]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/gcc-interface/misc.c
poly_int: GET_MODE_PRECISION
[thirdparty/gcc.git] / gcc / ada / gcc-interface / misc.c
1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * M I S C *
6 * *
7 * C Implementation File *
8 * *
9 * Copyright (C) 1992-2017, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License distributed with GNAT; see file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "target.h"
30 #include "tree.h"
31 #include "diagnostic.h"
32 #include "opts.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "print-tree.h"
37 #include "toplev.h"
38 #include "langhooks.h"
39 #include "langhooks-def.h"
40 #include "plugin.h"
41 #include "calls.h" /* For pass_by_reference. */
42 #include "dwarf2out.h"
43
44 #include "ada.h"
45 #include "adadecode.h"
46 #include "types.h"
47 #include "atree.h"
48 #include "namet.h"
49 #include "nlists.h"
50 #include "uintp.h"
51 #include "fe.h"
52 #include "sinfo.h"
53 #include "einfo.h"
54 #include "ada-tree.h"
55 #include "gigi.h"
56
57 /* This symbol needs to be defined for the front-end. */
58 void *callgraph_info_file = NULL;
59
60 /* Command-line argc and argv. These variables are global since they are
61 imported in back_end.adb. */
62 unsigned int save_argc;
63 const char **save_argv;
64
65 /* GNAT argc and argv generated by the binder for all Ada programs. */
66 extern int gnat_argc;
67 extern const char **gnat_argv;
68
69 /* Ada code requires variables for these settings rather than elements
70 of the global_options structure because they are imported. */
71 #undef gnat_encodings
72 enum dwarf_gnat_encodings gnat_encodings = DWARF_GNAT_ENCODINGS_DEFAULT;
73
74 #undef optimize
75 int optimize;
76
77 #undef optimize_size
78 int optimize_size;
79
80 #undef flag_compare_debug
81 int flag_compare_debug;
82
83 #undef flag_short_enums
84 int flag_short_enums;
85
86 #undef flag_stack_check
87 enum stack_check_type flag_stack_check = NO_STACK_CHECK;
88
89 #ifdef __cplusplus
90 extern "C" {
91 #endif
92
93 /* Declare functions we use as part of startup. */
94 extern void __gnat_initialize (void *);
95 extern void __gnat_install_SEH_handler (void *);
96 extern void adainit (void);
97 extern void _ada_gnat1drv (void);
98
99 #ifdef __cplusplus
100 }
101 #endif
102
103 /* The parser for the language. For us, we process the GNAT tree. */
104
105 static void
106 gnat_parse_file (void)
107 {
108 int seh[2];
109
110 /* Call the target specific initializations. */
111 __gnat_initialize (NULL);
112
113 /* ??? Call the SEH initialization routine. This is to workaround
114 a bootstrap path problem. The call below should be removed at some
115 point and the SEH pointer passed to __gnat_initialize above. */
116 __gnat_install_SEH_handler ((void *)seh);
117
118 /* Call the front-end elaboration procedures. */
119 adainit ();
120
121 /* Call the front end. */
122 _ada_gnat1drv ();
123
124 /* Write the global declarations. */
125 gnat_write_global_declarations ();
126 }
127
128 /* Return language mask for option processing. */
129
130 static unsigned int
131 gnat_option_lang_mask (void)
132 {
133 return CL_Ada;
134 }
135
136 /* Decode all the language specific options that cannot be decoded by GCC.
137 The option decoding phase of GCC calls this routine on the flags that
138 are marked as Ada-specific. Return true on success or false on failure. */
139
140 static bool
141 gnat_handle_option (size_t scode, const char *arg, int value, int kind,
142 location_t loc, const struct cl_option_handlers *handlers)
143 {
144 enum opt_code code = (enum opt_code) scode;
145
146 switch (code)
147 {
148 case OPT_Wall:
149 handle_generated_option (&global_options, &global_options_set,
150 OPT_Wunused, NULL, value,
151 gnat_option_lang_mask (), kind, loc,
152 handlers, true, global_dc);
153 warn_uninitialized = value;
154 warn_maybe_uninitialized = value;
155 break;
156
157 case OPT_gant:
158 warning (0, "%<-gnat%> misspelled as %<-gant%>");
159
160 /* ... fall through ... */
161
162 case OPT_gnat:
163 case OPT_gnatO:
164 case OPT_fRTS_:
165 case OPT_I:
166 case OPT_nostdinc:
167 case OPT_nostdlib:
168 /* These are handled by the front-end. */
169 break;
170
171 case OPT_fshort_enums:
172 case OPT_fsigned_char:
173 /* These are handled by the middle-end. */
174 break;
175
176 case OPT_fbuiltin_printf:
177 /* This is ignored in Ada but needs to be accepted so it can be
178 defaulted. */
179 break;
180
181 default:
182 gcc_unreachable ();
183 }
184
185 Ada_handle_option_auto (&global_options, &global_options_set,
186 scode, arg, value,
187 gnat_option_lang_mask (), kind, loc,
188 handlers, global_dc);
189 return true;
190 }
191
192 /* Initialize options structure OPTS. */
193
194 static void
195 gnat_init_options_struct (struct gcc_options *opts)
196 {
197 /* Uninitialized really means uninitialized in Ada. */
198 opts->x_flag_zero_initialized_in_bss = 0;
199
200 /* We don't care about errno in Ada and it causes __builtin_sqrt to
201 call the libm function rather than do it inline. */
202 opts->x_flag_errno_math = 0;
203 opts->frontend_set_flag_errno_math = true;
204 }
205
206 /* Initialize for option processing. */
207
208 static void
209 gnat_init_options (unsigned int decoded_options_count,
210 struct cl_decoded_option *decoded_options)
211 {
212 /* Reconstruct an argv array for use of back_end.adb.
213
214 ??? back_end.adb should not rely on this; instead, it should work with
215 decoded options without such reparsing, to ensure consistency in how
216 options are decoded. */
217 save_argv = XNEWVEC (const char *, 2 * decoded_options_count + 1);
218 save_argc = 0;
219 for (unsigned int i = 0; i < decoded_options_count; i++)
220 {
221 size_t num_elements = decoded_options[i].canonical_option_num_elements;
222
223 if (decoded_options[i].errors
224 || decoded_options[i].opt_index == OPT_SPECIAL_unknown
225 || num_elements == 0)
226 continue;
227
228 /* Deal with -I- specially since it must be a single switch. */
229 if (decoded_options[i].opt_index == OPT_I
230 && num_elements == 2
231 && decoded_options[i].canonical_option[1][0] == '-'
232 && decoded_options[i].canonical_option[1][1] == '\0')
233 save_argv[save_argc++] = "-I-";
234 else
235 {
236 gcc_assert (num_elements >= 1 && num_elements <= 2);
237 save_argv[save_argc++] = decoded_options[i].canonical_option[0];
238 if (num_elements >= 2)
239 save_argv[save_argc++] = decoded_options[i].canonical_option[1];
240 }
241 }
242 save_argv[save_argc] = NULL;
243
244 /* Pass just the name of the command through the regular channel. */
245 gnat_argv = (const char **) xmalloc (sizeof (char *));
246 gnat_argv[0] = xstrdup (save_argv[0]);
247 gnat_argc = 1;
248 }
249
250 /* Settings adjustments after switches processing by the back-end.
251 Note that the front-end switches processing (Scan_Compiler_Arguments)
252 has not been done yet at this point! */
253
254 static bool
255 gnat_post_options (const char **pfilename ATTRIBUTE_UNUSED)
256 {
257 /* Excess precision other than "fast" requires front-end support. */
258 if (flag_excess_precision_cmdline == EXCESS_PRECISION_STANDARD)
259 sorry ("-fexcess-precision=standard for Ada");
260 flag_excess_precision_cmdline = EXCESS_PRECISION_FAST;
261
262 /* No psABI change warnings for Ada. */
263 warn_psabi = 0;
264
265 /* No return type warnings for Ada. */
266 warn_return_type = 0;
267
268 /* No caret by default for Ada. */
269 if (!global_options_set.x_flag_diagnostics_show_caret)
270 global_dc->show_caret = false;
271
272 /* Warn only if STABS is not the default: we don't want to emit a warning if
273 the user did not use a -gstabs option. */
274 if (PREFERRED_DEBUGGING_TYPE != DBX_DEBUG && write_symbols == DBX_DEBUG)
275 warning (0, "STABS debugging information for Ada is obsolete and not "
276 "supported anymore");
277
278 /* Copy global settings to local versions. */
279 gnat_encodings = global_options.x_gnat_encodings;
280 optimize = global_options.x_optimize;
281 optimize_size = global_options.x_optimize_size;
282 flag_compare_debug = global_options.x_flag_compare_debug;
283 flag_stack_check = global_options.x_flag_stack_check;
284 flag_short_enums = global_options.x_flag_short_enums;
285
286 /* Unfortunately the post_options hook is called before the value of
287 flag_short_enums is autodetected, if need be. Mimic the process
288 for our private flag_short_enums. */
289 if (flag_short_enums == 2)
290 flag_short_enums = targetm.default_short_enums ();
291
292 return false;
293 }
294
295 /* Here is the function to handle the compiler error processing in GCC. */
296
297 static void
298 internal_error_function (diagnostic_context *context, const char *msgid,
299 va_list *ap)
300 {
301 text_info tinfo;
302 char *buffer, *p, *loc;
303 String_Template temp, temp_loc;
304 String_Pointer sp, sp_loc;
305 expanded_location xloc;
306
307 /* Warn if plugins present. */
308 warn_if_plugins ();
309
310 /* Reset the pretty-printer. */
311 pp_clear_output_area (context->printer);
312
313 /* Format the message into the pretty-printer. */
314 tinfo.format_spec = msgid;
315 tinfo.args_ptr = ap;
316 tinfo.err_no = errno;
317 pp_format_verbatim (context->printer, &tinfo);
318
319 /* Extract a (writable) pointer to the formatted text. */
320 buffer = xstrdup (pp_formatted_text (context->printer));
321
322 /* Go up to the first newline. */
323 for (p = buffer; *p; p++)
324 if (*p == '\n')
325 {
326 *p = '\0';
327 break;
328 }
329
330 temp.Low_Bound = 1;
331 temp.High_Bound = p - buffer;
332 sp.Bounds = &temp;
333 sp.Array = buffer;
334
335 xloc = expand_location (input_location);
336 if (context->show_column && xloc.column != 0)
337 loc = xasprintf ("%s:%d:%d", xloc.file, xloc.line, xloc.column);
338 else
339 loc = xasprintf ("%s:%d", xloc.file, xloc.line);
340 temp_loc.Low_Bound = 1;
341 temp_loc.High_Bound = strlen (loc);
342 sp_loc.Bounds = &temp_loc;
343 sp_loc.Array = loc;
344
345 Current_Error_Node = error_gnat_node;
346 Compiler_Abort (sp, sp_loc, true);
347 }
348
349 /* Perform all the initialization steps that are language-specific. */
350
351 static bool
352 gnat_init (void)
353 {
354 /* Do little here, most of the standard declarations are set up after the
355 front-end has been run. Use the same `char' as C for Interfaces.C. */
356 build_common_tree_nodes (flag_signed_char);
357
358 /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
359 boolean_type_node = make_unsigned_type (8);
360 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
361 SET_TYPE_RM_MAX_VALUE (boolean_type_node,
362 build_int_cst (boolean_type_node, 1));
363 SET_TYPE_RM_SIZE (boolean_type_node, bitsize_int (1));
364 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
365 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
366
367 sbitsize_one_node = sbitsize_int (1);
368 sbitsize_unit_node = sbitsize_int (BITS_PER_UNIT);
369
370 /* Register our internal error function. */
371 global_dc->internal_error = &internal_error_function;
372
373 return true;
374 }
375
376 /* Initialize the GCC support for exception handling. */
377
378 void
379 gnat_init_gcc_eh (void)
380 {
381 /* We shouldn't do anything if the No_Exceptions_Handler pragma is set,
382 though. This could for instance lead to the emission of tables with
383 references to symbols (such as the Ada eh personality routine) within
384 libraries we won't link against. */
385 if (No_Exception_Handlers_Set ())
386 return;
387
388 /* Tell GCC we are handling cleanup actions through exception propagation.
389 This opens possibilities that we don't take advantage of yet, but is
390 nonetheless necessary to ensure that fixup code gets assigned to the
391 right exception regions. */
392 using_eh_for_cleanups ();
393
394 /* Turn on -fexceptions, -fnon-call-exceptions and -fdelete-dead-exceptions.
395 The first one triggers the generation of the necessary exception tables.
396 The second one is useful for two reasons: 1/ we map some asynchronous
397 signals like SEGV to exceptions, so we need to ensure that the insns
398 which can lead to such signals are correctly attached to the exception
399 region they pertain to, 2/ some calls to pure subprograms are handled as
400 libcall blocks and then marked as "cannot trap" if the flag is not set
401 (see emit_libcall_block). We should not let this be since it is possible
402 for such calls to actually raise in Ada.
403 The third one is an optimization that makes it possible to delete dead
404 instructions that may throw exceptions, most notably loads and stores,
405 as permitted in Ada. */
406 flag_exceptions = 1;
407 flag_non_call_exceptions = 1;
408 flag_delete_dead_exceptions = 1;
409
410 init_eh ();
411 }
412
413 /* Initialize the GCC support for floating-point operations. */
414
415 void
416 gnat_init_gcc_fp (void)
417 {
418 /* Disable FP optimizations that ignore the signedness of zero if
419 S'Signed_Zeros is true, but don't override the user if not. */
420 if (Signed_Zeros_On_Target)
421 flag_signed_zeros = 1;
422 else if (!global_options_set.x_flag_signed_zeros)
423 flag_signed_zeros = 0;
424
425 /* Assume that FP operations can trap if S'Machine_Overflow is true,
426 but don't override the user if not. */
427 if (Machine_Overflows_On_Target)
428 flag_trapping_math = 1;
429 else if (!global_options_set.x_flag_trapping_math)
430 flag_trapping_math = 0;
431 }
432
433 /* Print language-specific items in declaration NODE. */
434
435 static void
436 gnat_print_decl (FILE *file, tree node, int indent)
437 {
438 switch (TREE_CODE (node))
439 {
440 case CONST_DECL:
441 print_node (file, "corresponding var",
442 DECL_CONST_CORRESPONDING_VAR (node), indent + 4);
443 break;
444
445 case FIELD_DECL:
446 print_node (file, "original field", DECL_ORIGINAL_FIELD (node),
447 indent + 4);
448 break;
449
450 case VAR_DECL:
451 if (DECL_LOOP_PARM_P (node))
452 print_node (file, "induction var", DECL_INDUCTION_VAR (node),
453 indent + 4);
454 else
455 print_node (file, "renamed object", DECL_RENAMED_OBJECT (node),
456 indent + 4);
457 break;
458
459 default:
460 break;
461 }
462 }
463
464 /* Print language-specific items in type NODE. */
465
466 static void
467 gnat_print_type (FILE *file, tree node, int indent)
468 {
469 switch (TREE_CODE (node))
470 {
471 case FUNCTION_TYPE:
472 print_node (file, "ci/co list", TYPE_CI_CO_LIST (node), indent + 4);
473 break;
474
475 case INTEGER_TYPE:
476 if (TYPE_MODULAR_P (node))
477 print_node_brief (file, "modulus", TYPE_MODULUS (node), indent + 4);
478 else if (TYPE_FIXED_POINT_P (node))
479 print_node (file, "scale factor", TYPE_SCALE_FACTOR (node),
480 indent + 4);
481 else if (TYPE_HAS_ACTUAL_BOUNDS_P (node))
482 print_node (file, "actual bounds", TYPE_ACTUAL_BOUNDS (node),
483 indent + 4);
484 else
485 print_node (file, "index type", TYPE_INDEX_TYPE (node), indent + 4);
486
487 /* ... fall through ... */
488
489 case ENUMERAL_TYPE:
490 case BOOLEAN_TYPE:
491 print_node_brief (file, "RM size", TYPE_RM_SIZE (node), indent + 4);
492
493 /* ... fall through ... */
494
495 case REAL_TYPE:
496 print_node_brief (file, "RM min", TYPE_RM_MIN_VALUE (node), indent + 4);
497 print_node_brief (file, "RM max", TYPE_RM_MAX_VALUE (node), indent + 4);
498 break;
499
500 case ARRAY_TYPE:
501 print_node (file,"actual bounds", TYPE_ACTUAL_BOUNDS (node), indent + 4);
502 break;
503
504 case VECTOR_TYPE:
505 print_node (file,"representative array",
506 TYPE_REPRESENTATIVE_ARRAY (node), indent + 4);
507 break;
508
509 case RECORD_TYPE:
510 if (TYPE_FAT_POINTER_P (node) || TYPE_CONTAINS_TEMPLATE_P (node))
511 print_node (file, "unconstrained array",
512 TYPE_UNCONSTRAINED_ARRAY (node), indent + 4);
513 else
514 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
515 break;
516
517 case UNION_TYPE:
518 case QUAL_UNION_TYPE:
519 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
520 break;
521
522 default:
523 break;
524 }
525
526 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (node) && TYPE_DEBUG_TYPE (node))
527 print_node_brief (file, "debug type", TYPE_DEBUG_TYPE (node), indent + 4);
528
529 if (TYPE_IMPL_PACKED_ARRAY_P (node) && TYPE_ORIGINAL_PACKED_ARRAY (node))
530 print_node_brief (file, "original packed array",
531 TYPE_ORIGINAL_PACKED_ARRAY (node), indent + 4);
532 }
533
534 /* Return the name to be printed for DECL. */
535
536 static const char *
537 gnat_printable_name (tree decl, int verbosity)
538 {
539 const char *coded_name = IDENTIFIER_POINTER (DECL_NAME (decl));
540 char *ada_name = (char *) ggc_alloc_atomic (strlen (coded_name) * 2 + 60);
541
542 __gnat_decode (coded_name, ada_name, 0);
543
544 if (verbosity == 2 && !DECL_IS_BUILTIN (decl))
545 {
546 Set_Identifier_Casing (ada_name, DECL_SOURCE_FILE (decl));
547 return ggc_strdup (Name_Buffer);
548 }
549
550 return ada_name;
551 }
552
553 /* Return the name to be used in DWARF debug info for DECL. */
554
555 static const char *
556 gnat_dwarf_name (tree decl, int verbosity ATTRIBUTE_UNUSED)
557 {
558 gcc_assert (DECL_P (decl));
559 return (const char *) IDENTIFIER_POINTER (DECL_NAME (decl));
560 }
561
562 /* Return the descriptive type associated with TYPE, if any. */
563
564 static tree
565 gnat_descriptive_type (const_tree type)
566 {
567 if (TYPE_STUB_DECL (type))
568 return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
569 else
570 return NULL_TREE;
571 }
572
573 /* Return the underlying base type of an enumeration type. */
574
575 static tree
576 gnat_enum_underlying_base_type (const_tree)
577 {
578 /* Enumeration types are base types in Ada. */
579 return void_type_node;
580 }
581
582 /* Return the type to be used for debugging information instead of TYPE or
583 NULL_TREE if TYPE is fine. */
584
585 static tree
586 gnat_get_debug_type (const_tree type)
587 {
588 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (type) && TYPE_DEBUG_TYPE (type))
589 {
590 type = TYPE_DEBUG_TYPE (type);
591
592 /* ??? The get_debug_type language hook is processed after the array
593 descriptor language hook, so if there is an array behind this type,
594 the latter is supposed to handle it. Still, we can get here with
595 a type we are not supposed to handle (e.g. when the DWARF back-end
596 processes the type of a variable), so keep this guard. */
597 if (type && TYPE_CAN_HAVE_DEBUG_TYPE_P (type))
598 return const_cast<tree> (type);
599 }
600
601 return NULL_TREE;
602 }
603
604 /* Provide information in INFO for debugging output about the TYPE fixed-point
605 type. Return whether TYPE is handled. */
606
607 static bool
608 gnat_get_fixed_point_type_info (const_tree type,
609 struct fixed_point_type_info *info)
610 {
611 tree scale_factor;
612
613 /* GDB cannot handle fixed-point types yet, so rely on GNAT encodings
614 instead for it. */
615 if (!TYPE_IS_FIXED_POINT_P (type)
616 || gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
617 return false;
618
619 scale_factor = TYPE_SCALE_FACTOR (type);
620
621 /* We expect here only a finite set of pattern. See fixed-point types
622 handling in gnat_to_gnu_entity. */
623
624 /* Put invalid values when compiler internals cannot represent the scale
625 factor. */
626 if (scale_factor == integer_zero_node)
627 {
628 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
629 info->scale_factor.arbitrary.numerator = 0;
630 info->scale_factor.arbitrary.denominator = 0;
631 return true;
632 }
633
634 if (TREE_CODE (scale_factor) == RDIV_EXPR)
635 {
636 const tree num = TREE_OPERAND (scale_factor, 0);
637 const tree den = TREE_OPERAND (scale_factor, 1);
638
639 /* See if we have a binary or decimal scale. */
640 if (TREE_CODE (den) == POWER_EXPR)
641 {
642 const tree base = TREE_OPERAND (den, 0);
643 const tree exponent = TREE_OPERAND (den, 1);
644
645 /* We expect the scale factor to be 1 / 2 ** N or 1 / 10 ** N. */
646 gcc_assert (num == integer_one_node
647 && TREE_CODE (base) == INTEGER_CST
648 && TREE_CODE (exponent) == INTEGER_CST);
649
650 switch (tree_to_shwi (base))
651 {
652 case 2:
653 info->scale_factor_kind = fixed_point_scale_factor_binary;
654 info->scale_factor.binary = -tree_to_shwi (exponent);
655 return true;
656
657 case 10:
658 info->scale_factor_kind = fixed_point_scale_factor_decimal;
659 info->scale_factor.decimal = -tree_to_shwi (exponent);
660 return true;
661
662 default:
663 gcc_unreachable ();
664 }
665 }
666
667 /* If we reach this point, we are handling an arbitrary scale factor. We
668 expect N / D with constant operands. */
669 gcc_assert (TREE_CODE (num) == INTEGER_CST
670 && TREE_CODE (den) == INTEGER_CST);
671
672 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
673 info->scale_factor.arbitrary.numerator = tree_to_uhwi (num);
674 info->scale_factor.arbitrary.denominator = tree_to_shwi (den);
675 return true;
676 }
677
678 gcc_unreachable ();
679 }
680
681 /* Return true if types T1 and T2 are identical for type hashing purposes.
682 Called only after doing all language independent checks. At present,
683 this function is only called when both types are FUNCTION_TYPE. */
684
685 static bool
686 gnat_type_hash_eq (const_tree t1, const_tree t2)
687 {
688 gcc_assert (TREE_CODE (t1) == FUNCTION_TYPE);
689 return fntype_same_flags_p (t1, TYPE_CI_CO_LIST (t2),
690 TYPE_RETURN_UNCONSTRAINED_P (t2),
691 TYPE_RETURN_BY_DIRECT_REF_P (t2),
692 TREE_ADDRESSABLE (t2));
693 }
694
695 /* Do nothing (return the tree node passed). */
696
697 static tree
698 gnat_return_tree (tree t)
699 {
700 return t;
701 }
702
703 /* Get the alias set corresponding to a type or expression. */
704
705 static alias_set_type
706 gnat_get_alias_set (tree type)
707 {
708 /* If this is a padding type, use the type of the first field. */
709 if (TYPE_IS_PADDING_P (type))
710 return get_alias_set (TREE_TYPE (TYPE_FIELDS (type)));
711
712 /* If the type is an unconstrained array, use the type of the
713 self-referential array we make. */
714 else if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
715 return
716 get_alias_set (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))));
717
718 /* If the type can alias any other types, return the alias set 0. */
719 else if (TYPE_P (type)
720 && !TYPE_IS_DUMMY_P (type)
721 && TYPE_UNIVERSAL_ALIASING_P (type))
722 return 0;
723
724 return -1;
725 }
726
727 /* GNU_TYPE is a type. Return its maximum size in bytes, if known,
728 as a constant when possible. */
729
730 static tree
731 gnat_type_max_size (const_tree gnu_type)
732 {
733 /* First see what we can get from TYPE_SIZE_UNIT, which might not
734 be constant even for simple expressions if it has already been
735 elaborated and possibly replaced by a VAR_DECL. */
736 tree max_unitsize = max_size (TYPE_SIZE_UNIT (gnu_type), true);
737
738 /* If we don't have a constant, try to look at attributes which should have
739 stayed untouched. */
740 if (!tree_fits_uhwi_p (max_unitsize))
741 {
742 /* For record types, see what we can get from TYPE_ADA_SIZE. */
743 if (RECORD_OR_UNION_TYPE_P (gnu_type)
744 && !TYPE_FAT_POINTER_P (gnu_type)
745 && TYPE_ADA_SIZE (gnu_type))
746 {
747 tree max_adasize = max_size (TYPE_ADA_SIZE (gnu_type), true);
748
749 /* If we have succeeded in finding a constant, round it up to the
750 type's alignment and return the result in units. */
751 if (tree_fits_uhwi_p (max_adasize))
752 max_unitsize
753 = size_binop (CEIL_DIV_EXPR,
754 round_up (max_adasize, TYPE_ALIGN (gnu_type)),
755 bitsize_unit_node);
756 }
757
758 /* For array types, see what we can get from TYPE_INDEX_TYPE. */
759 else if (TREE_CODE (gnu_type) == ARRAY_TYPE
760 && TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))
761 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (gnu_type))))
762 {
763 tree lb = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)));
764 tree hb = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)));
765 if (TREE_CODE (lb) != INTEGER_CST
766 && TYPE_RM_SIZE (TREE_TYPE (lb))
767 && compare_tree_int (TYPE_RM_SIZE (TREE_TYPE (lb)), 16) <= 0)
768 lb = TYPE_MIN_VALUE (TREE_TYPE (lb));
769 if (TREE_CODE (hb) != INTEGER_CST
770 && TYPE_RM_SIZE (TREE_TYPE (hb))
771 && compare_tree_int (TYPE_RM_SIZE (TREE_TYPE (hb)), 16) <= 0)
772 hb = TYPE_MAX_VALUE (TREE_TYPE (hb));
773 if (TREE_CODE (lb) == INTEGER_CST && TREE_CODE (hb) == INTEGER_CST)
774 {
775 tree ctype = get_base_type (TREE_TYPE (lb));
776 lb = fold_convert (ctype, lb);
777 hb = fold_convert (ctype, hb);
778 if (tree_int_cst_le (lb, hb))
779 {
780 tree length
781 = fold_build2 (PLUS_EXPR, ctype,
782 fold_build2 (MINUS_EXPR, ctype, hb, lb),
783 build_int_cst (ctype, 1));
784 max_unitsize
785 = fold_build2 (MULT_EXPR, sizetype,
786 fold_convert (sizetype, length),
787 TYPE_SIZE_UNIT (TREE_TYPE (gnu_type)));
788 }
789 }
790 }
791 }
792
793 return max_unitsize;
794 }
795
796 static tree get_array_bit_stride (tree);
797
798 /* Provide information in INFO for debug output about the TYPE array type.
799 Return whether TYPE is handled. */
800
801 static bool
802 gnat_get_array_descr_info (const_tree const_type,
803 struct array_descr_info *info)
804 {
805 bool convention_fortran_p;
806 bool is_array = false;
807 bool is_fat_ptr = false;
808 bool is_packed_array = false;
809 tree type = const_cast<tree> (const_type);
810 const_tree first_dimen = NULL_TREE;
811 const_tree last_dimen = NULL_TREE;
812 const_tree dimen;
813 int i;
814
815 /* Temporaries created in the first pass and used in the second one for thin
816 pointers. The first one is an expression that yields the template record
817 from the base address (i.e. the PLACEHOLDER_EXPR). The second one is just
818 a cursor through this record's fields. */
819 tree thinptr_template_expr = NULL_TREE;
820 tree thinptr_bound_field = NULL_TREE;
821
822 /* ??? See gnat_get_debug_type. */
823 type = maybe_debug_type (type);
824
825 /* If we have an implementation type for a packed array, get the orignial
826 array type. */
827 if (TYPE_IMPL_PACKED_ARRAY_P (type) && TYPE_ORIGINAL_PACKED_ARRAY (type))
828 {
829 type = TYPE_ORIGINAL_PACKED_ARRAY (type);
830 is_packed_array = true;
831 }
832
833 /* First pass: gather all information about this array except everything
834 related to dimensions. */
835
836 /* Only handle ARRAY_TYPE nodes that come from GNAT. */
837 if (TREE_CODE (type) == ARRAY_TYPE
838 && TYPE_DOMAIN (type)
839 && TYPE_INDEX_TYPE (TYPE_DOMAIN (type)))
840 {
841 is_array = true;
842 first_dimen = type;
843 info->data_location = NULL_TREE;
844 }
845
846 else if (TYPE_IS_FAT_POINTER_P (type)
847 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
848 {
849 const tree ua_type = TYPE_UNCONSTRAINED_ARRAY (type);
850
851 /* This will be our base object address. */
852 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
853
854 /* We assume below that maybe_unconstrained_array returns an INDIRECT_REF
855 node. */
856 const tree ua_val
857 = maybe_unconstrained_array (build_unary_op (INDIRECT_REF,
858 ua_type,
859 placeholder_expr));
860
861 is_fat_ptr = true;
862 first_dimen = TREE_TYPE (ua_val);
863
864 /* Get the *address* of the array, not the array itself. */
865 info->data_location = TREE_OPERAND (ua_val, 0);
866 }
867
868 /* Unlike fat pointers (which appear for unconstrained arrays passed in
869 argument), thin pointers are used only for array access types, so we want
870 them to appear in the debug info as pointers to an array type. That's why
871 we match only the RECORD_TYPE here instead of the POINTER_TYPE with the
872 TYPE_IS_THIN_POINTER_P predicate. */
873 else if (TREE_CODE (type) == RECORD_TYPE
874 && TYPE_CONTAINS_TEMPLATE_P (type)
875 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
876 {
877 /* This will be our base object address. Note that we assume that
878 pointers to these will actually point to the array field (thin
879 pointers are shifted). */
880 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
881 const tree placeholder_addr
882 = build_unary_op (ADDR_EXPR, NULL_TREE, placeholder_expr);
883
884 const tree bounds_field = TYPE_FIELDS (type);
885 const tree bounds_type = TREE_TYPE (bounds_field);
886 const tree array_field = DECL_CHAIN (bounds_field);
887 const tree array_type = TREE_TYPE (array_field);
888
889 /* Shift the thin pointer address to get the address of the template. */
890 const tree shift_amount
891 = fold_build1 (NEGATE_EXPR, sizetype, byte_position (array_field));
892 tree template_addr
893 = build_binary_op (POINTER_PLUS_EXPR, TREE_TYPE (placeholder_addr),
894 placeholder_addr, shift_amount);
895 template_addr
896 = fold_convert (TYPE_POINTER_TO (bounds_type), template_addr);
897
898 first_dimen = array_type;
899
900 /* The thin pointer is already the pointer to the array data, so there's
901 no need for a specific "data location" expression. */
902 info->data_location = NULL_TREE;
903
904 thinptr_template_expr = build_unary_op (INDIRECT_REF,
905 bounds_type,
906 template_addr);
907 thinptr_bound_field = TYPE_FIELDS (bounds_type);
908 }
909 else
910 return false;
911
912 /* Second pass: compute the remaining information: dimensions and
913 corresponding bounds. */
914
915 if (TYPE_PACKED (first_dimen))
916 is_packed_array = true;
917 /* If this array has fortran convention, it's arranged in column-major
918 order, so our view here has reversed dimensions. */
919 convention_fortran_p = TYPE_CONVENTION_FORTRAN_P (first_dimen);
920 /* ??? For row major ordering, we probably want to emit nothing and
921 instead specify it as the default in Dw_TAG_compile_unit. */
922 info->ordering = (convention_fortran_p
923 ? array_descr_ordering_column_major
924 : array_descr_ordering_row_major);
925
926 /* Count how many dimensions this array has. */
927 for (i = 0, dimen = first_dimen; ; ++i, dimen = TREE_TYPE (dimen))
928 {
929 if (i > 0
930 && (TREE_CODE (dimen) != ARRAY_TYPE
931 || !TYPE_MULTI_ARRAY_P (dimen)))
932 break;
933 last_dimen = dimen;
934 }
935
936 info->ndimensions = i;
937 info->rank = NULL_TREE;
938
939 /* Too many dimensions? Give up generating proper description: yield instead
940 nested arrays. Note that in this case, this hook is invoked once on each
941 intermediate array type: be consistent and output nested arrays for all
942 dimensions. */
943 if (info->ndimensions > DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN
944 || TYPE_MULTI_ARRAY_P (first_dimen))
945 {
946 info->ndimensions = 1;
947 last_dimen = first_dimen;
948 }
949
950 info->element_type = TREE_TYPE (last_dimen);
951
952 /* Now iterate over all dimensions in source-order and fill the info
953 structure. */
954 for (i = (convention_fortran_p ? info->ndimensions - 1 : 0),
955 dimen = first_dimen;
956 IN_RANGE (i, 0, info->ndimensions - 1);
957 i += (convention_fortran_p ? -1 : 1),
958 dimen = TREE_TYPE (dimen))
959 {
960 /* We are interested in the stored bounds for the debug info. */
961 tree index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (dimen));
962
963 if (is_array || is_fat_ptr)
964 {
965 /* GDB does not handle very well the self-referencial bound
966 expressions we are able to generate here for XUA types (they are
967 used only by XUP encodings) so avoid them in this case. Note that
968 there are two cases where we generate self-referencial bound
969 expressions: arrays that are constrained by record discriminants
970 and XUA types. */
971 if (TYPE_CONTEXT (first_dimen)
972 && TREE_CODE (TYPE_CONTEXT (first_dimen)) != RECORD_TYPE
973 && CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (index_type))
974 && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
975 {
976 info->dimen[i].lower_bound = NULL_TREE;
977 info->dimen[i].upper_bound = NULL_TREE;
978 }
979 else
980 {
981 info->dimen[i].lower_bound
982 = maybe_character_value (TYPE_MIN_VALUE (index_type));
983 info->dimen[i].upper_bound
984 = maybe_character_value (TYPE_MAX_VALUE (index_type));
985 }
986 }
987
988 /* This is a thin pointer. */
989 else
990 {
991 info->dimen[i].lower_bound
992 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
993 false);
994 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
995
996 info->dimen[i].upper_bound
997 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
998 false);
999 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
1000 }
1001
1002 /* The DWARF back-end will output BOUNDS_TYPE as the base type of
1003 the array index, so get to the base type of INDEX_TYPE. */
1004 while (TREE_TYPE (index_type))
1005 index_type = TREE_TYPE (index_type);
1006
1007 info->dimen[i].bounds_type = maybe_debug_type (index_type);
1008 info->dimen[i].stride = NULL_TREE;
1009 }
1010
1011 /* These are Fortran-specific fields. They make no sense here. */
1012 info->allocated = NULL_TREE;
1013 info->associated = NULL_TREE;
1014
1015 if (gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1016 {
1017 /* When arrays contain dynamically-sized elements, we usually wrap them
1018 in padding types, or we create constrained types for them. Then, if
1019 such types are stripped in the debugging information output, the
1020 debugger needs a way to know the size that is reserved for each
1021 element. This is why we emit a stride in such situations. */
1022 tree source_element_type = info->element_type;
1023
1024 while (true)
1025 {
1026 if (TYPE_DEBUG_TYPE (source_element_type))
1027 source_element_type = TYPE_DEBUG_TYPE (source_element_type);
1028 else if (TYPE_IS_PADDING_P (source_element_type))
1029 source_element_type
1030 = TREE_TYPE (TYPE_FIELDS (source_element_type));
1031 else
1032 break;
1033 }
1034
1035 if (TREE_CODE (TYPE_SIZE_UNIT (source_element_type)) != INTEGER_CST)
1036 {
1037 info->stride = TYPE_SIZE_UNIT (info->element_type);
1038 info->stride_in_bits = false;
1039 }
1040
1041 /* We need to specify a bit stride when it does not correspond to the
1042 natural size of the contained elements. ??? Note that we do not
1043 support packed records and nested packed arrays. */
1044 else if (is_packed_array)
1045 {
1046 info->stride = get_array_bit_stride (info->element_type);
1047 info->stride_in_bits = true;
1048 }
1049 }
1050
1051 return true;
1052 }
1053
1054 /* Given the component type COMP_TYPE of a packed array, return an expression
1055 that computes the bit stride of this packed array. Return NULL_TREE when
1056 unsuccessful. */
1057
1058 static tree
1059 get_array_bit_stride (tree comp_type)
1060 {
1061 struct array_descr_info info;
1062 tree stride;
1063
1064 /* Simple case: the array contains an integral type: return its RM size. */
1065 if (INTEGRAL_TYPE_P (comp_type))
1066 return TYPE_RM_SIZE (comp_type);
1067
1068 /* Otherwise, see if this is an array we can analyze; if it's not, punt. */
1069 memset (&info, 0, sizeof (info));
1070 if (!gnat_get_array_descr_info (comp_type, &info) || !info.stride)
1071 return NULL_TREE;
1072
1073 /* Otherwise, the array stride is the inner array's stride multiplied by the
1074 number of elements it contains. Note that if the inner array is not
1075 packed, then the stride is "natural" and thus does not deserve an
1076 attribute. */
1077 stride = info.stride;
1078 if (!info.stride_in_bits)
1079 {
1080 stride = fold_convert (bitsizetype, stride);
1081 stride = build_binary_op (MULT_EXPR, bitsizetype,
1082 stride, build_int_cst (bitsizetype, 8));
1083 }
1084
1085 for (int i = 0; i < info.ndimensions; ++i)
1086 {
1087 tree count;
1088
1089 if (!info.dimen[i].lower_bound || !info.dimen[i].upper_bound)
1090 return NULL_TREE;
1091
1092 /* Put in count an expression that computes the length of this
1093 dimension. */
1094 count = build_binary_op (MINUS_EXPR, sbitsizetype,
1095 fold_convert (sbitsizetype,
1096 info.dimen[i].upper_bound),
1097 fold_convert (sbitsizetype,
1098 info.dimen[i].lower_bound)),
1099 count = build_binary_op (PLUS_EXPR, sbitsizetype,
1100 count, build_int_cst (sbitsizetype, 1));
1101 count = build_binary_op (MAX_EXPR, sbitsizetype,
1102 count,
1103 build_int_cst (sbitsizetype, 0));
1104 count = fold_convert (bitsizetype, count);
1105 stride = build_binary_op (MULT_EXPR, bitsizetype, stride, count);
1106 }
1107
1108 return stride;
1109 }
1110
1111 /* GNU_TYPE is a subtype of an integral type. Set LOWVAL to the low bound
1112 and HIGHVAL to the high bound, respectively. */
1113
1114 static void
1115 gnat_get_subrange_bounds (const_tree gnu_type, tree *lowval, tree *highval)
1116 {
1117 *lowval = TYPE_MIN_VALUE (gnu_type);
1118 *highval = TYPE_MAX_VALUE (gnu_type);
1119 }
1120
1121 /* Return the bias of GNU_TYPE, if any. */
1122
1123 static tree
1124 gnat_get_type_bias (const_tree gnu_type)
1125 {
1126 if (TREE_CODE (gnu_type) == INTEGER_TYPE
1127 && TYPE_BIASED_REPRESENTATION_P (gnu_type)
1128 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1129 return TYPE_RM_MIN_VALUE (gnu_type);
1130
1131 return NULL_TREE;
1132 }
1133
1134 /* GNU_TYPE is the type of a subprogram parameter. Determine if it should be
1135 passed by reference by default. */
1136
1137 bool
1138 default_pass_by_ref (tree gnu_type)
1139 {
1140 /* We pass aggregates by reference if they are sufficiently large for
1141 their alignment. The ratio is somewhat arbitrary. We also pass by
1142 reference if the target machine would either pass or return by
1143 reference. Strictly speaking, we need only check the return if this
1144 is an In Out parameter, but it's probably best to err on the side of
1145 passing more things by reference. */
1146
1147 if (AGGREGATE_TYPE_P (gnu_type)
1148 && (!valid_constant_size_p (TYPE_SIZE_UNIT (gnu_type))
1149 || compare_tree_int (TYPE_SIZE_UNIT (gnu_type),
1150 TYPE_ALIGN (gnu_type)) > 0))
1151 return true;
1152
1153 if (pass_by_reference (NULL, TYPE_MODE (gnu_type), gnu_type, true))
1154 return true;
1155
1156 if (targetm.calls.return_in_memory (gnu_type, NULL_TREE))
1157 return true;
1158
1159 return false;
1160 }
1161
1162 /* GNU_TYPE is the type of a subprogram parameter. Determine if it must be
1163 passed by reference. */
1164
1165 bool
1166 must_pass_by_ref (tree gnu_type)
1167 {
1168 /* We pass only unconstrained objects, those required by the language
1169 to be passed by reference, and objects of variable size. The latter
1170 is more efficient, avoids problems with variable size temporaries,
1171 and does not produce compatibility problems with C, since C does
1172 not have such objects. */
1173 return (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
1174 || TYPE_IS_BY_REFERENCE_P (gnu_type)
1175 || (TYPE_SIZE_UNIT (gnu_type)
1176 && TREE_CODE (TYPE_SIZE_UNIT (gnu_type)) != INTEGER_CST));
1177 }
1178
1179 /* This function is called by the front-end to enumerate all the supported
1180 modes for the machine, as well as some predefined C types. F is a function
1181 which is called back with the parameters as listed below, first a string,
1182 then seven ints. The name is any arbitrary null-terminated string and has
1183 no particular significance, except for the case of predefined C types, where
1184 it should be the name of the C type. For integer types, only signed types
1185 should be listed, unsigned versions are assumed. The order of types should
1186 be in order of preference, with the smallest/cheapest types first.
1187
1188 In particular, C predefined types should be listed before other types,
1189 binary floating point types before decimal ones, and narrower/cheaper
1190 type versions before more expensive ones. In type selection the first
1191 matching variant will be used.
1192
1193 NAME pointer to first char of type name
1194 DIGS number of decimal digits for floating-point modes, else 0
1195 COMPLEX_P nonzero is this represents a complex mode
1196 COUNT count of number of items, nonzero for vector mode
1197 FLOAT_REP Float_Rep_Kind for FP, otherwise undefined
1198 PRECISION number of bits used to store data
1199 SIZE number of bits occupied by the mode
1200 ALIGN number of bits to which mode is aligned. */
1201
1202 void
1203 enumerate_modes (void (*f) (const char *, int, int, int, int, int, int, int))
1204 {
1205 const tree c_types[]
1206 = { float_type_node, double_type_node, long_double_type_node };
1207 const char *const c_names[]
1208 = { "float", "double", "long double" };
1209 int iloop;
1210
1211 /* We are going to compute it below. */
1212 fp_arith_may_widen = false;
1213
1214 for (iloop = 0; iloop < NUM_MACHINE_MODES; iloop++)
1215 {
1216 machine_mode i = (machine_mode) iloop;
1217 machine_mode inner_mode = i;
1218 bool float_p = false;
1219 bool complex_p = false;
1220 bool vector_p = false;
1221 bool skip_p = false;
1222 int digs = 0;
1223 unsigned int nameloop;
1224 Float_Rep_Kind float_rep = IEEE_Binary; /* Until proven otherwise */
1225
1226 switch (GET_MODE_CLASS (i))
1227 {
1228 case MODE_INT:
1229 break;
1230 case MODE_FLOAT:
1231 float_p = true;
1232 break;
1233 case MODE_COMPLEX_INT:
1234 complex_p = true;
1235 inner_mode = GET_MODE_INNER (i);
1236 break;
1237 case MODE_COMPLEX_FLOAT:
1238 float_p = true;
1239 complex_p = true;
1240 inner_mode = GET_MODE_INNER (i);
1241 break;
1242 case MODE_VECTOR_INT:
1243 vector_p = true;
1244 inner_mode = GET_MODE_INNER (i);
1245 break;
1246 case MODE_VECTOR_FLOAT:
1247 float_p = true;
1248 vector_p = true;
1249 inner_mode = GET_MODE_INNER (i);
1250 break;
1251 default:
1252 skip_p = true;
1253 }
1254
1255 if (float_p)
1256 {
1257 const struct real_format *fmt = REAL_MODE_FORMAT (inner_mode);
1258
1259 /* ??? Cope with the ghost XFmode of the ARM port. */
1260 if (!fmt)
1261 continue;
1262
1263 /* Be conservative and consider that floating-point arithmetics may
1264 use wider intermediate results as soon as there is an extended
1265 Motorola or Intel mode supported by the machine. */
1266 if (fmt == &ieee_extended_motorola_format
1267 || fmt == &ieee_extended_intel_96_format
1268 || fmt == &ieee_extended_intel_96_round_53_format
1269 || fmt == &ieee_extended_intel_128_format)
1270 {
1271 #ifdef TARGET_FPMATH_DEFAULT
1272 if (TARGET_FPMATH_DEFAULT == FPMATH_387)
1273 #endif
1274 fp_arith_may_widen = true;
1275 }
1276
1277 if (fmt->b == 2)
1278 digs = (fmt->p - 1) * 1233 / 4096; /* scale by log (2) */
1279
1280 else if (fmt->b == 10)
1281 digs = fmt->p;
1282
1283 else
1284 gcc_unreachable ();
1285 }
1286
1287 /* First register any C types for this mode that the front end
1288 may need to know about, unless the mode should be skipped. */
1289 if (!skip_p && !vector_p)
1290 for (nameloop = 0; nameloop < ARRAY_SIZE (c_types); nameloop++)
1291 {
1292 tree type = c_types[nameloop];
1293 const char *name = c_names[nameloop];
1294
1295 if (TYPE_MODE (type) == i)
1296 {
1297 f (name, digs, complex_p, 0, float_rep, TYPE_PRECISION (type),
1298 TREE_INT_CST_LOW (TYPE_SIZE (type)), TYPE_ALIGN (type));
1299 skip_p = true;
1300 }
1301 }
1302
1303 /* If no predefined C types were found, register the mode itself. */
1304 int nunits, precision;
1305 if (!skip_p
1306 && GET_MODE_NUNITS (i).is_constant (&nunits)
1307 && GET_MODE_PRECISION (i).is_constant (&precision))
1308 f (GET_MODE_NAME (i), digs, complex_p,
1309 vector_p ? nunits : 0, float_rep,
1310 precision, GET_MODE_BITSIZE (i),
1311 GET_MODE_ALIGNMENT (i));
1312 }
1313 }
1314
1315 /* Return the size of the FP mode with precision PREC. */
1316
1317 int
1318 fp_prec_to_size (int prec)
1319 {
1320 opt_scalar_float_mode opt_mode;
1321
1322 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1323 {
1324 scalar_float_mode mode = opt_mode.require ();
1325 if (GET_MODE_PRECISION (mode) == prec)
1326 return GET_MODE_BITSIZE (mode);
1327 }
1328
1329 gcc_unreachable ();
1330 }
1331
1332 /* Return the precision of the FP mode with size SIZE. */
1333
1334 int
1335 fp_size_to_prec (int size)
1336 {
1337 opt_scalar_float_mode opt_mode;
1338
1339 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1340 {
1341 scalar_mode mode = opt_mode.require ();
1342 if (GET_MODE_BITSIZE (mode) == size)
1343 return GET_MODE_PRECISION (mode);
1344 }
1345
1346 gcc_unreachable ();
1347 }
1348
1349 static GTY(()) tree gnat_eh_personality_decl;
1350
1351 /* Return the GNAT personality function decl. */
1352
1353 static tree
1354 gnat_eh_personality (void)
1355 {
1356 if (!gnat_eh_personality_decl)
1357 gnat_eh_personality_decl = build_personality_function ("gnat");
1358 return gnat_eh_personality_decl;
1359 }
1360
1361 /* Initialize language-specific bits of tree_contains_struct. */
1362
1363 static void
1364 gnat_init_ts (void)
1365 {
1366 MARK_TS_COMMON (UNCONSTRAINED_ARRAY_TYPE);
1367
1368 MARK_TS_TYPED (UNCONSTRAINED_ARRAY_REF);
1369 MARK_TS_TYPED (NULL_EXPR);
1370 MARK_TS_TYPED (PLUS_NOMOD_EXPR);
1371 MARK_TS_TYPED (MINUS_NOMOD_EXPR);
1372 MARK_TS_TYPED (POWER_EXPR);
1373 MARK_TS_TYPED (ATTR_ADDR_EXPR);
1374 MARK_TS_TYPED (STMT_STMT);
1375 MARK_TS_TYPED (LOOP_STMT);
1376 MARK_TS_TYPED (EXIT_STMT);
1377 }
1378
1379 /* Return the size of a tree with CODE, which is a language-specific tree code
1380 in category tcc_constant, tcc_exceptional or tcc_type. The default expects
1381 never to be called. */
1382
1383 static size_t
1384 gnat_tree_size (enum tree_code code)
1385 {
1386 gcc_checking_assert (code >= NUM_TREE_CODES);
1387 switch (code)
1388 {
1389 case UNCONSTRAINED_ARRAY_TYPE:
1390 return sizeof (tree_type_non_common);
1391 default:
1392 gcc_unreachable ();
1393 }
1394 }
1395
1396 /* Return the lang specific structure attached to NODE. Allocate it (cleared)
1397 if needed. */
1398
1399 struct lang_type *
1400 get_lang_specific (tree node)
1401 {
1402 if (!TYPE_LANG_SPECIFIC (node))
1403 TYPE_LANG_SPECIFIC (node) = ggc_cleared_alloc<struct lang_type> ();
1404 return TYPE_LANG_SPECIFIC (node);
1405 }
1406
1407 /* Definitions for our language-specific hooks. */
1408
1409 #undef LANG_HOOKS_NAME
1410 #define LANG_HOOKS_NAME "GNU Ada"
1411 #undef LANG_HOOKS_IDENTIFIER_SIZE
1412 #define LANG_HOOKS_IDENTIFIER_SIZE sizeof (struct tree_identifier)
1413 #undef LANG_HOOKS_TREE_SIZE
1414 #define LANG_HOOKS_TREE_SIZE gnat_tree_size
1415 #undef LANG_HOOKS_INIT
1416 #define LANG_HOOKS_INIT gnat_init
1417 #undef LANG_HOOKS_OPTION_LANG_MASK
1418 #define LANG_HOOKS_OPTION_LANG_MASK gnat_option_lang_mask
1419 #undef LANG_HOOKS_INIT_OPTIONS_STRUCT
1420 #define LANG_HOOKS_INIT_OPTIONS_STRUCT gnat_init_options_struct
1421 #undef LANG_HOOKS_INIT_OPTIONS
1422 #define LANG_HOOKS_INIT_OPTIONS gnat_init_options
1423 #undef LANG_HOOKS_HANDLE_OPTION
1424 #define LANG_HOOKS_HANDLE_OPTION gnat_handle_option
1425 #undef LANG_HOOKS_POST_OPTIONS
1426 #define LANG_HOOKS_POST_OPTIONS gnat_post_options
1427 #undef LANG_HOOKS_PARSE_FILE
1428 #define LANG_HOOKS_PARSE_FILE gnat_parse_file
1429 #undef LANG_HOOKS_TYPE_HASH_EQ
1430 #define LANG_HOOKS_TYPE_HASH_EQ gnat_type_hash_eq
1431 #undef LANG_HOOKS_GETDECLS
1432 #define LANG_HOOKS_GETDECLS hook_tree_void_null
1433 #undef LANG_HOOKS_PUSHDECL
1434 #define LANG_HOOKS_PUSHDECL gnat_return_tree
1435 #undef LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL
1436 #define LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL hook_bool_const_tree_false
1437 #undef LANG_HOOKS_GET_ALIAS_SET
1438 #define LANG_HOOKS_GET_ALIAS_SET gnat_get_alias_set
1439 #undef LANG_HOOKS_PRINT_DECL
1440 #define LANG_HOOKS_PRINT_DECL gnat_print_decl
1441 #undef LANG_HOOKS_PRINT_TYPE
1442 #define LANG_HOOKS_PRINT_TYPE gnat_print_type
1443 #undef LANG_HOOKS_TYPE_MAX_SIZE
1444 #define LANG_HOOKS_TYPE_MAX_SIZE gnat_type_max_size
1445 #undef LANG_HOOKS_DECL_PRINTABLE_NAME
1446 #define LANG_HOOKS_DECL_PRINTABLE_NAME gnat_printable_name
1447 #undef LANG_HOOKS_DWARF_NAME
1448 #define LANG_HOOKS_DWARF_NAME gnat_dwarf_name
1449 #undef LANG_HOOKS_GIMPLIFY_EXPR
1450 #define LANG_HOOKS_GIMPLIFY_EXPR gnat_gimplify_expr
1451 #undef LANG_HOOKS_TYPE_FOR_MODE
1452 #define LANG_HOOKS_TYPE_FOR_MODE gnat_type_for_mode
1453 #undef LANG_HOOKS_TYPE_FOR_SIZE
1454 #define LANG_HOOKS_TYPE_FOR_SIZE gnat_type_for_size
1455 #undef LANG_HOOKS_TYPES_COMPATIBLE_P
1456 #define LANG_HOOKS_TYPES_COMPATIBLE_P gnat_types_compatible_p
1457 #undef LANG_HOOKS_GET_ARRAY_DESCR_INFO
1458 #define LANG_HOOKS_GET_ARRAY_DESCR_INFO gnat_get_array_descr_info
1459 #undef LANG_HOOKS_GET_SUBRANGE_BOUNDS
1460 #define LANG_HOOKS_GET_SUBRANGE_BOUNDS gnat_get_subrange_bounds
1461 #undef LANG_HOOKS_GET_TYPE_BIAS
1462 #define LANG_HOOKS_GET_TYPE_BIAS gnat_get_type_bias
1463 #undef LANG_HOOKS_DESCRIPTIVE_TYPE
1464 #define LANG_HOOKS_DESCRIPTIVE_TYPE gnat_descriptive_type
1465 #undef LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE
1466 #define LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE gnat_enum_underlying_base_type
1467 #undef LANG_HOOKS_GET_DEBUG_TYPE
1468 #define LANG_HOOKS_GET_DEBUG_TYPE gnat_get_debug_type
1469 #undef LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO
1470 #define LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO gnat_get_fixed_point_type_info
1471 #undef LANG_HOOKS_ATTRIBUTE_TABLE
1472 #define LANG_HOOKS_ATTRIBUTE_TABLE gnat_internal_attribute_table
1473 #undef LANG_HOOKS_BUILTIN_FUNCTION
1474 #define LANG_HOOKS_BUILTIN_FUNCTION gnat_builtin_function
1475 #undef LANG_HOOKS_INIT_TS
1476 #define LANG_HOOKS_INIT_TS gnat_init_ts
1477 #undef LANG_HOOKS_EH_PERSONALITY
1478 #define LANG_HOOKS_EH_PERSONALITY gnat_eh_personality
1479 #undef LANG_HOOKS_DEEP_UNSHARING
1480 #define LANG_HOOKS_DEEP_UNSHARING true
1481 #undef LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS
1482 #define LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS true
1483
1484 struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
1485
1486 #include "gt-ada-misc.h"