Extension_Aggregate)
2665 then
2666 Set_Analyzed (A, False);
2667 Set_Analyzed (Expression (A), False);
2668 end if;
2669
2670 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2671 Set_Assignment_OK (Ref);
2672
2673 -- Make the assignment without usual controlled actions since
2674 -- we only want the post adjust but not the pre finalize here
2675 -- Add manual adjust when necessary.
2676
2677 Assign := New_List (
2678 Make_OK_Assignment_Statement (Loc,
2679 Name => Ref,
2680 Expression => A));
2681 Set_No_Ctrl_Actions (First (Assign));
2682
2683 -- Assign the tag now to make sure that the dispatching call in
2684 -- the subsequent deep_adjust works properly (unless VM_Target,
2685 -- where tags are implicit).
2686
2687 if Tagged_Type_Expansion then
2688 Instr :=
2689 Make_OK_Assignment_Statement (Loc,
2690 Name =>
2691 Make_Selected_Component (Loc,
2692 Prefix => New_Copy_Tree (Target),
2693 Selector_Name =>
2694 New_Reference_To
2695 (First_Tag_Component (Base_Type (Typ)), Loc)),
2696
2697 Expression =>
2698 Unchecked_Convert_To (RTE (RE_Tag),
2699 New_Reference_To
2700 (Node (First_Elmt
2701 (Access_Disp_Table (Base_Type (Typ)))),
2702 Loc)));
2703
2704 Set_Assignment_OK (Name (Instr));
2705 Append_To (Assign, Instr);
2706
2707 -- Ada 2005 (AI-251): If tagged type has progenitors we must
2708 -- also initialize tags of the secondary dispatch tables.
2709
2710 if Has_Interfaces (Base_Type (Typ)) then
2711 Init_Secondary_Tags
2712 (Typ => Base_Type (Typ),
2713 Target => Target,
2714 Stmts_List => Assign);
2715 end if;
2716 end if;
2717
2718 -- Call Adjust manually
2719
2720 if Needs_Finalization (Etype (A))
2721 and then not Is_Limited_Type (Etype (A))
2722 then
2723 Append_List_To (Assign,
2724 Make_Adjust_Call (
2725 Ref => New_Copy_Tree (Ref),
2726 Typ => Etype (A),
2727 Flist_Ref => New_Reference_To (
2728 RTE (RE_Global_Final_List), Loc),
2729 With_Attach => Make_Integer_Literal (Loc, 0)));
2730 end if;
2731
2732 Append_To (L,
2733 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2734
2735 if Has_Discriminants (Init_Typ) then
2736 Check_Ancestor_Discriminants (Init_Typ);
2737 end if;
2738 end if;
2739 end;
2740
2741 -- Normal case (not an extension aggregate)
2742
2743 else
2744 -- Generate the discriminant expressions, component by component.
2745 -- If the base type is an unchecked union, the discriminants are
2746 -- unknown to the back-end and absent from a value of the type, so
2747 -- assignments for them are not emitted.
2748
2749 if Has_Discriminants (Typ)
2750 and then not Is_Unchecked_Union (Base_Type (Typ))
2751 then
2752 -- If the type is derived, and constrains discriminants of the
2753 -- parent type, these discriminants are not components of the
2754 -- aggregate, and must be initialized explicitly. They are not
2755 -- visible components of the object, but can become visible with
2756 -- a view conversion to the ancestor.
2757
2758 declare
2759 Btype : Entity_Id;
2760 Parent_Type : Entity_Id;
2761 Disc : Entity_Id;
2762 Discr_Val : Elmt_Id;
2763
2764 begin
2765 Btype := Base_Type (Typ);
2766 while Is_Derived_Type (Btype)
2767 and then Present (Stored_Constraint (Btype))
2768 loop
2769 Parent_Type := Etype (Btype);
2770
2771 Disc := First_Discriminant (Parent_Type);
2772 Discr_Val :=
2773 First_Elmt (Stored_Constraint (Base_Type (Typ)));
2774 while Present (Discr_Val) loop
2775
2776 -- Only those discriminants of the parent that are not
2777 -- renamed by discriminants of the derived type need to
2778 -- be added explicitly.
2779
2780 if not Is_Entity_Name (Node (Discr_Val))
2781 or else
2782 Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2783 then
2784 Comp_Expr :=
2785 Make_Selected_Component (Loc,
2786 Prefix => New_Copy_Tree (Target),
2787 Selector_Name => New_Occurrence_Of (Disc, Loc));
2788
2789 Instr :=
2790 Make_OK_Assignment_Statement (Loc,
2791 Name => Comp_Expr,
2792 Expression => New_Copy_Tree (Node (Discr_Val)));
2793
2794 Set_No_Ctrl_Actions (Instr);
2795 Append_To (L, Instr);
2796 end if;
2797
2798 Next_Discriminant (Disc);
2799 Next_Elmt (Discr_Val);
2800 end loop;
2801
2802 Btype := Base_Type (Parent_Type);
2803 end loop;
2804 end;
2805
2806 -- Generate discriminant init values for the visible discriminants
2807
2808 declare
2809 Discriminant : Entity_Id;
2810 Discriminant_Value : Node_Id;
2811
2812 begin
2813 Discriminant := First_Stored_Discriminant (Typ);
2814 while Present (Discriminant) loop
2815 Comp_Expr :=
2816 Make_Selected_Component (Loc,
2817 Prefix => New_Copy_Tree (Target),
2818 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2819
2820 Discriminant_Value :=
2821 Get_Discriminant_Value (
2822 Discriminant,
2823 N_Typ,
2824 Discriminant_Constraint (N_Typ));
2825
2826 Instr :=
2827 Make_OK_Assignment_Statement (Loc,
2828 Name => Comp_Expr,
2829 Expression => New_Copy_Tree (Discriminant_Value));
2830
2831 Set_No_Ctrl_Actions (Instr);
2832 Append_To (L, Instr);
2833
2834 Next_Stored_Discriminant (Discriminant);
2835 end loop;
2836 end;
2837 end if;
2838 end if;
2839
2840 -- For CPP types we generate an implicit call to the C++ default
2841 -- constructor to ensure the proper initialization of the _Tag
2842 -- component.
2843
2844 if Is_CPP_Class (Root_Type (Typ))
2845 and then CPP_Num_Prims (Typ) > 0
2846 then
2847 Invoke_Constructor : declare
2848 CPP_Parent : constant Entity_Id :=
2849 Enclosing_CPP_Parent (Typ);
2850
2851 procedure Invoke_IC_Proc (T : Entity_Id);
2852 -- Recursive routine used to climb to parents. Required because
2853 -- parents must be initialized before descendants to ensure
2854 -- propagation of inherited C++ slots.
2855
2856 --------------------
2857 -- Invoke_IC_Proc --
2858 --------------------
2859
2860 procedure Invoke_IC_Proc (T : Entity_Id) is
2861 begin
2862 -- Avoid generating extra calls. Initialization required
2863 -- only for types defined from the level of derivation of
2864 -- type of the constructor and the type of the aggregate.
2865
2866 if T = CPP_Parent then
2867 return;
2868 end if;
2869
2870 Invoke_IC_Proc (Etype (T));
2871
2872 -- Generate call to the IC routine
2873
2874 if Present (CPP_Init_Proc (T)) then
2875 Append_To (L,
2876 Make_Procedure_Call_Statement (Loc,
2877 New_Reference_To (CPP_Init_Proc (T), Loc)));
2878 end if;
2879 end Invoke_IC_Proc;
2880
2881 -- Start of processing for Invoke_Constructor
2882
2883 begin
2884 -- Implicit invocation of the C++ constructor
2885
2886 if Nkind (N) = N_Aggregate then
2887 Append_To (L,
2888 Make_Procedure_Call_Statement (Loc,
2889 Name =>
2890 New_Reference_To
2891 (Base_Init_Proc (CPP_Parent), Loc),
2892 Parameter_Associations => New_List (
2893 Unchecked_Convert_To (CPP_Parent,
2894 New_Copy_Tree (Lhs)))));
2895 end if;
2896
2897 Invoke_IC_Proc (Typ);
2898 end Invoke_Constructor;
2899 end if;
2900
2901 -- Generate the assignments, component by component
2902
2903 -- tmp.comp1 := Expr1_From_Aggr;
2904 -- tmp.comp2 := Expr2_From_Aggr;
2905 -- ....
2906
2907 Comp := First (Component_Associations (N));
2908 while Present (Comp) loop
2909 Selector := Entity (First (Choices (Comp)));
2910
2911 -- C++ constructors
2912
2913 if Is_CPP_Constructor_Call (Expression (Comp)) then
2914 Append_List_To (L,
2915 Build_Initialization_Call (Loc,
2916 Id_Ref => Make_Selected_Component (Loc,
2917 Prefix => New_Copy_Tree (Target),
2918 Selector_Name =>
2919 New_Occurrence_Of (Selector, Loc)),
2920 Typ => Etype (Selector),
2921 Enclos_Type => Typ,
2922 With_Default_Init => True,
2923 Constructor_Ref => Expression (Comp)));
2924
2925 -- Ada 2005 (AI-287): For each default-initialized component generate
2926 -- a call to the corresponding IP subprogram if available.
2927
2928 elsif Box_Present (Comp)
2929 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2930 then
2931 if Ekind (Selector) /= E_Discriminant then
2932 Gen_Ctrl_Actions_For_Aggr;
2933 end if;
2934
2935 -- Ada 2005 (AI-287): If the component type has tasks then
2936 -- generate the activation chain and master entities (except
2937 -- in case of an allocator because in that case these entities
2938 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2939
2940 declare
2941 Ctype : constant Entity_Id := Etype (Selector);
2942 Inside_Allocator : Boolean := False;
2943 P : Node_Id := Parent (N);
2944
2945 begin
2946 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2947 while Present (P) loop
2948 if Nkind (P) = N_Allocator then
2949 Inside_Allocator := True;
2950 exit;
2951 end if;
2952
2953 P := Parent (P);
2954 end loop;
2955
2956 if not Inside_Init_Proc and not Inside_Allocator then
2957 Build_Activation_Chain_Entity (N);
2958 end if;
2959 end if;
2960 end;
2961
2962 Append_List_To (L,
2963 Build_Initialization_Call (Loc,
2964 Id_Ref => Make_Selected_Component (Loc,
2965 Prefix => New_Copy_Tree (Target),
2966 Selector_Name =>
2967 New_Occurrence_Of (Selector, Loc)),
2968 Typ => Etype (Selector),
2969 Enclos_Type => Typ,
2970 With_Default_Init => True));
2971
2972 -- Prepare for component assignment
2973
2974 elsif Ekind (Selector) /= E_Discriminant
2975 or else Nkind (N) = N_Extension_Aggregate
2976 then
2977 -- All the discriminants have now been assigned
2978
2979 -- This is now a good moment to initialize and attach all the
2980 -- controllers. Their position may depend on the discriminants.
2981
2982 if Ekind (Selector) /= E_Discriminant then
2983 Gen_Ctrl_Actions_For_Aggr;
2984 end if;
2985
2986 Comp_Type := Etype (Selector);
2987 Comp_Expr :=
2988 Make_Selected_Component (Loc,
2989 Prefix => New_Copy_Tree (Target),
2990 Selector_Name => New_Occurrence_Of (Selector, Loc));
2991
2992 if Nkind (Expression (Comp)) = N_Qualified_Expression then
2993 Expr_Q := Expression (Expression (Comp));
2994 else
2995 Expr_Q := Expression (Comp);
2996 end if;
2997
2998 -- The controller is the one of the parent type defining the
2999 -- component (in case of inherited components).
3000
3001 if Needs_Finalization (Comp_Type) then
3002 Internal_Final_List :=
3003 Make_Selected_Component (Loc,
3004 Prefix => Convert_To (
3005 Scope (Original_Record_Component (Selector)),
3006 New_Copy_Tree (Target)),
3007 Selector_Name =>
3008 Make_Identifier (Loc, Name_uController));
3009
3010 Internal_Final_List :=
3011 Make_Selected_Component (Loc,
3012 Prefix => Internal_Final_List,
3013 Selector_Name => Make_Identifier (Loc, Name_F));
3014
3015 -- The internal final list can be part of a constant object
3016
3017 Set_Assignment_OK (Internal_Final_List);
3018
3019 else
3020 Internal_Final_List := Empty;
3021 end if;
3022
3023 -- Now either create the assignment or generate the code for the
3024 -- inner aggregate top-down.
3025
3026 if Is_Delayed_Aggregate (Expr_Q) then
3027
3028 -- We have the following case of aggregate nesting inside
3029 -- an object declaration:
3030
3031 -- type Arr_Typ is array (Integer range <>) of ...;
3032
3033 -- type Rec_Typ (...) is record
3034 -- Obj_Arr_Typ : Arr_Typ (A .. B);
3035 -- end record;
3036
3037 -- Obj_Rec_Typ : Rec_Typ := (...,
3038 -- Obj_Arr_Typ => (X => (...), Y => (...)));
3039
3040 -- The length of the ranges of the aggregate and Obj_Add_Typ
3041 -- are equal (B - A = Y - X), but they do not coincide (X /=
3042 -- A and B /= Y). This case requires array sliding which is
3043 -- performed in the following manner:
3044
3045 -- subtype Arr_Sub is Arr_Typ (X .. Y);
3046 -- Temp : Arr_Sub;
3047 -- Temp (X) := (...);
3048 -- ...
3049 -- Temp (Y) := (...);
3050 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
3051
3052 if Ekind (Comp_Type) = E_Array_Subtype
3053 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
3054 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
3055 and then not
3056 Compatible_Int_Bounds
3057 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
3058 Typ_Bounds => First_Index (Comp_Type))
3059 then
3060 -- Create the array subtype with bounds equal to those of
3061 -- the corresponding aggregate.
3062
3063 declare
3064 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
3065
3066 SubD : constant Node_Id :=
3067 Make_Subtype_Declaration (Loc,
3068 Defining_Identifier => SubE,
3069 Subtype_Indication =>
3070 Make_Subtype_Indication (Loc,
3071 Subtype_Mark =>
3072 New_Reference_To
3073 (Etype (Comp_Type), Loc),
3074 Constraint =>
3075 Make_Index_Or_Discriminant_Constraint
3076 (Loc,
3077 Constraints => New_List (
3078 New_Copy_Tree
3079 (Aggregate_Bounds (Expr_Q))))));
3080
3081 -- Create a temporary array of the above subtype which
3082 -- will be used to capture the aggregate assignments.
3083
3084 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
3085
3086 TmpD : constant Node_Id :=
3087 Make_Object_Declaration (Loc,
3088 Defining_Identifier => TmpE,
3089 Object_Definition =>
3090 New_Reference_To (SubE, Loc));
3091
3092 begin
3093 Set_No_Initialization (TmpD);
3094 Append_To (L, SubD);
3095 Append_To (L, TmpD);
3096
3097 -- Expand aggregate into assignments to the temp array
3098
3099 Append_List_To (L,
3100 Late_Expansion (Expr_Q, Comp_Type,
3101 New_Reference_To (TmpE, Loc), Internal_Final_List));
3102
3103 -- Slide
3104
3105 Append_To (L,
3106 Make_Assignment_Statement (Loc,
3107 Name => New_Copy_Tree (Comp_Expr),
3108 Expression => New_Reference_To (TmpE, Loc)));
3109
3110 -- Do not pass the original aggregate to Gigi as is,
3111 -- since it will potentially clobber the front or the end
3112 -- of the array. Setting the expression to empty is safe
3113 -- since all aggregates are expanded into assignments.
3114
3115 if Present (Obj) then
3116 Set_Expression (Parent (Obj), Empty);
3117 end if;
3118 end;
3119
3120 -- Normal case (sliding not required)
3121
3122 else
3123 Append_List_To (L,
3124 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr,
3125 Internal_Final_List));
3126 end if;
3127
3128 -- Expr_Q is not delayed aggregate
3129
3130 else
3131 if Has_Discriminants (Typ) then
3132 Replace_Discriminants (Expr_Q);
3133 end if;
3134
3135 Instr :=
3136 Make_OK_Assignment_Statement (Loc,
3137 Name => Comp_Expr,
3138 Expression => Expr_Q);
3139
3140 Set_No_Ctrl_Actions (Instr);
3141 Append_To (L, Instr);
3142
3143 -- Adjust the tag if tagged (because of possible view
3144 -- conversions), unless compiling for a VM where tags are
3145 -- implicit.
3146
3147 -- tmp.comp._tag := comp_typ'tag;
3148
3149 if Is_Tagged_Type (Comp_Type)
3150 and then Tagged_Type_Expansion
3151 then
3152 Instr :=
3153 Make_OK_Assignment_Statement (Loc,
3154 Name =>
3155 Make_Selected_Component (Loc,
3156 Prefix => New_Copy_Tree (Comp_Expr),
3157 Selector_Name =>
3158 New_Reference_To
3159 (First_Tag_Component (Comp_Type), Loc)),
3160
3161 Expression =>
3162 Unchecked_Convert_To (RTE (RE_Tag),
3163 New_Reference_To
3164 (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
3165 Loc)));
3166
3167 Append_To (L, Instr);
3168 end if;
3169
3170 -- Adjust and Attach the component to the proper controller
3171
3172 -- Adjust (tmp.comp);
3173 -- Attach_To_Final_List (tmp.comp,
3174 -- comp_typ (tmp)._record_controller.f)
3175
3176 if Needs_Finalization (Comp_Type)
3177 and then not Is_Limited_Type (Comp_Type)
3178 then
3179 Append_List_To (L,
3180 Make_Adjust_Call (
3181 Ref => New_Copy_Tree (Comp_Expr),
3182 Typ => Comp_Type,
3183 Flist_Ref => Internal_Final_List,
3184 With_Attach => Make_Integer_Literal (Loc, 1)));
3185 end if;
3186 end if;
3187
3188 -- ???
3189
3190 elsif Ekind (Selector) = E_Discriminant
3191 and then Nkind (N) /= N_Extension_Aggregate
3192 and then Nkind (Parent (N)) = N_Component_Association
3193 and then Is_Constrained (Typ)
3194 then
3195 -- We must check that the discriminant value imposed by the
3196 -- context is the same as the value given in the subaggregate,
3197 -- because after the expansion into assignments there is no
3198 -- record on which to perform a regular discriminant check.
3199
3200 declare
3201 D_Val : Elmt_Id;
3202 Disc : Entity_Id;
3203
3204 begin
3205 D_Val := First_Elmt (Discriminant_Constraint (Typ));
3206 Disc := First_Discriminant (Typ);
3207 while Chars (Disc) /= Chars (Selector) loop
3208 Next_Discriminant (Disc);
3209 Next_Elmt (D_Val);
3210 end loop;
3211
3212 pragma Assert (Present (D_Val));
3213
3214 -- This check cannot performed for components that are
3215 -- constrained by a current instance, because this is not a
3216 -- value that can be compared with the actual constraint.
3217
3218 if Nkind (Node (D_Val)) /= N_Attribute_Reference
3219 or else not Is_Entity_Name (Prefix (Node (D_Val)))
3220 or else not Is_Type (Entity (Prefix (Node (D_Val))))
3221 then
3222 Append_To (L,
3223 Make_Raise_Constraint_Error (Loc,
3224 Condition =>
3225 Make_Op_Ne (Loc,
3226 Left_Opnd => New_Copy_Tree (Node (D_Val)),
3227 Right_Opnd => Expression (Comp)),
3228 Reason => CE_Discriminant_Check_Failed));
3229
3230 else
3231 -- Find self-reference in previous discriminant assignment,
3232 -- and replace with proper expression.
3233
3234 declare
3235 Ass : Node_Id;
3236
3237 begin
3238 Ass := First (L);
3239 while Present (Ass) loop
3240 if Nkind (Ass) = N_Assignment_Statement
3241 and then Nkind (Name (Ass)) = N_Selected_Component
3242 and then Chars (Selector_Name (Name (Ass))) =
3243 Chars (Disc)
3244 then
3245 Set_Expression
3246 (Ass, New_Copy_Tree (Expression (Comp)));
3247 exit;
3248 end if;
3249 Next (Ass);
3250 end loop;
3251 end;
3252 end if;
3253 end;
3254 end if;
3255
3256 Next (Comp);
3257 end loop;
3258
3259 -- If the type is tagged, the tag needs to be initialized (unless
3260 -- compiling for the Java VM where tags are implicit). It is done
3261 -- late in the initialization process because in some cases, we call
3262 -- the init proc of an ancestor which will not leave out the right tag
3263
3264 if Ancestor_Is_Expression then
3265 null;
3266
3267 -- For CPP types we generated a call to the C++ default constructor
3268 -- before the components have been initialized to ensure the proper
3269 -- initialization of the _Tag component (see above).
3270
3271 elsif Is_CPP_Class (Typ) then
3272 null;
3273
3274 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
3275 Instr :=
3276 Make_OK_Assignment_Statement (Loc,
3277 Name =>
3278 Make_Selected_Component (Loc,
3279 Prefix => New_Copy_Tree (Target),
3280 Selector_Name =>
3281 New_Reference_To
3282 (First_Tag_Component (Base_Type (Typ)), Loc)),
3283
3284 Expression =>
3285 Unchecked_Convert_To (RTE (RE_Tag),
3286 New_Reference_To
3287 (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
3288 Loc)));
3289
3290 Append_To (L, Instr);
3291
3292 -- Ada 2005 (AI-251): If the tagged type has been derived from
3293 -- abstract interfaces we must also initialize the tags of the
3294 -- secondary dispatch tables.
3295
3296 if Has_Interfaces (Base_Type (Typ)) then
3297 Init_Secondary_Tags
3298 (Typ => Base_Type (Typ),
3299 Target => Target,
3300 Stmts_List => L);
3301 end if;
3302 end if;
3303
3304 -- If the controllers have not been initialized yet (by lack of non-
3305 -- discriminant components), let's do it now.
3306
3307 Gen_Ctrl_Actions_For_Aggr;
3308
3309 return L;
3310 end Build_Record_Aggr_Code;
3311
3312 -------------------------------
3313 -- Convert_Aggr_In_Allocator --
3314 -------------------------------
3315
3316 procedure Convert_Aggr_In_Allocator
3317 (Alloc : Node_Id;
3318 Decl : Node_Id;
3319 Aggr : Node_Id)
3320 is
3321 Loc : constant Source_Ptr := Sloc (Aggr);
3322 Typ : constant Entity_Id := Etype (Aggr);
3323 Temp : constant Entity_Id := Defining_Identifier (Decl);
3324
3325 Occ : constant Node_Id :=
3326 Unchecked_Convert_To (Typ,
3327 Make_Explicit_Dereference (Loc,
3328 New_Reference_To (Temp, Loc)));
3329
3330 Access_Type : constant Entity_Id := Etype (Temp);
3331 Flist : Entity_Id;
3332
3333 begin
3334 -- If the allocator is for an access discriminant, there is no
3335 -- finalization list for the anonymous access type, and the eventual
3336 -- finalization of the object is handled through the coextension
3337 -- mechanism. If the enclosing object is not dynamically allocated,
3338 -- the access discriminant is itself placed on the stack. Otherwise,
3339 -- some other finalization list is used (see exp_ch4.adb).
3340
3341 -- Decl has been inserted in the code ahead of the allocator, using
3342 -- Insert_Actions. We use Insert_Actions below as well, to ensure that
3343 -- subsequent insertions are done in the proper order. Using (for
3344 -- example) Insert_Actions_After to place the expanded aggregate
3345 -- immediately after Decl may lead to out-of-order references if the
3346 -- allocator has generated a finalization list, as when the designated
3347 -- object is controlled and there is an open transient scope.
3348
3349 if Ekind (Access_Type) = E_Anonymous_Access_Type
3350 and then Nkind (Associated_Node_For_Itype (Access_Type)) =
3351 N_Discriminant_Specification
3352 then
3353 Flist := Empty;
3354
3355 elsif Needs_Finalization (Typ) then
3356 Flist := Find_Final_List (Access_Type);
3357
3358 -- Otherwise there are no controlled actions to be performed.
3359
3360 else
3361 Flist := Empty;
3362 end if;
3363
3364 if Is_Array_Type (Typ) then
3365 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3366
3367 elsif Has_Default_Init_Comps (Aggr) then
3368 declare
3369 L : constant List_Id := New_List;
3370 Init_Stmts : List_Id;
3371
3372 begin
3373 Init_Stmts :=
3374 Late_Expansion
3375 (Aggr, Typ, Occ,
3376 Flist,
3377 Associated_Final_Chain (Base_Type (Access_Type)));
3378
3379 -- ??? Dubious actual for Obj: expect 'the original object being
3380 -- initialized'
3381
3382 if Has_Task (Typ) then
3383 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
3384 Insert_Actions (Alloc, L);
3385 else
3386 Insert_Actions (Alloc, Init_Stmts);
3387 end if;
3388 end;
3389
3390 else
3391 Insert_Actions (Alloc,
3392 Late_Expansion
3393 (Aggr, Typ, Occ, Flist,
3394 Associated_Final_Chain (Base_Type (Access_Type))));
3395
3396 -- ??? Dubious actual for Obj: expect 'the original object being
3397 -- initialized'
3398
3399 end if;
3400 end Convert_Aggr_In_Allocator;
3401
3402 --------------------------------
3403 -- Convert_Aggr_In_Assignment --
3404 --------------------------------
3405
3406 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3407 Aggr : Node_Id := Expression (N);
3408 Typ : constant Entity_Id := Etype (Aggr);
3409 Occ : constant Node_Id := New_Copy_Tree (Name (N));
3410
3411 begin
3412 if Nkind (Aggr) = N_Qualified_Expression then
3413 Aggr := Expression (Aggr);
3414 end if;
3415
3416 Insert_Actions_After (N,
3417 Late_Expansion
3418 (Aggr, Typ, Occ,
3419 Find_Final_List (Typ, New_Copy_Tree (Occ))));
3420 end Convert_Aggr_In_Assignment;
3421
3422 ---------------------------------
3423 -- Convert_Aggr_In_Object_Decl --
3424 ---------------------------------
3425
3426 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3427 Obj : constant Entity_Id := Defining_Identifier (N);
3428 Aggr : Node_Id := Expression (N);
3429 Loc : constant Source_Ptr := Sloc (Aggr);
3430 Typ : constant Entity_Id := Etype (Aggr);
3431 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
3432
3433 function Discriminants_Ok return Boolean;
3434 -- If the object type is constrained, the discriminants in the
3435 -- aggregate must be checked against the discriminants of the subtype.
3436 -- This cannot be done using Apply_Discriminant_Checks because after
3437 -- expansion there is no aggregate left to check.
3438
3439 ----------------------
3440 -- Discriminants_Ok --
3441 ----------------------
3442
3443 function Discriminants_Ok return Boolean is
3444 Cond : Node_Id := Empty;
3445 Check : Node_Id;
3446 D : Entity_Id;
3447 Disc1 : Elmt_Id;
3448 Disc2 : Elmt_Id;
3449 Val1 : Node_Id;
3450 Val2 : Node_Id;
3451
3452 begin
3453 D := First_Discriminant (Typ);
3454 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3455 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3456 while Present (Disc1) and then Present (Disc2) loop
3457 Val1 := Node (Disc1);
3458 Val2 := Node (Disc2);
3459
3460 if not Is_OK_Static_Expression (Val1)
3461 or else not Is_OK_Static_Expression (Val2)
3462 then
3463 Check := Make_Op_Ne (Loc,
3464 Left_Opnd => Duplicate_Subexpr (Val1),
3465 Right_Opnd => Duplicate_Subexpr (Val2));
3466
3467 if No (Cond) then
3468 Cond := Check;
3469
3470 else
3471 Cond := Make_Or_Else (Loc,
3472 Left_Opnd => Cond,
3473 Right_Opnd => Check);
3474 end if;
3475
3476 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3477 Apply_Compile_Time_Constraint_Error (Aggr,
3478 Msg => "incorrect value for discriminant&?",
3479 Reason => CE_Discriminant_Check_Failed,
3480 Ent => D);
3481 return False;
3482 end if;
3483
3484 Next_Discriminant (D);
3485 Next_Elmt (Disc1);
3486 Next_Elmt (Disc2);
3487 end loop;
3488
3489 -- If any discriminant constraint is non-static, emit a check
3490
3491 if Present (Cond) then
3492 Insert_Action (N,
3493 Make_Raise_Constraint_Error (Loc,
3494 Condition => Cond,
3495 Reason => CE_Discriminant_Check_Failed));
3496 end if;
3497
3498 return True;
3499 end Discriminants_Ok;
3500
3501 -- Start of processing for Convert_Aggr_In_Object_Decl
3502
3503 begin
3504 Set_Assignment_OK (Occ);
3505
3506 if Nkind (Aggr) = N_Qualified_Expression then
3507 Aggr := Expression (Aggr);
3508 end if;
3509
3510 if Has_Discriminants (Typ)
3511 and then Typ /= Etype (Obj)
3512 and then Is_Constrained (Etype (Obj))
3513 and then not Discriminants_Ok
3514 then
3515 return;
3516 end if;
3517
3518 -- If the context is an extended return statement, it has its own
3519 -- finalization machinery (i.e. works like a transient scope) and
3520 -- we do not want to create an additional one, because objects on
3521 -- the finalization list of the return must be moved to the caller's
3522 -- finalization list to complete the return.
3523
3524 -- However, if the aggregate is limited, it is built in place, and the
3525 -- controlled components are not assigned to intermediate temporaries
3526 -- so there is no need for a transient scope in this case either.
3527
3528 if Requires_Transient_Scope (Typ)
3529 and then Ekind (Current_Scope) /= E_Return_Statement
3530 and then not Is_Limited_Type (Typ)
3531 then
3532 Establish_Transient_Scope
3533 (Aggr,
3534 Sec_Stack =>
3535 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3536 end if;
3537
3538 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ, Obj => Obj));
3539 Set_No_Initialization (N);
3540 Initialize_Discriminants (N, Typ);
3541 end Convert_Aggr_In_Object_Decl;
3542
3543 -------------------------------------
3544 -- Convert_Array_Aggr_In_Allocator --
3545 -------------------------------------
3546
3547 procedure Convert_Array_Aggr_In_Allocator
3548 (Decl : Node_Id;
3549 Aggr : Node_Id;
3550 Target : Node_Id)
3551 is
3552 Aggr_Code : List_Id;
3553 Typ : constant Entity_Id := Etype (Aggr);
3554 Ctyp : constant Entity_Id := Component_Type (Typ);
3555
3556 begin
3557 -- The target is an explicit dereference of the allocated object.
3558 -- Generate component assignments to it, as for an aggregate that
3559 -- appears on the right-hand side of an assignment statement.
3560
3561 Aggr_Code :=
3562 Build_Array_Aggr_Code (Aggr,
3563 Ctype => Ctyp,
3564 Index => First_Index (Typ),
3565 Into => Target,
3566 Scalar_Comp => Is_Scalar_Type (Ctyp));
3567
3568 Insert_Actions_After (Decl, Aggr_Code);
3569 end Convert_Array_Aggr_In_Allocator;
3570
3571 ----------------------------
3572 -- Convert_To_Assignments --
3573 ----------------------------
3574
3575 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3576 Loc : constant Source_Ptr := Sloc (N);
3577 T : Entity_Id;
3578 Temp : Entity_Id;
3579
3580 Instr : Node_Id;
3581 Target_Expr : Node_Id;
3582 Parent_Kind : Node_Kind;
3583 Unc_Decl : Boolean := False;
3584 Parent_Node : Node_Id;
3585
3586 begin
3587 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3588 pragma Assert (Is_Record_Type (Typ));
3589
3590 Parent_Node := Parent (N);
3591 Parent_Kind := Nkind (Parent_Node);
3592
3593 if Parent_Kind = N_Qualified_Expression then
3594
3595 -- Check if we are in a unconstrained declaration because in this
3596 -- case the current delayed expansion mechanism doesn't work when
3597 -- the declared object size depend on the initializing expr.
3598
3599 begin
3600 Parent_Node := Parent (Parent_Node);
3601 Parent_Kind := Nkind (Parent_Node);
3602
3603 if Parent_Kind = N_Object_Declaration then
3604 Unc_Decl :=
3605 not Is_Entity_Name (Object_Definition (Parent_Node))
3606 or else Has_Discriminants
3607 (Entity (Object_Definition (Parent_Node)))
3608 or else Is_Class_Wide_Type
3609 (Entity (Object_Definition (Parent_Node)));
3610 end if;
3611 end;
3612 end if;
3613
3614 -- Just set the Delay flag in the cases where the transformation will be
3615 -- done top down from above.
3616
3617 if False
3618
3619 -- Internal aggregate (transformed when expanding the parent)
3620
3621 or else Parent_Kind = N_Aggregate
3622 or else Parent_Kind = N_Extension_Aggregate
3623 or else Parent_Kind = N_Component_Association
3624
3625 -- Allocator (see Convert_Aggr_In_Allocator)
3626
3627 or else Parent_Kind = N_Allocator
3628
3629 -- Object declaration (see Convert_Aggr_In_Object_Decl)
3630
3631 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3632
3633 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
3634 -- assignments in init procs are taken into account.
3635
3636 or else (Parent_Kind = N_Assignment_Statement
3637 and then Inside_Init_Proc)
3638
3639 -- (Ada 2005) An inherently limited type in a return statement,
3640 -- which will be handled in a build-in-place fashion, and may be
3641 -- rewritten as an extended return and have its own finalization
3642 -- machinery. In the case of a simple return, the aggregate needs
3643 -- to be delayed until the scope for the return statement has been
3644 -- created, so that any finalization chain will be associated with
3645 -- that scope. For extended returns, we delay expansion to avoid the
3646 -- creation of an unwanted transient scope that could result in
3647 -- premature finalization of the return object (which is built in
3648 -- in place within the caller's scope).
3649
3650 or else
3651 (Is_Inherently_Limited_Type (Typ)
3652 and then
3653 (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3654 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3655 then
3656 Set_Expansion_Delayed (N);
3657 return;
3658 end if;
3659
3660 if Requires_Transient_Scope (Typ) then
3661 Establish_Transient_Scope
3662 (N, Sec_Stack =>
3663 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3664 end if;
3665
3666 -- If the aggregate is non-limited, create a temporary. If it is limited
3667 -- and the context is an assignment, this is a subaggregate for an
3668 -- enclosing aggregate being expanded. It must be built in place, so use
3669 -- the target of the current assignment.
3670
3671 if Is_Limited_Type (Typ)
3672 and then Nkind (Parent (N)) = N_Assignment_Statement
3673 then
3674 Target_Expr := New_Copy_Tree (Name (Parent (N)));
3675 Insert_Actions
3676 (Parent (N), Build_Record_Aggr_Code (N, Typ, Target_Expr));
3677 Rewrite (Parent (N), Make_Null_Statement (Loc));
3678
3679 else
3680 Temp := Make_Temporary (Loc, 'A', N);
3681
3682 -- If the type inherits unknown discriminants, use the view with
3683 -- known discriminants if available.
3684
3685 if Has_Unknown_Discriminants (Typ)
3686 and then Present (Underlying_Record_View (Typ))
3687 then
3688 T := Underlying_Record_View (Typ);
3689 else
3690 T := Typ;
3691 end if;
3692
3693 Instr :=
3694 Make_Object_Declaration (Loc,
3695 Defining_Identifier => Temp,
3696 Object_Definition => New_Occurrence_Of (T, Loc));
3697
3698 Set_No_Initialization (Instr);
3699 Insert_Action (N, Instr);
3700 Initialize_Discriminants (Instr, T);
3701 Target_Expr := New_Occurrence_Of (Temp, Loc);
3702 Insert_Actions (N, Build_Record_Aggr_Code (N, T, Target_Expr));
3703 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3704 Analyze_And_Resolve (N, T);
3705 end if;
3706 end Convert_To_Assignments;
3707
3708 ---------------------------
3709 -- Convert_To_Positional --
3710 ---------------------------
3711
3712 procedure Convert_To_Positional
3713 (N : Node_Id;
3714 Max_Others_Replicate : Nat := 5;
3715 Handle_Bit_Packed : Boolean := False)
3716 is
3717 Typ : constant Entity_Id := Etype (N);
3718
3719 Static_Components : Boolean := True;
3720
3721 procedure Check_Static_Components;
3722 -- Check whether all components of the aggregate are compile-time known
3723 -- values, and can be passed as is to the back-end without further
3724 -- expansion.
3725
3726 function Flatten
3727 (N : Node_Id;
3728 Ix : Node_Id;
3729 Ixb : Node_Id) return Boolean;
3730 -- Convert the aggregate into a purely positional form if possible. On
3731 -- entry the bounds of all dimensions are known to be static, and the
3732 -- total number of components is safe enough to expand.
3733
3734 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3735 -- Return True iff the array N is flat (which is not trivial in the case
3736 -- of multidimensionsl aggregates).
3737
3738 -----------------------------
3739 -- Check_Static_Components --
3740 -----------------------------
3741
3742 procedure Check_Static_Components is
3743 Expr : Node_Id;
3744
3745 begin
3746 Static_Components := True;
3747
3748 if Nkind (N) = N_String_Literal then
3749 null;
3750
3751 elsif Present (Expressions (N)) then
3752 Expr := First (Expressions (N));
3753 while Present (Expr) loop
3754 if Nkind (Expr) /= N_Aggregate
3755 or else not Compile_Time_Known_Aggregate (Expr)
3756 or else Expansion_Delayed (Expr)
3757 then
3758 Static_Components := False;
3759 exit;
3760 end if;
3761
3762 Next (Expr);
3763 end loop;
3764 end if;
3765
3766 if Nkind (N) = N_Aggregate
3767 and then Present (Component_Associations (N))
3768 then
3769 Expr := First (Component_Associations (N));
3770 while Present (Expr) loop
3771 if Nkind_In (Expression (Expr), N_Integer_Literal,
3772 N_Real_Literal)
3773 then
3774 null;
3775
3776 elsif Is_Entity_Name (Expression (Expr))
3777 and then Present (Entity (Expression (Expr)))
3778 and then Ekind (Entity (Expression (Expr))) =
3779 E_Enumeration_Literal
3780 then
3781 null;
3782
3783 elsif Nkind (Expression (Expr)) /= N_Aggregate
3784 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3785 or else Expansion_Delayed (Expression (Expr))
3786 then
3787 Static_Components := False;
3788 exit;
3789 end if;
3790
3791 Next (Expr);
3792 end loop;
3793 end if;
3794 end Check_Static_Components;
3795
3796 -------------
3797 -- Flatten --
3798 -------------
3799
3800 function Flatten
3801 (N : Node_Id;
3802 Ix : Node_Id;
3803 Ixb : Node_Id) return Boolean
3804 is
3805 Loc : constant Source_Ptr := Sloc (N);
3806 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
3807 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
3808 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
3809 Lov : Uint;
3810 Hiv : Uint;
3811
3812 begin
3813 if Nkind (Original_Node (N)) = N_String_Literal then
3814 return True;
3815 end if;
3816
3817 if not Compile_Time_Known_Value (Lo)
3818 or else not Compile_Time_Known_Value (Hi)
3819 then
3820 return False;
3821 end if;
3822
3823 Lov := Expr_Value (Lo);
3824 Hiv := Expr_Value (Hi);
3825
3826 if Hiv < Lov
3827 or else not Compile_Time_Known_Value (Blo)
3828 then
3829 return False;
3830 end if;
3831
3832 -- Determine if set of alternatives is suitable for conversion and
3833 -- build an array containing the values in sequence.
3834
3835 declare
3836 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3837 of Node_Id := (others => Empty);
3838 -- The values in the aggregate sorted appropriately
3839
3840 Vlist : List_Id;
3841 -- Same data as Vals in list form
3842
3843 Rep_Count : Nat;
3844 -- Used to validate Max_Others_Replicate limit
3845
3846 Elmt : Node_Id;
3847 Num : Int := UI_To_Int (Lov);
3848 Choice_Index : Int;
3849 Choice : Node_Id;
3850 Lo, Hi : Node_Id;
3851
3852 begin
3853 if Present (Expressions (N)) then
3854 Elmt := First (Expressions (N));
3855 while Present (Elmt) loop
3856 if Nkind (Elmt) = N_Aggregate
3857 and then Present (Next_Index (Ix))
3858 and then
3859 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3860 then
3861 return False;
3862 end if;
3863
3864 Vals (Num) := Relocate_Node (Elmt);
3865 Num := Num + 1;
3866
3867 Next (Elmt);
3868 end loop;
3869 end if;
3870
3871 if No (Component_Associations (N)) then
3872 return True;
3873 end if;
3874
3875 Elmt := First (Component_Associations (N));
3876
3877 if Nkind (Expression (Elmt)) = N_Aggregate then
3878 if Present (Next_Index (Ix))
3879 and then
3880 not Flatten
3881 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3882 then
3883 return False;
3884 end if;
3885 end if;
3886
3887 Component_Loop : while Present (Elmt) loop
3888 Choice := First (Choices (Elmt));
3889 Choice_Loop : while Present (Choice) loop
3890
3891 -- If we have an others choice, fill in the missing elements
3892 -- subject to the limit established by Max_Others_Replicate.
3893
3894 if Nkind (Choice) = N_Others_Choice then
3895 Rep_Count := 0;
3896
3897 for J in Vals'Range loop
3898 if No (Vals (J)) then
3899 Vals (J) := New_Copy_Tree (Expression (Elmt));
3900 Rep_Count := Rep_Count + 1;
3901
3902 -- Check for maximum others replication. Note that
3903 -- we skip this test if either of the restrictions
3904 -- No_Elaboration_Code or No_Implicit_Loops is
3905 -- active, if this is a preelaborable unit or a
3906 -- predefined unit. This ensures that predefined
3907 -- units get the same level of constant folding in
3908 -- Ada 95 and Ada 05, where their categorization
3909 -- has changed.
3910
3911 declare
3912 P : constant Entity_Id :=
3913 Cunit_Entity (Current_Sem_Unit);
3914
3915 begin
3916 -- Check if duplication OK and if so continue
3917 -- processing.
3918
3919 if Restriction_Active (No_Elaboration_Code)
3920 or else Restriction_Active (No_Implicit_Loops)
3921 or else Is_Preelaborated (P)
3922 or else (Ekind (P) = E_Package_Body
3923 and then
3924 Is_Preelaborated (Spec_Entity (P)))
3925 or else
3926 Is_Predefined_File_Name
3927 (Unit_File_Name (Get_Source_Unit (P)))
3928 then
3929 null;
3930
3931 -- If duplication not OK, then we return False
3932 -- if the replication count is too high
3933
3934 elsif Rep_Count > Max_Others_Replicate then
3935 return False;
3936
3937 -- Continue on if duplication not OK, but the
3938 -- replication count is not excessive.
3939
3940 else
3941 null;
3942 end if;
3943 end;
3944 end if;
3945 end loop;
3946
3947 exit Component_Loop;
3948
3949 -- Case of a subtype mark
3950
3951 elsif Nkind (Choice) = N_Identifier
3952 and then Is_Type (Entity (Choice))
3953 then
3954 Lo := Type_Low_Bound (Etype (Choice));
3955 Hi := Type_High_Bound (Etype (Choice));
3956
3957 -- Case of subtype indication
3958
3959 elsif Nkind (Choice) = N_Subtype_Indication then
3960 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
3961 Hi := High_Bound (Range_Expression (Constraint (Choice)));
3962
3963 -- Case of a range
3964
3965 elsif Nkind (Choice) = N_Range then
3966 Lo := Low_Bound (Choice);
3967 Hi := High_Bound (Choice);
3968
3969 -- Normal subexpression case
3970
3971 else pragma Assert (Nkind (Choice) in N_Subexpr);
3972 if not Compile_Time_Known_Value (Choice) then
3973 return False;
3974
3975 else
3976 Choice_Index := UI_To_Int (Expr_Value (Choice));
3977 if Choice_Index in Vals'Range then
3978 Vals (Choice_Index) :=
3979 New_Copy_Tree (Expression (Elmt));
3980 goto Continue;
3981
3982 else
3983 -- Choice is statically out-of-range, will be
3984 -- rewritten to raise Constraint_Error.
3985
3986 return False;
3987 end if;
3988 end if;
3989 end if;
3990
3991 -- Range cases merge with Lo,Hi set
3992
3993 if not Compile_Time_Known_Value (Lo)
3994 or else
3995 not Compile_Time_Known_Value (Hi)
3996 then
3997 return False;
3998 else
3999 for J in UI_To_Int (Expr_Value (Lo)) ..
4000 UI_To_Int (Expr_Value (Hi))
4001 loop
4002 Vals (J) := New_Copy_Tree (Expression (Elmt));
4003 end loop;
4004 end if;
4005
4006 <<Continue>>
4007 Next (Choice);
4008 end loop Choice_Loop;
4009
4010 Next (Elmt);
4011 end loop Component_Loop;
4012
4013 -- If we get here the conversion is possible
4014
4015 Vlist := New_List;
4016 for J in Vals'Range loop
4017 Append (Vals (J), Vlist);
4018 end loop;
4019
4020 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
4021 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
4022 return True;
4023 end;
4024 end Flatten;
4025
4026 -------------
4027 -- Is_Flat --
4028 -------------
4029
4030 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
4031 Elmt : Node_Id;
4032
4033 begin
4034 if Dims = 0 then
4035 return True;
4036
4037 elsif Nkind (N) = N_Aggregate then
4038 if Present (Component_Associations (N)) then
4039 return False;
4040
4041 else
4042 Elmt := First (Expressions (N));
4043 while Present (Elmt) loop
4044 if not Is_Flat (Elmt, Dims - 1) then
4045 return False;
4046 end if;
4047
4048 Next (Elmt);
4049 end loop;
4050
4051 return True;
4052 end if;
4053 else
4054 return True;
4055 end if;
4056 end Is_Flat;
4057
4058 -- Start of processing for Convert_To_Positional
4059
4060 begin
4061 -- Ada 2005 (AI-287): Do not convert in case of default initialized
4062 -- components because in this case will need to call the corresponding
4063 -- IP procedure.
4064
4065 if Has_Default_Init_Comps (N) then
4066 return;
4067 end if;
4068
4069 if Is_Flat (N, Number_Dimensions (Typ)) then
4070 return;
4071 end if;
4072
4073 if Is_Bit_Packed_Array (Typ)
4074 and then not Handle_Bit_Packed
4075 then
4076 return;
4077 end if;
4078
4079 -- Do not convert to positional if controlled components are involved
4080 -- since these require special processing
4081
4082 if Has_Controlled_Component (Typ) then
4083 return;
4084 end if;
4085
4086 Check_Static_Components;
4087
4088 -- If the size is known, or all the components are static, try to
4089 -- build a fully positional aggregate.
4090
4091 -- The size of the type may not be known for an aggregate with
4092 -- discriminated array components, but if the components are static
4093 -- it is still possible to verify statically that the length is
4094 -- compatible with the upper bound of the type, and therefore it is
4095 -- worth flattening such aggregates as well.
4096
4097 -- For now the back-end expands these aggregates into individual
4098 -- assignments to the target anyway, but it is conceivable that
4099 -- it will eventually be able to treat such aggregates statically???
4100
4101 if Aggr_Size_OK (N, Typ)
4102 and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
4103 then
4104 if Static_Components then
4105 Set_Compile_Time_Known_Aggregate (N);
4106 Set_Expansion_Delayed (N, False);
4107 end if;
4108
4109 Analyze_And_Resolve (N, Typ);
4110 end if;
4111 end Convert_To_Positional;
4112
4113 ----------------------------
4114 -- Expand_Array_Aggregate --
4115 ----------------------------
4116
4117 -- Array aggregate expansion proceeds as follows:
4118
4119 -- 1. If requested we generate code to perform all the array aggregate
4120 -- bound checks, specifically
4121
4122 -- (a) Check that the index range defined by aggregate bounds is
4123 -- compatible with corresponding index subtype.
4124
4125 -- (b) If an others choice is present check that no aggregate
4126 -- index is outside the bounds of the index constraint.
4127
4128 -- (c) For multidimensional arrays make sure that all subaggregates
4129 -- corresponding to the same dimension have the same bounds.
4130
4131 -- 2. Check for packed array aggregate which can be converted to a
4132 -- constant so that the aggregate disappeares completely.
4133
4134 -- 3. Check case of nested aggregate. Generally nested aggregates are
4135 -- handled during the processing of the parent aggregate.
4136
4137 -- 4. Check if the aggregate can be statically processed. If this is the
4138 -- case pass it as is to Gigi. Note that a necessary condition for
4139 -- static processing is that the aggregate be fully positional.
4140
4141 -- 5. If in place aggregate expansion is possible (i.e. no need to create
4142 -- a temporary) then mark the aggregate as such and return. Otherwise
4143 -- create a new temporary and generate the appropriate initialization
4144 -- code.
4145
4146 procedure Expand_Array_Aggregate (N : Node_Id) is
4147 Loc : constant Source_Ptr := Sloc (N);
4148
4149 Typ : constant Entity_Id := Etype (N);
4150 Ctyp : constant Entity_Id := Component_Type (Typ);
4151 -- Typ is the correct constrained array subtype of the aggregate
4152 -- Ctyp is the corresponding component type.
4153
4154 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
4155 -- Number of aggregate index dimensions
4156
4157 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
4158 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
4159 -- Low and High bounds of the constraint for each aggregate index
4160
4161 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
4162 -- The type of each index
4163
4164 Maybe_In_Place_OK : Boolean;
4165 -- If the type is neither controlled nor packed and the aggregate
4166 -- is the expression in an assignment, assignment in place may be
4167 -- possible, provided other conditions are met on the LHS.
4168
4169 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
4170 (others => False);
4171 -- If Others_Present (J) is True, then there is an others choice
4172 -- in one of the sub-aggregates of N at dimension J.
4173
4174 procedure Build_Constrained_Type (Positional : Boolean);
4175 -- If the subtype is not static or unconstrained, build a constrained
4176 -- type using the computable sizes of the aggregate and its sub-
4177 -- aggregates.
4178
4179 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
4180 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
4181 -- by Index_Bounds.
4182
4183 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
4184 -- Checks that in a multi-dimensional array aggregate all subaggregates
4185 -- corresponding to the same dimension have the same bounds.
4186 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
4187 -- corresponding to the sub-aggregate.
4188
4189 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
4190 -- Computes the values of array Others_Present. Sub_Aggr is the
4191 -- array sub-aggregate we start the computation from. Dim is the
4192 -- dimension corresponding to the sub-aggregate.
4193
4194 function In_Place_Assign_OK return Boolean;
4195 -- Simple predicate to determine whether an aggregate assignment can
4196 -- be done in place, because none of the new values can depend on the
4197 -- components of the target of the assignment.
4198
4199 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
4200 -- Checks that if an others choice is present in any sub-aggregate no
4201 -- aggregate index is outside the bounds of the index constraint.
4202 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
4203 -- corresponding to the sub-aggregate.
4204
4205 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
4206 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
4207 -- built directly into the target of the assignment it must be free
4208 -- of side-effects.
4209
4210 ----------------------------
4211 -- Build_Constrained_Type --
4212 ----------------------------
4213
4214 procedure Build_Constrained_Type (Positional : Boolean) is
4215 Loc : constant Source_Ptr := Sloc (N);
4216 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
4217 Comp : Node_Id;
4218 Decl : Node_Id;
4219 Typ : constant Entity_Id := Etype (N);
4220 Indices : constant List_Id := New_List;
4221 Num : Int;
4222 Sub_Agg : Node_Id;
4223
4224 begin
4225 -- If the aggregate is purely positional, all its subaggregates
4226 -- have the same size. We collect the dimensions from the first
4227 -- subaggregate at each level.
4228
4229 if Positional then
4230 Sub_Agg := N;
4231
4232 for D in 1 .. Number_Dimensions (Typ) loop
4233 Sub_Agg := First (Expressions (Sub_Agg));
4234
4235 Comp := Sub_Agg;
4236 Num := 0;
4237 while Present (Comp) loop
4238 Num := Num + 1;
4239 Next (Comp);
4240 end loop;
4241
4242 Append_To (Indices,
4243 Make_Range (Loc,
4244 Low_Bound => Make_Integer_Literal (Loc, 1),
4245 High_Bound => Make_Integer_Literal (Loc, Num)));
4246 end loop;
4247
4248 else
4249 -- We know the aggregate type is unconstrained and the aggregate
4250 -- is not processable by the back end, therefore not necessarily
4251 -- positional. Retrieve each dimension bounds (computed earlier).
4252
4253 for D in 1 .. Number_Dimensions (Typ) loop
4254 Append (
4255 Make_Range (Loc,
4256 Low_Bound => Aggr_Low (D),
4257 High_Bound => Aggr_High (D)),
4258 Indices);
4259 end loop;
4260 end if;
4261
4262 Decl :=
4263 Make_Full_Type_Declaration (Loc,
4264 Defining_Identifier => Agg_Type,
4265 Type_Definition =>
4266 Make_Constrained_Array_Definition (Loc,
4267 Discrete_Subtype_Definitions => Indices,
4268 Component_Definition =>
4269 Make_Component_Definition (Loc,
4270 Aliased_Present => False,
4271 Subtype_Indication =>
4272 New_Occurrence_Of (Component_Type (Typ), Loc))));
4273
4274 Insert_Action (N, Decl);
4275 Analyze (Decl);
4276 Set_Etype (N, Agg_Type);
4277 Set_Is_Itype (Agg_Type);
4278 Freeze_Itype (Agg_Type, N);
4279 end Build_Constrained_Type;
4280
4281 ------------------
4282 -- Check_Bounds --
4283 ------------------
4284
4285 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
4286 Aggr_Lo : Node_Id;
4287 Aggr_Hi : Node_Id;
4288
4289 Ind_Lo : Node_Id;
4290 Ind_Hi : Node_Id;
4291
4292 Cond : Node_Id := Empty;
4293
4294 begin
4295 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
4296 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
4297
4298 -- Generate the following test:
4299 --
4300 -- [constraint_error when
4301 -- Aggr_Lo <= Aggr_Hi and then
4302 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
4303
4304 -- As an optimization try to see if some tests are trivially vacuous
4305 -- because we are comparing an expression against itself.
4306
4307 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
4308 Cond := Empty;
4309
4310 elsif Aggr_Hi = Ind_Hi then
4311 Cond :=
4312 Make_Op_Lt (Loc,
4313 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4314 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
4315
4316 elsif Aggr_Lo = Ind_Lo then
4317 Cond :=
4318 Make_Op_Gt (Loc,
4319 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4320 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
4321
4322 else
4323 Cond :=
4324 Make_Or_Else (Loc,
4325 Left_Opnd =>
4326 Make_Op_Lt (Loc,
4327 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4328 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
4329
4330 Right_Opnd =>
4331 Make_Op_Gt (Loc,
4332 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4333 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
4334 end if;
4335
4336 if Present (Cond) then
4337 Cond :=
4338 Make_And_Then (Loc,
4339 Left_Opnd =>
4340 Make_Op_Le (Loc,
4341 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4342 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
4343
4344 Right_Opnd => Cond);
4345
4346 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
4347 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
4348 Insert_Action (N,
4349 Make_Raise_Constraint_Error (Loc,
4350 Condition => Cond,
4351 Reason => CE_Length_Check_Failed));
4352 end if;
4353 end Check_Bounds;
4354
4355 ----------------------------
4356 -- Check_Same_Aggr_Bounds --
4357 ----------------------------
4358
4359 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
4360 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
4361 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
4362 -- The bounds of this specific sub-aggregate
4363
4364 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4365 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4366 -- The bounds of the aggregate for this dimension
4367
4368 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4369 -- The index type for this dimension.xxx
4370
4371 Cond : Node_Id := Empty;
4372 Assoc : Node_Id;
4373 Expr : Node_Id;
4374
4375 begin
4376 -- If index checks are on generate the test
4377
4378 -- [constraint_error when
4379 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
4380
4381 -- As an optimization try to see if some tests are trivially vacuos
4382 -- because we are comparing an expression against itself. Also for
4383 -- the first dimension the test is trivially vacuous because there
4384 -- is just one aggregate for dimension 1.
4385
4386 if Index_Checks_Suppressed (Ind_Typ) then
4387 Cond := Empty;
4388
4389 elsif Dim = 1
4390 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
4391 then
4392 Cond := Empty;
4393
4394 elsif Aggr_Hi = Sub_Hi then
4395 Cond :=
4396 Make_Op_Ne (Loc,
4397 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4398 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
4399
4400 elsif Aggr_Lo = Sub_Lo then
4401 Cond :=
4402 Make_Op_Ne (Loc,
4403 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4404 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
4405
4406 else
4407 Cond :=
4408 Make_Or_Else (Loc,
4409 Left_Opnd =>
4410 Make_Op_Ne (Loc,
4411 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4412 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4413
4414 Right_Opnd =>
4415 Make_Op_Ne (Loc,
4416 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4417 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4418 end if;
4419
4420 if Present (Cond) then
4421 Insert_Action (N,
4422 Make_Raise_Constraint_Error (Loc,
4423 Condition => Cond,
4424 Reason => CE_Length_Check_Failed));
4425 end if;
4426
4427 -- Now look inside the sub-aggregate to see if there is more work
4428
4429 if Dim < Aggr_Dimension then
4430
4431 -- Process positional components
4432
4433 if Present (Expressions (Sub_Aggr)) then
4434 Expr := First (Expressions (Sub_Aggr));
4435 while Present (Expr) loop
4436 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4437 Next (Expr);
4438 end loop;
4439 end if;
4440
4441 -- Process component associations
4442
4443 if Present (Component_Associations (Sub_Aggr)) then
4444 Assoc := First (Component_Associations (Sub_Aggr));
4445 while Present (Assoc) loop
4446 Expr := Expression (Assoc);
4447 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4448 Next (Assoc);
4449 end loop;
4450 end if;
4451 end if;
4452 end Check_Same_Aggr_Bounds;
4453
4454 ----------------------------
4455 -- Compute_Others_Present --
4456 ----------------------------
4457
4458 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4459 Assoc : Node_Id;
4460 Expr : Node_Id;
4461
4462 begin
4463 if Present (Component_Associations (Sub_Aggr)) then
4464 Assoc := Last (Component_Associations (Sub_Aggr));
4465
4466 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4467 Others_Present (Dim) := True;
4468 end if;
4469 end if;
4470
4471 -- Now look inside the sub-aggregate to see if there is more work
4472
4473 if Dim < Aggr_Dimension then
4474
4475 -- Process positional components
4476
4477 if Present (Expressions (Sub_Aggr)) then
4478 Expr := First (Expressions (Sub_Aggr));
4479 while Present (Expr) loop
4480 Compute_Others_Present (Expr, Dim + 1);
4481 Next (Expr);
4482 end loop;
4483 end if;
4484
4485 -- Process component associations
4486
4487 if Present (Component_Associations (Sub_Aggr)) then
4488 Assoc := First (Component_Associations (Sub_Aggr));
4489 while Present (Assoc) loop
4490 Expr := Expression (Assoc);
4491 Compute_Others_Present (Expr, Dim + 1);
4492 Next (Assoc);
4493 end loop;
4494 end if;
4495 end if;
4496 end Compute_Others_Present;
4497
4498 ------------------------
4499 -- In_Place_Assign_OK --
4500 ------------------------
4501
4502 function In_Place_Assign_OK return Boolean is
4503 Aggr_In : Node_Id;
4504 Aggr_Lo : Node_Id;
4505 Aggr_Hi : Node_Id;
4506 Obj_In : Node_Id;
4507 Obj_Lo : Node_Id;
4508 Obj_Hi : Node_Id;
4509
4510 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean;
4511 -- Aggregates that consist of a single Others choice are safe
4512 -- if the single expression is.
4513
4514 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4515 -- Check recursively that each component of a (sub)aggregate does
4516 -- not depend on the variable being assigned to.
4517
4518 function Safe_Component (Expr : Node_Id) return Boolean;
4519 -- Verify that an expression cannot depend on the variable being
4520 -- assigned to. Room for improvement here (but less than before).
4521
4522 -------------------------
4523 -- Is_Others_Aggregate --
4524 -------------------------
4525
4526 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
4527 begin
4528 return No (Expressions (Aggr))
4529 and then Nkind
4530 (First (Choices (First (Component_Associations (Aggr)))))
4531 = N_Others_Choice;
4532 end Is_Others_Aggregate;
4533
4534 --------------------
4535 -- Safe_Aggregate --
4536 --------------------
4537
4538 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4539 Expr : Node_Id;
4540
4541 begin
4542 if Present (Expressions (Aggr)) then
4543 Expr := First (Expressions (Aggr));
4544 while Present (Expr) loop
4545 if Nkind (Expr) = N_Aggregate then
4546 if not Safe_Aggregate (Expr) then
4547 return False;
4548 end if;
4549
4550 elsif not Safe_Component (Expr) then
4551 return False;
4552 end if;
4553
4554 Next (Expr);
4555 end loop;
4556 end if;
4557
4558 if Present (Component_Associations (Aggr)) then
4559 Expr := First (Component_Associations (Aggr));
4560 while Present (Expr) loop
4561 if Nkind (Expression (Expr)) = N_Aggregate then
4562 if not Safe_Aggregate (Expression (Expr)) then
4563 return False;
4564 end if;
4565
4566 elsif not Safe_Component (Expression (Expr)) then
4567 return False;
4568 end if;
4569
4570 Next (Expr);
4571 end loop;
4572 end if;
4573
4574 return True;
4575 end Safe_Aggregate;
4576
4577 --------------------
4578 -- Safe_Component --
4579 --------------------
4580
4581 function Safe_Component (Expr : Node_Id) return Boolean is
4582 Comp : Node_Id := Expr;
4583
4584 function Check_Component (Comp : Node_Id) return Boolean;
4585 -- Do the recursive traversal, after copy
4586
4587 ---------------------
4588 -- Check_Component --
4589 ---------------------
4590
4591 function Check_Component (Comp : Node_Id) return Boolean is
4592 begin
4593 if Is_Overloaded (Comp) then
4594 return False;
4595 end if;
4596
4597 return Compile_Time_Known_Value (Comp)
4598
4599 or else (Is_Entity_Name (Comp)
4600 and then Present (Entity (Comp))
4601 and then No (Renamed_Object (Entity (Comp))))
4602
4603 or else (Nkind (Comp) = N_Attribute_Reference
4604 and then Check_Component (Prefix (Comp)))
4605
4606 or else (Nkind (Comp) in N_Binary_Op
4607 and then Check_Component (Left_Opnd (Comp))
4608 and then Check_Component (Right_Opnd (Comp)))
4609
4610 or else (Nkind (Comp) in N_Unary_Op
4611 and then Check_Component (Right_Opnd (Comp)))
4612
4613 or else (Nkind (Comp) = N_Selected_Component
4614 and then Check_Component (Prefix (Comp)))
4615
4616 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4617 and then Check_Component (Expression (Comp)));
4618 end Check_Component;
4619
4620 -- Start of processing for Safe_Component
4621
4622 begin
4623 -- If the component appears in an association that may
4624 -- correspond to more than one element, it is not analyzed
4625 -- before the expansion into assignments, to avoid side effects.
4626 -- We analyze, but do not resolve the copy, to obtain sufficient
4627 -- entity information for the checks that follow. If component is
4628 -- overloaded we assume an unsafe function call.
4629
4630 if not Analyzed (Comp) then
4631 if Is_Overloaded (Expr) then
4632 return False;
4633
4634 elsif Nkind (Expr) = N_Aggregate
4635 and then not Is_Others_Aggregate (Expr)
4636 then
4637 return False;
4638
4639 elsif Nkind (Expr) = N_Allocator then
4640
4641 -- For now, too complex to analyze
4642
4643 return False;
4644 end if;
4645
4646 Comp := New_Copy_Tree (Expr);
4647 Set_Parent (Comp, Parent (Expr));
4648 Analyze (Comp);
4649 end if;
4650
4651 if Nkind (Comp) = N_Aggregate then
4652 return Safe_Aggregate (Comp);
4653 else
4654 return Check_Component (Comp);
4655 end if;
4656 end Safe_Component;
4657
4658 -- Start of processing for In_Place_Assign_OK
4659
4660 begin
4661 if Present (Component_Associations (N)) then
4662
4663 -- On assignment, sliding can take place, so we cannot do the
4664 -- assignment in place unless the bounds of the aggregate are
4665 -- statically equal to those of the target.
4666
4667 -- If the aggregate is given by an others choice, the bounds
4668 -- are derived from the left-hand side, and the assignment is
4669 -- safe if the expression is.
4670
4671 if Is_Others_Aggregate (N) then
4672 return
4673 Safe_Component
4674 (Expression (First (Component_Associations (N))));
4675 end if;
4676
4677 Aggr_In := First_Index (Etype (N));
4678
4679 if Nkind (Parent (N)) = N_Assignment_Statement then
4680 Obj_In := First_Index (Etype (Name (Parent (N))));
4681
4682 else
4683 -- Context is an allocator. Check bounds of aggregate
4684 -- against given type in qualified expression.
4685
4686 pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4687 Obj_In :=
4688 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4689 end if;
4690
4691 while Present (Aggr_In) loop
4692 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4693 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4694
4695 if not Compile_Time_Known_Value (Aggr_Lo)
4696 or else not Compile_Time_Known_Value (Aggr_Hi)
4697 or else not Compile_Time_Known_Value (Obj_Lo)
4698 or else not Compile_Time_Known_Value (Obj_Hi)
4699 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4700 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4701 then
4702 return False;
4703 end if;
4704
4705 Next_Index (Aggr_In);
4706 Next_Index (Obj_In);
4707 end loop;
4708 end if;
4709
4710 -- Now check the component values themselves
4711
4712 return Safe_Aggregate (N);
4713 end In_Place_Assign_OK;
4714
4715 ------------------
4716 -- Others_Check --
4717 ------------------
4718
4719 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4720 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4721 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4722 -- The bounds of the aggregate for this dimension
4723
4724 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4725 -- The index type for this dimension
4726
4727 Need_To_Check : Boolean := False;
4728
4729 Choices_Lo : Node_Id := Empty;
4730 Choices_Hi : Node_Id := Empty;
4731 -- The lowest and highest discrete choices for a named sub-aggregate
4732
4733 Nb_Choices : Int := -1;
4734 -- The number of discrete non-others choices in this sub-aggregate
4735
4736 Nb_Elements : Uint := Uint_0;
4737 -- The number of elements in a positional aggregate
4738
4739 Cond : Node_Id := Empty;
4740
4741 Assoc : Node_Id;
4742 Choice : Node_Id;
4743 Expr : Node_Id;
4744
4745 begin
4746 -- Check if we have an others choice. If we do make sure that this
4747 -- sub-aggregate contains at least one element in addition to the
4748 -- others choice.
4749
4750 if Range_Checks_Suppressed (Ind_Typ) then
4751 Need_To_Check := False;
4752
4753 elsif Present (Expressions (Sub_Aggr))
4754 and then Present (Component_Associations (Sub_Aggr))
4755 then
4756 Need_To_Check := True;
4757
4758 elsif Present (Component_Associations (Sub_Aggr)) then
4759 Assoc := Last (Component_Associations (Sub_Aggr));
4760
4761 if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4762 Need_To_Check := False;
4763
4764 else
4765 -- Count the number of discrete choices. Start with -1 because
4766 -- the others choice does not count.
4767
4768 Nb_Choices := -1;
4769 Assoc := First (Component_Associations (Sub_Aggr));
4770 while Present (Assoc) loop
4771 Choice := First (Choices (Assoc));
4772 while Present (Choice) loop
4773 Nb_Choices := Nb_Choices + 1;
4774 Next (Choice);
4775 end loop;
4776
4777 Next (Assoc);
4778 end loop;
4779
4780 -- If there is only an others choice nothing to do
4781
4782 Need_To_Check := (Nb_Choices > 0);
4783 end if;
4784
4785 else
4786 Need_To_Check := False;
4787 end if;
4788
4789 -- If we are dealing with a positional sub-aggregate with an others
4790 -- choice then compute the number or positional elements.
4791
4792 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4793 Expr := First (Expressions (Sub_Aggr));
4794 Nb_Elements := Uint_0;
4795 while Present (Expr) loop
4796 Nb_Elements := Nb_Elements + 1;
4797 Next (Expr);
4798 end loop;
4799
4800 -- If the aggregate contains discrete choices and an others choice
4801 -- compute the smallest and largest discrete choice values.
4802
4803 elsif Need_To_Check then
4804 Compute_Choices_Lo_And_Choices_Hi : declare
4805
4806 Table : Case_Table_Type (1 .. Nb_Choices);
4807 -- Used to sort all the different choice values
4808
4809 J : Pos := 1;
4810 Low : Node_Id;
4811 High : Node_Id;
4812
4813 begin
4814 Assoc := First (Component_Associations (Sub_Aggr));
4815 while Present (Assoc) loop
4816 Choice := First (Choices (Assoc));
4817 while Present (Choice) loop
4818 if Nkind (Choice) = N_Others_Choice then
4819 exit;
4820 end if;
4821
4822 Get_Index_Bounds (Choice, Low, High);
4823 Table (J).Choice_Lo := Low;
4824 Table (J).Choice_Hi := High;
4825
4826 J := J + 1;
4827 Next (Choice);
4828 end loop;
4829
4830 Next (Assoc);
4831 end loop;
4832
4833 -- Sort the discrete choices
4834
4835 Sort_Case_Table (Table);
4836
4837 Choices_Lo := Table (1).Choice_Lo;
4838 Choices_Hi := Table (Nb_Choices).Choice_Hi;
4839 end Compute_Choices_Lo_And_Choices_Hi;
4840 end if;
4841
4842 -- If no others choice in this sub-aggregate, or the aggregate
4843 -- comprises only an others choice, nothing to do.
4844
4845 if not Need_To_Check then
4846 Cond := Empty;
4847
4848 -- If we are dealing with an aggregate containing an others choice
4849 -- and positional components, we generate the following test:
4850
4851 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4852 -- Ind_Typ'Pos (Aggr_Hi)
4853 -- then
4854 -- raise Constraint_Error;
4855 -- end if;
4856
4857 elsif Nb_Elements > Uint_0 then
4858 Cond :=
4859 Make_Op_Gt (Loc,
4860 Left_Opnd =>
4861 Make_Op_Add (Loc,
4862 Left_Opnd =>
4863 Make_Attribute_Reference (Loc,
4864 Prefix => New_Reference_To (Ind_Typ, Loc),
4865 Attribute_Name => Name_Pos,
4866 Expressions =>
4867 New_List
4868 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4869 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4870
4871 Right_Opnd =>
4872 Make_Attribute_Reference (Loc,
4873 Prefix => New_Reference_To (Ind_Typ, Loc),
4874 Attribute_Name => Name_Pos,
4875 Expressions => New_List (
4876 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4877
4878 -- If we are dealing with an aggregate containing an others choice
4879 -- and discrete choices we generate the following test:
4880
4881 -- [constraint_error when
4882 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4883
4884 else
4885 Cond :=
4886 Make_Or_Else (Loc,
4887 Left_Opnd =>
4888 Make_Op_Lt (Loc,
4889 Left_Opnd =>
4890 Duplicate_Subexpr_Move_Checks (Choices_Lo),
4891 Right_Opnd =>
4892 Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4893
4894 Right_Opnd =>
4895 Make_Op_Gt (Loc,
4896 Left_Opnd =>
4897 Duplicate_Subexpr (Choices_Hi),
4898 Right_Opnd =>
4899 Duplicate_Subexpr (Aggr_Hi)));
4900 end if;
4901
4902 if Present (Cond) then
4903 Insert_Action (N,
4904 Make_Raise_Constraint_Error (Loc,
4905 Condition => Cond,
4906 Reason => CE_Length_Check_Failed));
4907 -- Questionable reason code, shouldn't that be a
4908 -- CE_Range_Check_Failed ???
4909 end if;
4910
4911 -- Now look inside the sub-aggregate to see if there is more work
4912
4913 if Dim < Aggr_Dimension then
4914
4915 -- Process positional components
4916
4917 if Present (Expressions (Sub_Aggr)) then
4918 Expr := First (Expressions (Sub_Aggr));
4919 while Present (Expr) loop
4920 Others_Check (Expr, Dim + 1);
4921 Next (Expr);
4922 end loop;
4923 end if;
4924
4925 -- Process component associations
4926
4927 if Present (Component_Associations (Sub_Aggr)) then
4928 Assoc := First (Component_Associations (Sub_Aggr));
4929 while Present (Assoc) loop
4930 Expr := Expression (Assoc);
4931 Others_Check (Expr, Dim + 1);
4932 Next (Assoc);
4933 end loop;
4934 end if;
4935 end if;
4936 end Others_Check;
4937
4938 -------------------------
4939 -- Safe_Left_Hand_Side --
4940 -------------------------
4941
4942 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
4943 begin
4944 if Is_Entity_Name (N) then
4945 return True;
4946
4947 elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4948 and then Safe_Left_Hand_Side (Prefix (N))
4949 then
4950 return True;
4951
4952 elsif Nkind (N) = N_Indexed_Component
4953 and then Safe_Left_Hand_Side (Prefix (N))
4954 and then
4955 (Is_Entity_Name (First (Expressions (N)))
4956 or else Nkind (First (Expressions (N))) = N_Integer_Literal)
4957 then
4958 return True;
4959 else
4960 return False;
4961 end if;
4962 end Safe_Left_Hand_Side;
4963
4964 -- Local variables
4965
4966 Tmp : Entity_Id;
4967 -- Holds the temporary aggregate value
4968
4969 Tmp_Decl : Node_Id;
4970 -- Holds the declaration of Tmp
4971
4972 Aggr_Code : List_Id;
4973 Parent_Node : Node_Id;
4974 Parent_Kind : Node_Kind;
4975
4976 -- Start of processing for Expand_Array_Aggregate
4977
4978 begin
4979 -- Do not touch the special aggregates of attributes used for Asm calls
4980
4981 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
4982 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
4983 then
4984 return;
4985 end if;
4986
4987 -- If the semantic analyzer has determined that aggregate N will raise
4988 -- Constraint_Error at run time, then the aggregate node has been
4989 -- replaced with an N_Raise_Constraint_Error node and we should
4990 -- never get here.
4991
4992 pragma Assert (not Raises_Constraint_Error (N));
4993
4994 -- STEP 1a
4995
4996 -- Check that the index range defined by aggregate bounds is
4997 -- compatible with corresponding index subtype.
4998
4999 Index_Compatibility_Check : declare
5000 Aggr_Index_Range : Node_Id := First_Index (Typ);
5001 -- The current aggregate index range
5002
5003 Index_Constraint : Node_Id := First_Index (Etype (Typ));
5004 -- The corresponding index constraint against which we have to
5005 -- check the above aggregate index range.
5006
5007 begin
5008 Compute_Others_Present (N, 1);
5009
5010 for J in 1 .. Aggr_Dimension loop
5011 -- There is no need to emit a check if an others choice is
5012 -- present for this array aggregate dimension since in this
5013 -- case one of N's sub-aggregates has taken its bounds from the
5014 -- context and these bounds must have been checked already. In
5015 -- addition all sub-aggregates corresponding to the same
5016 -- dimension must all have the same bounds (checked in (c) below).
5017
5018 if not Range_Checks_Suppressed (Etype (Index_Constraint))
5019 and then not Others_Present (J)
5020 then
5021 -- We don't use Checks.Apply_Range_Check here because it emits
5022 -- a spurious check. Namely it checks that the range defined by
5023 -- the aggregate bounds is non empty. But we know this already
5024 -- if we get here.
5025
5026 Check_Bounds (Aggr_Index_Range, Index_Constraint);
5027 end if;
5028
5029 -- Save the low and high bounds of the aggregate index as well as
5030 -- the index type for later use in checks (b) and (c) below.
5031
5032 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
5033 Aggr_High (J) := High_Bound (Aggr_Index_Range);
5034
5035 Aggr_Index_Typ (J) := Etype (Index_Constraint);
5036
5037 Next_Index (Aggr_Index_Range);
5038 Next_Index (Index_Constraint);
5039 end loop;
5040 end Index_Compatibility_Check;
5041
5042 -- STEP 1b
5043
5044 -- If an others choice is present check that no aggregate index is
5045 -- outside the bounds of the index constraint.
5046
5047 Others_Check (N, 1);
5048
5049 -- STEP 1c
5050
5051 -- For multidimensional arrays make sure that all subaggregates
5052 -- corresponding to the same dimension have the same bounds.
5053
5054 if Aggr_Dimension > 1 then
5055 Check_Same_Aggr_Bounds (N, 1);
5056 end if;
5057
5058 -- STEP 2
5059
5060 -- Here we test for is packed array aggregate that we can handle at
5061 -- compile time. If so, return with transformation done. Note that we do
5062 -- this even if the aggregate is nested, because once we have done this
5063 -- processing, there is no more nested aggregate!
5064
5065 if Packed_Array_Aggregate_Handled (N) then
5066 return;
5067 end if;
5068
5069 -- At this point we try to convert to positional form
5070
5071 if Ekind (Current_Scope) = E_Package
5072 and then Static_Elaboration_Desired (Current_Scope)
5073 then
5074 Convert_To_Positional (N, Max_Others_Replicate => 100);
5075
5076 else
5077 Convert_To_Positional (N);
5078 end if;
5079
5080 -- if the result is no longer an aggregate (e.g. it may be a string
5081 -- literal, or a temporary which has the needed value), then we are
5082 -- done, since there is no longer a nested aggregate.
5083
5084 if Nkind (N) /= N_Aggregate then
5085 return;
5086
5087 -- We are also done if the result is an analyzed aggregate
5088 -- This case could use more comments ???
5089
5090 elsif Analyzed (N)
5091 and then N /= Original_Node (N)
5092 then
5093 return;
5094 end if;
5095
5096 -- If all aggregate components are compile-time known and the aggregate
5097 -- has been flattened, nothing left to do. The same occurs if the
5098 -- aggregate is used to initialize the components of an statically
5099 -- allocated dispatch table.
5100
5101 if Compile_Time_Known_Aggregate (N)
5102 or else Is_Static_Dispatch_Table_Aggregate (N)
5103 then
5104 Set_Expansion_Delayed (N, False);
5105 return;
5106 end if;
5107
5108 -- Now see if back end processing is possible
5109
5110 if Backend_Processing_Possible (N) then
5111
5112 -- If the aggregate is static but the constraints are not, build
5113 -- a static subtype for the aggregate, so that Gigi can place it
5114 -- in static memory. Perform an unchecked_conversion to the non-
5115 -- static type imposed by the context.
5116
5117 declare
5118 Itype : constant Entity_Id := Etype (N);
5119 Index : Node_Id;
5120 Needs_Type : Boolean := False;
5121
5122 begin
5123 Index := First_Index (Itype);
5124 while Present (Index) loop
5125 if not Is_Static_Subtype (Etype (Index)) then
5126 Needs_Type := True;
5127 exit;
5128 else
5129 Next_Index (Index);
5130 end if;
5131 end loop;
5132
5133 if Needs_Type then
5134 Build_Constrained_Type (Positional => True);
5135 Rewrite (N, Unchecked_Convert_To (Itype, N));
5136 Analyze (N);
5137 end if;
5138 end;
5139
5140 return;
5141 end if;
5142
5143 -- STEP 3
5144
5145 -- Delay expansion for nested aggregates: it will be taken care of
5146 -- when the parent aggregate is expanded.
5147
5148 Parent_Node := Parent (N);
5149 Parent_Kind := Nkind (Parent_Node);
5150
5151 if Parent_Kind = N_Qualified_Expression then
5152 Parent_Node := Parent (Parent_Node);
5153 Parent_Kind := Nkind (Parent_Node);
5154 end if;
5155
5156 if Parent_Kind = N_Aggregate
5157 or else Parent_Kind = N_Extension_Aggregate
5158 or else Parent_Kind = N_Component_Association
5159 or else (Parent_Kind = N_Object_Declaration
5160 and then Needs_Finalization (Typ))
5161 or else (Parent_Kind = N_Assignment_Statement
5162 and then Inside_Init_Proc)
5163 then
5164 if Static_Array_Aggregate (N)
5165 or else Compile_Time_Known_Aggregate (N)
5166 then
5167 Set_Expansion_Delayed (N, False);
5168 return;
5169 else
5170 Set_Expansion_Delayed (N);
5171 return;
5172 end if;
5173 end if;
5174
5175 -- STEP 4
5176
5177 -- Look if in place aggregate expansion is possible
5178
5179 -- For object declarations we build the aggregate in place, unless
5180 -- the array is bit-packed or the component is controlled.
5181
5182 -- For assignments we do the assignment in place if all the component
5183 -- associations have compile-time known values. For other cases we
5184 -- create a temporary. The analysis for safety of on-line assignment
5185 -- is delicate, i.e. we don't know how to do it fully yet ???
5186
5187 -- For allocators we assign to the designated object in place if the
5188 -- aggregate meets the same conditions as other in-place assignments.
5189 -- In this case the aggregate may not come from source but was created
5190 -- for default initialization, e.g. with Initialize_Scalars.
5191
5192 if Requires_Transient_Scope (Typ) then
5193 Establish_Transient_Scope
5194 (N, Sec_Stack => Has_Controlled_Component (Typ));
5195 end if;
5196
5197 if Has_Default_Init_Comps (N) then
5198 Maybe_In_Place_OK := False;
5199
5200 elsif Is_Bit_Packed_Array (Typ)
5201 or else Has_Controlled_Component (Typ)
5202 then
5203 Maybe_In_Place_OK := False;
5204
5205 else
5206 Maybe_In_Place_OK :=
5207 (Nkind (Parent (N)) = N_Assignment_Statement
5208 and then Comes_From_Source (N)
5209 and then In_Place_Assign_OK)
5210
5211 or else
5212 (Nkind (Parent (Parent (N))) = N_Allocator
5213 and then In_Place_Assign_OK);
5214 end if;
5215
5216 -- If this is an array of tasks, it will be expanded into build-in-place
5217 -- assignments. Build an activation chain for the tasks now.
5218
5219 if Has_Task (Etype (N)) then
5220 Build_Activation_Chain_Entity (N);
5221 end if;
5222
5223 -- Should document these individual tests ???
5224
5225 if not Has_Default_Init_Comps (N)
5226 and then Comes_From_Source (Parent (N))
5227 and then Nkind (Parent (N)) = N_Object_Declaration
5228 and then not
5229 Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
5230 and then N = Expression (Parent (N))
5231 and then not Is_Bit_Packed_Array (Typ)
5232 and then not Has_Controlled_Component (Typ)
5233
5234 -- If the aggregate is the expression in an object declaration, it
5235 -- cannot be expanded in place. Lookahead in the current declarative
5236 -- part to find an address clause for the object being declared. If
5237 -- one is present, we cannot build in place. Unclear comment???
5238
5239 and then not Has_Following_Address_Clause (Parent (N))
5240 then
5241 Tmp := Defining_Identifier (Parent (N));
5242 Set_No_Initialization (Parent (N));
5243 Set_Expression (Parent (N), Empty);
5244
5245 -- Set the type of the entity, for use in the analysis of the
5246 -- subsequent indexed assignments. If the nominal type is not
5247 -- constrained, build a subtype from the known bounds of the
5248 -- aggregate. If the declaration has a subtype mark, use it,
5249 -- otherwise use the itype of the aggregate.
5250
5251 if not Is_Constrained (Typ) then
5252 Build_Constrained_Type (Positional => False);
5253 elsif Is_Entity_Name (Object_Definition (Parent (N)))
5254 and then Is_Constrained (Entity (Object_Definition (Parent (N))))
5255 then
5256 Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
5257 else
5258 Set_Size_Known_At_Compile_Time (Typ, False);
5259 Set_Etype (Tmp, Typ);
5260 end if;
5261
5262 elsif Maybe_In_Place_OK
5263 and then Nkind (Parent (N)) = N_Qualified_Expression
5264 and then Nkind (Parent (Parent (N))) = N_Allocator
5265 then
5266 Set_Expansion_Delayed (N);
5267 return;
5268
5269 -- In the remaining cases the aggregate is the RHS of an assignment
5270
5271 elsif Maybe_In_Place_OK
5272 and then Safe_Left_Hand_Side (Name (Parent (N)))
5273 then
5274 Tmp := Name (Parent (N));
5275
5276 if Etype (Tmp) /= Etype (N) then
5277 Apply_Length_Check (N, Etype (Tmp));
5278
5279 if Nkind (N) = N_Raise_Constraint_Error then
5280
5281 -- Static error, nothing further to expand
5282
5283 return;
5284 end if;
5285 end if;
5286
5287 elsif Maybe_In_Place_OK
5288 and then Nkind (Name (Parent (N))) = N_Slice
5289 and then Safe_Slice_Assignment (N)
5290 then
5291 -- Safe_Slice_Assignment rewrites assignment as a loop
5292
5293 return;
5294
5295 -- Step 5
5296
5297 -- In place aggregate expansion is not possible
5298
5299 else
5300 Maybe_In_Place_OK := False;
5301 Tmp := Make_Temporary (Loc, 'A', N);
5302 Tmp_Decl :=
5303 Make_Object_Declaration
5304 (Loc,
5305 Defining_Identifier => Tmp,
5306 Object_Definition => New_Occurrence_Of (Typ, Loc));
5307 Set_No_Initialization (Tmp_Decl, True);
5308
5309 -- If we are within a loop, the temporary will be pushed on the
5310 -- stack at each iteration. If the aggregate is the expression for an
5311 -- allocator, it will be immediately copied to the heap and can
5312 -- be reclaimed at once. We create a transient scope around the
5313 -- aggregate for this purpose.
5314
5315 if Ekind (Current_Scope) = E_Loop
5316 and then Nkind (Parent (Parent (N))) = N_Allocator
5317 then
5318 Establish_Transient_Scope (N, False);
5319 end if;
5320
5321 Insert_Action (N, Tmp_Decl);
5322 end if;
5323
5324 -- Construct and insert the aggregate code. We can safely suppress index
5325 -- checks because this code is guaranteed not to raise CE on index
5326 -- checks. However we should *not* suppress all checks.
5327
5328 declare
5329 Target : Node_Id;
5330
5331 begin
5332 if Nkind (Tmp) = N_Defining_Identifier then
5333 Target := New_Reference_To (Tmp, Loc);
5334
5335 else
5336
5337 if Has_Default_Init_Comps (N) then
5338
5339 -- Ada 2005 (AI-287): This case has not been analyzed???
5340
5341 raise Program_Error;
5342 end if;
5343
5344 -- Name in assignment is explicit dereference
5345
5346 Target := New_Copy (Tmp);
5347 end if;
5348
5349 Aggr_Code :=
5350 Build_Array_Aggr_Code (N,
5351 Ctype => Ctyp,
5352 Index => First_Index (Typ),
5353 Into => Target,
5354 Scalar_Comp => Is_Scalar_Type (Ctyp));
5355 end;
5356
5357 if Comes_From_Source (Tmp) then
5358 Insert_Actions_After (Parent (N), Aggr_Code);
5359
5360 else
5361 Insert_Actions (N, Aggr_Code);
5362 end if;
5363
5364 -- If the aggregate has been assigned in place, remove the original
5365 -- assignment.
5366
5367 if Nkind (Parent (N)) = N_Assignment_Statement
5368 and then Maybe_In_Place_OK
5369 then
5370 Rewrite (Parent (N), Make_Null_Statement (Loc));
5371
5372 elsif Nkind (Parent (N)) /= N_Object_Declaration
5373 or else Tmp /= Defining_Identifier (Parent (N))
5374 then
5375 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5376 Analyze_And_Resolve (N, Typ);
5377 end if;
5378 end Expand_Array_Aggregate;
5379
5380 ------------------------
5381 -- Expand_N_Aggregate --
5382 ------------------------
5383
5384 procedure Expand_N_Aggregate (N : Node_Id) is
5385 begin
5386 if Is_Record_Type (Etype (N)) then
5387 Expand_Record_Aggregate (N);
5388 else
5389 Expand_Array_Aggregate (N);
5390 end if;
5391 exception
5392 when RE_Not_Available =>
5393 return;
5394 end Expand_N_Aggregate;
5395
5396 ----------------------------------
5397 -- Expand_N_Extension_Aggregate --
5398 ----------------------------------
5399
5400 -- If the ancestor part is an expression, add a component association for
5401 -- the parent field. If the type of the ancestor part is not the direct
5402 -- parent of the expected type, build recursively the needed ancestors.
5403 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
5404 -- ration for a temporary of the expected type, followed by individual
5405 -- assignments to the given components.
5406
5407 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5408 Loc : constant Source_Ptr := Sloc (N);
5409 A : constant Node_Id := Ancestor_Part (N);
5410 Typ : constant Entity_Id := Etype (N);
5411
5412 begin
5413 -- If the ancestor is a subtype mark, an init proc must be called
5414 -- on the resulting object which thus has to be materialized in
5415 -- the front-end
5416
5417 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5418 Convert_To_Assignments (N, Typ);
5419
5420 -- The extension aggregate is transformed into a record aggregate
5421 -- of the following form (c1 and c2 are inherited components)
5422
5423 -- (Exp with c3 => a, c4 => b)
5424 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c1 => a, c2 => b)
5425
5426 else
5427 Set_Etype (N, Typ);
5428
5429 if Tagged_Type_Expansion then
5430 Expand_Record_Aggregate (N,
5431 Orig_Tag =>
5432 New_Occurrence_Of
5433 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5434 Parent_Expr => A);
5435 else
5436 -- No tag is needed in the case of a VM
5437 Expand_Record_Aggregate (N,
5438 Parent_Expr => A);
5439 end if;
5440 end if;
5441
5442 exception
5443 when RE_Not_Available =>
5444 return;
5445 end Expand_N_Extension_Aggregate;
5446
5447 -----------------------------
5448 -- Expand_Record_Aggregate --
5449 -----------------------------
5450
5451 procedure Expand_Record_Aggregate
5452 (N : Node_Id;
5453 Orig_Tag : Node_Id := Empty;
5454 Parent_Expr : Node_Id := Empty)
5455 is
5456 Loc : constant Source_Ptr := Sloc (N);
5457 Comps : constant List_Id := Component_Associations (N);
5458 Typ : constant Entity_Id := Etype (N);
5459 Base_Typ : constant Entity_Id := Base_Type (Typ);
5460
5461 Static_Components : Boolean := True;
5462 -- Flag to indicate whether all components are compile-time known,
5463 -- and the aggregate can be constructed statically and handled by
5464 -- the back-end.
5465
5466 function Component_Not_OK_For_Backend return Boolean;
5467 -- Check for presence of component which makes it impossible for the
5468 -- backend to process the aggregate, thus requiring the use of a series
5469 -- of assignment statements. Cases checked for are a nested aggregate
5470 -- needing Late_Expansion, the presence of a tagged component which may
5471 -- need tag adjustment, and a bit unaligned component reference.
5472 --
5473 -- We also force expansion into assignments if a component is of a
5474 -- mutable type (including a private type with discriminants) because
5475 -- in that case the size of the component to be copied may be smaller
5476 -- than the side of the target, and there is no simple way for gigi
5477 -- to compute the size of the object to be copied.
5478 --
5479 -- NOTE: This is part of the ongoing work to define precisely the
5480 -- interface between front-end and back-end handling of aggregates.
5481 -- In general it is desirable to pass aggregates as they are to gigi,
5482 -- in order to minimize elaboration code. This is one case where the
5483 -- semantics of Ada complicate the analysis and lead to anomalies in
5484 -- the gcc back-end if the aggregate is not expanded into assignments.
5485
5486 ----------------------------------
5487 -- Component_Not_OK_For_Backend --
5488 ----------------------------------
5489
5490 function Component_Not_OK_For_Backend return Boolean is
5491 C : Node_Id;
5492 Expr_Q : Node_Id;
5493
5494 begin
5495 if No (Comps) then
5496 return False;
5497 end if;
5498
5499 C := First (Comps);
5500 while Present (C) loop
5501
5502 -- If the component has box initialization, expansion is needed
5503 -- and component is not ready for backend.
5504
5505 if Box_Present (C) then
5506 return True;
5507 end if;
5508
5509 if Nkind (Expression (C)) = N_Qualified_Expression then
5510 Expr_Q := Expression (Expression (C));
5511 else
5512 Expr_Q := Expression (C);
5513 end if;
5514
5515 -- Return true if the aggregate has any associations for tagged
5516 -- components that may require tag adjustment.
5517
5518 -- These are cases where the source expression may have a tag that
5519 -- could differ from the component tag (e.g., can occur for type
5520 -- conversions and formal parameters). (Tag adjustment not needed
5521 -- if VM_Target because object tags are implicit in the machine.)
5522
5523 if Is_Tagged_Type (Etype (Expr_Q))
5524 and then (Nkind (Expr_Q) = N_Type_Conversion
5525 or else (Is_Entity_Name (Expr_Q)
5526 and then
5527 Ekind (Entity (Expr_Q)) in Formal_Kind))
5528 and then Tagged_Type_Expansion
5529 then
5530 Static_Components := False;
5531 return True;
5532
5533 elsif Is_Delayed_Aggregate (Expr_Q) then
5534 Static_Components := False;
5535 return True;
5536
5537 elsif Possible_Bit_Aligned_Component (Expr_Q) then
5538 Static_Components := False;
5539 return True;
5540 end if;
5541
5542 if Is_Scalar_Type (Etype (Expr_Q)) then
5543 if not Compile_Time_Known_Value (Expr_Q) then
5544 Static_Components := False;
5545 end if;
5546
5547 elsif Nkind (Expr_Q) /= N_Aggregate
5548 or else not Compile_Time_Known_Aggregate (Expr_Q)
5549 then
5550 Static_Components := False;
5551
5552 if Is_Private_Type (Etype (Expr_Q))
5553 and then Has_Discriminants (Etype (Expr_Q))
5554 then
5555 return True;
5556 end if;
5557 end if;
5558
5559 Next (C);
5560 end loop;
5561
5562 return False;
5563 end Component_Not_OK_For_Backend;
5564
5565 -- Remaining Expand_Record_Aggregate variables
5566
5567 Tag_Value : Node_Id;
5568 Comp : Entity_Id;
5569 New_Comp : Node_Id;
5570
5571 -- Start of processing for Expand_Record_Aggregate
5572
5573 begin
5574 -- If the aggregate is to be assigned to an atomic variable, we
5575 -- have to prevent a piecemeal assignment even if the aggregate
5576 -- is to be expanded. We create a temporary for the aggregate, and
5577 -- assign the temporary instead, so that the back end can generate
5578 -- an atomic move for it.
5579
5580 if Is_Atomic (Typ)
5581 and then Comes_From_Source (Parent (N))
5582 and then Is_Atomic_Aggregate (N, Typ)
5583 then
5584 return;
5585
5586 -- No special management required for aggregates used to initialize
5587 -- statically allocated dispatch tables
5588
5589 elsif Is_Static_Dispatch_Table_Aggregate (N) then
5590 return;
5591 end if;
5592
5593 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
5594 -- are build-in-place function calls. The assignments will each turn
5595 -- into a build-in-place function call. If components are all static,
5596 -- we can pass the aggregate to the backend regardless of limitedness.
5597
5598 -- Extension aggregates, aggregates in extended return statements, and
5599 -- aggregates for C++ imported types must be expanded.
5600
5601 if Ada_Version >= Ada_05 and then Is_Inherently_Limited_Type (Typ) then
5602 if not Nkind_In (Parent (N), N_Object_Declaration,
5603 N_Component_Association)
5604 then
5605 Convert_To_Assignments (N, Typ);
5606
5607 elsif Nkind (N) = N_Extension_Aggregate
5608 or else Convention (Typ) = Convention_CPP
5609 then
5610 Convert_To_Assignments (N, Typ);
5611
5612 elsif not Size_Known_At_Compile_Time (Typ)
5613 or else Component_Not_OK_For_Backend
5614 or else not Static_Components
5615 then
5616 Convert_To_Assignments (N, Typ);
5617
5618 else
5619 Set_Compile_Time_Known_Aggregate (N);
5620 Set_Expansion_Delayed (N, False);
5621 end if;
5622
5623 -- Gigi doesn't handle properly temporaries of variable size
5624 -- so we generate it in the front-end
5625
5626 elsif not Size_Known_At_Compile_Time (Typ) then
5627 Convert_To_Assignments (N, Typ);
5628
5629 -- Temporaries for controlled aggregates need to be attached to a
5630 -- final chain in order to be properly finalized, so it has to
5631 -- be created in the front-end
5632
5633 elsif Is_Controlled (Typ)
5634 or else Has_Controlled_Component (Base_Type (Typ))
5635 then
5636 Convert_To_Assignments (N, Typ);
5637
5638 -- Ada 2005 (AI-287): In case of default initialized components we
5639 -- convert the aggregate into assignments.
5640
5641 elsif Has_Default_Init_Comps (N) then
5642 Convert_To_Assignments (N, Typ);
5643
5644 -- Check components
5645
5646 elsif Component_Not_OK_For_Backend then
5647 Convert_To_Assignments (N, Typ);
5648
5649 -- If an ancestor is private, some components are not inherited and
5650 -- we cannot expand into a record aggregate
5651
5652 elsif Has_Private_Ancestor (Typ) then
5653 Convert_To_Assignments (N, Typ);
5654
5655 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
5656 -- is not able to handle the aggregate for Late_Request.
5657
5658 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
5659 Convert_To_Assignments (N, Typ);
5660
5661 -- If the tagged types covers interface types we need to initialize all
5662 -- hidden components containing pointers to secondary dispatch tables.
5663
5664 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
5665 Convert_To_Assignments (N, Typ);
5666
5667 -- If some components are mutable, the size of the aggregate component
5668 -- may be distinct from the default size of the type component, so
5669 -- we need to expand to insure that the back-end copies the proper
5670 -- size of the data.
5671
5672 elsif Has_Mutable_Components (Typ) then
5673 Convert_To_Assignments (N, Typ);
5674
5675 -- If the type involved has any non-bit aligned components, then we are
5676 -- not sure that the back end can handle this case correctly.
5677
5678 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
5679 Convert_To_Assignments (N, Typ);
5680
5681 -- In all other cases, build a proper aggregate handlable by gigi
5682
5683 else
5684 if Nkind (N) = N_Aggregate then
5685
5686 -- If the aggregate is static and can be handled by the back-end,
5687 -- nothing left to do.
5688
5689 if Static_Components then
5690 Set_Compile_Time_Known_Aggregate (N);
5691 Set_Expansion_Delayed (N, False);
5692 end if;
5693 end if;
5694
5695 -- If no discriminants, nothing special to do
5696
5697 if not Has_Discriminants (Typ) then
5698 null;
5699
5700 -- Case of discriminants present
5701
5702 elsif Is_Derived_Type (Typ) then
5703
5704 -- For untagged types, non-stored discriminants are replaced
5705 -- with stored discriminants, which are the ones that gigi uses
5706 -- to describe the type and its components.
5707
5708 Generate_Aggregate_For_Derived_Type : declare
5709 Constraints : constant List_Id := New_List;
5710 First_Comp : Node_Id;
5711 Discriminant : Entity_Id;
5712 Decl : Node_Id;
5713 Num_Disc : Int := 0;
5714 Num_Gird : Int := 0;
5715
5716 procedure Prepend_Stored_Values (T : Entity_Id);
5717 -- Scan the list of stored discriminants of the type, and add
5718 -- their values to the aggregate being built.
5719
5720 ---------------------------
5721 -- Prepend_Stored_Values --
5722 ---------------------------
5723
5724 procedure Prepend_Stored_Values (T : Entity_Id) is
5725 begin
5726 Discriminant := First_Stored_Discriminant (T);
5727 while Present (Discriminant) loop
5728 New_Comp :=
5729 Make_Component_Association (Loc,
5730 Choices =>
5731 New_List (New_Occurrence_Of (Discriminant, Loc)),
5732
5733 Expression =>
5734 New_Copy_Tree (
5735 Get_Discriminant_Value (
5736 Discriminant,
5737 Typ,
5738 Discriminant_Constraint (Typ))));
5739
5740 if No (First_Comp) then
5741 Prepend_To (Component_Associations (N), New_Comp);
5742 else
5743 Insert_After (First_Comp, New_Comp);
5744 end if;
5745
5746 First_Comp := New_Comp;
5747 Next_Stored_Discriminant (Discriminant);
5748 end loop;
5749 end Prepend_Stored_Values;
5750
5751 -- Start of processing for Generate_Aggregate_For_Derived_Type
5752
5753 begin
5754 -- Remove the associations for the discriminant of derived type
5755
5756 First_Comp := First (Component_Associations (N));
5757 while Present (First_Comp) loop
5758 Comp := First_Comp;
5759 Next (First_Comp);
5760
5761 if Ekind (Entity
5762 (First (Choices (Comp)))) = E_Discriminant
5763 then
5764 Remove (Comp);
5765 Num_Disc := Num_Disc + 1;
5766 end if;
5767 end loop;
5768
5769 -- Insert stored discriminant associations in the correct
5770 -- order. If there are more stored discriminants than new
5771 -- discriminants, there is at least one new discriminant that
5772 -- constrains more than one of the stored discriminants. In
5773 -- this case we need to construct a proper subtype of the
5774 -- parent type, in order to supply values to all the
5775 -- components. Otherwise there is one-one correspondence
5776 -- between the constraints and the stored discriminants.
5777
5778 First_Comp := Empty;
5779
5780 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5781 while Present (Discriminant) loop
5782 Num_Gird := Num_Gird + 1;
5783 Next_Stored_Discriminant (Discriminant);
5784 end loop;
5785
5786 -- Case of more stored discriminants than new discriminants
5787
5788 if Num_Gird > Num_Disc then
5789
5790 -- Create a proper subtype of the parent type, which is the
5791 -- proper implementation type for the aggregate, and convert
5792 -- it to the intended target type.
5793
5794 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5795 while Present (Discriminant) loop
5796 New_Comp :=
5797 New_Copy_Tree (
5798 Get_Discriminant_Value (
5799 Discriminant,
5800 Typ,
5801 Discriminant_Constraint (Typ)));
5802 Append (New_Comp, Constraints);
5803 Next_Stored_Discriminant (Discriminant);
5804 end loop;
5805
5806 Decl :=
5807 Make_Subtype_Declaration (Loc,
5808 Defining_Identifier => Make_Temporary (Loc, 'T'),
5809 Subtype_Indication =>
5810 Make_Subtype_Indication (Loc,
5811 Subtype_Mark =>
5812 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
5813 Constraint =>
5814 Make_Index_Or_Discriminant_Constraint
5815 (Loc, Constraints)));
5816
5817 Insert_Action (N, Decl);
5818 Prepend_Stored_Values (Base_Type (Typ));
5819
5820 Set_Etype (N, Defining_Identifier (Decl));
5821 Set_Analyzed (N);
5822
5823 Rewrite (N, Unchecked_Convert_To (Typ, N));
5824 Analyze (N);
5825
5826 -- Case where we do not have fewer new discriminants than
5827 -- stored discriminants, so in this case we can simply use the
5828 -- stored discriminants of the subtype.
5829
5830 else
5831 Prepend_Stored_Values (Typ);
5832 end if;
5833 end Generate_Aggregate_For_Derived_Type;
5834 end if;
5835
5836 if Is_Tagged_Type (Typ) then
5837
5838 -- The tagged case, _parent and _tag component must be created
5839
5840 -- Reset null_present unconditionally. tagged records always have
5841 -- at least one field (the tag or the parent)
5842
5843 Set_Null_Record_Present (N, False);
5844
5845 -- When the current aggregate comes from the expansion of an
5846 -- extension aggregate, the parent expr is replaced by an
5847 -- aggregate formed by selected components of this expr
5848
5849 if Present (Parent_Expr)
5850 and then Is_Empty_List (Comps)
5851 then
5852 Comp := First_Component_Or_Discriminant (Typ);
5853 while Present (Comp) loop
5854
5855 -- Skip all expander-generated components
5856
5857 if
5858 not Comes_From_Source (Original_Record_Component (Comp))
5859 then
5860 null;
5861
5862 else
5863 New_Comp :=
5864 Make_Selected_Component (Loc,
5865 Prefix =>
5866 Unchecked_Convert_To (Typ,
5867 Duplicate_Subexpr (Parent_Expr, True)),
5868
5869 Selector_Name => New_Occurrence_Of (Comp, Loc));
5870
5871 Append_To (Comps,
5872 Make_Component_Association (Loc,
5873 Choices =>
5874 New_List (New_Occurrence_Of (Comp, Loc)),
5875 Expression =>
5876 New_Comp));
5877
5878 Analyze_And_Resolve (New_Comp, Etype (Comp));
5879 end if;
5880
5881 Next_Component_Or_Discriminant (Comp);
5882 end loop;
5883 end if;
5884
5885 -- Compute the value for the Tag now, if the type is a root it
5886 -- will be included in the aggregate right away, otherwise it will
5887 -- be propagated to the parent aggregate
5888
5889 if Present (Orig_Tag) then
5890 Tag_Value := Orig_Tag;
5891 elsif not Tagged_Type_Expansion then
5892 Tag_Value := Empty;
5893 else
5894 Tag_Value :=
5895 New_Occurrence_Of
5896 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
5897 end if;
5898
5899 -- For a derived type, an aggregate for the parent is formed with
5900 -- all the inherited components.
5901
5902 if Is_Derived_Type (Typ) then
5903
5904 declare
5905 First_Comp : Node_Id;
5906 Parent_Comps : List_Id;
5907 Parent_Aggr : Node_Id;
5908 Parent_Name : Node_Id;
5909
5910 begin
5911 -- Remove the inherited component association from the
5912 -- aggregate and store them in the parent aggregate
5913
5914 First_Comp := First (Component_Associations (N));
5915 Parent_Comps := New_List;
5916 while Present (First_Comp)
5917 and then Scope (Original_Record_Component (
5918 Entity (First (Choices (First_Comp))))) /= Base_Typ
5919 loop
5920 Comp := First_Comp;
5921 Next (First_Comp);
5922 Remove (Comp);
5923 Append (Comp, Parent_Comps);
5924 end loop;
5925
5926 Parent_Aggr := Make_Aggregate (Loc,
5927 Component_Associations => Parent_Comps);
5928 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
5929
5930 -- Find the _parent component
5931
5932 Comp := First_Component (Typ);
5933 while Chars (Comp) /= Name_uParent loop
5934 Comp := Next_Component (Comp);
5935 end loop;
5936
5937 Parent_Name := New_Occurrence_Of (Comp, Loc);
5938
5939 -- Insert the parent aggregate
5940
5941 Prepend_To (Component_Associations (N),
5942 Make_Component_Association (Loc,
5943 Choices => New_List (Parent_Name),
5944 Expression => Parent_Aggr));
5945
5946 -- Expand recursively the parent propagating the right Tag
5947
5948 Expand_Record_Aggregate (
5949 Parent_Aggr, Tag_Value, Parent_Expr);
5950 end;
5951
5952 -- For a root type, the tag component is added (unless compiling
5953 -- for the VMs, where tags are implicit).
5954
5955 elsif Tagged_Type_Expansion then
5956 declare
5957 Tag_Name : constant Node_Id :=
5958 New_Occurrence_Of
5959 (First_Tag_Component (Typ), Loc);
5960 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
5961 Conv_Node : constant Node_Id :=
5962 Unchecked_Convert_To (Typ_Tag, Tag_Value);
5963
5964 begin
5965 Set_Etype (Conv_Node, Typ_Tag);
5966 Prepend_To (Component_Associations (N),
5967 Make_Component_Association (Loc,
5968 Choices => New_List (Tag_Name),
5969 Expression => Conv_Node));
5970 end;
5971 end if;
5972 end if;
5973 end if;
5974
5975 end Expand_Record_Aggregate;
5976
5977 ----------------------------
5978 -- Has_Default_Init_Comps --
5979 ----------------------------
5980
5981 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
5982 Comps : constant List_Id := Component_Associations (N);
5983 C : Node_Id;
5984 Expr : Node_Id;
5985 begin
5986 pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
5987
5988 if No (Comps) then
5989 return False;
5990 end if;
5991
5992 if Has_Self_Reference (N) then
5993 return True;
5994 end if;
5995
5996 -- Check if any direct component has default initialized components
5997
5998 C := First (Comps);
5999 while Present (C) loop
6000 if Box_Present (C) then
6001 return True;
6002 end if;
6003
6004 Next (C);
6005 end loop;
6006
6007 -- Recursive call in case of aggregate expression
6008
6009 C := First (Comps);
6010 while Present (C) loop
6011 Expr := Expression (C);
6012
6013 if Present (Expr)
6014 and then
6015 Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
6016 and then Has_Default_Init_Comps (Expr)
6017 then
6018 return True;
6019 end if;
6020
6021 Next (C);
6022 end loop;
6023
6024 return False;
6025 end Has_Default_Init_Comps;
6026
6027 --------------------------
6028 -- Is_Delayed_Aggregate --
6029 --------------------------
6030
6031 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
6032 Node : Node_Id := N;
6033 Kind : Node_Kind := Nkind (Node);
6034
6035 begin
6036 if Kind = N_Qualified_Expression then
6037 Node := Expression (Node);
6038 Kind := Nkind (Node);
6039 end if;
6040
6041 if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
6042 return False;
6043 else
6044 return Expansion_Delayed (Node);
6045 end if;
6046 end Is_Delayed_Aggregate;
6047
6048 ----------------------------------------
6049 -- Is_Static_Dispatch_Table_Aggregate --
6050 ----------------------------------------
6051
6052 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
6053 Typ : constant Entity_Id := Base_Type (Etype (N));
6054
6055 begin
6056 return Static_Dispatch_Tables
6057 and then Tagged_Type_Expansion
6058 and then RTU_Loaded (Ada_Tags)
6059
6060 -- Avoid circularity when rebuilding the compiler
6061
6062 and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
6063 and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
6064 or else
6065 Typ = RTE (RE_Address_Array)
6066 or else
6067 Typ = RTE (RE_Type_Specific_Data)
6068 or else
6069 Typ = RTE (RE_Tag_Table)
6070 or else
6071 (RTE_Available (RE_Interface_Data)
6072 and then Typ = RTE (RE_Interface_Data))
6073 or else
6074 (RTE_Available (RE_Interfaces_Array)
6075 and then Typ = RTE (RE_Interfaces_Array))
6076 or else
6077 (RTE_Available (RE_Interface_Data_Element)
6078 and then Typ = RTE (RE_Interface_Data_Element)));
6079 end Is_Static_Dispatch_Table_Aggregate;
6080
6081 --------------------
6082 -- Late_Expansion --
6083 --------------------
6084
6085 function Late_Expansion
6086 (N : Node_Id;
6087 Typ : Entity_Id;
6088 Target : Node_Id;
6089 Flist : Node_Id := Empty;
6090 Obj : Entity_Id := Empty) return List_Id
6091 is
6092 begin
6093 if Is_Record_Type (Etype (N)) then
6094 return Build_Record_Aggr_Code (N, Typ, Target, Flist, Obj);
6095
6096 else pragma Assert (Is_Array_Type (Etype (N)));
6097 return
6098 Build_Array_Aggr_Code
6099 (N => N,
6100 Ctype => Component_Type (Etype (N)),
6101 Index => First_Index (Typ),
6102 Into => Target,
6103 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
6104 Indices => No_List,
6105 Flist => Flist);
6106 end if;
6107 end Late_Expansion;
6108
6109 ----------------------------------
6110 -- Make_OK_Assignment_Statement --
6111 ----------------------------------
6112
6113 function Make_OK_Assignment_Statement
6114 (Sloc : Source_Ptr;
6115 Name : Node_Id;
6116 Expression : Node_Id) return Node_Id
6117 is
6118 begin
6119 Set_Assignment_OK (Name);
6120
6121 return Make_Assignment_Statement (Sloc, Name, Expression);
6122 end Make_OK_Assignment_Statement;
6123
6124 -----------------------
6125 -- Number_Of_Choices --
6126 -----------------------
6127
6128 function Number_Of_Choices (N : Node_Id) return Nat is
6129 Assoc : Node_Id;
6130 Choice : Node_Id;
6131
6132 Nb_Choices : Nat := 0;
6133
6134 begin
6135 if Present (Expressions (N)) then
6136 return 0;
6137 end if;
6138
6139 Assoc := First (Component_Associations (N));
6140 while Present (Assoc) loop
6141 Choice := First (Choices (Assoc));
6142 while Present (Choice) loop
6143 if Nkind (Choice) /= N_Others_Choice then
6144 Nb_Choices := Nb_Choices + 1;
6145 end if;
6146
6147 Next (Choice);
6148 end loop;
6149
6150 Next (Assoc);
6151 end loop;
6152
6153 return Nb_Choices;
6154 end Number_Of_Choices;
6155
6156 ------------------------------------
6157 -- Packed_Array_Aggregate_Handled --
6158 ------------------------------------
6159
6160 -- The current version of this procedure will handle at compile time
6161 -- any array aggregate that meets these conditions:
6162
6163 -- One dimensional, bit packed
6164 -- Underlying packed type is modular type
6165 -- Bounds are within 32-bit Int range
6166 -- All bounds and values are static
6167
6168 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
6169 Loc : constant Source_Ptr := Sloc (N);
6170 Typ : constant Entity_Id := Etype (N);
6171 Ctyp : constant Entity_Id := Component_Type (Typ);
6172
6173 Not_Handled : exception;
6174 -- Exception raised if this aggregate cannot be handled
6175
6176 begin
6177 -- For now, handle only one dimensional bit packed arrays
6178
6179 if not Is_Bit_Packed_Array (Typ)
6180 or else Number_Dimensions (Typ) > 1
6181 or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
6182 then
6183 return False;
6184 end if;
6185
6186 if not Is_Scalar_Type (Component_Type (Typ))
6187 and then Has_Non_Standard_Rep (Component_Type (Typ))
6188 then
6189 return False;
6190 end if;
6191
6192 declare
6193 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
6194
6195 Lo : Node_Id;
6196 Hi : Node_Id;
6197 -- Bounds of index type
6198
6199 Lob : Uint;
6200 Hib : Uint;
6201 -- Values of bounds if compile time known
6202
6203 function Get_Component_Val (N : Node_Id) return Uint;
6204 -- Given a expression value N of the component type Ctyp, returns a
6205 -- value of Csiz (component size) bits representing this value. If
6206 -- the value is non-static or any other reason exists why the value
6207 -- cannot be returned, then Not_Handled is raised.
6208
6209 -----------------------
6210 -- Get_Component_Val --
6211 -----------------------
6212
6213 function Get_Component_Val (N : Node_Id) return Uint is
6214 Val : Uint;
6215
6216 begin
6217 -- We have to analyze the expression here before doing any further
6218 -- processing here. The analysis of such expressions is deferred
6219 -- till expansion to prevent some problems of premature analysis.
6220
6221 Analyze_And_Resolve (N, Ctyp);
6222
6223 -- Must have a compile time value. String literals have to be
6224 -- converted into temporaries as well, because they cannot easily
6225 -- be converted into their bit representation.
6226
6227 if not Compile_Time_Known_Value (N)
6228 or else Nkind (N) = N_String_Literal
6229 then
6230 raise Not_Handled;
6231 end if;
6232
6233 Val := Expr_Rep_Value (N);
6234
6235 -- Adjust for bias, and strip proper number of bits
6236
6237 if Has_Biased_Representation (Ctyp) then
6238 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6239 end if;
6240
6241 return Val mod Uint_2 ** Csiz;
6242 end Get_Component_Val;
6243
6244 -- Here we know we have a one dimensional bit packed array
6245
6246 begin
6247 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6248
6249 -- Cannot do anything if bounds are dynamic
6250
6251 if not Compile_Time_Known_Value (Lo)
6252 or else
6253 not Compile_Time_Known_Value (Hi)
6254 then
6255 return False;
6256 end if;
6257
6258 -- Or are silly out of range of int bounds
6259
6260 Lob := Expr_Value (Lo);
6261 Hib := Expr_Value (Hi);
6262
6263 if not UI_Is_In_Int_Range (Lob)
6264 or else
6265 not UI_Is_In_Int_Range (Hib)
6266 then
6267 return False;
6268 end if;
6269
6270 -- At this stage we have a suitable aggregate for handling at compile
6271 -- time (the only remaining checks are that the values of expressions
6272 -- in the aggregate are compile time known (check is performed by
6273 -- Get_Component_Val), and that any subtypes or ranges are statically
6274 -- known.
6275
6276 -- If the aggregate is not fully positional at this stage, then
6277 -- convert it to positional form. Either this will fail, in which
6278 -- case we can do nothing, or it will succeed, in which case we have
6279 -- succeeded in handling the aggregate, or it will stay an aggregate,
6280 -- in which case we have failed to handle this case.
6281
6282 if Present (Component_Associations (N)) then
6283 Convert_To_Positional
6284 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6285 return Nkind (N) /= N_Aggregate;
6286 end if;
6287
6288 -- Otherwise we are all positional, so convert to proper value
6289
6290 declare
6291 Lov : constant Int := UI_To_Int (Lob);
6292 Hiv : constant Int := UI_To_Int (Hib);
6293
6294 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6295 -- The length of the array (number of elements)
6296
6297 Aggregate_Val : Uint;
6298 -- Value of aggregate. The value is set in the low order bits of
6299 -- this value. For the little-endian case, the values are stored
6300 -- from low-order to high-order and for the big-endian case the
6301 -- values are stored from high-order to low-order. Note that gigi
6302 -- will take care of the conversions to left justify the value in
6303 -- the big endian case (because of left justified modular type
6304 -- processing), so we do not have to worry about that here.
6305
6306 Lit : Node_Id;
6307 -- Integer literal for resulting constructed value
6308
6309 Shift : Nat;
6310 -- Shift count from low order for next value
6311
6312 Incr : Int;
6313 -- Shift increment for loop
6314
6315 Expr : Node_Id;
6316 -- Next expression from positional parameters of aggregate
6317
6318 begin
6319 -- For little endian, we fill up the low order bits of the target
6320 -- value. For big endian we fill up the high order bits of the
6321 -- target value (which is a left justified modular value).
6322
6323 if Bytes_Big_Endian xor Debug_Flag_8 then
6324 Shift := Csiz * (Len - 1);
6325 Incr := -Csiz;
6326 else
6327 Shift := 0;
6328 Incr := +Csiz;
6329 end if;
6330
6331 -- Loop to set the values
6332
6333 if Len = 0 then
6334 Aggregate_Val := Uint_0;
6335 else
6336 Expr := First (Expressions (N));
6337 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6338
6339 for J in 2 .. Len loop
6340 Shift := Shift + Incr;
6341 Next (Expr);
6342 Aggregate_Val :=
6343 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6344 end loop;
6345 end if;
6346
6347 -- Now we can rewrite with the proper value
6348
6349 Lit :=
6350 Make_Integer_Literal (Loc,
6351 Intval => Aggregate_Val);
6352 Set_Print_In_Hex (Lit);
6353
6354 -- Construct the expression using this literal. Note that it is
6355 -- important to qualify the literal with its proper modular type
6356 -- since universal integer does not have the required range and
6357 -- also this is a left justified modular type, which is important
6358 -- in the big-endian case.
6359
6360 Rewrite (N,
6361 Unchecked_Convert_To (Typ,
6362 Make_Qualified_Expression (Loc,
6363 Subtype_Mark =>
6364 New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
6365 Expression => Lit)));
6366
6367 Analyze_And_Resolve (N, Typ);
6368 return True;
6369 end;
6370 end;
6371
6372 exception
6373 when Not_Handled =>
6374 return False;
6375 end Packed_Array_Aggregate_Handled;
6376
6377 ----------------------------
6378 -- Has_Mutable_Components --
6379 ----------------------------
6380
6381 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6382 Comp : Entity_Id;
6383
6384 begin
6385 Comp := First_Component (Typ);
6386 while Present (Comp) loop
6387 if Is_Record_Type (Etype (Comp))
6388 and then Has_Discriminants (Etype (Comp))
6389 and then not Is_Constrained (Etype (Comp))
6390 then
6391 return True;
6392 end if;
6393
6394 Next_Component (Comp);
6395 end loop;
6396
6397 return False;
6398 end Has_Mutable_Components;
6399
6400 ------------------------------
6401 -- Initialize_Discriminants --
6402 ------------------------------
6403
6404 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6405 Loc : constant Source_Ptr := Sloc (N);
6406 Bas : constant Entity_Id := Base_Type (Typ);
6407 Par : constant Entity_Id := Etype (Bas);
6408 Decl : constant Node_Id := Parent (Par);
6409 Ref : Node_Id;
6410
6411 begin
6412 if Is_Tagged_Type (Bas)
6413 and then Is_Derived_Type (Bas)
6414 and then Has_Discriminants (Par)
6415 and then Has_Discriminants (Bas)
6416 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6417 and then Nkind (Decl) = N_Full_Type_Declaration
6418 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6419 and then Present
6420 (Variant_Part (Component_List (Type_Definition (Decl))))
6421 and then Nkind (N) /= N_Extension_Aggregate
6422 then
6423
6424 -- Call init proc to set discriminants.
6425 -- There should eventually be a special procedure for this ???
6426
6427 Ref := New_Reference_To (Defining_Identifier (N), Loc);
6428 Insert_Actions_After (N,
6429 Build_Initialization_Call (Sloc (N), Ref, Typ));
6430 end if;
6431 end Initialize_Discriminants;
6432
6433 ----------------
6434 -- Must_Slide --
6435 ----------------
6436
6437 function Must_Slide
6438 (Obj_Type : Entity_Id;
6439 Typ : Entity_Id) return Boolean
6440 is
6441 L1, L2, H1, H2 : Node_Id;
6442 begin
6443 -- No sliding if the type of the object is not established yet, if it is
6444 -- an unconstrained type whose actual subtype comes from the aggregate,
6445 -- or if the two types are identical.
6446
6447 if not Is_Array_Type (Obj_Type) then
6448 return False;
6449
6450 elsif not Is_Constrained (Obj_Type) then
6451 return False;
6452
6453 elsif Typ = Obj_Type then
6454 return False;
6455
6456 else
6457 -- Sliding can only occur along the first dimension
6458
6459 Get_Index_Bounds (First_Index (Typ), L1, H1);
6460 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6461
6462 if not Is_Static_Expression (L1)
6463 or else not Is_Static_Expression (L2)
6464 or else not Is_Static_Expression (H1)
6465 or else not Is_Static_Expression (H2)
6466 then
6467 return False;
6468 else
6469 return Expr_Value (L1) /= Expr_Value (L2)
6470 or else Expr_Value (H1) /= Expr_Value (H2);
6471 end if;
6472 end if;
6473 end Must_Slide;
6474
6475 ---------------------------
6476 -- Safe_Slice_Assignment --
6477 ---------------------------
6478
6479 function Safe_Slice_Assignment (N : Node_Id) return Boolean is
6480 Loc : constant Source_Ptr := Sloc (Parent (N));
6481 Pref : constant Node_Id := Prefix (Name (Parent (N)));
6482 Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
6483 Expr : Node_Id;
6484 L_J : Entity_Id;
6485 L_Iter : Node_Id;
6486 L_Body : Node_Id;
6487 Stat : Node_Id;
6488
6489 begin
6490 -- Generate: for J in Range loop Pref (J) := Expr; end loop;
6491
6492 if Comes_From_Source (N)
6493 and then No (Expressions (N))
6494 and then Nkind (First (Choices (First (Component_Associations (N)))))
6495 = N_Others_Choice
6496 then
6497 Expr := Expression (First (Component_Associations (N)));
6498 L_J := Make_Temporary (Loc, 'J');
6499
6500 L_Iter :=
6501 Make_Iteration_Scheme (Loc,
6502 Loop_Parameter_Specification =>
6503 Make_Loop_Parameter_Specification
6504 (Loc,
6505 Defining_Identifier => L_J,
6506 Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
6507
6508 L_Body :=
6509 Make_Assignment_Statement (Loc,
6510 Name =>
6511 Make_Indexed_Component (Loc,
6512 Prefix => Relocate_Node (Pref),
6513 Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
6514 Expression => Relocate_Node (Expr));
6515
6516 -- Construct the final loop
6517
6518 Stat :=
6519 Make_Implicit_Loop_Statement
6520 (Node => Parent (N),
6521 Identifier => Empty,
6522 Iteration_Scheme => L_Iter,
6523 Statements => New_List (L_Body));
6524
6525 -- Set type of aggregate to be type of lhs in assignment,
6526 -- to suppress redundant length checks.
6527
6528 Set_Etype (N, Etype (Name (Parent (N))));
6529
6530 Rewrite (Parent (N), Stat);
6531 Analyze (Parent (N));
6532 return True;
6533
6534 else
6535 return False;
6536 end if;
6537 end Safe_Slice_Assignment;
6538
6539 ---------------------
6540 -- Sort_Case_Table --
6541 ---------------------
6542
6543 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
6544 L : constant Int := Case_Table'First;
6545 U : constant Int := Case_Table'Last;
6546 K : Int;
6547 J : Int;
6548 T : Case_Bounds;
6549
6550 begin
6551 K := L;
6552 while K /= U loop
6553 T := Case_Table (K + 1);
6554
6555 J := K + 1;
6556 while J /= L
6557 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
6558 Expr_Value (T.Choice_Lo)
6559 loop
6560 Case_Table (J) := Case_Table (J - 1);
6561 J := J - 1;
6562 end loop;
6563
6564 Case_Table (J) := T;
6565 K := K + 1;
6566 end loop;
6567 end Sort_Case_Table;
6568
6569 ----------------------------
6570 -- Static_Array_Aggregate --
6571 ----------------------------
6572
6573 function Static_Array_Aggregate (N : Node_Id) return Boolean is
6574 Bounds : constant Node_Id := Aggregate_Bounds (N);
6575
6576 Typ : constant Entity_Id := Etype (N);
6577 Comp_Type : constant Entity_Id := Component_Type (Typ);
6578 Agg : Node_Id;
6579 Expr : Node_Id;
6580 Lo : Node_Id;
6581 Hi : Node_Id;
6582
6583 begin
6584 if Is_Tagged_Type (Typ)
6585 or else Is_Controlled (Typ)
6586 or else Is_Packed (Typ)
6587 then
6588 return False;
6589 end if;
6590
6591 if Present (Bounds)
6592 and then Nkind (Bounds) = N_Range
6593 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
6594 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
6595 then
6596 Lo := Low_Bound (Bounds);
6597 Hi := High_Bound (Bounds);
6598
6599 if No (Component_Associations (N)) then
6600
6601 -- Verify that all components are static integers
6602
6603 Expr := First (Expressions (N));
6604 while Present (Expr) loop
6605 if Nkind (Expr) /= N_Integer_Literal then
6606 return False;
6607 end if;
6608
6609 Next (Expr);
6610 end loop;
6611
6612 return True;
6613
6614 else
6615 -- We allow only a single named association, either a static
6616 -- range or an others_clause, with a static expression.
6617
6618 Expr := First (Component_Associations (N));
6619
6620 if Present (Expressions (N)) then
6621 return False;
6622
6623 elsif Present (Next (Expr)) then
6624 return False;
6625
6626 elsif Present (Next (First (Choices (Expr)))) then
6627 return False;
6628
6629 else
6630 -- The aggregate is static if all components are literals,
6631 -- or else all its components are static aggregates for the
6632 -- component type. We also limit the size of a static aggregate
6633 -- to prevent runaway static expressions.
6634
6635 if Is_Array_Type (Comp_Type)
6636 or else Is_Record_Type (Comp_Type)
6637 then
6638 if Nkind (Expression (Expr)) /= N_Aggregate
6639 or else
6640 not Compile_Time_Known_Aggregate (Expression (Expr))
6641 then
6642 return False;
6643 end if;
6644
6645 elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
6646 return False;
6647
6648 elsif not Aggr_Size_OK (N, Typ) then
6649 return False;
6650 end if;
6651
6652 -- Create a positional aggregate with the right number of
6653 -- copies of the expression.
6654
6655 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
6656
6657 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
6658 loop
6659 Append_To
6660 (Expressions (Agg), New_Copy (Expression (Expr)));
6661
6662 -- The copied expression must be analyzed and resolved.
6663 -- Besides setting the type, this ensures that static
6664 -- expressions are appropriately marked as such.
6665
6666 Analyze_And_Resolve
6667 (Last (Expressions (Agg)), Component_Type (Typ));
6668 end loop;
6669
6670 Set_Aggregate_Bounds (Agg, Bounds);
6671 Set_Etype (Agg, Typ);
6672 Set_Analyzed (Agg);
6673 Rewrite (N, Agg);
6674 Set_Compile_Time_Known_Aggregate (N);
6675
6676 return True;
6677 end if;
6678 end if;
6679
6680 else
6681 return False;
6682 end if;
6683 end Static_Array_Aggregate;
6684
6685 end Exp_Aggr;