]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/gnat_ugn.texi
ada: Fix couple of issues in documentation of overflow checking
[thirdparty/gcc.git] / gcc / ada / gnat_ugn.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename gnat_ugn.info
4 @documentencoding UTF-8
5 @ifinfo
6 @*Generated by Sphinx 5.2.3.@*
7 @end ifinfo
8 @settitle GNAT User's Guide for Native Platforms
9 @defindex ge
10 @paragraphindent 0
11 @exampleindent 4
12 @finalout
13 @dircategory GNU Ada Tools
14 @direntry
15 * gnat_ugn: (gnat_ugn.info). gnat_ugn
16 @end direntry
17
18 @c %**end of header
19
20 @copying
21 @quotation
22 GNAT User's Guide for Native Platforms , Jun 16, 2023
23
24 AdaCore
25
26 Copyright @copyright{} 2008-2023, Free Software Foundation
27 @end quotation
28
29 @end copying
30
31 @titlepage
32 @title GNAT User's Guide for Native Platforms
33 @insertcopying
34 @end titlepage
35 @contents
36
37 @c %** start of user preamble
38
39 @c %** end of user preamble
40
41 @ifnottex
42 @node Top
43 @top GNAT User's Guide for Native Platforms
44 @insertcopying
45 @end ifnottex
46
47 @c %**start of body
48 @anchor{gnat_ugn doc}@anchor{0}
49 `GNAT, The GNU Ada Development Environment'
50
51
52 @include gcc-common.texi
53 GCC version @value{version-GCC}@*
54 AdaCore
55
56 Permission is granted to copy, distribute and/or modify this document
57 under the terms of the GNU Free Documentation License, Version 1.3 or
58 any later version published by the Free Software Foundation; with no
59 Invariant Sections, with the Front-Cover Texts being
60 “GNAT User’s Guide for Native Platforms”,
61 and with no Back-Cover Texts. A copy of the license is
62 included in the section entitled @ref{1,,GNU Free Documentation License}.
63
64 @menu
65 * About This Guide::
66 * Getting Started with GNAT::
67 * The GNAT Compilation Model::
68 * Building Executable Programs with GNAT::
69 * GNAT Utility Programs::
70 * GNAT and Program Execution::
71 * Platform-Specific Information::
72 * Example of Binder Output File::
73 * Elaboration Order Handling in GNAT::
74 * Inline Assembler::
75 * GNU Free Documentation License::
76 * Index::
77
78 @detailmenu
79 --- The Detailed Node Listing ---
80
81 About This Guide
82
83 * What This Guide Contains::
84 * What You Should Know before Reading This Guide::
85 * Related Information::
86 * Conventions::
87
88 Getting Started with GNAT
89
90 * System Requirements::
91 * Running GNAT::
92 * Running a Simple Ada Program::
93 * Running a Program with Multiple Units::
94
95 The GNAT Compilation Model
96
97 * Source Representation::
98 * Foreign Language Representation::
99 * File Naming Topics and Utilities::
100 * Configuration Pragmas::
101 * Generating Object Files::
102 * Source Dependencies::
103 * The Ada Library Information Files::
104 * Binding an Ada Program::
105 * GNAT and Libraries::
106 * Conditional Compilation::
107 * Mixed Language Programming::
108 * GNAT and Other Compilation Models::
109 * Using GNAT Files with External Tools::
110
111 Foreign Language Representation
112
113 * Latin-1::
114 * Other 8-Bit Codes::
115 * Wide_Character Encodings::
116 * Wide_Wide_Character Encodings::
117
118 File Naming Topics and Utilities
119
120 * File Naming Rules::
121 * Using Other File Names::
122 * Alternative File Naming Schemes::
123 * Handling Arbitrary File Naming Conventions with gnatname::
124 * File Name Krunching with gnatkr::
125 * Renaming Files with gnatchop::
126
127 Handling Arbitrary File Naming Conventions with gnatname
128
129 * Arbitrary File Naming Conventions::
130 * Running gnatname::
131 * Switches for gnatname::
132 * Examples of gnatname Usage::
133
134 File Name Krunching with gnatkr
135
136 * About gnatkr::
137 * Using gnatkr::
138 * Krunching Method::
139 * Examples of gnatkr Usage::
140
141 Renaming Files with gnatchop
142
143 * Handling Files with Multiple Units::
144 * Operating gnatchop in Compilation Mode::
145 * Command Line for gnatchop::
146 * Switches for gnatchop::
147 * Examples of gnatchop Usage::
148
149 Configuration Pragmas
150
151 * Handling of Configuration Pragmas::
152 * The Configuration Pragmas Files::
153
154 GNAT and Libraries
155
156 * Introduction to Libraries in GNAT::
157 * General Ada Libraries::
158 * Stand-alone Ada Libraries::
159 * Rebuilding the GNAT Run-Time Library::
160
161 General Ada Libraries
162
163 * Building a library::
164 * Installing a library::
165 * Using a library::
166
167 Stand-alone Ada Libraries
168
169 * Introduction to Stand-alone Libraries::
170 * Building a Stand-alone Library::
171 * Creating a Stand-alone Library to be used in a non-Ada context::
172 * Restrictions in Stand-alone Libraries::
173
174 Conditional Compilation
175
176 * Modeling Conditional Compilation in Ada::
177 * Preprocessing with gnatprep::
178 * Integrated Preprocessing::
179
180 Modeling Conditional Compilation in Ada
181
182 * Use of Boolean Constants::
183 * Debugging - A Special Case::
184 * Conditionalizing Declarations::
185 * Use of Alternative Implementations::
186 * Preprocessing::
187
188 Preprocessing with gnatprep
189
190 * Preprocessing Symbols::
191 * Using gnatprep::
192 * Switches for gnatprep::
193 * Form of Definitions File::
194 * Form of Input Text for gnatprep::
195
196 Mixed Language Programming
197
198 * Interfacing to C::
199 * Calling Conventions::
200 * Building Mixed Ada and C++ Programs::
201 * Partition-Wide Settings::
202 * Generating Ada Bindings for C and C++ headers::
203 * Generating C Headers for Ada Specifications::
204
205 Building Mixed Ada and C++ Programs
206
207 * Interfacing to C++::
208 * Linking a Mixed C++ & Ada Program::
209 * A Simple Example::
210 * Interfacing with C++ constructors::
211 * Interfacing with C++ at the Class Level::
212
213 Generating Ada Bindings for C and C++ headers
214
215 * Running the Binding Generator::
216 * Generating Bindings for C++ Headers::
217 * Switches::
218
219 Generating C Headers for Ada Specifications
220
221 * Running the C Header Generator::
222
223 GNAT and Other Compilation Models
224
225 * Comparison between GNAT and C/C++ Compilation Models::
226 * Comparison between GNAT and Conventional Ada Library Models::
227
228 Using GNAT Files with External Tools
229
230 * Using Other Utility Programs with GNAT::
231 * The External Symbol Naming Scheme of GNAT::
232
233 Building Executable Programs with GNAT
234
235 * Building with gnatmake::
236 * Compiling with gcc::
237 * Compiler Switches::
238 * Linker Switches::
239 * Binding with gnatbind::
240 * Linking with gnatlink::
241 * Using the GNU make Utility::
242
243 Building with gnatmake
244
245 * Running gnatmake::
246 * Switches for gnatmake::
247 * Mode Switches for gnatmake::
248 * Notes on the Command Line::
249 * How gnatmake Works::
250 * Examples of gnatmake Usage::
251
252 Compiling with gcc
253
254 * Compiling Programs::
255 * Search Paths and the Run-Time Library (RTL): Search Paths and the Run-Time Library RTL.
256 * Order of Compilation Issues::
257 * Examples::
258
259 Compiler Switches
260
261 * Alphabetical List of All Switches::
262 * Output and Error Message Control::
263 * Warning Message Control::
264 * Debugging and Assertion Control::
265 * Validity Checking::
266 * Style Checking::
267 * Run-Time Checks::
268 * Using gcc for Syntax Checking::
269 * Using gcc for Semantic Checking::
270 * Compiling Different Versions of Ada::
271 * Character Set Control::
272 * File Naming Control::
273 * Subprogram Inlining Control::
274 * Auxiliary Output Control::
275 * Debugging Control::
276 * Exception Handling Control::
277 * Units to Sources Mapping Files::
278 * Code Generation Control::
279
280 Binding with gnatbind
281
282 * Running gnatbind::
283 * Switches for gnatbind::
284 * Command-Line Access::
285 * Search Paths for gnatbind::
286 * Examples of gnatbind Usage::
287
288 Switches for gnatbind
289
290 * Consistency-Checking Modes::
291 * Binder Error Message Control::
292 * Elaboration Control::
293 * Output Control::
294 * Dynamic Allocation Control::
295 * Binding with Non-Ada Main Programs::
296 * Binding Programs with No Main Subprogram::
297
298 Linking with gnatlink
299
300 * Running gnatlink::
301 * Switches for gnatlink::
302
303 Using the GNU make Utility
304
305 * Using gnatmake in a Makefile::
306 * Automatically Creating a List of Directories::
307 * Generating the Command Line Switches::
308 * Overcoming Command Line Length Limits::
309
310 GNAT Utility Programs
311
312 * The File Cleanup Utility gnatclean::
313 * The GNAT Library Browser gnatls::
314
315 The File Cleanup Utility gnatclean
316
317 * Running gnatclean::
318 * Switches for gnatclean::
319
320 The GNAT Library Browser gnatls
321
322 * Running gnatls::
323 * Switches for gnatls::
324 * Example of gnatls Usage::
325
326 GNAT and Program Execution
327
328 * Running and Debugging Ada Programs::
329 * Profiling::
330 * Improving Performance::
331 * Overflow Check Handling in GNAT::
332 * Performing Dimensionality Analysis in GNAT::
333 * Stack Related Facilities::
334 * Memory Management Issues::
335
336 Running and Debugging Ada Programs
337
338 * The GNAT Debugger GDB::
339 * Running GDB::
340 * Introduction to GDB Commands::
341 * Using Ada Expressions::
342 * Calling User-Defined Subprograms::
343 * Using the next Command in a Function::
344 * Stopping When Ada Exceptions Are Raised::
345 * Ada Tasks::
346 * Debugging Generic Units::
347 * Remote Debugging with gdbserver::
348 * GNAT Abnormal Termination or Failure to Terminate::
349 * Naming Conventions for GNAT Source Files::
350 * Getting Internal Debugging Information::
351 * Stack Traceback::
352 * Pretty-Printers for the GNAT runtime::
353
354 Stack Traceback
355
356 * Non-Symbolic Traceback::
357 * Symbolic Traceback::
358
359 Profiling
360
361 * Profiling an Ada Program with gprof::
362
363 Profiling an Ada Program with gprof
364
365 * Compilation for profiling::
366 * Program execution::
367 * Running gprof::
368 * Interpretation of profiling results::
369
370 Improving Performance
371
372 * Performance Considerations::
373 * Text_IO Suggestions::
374 * Reducing Size of Executables with Unused Subprogram/Data Elimination::
375
376 Performance Considerations
377
378 * Controlling Run-Time Checks::
379 * Use of Restrictions::
380 * Optimization Levels::
381 * Debugging Optimized Code::
382 * Inlining of Subprograms::
383 * Floating Point Operations::
384 * Vectorization of loops::
385 * Other Optimization Switches::
386 * Optimization and Strict Aliasing::
387 * Aliased Variables and Optimization::
388 * Atomic Variables and Optimization::
389 * Passive Task Optimization::
390
391 Reducing Size of Executables with Unused Subprogram/Data Elimination
392
393 * About unused subprogram/data elimination::
394 * Compilation options::
395 * Example of unused subprogram/data elimination::
396
397 Overflow Check Handling in GNAT
398
399 * Background::
400 * Management of Overflows in GNAT::
401 * Specifying the Desired Mode::
402 * Default Settings::
403 * Implementation Notes::
404
405 Stack Related Facilities
406
407 * Stack Overflow Checking::
408 * Static Stack Usage Analysis::
409 * Dynamic Stack Usage Analysis::
410
411 Memory Management Issues
412
413 * Some Useful Memory Pools::
414 * The GNAT Debug Pool Facility::
415
416 Platform-Specific Information
417
418 * Run-Time Libraries::
419 * Specifying a Run-Time Library::
420 * GNU/Linux Topics::
421 * Microsoft Windows Topics::
422 * Mac OS Topics::
423
424 Run-Time Libraries
425
426 * Summary of Run-Time Configurations::
427
428 Specifying a Run-Time Library
429
430 * Choosing the Scheduling Policy::
431
432 GNU/Linux Topics
433
434 * Required Packages on GNU/Linux::
435 * Position Independent Executable (PIE) Enabled by Default on Linux: Position Independent Executable PIE Enabled by Default on Linux.
436 * A GNU/Linux Debug Quirk::
437
438 Microsoft Windows Topics
439
440 * Using GNAT on Windows::
441 * Using a network installation of GNAT::
442 * CONSOLE and WINDOWS subsystems::
443 * Temporary Files::
444 * Disabling Command Line Argument Expansion::
445 * Windows Socket Timeouts::
446 * Mixed-Language Programming on Windows::
447 * Windows Specific Add-Ons::
448
449 Mixed-Language Programming on Windows
450
451 * Windows Calling Conventions::
452 * Introduction to Dynamic Link Libraries (DLLs): Introduction to Dynamic Link Libraries DLLs.
453 * Using DLLs with GNAT::
454 * Building DLLs with GNAT Project files::
455 * Building DLLs with GNAT::
456 * Building DLLs with gnatdll::
457 * Ada DLLs and Finalization::
458 * Creating a Spec for Ada DLLs::
459 * GNAT and Windows Resources::
460 * Using GNAT DLLs from Microsoft Visual Studio Applications::
461 * Debugging a DLL::
462 * Setting Stack Size from gnatlink::
463 * Setting Heap Size from gnatlink::
464
465 Windows Calling Conventions
466
467 * C Calling Convention::
468 * Stdcall Calling Convention::
469 * Win32 Calling Convention::
470 * DLL Calling Convention::
471
472 Using DLLs with GNAT
473
474 * Creating an Ada Spec for the DLL Services::
475 * Creating an Import Library::
476
477 Building DLLs with gnatdll
478
479 * Limitations When Using Ada DLLs from Ada::
480 * Exporting Ada Entities::
481 * Ada DLLs and Elaboration::
482
483 Creating a Spec for Ada DLLs
484
485 * Creating the Definition File::
486 * Using gnatdll::
487
488 GNAT and Windows Resources
489
490 * Building Resources::
491 * Compiling Resources::
492 * Using Resources::
493
494 Debugging a DLL
495
496 * Program and DLL Both Built with GCC/GNAT::
497 * Program Built with Foreign Tools and DLL Built with GCC/GNAT::
498
499 Windows Specific Add-Ons
500
501 * Win32Ada::
502 * wPOSIX::
503
504 Mac OS Topics
505
506 * Codesigning the Debugger::
507
508 Elaboration Order Handling in GNAT
509
510 * Elaboration Code::
511 * Elaboration Order::
512 * Checking the Elaboration Order::
513 * Controlling the Elaboration Order in Ada::
514 * Controlling the Elaboration Order in GNAT::
515 * Mixing Elaboration Models::
516 * ABE Diagnostics::
517 * SPARK Diagnostics::
518 * Elaboration Circularities::
519 * Resolving Elaboration Circularities::
520 * Elaboration-related Compiler Switches::
521 * Summary of Procedures for Elaboration Control::
522 * Inspecting the Chosen Elaboration Order::
523
524 Inline Assembler
525
526 * Basic Assembler Syntax::
527 * A Simple Example of Inline Assembler::
528 * Output Variables in Inline Assembler::
529 * Input Variables in Inline Assembler::
530 * Inlining Inline Assembler Code::
531 * Other Asm Functionality::
532
533 Other Asm Functionality
534
535 * The Clobber Parameter::
536 * The Volatile Parameter::
537
538 @end detailmenu
539 @end menu
540
541 @node About This Guide,Getting Started with GNAT,Top,Top
542 @anchor{gnat_ugn/about_this_guide doc}@anchor{2}@anchor{gnat_ugn/about_this_guide about-this-guide}@anchor{3}@anchor{gnat_ugn/about_this_guide gnat-user-s-guide-for-native-platforms}@anchor{4}@anchor{gnat_ugn/about_this_guide id1}@anchor{5}
543 @chapter About This Guide
544
545
546
547 This guide describes the use of GNAT,
548 a compiler and software development
549 toolset for the full Ada programming language.
550 It documents the features of the compiler and tools, and explains
551 how to use them to build Ada applications.
552
553 GNAT implements Ada 95, Ada 2005, Ada 2012, and Ada 202x, and it may also be
554 invoked in Ada 83 compatibility mode.
555 By default, GNAT assumes Ada 2012, but you can override with a
556 compiler switch (@ref{6,,Compiling Different Versions of Ada})
557 to explicitly specify the language version.
558 Throughout this manual, references to ‘Ada’ without a year suffix
559 apply to all Ada versions of the language, starting with Ada 95.
560
561 @menu
562 * What This Guide Contains::
563 * What You Should Know before Reading This Guide::
564 * Related Information::
565 * Conventions::
566
567 @end menu
568
569 @node What This Guide Contains,What You Should Know before Reading This Guide,,About This Guide
570 @anchor{gnat_ugn/about_this_guide what-this-guide-contains}@anchor{7}
571 @section What This Guide Contains
572
573
574 This guide contains the following chapters:
575
576
577 @itemize *
578
579 @item
580 @ref{8,,Getting Started with GNAT} describes how to get started compiling
581 and running Ada programs with the GNAT Ada programming environment.
582
583 @item
584 @ref{9,,The GNAT Compilation Model} describes the compilation model used
585 by GNAT.
586
587 @item
588 @ref{a,,Building Executable Programs with GNAT} describes how to use the
589 main GNAT tools to build executable programs, and it also gives examples of
590 using the GNU make utility with GNAT.
591
592 @item
593 @ref{b,,GNAT Utility Programs} explains the various utility programs that
594 are included in the GNAT environment.
595
596 @item
597 @ref{c,,GNAT and Program Execution} covers a number of topics related to
598 running, debugging, and tuning the performance of programs developed
599 with GNAT.
600 @end itemize
601
602 Appendices cover several additional topics:
603
604
605 @itemize *
606
607 @item
608 @ref{d,,Platform-Specific Information} describes the different run-time
609 library implementations and also presents information on how to use
610 GNAT on several specific platforms.
611
612 @item
613 @ref{e,,Example of Binder Output File} shows the source code for the binder
614 output file for a sample program.
615
616 @item
617 @ref{f,,Elaboration Order Handling in GNAT} describes how GNAT helps
618 you deal with elaboration order issues.
619
620 @item
621 @ref{10,,Inline Assembler} shows how to use the inline assembly facility
622 in an Ada program.
623 @end itemize
624
625 @node What You Should Know before Reading This Guide,Related Information,What This Guide Contains,About This Guide
626 @anchor{gnat_ugn/about_this_guide what-you-should-know-before-reading-this-guide}@anchor{11}
627 @section What You Should Know before Reading This Guide
628
629
630 @geindex Ada 95 Language Reference Manual
631
632 @geindex Ada 2005 Language Reference Manual
633
634 This guide assumes a basic familiarity with the Ada 95 language, as
635 described in the International Standard ANSI/ISO/IEC-8652:1995, January
636 1995.
637 Reference manuals for Ada 95, Ada 2005, and Ada 2012 are included in
638 the GNAT documentation package.
639
640 @node Related Information,Conventions,What You Should Know before Reading This Guide,About This Guide
641 @anchor{gnat_ugn/about_this_guide related-information}@anchor{12}
642 @section Related Information
643
644
645 For further information about Ada and related tools, please refer to the
646 following documents:
647
648
649 @itemize *
650
651 @item
652 @cite{Ada 95 Reference Manual}, @cite{Ada 2005 Reference Manual}, and
653 @cite{Ada 2012 Reference Manual}, which contain reference
654 material for the several revisions of the Ada language standard.
655
656 @item
657 @cite{GNAT Reference_Manual}, which contains all reference material for the GNAT
658 implementation of Ada.
659
660 @item
661 @cite{Using GNAT Studio}, which describes the GNAT Studio
662 Integrated Development Environment.
663
664 @item
665 @cite{GNAT Studio Tutorial}, which introduces the
666 main GNAT Studio features through examples.
667
668 @item
669 @cite{Debugging with GDB},
670 for all details on the use of the GNU source-level debugger.
671
672 @item
673 @cite{GNU Emacs Manual},
674 for full information on the extensible editor and programming
675 environment Emacs.
676 @end itemize
677
678 @node Conventions,,Related Information,About This Guide
679 @anchor{gnat_ugn/about_this_guide conventions}@anchor{13}
680 @section Conventions
681
682
683 @geindex Conventions
684 @geindex typographical
685
686 @geindex Typographical conventions
687
688 Following are examples of the typographical and graphic conventions used
689 in this guide:
690
691
692 @itemize *
693
694 @item
695 @code{Functions}, @code{utility program names}, @code{standard names},
696 and @code{classes}.
697
698 @item
699 @code{Option flags}
700
701 @item
702 @code{File names}
703
704 @item
705 @code{Variables}
706
707 @item
708 `Emphasis'
709
710 @item
711 [optional information or parameters]
712
713 @item
714 Examples are described by text
715
716 @example
717 and then shown this way.
718 @end example
719
720 @item
721 Commands that are entered by the user are shown as preceded by a prompt string
722 comprising the @code{$} character followed by a space.
723
724 @item
725 Full file names are shown with the ‘/’ character
726 as the directory separator; e.g., @code{parent-dir/subdir/myfile.adb}.
727 If you are using GNAT on a Windows platform, please note that
728 the ‘\’ character should be used instead.
729 @end itemize
730
731 @node Getting Started with GNAT,The GNAT Compilation Model,About This Guide,Top
732 @anchor{gnat_ugn/getting_started_with_gnat doc}@anchor{14}@anchor{gnat_ugn/getting_started_with_gnat getting-started-with-gnat}@anchor{8}@anchor{gnat_ugn/getting_started_with_gnat id1}@anchor{15}
733 @chapter Getting Started with GNAT
734
735
736 This chapter describes how to use GNAT’s command line interface to build
737 executable Ada programs.
738 On most platforms a visually oriented Integrated Development Environment
739 is also available: GNAT Studio.
740 GNAT Studio offers a graphical “look and feel”, support for development in
741 other programming languages, comprehensive browsing features, and
742 many other capabilities.
743 For information on GNAT Studio please refer to the
744 @cite{GNAT Studio documentation}.
745
746 @menu
747 * System Requirements::
748 * Running GNAT::
749 * Running a Simple Ada Program::
750 * Running a Program with Multiple Units::
751
752 @end menu
753
754 @node System Requirements,Running GNAT,,Getting Started with GNAT
755 @anchor{gnat_ugn/getting_started_with_gnat id2}@anchor{16}@anchor{gnat_ugn/getting_started_with_gnat system-requirements}@anchor{17}
756 @section System Requirements
757
758
759 Even though any machine can run the GNAT toolset and GNAT Studio IDE, in order
760 to get the best experience, we recommend using a machine with as many cores
761 as possible since all individual compilations can run in parallel.
762 A comfortable setup for a compiler server is a machine with 24 physical cores
763 or more, with at least 48 GB of memory (2 GB per core).
764
765 For a desktop machine, a minimum of 4 cores is recommended (8 preferred),
766 with at least 2GB per core (so 8 to 16GB).
767
768 In addition, for running and navigating sources in GNAT Studio smoothly, we
769 recommend at least 1.5 GB plus 3 GB of RAM per 1 million source line of code.
770 In other words, we recommend at least 3 GB for for 500K lines of code and
771 7.5 GB for 2 million lines of code.
772
773 Note that using local and fast drives will also make a difference in terms of
774 build and link time. Network drives such as NFS, SMB, or worse, configuration
775 management filesystems (such as ClearCase dynamic views) should be avoided as
776 much as possible and will produce very degraded performance (typically 2 to 3
777 times slower than on local fast drives). If such slow drives cannot be avoided
778 for accessing the source code, then you should at least configure your project
779 file so that the result of the compilation is stored on a drive local to the
780 machine performing the run. This can be achieved by setting the @code{Object_Dir}
781 project file attribute.
782
783 @node Running GNAT,Running a Simple Ada Program,System Requirements,Getting Started with GNAT
784 @anchor{gnat_ugn/getting_started_with_gnat id3}@anchor{18}@anchor{gnat_ugn/getting_started_with_gnat running-gnat}@anchor{19}
785 @section Running GNAT
786
787
788 Three steps are needed to create an executable file from an Ada source
789 file:
790
791
792 @itemize *
793
794 @item
795 The source file(s) must be compiled.
796
797 @item
798 The file(s) must be bound using the GNAT binder.
799
800 @item
801 All appropriate object files must be linked to produce an executable.
802 @end itemize
803
804 All three steps are most commonly handled by using the @code{gnatmake}
805 utility program that, given the name of the main program, automatically
806 performs the necessary compilation, binding and linking steps.
807
808 @node Running a Simple Ada Program,Running a Program with Multiple Units,Running GNAT,Getting Started with GNAT
809 @anchor{gnat_ugn/getting_started_with_gnat id4}@anchor{1a}@anchor{gnat_ugn/getting_started_with_gnat running-a-simple-ada-program}@anchor{1b}
810 @section Running a Simple Ada Program
811
812
813 Any text editor may be used to prepare an Ada program.
814 (If Emacs is used, the optional Ada mode may be helpful in laying out the
815 program.)
816 The program text is a normal text file. We will assume in our initial
817 example that you have used your editor to prepare the following
818 standard format text file:
819
820 @example
821 with Ada.Text_IO; use Ada.Text_IO;
822 procedure Hello is
823 begin
824 Put_Line ("Hello WORLD!");
825 end Hello;
826 @end example
827
828 This file should be named @code{hello.adb}.
829 With the normal default file naming conventions, GNAT requires
830 that each file
831 contain a single compilation unit whose file name is the
832 unit name,
833 with periods replaced by hyphens; the
834 extension is @code{ads} for a
835 spec and @code{adb} for a body.
836 You can override this default file naming convention by use of the
837 special pragma @code{Source_File_Name} (for further information please
838 see @ref{1c,,Using Other File Names}).
839 Alternatively, if you want to rename your files according to this default
840 convention, which is probably more convenient if you will be using GNAT
841 for all your compilations, then the @code{gnatchop} utility
842 can be used to generate correctly-named source files
843 (see @ref{1d,,Renaming Files with gnatchop}).
844
845 You can compile the program using the following command (@code{$} is used
846 as the command prompt in the examples in this document):
847
848 @example
849 $ gcc -c hello.adb
850 @end example
851
852 @code{gcc} is the command used to run the compiler. This compiler is
853 capable of compiling programs in several languages, including Ada and
854 C. It assumes that you have given it an Ada program if the file extension is
855 either @code{.ads} or @code{.adb}, and it will then call
856 the GNAT compiler to compile the specified file.
857
858 The @code{-c} switch is required. It tells @code{gcc} to only do a
859 compilation. (For C programs, @code{gcc} can also do linking, but this
860 capability is not used directly for Ada programs, so the @code{-c}
861 switch must always be present.)
862
863 This compile command generates a file
864 @code{hello.o}, which is the object
865 file corresponding to your Ada program. It also generates
866 an ‘Ada Library Information’ file @code{hello.ali},
867 which contains additional information used to check
868 that an Ada program is consistent.
869
870 To build an executable file, use either @code{gnatmake} or gprbuild with
871 the name of the main file: these tools are builders that will take care of
872 all the necessary build steps in the correct order.
873 In particular, these builders automatically recompile any sources that have
874 been modified since they were last compiled, or sources that depend
875 on such modified sources, so that ‘version skew’ is avoided.
876
877 @geindex Version skew (avoided by `@w{`}gnatmake`@w{`})
878
879 @example
880 $ gnatmake hello.adb
881 @end example
882
883 The result is an executable program called @code{hello}, which can be
884 run by entering:
885
886 @example
887 $ hello
888 @end example
889
890 assuming that the current directory is on the search path
891 for executable programs.
892
893 and, if all has gone well, you will see:
894
895 @example
896 Hello WORLD!
897 @end example
898
899 appear in response to this command.
900
901 @node Running a Program with Multiple Units,,Running a Simple Ada Program,Getting Started with GNAT
902 @anchor{gnat_ugn/getting_started_with_gnat id5}@anchor{1e}@anchor{gnat_ugn/getting_started_with_gnat running-a-program-with-multiple-units}@anchor{1f}
903 @section Running a Program with Multiple Units
904
905
906 Consider a slightly more complicated example that has three files: a
907 main program, and the spec and body of a package:
908
909 @example
910 package Greetings is
911 procedure Hello;
912 procedure Goodbye;
913 end Greetings;
914
915 with Ada.Text_IO; use Ada.Text_IO;
916 package body Greetings is
917 procedure Hello is
918 begin
919 Put_Line ("Hello WORLD!");
920 end Hello;
921
922 procedure Goodbye is
923 begin
924 Put_Line ("Goodbye WORLD!");
925 end Goodbye;
926 end Greetings;
927
928 with Greetings;
929 procedure Gmain is
930 begin
931 Greetings.Hello;
932 Greetings.Goodbye;
933 end Gmain;
934 @end example
935
936 Following the one-unit-per-file rule, place this program in the
937 following three separate files:
938
939
940 @table @asis
941
942 @item `greetings.ads'
943
944 spec of package @code{Greetings}
945
946 @item `greetings.adb'
947
948 body of package @code{Greetings}
949
950 @item `gmain.adb'
951
952 body of main program
953 @end table
954
955 Note that there is no required order of compilation when using GNAT.
956 In particular it is perfectly fine to compile the main program first.
957 Also, it is not necessary to compile package specs in the case where
958 there is an accompanying body; you only need to compile the body. If you want
959 to submit these files to the compiler for semantic checking and not code
960 generation, then use the @code{-gnatc} switch:
961
962 @example
963 $ gcc -c greetings.ads -gnatc
964 @end example
965
966 Although the compilation can be done in separate steps, in practice it is
967 almost always more convenient to use the @code{gnatmake} or @code{gprbuild} tools:
968
969 @example
970 $ gnatmake gmain.adb
971 @end example
972
973 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
974
975 @node The GNAT Compilation Model,Building Executable Programs with GNAT,Getting Started with GNAT,Top
976 @anchor{gnat_ugn/the_gnat_compilation_model doc}@anchor{20}@anchor{gnat_ugn/the_gnat_compilation_model id1}@anchor{21}@anchor{gnat_ugn/the_gnat_compilation_model the-gnat-compilation-model}@anchor{9}
977 @chapter The GNAT Compilation Model
978
979
980 @geindex GNAT compilation model
981
982 @geindex Compilation model
983
984 This chapter describes the compilation model used by GNAT. Although
985 similar to that used by other languages such as C and C++, this model
986 is substantially different from the traditional Ada compilation models,
987 which are based on a centralized program library. The chapter covers
988 the following material:
989
990
991 @itemize *
992
993 @item
994 Topics related to source file makeup and naming
995
996
997 @itemize *
998
999 @item
1000 @ref{22,,Source Representation}
1001
1002 @item
1003 @ref{23,,Foreign Language Representation}
1004
1005 @item
1006 @ref{24,,File Naming Topics and Utilities}
1007 @end itemize
1008
1009 @item
1010 @ref{25,,Configuration Pragmas}
1011
1012 @item
1013 @ref{26,,Generating Object Files}
1014
1015 @item
1016 @ref{27,,Source Dependencies}
1017
1018 @item
1019 @ref{28,,The Ada Library Information Files}
1020
1021 @item
1022 @ref{29,,Binding an Ada Program}
1023
1024 @item
1025 @ref{2a,,GNAT and Libraries}
1026
1027 @item
1028 @ref{2b,,Conditional Compilation}
1029
1030 @item
1031 @ref{2c,,Mixed Language Programming}
1032
1033 @item
1034 @ref{2d,,GNAT and Other Compilation Models}
1035
1036 @item
1037 @ref{2e,,Using GNAT Files with External Tools}
1038 @end itemize
1039
1040 @menu
1041 * Source Representation::
1042 * Foreign Language Representation::
1043 * File Naming Topics and Utilities::
1044 * Configuration Pragmas::
1045 * Generating Object Files::
1046 * Source Dependencies::
1047 * The Ada Library Information Files::
1048 * Binding an Ada Program::
1049 * GNAT and Libraries::
1050 * Conditional Compilation::
1051 * Mixed Language Programming::
1052 * GNAT and Other Compilation Models::
1053 * Using GNAT Files with External Tools::
1054
1055 @end menu
1056
1057 @node Source Representation,Foreign Language Representation,,The GNAT Compilation Model
1058 @anchor{gnat_ugn/the_gnat_compilation_model id2}@anchor{2f}@anchor{gnat_ugn/the_gnat_compilation_model source-representation}@anchor{22}
1059 @section Source Representation
1060
1061
1062 @geindex Latin-1
1063
1064 @geindex VT
1065 @geindex HT
1066 @geindex CR
1067 @geindex LF
1068 @geindex FF
1069
1070 Ada source programs are represented in standard text files, using
1071 Latin-1 coding. Latin-1 is an 8-bit code that includes the familiar
1072 7-bit ASCII set, plus additional characters used for
1073 representing foreign languages (see @ref{23,,Foreign Language Representation}
1074 for support of non-USA character sets). The format effector characters
1075 are represented using their standard ASCII encodings, as follows:
1076
1077 @quotation
1078
1079
1080 @multitable {xxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxx}
1081 @item
1082
1083 Character
1084
1085 @tab
1086
1087 Effect
1088
1089 @tab
1090
1091 Code
1092
1093 @item
1094
1095 @code{VT}
1096
1097 @tab
1098
1099 Vertical tab
1100
1101 @tab
1102
1103 @code{16#0B#}
1104
1105 @item
1106
1107 @code{HT}
1108
1109 @tab
1110
1111 Horizontal tab
1112
1113 @tab
1114
1115 @code{16#09#}
1116
1117 @item
1118
1119 @code{CR}
1120
1121 @tab
1122
1123 Carriage return
1124
1125 @tab
1126
1127 @code{16#0D#}
1128
1129 @item
1130
1131 @code{LF}
1132
1133 @tab
1134
1135 Line feed
1136
1137 @tab
1138
1139 @code{16#0A#}
1140
1141 @item
1142
1143 @code{FF}
1144
1145 @tab
1146
1147 Form feed
1148
1149 @tab
1150
1151 @code{16#0C#}
1152
1153 @end multitable
1154
1155 @end quotation
1156
1157 Source files are in standard text file format. In addition, GNAT will
1158 recognize a wide variety of stream formats, in which the end of
1159 physical lines is marked by any of the following sequences:
1160 @code{LF}, @code{CR}, @code{CR-LF}, or @code{LF-CR}. This is useful
1161 in accommodating files that are imported from other operating systems.
1162
1163 @geindex End of source file; Source file@comma{} end
1164
1165 @geindex SUB (control character)
1166
1167 The end of a source file is normally represented by the physical end of
1168 file. However, the control character @code{16#1A#} (@code{SUB}) is also
1169 recognized as signalling the end of the source file. Again, this is
1170 provided for compatibility with other operating systems where this
1171 code is used to represent the end of file.
1172
1173 @geindex spec (definition)
1174 @geindex compilation (definition)
1175
1176 Each file contains a single Ada compilation unit, including any pragmas
1177 associated with the unit. For example, this means you must place a
1178 package declaration (a package `spec') and the corresponding body in
1179 separate files. An Ada `compilation' (which is a sequence of
1180 compilation units) is represented using a sequence of files. Similarly,
1181 you will place each subunit or child unit in a separate file.
1182
1183 @node Foreign Language Representation,File Naming Topics and Utilities,Source Representation,The GNAT Compilation Model
1184 @anchor{gnat_ugn/the_gnat_compilation_model foreign-language-representation}@anchor{23}@anchor{gnat_ugn/the_gnat_compilation_model id3}@anchor{30}
1185 @section Foreign Language Representation
1186
1187
1188 GNAT supports the standard character sets defined in Ada as well as
1189 several other non-standard character sets for use in localized versions
1190 of the compiler (@ref{31,,Character Set Control}).
1191
1192 @menu
1193 * Latin-1::
1194 * Other 8-Bit Codes::
1195 * Wide_Character Encodings::
1196 * Wide_Wide_Character Encodings::
1197
1198 @end menu
1199
1200 @node Latin-1,Other 8-Bit Codes,,Foreign Language Representation
1201 @anchor{gnat_ugn/the_gnat_compilation_model id4}@anchor{32}@anchor{gnat_ugn/the_gnat_compilation_model latin-1}@anchor{33}
1202 @subsection Latin-1
1203
1204
1205 @geindex Latin-1
1206
1207 The basic character set is Latin-1. This character set is defined by ISO
1208 standard 8859, part 1. The lower half (character codes @code{16#00#}
1209 … @code{16#7F#)} is identical to standard ASCII coding, but the upper
1210 half is used to represent additional characters. These include extended letters
1211 used by European languages, such as French accents, the vowels with umlauts
1212 used in German, and the extra letter A-ring used in Swedish.
1213
1214 @geindex Ada.Characters.Latin_1
1215
1216 For a complete list of Latin-1 codes and their encodings, see the source
1217 file of library unit @code{Ada.Characters.Latin_1} in file
1218 @code{a-chlat1.ads}.
1219 You may use any of these extended characters freely in character or
1220 string literals. In addition, the extended characters that represent
1221 letters can be used in identifiers.
1222
1223 @node Other 8-Bit Codes,Wide_Character Encodings,Latin-1,Foreign Language Representation
1224 @anchor{gnat_ugn/the_gnat_compilation_model id5}@anchor{34}@anchor{gnat_ugn/the_gnat_compilation_model other-8-bit-codes}@anchor{35}
1225 @subsection Other 8-Bit Codes
1226
1227
1228 GNAT also supports several other 8-bit coding schemes:
1229
1230 @geindex Latin-2
1231
1232 @geindex ISO 8859-2
1233
1234
1235 @table @asis
1236
1237 @item `ISO 8859-2 (Latin-2)'
1238
1239 Latin-2 letters allowed in identifiers, with uppercase and lowercase
1240 equivalence.
1241 @end table
1242
1243 @geindex Latin-3
1244
1245 @geindex ISO 8859-3
1246
1247
1248 @table @asis
1249
1250 @item `ISO 8859-3 (Latin-3)'
1251
1252 Latin-3 letters allowed in identifiers, with uppercase and lowercase
1253 equivalence.
1254 @end table
1255
1256 @geindex Latin-4
1257
1258 @geindex ISO 8859-4
1259
1260
1261 @table @asis
1262
1263 @item `ISO 8859-4 (Latin-4)'
1264
1265 Latin-4 letters allowed in identifiers, with uppercase and lowercase
1266 equivalence.
1267 @end table
1268
1269 @geindex ISO 8859-5
1270
1271 @geindex Cyrillic
1272
1273
1274 @table @asis
1275
1276 @item `ISO 8859-5 (Cyrillic)'
1277
1278 ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and
1279 lowercase equivalence.
1280 @end table
1281
1282 @geindex ISO 8859-15
1283
1284 @geindex Latin-9
1285
1286
1287 @table @asis
1288
1289 @item `ISO 8859-15 (Latin-9)'
1290
1291 ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and
1292 lowercase equivalence.
1293 @end table
1294
1295 @geindex code page 437 (IBM PC)
1296
1297
1298 @table @asis
1299
1300 @item `IBM PC (code page 437)'
1301
1302 This code page is the normal default for PCs in the U.S. It corresponds
1303 to the original IBM PC character set. This set has some, but not all, of
1304 the extended Latin-1 letters, but these letters do not have the same
1305 encoding as Latin-1. In this mode, these letters are allowed in
1306 identifiers with uppercase and lowercase equivalence.
1307 @end table
1308
1309 @geindex code page 850 (IBM PC)
1310
1311
1312 @table @asis
1313
1314 @item `IBM PC (code page 850)'
1315
1316 This code page is a modification of 437 extended to include all the
1317 Latin-1 letters, but still not with the usual Latin-1 encoding. In this
1318 mode, all these letters are allowed in identifiers with uppercase and
1319 lowercase equivalence.
1320
1321 @item `Full Upper 8-bit'
1322
1323 Any character in the range 80-FF allowed in identifiers, and all are
1324 considered distinct. In other words, there are no uppercase and lowercase
1325 equivalences in this range. This is useful in conjunction with
1326 certain encoding schemes used for some foreign character sets (e.g.,
1327 the typical method of representing Chinese characters on the PC).
1328
1329 @item `No Upper-Half'
1330
1331 No upper-half characters in the range 80-FF are allowed in identifiers.
1332 This gives Ada 83 compatibility for identifier names.
1333 @end table
1334
1335 For precise data on the encodings permitted, and the uppercase and lowercase
1336 equivalences that are recognized, see the file @code{csets.adb} in
1337 the GNAT compiler sources. You will need to obtain a full source release
1338 of GNAT to obtain this file.
1339
1340 @node Wide_Character Encodings,Wide_Wide_Character Encodings,Other 8-Bit Codes,Foreign Language Representation
1341 @anchor{gnat_ugn/the_gnat_compilation_model id6}@anchor{36}@anchor{gnat_ugn/the_gnat_compilation_model wide-character-encodings}@anchor{37}
1342 @subsection Wide_Character Encodings
1343
1344
1345 GNAT allows wide character codes to appear in character and string
1346 literals, and also optionally in identifiers, by means of the following
1347 possible encoding schemes:
1348
1349
1350 @table @asis
1351
1352 @item `Hex Coding'
1353
1354 In this encoding, a wide character is represented by the following five
1355 character sequence:
1356
1357 @example
1358 ESC a b c d
1359 @end example
1360
1361 where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
1362 characters (using uppercase letters) of the wide character code. For
1363 example, ESC A345 is used to represent the wide character with code
1364 @code{16#A345#}.
1365 This scheme is compatible with use of the full Wide_Character set.
1366
1367 @item `Upper-Half Coding'
1368
1369 @geindex Upper-Half Coding
1370
1371 The wide character with encoding @code{16#abcd#} where the upper bit is on
1372 (in other words, ‘a’ is in the range 8-F) is represented as two bytes,
1373 @code{16#ab#} and @code{16#cd#}. The second byte cannot be a format control
1374 character, but is not required to be in the upper half. This method can
1375 be also used for shift-JIS or EUC, where the internal coding matches the
1376 external coding.
1377
1378 @item `Shift JIS Coding'
1379
1380 @geindex Shift JIS Coding
1381
1382 A wide character is represented by a two-character sequence,
1383 @code{16#ab#} and
1384 @code{16#cd#}, with the restrictions described for upper-half encoding as
1385 described above. The internal character code is the corresponding JIS
1386 character according to the standard algorithm for Shift-JIS
1387 conversion. Only characters defined in the JIS code set table can be
1388 used with this encoding method.
1389
1390 @item `EUC Coding'
1391
1392 @geindex EUC Coding
1393
1394 A wide character is represented by a two-character sequence
1395 @code{16#ab#} and
1396 @code{16#cd#}, with both characters being in the upper half. The internal
1397 character code is the corresponding JIS character according to the EUC
1398 encoding algorithm. Only characters defined in the JIS code set table
1399 can be used with this encoding method.
1400
1401 @item `UTF-8 Coding'
1402
1403 A wide character is represented using
1404 UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
1405 10646-1/Am.2. Depending on the character value, the representation
1406 is a one, two, or three byte sequence:
1407
1408 @example
1409 16#0000#-16#007f#: 2#0xxxxxxx#
1410 16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
1411 16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
1412 @end example
1413
1414 where the @code{xxx} bits correspond to the left-padded bits of the
1415 16-bit character value. Note that all lower half ASCII characters
1416 are represented as ASCII bytes and all upper half characters and
1417 other wide characters are represented as sequences of upper-half
1418 (The full UTF-8 scheme allows for encoding 31-bit characters as
1419 6-byte sequences, and in the following section on wide wide
1420 characters, the use of these sequences is documented).
1421
1422 @item `Brackets Coding'
1423
1424 In this encoding, a wide character is represented by the following eight
1425 character sequence:
1426
1427 @example
1428 [ " a b c d " ]
1429 @end example
1430
1431 where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
1432 characters (using uppercase letters) of the wide character code. For
1433 example, [‘A345’] is used to represent the wide character with code
1434 @code{16#A345#}. It is also possible (though not required) to use the
1435 Brackets coding for upper half characters. For example, the code
1436 @code{16#A3#} can be represented as @code{['A3']}.
1437
1438 This scheme is compatible with use of the full Wide_Character set,
1439 and is also the method used for wide character encoding in some standard
1440 ACATS (Ada Conformity Assessment Test Suite) test suite distributions.
1441 @end table
1442
1443 @cartouche
1444 @quotation Note
1445 Some of these coding schemes do not permit the full use of the
1446 Ada character set. For example, neither Shift JIS nor EUC allow the
1447 use of the upper half of the Latin-1 set.
1448 @end quotation
1449 @end cartouche
1450
1451 @node Wide_Wide_Character Encodings,,Wide_Character Encodings,Foreign Language Representation
1452 @anchor{gnat_ugn/the_gnat_compilation_model id7}@anchor{38}@anchor{gnat_ugn/the_gnat_compilation_model wide-wide-character-encodings}@anchor{39}
1453 @subsection Wide_Wide_Character Encodings
1454
1455
1456 GNAT allows wide wide character codes to appear in character and string
1457 literals, and also optionally in identifiers, by means of the following
1458 possible encoding schemes:
1459
1460
1461 @table @asis
1462
1463 @item `UTF-8 Coding'
1464
1465 A wide character is represented using
1466 UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
1467 10646-1/Am.2. Depending on the character value, the representation
1468 of character codes with values greater than 16#FFFF# is a
1469 is a four, five, or six byte sequence:
1470
1471 @example
1472 16#01_0000#-16#10_FFFF#: 11110xxx 10xxxxxx 10xxxxxx
1473 10xxxxxx
1474 16#0020_0000#-16#03FF_FFFF#: 111110xx 10xxxxxx 10xxxxxx
1475 10xxxxxx 10xxxxxx
1476 16#0400_0000#-16#7FFF_FFFF#: 1111110x 10xxxxxx 10xxxxxx
1477 10xxxxxx 10xxxxxx 10xxxxxx
1478 @end example
1479
1480 where the @code{xxx} bits correspond to the left-padded bits of the
1481 32-bit character value.
1482
1483 @item `Brackets Coding'
1484
1485 In this encoding, a wide wide character is represented by the following ten or
1486 twelve byte character sequence:
1487
1488 @example
1489 [ " a b c d e f " ]
1490 [ " a b c d e f g h " ]
1491 @end example
1492
1493 where @code{a-h} are the six or eight hexadecimal
1494 characters (using uppercase letters) of the wide wide character code. For
1495 example, [“1F4567”] is used to represent the wide wide character with code
1496 @code{16#001F_4567#}.
1497
1498 This scheme is compatible with use of the full Wide_Wide_Character set,
1499 and is also the method used for wide wide character encoding in some standard
1500 ACATS (Ada Conformity Assessment Test Suite) test suite distributions.
1501 @end table
1502
1503 @node File Naming Topics and Utilities,Configuration Pragmas,Foreign Language Representation,The GNAT Compilation Model
1504 @anchor{gnat_ugn/the_gnat_compilation_model file-naming-topics-and-utilities}@anchor{24}@anchor{gnat_ugn/the_gnat_compilation_model id8}@anchor{3a}
1505 @section File Naming Topics and Utilities
1506
1507
1508 GNAT has a default file naming scheme and also provides the user with
1509 a high degree of control over how the names and extensions of the
1510 source files correspond to the Ada compilation units that they contain.
1511
1512 @menu
1513 * File Naming Rules::
1514 * Using Other File Names::
1515 * Alternative File Naming Schemes::
1516 * Handling Arbitrary File Naming Conventions with gnatname::
1517 * File Name Krunching with gnatkr::
1518 * Renaming Files with gnatchop::
1519
1520 @end menu
1521
1522 @node File Naming Rules,Using Other File Names,,File Naming Topics and Utilities
1523 @anchor{gnat_ugn/the_gnat_compilation_model file-naming-rules}@anchor{3b}@anchor{gnat_ugn/the_gnat_compilation_model id9}@anchor{3c}
1524 @subsection File Naming Rules
1525
1526
1527 The default file name is determined by the name of the unit that the
1528 file contains. The name is formed by taking the full expanded name of
1529 the unit and replacing the separating dots with hyphens and using
1530 lowercase for all letters.
1531
1532 An exception arises if the file name generated by the above rules starts
1533 with one of the characters
1534 @code{a}, @code{g}, @code{i}, or @code{s}, and the second character is a
1535 minus. In this case, the character tilde is used in place
1536 of the minus. The reason for this special rule is to avoid clashes with
1537 the standard names for child units of the packages System, Ada,
1538 Interfaces, and GNAT, which use the prefixes
1539 @code{s-}, @code{a-}, @code{i-}, and @code{g-},
1540 respectively.
1541
1542 The file extension is @code{.ads} for a spec and
1543 @code{.adb} for a body. The following table shows some
1544 examples of these rules.
1545
1546 @quotation
1547
1548
1549 @multitable {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
1550 @item
1551
1552 Source File
1553
1554 @tab
1555
1556 Ada Compilation Unit
1557
1558 @item
1559
1560 @code{main.ads}
1561
1562 @tab
1563
1564 Main (spec)
1565
1566 @item
1567
1568 @code{main.adb}
1569
1570 @tab
1571
1572 Main (body)
1573
1574 @item
1575
1576 @code{arith_functions.ads}
1577
1578 @tab
1579
1580 Arith_Functions (package spec)
1581
1582 @item
1583
1584 @code{arith_functions.adb}
1585
1586 @tab
1587
1588 Arith_Functions (package body)
1589
1590 @item
1591
1592 @code{func-spec.ads}
1593
1594 @tab
1595
1596 Func.Spec (child package spec)
1597
1598 @item
1599
1600 @code{func-spec.adb}
1601
1602 @tab
1603
1604 Func.Spec (child package body)
1605
1606 @item
1607
1608 @code{main-sub.adb}
1609
1610 @tab
1611
1612 Sub (subunit of Main)
1613
1614 @item
1615
1616 @code{a~bad.adb}
1617
1618 @tab
1619
1620 A.Bad (child package body)
1621
1622 @end multitable
1623
1624 @end quotation
1625
1626 Following these rules can result in excessively long
1627 file names if corresponding
1628 unit names are long (for example, if child units or subunits are
1629 heavily nested). An option is available to shorten such long file names
1630 (called file name ‘krunching’). This may be particularly useful when
1631 programs being developed with GNAT are to be used on operating systems
1632 with limited file name lengths. @ref{3d,,Using gnatkr}.
1633
1634 Of course, no file shortening algorithm can guarantee uniqueness over
1635 all possible unit names; if file name krunching is used, it is your
1636 responsibility to ensure no name clashes occur. Alternatively you
1637 can specify the exact file names that you want used, as described
1638 in the next section. Finally, if your Ada programs are migrating from a
1639 compiler with a different naming convention, you can use the gnatchop
1640 utility to produce source files that follow the GNAT naming conventions.
1641 (For details see @ref{1d,,Renaming Files with gnatchop}.)
1642
1643 Note: in the case of Windows or Mac OS operating systems, case is not
1644 significant. So for example on Windows if the canonical name is
1645 @code{main-sub.adb}, you can use the file name @code{Main-Sub.adb} instead.
1646 However, case is significant for other operating systems, so for example,
1647 if you want to use other than canonically cased file names on a Unix system,
1648 you need to follow the procedures described in the next section.
1649
1650 @node Using Other File Names,Alternative File Naming Schemes,File Naming Rules,File Naming Topics and Utilities
1651 @anchor{gnat_ugn/the_gnat_compilation_model id10}@anchor{3e}@anchor{gnat_ugn/the_gnat_compilation_model using-other-file-names}@anchor{1c}
1652 @subsection Using Other File Names
1653
1654
1655 @geindex File names
1656
1657 In the previous section, we have described the default rules used by
1658 GNAT to determine the file name in which a given unit resides. It is
1659 often convenient to follow these default rules, and if you follow them,
1660 the compiler knows without being explicitly told where to find all
1661 the files it needs.
1662
1663 @geindex Source_File_Name pragma
1664
1665 However, in some cases, particularly when a program is imported from
1666 another Ada compiler environment, it may be more convenient for the
1667 programmer to specify which file names contain which units. GNAT allows
1668 arbitrary file names to be used by means of the Source_File_Name pragma.
1669 The form of this pragma is as shown in the following examples:
1670
1671 @example
1672 pragma Source_File_Name (My_Utilities.Stacks,
1673 Spec_File_Name => "myutilst_a.ada");
1674 pragma Source_File_name (My_Utilities.Stacks,
1675 Body_File_Name => "myutilst.ada");
1676 @end example
1677
1678 As shown in this example, the first argument for the pragma is the unit
1679 name (in this example a child unit). The second argument has the form
1680 of a named association. The identifier
1681 indicates whether the file name is for a spec or a body;
1682 the file name itself is given by a string literal.
1683
1684 The source file name pragma is a configuration pragma, which means that
1685 normally it will be placed in the @code{gnat.adc}
1686 file used to hold configuration
1687 pragmas that apply to a complete compilation environment.
1688 For more details on how the @code{gnat.adc} file is created and used
1689 see @ref{3f,,Handling of Configuration Pragmas}.
1690
1691 @geindex gnat.adc
1692
1693 GNAT allows completely arbitrary file names to be specified using the
1694 source file name pragma. However, if the file name specified has an
1695 extension other than @code{.ads} or @code{.adb} it is necessary to use
1696 a special syntax when compiling the file. The name in this case must be
1697 preceded by the special sequence @code{-x} followed by a space and the name
1698 of the language, here @code{ada}, as in:
1699
1700 @example
1701 $ gcc -c -x ada peculiar_file_name.sim
1702 @end example
1703
1704 @code{gnatmake} handles non-standard file names in the usual manner (the
1705 non-standard file name for the main program is simply used as the
1706 argument to gnatmake). Note that if the extension is also non-standard,
1707 then it must be included in the @code{gnatmake} command, it may not
1708 be omitted.
1709
1710 @node Alternative File Naming Schemes,Handling Arbitrary File Naming Conventions with gnatname,Using Other File Names,File Naming Topics and Utilities
1711 @anchor{gnat_ugn/the_gnat_compilation_model alternative-file-naming-schemes}@anchor{40}@anchor{gnat_ugn/the_gnat_compilation_model id11}@anchor{41}
1712 @subsection Alternative File Naming Schemes
1713
1714
1715 @geindex File naming schemes
1716 @geindex alternative
1717
1718 @geindex File names
1719
1720 The previous section described the use of the @code{Source_File_Name}
1721 pragma to allow arbitrary names to be assigned to individual source files.
1722 However, this approach requires one pragma for each file, and especially in
1723 large systems can result in very long @code{gnat.adc} files, and also create
1724 a maintenance problem.
1725
1726 @geindex Source_File_Name pragma
1727
1728 GNAT also provides a facility for specifying systematic file naming schemes
1729 other than the standard default naming scheme previously described. An
1730 alternative scheme for naming is specified by the use of
1731 @code{Source_File_Name} pragmas having the following format:
1732
1733 @example
1734 pragma Source_File_Name (
1735 Spec_File_Name => FILE_NAME_PATTERN
1736 [ , Casing => CASING_SPEC]
1737 [ , Dot_Replacement => STRING_LITERAL ] );
1738
1739 pragma Source_File_Name (
1740 Body_File_Name => FILE_NAME_PATTERN
1741 [ , Casing => CASING_SPEC ]
1742 [ , Dot_Replacement => STRING_LITERAL ] ) ;
1743
1744 pragma Source_File_Name (
1745 Subunit_File_Name => FILE_NAME_PATTERN
1746 [ , Casing => CASING_SPEC ]
1747 [ , Dot_Replacement => STRING_LITERAL ] ) ;
1748
1749 FILE_NAME_PATTERN ::= STRING_LITERAL
1750 CASING_SPEC ::= Lowercase | Uppercase | Mixedcase
1751 @end example
1752
1753 The @code{FILE_NAME_PATTERN} string shows how the file name is constructed.
1754 It contains a single asterisk character, and the unit name is substituted
1755 systematically for this asterisk. The optional parameter
1756 @code{Casing} indicates
1757 whether the unit name is to be all upper-case letters, all lower-case letters,
1758 or mixed-case. If no
1759 @code{Casing} parameter is used, then the default is all
1760 lower-case.
1761
1762 The optional @code{Dot_Replacement} string is used to replace any periods
1763 that occur in subunit or child unit names. If no @code{Dot_Replacement}
1764 argument is used then separating dots appear unchanged in the resulting
1765 file name.
1766 Although the above syntax indicates that the
1767 @code{Casing} argument must appear
1768 before the @code{Dot_Replacement} argument, but it
1769 is also permissible to write these arguments in the opposite order.
1770
1771 As indicated, it is possible to specify different naming schemes for
1772 bodies, specs, and subunits. Quite often the rule for subunits is the
1773 same as the rule for bodies, in which case, there is no need to give
1774 a separate @code{Subunit_File_Name} rule, and in this case the
1775 @code{Body_File_name} rule is used for subunits as well.
1776
1777 The separate rule for subunits can also be used to implement the rather
1778 unusual case of a compilation environment (e.g., a single directory) which
1779 contains a subunit and a child unit with the same unit name. Although
1780 both units cannot appear in the same partition, the Ada Reference Manual
1781 allows (but does not require) the possibility of the two units coexisting
1782 in the same environment.
1783
1784 The file name translation works in the following steps:
1785
1786
1787 @itemize *
1788
1789 @item
1790 If there is a specific @code{Source_File_Name} pragma for the given unit,
1791 then this is always used, and any general pattern rules are ignored.
1792
1793 @item
1794 If there is a pattern type @code{Source_File_Name} pragma that applies to
1795 the unit, then the resulting file name will be used if the file exists. If
1796 more than one pattern matches, the latest one will be tried first, and the
1797 first attempt resulting in a reference to a file that exists will be used.
1798
1799 @item
1800 If no pattern type @code{Source_File_Name} pragma that applies to the unit
1801 for which the corresponding file exists, then the standard GNAT default
1802 naming rules are used.
1803 @end itemize
1804
1805 As an example of the use of this mechanism, consider a commonly used scheme
1806 in which file names are all lower case, with separating periods copied
1807 unchanged to the resulting file name, and specs end with @code{.1.ada}, and
1808 bodies end with @code{.2.ada}. GNAT will follow this scheme if the following
1809 two pragmas appear:
1810
1811 @example
1812 pragma Source_File_Name
1813 (Spec_File_Name => ".1.ada");
1814 pragma Source_File_Name
1815 (Body_File_Name => ".2.ada");
1816 @end example
1817
1818 The default GNAT scheme is actually implemented by providing the following
1819 default pragmas internally:
1820
1821 @example
1822 pragma Source_File_Name
1823 (Spec_File_Name => ".ads", Dot_Replacement => "-");
1824 pragma Source_File_Name
1825 (Body_File_Name => ".adb", Dot_Replacement => "-");
1826 @end example
1827
1828 Our final example implements a scheme typically used with one of the
1829 Ada 83 compilers, where the separator character for subunits was ‘__’
1830 (two underscores), specs were identified by adding @code{_.ADA}, bodies
1831 by adding @code{.ADA}, and subunits by
1832 adding @code{.SEP}. All file names were
1833 upper case. Child units were not present of course since this was an
1834 Ada 83 compiler, but it seems reasonable to extend this scheme to use
1835 the same double underscore separator for child units.
1836
1837 @example
1838 pragma Source_File_Name
1839 (Spec_File_Name => "_.ADA",
1840 Dot_Replacement => "__",
1841 Casing = Uppercase);
1842 pragma Source_File_Name
1843 (Body_File_Name => ".ADA",
1844 Dot_Replacement => "__",
1845 Casing = Uppercase);
1846 pragma Source_File_Name
1847 (Subunit_File_Name => ".SEP",
1848 Dot_Replacement => "__",
1849 Casing = Uppercase);
1850 @end example
1851
1852 @geindex gnatname
1853
1854 @node Handling Arbitrary File Naming Conventions with gnatname,File Name Krunching with gnatkr,Alternative File Naming Schemes,File Naming Topics and Utilities
1855 @anchor{gnat_ugn/the_gnat_compilation_model handling-arbitrary-file-naming-conventions-with-gnatname}@anchor{42}@anchor{gnat_ugn/the_gnat_compilation_model id12}@anchor{43}
1856 @subsection Handling Arbitrary File Naming Conventions with @code{gnatname}
1857
1858
1859 @geindex File Naming Conventions
1860
1861 @menu
1862 * Arbitrary File Naming Conventions::
1863 * Running gnatname::
1864 * Switches for gnatname::
1865 * Examples of gnatname Usage::
1866
1867 @end menu
1868
1869 @node Arbitrary File Naming Conventions,Running gnatname,,Handling Arbitrary File Naming Conventions with gnatname
1870 @anchor{gnat_ugn/the_gnat_compilation_model arbitrary-file-naming-conventions}@anchor{44}@anchor{gnat_ugn/the_gnat_compilation_model id13}@anchor{45}
1871 @subsubsection Arbitrary File Naming Conventions
1872
1873
1874 The GNAT compiler must be able to know the source file name of a compilation
1875 unit. When using the standard GNAT default file naming conventions
1876 (@code{.ads} for specs, @code{.adb} for bodies), the GNAT compiler
1877 does not need additional information.
1878
1879 When the source file names do not follow the standard GNAT default file naming
1880 conventions, the GNAT compiler must be given additional information through
1881 a configuration pragmas file (@ref{25,,Configuration Pragmas})
1882 or a project file.
1883 When the non-standard file naming conventions are well-defined,
1884 a small number of pragmas @code{Source_File_Name} specifying a naming pattern
1885 (@ref{40,,Alternative File Naming Schemes}) may be sufficient. However,
1886 if the file naming conventions are irregular or arbitrary, a number
1887 of pragma @code{Source_File_Name} for individual compilation units
1888 must be defined.
1889 To help maintain the correspondence between compilation unit names and
1890 source file names within the compiler,
1891 GNAT provides a tool @code{gnatname} to generate the required pragmas for a
1892 set of files.
1893
1894 @node Running gnatname,Switches for gnatname,Arbitrary File Naming Conventions,Handling Arbitrary File Naming Conventions with gnatname
1895 @anchor{gnat_ugn/the_gnat_compilation_model id14}@anchor{46}@anchor{gnat_ugn/the_gnat_compilation_model running-gnatname}@anchor{47}
1896 @subsubsection Running @code{gnatname}
1897
1898
1899 The usual form of the @code{gnatname} command is:
1900
1901 @example
1902 $ gnatname [ switches ] naming_pattern [ naming_patterns ]
1903 [--and [ switches ] naming_pattern [ naming_patterns ]]
1904 @end example
1905
1906 All of the arguments are optional. If invoked without any argument,
1907 @code{gnatname} will display its usage.
1908
1909 When used with at least one naming pattern, @code{gnatname} will attempt to
1910 find all the compilation units in files that follow at least one of the
1911 naming patterns. To find these compilation units,
1912 @code{gnatname} will use the GNAT compiler in syntax-check-only mode on all
1913 regular files.
1914
1915 One or several Naming Patterns may be given as arguments to @code{gnatname}.
1916 Each Naming Pattern is enclosed between double quotes (or single
1917 quotes on Windows).
1918 A Naming Pattern is a regular expression similar to the wildcard patterns
1919 used in file names by the Unix shells or the DOS prompt.
1920
1921 @code{gnatname} may be called with several sections of directories/patterns.
1922 Sections are separated by the switch @code{--and}. In each section, there must be
1923 at least one pattern. If no directory is specified in a section, the current
1924 directory (or the project directory if @code{-P} is used) is implied.
1925 The options other that the directory switches and the patterns apply globally
1926 even if they are in different sections.
1927
1928 Examples of Naming Patterns are:
1929
1930 @example
1931 "*.[12].ada"
1932 "*.ad[sb]*"
1933 "body_*" "spec_*"
1934 @end example
1935
1936 For a more complete description of the syntax of Naming Patterns,
1937 see the second kind of regular expressions described in @code{g-regexp.ads}
1938 (the ‘Glob’ regular expressions).
1939
1940 When invoked without the switch @code{-P}, @code{gnatname} will create a
1941 configuration pragmas file @code{gnat.adc} in the current working directory,
1942 with pragmas @code{Source_File_Name} for each file that contains a valid Ada
1943 unit.
1944
1945 @node Switches for gnatname,Examples of gnatname Usage,Running gnatname,Handling Arbitrary File Naming Conventions with gnatname
1946 @anchor{gnat_ugn/the_gnat_compilation_model id15}@anchor{48}@anchor{gnat_ugn/the_gnat_compilation_model switches-for-gnatname}@anchor{49}
1947 @subsubsection Switches for @code{gnatname}
1948
1949
1950 Switches for @code{gnatname} must precede any specified Naming Pattern.
1951
1952 You may specify any of the following switches to @code{gnatname}:
1953
1954 @geindex --version (gnatname)
1955
1956
1957 @table @asis
1958
1959 @item @code{--version}
1960
1961 Display Copyright and version, then exit disregarding all other options.
1962 @end table
1963
1964 @geindex --help (gnatname)
1965
1966
1967 @table @asis
1968
1969 @item @code{--help}
1970
1971 If @code{--version} was not used, display usage, then exit disregarding
1972 all other options.
1973
1974 @item @code{--subdirs=`dir'}
1975
1976 Real object, library or exec directories are subdirectories <dir> of the
1977 specified ones.
1978
1979 @item @code{--no-backup}
1980
1981 Do not create a backup copy of an existing project file.
1982
1983 @item @code{--and}
1984
1985 Start another section of directories/patterns.
1986 @end table
1987
1988 @geindex -c (gnatname)
1989
1990
1991 @table @asis
1992
1993 @item @code{-c`filename'}
1994
1995 Create a configuration pragmas file @code{filename} (instead of the default
1996 @code{gnat.adc}).
1997 There may be zero, one or more space between @code{-c} and
1998 @code{filename}.
1999 @code{filename} may include directory information. @code{filename} must be
2000 writable. There may be only one switch @code{-c}.
2001 When a switch @code{-c} is
2002 specified, no switch @code{-P} may be specified (see below).
2003 @end table
2004
2005 @geindex -d (gnatname)
2006
2007
2008 @table @asis
2009
2010 @item @code{-d`dir'}
2011
2012 Look for source files in directory @code{dir}. There may be zero, one or more
2013 spaces between @code{-d} and @code{dir}.
2014 @code{dir} may end with @code{/**}, that is it may be of the form
2015 @code{root_dir/**}. In this case, the directory @code{root_dir} and all of its
2016 subdirectories, recursively, have to be searched for sources.
2017 When a switch @code{-d}
2018 is specified, the current working directory will not be searched for source
2019 files, unless it is explicitly specified with a @code{-d}
2020 or @code{-D} switch.
2021 Several switches @code{-d} may be specified.
2022 If @code{dir} is a relative path, it is relative to the directory of
2023 the configuration pragmas file specified with switch
2024 @code{-c},
2025 or to the directory of the project file specified with switch
2026 @code{-P} or,
2027 if neither switch @code{-c}
2028 nor switch @code{-P} are specified, it is relative to the
2029 current working directory. The directory
2030 specified with switch @code{-d} must exist and be readable.
2031 @end table
2032
2033 @geindex -D (gnatname)
2034
2035
2036 @table @asis
2037
2038 @item @code{-D`filename'}
2039
2040 Look for source files in all directories listed in text file @code{filename}.
2041 There may be zero, one or more spaces between @code{-D}
2042 and @code{filename}.
2043 @code{filename} must be an existing, readable text file.
2044 Each nonempty line in @code{filename} must be a directory.
2045 Specifying switch @code{-D} is equivalent to specifying as many
2046 switches @code{-d} as there are nonempty lines in
2047 @code{file}.
2048
2049 @item @code{-eL}
2050
2051 Follow symbolic links when processing project files.
2052
2053 @geindex -f (gnatname)
2054
2055 @item @code{-f`pattern'}
2056
2057 Foreign patterns. Using this switch, it is possible to add sources of languages
2058 other than Ada to the list of sources of a project file.
2059 It is only useful if a -P switch is used.
2060 For example,
2061
2062 @example
2063 gnatname -Pprj -f"*.c" "*.ada"
2064 @end example
2065
2066 will look for Ada units in all files with the @code{.ada} extension,
2067 and will add to the list of file for project @code{prj.gpr} the C files
2068 with extension @code{.c}.
2069
2070 @geindex -h (gnatname)
2071
2072 @item @code{-h}
2073
2074 Output usage (help) information. The output is written to @code{stdout}.
2075
2076 @geindex -P (gnatname)
2077
2078 @item @code{-P`proj'}
2079
2080 Create or update project file @code{proj}. There may be zero, one or more space
2081 between @code{-P} and @code{proj}. @code{proj} may include directory
2082 information. @code{proj} must be writable.
2083 There may be only one switch @code{-P}.
2084 When a switch @code{-P} is specified,
2085 no switch @code{-c} may be specified.
2086 On all platforms, except on VMS, when @code{gnatname} is invoked for an
2087 existing project file <proj>.gpr, a backup copy of the project file is created
2088 in the project directory with file name <proj>.gpr.saved_x. ‘x’ is the first
2089 non negative number that makes this backup copy a new file.
2090
2091 @geindex -v (gnatname)
2092
2093 @item @code{-v}
2094
2095 Verbose mode. Output detailed explanation of behavior to @code{stdout}.
2096 This includes name of the file written, the name of the directories to search
2097 and, for each file in those directories whose name matches at least one of
2098 the Naming Patterns, an indication of whether the file contains a unit,
2099 and if so the name of the unit.
2100 @end table
2101
2102 @geindex -v -v (gnatname)
2103
2104
2105 @table @asis
2106
2107 @item @code{-v -v}
2108
2109 Very Verbose mode. In addition to the output produced in verbose mode,
2110 for each file in the searched directories whose name matches none of
2111 the Naming Patterns, an indication is given that there is no match.
2112
2113 @geindex -x (gnatname)
2114
2115 @item @code{-x`pattern'}
2116
2117 Excluded patterns. Using this switch, it is possible to exclude some files
2118 that would match the name patterns. For example,
2119
2120 @example
2121 gnatname -x "*_nt.ada" "*.ada"
2122 @end example
2123
2124 will look for Ada units in all files with the @code{.ada} extension,
2125 except those whose names end with @code{_nt.ada}.
2126 @end table
2127
2128 @node Examples of gnatname Usage,,Switches for gnatname,Handling Arbitrary File Naming Conventions with gnatname
2129 @anchor{gnat_ugn/the_gnat_compilation_model examples-of-gnatname-usage}@anchor{4a}@anchor{gnat_ugn/the_gnat_compilation_model id16}@anchor{4b}
2130 @subsubsection Examples of @code{gnatname} Usage
2131
2132
2133 @example
2134 $ gnatname -c /home/me/names.adc -d sources "[a-z]*.ada*"
2135 @end example
2136
2137 In this example, the directory @code{/home/me} must already exist
2138 and be writable. In addition, the directory
2139 @code{/home/me/sources} (specified by
2140 @code{-d sources}) must exist and be readable.
2141
2142 Note the optional spaces after @code{-c} and @code{-d}.
2143
2144 @example
2145 $ gnatname -P/home/me/proj -x "*_nt_body.ada"
2146 -dsources -dsources/plus -Dcommon_dirs.txt "body_*" "spec_*"
2147 @end example
2148
2149 Note that several switches @code{-d} may be used,
2150 even in conjunction with one or several switches
2151 @code{-D}. Several Naming Patterns and one excluded pattern
2152 are used in this example.
2153
2154 @node File Name Krunching with gnatkr,Renaming Files with gnatchop,Handling Arbitrary File Naming Conventions with gnatname,File Naming Topics and Utilities
2155 @anchor{gnat_ugn/the_gnat_compilation_model file-name-krunching-with-gnatkr}@anchor{4c}@anchor{gnat_ugn/the_gnat_compilation_model id17}@anchor{4d}
2156 @subsection File Name Krunching with @code{gnatkr}
2157
2158
2159 @geindex gnatkr
2160
2161 This section discusses the method used by the compiler to shorten
2162 the default file names chosen for Ada units so that they do not
2163 exceed the maximum length permitted. It also describes the
2164 @code{gnatkr} utility that can be used to determine the result of
2165 applying this shortening.
2166
2167 @menu
2168 * About gnatkr::
2169 * Using gnatkr::
2170 * Krunching Method::
2171 * Examples of gnatkr Usage::
2172
2173 @end menu
2174
2175 @node About gnatkr,Using gnatkr,,File Name Krunching with gnatkr
2176 @anchor{gnat_ugn/the_gnat_compilation_model about-gnatkr}@anchor{4e}@anchor{gnat_ugn/the_gnat_compilation_model id18}@anchor{4f}
2177 @subsubsection About @code{gnatkr}
2178
2179
2180 The default file naming rule in GNAT
2181 is that the file name must be derived from
2182 the unit name. The exact default rule is as follows:
2183
2184
2185 @itemize *
2186
2187 @item
2188 Take the unit name and replace all dots by hyphens.
2189
2190 @item
2191 If such a replacement occurs in the
2192 second character position of a name, and the first character is
2193 @code{a}, @code{g}, @code{s}, or @code{i},
2194 then replace the dot by the character
2195 @code{~} (tilde)
2196 instead of a minus.
2197
2198 The reason for this exception is to avoid clashes
2199 with the standard names for children of System, Ada, Interfaces,
2200 and GNAT, which use the prefixes
2201 @code{s-}, @code{a-}, @code{i-}, and @code{g-},
2202 respectively.
2203 @end itemize
2204
2205 The @code{-gnatk`nn'}
2206 switch of the compiler activates a ‘krunching’
2207 circuit that limits file names to nn characters (where nn is a decimal
2208 integer).
2209
2210 The @code{gnatkr} utility can be used to determine the krunched name for
2211 a given file, when krunched to a specified maximum length.
2212
2213 @node Using gnatkr,Krunching Method,About gnatkr,File Name Krunching with gnatkr
2214 @anchor{gnat_ugn/the_gnat_compilation_model id19}@anchor{50}@anchor{gnat_ugn/the_gnat_compilation_model using-gnatkr}@anchor{3d}
2215 @subsubsection Using @code{gnatkr}
2216
2217
2218 The @code{gnatkr} command has the form:
2219
2220 @example
2221 $ gnatkr name [ length ]
2222 @end example
2223
2224 @code{name} is the uncrunched file name, derived from the name of the unit
2225 in the standard manner described in the previous section (i.e., in particular
2226 all dots are replaced by hyphens). The file name may or may not have an
2227 extension (defined as a suffix of the form period followed by arbitrary
2228 characters other than period). If an extension is present then it will
2229 be preserved in the output. For example, when krunching @code{hellofile.ads}
2230 to eight characters, the result will be hellofil.ads.
2231
2232 Note: for compatibility with previous versions of @code{gnatkr} dots may
2233 appear in the name instead of hyphens, but the last dot will always be
2234 taken as the start of an extension. So if @code{gnatkr} is given an argument
2235 such as @code{Hello.World.adb} it will be treated exactly as if the first
2236 period had been a hyphen, and for example krunching to eight characters
2237 gives the result @code{hellworl.adb}.
2238
2239 Note that the result is always all lower case.
2240 Characters of the other case are folded as required.
2241
2242 @code{length} represents the length of the krunched name. The default
2243 when no argument is given is 8 characters. A length of zero stands for
2244 unlimited, in other words do not chop except for system files where the
2245 implied crunching length is always eight characters.
2246
2247 The output is the krunched name. The output has an extension only if the
2248 original argument was a file name with an extension.
2249
2250 @node Krunching Method,Examples of gnatkr Usage,Using gnatkr,File Name Krunching with gnatkr
2251 @anchor{gnat_ugn/the_gnat_compilation_model id20}@anchor{51}@anchor{gnat_ugn/the_gnat_compilation_model krunching-method}@anchor{52}
2252 @subsubsection Krunching Method
2253
2254
2255 The initial file name is determined by the name of the unit that the file
2256 contains. The name is formed by taking the full expanded name of the
2257 unit and replacing the separating dots with hyphens and
2258 using lowercase
2259 for all letters, except that a hyphen in the second character position is
2260 replaced by a tilde if the first character is
2261 @code{a}, @code{i}, @code{g}, or @code{s}.
2262 The extension is @code{.ads} for a
2263 spec and @code{.adb} for a body.
2264 Krunching does not affect the extension, but the file name is shortened to
2265 the specified length by following these rules:
2266
2267
2268 @itemize *
2269
2270 @item
2271 The name is divided into segments separated by hyphens, tildes or
2272 underscores and all hyphens, tildes, and underscores are
2273 eliminated. If this leaves the name short enough, we are done.
2274
2275 @item
2276 If the name is too long, the longest segment is located (left-most
2277 if there are two of equal length), and shortened by dropping
2278 its last character. This is repeated until the name is short enough.
2279
2280 As an example, consider the krunching of @code{our-strings-wide_fixed.adb}
2281 to fit the name into 8 characters as required by some operating systems:
2282
2283 @example
2284 our-strings-wide_fixed 22
2285 our strings wide fixed 19
2286 our string wide fixed 18
2287 our strin wide fixed 17
2288 our stri wide fixed 16
2289 our stri wide fixe 15
2290 our str wide fixe 14
2291 our str wid fixe 13
2292 our str wid fix 12
2293 ou str wid fix 11
2294 ou st wid fix 10
2295 ou st wi fix 9
2296 ou st wi fi 8
2297 Final file name: oustwifi.adb
2298 @end example
2299
2300 @item
2301 The file names for all predefined units are always krunched to eight
2302 characters. The krunching of these predefined units uses the following
2303 special prefix replacements:
2304
2305
2306 @multitable {xxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxx}
2307 @item
2308
2309 Prefix
2310
2311 @tab
2312
2313 Replacement
2314
2315 @item
2316
2317 @code{ada-}
2318
2319 @tab
2320
2321 @code{a-}
2322
2323 @item
2324
2325 @code{gnat-}
2326
2327 @tab
2328
2329 @code{g-}
2330
2331 @item
2332
2333 @code{interfac es-}
2334
2335 @tab
2336
2337 @code{i-}
2338
2339 @item
2340
2341 @code{system-}
2342
2343 @tab
2344
2345 @code{s-}
2346
2347 @end multitable
2348
2349
2350 These system files have a hyphen in the second character position. That
2351 is why normal user files replace such a character with a
2352 tilde, to avoid confusion with system file names.
2353
2354 As an example of this special rule, consider
2355 @code{ada-strings-wide_fixed.adb}, which gets krunched as follows:
2356
2357 @example
2358 ada-strings-wide_fixed 22
2359 a- strings wide fixed 18
2360 a- string wide fixed 17
2361 a- strin wide fixed 16
2362 a- stri wide fixed 15
2363 a- stri wide fixe 14
2364 a- str wide fixe 13
2365 a- str wid fixe 12
2366 a- str wid fix 11
2367 a- st wid fix 10
2368 a- st wi fix 9
2369 a- st wi fi 8
2370 Final file name: a-stwifi.adb
2371 @end example
2372 @end itemize
2373
2374 Of course no file shortening algorithm can guarantee uniqueness over all
2375 possible unit names, and if file name krunching is used then it is your
2376 responsibility to ensure that no name clashes occur. The utility
2377 program @code{gnatkr} is supplied for conveniently determining the
2378 krunched name of a file.
2379
2380 @node Examples of gnatkr Usage,,Krunching Method,File Name Krunching with gnatkr
2381 @anchor{gnat_ugn/the_gnat_compilation_model examples-of-gnatkr-usage}@anchor{53}@anchor{gnat_ugn/the_gnat_compilation_model id21}@anchor{54}
2382 @subsubsection Examples of @code{gnatkr} Usage
2383
2384
2385 @example
2386 $ gnatkr very_long_unit_name.ads --> velounna.ads
2387 $ gnatkr grandparent-parent-child.ads --> grparchi.ads
2388 $ gnatkr Grandparent.Parent.Child.ads --> grparchi.ads
2389 $ gnatkr grandparent-parent-child --> grparchi
2390 $ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads
2391 $ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads
2392 @end example
2393
2394 @node Renaming Files with gnatchop,,File Name Krunching with gnatkr,File Naming Topics and Utilities
2395 @anchor{gnat_ugn/the_gnat_compilation_model id22}@anchor{55}@anchor{gnat_ugn/the_gnat_compilation_model renaming-files-with-gnatchop}@anchor{1d}
2396 @subsection Renaming Files with @code{gnatchop}
2397
2398
2399 @geindex gnatchop
2400
2401 This section discusses how to handle files with multiple units by using
2402 the @code{gnatchop} utility. This utility is also useful in renaming
2403 files to meet the standard GNAT default file naming conventions.
2404
2405 @menu
2406 * Handling Files with Multiple Units::
2407 * Operating gnatchop in Compilation Mode::
2408 * Command Line for gnatchop::
2409 * Switches for gnatchop::
2410 * Examples of gnatchop Usage::
2411
2412 @end menu
2413
2414 @node Handling Files with Multiple Units,Operating gnatchop in Compilation Mode,,Renaming Files with gnatchop
2415 @anchor{gnat_ugn/the_gnat_compilation_model handling-files-with-multiple-units}@anchor{56}@anchor{gnat_ugn/the_gnat_compilation_model id23}@anchor{57}
2416 @subsubsection Handling Files with Multiple Units
2417
2418
2419 The basic compilation model of GNAT requires that a file submitted to the
2420 compiler have only one unit and there be a strict correspondence
2421 between the file name and the unit name.
2422
2423 If you want to keep your files with multiple units,
2424 perhaps to maintain compatibility with some other Ada compilation system,
2425 you can use @code{gnatname} to generate or update your project files.
2426 Generated or modified project files can be processed by GNAT.
2427
2428 See @ref{42,,Handling Arbitrary File Naming Conventions with gnatname}
2429 for more details on how to use @cite{gnatname}.
2430
2431 Alternatively, if you want to permanently restructure a set of ‘foreign’
2432 files so that they match the GNAT rules, and do the remaining development
2433 using the GNAT structure, you can simply use @code{gnatchop} once, generate the
2434 new set of files and work with them from that point on.
2435
2436 Note that if your file containing multiple units starts with a byte order
2437 mark (BOM) specifying UTF-8 encoding, then the files generated by gnatchop
2438 will each start with a copy of this BOM, meaning that they can be compiled
2439 automatically in UTF-8 mode without needing to specify an explicit encoding.
2440
2441 @node Operating gnatchop in Compilation Mode,Command Line for gnatchop,Handling Files with Multiple Units,Renaming Files with gnatchop
2442 @anchor{gnat_ugn/the_gnat_compilation_model id24}@anchor{58}@anchor{gnat_ugn/the_gnat_compilation_model operating-gnatchop-in-compilation-mode}@anchor{59}
2443 @subsubsection Operating gnatchop in Compilation Mode
2444
2445
2446 The basic function of @code{gnatchop} is to take a file with multiple units
2447 and split it into separate files. The boundary between files is reasonably
2448 clear, except for the issue of comments and pragmas. In default mode, the
2449 rule is that any pragmas between units belong to the previous unit, except
2450 that configuration pragmas always belong to the following unit. Any comments
2451 belong to the following unit. These rules
2452 almost always result in the right choice of
2453 the split point without needing to mark it explicitly and most users will
2454 find this default to be what they want. In this default mode it is incorrect to
2455 submit a file containing only configuration pragmas, or one that ends in
2456 configuration pragmas, to @code{gnatchop}.
2457
2458 However, using a special option to activate ‘compilation mode’,
2459 @code{gnatchop}
2460 can perform another function, which is to provide exactly the semantics
2461 required by the RM for handling of configuration pragmas in a compilation.
2462 In the absence of configuration pragmas (at the main file level), this
2463 option has no effect, but it causes such configuration pragmas to be handled
2464 in a quite different manner.
2465
2466 First, in compilation mode, if @code{gnatchop} is given a file that consists of
2467 only configuration pragmas, then this file is appended to the
2468 @code{gnat.adc} file in the current directory. This behavior provides
2469 the required behavior described in the RM for the actions to be taken
2470 on submitting such a file to the compiler, namely that these pragmas
2471 should apply to all subsequent compilations in the same compilation
2472 environment. Using GNAT, the current directory, possibly containing a
2473 @code{gnat.adc} file is the representation
2474 of a compilation environment. For more information on the
2475 @code{gnat.adc} file, see @ref{3f,,Handling of Configuration Pragmas}.
2476
2477 Second, in compilation mode, if @code{gnatchop}
2478 is given a file that starts with
2479 configuration pragmas, and contains one or more units, then these
2480 configuration pragmas are prepended to each of the chopped files. This
2481 behavior provides the required behavior described in the RM for the
2482 actions to be taken on compiling such a file, namely that the pragmas
2483 apply to all units in the compilation, but not to subsequently compiled
2484 units.
2485
2486 Finally, if configuration pragmas appear between units, they are appended
2487 to the previous unit. This results in the previous unit being illegal,
2488 since the compiler does not accept configuration pragmas that follow
2489 a unit. This provides the required RM behavior that forbids configuration
2490 pragmas other than those preceding the first compilation unit of a
2491 compilation.
2492
2493 For most purposes, @code{gnatchop} will be used in default mode. The
2494 compilation mode described above is used only if you need exactly
2495 accurate behavior with respect to compilations, and you have files
2496 that contain multiple units and configuration pragmas. In this
2497 circumstance the use of @code{gnatchop} with the compilation mode
2498 switch provides the required behavior, and is for example the mode
2499 in which GNAT processes the ACVC tests.
2500
2501 @node Command Line for gnatchop,Switches for gnatchop,Operating gnatchop in Compilation Mode,Renaming Files with gnatchop
2502 @anchor{gnat_ugn/the_gnat_compilation_model command-line-for-gnatchop}@anchor{5a}@anchor{gnat_ugn/the_gnat_compilation_model id25}@anchor{5b}
2503 @subsubsection Command Line for @code{gnatchop}
2504
2505
2506 The @code{gnatchop} command has the form:
2507
2508 @example
2509 $ gnatchop switches file_name [file_name ...]
2510 [directory]
2511 @end example
2512
2513 The only required argument is the file name of the file to be chopped.
2514 There are no restrictions on the form of this file name. The file itself
2515 contains one or more Ada units, in normal GNAT format, concatenated
2516 together. As shown, more than one file may be presented to be chopped.
2517
2518 When run in default mode, @code{gnatchop} generates one output file in
2519 the current directory for each unit in each of the files.
2520
2521 @code{directory}, if specified, gives the name of the directory to which
2522 the output files will be written. If it is not specified, all files are
2523 written to the current directory.
2524
2525 For example, given a
2526 file called @code{hellofiles} containing
2527
2528 @example
2529 procedure Hello;
2530
2531 with Ada.Text_IO; use Ada.Text_IO;
2532 procedure Hello is
2533 begin
2534 Put_Line ("Hello");
2535 end Hello;
2536 @end example
2537
2538 the command
2539
2540 @example
2541 $ gnatchop hellofiles
2542 @end example
2543
2544 generates two files in the current directory, one called
2545 @code{hello.ads} containing the single line that is the procedure spec,
2546 and the other called @code{hello.adb} containing the remaining text. The
2547 original file is not affected. The generated files can be compiled in
2548 the normal manner.
2549
2550 When gnatchop is invoked on a file that is empty or that contains only empty
2551 lines and/or comments, gnatchop will not fail, but will not produce any
2552 new sources.
2553
2554 For example, given a
2555 file called @code{toto.txt} containing
2556
2557 @example
2558 -- Just a comment
2559 @end example
2560
2561 the command
2562
2563 @example
2564 $ gnatchop toto.txt
2565 @end example
2566
2567 will not produce any new file and will result in the following warnings:
2568
2569 @example
2570 toto.txt:1:01: warning: empty file, contains no compilation units
2571 no compilation units found
2572 no source files written
2573 @end example
2574
2575 @node Switches for gnatchop,Examples of gnatchop Usage,Command Line for gnatchop,Renaming Files with gnatchop
2576 @anchor{gnat_ugn/the_gnat_compilation_model id26}@anchor{5c}@anchor{gnat_ugn/the_gnat_compilation_model switches-for-gnatchop}@anchor{5d}
2577 @subsubsection Switches for @code{gnatchop}
2578
2579
2580 @code{gnatchop} recognizes the following switches:
2581
2582 @geindex --version (gnatchop)
2583
2584
2585 @table @asis
2586
2587 @item @code{--version}
2588
2589 Display Copyright and version, then exit disregarding all other options.
2590 @end table
2591
2592 @geindex --help (gnatchop)
2593
2594
2595 @table @asis
2596
2597 @item @code{--help}
2598
2599 If @code{--version} was not used, display usage, then exit disregarding
2600 all other options.
2601 @end table
2602
2603 @geindex -c (gnatchop)
2604
2605
2606 @table @asis
2607
2608 @item @code{-c}
2609
2610 Causes @code{gnatchop} to operate in compilation mode, in which
2611 configuration pragmas are handled according to strict RM rules. See
2612 previous section for a full description of this mode.
2613
2614 @item @code{-gnat`xxx'}
2615
2616 This passes the given @code{-gnat`xxx'} switch to @code{gnat} which is
2617 used to parse the given file. Not all `xxx' options make sense,
2618 but for example, the use of @code{-gnati2} allows @code{gnatchop} to
2619 process a source file that uses Latin-2 coding for identifiers.
2620
2621 @item @code{-h}
2622
2623 Causes @code{gnatchop} to generate a brief help summary to the standard
2624 output file showing usage information.
2625 @end table
2626
2627 @geindex -k (gnatchop)
2628
2629
2630 @table @asis
2631
2632 @item @code{-k`mm'}
2633
2634 Limit generated file names to the specified number @code{mm}
2635 of characters.
2636 This is useful if the
2637 resulting set of files is required to be interoperable with systems
2638 which limit the length of file names.
2639 No space is allowed between the @code{-k} and the numeric value. The numeric
2640 value may be omitted in which case a default of @code{-k8},
2641 suitable for use
2642 with DOS-like file systems, is used. If no @code{-k} switch
2643 is present then
2644 there is no limit on the length of file names.
2645 @end table
2646
2647 @geindex -p (gnatchop)
2648
2649
2650 @table @asis
2651
2652 @item @code{-p}
2653
2654 Causes the file modification time stamp of the input file to be
2655 preserved and used for the time stamp of the output file(s). This may be
2656 useful for preserving coherency of time stamps in an environment where
2657 @code{gnatchop} is used as part of a standard build process.
2658 @end table
2659
2660 @geindex -q (gnatchop)
2661
2662
2663 @table @asis
2664
2665 @item @code{-q}
2666
2667 Causes output of informational messages indicating the set of generated
2668 files to be suppressed. Warnings and error messages are unaffected.
2669 @end table
2670
2671 @geindex -r (gnatchop)
2672
2673 @geindex Source_Reference pragmas
2674
2675
2676 @table @asis
2677
2678 @item @code{-r}
2679
2680 Generate @code{Source_Reference} pragmas. Use this switch if the output
2681 files are regarded as temporary and development is to be done in terms
2682 of the original unchopped file. This switch causes
2683 @code{Source_Reference} pragmas to be inserted into each of the
2684 generated files to refers back to the original file name and line number.
2685 The result is that all error messages refer back to the original
2686 unchopped file.
2687 In addition, the debugging information placed into the object file (when
2688 the @code{-g} switch of @code{gcc} or @code{gnatmake} is
2689 specified)
2690 also refers back to this original file so that tools like profilers and
2691 debuggers will give information in terms of the original unchopped file.
2692
2693 If the original file to be chopped itself contains
2694 a @code{Source_Reference}
2695 pragma referencing a third file, then gnatchop respects
2696 this pragma, and the generated @code{Source_Reference} pragmas
2697 in the chopped file refer to the original file, with appropriate
2698 line numbers. This is particularly useful when @code{gnatchop}
2699 is used in conjunction with @code{gnatprep} to compile files that
2700 contain preprocessing statements and multiple units.
2701 @end table
2702
2703 @geindex -v (gnatchop)
2704
2705
2706 @table @asis
2707
2708 @item @code{-v}
2709
2710 Causes @code{gnatchop} to operate in verbose mode. The version
2711 number and copyright notice are output, as well as exact copies of
2712 the gnat1 commands spawned to obtain the chop control information.
2713 @end table
2714
2715 @geindex -w (gnatchop)
2716
2717
2718 @table @asis
2719
2720 @item @code{-w}
2721
2722 Overwrite existing file names. Normally @code{gnatchop} regards it as a
2723 fatal error if there is already a file with the same name as a
2724 file it would otherwise output, in other words if the files to be
2725 chopped contain duplicated units. This switch bypasses this
2726 check, and causes all but the last instance of such duplicated
2727 units to be skipped.
2728 @end table
2729
2730 @geindex --GCC= (gnatchop)
2731
2732
2733 @table @asis
2734
2735 @item @code{--GCC=`xxxx'}
2736
2737 Specify the path of the GNAT parser to be used. When this switch is used,
2738 no attempt is made to add the prefix to the GNAT parser executable.
2739 @end table
2740
2741 @node Examples of gnatchop Usage,,Switches for gnatchop,Renaming Files with gnatchop
2742 @anchor{gnat_ugn/the_gnat_compilation_model examples-of-gnatchop-usage}@anchor{5e}@anchor{gnat_ugn/the_gnat_compilation_model id27}@anchor{5f}
2743 @subsubsection Examples of @code{gnatchop} Usage
2744
2745
2746 @example
2747 $ gnatchop -w hello_s.ada prerelease/files
2748 @end example
2749
2750 Chops the source file @code{hello_s.ada}. The output files will be
2751 placed in the directory @code{prerelease/files},
2752 overwriting any
2753 files with matching names in that directory (no files in the current
2754 directory are modified).
2755
2756 @example
2757 $ gnatchop archive
2758 @end example
2759
2760 Chops the source file @code{archive}
2761 into the current directory. One
2762 useful application of @code{gnatchop} is in sending sets of sources
2763 around, for example in email messages. The required sources are simply
2764 concatenated (for example, using a Unix @code{cat}
2765 command), and then
2766 @code{gnatchop} is used at the other end to reconstitute the original
2767 file names.
2768
2769 @example
2770 $ gnatchop file1 file2 file3 direc
2771 @end example
2772
2773 Chops all units in files @code{file1}, @code{file2}, @code{file3}, placing
2774 the resulting files in the directory @code{direc}. Note that if any units
2775 occur more than once anywhere within this set of files, an error message
2776 is generated, and no files are written. To override this check, use the
2777 @code{-w} switch,
2778 in which case the last occurrence in the last file will
2779 be the one that is output, and earlier duplicate occurrences for a given
2780 unit will be skipped.
2781
2782 @node Configuration Pragmas,Generating Object Files,File Naming Topics and Utilities,The GNAT Compilation Model
2783 @anchor{gnat_ugn/the_gnat_compilation_model configuration-pragmas}@anchor{25}@anchor{gnat_ugn/the_gnat_compilation_model id28}@anchor{60}
2784 @section Configuration Pragmas
2785
2786
2787 @geindex Configuration pragmas
2788
2789 @geindex Pragmas
2790 @geindex configuration
2791
2792 Configuration pragmas include those pragmas described as
2793 such in the Ada Reference Manual, as well as
2794 implementation-dependent pragmas that are configuration pragmas.
2795 See the @code{Implementation_Defined_Pragmas} chapter in the
2796 @cite{GNAT_Reference_Manual} for details on these
2797 additional GNAT-specific configuration pragmas.
2798 Most notably, the pragma @code{Source_File_Name}, which allows
2799 specifying non-default names for source files, is a configuration
2800 pragma. The following is a complete list of configuration pragmas
2801 recognized by GNAT:
2802
2803 @example
2804 Ada_83
2805 Ada_95
2806 Ada_05
2807 Ada_2005
2808 Ada_12
2809 Ada_2012
2810 Ada_2022
2811 Aggregate_Individually_Assign
2812 Allow_Integer_Address
2813 Annotate
2814 Assertion_Policy
2815 Assume_No_Invalid_Values
2816 C_Pass_By_Copy
2817 Check_Float_Overflow
2818 Check_Name
2819 Check_Policy
2820 Component_Alignment
2821 Convention_Identifier
2822 Debug_Policy
2823 Default_Scalar_Storage_Order
2824 Default_Storage_Pool
2825 Detect_Blocking
2826 Disable_Atomic_Synchronization
2827 Discard_Names
2828 Elaboration_Checks
2829 Eliminate
2830 Enable_Atomic_Synchronization
2831 Extend_System
2832 Extensions_Allowed
2833 External_Name_Casing
2834 Fast_Math
2835 Favor_Top_Level
2836 Ignore_Pragma
2837 Implicit_Packing
2838 Initialize_Scalars
2839 Interrupt_State
2840 License
2841 Locking_Policy
2842 No_Component_Reordering
2843 No_Heap_Finalization
2844 No_Strict_Aliasing
2845 Normalize_Scalars
2846 Optimize_Alignment
2847 Overflow_Mode
2848 Overriding_Renamings
2849 Partition_Elaboration_Policy
2850 Persistent_BSS
2851 Prefix_Exception_Messages
2852 Priority_Specific_Dispatching
2853 Profile
2854 Profile_Warnings
2855 Queuing_Policy
2856 Rename_Pragma
2857 Restrictions
2858 Restriction_Warnings
2859 Reviewable
2860 Short_Circuit_And_Or
2861 Source_File_Name
2862 Source_File_Name_Project
2863 SPARK_Mode
2864 Style_Checks
2865 Suppress
2866 Suppress_Exception_Locations
2867 Task_Dispatching_Policy
2868 Unevaluated_Use_Of_Old
2869 Unsuppress
2870 Use_VADS_Size
2871 Validity_Checks
2872 Warning_As_Error
2873 Warnings
2874 Wide_Character_Encoding
2875 @end example
2876
2877 @menu
2878 * Handling of Configuration Pragmas::
2879 * The Configuration Pragmas Files::
2880
2881 @end menu
2882
2883 @node Handling of Configuration Pragmas,The Configuration Pragmas Files,,Configuration Pragmas
2884 @anchor{gnat_ugn/the_gnat_compilation_model handling-of-configuration-pragmas}@anchor{3f}@anchor{gnat_ugn/the_gnat_compilation_model id29}@anchor{61}
2885 @subsection Handling of Configuration Pragmas
2886
2887
2888 Configuration pragmas may either appear at the start of a compilation
2889 unit, or they can appear in a configuration pragma file to apply to
2890 all compilations performed in a given compilation environment.
2891
2892 GNAT also provides the @code{gnatchop} utility to provide an automatic
2893 way to handle configuration pragmas following the semantics for
2894 compilations (that is, files with multiple units), described in the RM.
2895 See @ref{59,,Operating gnatchop in Compilation Mode} for details.
2896 However, for most purposes, it will be more convenient to edit the
2897 @code{gnat.adc} file that contains configuration pragmas directly,
2898 as described in the following section.
2899
2900 In the case of @code{Restrictions} pragmas appearing as configuration
2901 pragmas in individual compilation units, the exact handling depends on
2902 the type of restriction.
2903
2904 Restrictions that require partition-wide consistency (like
2905 @code{No_Tasking}) are
2906 recognized wherever they appear
2907 and can be freely inherited, e.g. from a `with'ed unit to the `with'ing
2908 unit. This makes sense since the binder will in any case insist on seeing
2909 consistent use, so any unit not conforming to any restrictions that are
2910 anywhere in the partition will be rejected, and you might as well find
2911 that out at compile time rather than at bind time.
2912
2913 For restrictions that do not require partition-wide consistency, e.g.
2914 SPARK or No_Implementation_Attributes, in general the restriction applies
2915 only to the unit in which the pragma appears, and not to any other units.
2916
2917 The exception is No_Elaboration_Code which always applies to the entire
2918 object file from a compilation, i.e. to the body, spec, and all subunits.
2919 This restriction can be specified in a configuration pragma file, or it
2920 can be on the body and/or the spec (in either case it applies to all the
2921 relevant units). It can appear on a subunit only if it has previously
2922 appeared in the body of spec.
2923
2924 @node The Configuration Pragmas Files,,Handling of Configuration Pragmas,Configuration Pragmas
2925 @anchor{gnat_ugn/the_gnat_compilation_model id30}@anchor{62}@anchor{gnat_ugn/the_gnat_compilation_model the-configuration-pragmas-files}@anchor{63}
2926 @subsection The Configuration Pragmas Files
2927
2928
2929 @geindex gnat.adc
2930
2931 In GNAT a compilation environment is defined by the current
2932 directory at the time that a compile command is given. This current
2933 directory is searched for a file whose name is @code{gnat.adc}. If
2934 this file is present, it is expected to contain one or more
2935 configuration pragmas that will be applied to the current compilation.
2936 However, if the switch @code{-gnatA} is used, @code{gnat.adc} is not
2937 considered. When taken into account, @code{gnat.adc} is added to the
2938 dependencies, so that if @code{gnat.adc} is modified later, an invocation of
2939 @code{gnatmake} will recompile the source.
2940
2941 Configuration pragmas may be entered into the @code{gnat.adc} file
2942 either by running @code{gnatchop} on a source file that consists only of
2943 configuration pragmas, or more conveniently by direct editing of the
2944 @code{gnat.adc} file, which is a standard format source file.
2945
2946 Besides @code{gnat.adc}, additional files containing configuration
2947 pragmas may be applied to the current compilation using the switch
2948 @code{-gnatec=`path'} where @code{path} must designate an existing file that
2949 contains only configuration pragmas. These configuration pragmas are
2950 in addition to those found in @code{gnat.adc} (provided @code{gnat.adc}
2951 is present and switch @code{-gnatA} is not used).
2952
2953 It is allowable to specify several switches @code{-gnatec=}, all of which
2954 will be taken into account.
2955
2956 Files containing configuration pragmas specified with switches
2957 @code{-gnatec=} are added to the dependencies, unless they are
2958 temporary files. A file is considered temporary if its name ends in
2959 @code{.tmp} or @code{.TMP}. Certain tools follow this naming
2960 convention because they pass information to @code{gcc} via
2961 temporary files that are immediately deleted; it doesn’t make sense to
2962 depend on a file that no longer exists. Such tools include
2963 @code{gprbuild}, @code{gnatmake}, and @code{gnatcheck}.
2964
2965 By default, configuration pragma files are stored by their absolute paths in
2966 ALI files. You can use the @code{-gnateb} switch in order to store them by
2967 their basename instead.
2968
2969 If you are using project file, a separate mechanism is provided using
2970 project attributes.
2971
2972 @c --Comment
2973 @c See :ref:`Specifying_Configuration_Pragmas` for more details.
2974
2975 @node Generating Object Files,Source Dependencies,Configuration Pragmas,The GNAT Compilation Model
2976 @anchor{gnat_ugn/the_gnat_compilation_model generating-object-files}@anchor{26}@anchor{gnat_ugn/the_gnat_compilation_model id31}@anchor{64}
2977 @section Generating Object Files
2978
2979
2980 An Ada program consists of a set of source files, and the first step in
2981 compiling the program is to generate the corresponding object files.
2982 These are generated by compiling a subset of these source files.
2983 The files you need to compile are the following:
2984
2985
2986 @itemize *
2987
2988 @item
2989 If a package spec has no body, compile the package spec to produce the
2990 object file for the package.
2991
2992 @item
2993 If a package has both a spec and a body, compile the body to produce the
2994 object file for the package. The source file for the package spec need
2995 not be compiled in this case because there is only one object file, which
2996 contains the code for both the spec and body of the package.
2997
2998 @item
2999 For a subprogram, compile the subprogram body to produce the object file
3000 for the subprogram. The spec, if one is present, is as usual in a
3001 separate file, and need not be compiled.
3002 @end itemize
3003
3004 @geindex Subunits
3005
3006
3007 @itemize *
3008
3009 @item
3010 In the case of subunits, only compile the parent unit. A single object
3011 file is generated for the entire subunit tree, which includes all the
3012 subunits.
3013
3014 @item
3015 Compile child units independently of their parent units
3016 (though, of course, the spec of all the ancestor unit must be present in order
3017 to compile a child unit).
3018
3019 @geindex Generics
3020
3021 @item
3022 Compile generic units in the same manner as any other units. The object
3023 files in this case are small dummy files that contain at most the
3024 flag used for elaboration checking. This is because GNAT always handles generic
3025 instantiation by means of macro expansion. However, it is still necessary to
3026 compile generic units, for dependency checking and elaboration purposes.
3027 @end itemize
3028
3029 The preceding rules describe the set of files that must be compiled to
3030 generate the object files for a program. Each object file has the same
3031 name as the corresponding source file, except that the extension is
3032 @code{.o} as usual.
3033
3034 You may wish to compile other files for the purpose of checking their
3035 syntactic and semantic correctness. For example, in the case where a
3036 package has a separate spec and body, you would not normally compile the
3037 spec. However, it is convenient in practice to compile the spec to make
3038 sure it is error-free before compiling clients of this spec, because such
3039 compilations will fail if there is an error in the spec.
3040
3041 GNAT provides an option for compiling such files purely for the
3042 purposes of checking correctness; such compilations are not required as
3043 part of the process of building a program. To compile a file in this
3044 checking mode, use the @code{-gnatc} switch.
3045
3046 @node Source Dependencies,The Ada Library Information Files,Generating Object Files,The GNAT Compilation Model
3047 @anchor{gnat_ugn/the_gnat_compilation_model id32}@anchor{65}@anchor{gnat_ugn/the_gnat_compilation_model source-dependencies}@anchor{27}
3048 @section Source Dependencies
3049
3050
3051 A given object file clearly depends on the source file which is compiled
3052 to produce it. Here we are using “depends” in the sense of a typical
3053 @code{make} utility; in other words, an object file depends on a source
3054 file if changes to the source file require the object file to be
3055 recompiled.
3056 In addition to this basic dependency, a given object may depend on
3057 additional source files as follows:
3058
3059
3060 @itemize *
3061
3062 @item
3063 If a file being compiled `with's a unit @code{X}, the object file
3064 depends on the file containing the spec of unit @code{X}. This includes
3065 files that are `with'ed implicitly either because they are parents
3066 of `with'ed child units or they are run-time units required by the
3067 language constructs used in a particular unit.
3068
3069 @item
3070 If a file being compiled instantiates a library level generic unit, the
3071 object file depends on both the spec and body files for this generic
3072 unit.
3073
3074 @item
3075 If a file being compiled instantiates a generic unit defined within a
3076 package, the object file depends on the body file for the package as
3077 well as the spec file.
3078 @end itemize
3079
3080 @geindex Inline
3081
3082 @geindex -gnatn switch
3083
3084
3085 @itemize *
3086
3087 @item
3088 If a file being compiled contains a call to a subprogram for which
3089 pragma @code{Inline} applies and inlining is activated with the
3090 @code{-gnatn} switch, the object file depends on the file containing the
3091 body of this subprogram as well as on the file containing the spec. Note
3092 that for inlining to actually occur as a result of the use of this switch,
3093 it is necessary to compile in optimizing mode.
3094
3095 @geindex -gnatN switch
3096
3097 The use of @code{-gnatN} activates inlining optimization
3098 that is performed by the front end of the compiler. This inlining does
3099 not require that the code generation be optimized. Like @code{-gnatn},
3100 the use of this switch generates additional dependencies.
3101
3102 When using a gcc-based back end, then the use of
3103 @code{-gnatN} is deprecated, and the use of @code{-gnatn} is preferred.
3104 Historically front end inlining was more extensive than the gcc back end
3105 inlining, but that is no longer the case.
3106
3107 @item
3108 If an object file @code{O} depends on the proper body of a subunit through
3109 inlining or instantiation, it depends on the parent unit of the subunit.
3110 This means that any modification of the parent unit or one of its subunits
3111 affects the compilation of @code{O}.
3112
3113 @item
3114 The object file for a parent unit depends on all its subunit body files.
3115
3116 @item
3117 The previous two rules meant that for purposes of computing dependencies and
3118 recompilation, a body and all its subunits are treated as an indivisible whole.
3119
3120 These rules are applied transitively: if unit @code{A} `with's
3121 unit @code{B}, whose elaboration calls an inlined procedure in package
3122 @code{C}, the object file for unit @code{A} will depend on the body of
3123 @code{C}, in file @code{c.adb}.
3124
3125 The set of dependent files described by these rules includes all the
3126 files on which the unit is semantically dependent, as dictated by the
3127 Ada language standard. However, it is a superset of what the
3128 standard describes, because it includes generic, inline, and subunit
3129 dependencies.
3130
3131 An object file must be recreated by recompiling the corresponding source
3132 file if any of the source files on which it depends are modified. For
3133 example, if the @code{make} utility is used to control compilation,
3134 the rule for an Ada object file must mention all the source files on
3135 which the object file depends, according to the above definition.
3136 The determination of the necessary
3137 recompilations is done automatically when one uses @code{gnatmake}.
3138 @end itemize
3139
3140 @node The Ada Library Information Files,Binding an Ada Program,Source Dependencies,The GNAT Compilation Model
3141 @anchor{gnat_ugn/the_gnat_compilation_model id33}@anchor{66}@anchor{gnat_ugn/the_gnat_compilation_model the-ada-library-information-files}@anchor{28}
3142 @section The Ada Library Information Files
3143
3144
3145 @geindex Ada Library Information files
3146
3147 @geindex ALI files
3148
3149 Each compilation actually generates two output files. The first of these
3150 is the normal object file that has a @code{.o} extension. The second is a
3151 text file containing full dependency information. It has the same
3152 name as the source file, but an @code{.ali} extension.
3153 This file is known as the Ada Library Information (@code{ALI}) file.
3154 The following information is contained in the @code{ALI} file.
3155
3156
3157 @itemize *
3158
3159 @item
3160 Version information (indicates which version of GNAT was used to compile
3161 the unit(s) in question)
3162
3163 @item
3164 Main program information (including priority and time slice settings,
3165 as well as the wide character encoding used during compilation).
3166
3167 @item
3168 List of arguments used in the @code{gcc} command for the compilation
3169
3170 @item
3171 Attributes of the unit, including configuration pragmas used, an indication
3172 of whether the compilation was successful, exception model used etc.
3173
3174 @item
3175 A list of relevant restrictions applying to the unit (used for consistency)
3176 checking.
3177
3178 @item
3179 Categorization information (e.g., use of pragma @code{Pure}).
3180
3181 @item
3182 Information on all `with'ed units, including presence of
3183 @code{Elaborate} or @code{Elaborate_All} pragmas.
3184
3185 @item
3186 Information from any @code{Linker_Options} pragmas used in the unit
3187
3188 @item
3189 Information on the use of @code{Body_Version} or @code{Version}
3190 attributes in the unit.
3191
3192 @item
3193 Dependency information. This is a list of files, together with
3194 time stamp and checksum information. These are files on which
3195 the unit depends in the sense that recompilation is required
3196 if any of these units are modified.
3197
3198 @item
3199 Cross-reference data. Contains information on all entities referenced
3200 in the unit. Used by some tools to provide cross-reference information.
3201 @end itemize
3202
3203 For a full detailed description of the format of the @code{ALI} file,
3204 see the source of the body of unit @code{Lib.Writ}, contained in file
3205 @code{lib-writ.adb} in the GNAT compiler sources.
3206
3207 @node Binding an Ada Program,GNAT and Libraries,The Ada Library Information Files,The GNAT Compilation Model
3208 @anchor{gnat_ugn/the_gnat_compilation_model binding-an-ada-program}@anchor{29}@anchor{gnat_ugn/the_gnat_compilation_model id34}@anchor{67}
3209 @section Binding an Ada Program
3210
3211
3212 When using languages such as C and C++, once the source files have been
3213 compiled the only remaining step in building an executable program
3214 is linking the object modules together. This means that it is possible to
3215 link an inconsistent version of a program, in which two units have
3216 included different versions of the same header.
3217
3218 The rules of Ada do not permit such an inconsistent program to be built.
3219 For example, if two clients have different versions of the same package,
3220 it is illegal to build a program containing these two clients.
3221 These rules are enforced by the GNAT binder, which also determines an
3222 elaboration order consistent with the Ada rules.
3223
3224 The GNAT binder is run after all the object files for a program have
3225 been created. It is given the name of the main program unit, and from
3226 this it determines the set of units required by the program, by reading the
3227 corresponding ALI files. It generates error messages if the program is
3228 inconsistent or if no valid order of elaboration exists.
3229
3230 If no errors are detected, the binder produces a main program, in Ada by
3231 default, that contains calls to the elaboration procedures of those
3232 compilation unit that require them, followed by
3233 a call to the main program. This Ada program is compiled to generate the
3234 object file for the main program. The name of
3235 the Ada file is @code{b~xxx.adb} (with the corresponding spec
3236 @code{b~xxx.ads}) where @code{xxx} is the name of the
3237 main program unit.
3238
3239 Finally, the linker is used to build the resulting executable program,
3240 using the object from the main program from the bind step as well as the
3241 object files for the Ada units of the program.
3242
3243 @node GNAT and Libraries,Conditional Compilation,Binding an Ada Program,The GNAT Compilation Model
3244 @anchor{gnat_ugn/the_gnat_compilation_model gnat-and-libraries}@anchor{2a}@anchor{gnat_ugn/the_gnat_compilation_model id35}@anchor{68}
3245 @section GNAT and Libraries
3246
3247
3248 @geindex Library building and using
3249
3250 This section describes how to build and use libraries with GNAT, and also shows
3251 how to recompile the GNAT run-time library. You should be familiar with the
3252 Project Manager facility (see the `GNAT_Project_Manager' chapter of the
3253 `GPRbuild User’s Guide') before reading this chapter.
3254
3255 @menu
3256 * Introduction to Libraries in GNAT::
3257 * General Ada Libraries::
3258 * Stand-alone Ada Libraries::
3259 * Rebuilding the GNAT Run-Time Library::
3260
3261 @end menu
3262
3263 @node Introduction to Libraries in GNAT,General Ada Libraries,,GNAT and Libraries
3264 @anchor{gnat_ugn/the_gnat_compilation_model id36}@anchor{69}@anchor{gnat_ugn/the_gnat_compilation_model introduction-to-libraries-in-gnat}@anchor{6a}
3265 @subsection Introduction to Libraries in GNAT
3266
3267
3268 A library is, conceptually, a collection of objects which does not have its
3269 own main thread of execution, but rather provides certain services to the
3270 applications that use it. A library can be either statically linked with the
3271 application, in which case its code is directly included in the application,
3272 or, on platforms that support it, be dynamically linked, in which case
3273 its code is shared by all applications making use of this library.
3274
3275 GNAT supports both types of libraries.
3276 In the static case, the compiled code can be provided in different ways. The
3277 simplest approach is to provide directly the set of objects resulting from
3278 compilation of the library source files. Alternatively, you can group the
3279 objects into an archive using whatever commands are provided by the operating
3280 system. For the latter case, the objects are grouped into a shared library.
3281
3282 In the GNAT environment, a library has three types of components:
3283
3284
3285 @itemize *
3286
3287 @item
3288 Source files,
3289
3290 @item
3291 @code{ALI} files (see @ref{28,,The Ada Library Information Files}), and
3292
3293 @item
3294 Object files, an archive or a shared library.
3295 @end itemize
3296
3297 A GNAT library may expose all its source files, which is useful for
3298 documentation purposes. Alternatively, it may expose only the units needed by
3299 an external user to make use of the library. That is to say, the specs
3300 reflecting the library services along with all the units needed to compile
3301 those specs, which can include generic bodies or any body implementing an
3302 inlined routine. In the case of `stand-alone libraries' those exposed
3303 units are called `interface units' (@ref{6b,,Stand-alone Ada Libraries}).
3304
3305 All compilation units comprising an application, including those in a library,
3306 need to be elaborated in an order partially defined by Ada’s semantics. GNAT
3307 computes the elaboration order from the @code{ALI} files and this is why they
3308 constitute a mandatory part of GNAT libraries.
3309 `Stand-alone libraries' are the exception to this rule because a specific
3310 library elaboration routine is produced independently of the application(s)
3311 using the library.
3312
3313 @node General Ada Libraries,Stand-alone Ada Libraries,Introduction to Libraries in GNAT,GNAT and Libraries
3314 @anchor{gnat_ugn/the_gnat_compilation_model general-ada-libraries}@anchor{6c}@anchor{gnat_ugn/the_gnat_compilation_model id37}@anchor{6d}
3315 @subsection General Ada Libraries
3316
3317
3318 @menu
3319 * Building a library::
3320 * Installing a library::
3321 * Using a library::
3322
3323 @end menu
3324
3325 @node Building a library,Installing a library,,General Ada Libraries
3326 @anchor{gnat_ugn/the_gnat_compilation_model building-a-library}@anchor{6e}@anchor{gnat_ugn/the_gnat_compilation_model id38}@anchor{6f}
3327 @subsubsection Building a library
3328
3329
3330 The easiest way to build a library is to use the Project Manager,
3331 which supports a special type of project called a `Library Project'
3332 (see the `Library Projects' section in the `GNAT Project Manager'
3333 chapter of the `GPRbuild User’s Guide').
3334
3335 A project is considered a library project, when two project-level attributes
3336 are defined in it: @code{Library_Name} and @code{Library_Dir}. In order to
3337 control different aspects of library configuration, additional optional
3338 project-level attributes can be specified:
3339
3340
3341 @itemize *
3342
3343 @item
3344
3345 @table @asis
3346
3347 @item @code{Library_Kind}
3348
3349 This attribute controls whether the library is to be static or dynamic
3350 @end table
3351
3352 @item
3353
3354 @table @asis
3355
3356 @item @code{Library_Version}
3357
3358 This attribute specifies the library version; this value is used
3359 during dynamic linking of shared libraries to determine if the currently
3360 installed versions of the binaries are compatible.
3361 @end table
3362
3363 @item
3364 @code{Library_Options}
3365
3366 @item
3367
3368 @table @asis
3369
3370 @item @code{Library_GCC}
3371
3372 These attributes specify additional low-level options to be used during
3373 library generation, and redefine the actual application used to generate
3374 library.
3375 @end table
3376 @end itemize
3377
3378 The GNAT Project Manager takes full care of the library maintenance task,
3379 including recompilation of the source files for which objects do not exist
3380 or are not up to date, assembly of the library archive, and installation of
3381 the library (i.e., copying associated source, object and @code{ALI} files
3382 to the specified location).
3383
3384 Here is a simple library project file:
3385
3386 @example
3387 project My_Lib is
3388 for Source_Dirs use ("src1", "src2");
3389 for Object_Dir use "obj";
3390 for Library_Name use "mylib";
3391 for Library_Dir use "lib";
3392 for Library_Kind use "dynamic";
3393 end My_lib;
3394 @end example
3395
3396 and the compilation command to build and install the library:
3397
3398 @example
3399 $ gnatmake -Pmy_lib
3400 @end example
3401
3402 It is not entirely trivial to perform manually all the steps required to
3403 produce a library. We recommend that you use the GNAT Project Manager
3404 for this task. In special cases where this is not desired, the necessary
3405 steps are discussed below.
3406
3407 There are various possibilities for compiling the units that make up the
3408 library: for example with a Makefile (@ref{70,,Using the GNU make Utility}) or
3409 with a conventional script. For simple libraries, it is also possible to create
3410 a dummy main program which depends upon all the packages that comprise the
3411 interface of the library. This dummy main program can then be given to
3412 @code{gnatmake}, which will ensure that all necessary objects are built.
3413
3414 After this task is accomplished, you should follow the standard procedure
3415 of the underlying operating system to produce the static or shared library.
3416
3417 Here is an example of such a dummy program:
3418
3419 @example
3420 with My_Lib.Service1;
3421 with My_Lib.Service2;
3422 with My_Lib.Service3;
3423 procedure My_Lib_Dummy is
3424 begin
3425 null;
3426 end;
3427 @end example
3428
3429 Here are the generic commands that will build an archive or a shared library.
3430
3431 @example
3432 # compiling the library
3433 $ gnatmake -c my_lib_dummy.adb
3434
3435 # we don't need the dummy object itself
3436 $ rm my_lib_dummy.o my_lib_dummy.ali
3437
3438 # create an archive with the remaining objects
3439 $ ar rc libmy_lib.a *.o
3440 # some systems may require "ranlib" to be run as well
3441
3442 # or create a shared library
3443 $ gcc -shared -o libmy_lib.so *.o
3444 # some systems may require the code to have been compiled with -fPIC
3445
3446 # remove the object files that are now in the library
3447 $ rm *.o
3448
3449 # Make the ALI files read-only so that gnatmake will not try to
3450 # regenerate the objects that are in the library
3451 $ chmod -w *.ali
3452 @end example
3453
3454 Please note that the library must have a name of the form @code{lib`xxx'.a}
3455 or @code{lib`xxx'.so} (or @code{lib`xxx'.dll} on Windows) in order to
3456 be accessed by the directive @code{-l`xxx'} at link time.
3457
3458 @node Installing a library,Using a library,Building a library,General Ada Libraries
3459 @anchor{gnat_ugn/the_gnat_compilation_model id39}@anchor{71}@anchor{gnat_ugn/the_gnat_compilation_model installing-a-library}@anchor{72}
3460 @subsubsection Installing a library
3461
3462
3463 @geindex ADA_PROJECT_PATH
3464
3465 @geindex GPR_PROJECT_PATH
3466
3467 If you use project files, library installation is part of the library build
3468 process (see the `Installing a Library with Project Files' section of the
3469 `GNAT Project Manager' chapter of the `GPRbuild User’s Guide').
3470
3471 When project files are not an option, it is also possible, but not recommended,
3472 to install the library so that the sources needed to use the library are on the
3473 Ada source path and the ALI files & libraries be on the Ada Object path (see
3474 @ref{73,,Search Paths and the Run-Time Library (RTL)}). Alternatively, the system
3475 administrator can place general-purpose libraries in the default compiler
3476 paths, by specifying the libraries’ location in the configuration files
3477 @code{ada_source_path} and @code{ada_object_path}. These configuration files
3478 must be located in the GNAT installation tree at the same place as the gcc spec
3479 file. The location of the gcc spec file can be determined as follows:
3480
3481 @example
3482 $ gcc -v
3483 @end example
3484
3485 The configuration files mentioned above have a simple format: each line
3486 must contain one unique directory name.
3487 Those names are added to the corresponding path
3488 in their order of appearance in the file. The names can be either absolute
3489 or relative; in the latter case, they are relative to where theses files
3490 are located.
3491
3492 The files @code{ada_source_path} and @code{ada_object_path} might not be
3493 present in a
3494 GNAT installation, in which case, GNAT will look for its run-time library in
3495 the directories @code{adainclude} (for the sources) and @code{adalib} (for the
3496 objects and @code{ALI} files). When the files exist, the compiler does not
3497 look in @code{adainclude} and @code{adalib}, and thus the
3498 @code{ada_source_path} file
3499 must contain the location for the GNAT run-time sources (which can simply
3500 be @code{adainclude}). In the same way, the @code{ada_object_path} file must
3501 contain the location for the GNAT run-time objects (which can simply
3502 be @code{adalib}).
3503
3504 You can also specify a new default path to the run-time library at compilation
3505 time with the switch @code{--RTS=rts-path}. You can thus choose / change
3506 the run-time library you want your program to be compiled with. This switch is
3507 recognized by @code{gcc}, @code{gnatmake}, @code{gnatbind}, @code{gnatls}, and all
3508 project aware tools.
3509
3510 It is possible to install a library before or after the standard GNAT
3511 library, by reordering the lines in the configuration files. In general, a
3512 library must be installed before the GNAT library if it redefines
3513 any part of it.
3514
3515 @node Using a library,,Installing a library,General Ada Libraries
3516 @anchor{gnat_ugn/the_gnat_compilation_model id40}@anchor{74}@anchor{gnat_ugn/the_gnat_compilation_model using-a-library}@anchor{75}
3517 @subsubsection Using a library
3518
3519
3520 Once again, the project facility greatly simplifies the use of
3521 libraries. In this context, using a library is just a matter of adding a
3522 `with' clause in the user project. For instance, to make use of the
3523 library @code{My_Lib} shown in examples in earlier sections, you can
3524 write:
3525
3526 @example
3527 with "my_lib";
3528 project My_Proj is
3529 ...
3530 end My_Proj;
3531 @end example
3532
3533 Even if you have a third-party, non-Ada library, you can still use GNAT’s
3534 Project Manager facility to provide a wrapper for it. For example, the
3535 following project, when `with'ed by your main project, will link with the
3536 third-party library @code{liba.a}:
3537
3538 @example
3539 project Liba is
3540 for Externally_Built use "true";
3541 for Source_Files use ();
3542 for Library_Dir use "lib";
3543 for Library_Name use "a";
3544 for Library_Kind use "static";
3545 end Liba;
3546 @end example
3547
3548 This is an alternative to the use of @code{pragma Linker_Options}. It is
3549 especially interesting in the context of systems with several interdependent
3550 static libraries where finding a proper linker order is not easy and best be
3551 left to the tools having visibility over project dependence information.
3552
3553 In order to use an Ada library manually, you need to make sure that this
3554 library is on both your source and object path
3555 (see @ref{73,,Search Paths and the Run-Time Library (RTL)}
3556 and @ref{76,,Search Paths for gnatbind}). Furthermore, when the objects are grouped
3557 in an archive or a shared library, you need to specify the desired
3558 library at link time.
3559
3560 For example, you can use the library @code{mylib} installed in
3561 @code{/dir/my_lib_src} and @code{/dir/my_lib_obj} with the following commands:
3562
3563 @example
3564 $ gnatmake -aI/dir/my_lib_src -aO/dir/my_lib_obj my_appl \\
3565 -largs -lmy_lib
3566 @end example
3567
3568 This can be expressed more simply:
3569
3570 @example
3571 $ gnatmake my_appl
3572 @end example
3573
3574 when the following conditions are met:
3575
3576
3577 @itemize *
3578
3579 @item
3580 @code{/dir/my_lib_src} has been added by the user to the environment
3581 variable
3582 @geindex ADA_INCLUDE_PATH
3583 @geindex environment variable; ADA_INCLUDE_PATH
3584 @code{ADA_INCLUDE_PATH}, or by the administrator to the file
3585 @code{ada_source_path}
3586
3587 @item
3588 @code{/dir/my_lib_obj} has been added by the user to the environment
3589 variable
3590 @geindex ADA_OBJECTS_PATH
3591 @geindex environment variable; ADA_OBJECTS_PATH
3592 @code{ADA_OBJECTS_PATH}, or by the administrator to the file
3593 @code{ada_object_path}
3594
3595 @item
3596 a pragma @code{Linker_Options} has been added to one of the sources.
3597 For example:
3598
3599 @example
3600 pragma Linker_Options ("-lmy_lib");
3601 @end example
3602 @end itemize
3603
3604 Note that you may also load a library dynamically at
3605 run time given its filename, as illustrated in the GNAT @code{plugins} example
3606 in the directory @code{share/examples/gnat/plugins} within the GNAT
3607 install area.
3608
3609 @node Stand-alone Ada Libraries,Rebuilding the GNAT Run-Time Library,General Ada Libraries,GNAT and Libraries
3610 @anchor{gnat_ugn/the_gnat_compilation_model id41}@anchor{77}@anchor{gnat_ugn/the_gnat_compilation_model stand-alone-ada-libraries}@anchor{6b}
3611 @subsection Stand-alone Ada Libraries
3612
3613
3614 @geindex Stand-alone libraries
3615
3616 @menu
3617 * Introduction to Stand-alone Libraries::
3618 * Building a Stand-alone Library::
3619 * Creating a Stand-alone Library to be used in a non-Ada context::
3620 * Restrictions in Stand-alone Libraries::
3621
3622 @end menu
3623
3624 @node Introduction to Stand-alone Libraries,Building a Stand-alone Library,,Stand-alone Ada Libraries
3625 @anchor{gnat_ugn/the_gnat_compilation_model id42}@anchor{78}@anchor{gnat_ugn/the_gnat_compilation_model introduction-to-stand-alone-libraries}@anchor{79}
3626 @subsubsection Introduction to Stand-alone Libraries
3627
3628
3629 A Stand-alone Library (abbreviated ‘SAL’) is a library that contains the
3630 necessary code to
3631 elaborate the Ada units that are included in the library. In contrast with
3632 an ordinary library, which consists of all sources, objects and @code{ALI}
3633 files of the
3634 library, a SAL may specify a restricted subset of compilation units
3635 to serve as a library interface. In this case, the fully
3636 self-sufficient set of files will normally consist of an objects
3637 archive, the sources of interface units’ specs, and the @code{ALI}
3638 files of interface units.
3639 If an interface spec contains a generic unit or an inlined subprogram,
3640 the body’s
3641 source must also be provided; if the units that must be provided in the source
3642 form depend on other units, the source and @code{ALI} files of those must
3643 also be provided.
3644
3645 The main purpose of a SAL is to minimize the recompilation overhead of client
3646 applications when a new version of the library is installed. Specifically,
3647 if the interface sources have not changed, client applications do not need to
3648 be recompiled. If, furthermore, a SAL is provided in the shared form and its
3649 version, controlled by @code{Library_Version} attribute, is not changed,
3650 then the clients do not need to be relinked.
3651
3652 SALs also allow the library providers to minimize the amount of library source
3653 text exposed to the clients. Such ‘information hiding’ might be useful or
3654 necessary for various reasons.
3655
3656 Stand-alone libraries are also well suited to be used in an executable whose
3657 main routine is not written in Ada.
3658
3659 @node Building a Stand-alone Library,Creating a Stand-alone Library to be used in a non-Ada context,Introduction to Stand-alone Libraries,Stand-alone Ada Libraries
3660 @anchor{gnat_ugn/the_gnat_compilation_model building-a-stand-alone-library}@anchor{7a}@anchor{gnat_ugn/the_gnat_compilation_model id43}@anchor{7b}
3661 @subsubsection Building a Stand-alone Library
3662
3663
3664 GNAT’s Project facility provides a simple way of building and installing
3665 stand-alone libraries; see the `Stand-alone Library Projects' section
3666 in the `GNAT Project Manager' chapter of the `GPRbuild User’s Guide'.
3667 To be a Stand-alone Library Project, in addition to the two attributes
3668 that make a project a Library Project (@code{Library_Name} and
3669 @code{Library_Dir}; see the `Library Projects' section in the
3670 `GNAT Project Manager' chapter of the `GPRbuild User’s Guide'),
3671 the attribute @code{Library_Interface} must be defined. For example:
3672
3673 @example
3674 for Library_Dir use "lib_dir";
3675 for Library_Name use "dummy";
3676 for Library_Interface use ("int1", "int1.child");
3677 @end example
3678
3679 Attribute @code{Library_Interface} has a non-empty string list value,
3680 each string in the list designating a unit contained in an immediate source
3681 of the project file.
3682
3683 When a Stand-alone Library is built, first the binder is invoked to build
3684 a package whose name depends on the library name
3685 (@code{b~dummy.ads/b} in the example above).
3686 This binder-generated package includes initialization and
3687 finalization procedures whose
3688 names depend on the library name (@code{dummyinit} and @code{dummyfinal}
3689 in the example
3690 above). The object corresponding to this package is included in the library.
3691
3692 You must ensure timely (e.g., prior to any use of interfaces in the SAL)
3693 calling of these procedures if a static SAL is built, or if a shared SAL
3694 is built
3695 with the project-level attribute @code{Library_Auto_Init} set to
3696 @code{"false"}.
3697
3698 For a Stand-Alone Library, only the @code{ALI} files of the Interface Units
3699 (those that are listed in attribute @code{Library_Interface}) are copied to
3700 the Library Directory. As a consequence, only the Interface Units may be
3701 imported from Ada units outside of the library. If other units are imported,
3702 the binding phase will fail.
3703
3704 It is also possible to build an encapsulated library where not only
3705 the code to elaborate and finalize the library is embedded but also
3706 ensuring that the library is linked only against static
3707 libraries. So an encapsulated library only depends on system
3708 libraries, all other code, including the GNAT runtime, is embedded. To
3709 build an encapsulated library the attribute
3710 @code{Library_Standalone} must be set to @code{encapsulated}:
3711
3712 @example
3713 for Library_Dir use "lib_dir";
3714 for Library_Name use "dummy";
3715 for Library_Kind use "dynamic";
3716 for Library_Interface use ("int1", "int1.child");
3717 for Library_Standalone use "encapsulated";
3718 @end example
3719
3720 The default value for this attribute is @code{standard} in which case
3721 a stand-alone library is built.
3722
3723 The attribute @code{Library_Src_Dir} may be specified for a
3724 Stand-Alone Library. @code{Library_Src_Dir} is a simple attribute that has a
3725 single string value. Its value must be the path (absolute or relative to the
3726 project directory) of an existing directory. This directory cannot be the
3727 object directory or one of the source directories, but it can be the same as
3728 the library directory. The sources of the Interface
3729 Units of the library that are needed by an Ada client of the library will be
3730 copied to the designated directory, called the Interface Copy directory.
3731 These sources include the specs of the Interface Units, but they may also
3732 include bodies and subunits, when pragmas @code{Inline} or @code{Inline_Always}
3733 are used, or when there is a generic unit in the spec. Before the sources
3734 are copied to the Interface Copy directory, an attempt is made to delete all
3735 files in the Interface Copy directory.
3736
3737 Building stand-alone libraries by hand is somewhat tedious, but for those
3738 occasions when it is necessary here are the steps that you need to perform:
3739
3740
3741 @itemize *
3742
3743 @item
3744 Compile all library sources.
3745
3746 @item
3747 Invoke the binder with the switch @code{-n} (No Ada main program),
3748 with all the @code{ALI} files of the interfaces, and
3749 with the switch @code{-L} to give specific names to the @code{init}
3750 and @code{final} procedures. For example:
3751
3752 @example
3753 $ gnatbind -n int1.ali int2.ali -Lsal1
3754 @end example
3755
3756 @item
3757 Compile the binder generated file:
3758
3759 @example
3760 $ gcc -c b~int2.adb
3761 @end example
3762
3763 @item
3764 Link the dynamic library with all the necessary object files,
3765 indicating to the linker the names of the @code{init} (and possibly
3766 @code{final}) procedures for automatic initialization (and finalization).
3767 The built library should be placed in a directory different from
3768 the object directory.
3769
3770 @item
3771 Copy the @code{ALI} files of the interface to the library directory,
3772 add in this copy an indication that it is an interface to a SAL
3773 (i.e., add a word @code{SL} on the line in the @code{ALI} file that starts
3774 with letter ‘P’) and make the modified copy of the @code{ALI} file
3775 read-only.
3776 @end itemize
3777
3778 Using SALs is not different from using other libraries
3779 (see @ref{75,,Using a library}).
3780
3781 @node Creating a Stand-alone Library to be used in a non-Ada context,Restrictions in Stand-alone Libraries,Building a Stand-alone Library,Stand-alone Ada Libraries
3782 @anchor{gnat_ugn/the_gnat_compilation_model creating-a-stand-alone-library-to-be-used-in-a-non-ada-context}@anchor{7c}@anchor{gnat_ugn/the_gnat_compilation_model id44}@anchor{7d}
3783 @subsubsection Creating a Stand-alone Library to be used in a non-Ada context
3784
3785
3786 It is easy to adapt the SAL build procedure discussed above for use of a SAL in
3787 a non-Ada context.
3788
3789 The only extra step required is to ensure that library interface subprograms
3790 are compatible with the main program, by means of @code{pragma Export}
3791 or @code{pragma Convention}.
3792
3793 Here is an example of simple library interface for use with C main program:
3794
3795 @example
3796 package My_Package is
3797
3798 procedure Do_Something;
3799 pragma Export (C, Do_Something, "do_something");
3800
3801 procedure Do_Something_Else;
3802 pragma Export (C, Do_Something_Else, "do_something_else");
3803
3804 end My_Package;
3805 @end example
3806
3807 On the foreign language side, you must provide a ‘foreign’ view of the
3808 library interface; remember that it should contain elaboration routines in
3809 addition to interface subprograms.
3810
3811 The example below shows the content of @code{mylib_interface.h} (note
3812 that there is no rule for the naming of this file, any name can be used)
3813
3814 @example
3815 /* the library elaboration procedure */
3816 extern void mylibinit (void);
3817
3818 /* the library finalization procedure */
3819 extern void mylibfinal (void);
3820
3821 /* the interface exported by the library */
3822 extern void do_something (void);
3823 extern void do_something_else (void);
3824 @end example
3825
3826 Libraries built as explained above can be used from any program, provided
3827 that the elaboration procedures (named @code{mylibinit} in the previous
3828 example) are called before the library services are used. Any number of
3829 libraries can be used simultaneously, as long as the elaboration
3830 procedure of each library is called.
3831
3832 Below is an example of a C program that uses the @code{mylib} library.
3833
3834 @example
3835 #include "mylib_interface.h"
3836
3837 int
3838 main (void)
3839 @{
3840 /* First, elaborate the library before using it */
3841 mylibinit ();
3842
3843 /* Main program, using the library exported entities */
3844 do_something ();
3845 do_something_else ();
3846
3847 /* Library finalization at the end of the program */
3848 mylibfinal ();
3849 return 0;
3850 @}
3851 @end example
3852
3853 Note that invoking any library finalization procedure generated by
3854 @code{gnatbind} shuts down the Ada run-time environment.
3855 Consequently, the
3856 finalization of all Ada libraries must be performed at the end of the program.
3857 No call to these libraries or to the Ada run-time library should be made
3858 after the finalization phase.
3859
3860 Note also that special care must be taken with multi-tasks
3861 applications. The initialization and finalization routines are not
3862 protected against concurrent access. If such requirement is needed it
3863 must be ensured at the application level using a specific operating
3864 system services like a mutex or a critical-section.
3865
3866 @node Restrictions in Stand-alone Libraries,,Creating a Stand-alone Library to be used in a non-Ada context,Stand-alone Ada Libraries
3867 @anchor{gnat_ugn/the_gnat_compilation_model id45}@anchor{7e}@anchor{gnat_ugn/the_gnat_compilation_model restrictions-in-stand-alone-libraries}@anchor{7f}
3868 @subsubsection Restrictions in Stand-alone Libraries
3869
3870
3871 The pragmas listed below should be used with caution inside libraries,
3872 as they can create incompatibilities with other Ada libraries:
3873
3874
3875 @itemize *
3876
3877 @item
3878 pragma @code{Locking_Policy}
3879
3880 @item
3881 pragma @code{Partition_Elaboration_Policy}
3882
3883 @item
3884 pragma @code{Queuing_Policy}
3885
3886 @item
3887 pragma @code{Task_Dispatching_Policy}
3888
3889 @item
3890 pragma @code{Unreserve_All_Interrupts}
3891 @end itemize
3892
3893 When using a library that contains such pragmas, the user must make sure
3894 that all libraries use the same pragmas with the same values. Otherwise,
3895 @code{Program_Error} will
3896 be raised during the elaboration of the conflicting
3897 libraries. The usage of these pragmas and its consequences for the user
3898 should therefore be well documented.
3899
3900 Similarly, the traceback in the exception occurrence mechanism should be
3901 enabled or disabled in a consistent manner across all libraries.
3902 Otherwise, Program_Error will be raised during the elaboration of the
3903 conflicting libraries.
3904
3905 If the @code{Version} or @code{Body_Version}
3906 attributes are used inside a library, then you need to
3907 perform a @code{gnatbind} step that specifies all @code{ALI} files in all
3908 libraries, so that version identifiers can be properly computed.
3909 In practice these attributes are rarely used, so this is unlikely
3910 to be a consideration.
3911
3912 @node Rebuilding the GNAT Run-Time Library,,Stand-alone Ada Libraries,GNAT and Libraries
3913 @anchor{gnat_ugn/the_gnat_compilation_model id46}@anchor{80}@anchor{gnat_ugn/the_gnat_compilation_model rebuilding-the-gnat-run-time-library}@anchor{81}
3914 @subsection Rebuilding the GNAT Run-Time Library
3915
3916
3917 @geindex GNAT Run-Time Library
3918 @geindex rebuilding
3919
3920 @geindex Building the GNAT Run-Time Library
3921
3922 @geindex Rebuilding the GNAT Run-Time Library
3923
3924 @geindex Run-Time Library
3925 @geindex rebuilding
3926
3927 It may be useful to recompile the GNAT library in various debugging or
3928 experimentation contexts. A project file called
3929 @code{libada.gpr} is provided to that effect and can be found in
3930 the directory containing the GNAT library. The location of this
3931 directory depends on the way the GNAT environment has been installed and can
3932 be determined by means of the command:
3933
3934 @example
3935 $ gnatls -v
3936 @end example
3937
3938 The last entry in the source search path usually contains the
3939 gnat library (the @code{adainclude} directory). This project file contains its
3940 own documentation and in particular the set of instructions needed to rebuild a
3941 new library and to use it.
3942
3943 Note that rebuilding the GNAT Run-Time is only recommended for temporary
3944 experiments or debugging, and is not supported.
3945
3946 @geindex Conditional compilation
3947
3948 @node Conditional Compilation,Mixed Language Programming,GNAT and Libraries,The GNAT Compilation Model
3949 @anchor{gnat_ugn/the_gnat_compilation_model conditional-compilation}@anchor{2b}@anchor{gnat_ugn/the_gnat_compilation_model id47}@anchor{82}
3950 @section Conditional Compilation
3951
3952
3953 This section presents some guidelines for modeling conditional compilation in Ada and describes the
3954 gnatprep preprocessor utility.
3955
3956 @geindex Conditional compilation
3957
3958 @menu
3959 * Modeling Conditional Compilation in Ada::
3960 * Preprocessing with gnatprep::
3961 * Integrated Preprocessing::
3962
3963 @end menu
3964
3965 @node Modeling Conditional Compilation in Ada,Preprocessing with gnatprep,,Conditional Compilation
3966 @anchor{gnat_ugn/the_gnat_compilation_model id48}@anchor{83}@anchor{gnat_ugn/the_gnat_compilation_model modeling-conditional-compilation-in-ada}@anchor{84}
3967 @subsection Modeling Conditional Compilation in Ada
3968
3969
3970 It is often necessary to arrange for a single source program
3971 to serve multiple purposes, where it is compiled in different
3972 ways to achieve these different goals. Some examples of the
3973 need for this feature are
3974
3975
3976 @itemize *
3977
3978 @item
3979 Adapting a program to a different hardware environment
3980
3981 @item
3982 Adapting a program to a different target architecture
3983
3984 @item
3985 Turning debugging features on and off
3986
3987 @item
3988 Arranging for a program to compile with different compilers
3989 @end itemize
3990
3991 In C, or C++, the typical approach would be to use the preprocessor
3992 that is defined as part of the language. The Ada language does not
3993 contain such a feature. This is not an oversight, but rather a very
3994 deliberate design decision, based on the experience that overuse of
3995 the preprocessing features in C and C++ can result in programs that
3996 are extremely difficult to maintain. For example, if we have ten
3997 switches that can be on or off, this means that there are a thousand
3998 separate programs, any one of which might not even be syntactically
3999 correct, and even if syntactically correct, the resulting program
4000 might not work correctly. Testing all combinations can quickly become
4001 impossible.
4002
4003 Nevertheless, the need to tailor programs certainly exists, and in
4004 this section we will discuss how this can
4005 be achieved using Ada in general, and GNAT in particular.
4006
4007 @menu
4008 * Use of Boolean Constants::
4009 * Debugging - A Special Case::
4010 * Conditionalizing Declarations::
4011 * Use of Alternative Implementations::
4012 * Preprocessing::
4013
4014 @end menu
4015
4016 @node Use of Boolean Constants,Debugging - A Special Case,,Modeling Conditional Compilation in Ada
4017 @anchor{gnat_ugn/the_gnat_compilation_model id49}@anchor{85}@anchor{gnat_ugn/the_gnat_compilation_model use-of-boolean-constants}@anchor{86}
4018 @subsubsection Use of Boolean Constants
4019
4020
4021 In the case where the difference is simply which code
4022 sequence is executed, the cleanest solution is to use Boolean
4023 constants to control which code is executed.
4024
4025 @example
4026 FP_Initialize_Required : constant Boolean := True;
4027 ...
4028 if FP_Initialize_Required then
4029 ...
4030 end if;
4031 @end example
4032
4033 Not only will the code inside the @code{if} statement not be executed if
4034 the constant Boolean is @code{False}, but it will also be completely
4035 deleted from the program.
4036 However, the code is only deleted after the @code{if} statement
4037 has been checked for syntactic and semantic correctness.
4038 (In contrast, with preprocessors the code is deleted before the
4039 compiler ever gets to see it, so it is not checked until the switch
4040 is turned on.)
4041
4042 @geindex Preprocessors (contrasted with conditional compilation)
4043
4044 Typically the Boolean constants will be in a separate package,
4045 something like:
4046
4047 @example
4048 package Config is
4049 FP_Initialize_Required : constant Boolean := True;
4050 Reset_Available : constant Boolean := False;
4051 ...
4052 end Config;
4053 @end example
4054
4055 The @code{Config} package exists in multiple forms for the various targets,
4056 with an appropriate script selecting the version of @code{Config} needed.
4057 Then any other unit requiring conditional compilation can do a `with'
4058 of @code{Config} to make the constants visible.
4059
4060 @node Debugging - A Special Case,Conditionalizing Declarations,Use of Boolean Constants,Modeling Conditional Compilation in Ada
4061 @anchor{gnat_ugn/the_gnat_compilation_model debugging-a-special-case}@anchor{87}@anchor{gnat_ugn/the_gnat_compilation_model id50}@anchor{88}
4062 @subsubsection Debugging - A Special Case
4063
4064
4065 A common use of conditional code is to execute statements (for example
4066 dynamic checks, or output of intermediate results) under control of a
4067 debug switch, so that the debugging behavior can be turned on and off.
4068 This can be done using a Boolean constant to control whether the code
4069 is active:
4070
4071 @example
4072 if Debugging then
4073 Put_Line ("got to the first stage!");
4074 end if;
4075 @end example
4076
4077 or
4078
4079 @example
4080 if Debugging and then Temperature > 999.0 then
4081 raise Temperature_Crazy;
4082 end if;
4083 @end example
4084
4085 @geindex pragma Assert
4086
4087 Since this is a common case, there are special features to deal with
4088 this in a convenient manner. For the case of tests, Ada 2005 has added
4089 a pragma @code{Assert} that can be used for such tests. This pragma is modeled
4090 on the @code{Assert} pragma that has always been available in GNAT, so this
4091 feature may be used with GNAT even if you are not using Ada 2005 features.
4092 The use of pragma @code{Assert} is described in the
4093 @cite{GNAT_Reference_Manual}, but as an
4094 example, the last test could be written:
4095
4096 @example
4097 pragma Assert (Temperature <= 999.0, "Temperature Crazy");
4098 @end example
4099
4100 or simply
4101
4102 @example
4103 pragma Assert (Temperature <= 999.0);
4104 @end example
4105
4106 In both cases, if assertions are active and the temperature is excessive,
4107 the exception @code{Assert_Failure} will be raised, with the given string in
4108 the first case or a string indicating the location of the pragma in the second
4109 case used as the exception message.
4110
4111 @geindex pragma Assertion_Policy
4112
4113 You can turn assertions on and off by using the @code{Assertion_Policy}
4114 pragma.
4115
4116 @geindex -gnata switch
4117
4118 This is an Ada 2005 pragma which is implemented in all modes by
4119 GNAT. Alternatively, you can use the @code{-gnata} switch
4120 to enable assertions from the command line, which applies to
4121 all versions of Ada.
4122
4123 @geindex pragma Debug
4124
4125 For the example above with the @code{Put_Line}, the GNAT-specific pragma
4126 @code{Debug} can be used:
4127
4128 @example
4129 pragma Debug (Put_Line ("got to the first stage!"));
4130 @end example
4131
4132 If debug pragmas are enabled, the argument, which must be of the form of
4133 a procedure call, is executed (in this case, @code{Put_Line} will be called).
4134 Only one call can be present, but of course a special debugging procedure
4135 containing any code you like can be included in the program and then
4136 called in a pragma @code{Debug} argument as needed.
4137
4138 One advantage of pragma @code{Debug} over the @code{if Debugging then}
4139 construct is that pragma @code{Debug} can appear in declarative contexts,
4140 such as at the very beginning of a procedure, before local declarations have
4141 been elaborated.
4142
4143 @geindex pragma Debug_Policy
4144
4145 Debug pragmas are enabled using either the @code{-gnata} switch that also
4146 controls assertions, or with a separate Debug_Policy pragma.
4147
4148 The latter pragma is new in the Ada 2005 versions of GNAT (but it can be used
4149 in Ada 95 and Ada 83 programs as well), and is analogous to
4150 pragma @code{Assertion_Policy} to control assertions.
4151
4152 @code{Assertion_Policy} and @code{Debug_Policy} are configuration pragmas,
4153 and thus they can appear in @code{gnat.adc} if you are not using a
4154 project file, or in the file designated to contain configuration pragmas
4155 in a project file.
4156 They then apply to all subsequent compilations. In practice the use of
4157 the @code{-gnata} switch is often the most convenient method of controlling
4158 the status of these pragmas.
4159
4160 Note that a pragma is not a statement, so in contexts where a statement
4161 sequence is required, you can’t just write a pragma on its own. You have
4162 to add a @code{null} statement.
4163
4164 @example
4165 if ... then
4166 ... -- some statements
4167 else
4168 pragma Assert (Num_Cases < 10);
4169 null;
4170 end if;
4171 @end example
4172
4173 @node Conditionalizing Declarations,Use of Alternative Implementations,Debugging - A Special Case,Modeling Conditional Compilation in Ada
4174 @anchor{gnat_ugn/the_gnat_compilation_model conditionalizing-declarations}@anchor{89}@anchor{gnat_ugn/the_gnat_compilation_model id51}@anchor{8a}
4175 @subsubsection Conditionalizing Declarations
4176
4177
4178 In some cases it may be necessary to conditionalize declarations to meet
4179 different requirements. For example we might want a bit string whose length
4180 is set to meet some hardware message requirement.
4181
4182 This may be possible using declare blocks controlled
4183 by conditional constants:
4184
4185 @example
4186 if Small_Machine then
4187 declare
4188 X : Bit_String (1 .. 10);
4189 begin
4190 ...
4191 end;
4192 else
4193 declare
4194 X : Large_Bit_String (1 .. 1000);
4195 begin
4196 ...
4197 end;
4198 end if;
4199 @end example
4200
4201 Note that in this approach, both declarations are analyzed by the
4202 compiler so this can only be used where both declarations are legal,
4203 even though one of them will not be used.
4204
4205 Another approach is to define integer constants, e.g., @code{Bits_Per_Word},
4206 or Boolean constants, e.g., @code{Little_Endian}, and then write declarations
4207 that are parameterized by these constants. For example
4208
4209 @example
4210 for Rec use
4211 Field1 at 0 range Boolean'Pos (Little_Endian) * 10 .. Bits_Per_Word;
4212 end record;
4213 @end example
4214
4215 If @code{Bits_Per_Word} is set to 32, this generates either
4216
4217 @example
4218 for Rec use
4219 Field1 at 0 range 0 .. 32;
4220 end record;
4221 @end example
4222
4223 for the big endian case, or
4224
4225 @example
4226 for Rec use record
4227 Field1 at 0 range 10 .. 32;
4228 end record;
4229 @end example
4230
4231 for the little endian case. Since a powerful subset of Ada expression
4232 notation is usable for creating static constants, clever use of this
4233 feature can often solve quite difficult problems in conditionalizing
4234 compilation (note incidentally that in Ada 95, the little endian
4235 constant was introduced as @code{System.Default_Bit_Order}, so you do not
4236 need to define this one yourself).
4237
4238 @node Use of Alternative Implementations,Preprocessing,Conditionalizing Declarations,Modeling Conditional Compilation in Ada
4239 @anchor{gnat_ugn/the_gnat_compilation_model id52}@anchor{8b}@anchor{gnat_ugn/the_gnat_compilation_model use-of-alternative-implementations}@anchor{8c}
4240 @subsubsection Use of Alternative Implementations
4241
4242
4243 In some cases, none of the approaches described above are adequate. This
4244 can occur for example if the set of declarations required is radically
4245 different for two different configurations.
4246
4247 In this situation, the official Ada way of dealing with conditionalizing
4248 such code is to write separate units for the different cases. As long as
4249 this does not result in excessive duplication of code, this can be done
4250 without creating maintenance problems. The approach is to share common
4251 code as far as possible, and then isolate the code and declarations
4252 that are different. Subunits are often a convenient method for breaking
4253 out a piece of a unit that is to be conditionalized, with separate files
4254 for different versions of the subunit for different targets, where the
4255 build script selects the right one to give to the compiler.
4256
4257 @geindex Subunits (and conditional compilation)
4258
4259 As an example, consider a situation where a new feature in Ada 2005
4260 allows something to be done in a really nice way. But your code must be able
4261 to compile with an Ada 95 compiler. Conceptually you want to say:
4262
4263 @example
4264 if Ada_2005 then
4265 ... neat Ada 2005 code
4266 else
4267 ... not quite as neat Ada 95 code
4268 end if;
4269 @end example
4270
4271 where @code{Ada_2005} is a Boolean constant.
4272
4273 But this won’t work when @code{Ada_2005} is set to @code{False},
4274 since the @code{then} clause will be illegal for an Ada 95 compiler.
4275 (Recall that although such unreachable code would eventually be deleted
4276 by the compiler, it still needs to be legal. If it uses features
4277 introduced in Ada 2005, it will be illegal in Ada 95.)
4278
4279 So instead we write
4280
4281 @example
4282 procedure Insert is separate;
4283 @end example
4284
4285 Then we have two files for the subunit @code{Insert}, with the two sets of
4286 code.
4287 If the package containing this is called @code{File_Queries}, then we might
4288 have two files
4289
4290
4291 @itemize *
4292
4293 @item
4294 @code{file_queries-insert-2005.adb}
4295
4296 @item
4297 @code{file_queries-insert-95.adb}
4298 @end itemize
4299
4300 and the build script renames the appropriate file to @code{file_queries-insert.adb} and then carries out the compilation.
4301
4302 This can also be done with project files’ naming schemes. For example:
4303
4304 @example
4305 for body ("File_Queries.Insert") use "file_queries-insert-2005.ada";
4306 @end example
4307
4308 Note also that with project files it is desirable to use a different extension
4309 than @code{ads} / @code{adb} for alternative versions. Otherwise a naming
4310 conflict may arise through another commonly used feature: to declare as part
4311 of the project a set of directories containing all the sources obeying the
4312 default naming scheme.
4313
4314 The use of alternative units is certainly feasible in all situations,
4315 and for example the Ada part of the GNAT run-time is conditionalized
4316 based on the target architecture using this approach. As a specific example,
4317 consider the implementation of the AST feature in VMS. There is one
4318 spec: @code{s-asthan.ads} which is the same for all architectures, and three
4319 bodies:
4320
4321
4322 @itemize *
4323
4324 @item
4325
4326 @table @asis
4327
4328 @item @code{s-asthan.adb}
4329
4330 used for all non-VMS operating systems
4331 @end table
4332
4333 @item
4334
4335 @table @asis
4336
4337 @item @code{s-asthan-vms-alpha.adb}
4338
4339 used for VMS on the Alpha
4340 @end table
4341
4342 @item
4343
4344 @table @asis
4345
4346 @item @code{s-asthan-vms-ia64.adb}
4347
4348 used for VMS on the ia64
4349 @end table
4350 @end itemize
4351
4352 The dummy version @code{s-asthan.adb} simply raises exceptions noting that
4353 this operating system feature is not available, and the two remaining
4354 versions interface with the corresponding versions of VMS to provide
4355 VMS-compatible AST handling. The GNAT build script knows the architecture
4356 and operating system, and automatically selects the right version,
4357 renaming it if necessary to @code{s-asthan.adb} before the run-time build.
4358
4359 Another style for arranging alternative implementations is through Ada’s
4360 access-to-subprogram facility.
4361 In case some functionality is to be conditionally included,
4362 you can declare an access-to-procedure variable @code{Ref} that is initialized
4363 to designate a ‘do nothing’ procedure, and then invoke @code{Ref.all}
4364 when appropriate.
4365 In some library package, set @code{Ref} to @code{Proc'Access} for some
4366 procedure @code{Proc} that performs the relevant processing.
4367 The initialization only occurs if the library package is included in the
4368 program.
4369 The same idea can also be implemented using tagged types and dispatching
4370 calls.
4371
4372 @node Preprocessing,,Use of Alternative Implementations,Modeling Conditional Compilation in Ada
4373 @anchor{gnat_ugn/the_gnat_compilation_model id53}@anchor{8d}@anchor{gnat_ugn/the_gnat_compilation_model preprocessing}@anchor{8e}
4374 @subsubsection Preprocessing
4375
4376
4377 @geindex Preprocessing
4378
4379 Although it is quite possible to conditionalize code without the use of
4380 C-style preprocessing, as described earlier in this section, it is
4381 nevertheless convenient in some cases to use the C approach. Moreover,
4382 older Ada compilers have often provided some preprocessing capability,
4383 so legacy code may depend on this approach, even though it is not
4384 standard.
4385
4386 To accommodate such use, GNAT provides a preprocessor (modeled to a large
4387 extent on the various preprocessors that have been used
4388 with legacy code on other compilers, to enable easier transition).
4389
4390 @geindex gnatprep
4391
4392 The preprocessor may be used in two separate modes. It can be used quite
4393 separately from the compiler, to generate a separate output source file
4394 that is then fed to the compiler as a separate step. This is the
4395 @code{gnatprep} utility, whose use is fully described in
4396 @ref{8f,,Preprocessing with gnatprep}.
4397
4398 The preprocessing language allows such constructs as
4399
4400 @example
4401 #if DEBUG or else (PRIORITY > 4) then
4402 sequence of declarations
4403 #else
4404 completely different sequence of declarations
4405 #end if;
4406 @end example
4407
4408 The values of the symbols @code{DEBUG} and @code{PRIORITY} can be
4409 defined either on the command line or in a separate file.
4410
4411 The other way of running the preprocessor is even closer to the C style and
4412 often more convenient. In this approach the preprocessing is integrated into
4413 the compilation process. The compiler is given the preprocessor input which
4414 includes @code{#if} lines etc, and then the compiler carries out the
4415 preprocessing internally and processes the resulting output.
4416 For more details on this approach, see @ref{90,,Integrated Preprocessing}.
4417
4418 @node Preprocessing with gnatprep,Integrated Preprocessing,Modeling Conditional Compilation in Ada,Conditional Compilation
4419 @anchor{gnat_ugn/the_gnat_compilation_model id54}@anchor{91}@anchor{gnat_ugn/the_gnat_compilation_model preprocessing-with-gnatprep}@anchor{8f}
4420 @subsection Preprocessing with @code{gnatprep}
4421
4422
4423 @geindex gnatprep
4424
4425 @geindex Preprocessing (gnatprep)
4426
4427 This section discusses how to use GNAT’s @code{gnatprep} utility for simple
4428 preprocessing.
4429 Although designed for use with GNAT, @code{gnatprep} does not depend on any
4430 special GNAT features.
4431 For further discussion of conditional compilation in general, see
4432 @ref{2b,,Conditional Compilation}.
4433
4434 @menu
4435 * Preprocessing Symbols::
4436 * Using gnatprep::
4437 * Switches for gnatprep::
4438 * Form of Definitions File::
4439 * Form of Input Text for gnatprep::
4440
4441 @end menu
4442
4443 @node Preprocessing Symbols,Using gnatprep,,Preprocessing with gnatprep
4444 @anchor{gnat_ugn/the_gnat_compilation_model id55}@anchor{92}@anchor{gnat_ugn/the_gnat_compilation_model preprocessing-symbols}@anchor{93}
4445 @subsubsection Preprocessing Symbols
4446
4447
4448 Preprocessing symbols are defined in `definition files' and referenced in the
4449 sources to be preprocessed. A preprocessing symbol is an identifier, following
4450 normal Ada (case-insensitive) rules for its syntax, with the restriction that
4451 all characters need to be in the ASCII set (no accented letters).
4452
4453 @node Using gnatprep,Switches for gnatprep,Preprocessing Symbols,Preprocessing with gnatprep
4454 @anchor{gnat_ugn/the_gnat_compilation_model id56}@anchor{94}@anchor{gnat_ugn/the_gnat_compilation_model using-gnatprep}@anchor{95}
4455 @subsubsection Using @code{gnatprep}
4456
4457
4458 To call @code{gnatprep} use:
4459
4460 @example
4461 $ gnatprep [ switches ] infile outfile [ deffile ]
4462 @end example
4463
4464 where
4465
4466
4467 @itemize *
4468
4469 @item
4470
4471 @table @asis
4472
4473 @item `switches'
4474
4475 is an optional sequence of switches as described in the next section.
4476 @end table
4477
4478 @item
4479
4480 @table @asis
4481
4482 @item `infile'
4483
4484 is the full name of the input file, which is an Ada source
4485 file containing preprocessor directives.
4486 @end table
4487
4488 @item
4489
4490 @table @asis
4491
4492 @item `outfile'
4493
4494 is the full name of the output file, which is an Ada source
4495 in standard Ada form. When used with GNAT, this file name will
4496 normally have an @code{ads} or @code{adb} suffix.
4497 @end table
4498
4499 @item
4500
4501 @table @asis
4502
4503 @item @code{deffile}
4504
4505 is the full name of a text file containing definitions of
4506 preprocessing symbols to be referenced by the preprocessor. This argument is
4507 optional, and can be replaced by the use of the @code{-D} switch.
4508 @end table
4509 @end itemize
4510
4511 @node Switches for gnatprep,Form of Definitions File,Using gnatprep,Preprocessing with gnatprep
4512 @anchor{gnat_ugn/the_gnat_compilation_model id57}@anchor{96}@anchor{gnat_ugn/the_gnat_compilation_model switches-for-gnatprep}@anchor{97}
4513 @subsubsection Switches for @code{gnatprep}
4514
4515
4516 @geindex --version (gnatprep)
4517
4518
4519 @table @asis
4520
4521 @item @code{--version}
4522
4523 Display Copyright and version, then exit disregarding all other options.
4524 @end table
4525
4526 @geindex --help (gnatprep)
4527
4528
4529 @table @asis
4530
4531 @item @code{--help}
4532
4533 If @code{--version} was not used, display usage and then exit disregarding
4534 all other options.
4535 @end table
4536
4537 @geindex -b (gnatprep)
4538
4539
4540 @table @asis
4541
4542 @item @code{-b}
4543
4544 Causes both preprocessor lines and the lines deleted by
4545 preprocessing to be replaced by blank lines in the output source file,
4546 preserving line numbers in the output file.
4547 @end table
4548
4549 @geindex -c (gnatprep)
4550
4551
4552 @table @asis
4553
4554 @item @code{-c}
4555
4556 Causes both preprocessor lines and the lines deleted
4557 by preprocessing to be retained in the output source as comments marked
4558 with the special string @code{"--! "}. This option will result in line numbers
4559 being preserved in the output file.
4560 @end table
4561
4562 @geindex -C (gnatprep)
4563
4564
4565 @table @asis
4566
4567 @item @code{-C}
4568
4569 Causes comments to be scanned. Normally comments are ignored by gnatprep.
4570 If this option is specified, then comments are scanned and any $symbol
4571 substitutions performed as in program text. This is particularly useful
4572 when structured comments are used (e.g., for programs written in a
4573 pre-2014 version of the SPARK Ada subset). Note that this switch is not
4574 available when doing integrated preprocessing (it would be useless in
4575 this context since comments are ignored by the compiler in any case).
4576 @end table
4577
4578 @geindex -D (gnatprep)
4579
4580
4581 @table @asis
4582
4583 @item @code{-D`symbol'[=`value']}
4584
4585 Defines a new preprocessing symbol with the specified value. If no value is given
4586 on the command line, then symbol is considered to be @code{True}. This switch
4587 can be used in place of a definition file.
4588 @end table
4589
4590 @geindex -r (gnatprep)
4591
4592
4593 @table @asis
4594
4595 @item @code{-r}
4596
4597 Causes a @code{Source_Reference} pragma to be generated that
4598 references the original input file, so that error messages will use
4599 the file name of this original file. The use of this switch implies
4600 that preprocessor lines are not to be removed from the file, so its
4601 use will force @code{-b} mode if @code{-c}
4602 has not been specified explicitly.
4603
4604 Note that if the file to be preprocessed contains multiple units, then
4605 it will be necessary to @code{gnatchop} the output file from
4606 @code{gnatprep}. If a @code{Source_Reference} pragma is present
4607 in the preprocessed file, it will be respected by
4608 @code{gnatchop -r}
4609 so that the final chopped files will correctly refer to the original
4610 input source file for @code{gnatprep}.
4611 @end table
4612
4613 @geindex -s (gnatprep)
4614
4615
4616 @table @asis
4617
4618 @item @code{-s}
4619
4620 Causes a sorted list of symbol names and values to be
4621 listed on the standard output file.
4622 @end table
4623
4624 @geindex -T (gnatprep)
4625
4626
4627 @table @asis
4628
4629 @item @code{-T}
4630
4631 Use LF as line terminators when writing files. By default the line terminator
4632 of the host (LF under unix, CR/LF under Windows) is used.
4633 @end table
4634
4635 @geindex -u (gnatprep)
4636
4637
4638 @table @asis
4639
4640 @item @code{-u}
4641
4642 Causes undefined symbols to be treated as having the value FALSE in the context
4643 of a preprocessor test. In the absence of this option, an undefined symbol in
4644 a @code{#if} or @code{#elsif} test will be treated as an error.
4645 @end table
4646
4647 @geindex -v (gnatprep)
4648
4649
4650 @table @asis
4651
4652 @item @code{-v}
4653
4654 Verbose mode: generates more output about work done.
4655 @end table
4656
4657 Note: if neither @code{-b} nor @code{-c} is present,
4658 then preprocessor lines and
4659 deleted lines are completely removed from the output, unless -r is
4660 specified, in which case -b is assumed.
4661
4662 @node Form of Definitions File,Form of Input Text for gnatprep,Switches for gnatprep,Preprocessing with gnatprep
4663 @anchor{gnat_ugn/the_gnat_compilation_model form-of-definitions-file}@anchor{98}@anchor{gnat_ugn/the_gnat_compilation_model id58}@anchor{99}
4664 @subsubsection Form of Definitions File
4665
4666
4667 The definitions file contains lines of the form:
4668
4669 @example
4670 symbol := value
4671 @end example
4672
4673 where @code{symbol} is a preprocessing symbol, and @code{value} is one of the following:
4674
4675
4676 @itemize *
4677
4678 @item
4679 Empty, corresponding to a null substitution,
4680
4681 @item
4682 A string literal using normal Ada syntax, or
4683
4684 @item
4685 Any sequence of characters from the set @{letters, digits, period, underline@}.
4686 @end itemize
4687
4688 Comment lines may also appear in the definitions file, starting with
4689 the usual @code{--},
4690 and comments may be added to the definitions lines.
4691
4692 @node Form of Input Text for gnatprep,,Form of Definitions File,Preprocessing with gnatprep
4693 @anchor{gnat_ugn/the_gnat_compilation_model form-of-input-text-for-gnatprep}@anchor{9a}@anchor{gnat_ugn/the_gnat_compilation_model id59}@anchor{9b}
4694 @subsubsection Form of Input Text for @code{gnatprep}
4695
4696
4697 The input text may contain preprocessor conditional inclusion lines,
4698 as well as general symbol substitution sequences.
4699
4700 The preprocessor conditional inclusion commands have the form:
4701
4702 @example
4703 #if <expression> [then]
4704 lines
4705 #elsif <expression> [then]
4706 lines
4707 #elsif <expression> [then]
4708 lines
4709 ...
4710 #else
4711 lines
4712 #end if;
4713 @end example
4714
4715 In this example, <expression> is defined by the following grammar:
4716
4717 @example
4718 <expression> ::= <symbol>
4719 <expression> ::= <symbol> = "<value>"
4720 <expression> ::= <symbol> = <symbol>
4721 <expression> ::= <symbol> = <integer>
4722 <expression> ::= <symbol> > <integer>
4723 <expression> ::= <symbol> >= <integer>
4724 <expression> ::= <symbol> < <integer>
4725 <expression> ::= <symbol> <= <integer>
4726 <expression> ::= <symbol> 'Defined
4727 <expression> ::= not <expression>
4728 <expression> ::= <expression> and <expression>
4729 <expression> ::= <expression> or <expression>
4730 <expression> ::= <expression> and then <expression>
4731 <expression> ::= <expression> or else <expression>
4732 <expression> ::= ( <expression> )
4733 @end example
4734
4735 Note the following restriction: it is not allowed to have “and” or “or”
4736 following “not” in the same expression without parentheses. For example, this
4737 is not allowed:
4738
4739 @example
4740 not X or Y
4741 @end example
4742
4743 This can be expressed instead as one of the following forms:
4744
4745 @example
4746 (not X) or Y
4747 not (X or Y)
4748 @end example
4749
4750 For the first test (<expression> ::= <symbol>) the symbol must have
4751 either the value true or false, that is to say the right-hand of the
4752 symbol definition must be one of the (case-insensitive) literals
4753 @code{True} or @code{False}. If the value is true, then the
4754 corresponding lines are included, and if the value is false, they are
4755 excluded.
4756
4757 When comparing a symbol to an integer, the integer is any non negative
4758 literal integer as defined in the Ada Reference Manual, such as 3, 16#FF# or
4759 2#11#. The symbol value must also be a non negative integer. Integer values
4760 in the range 0 .. 2**31-1 are supported.
4761
4762 The test (<expression> ::= <symbol>’Defined) is true only if
4763 the symbol has been defined in the definition file or by a @code{-D}
4764 switch on the command line. Otherwise, the test is false.
4765
4766 The equality tests are case insensitive, as are all the preprocessor lines.
4767
4768 If the symbol referenced is not defined in the symbol definitions file,
4769 then the effect depends on whether or not switch @code{-u}
4770 is specified. If so, then the symbol is treated as if it had the value
4771 false and the test fails. If this switch is not specified, then
4772 it is an error to reference an undefined symbol. It is also an error to
4773 reference a symbol that is defined with a value other than @code{True}
4774 or @code{False}.
4775
4776 The use of the @code{not} operator inverts the sense of this logical test.
4777 The @code{not} operator cannot be combined with the @code{or} or @code{and}
4778 operators, without parentheses. For example, “if not X or Y then” is not
4779 allowed, but “if (not X) or Y then” and “if not (X or Y) then” are.
4780
4781 The @code{then} keyword is optional as shown
4782
4783 The @code{#} must be the first non-blank character on a line, but
4784 otherwise the format is free form. Spaces or tabs may appear between
4785 the @code{#} and the keyword. The keywords and the symbols are case
4786 insensitive as in normal Ada code. Comments may be used on a
4787 preprocessor line, but other than that, no other tokens may appear on a
4788 preprocessor line. Any number of @code{elsif} clauses can be present,
4789 including none at all. The @code{else} is optional, as in Ada.
4790
4791 The @code{#} marking the start of a preprocessor line must be the first
4792 non-blank character on the line, i.e., it must be preceded only by
4793 spaces or horizontal tabs.
4794
4795 Symbol substitution outside of preprocessor lines is obtained by using
4796 the sequence:
4797
4798 @example
4799 $symbol
4800 @end example
4801
4802 anywhere within a source line, except in a comment or within a
4803 string literal. The identifier
4804 following the @code{$} must match one of the symbols defined in the symbol
4805 definition file, and the result is to substitute the value of the
4806 symbol in place of @code{$symbol} in the output file.
4807
4808 Note that although the substitution of strings within a string literal
4809 is not possible, it is possible to have a symbol whose defined value is
4810 a string literal. So instead of setting XYZ to @code{hello} and writing:
4811
4812 @example
4813 Header : String := "$XYZ";
4814 @end example
4815
4816 you should set XYZ to @code{"hello"} and write:
4817
4818 @example
4819 Header : String := $XYZ;
4820 @end example
4821
4822 and then the substitution will occur as desired.
4823
4824 @node Integrated Preprocessing,,Preprocessing with gnatprep,Conditional Compilation
4825 @anchor{gnat_ugn/the_gnat_compilation_model id60}@anchor{9c}@anchor{gnat_ugn/the_gnat_compilation_model integrated-preprocessing}@anchor{90}
4826 @subsection Integrated Preprocessing
4827
4828
4829 As noted above, a file to be preprocessed consists of Ada source code
4830 in which preprocessing lines have been inserted. However,
4831 instead of using @code{gnatprep} to explicitly preprocess a file as a separate
4832 step before compilation, you can carry out the preprocessing implicitly
4833 as part of compilation. Such `integrated preprocessing', which is the common
4834 style with C, is performed when either or both of the following switches
4835 are passed to the compiler:
4836
4837 @quotation
4838
4839
4840 @itemize *
4841
4842 @item
4843 @code{-gnatep}, which specifies the `preprocessor data file'.
4844 This file dictates how the source files will be preprocessed (e.g., which
4845 symbol definition files apply to which sources).
4846
4847 @item
4848 @code{-gnateD}, which defines values for preprocessing symbols.
4849 @end itemize
4850 @end quotation
4851
4852 Integrated preprocessing applies only to Ada source files, it is
4853 not available for configuration pragma files.
4854
4855 With integrated preprocessing, the output from the preprocessor is not,
4856 by default, written to any external file. Instead it is passed
4857 internally to the compiler. To preserve the result of
4858 preprocessing in a file, either run @code{gnatprep}
4859 in standalone mode or else supply the @code{-gnateG} switch
4860 (described below) to the compiler.
4861
4862 When using project files:
4863
4864 @quotation
4865
4866
4867 @itemize *
4868
4869 @item
4870 the builder switch @code{-x} should be used if any Ada source is
4871 compiled with @code{gnatep=}, so that the compiler finds the
4872 `preprocessor data file'.
4873
4874 @item
4875 the preprocessing data file and the symbol definition files should be
4876 located in the source directories of the project.
4877 @end itemize
4878 @end quotation
4879
4880 Note that the @code{gnatmake} switch @code{-m} will almost
4881 always trigger recompilation for sources that are preprocessed,
4882 because @code{gnatmake} cannot compute the checksum of the source after
4883 preprocessing.
4884
4885 The actual preprocessing function is described in detail in
4886 @ref{8f,,Preprocessing with gnatprep}. This section explains the switches
4887 that relate to integrated preprocessing.
4888
4889 @geindex -gnatep (gcc)
4890
4891
4892 @table @asis
4893
4894 @item @code{-gnatep=`preprocessor_data_file'}
4895
4896 This switch specifies the file name (without directory
4897 information) of the preprocessor data file. Either place this file
4898 in one of the source directories, or, when using project
4899 files, reference the project file’s directory via the
4900 @code{project_name'Project_Dir} project attribute; e.g:
4901
4902 @quotation
4903
4904 @example
4905 project Prj is
4906 package Compiler is
4907 for Switches ("Ada") use
4908 ("-gnatep=" & Prj'Project_Dir & "prep.def");
4909 end Compiler;
4910 end Prj;
4911 @end example
4912 @end quotation
4913
4914 A preprocessor data file is a text file that contains `preprocessor
4915 control lines'. A preprocessor control line directs the preprocessing of
4916 either a particular source file, or, analogous to @code{others} in Ada,
4917 all sources not specified elsewhere in the preprocessor data file.
4918 A preprocessor control line
4919 can optionally identify a `definition file' that assigns values to
4920 preprocessor symbols, as well as a list of switches that relate to
4921 preprocessing.
4922 Empty lines and comments (using Ada syntax) are also permitted, with no
4923 semantic effect.
4924
4925 Here’s an example of a preprocessor data file:
4926
4927 @quotation
4928
4929 @example
4930 "toto.adb" "prep.def" -u
4931 -- Preprocess toto.adb, using definition file prep.def
4932 -- Undefined symbols are treated as False
4933
4934 * -c -DVERSION=V101
4935 -- Preprocess all other sources without using a definition file
4936 -- Suppressed lined are commented
4937 -- Symbol VERSION has the value V101
4938
4939 "tata.adb" "prep2.def" -s
4940 -- Preprocess tata.adb, using definition file prep2.def
4941 -- List all symbols with their values
4942 @end example
4943 @end quotation
4944
4945 A preprocessor control line has the following syntax:
4946
4947 @quotation
4948
4949 @example
4950 <preprocessor_control_line> ::=
4951 <preprocessor_input> [ <definition_file_name> ] @{ <switch> @}
4952
4953 <preprocessor_input> ::= <source_file_name> | '*'
4954
4955 <definition_file_name> ::= <string_literal>
4956
4957 <source_file_name> := <string_literal>
4958
4959 <switch> := (See below for list)
4960 @end example
4961 @end quotation
4962
4963 Thus each preprocessor control line starts with either a literal string or
4964 the character ‘*’:
4965
4966
4967 @itemize *
4968
4969 @item
4970 A literal string is the file name (without directory information) of the source
4971 file that will be input to the preprocessor.
4972
4973 @item
4974 The character ‘*’ is a wild-card indicator; the additional parameters on the line
4975 indicate the preprocessing for all the sources
4976 that are not specified explicitly on other lines (the order of the lines is not
4977 significant).
4978 @end itemize
4979
4980 It is an error to have two lines with the same file name or two
4981 lines starting with the character ‘*’.
4982
4983 After the file name or ‘*’, an optional literal string specifies the name of
4984 the definition file to be used for preprocessing
4985 (@ref{98,,Form of Definitions File}). The definition files are found by the
4986 compiler in one of the source directories. In some cases, when compiling
4987 a source in a directory other than the current directory, if the definition
4988 file is in the current directory, it may be necessary to add the current
4989 directory as a source directory through the @code{-I} switch; otherwise
4990 the compiler would not find the definition file.
4991
4992 Finally, switches similar to those of @code{gnatprep} may optionally appear:
4993
4994
4995 @table @asis
4996
4997 @item @code{-b}
4998
4999 Causes both preprocessor lines and the lines deleted by
5000 preprocessing to be replaced by blank lines, preserving the line number.
5001 This switch is always implied; however, if specified after @code{-c}
5002 it cancels the effect of @code{-c}.
5003
5004 @item @code{-c}
5005
5006 Causes both preprocessor lines and the lines deleted
5007 by preprocessing to be retained as comments marked
5008 with the special string ‘@cite{–!}’.
5009
5010 @item @code{-D`symbol'=`new_value'}
5011
5012 Define or redefine @code{symbol} to have @code{new_value} as its value.
5013 The permitted form for @code{symbol} is either an Ada identifier, or any Ada reserved word
5014 aside from @code{if},
5015 @code{else}, @code{elsif}, @code{end}, @code{and}, @code{or} and @code{then}.
5016 The permitted form for @code{new_value} is a literal string, an Ada identifier or any Ada reserved
5017 word. A symbol declared with this switch replaces a symbol with the
5018 same name defined in a definition file.
5019
5020 @item @code{-s}
5021
5022 Causes a sorted list of symbol names and values to be
5023 listed on the standard output file.
5024
5025 @item @code{-u}
5026
5027 Causes undefined symbols to be treated as having the value @code{FALSE}
5028 in the context
5029 of a preprocessor test. In the absence of this option, an undefined symbol in
5030 a @code{#if} or @code{#elsif} test will be treated as an error.
5031 @end table
5032 @end table
5033
5034 @geindex -gnateD (gcc)
5035
5036
5037 @table @asis
5038
5039 @item @code{-gnateD`symbol'[=`new_value']}
5040
5041 Define or redefine @code{symbol} to have @code{new_value} as its value. If no value
5042 is supplied, then the value of @code{symbol} is @code{True}.
5043 The form of @code{symbol} is an identifier, following normal Ada (case-insensitive)
5044 rules for its syntax, and @code{new_value} is either an arbitrary string between double
5045 quotes or any sequence (including an empty sequence) of characters from the
5046 set (letters, digits, period, underline).
5047 Ada reserved words may be used as symbols, with the exceptions of @code{if},
5048 @code{else}, @code{elsif}, @code{end}, @code{and}, @code{or} and @code{then}.
5049
5050 Examples:
5051
5052 @quotation
5053
5054 @example
5055 -gnateDToto=Tata
5056 -gnateDFoo
5057 -gnateDFoo=\"Foo-Bar\"
5058 @end example
5059 @end quotation
5060
5061 A symbol declared with this switch on the command line replaces a
5062 symbol with the same name either in a definition file or specified with a
5063 switch @code{-D} in the preprocessor data file.
5064
5065 This switch is similar to switch @code{-D} of @code{gnatprep}.
5066
5067 @item @code{-gnateG}
5068
5069 When integrated preprocessing is performed on source file @code{filename.extension},
5070 create or overwrite @code{filename.extension.prep} to contain
5071 the result of the preprocessing.
5072 For example if the source file is @code{foo.adb} then
5073 the output file will be @code{foo.adb.prep}.
5074 @end table
5075
5076 @node Mixed Language Programming,GNAT and Other Compilation Models,Conditional Compilation,The GNAT Compilation Model
5077 @anchor{gnat_ugn/the_gnat_compilation_model id61}@anchor{9d}@anchor{gnat_ugn/the_gnat_compilation_model mixed-language-programming}@anchor{2c}
5078 @section Mixed Language Programming
5079
5080
5081 @geindex Mixed Language Programming
5082
5083 This section describes how to develop a mixed-language program,
5084 with a focus on combining Ada with C or C++.
5085
5086 @menu
5087 * Interfacing to C::
5088 * Calling Conventions::
5089 * Building Mixed Ada and C++ Programs::
5090 * Partition-Wide Settings::
5091 * Generating Ada Bindings for C and C++ headers::
5092 * Generating C Headers for Ada Specifications::
5093
5094 @end menu
5095
5096 @node Interfacing to C,Calling Conventions,,Mixed Language Programming
5097 @anchor{gnat_ugn/the_gnat_compilation_model id62}@anchor{9e}@anchor{gnat_ugn/the_gnat_compilation_model interfacing-to-c}@anchor{9f}
5098 @subsection Interfacing to C
5099
5100
5101 Interfacing Ada with a foreign language such as C involves using
5102 compiler directives to import and/or export entity definitions in each
5103 language – using @code{extern} statements in C, for instance, and the
5104 @code{Import}, @code{Export}, and @code{Convention} pragmas in Ada.
5105 A full treatment of these topics is provided in Appendix B, section 1
5106 of the Ada Reference Manual.
5107
5108 There are two ways to build a program using GNAT that contains some Ada
5109 sources and some foreign language sources, depending on whether or not
5110 the main subprogram is written in Ada. Here is a source example with
5111 the main subprogram in Ada:
5112
5113 @example
5114 /* file1.c */
5115 #include <stdio.h>
5116
5117 void print_num (int num)
5118 @{
5119 printf ("num is %d.\\n", num);
5120 return;
5121 @}
5122 @end example
5123
5124 @example
5125 /* file2.c */
5126
5127 /* num_from_Ada is declared in my_main.adb */
5128 extern int num_from_Ada;
5129
5130 int get_num (void)
5131 @{
5132 return num_from_Ada;
5133 @}
5134 @end example
5135
5136 @example
5137 -- my_main.adb
5138 procedure My_Main is
5139
5140 -- Declare then export an Integer entity called num_from_Ada
5141 My_Num : Integer := 10;
5142 pragma Export (C, My_Num, "num_from_Ada");
5143
5144 -- Declare an Ada function spec for Get_Num, then use
5145 -- C function get_num for the implementation.
5146 function Get_Num return Integer;
5147 pragma Import (C, Get_Num, "get_num");
5148
5149 -- Declare an Ada procedure spec for Print_Num, then use
5150 -- C function print_num for the implementation.
5151 procedure Print_Num (Num : Integer);
5152 pragma Import (C, Print_Num, "print_num");
5153
5154 begin
5155 Print_Num (Get_Num);
5156 end My_Main;
5157 @end example
5158
5159 To build this example:
5160
5161
5162 @itemize *
5163
5164 @item
5165 First compile the foreign language files to
5166 generate object files:
5167
5168 @example
5169 $ gcc -c file1.c
5170 $ gcc -c file2.c
5171 @end example
5172
5173 @item
5174 Then, compile the Ada units to produce a set of object files and ALI
5175 files:
5176
5177 @example
5178 $ gnatmake -c my_main.adb
5179 @end example
5180
5181 @item
5182 Run the Ada binder on the Ada main program:
5183
5184 @example
5185 $ gnatbind my_main.ali
5186 @end example
5187
5188 @item
5189 Link the Ada main program, the Ada objects and the other language
5190 objects:
5191
5192 @example
5193 $ gnatlink my_main.ali file1.o file2.o
5194 @end example
5195 @end itemize
5196
5197 The last three steps can be grouped in a single command:
5198
5199 @example
5200 $ gnatmake my_main.adb -largs file1.o file2.o
5201 @end example
5202
5203 @geindex Binder output file
5204
5205 If the main program is in a language other than Ada, then you may have
5206 more than one entry point into the Ada subsystem. You must use a special
5207 binder option to generate callable routines that initialize and
5208 finalize the Ada units (@ref{a0,,Binding with Non-Ada Main Programs}).
5209 Calls to the initialization and finalization routines must be inserted
5210 in the main program, or some other appropriate point in the code. The
5211 call to initialize the Ada units must occur before the first Ada
5212 subprogram is called, and the call to finalize the Ada units must occur
5213 after the last Ada subprogram returns. The binder will place the
5214 initialization and finalization subprograms into the
5215 @code{b~xxx.adb} file where they can be accessed by your C
5216 sources. To illustrate, we have the following example:
5217
5218 @example
5219 /* main.c */
5220 extern void adainit (void);
5221 extern void adafinal (void);
5222 extern int add (int, int);
5223 extern int sub (int, int);
5224
5225 int main (int argc, char *argv[])
5226 @{
5227 int a = 21, b = 7;
5228
5229 adainit();
5230
5231 /* Should print "21 + 7 = 28" */
5232 printf ("%d + %d = %d\\n", a, b, add (a, b));
5233
5234 /* Should print "21 - 7 = 14" */
5235 printf ("%d - %d = %d\\n", a, b, sub (a, b));
5236
5237 adafinal();
5238 @}
5239 @end example
5240
5241 @example
5242 -- unit1.ads
5243 package Unit1 is
5244 function Add (A, B : Integer) return Integer;
5245 pragma Export (C, Add, "add");
5246 end Unit1;
5247 @end example
5248
5249 @example
5250 -- unit1.adb
5251 package body Unit1 is
5252 function Add (A, B : Integer) return Integer is
5253 begin
5254 return A + B;
5255 end Add;
5256 end Unit1;
5257 @end example
5258
5259 @example
5260 -- unit2.ads
5261 package Unit2 is
5262 function Sub (A, B : Integer) return Integer;
5263 pragma Export (C, Sub, "sub");
5264 end Unit2;
5265 @end example
5266
5267 @example
5268 -- unit2.adb
5269 package body Unit2 is
5270 function Sub (A, B : Integer) return Integer is
5271 begin
5272 return A - B;
5273 end Sub;
5274 end Unit2;
5275 @end example
5276
5277 The build procedure for this application is similar to the last
5278 example’s:
5279
5280
5281 @itemize *
5282
5283 @item
5284 First, compile the foreign language files to generate object files:
5285
5286 @example
5287 $ gcc -c main.c
5288 @end example
5289
5290 @item
5291 Next, compile the Ada units to produce a set of object files and ALI
5292 files:
5293
5294 @example
5295 $ gnatmake -c unit1.adb
5296 $ gnatmake -c unit2.adb
5297 @end example
5298
5299 @item
5300 Run the Ada binder on every generated ALI file. Make sure to use the
5301 @code{-n} option to specify a foreign main program:
5302
5303 @example
5304 $ gnatbind -n unit1.ali unit2.ali
5305 @end example
5306
5307 @item
5308 Link the Ada main program, the Ada objects and the foreign language
5309 objects. You need only list the last ALI file here:
5310
5311 @example
5312 $ gnatlink unit2.ali main.o -o exec_file
5313 @end example
5314
5315 This procedure yields a binary executable called @code{exec_file}.
5316 @end itemize
5317
5318 Depending on the circumstances (for example when your non-Ada main object
5319 does not provide symbol @code{main}), you may also need to instruct the
5320 GNAT linker not to include the standard startup objects by passing the
5321 @code{-nostartfiles} switch to @code{gnatlink}.
5322
5323 @node Calling Conventions,Building Mixed Ada and C++ Programs,Interfacing to C,Mixed Language Programming
5324 @anchor{gnat_ugn/the_gnat_compilation_model calling-conventions}@anchor{a1}@anchor{gnat_ugn/the_gnat_compilation_model id63}@anchor{a2}
5325 @subsection Calling Conventions
5326
5327
5328 @geindex Foreign Languages
5329
5330 @geindex Calling Conventions
5331
5332 GNAT follows standard calling sequence conventions and will thus interface
5333 to any other language that also follows these conventions. The following
5334 Convention identifiers are recognized by GNAT:
5335
5336 @geindex Interfacing to Ada
5337
5338 @geindex Other Ada compilers
5339
5340 @geindex Convention Ada
5341
5342
5343 @table @asis
5344
5345 @item @code{Ada}
5346
5347 This indicates that the standard Ada calling sequence will be
5348 used and all Ada data items may be passed without any limitations in the
5349 case where GNAT is used to generate both the caller and callee. It is also
5350 possible to mix GNAT generated code and code generated by another Ada
5351 compiler. In this case, the data types should be restricted to simple
5352 cases, including primitive types. Whether complex data types can be passed
5353 depends on the situation. Probably it is safe to pass simple arrays, such
5354 as arrays of integers or floats. Records may or may not work, depending
5355 on whether both compilers lay them out identically. Complex structures
5356 involving variant records, access parameters, tasks, or protected types,
5357 are unlikely to be able to be passed.
5358
5359 Note that in the case of GNAT running
5360 on a platform that supports HP Ada 83, a higher degree of compatibility
5361 can be guaranteed, and in particular records are laid out in an identical
5362 manner in the two compilers. Note also that if output from two different
5363 compilers is mixed, the program is responsible for dealing with elaboration
5364 issues. Probably the safest approach is to write the main program in the
5365 version of Ada other than GNAT, so that it takes care of its own elaboration
5366 requirements, and then call the GNAT-generated adainit procedure to ensure
5367 elaboration of the GNAT components. Consult the documentation of the other
5368 Ada compiler for further details on elaboration.
5369
5370 However, it is not possible to mix the tasking run time of GNAT and
5371 HP Ada 83, all the tasking operations must either be entirely within
5372 GNAT compiled sections of the program, or entirely within HP Ada 83
5373 compiled sections of the program.
5374 @end table
5375
5376 @geindex Interfacing to Assembly
5377
5378 @geindex Convention Assembler
5379
5380
5381 @table @asis
5382
5383 @item @code{Assembler}
5384
5385 Specifies assembler as the convention. In practice this has the
5386 same effect as convention Ada (but is not equivalent in the sense of being
5387 considered the same convention).
5388 @end table
5389
5390 @geindex Convention Asm
5391
5392 @geindex Asm
5393
5394
5395 @table @asis
5396
5397 @item @code{Asm}
5398
5399 Equivalent to Assembler.
5400
5401 @geindex Interfacing to COBOL
5402
5403 @geindex Convention COBOL
5404 @end table
5405
5406 @geindex COBOL
5407
5408
5409 @table @asis
5410
5411 @item @code{COBOL}
5412
5413 Data will be passed according to the conventions described
5414 in section B.4 of the Ada Reference Manual.
5415 @end table
5416
5417 @geindex C
5418
5419 @geindex Interfacing to C
5420
5421 @geindex Convention C
5422
5423
5424 @table @asis
5425
5426 @item @code{C}
5427
5428 Data will be passed according to the conventions described
5429 in section B.3 of the Ada Reference Manual.
5430
5431 A note on interfacing to a C ‘varargs’ function:
5432
5433 @quotation
5434
5435 @geindex C varargs function
5436
5437 @geindex Interfacing to C varargs function
5438
5439 @geindex varargs function interfaces
5440
5441 In C, @code{varargs} allows a function to take a variable number of
5442 arguments. There is no direct equivalent in this to Ada. One
5443 approach that can be used is to create a C wrapper for each
5444 different profile and then interface to this C wrapper. For
5445 example, to print an @code{int} value using @code{printf},
5446 create a C function @code{printfi} that takes two arguments, a
5447 pointer to a string and an int, and calls @code{printf}.
5448 Then in the Ada program, use pragma @code{Import} to
5449 interface to @code{printfi}.
5450
5451 It may work on some platforms to directly interface to
5452 a @code{varargs} function by providing a specific Ada profile
5453 for a particular call. However, this does not work on
5454 all platforms, since there is no guarantee that the
5455 calling sequence for a two argument normal C function
5456 is the same as for calling a @code{varargs} C function with
5457 the same two arguments.
5458 @end quotation
5459 @end table
5460
5461 @geindex Convention Default
5462
5463 @geindex Default
5464
5465
5466 @table @asis
5467
5468 @item @code{Default}
5469
5470 Equivalent to C.
5471 @end table
5472
5473 @geindex Convention External
5474
5475 @geindex External
5476
5477
5478 @table @asis
5479
5480 @item @code{External}
5481
5482 Equivalent to C.
5483 @end table
5484
5485 @geindex C++
5486
5487 @geindex Interfacing to C++
5488
5489 @geindex Convention C++
5490
5491
5492 @table @asis
5493
5494 @item @code{C_Plus_Plus} (or @code{CPP})
5495
5496 This stands for C++. For most purposes this is identical to C.
5497 See the separate description of the specialized GNAT pragmas relating to
5498 C++ interfacing for further details.
5499 @end table
5500
5501 @geindex Fortran
5502
5503 @geindex Interfacing to Fortran
5504
5505 @geindex Convention Fortran
5506
5507
5508 @table @asis
5509
5510 @item @code{Fortran}
5511
5512 Data will be passed according to the conventions described
5513 in section B.5 of the Ada Reference Manual.
5514
5515 @item @code{Intrinsic}
5516
5517 This applies to an intrinsic operation, as defined in the Ada
5518 Reference Manual. If a pragma Import (Intrinsic) applies to a subprogram,
5519 this means that the body of the subprogram is provided by the compiler itself,
5520 usually by means of an efficient code sequence, and that the user does not
5521 supply an explicit body for it. In an application program, the pragma may
5522 be applied to the following sets of names:
5523
5524
5525 @itemize *
5526
5527 @item
5528 Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_Arithmetic.
5529 The corresponding subprogram declaration must have
5530 two formal parameters. The
5531 first one must be a signed integer type or a modular type with a binary
5532 modulus, and the second parameter must be of type Natural.
5533 The return type must be the same as the type of the first argument. The size
5534 of this type can only be 8, 16, 32, or 64.
5535
5536 @item
5537 Binary arithmetic operators: ‘+’, ‘-’, ‘*’, ‘/’.
5538 The corresponding operator declaration must have parameters and result type
5539 that have the same root numeric type (for example, all three are long_float
5540 types). This simplifies the definition of operations that use type checking
5541 to perform dimensional checks:
5542
5543 @example
5544 type Distance is new Long_Float;
5545 type Time is new Long_Float;
5546 type Velocity is new Long_Float;
5547 function "/" (D : Distance; T : Time)
5548 return Velocity;
5549 pragma Import (Intrinsic, "/");
5550 @end example
5551
5552 This common idiom is often programmed with a generic definition and an
5553 explicit body. The pragma makes it simpler to introduce such declarations.
5554 It incurs no overhead in compilation time or code size, because it is
5555 implemented as a single machine instruction.
5556
5557 @item
5558 General subprogram entities. This is used to bind an Ada subprogram
5559 declaration to
5560 a compiler builtin by name with back-ends where such interfaces are
5561 available. A typical example is the set of @code{__builtin} functions
5562 exposed by the GCC back-end, as in the following example:
5563
5564 @example
5565 function builtin_sqrt (F : Float) return Float;
5566 pragma Import (Intrinsic, builtin_sqrt, "__builtin_sqrtf");
5567 @end example
5568
5569 Most of the GCC builtins are accessible this way, and as for other
5570 import conventions (e.g. C), it is the user’s responsibility to ensure
5571 that the Ada subprogram profile matches the underlying builtin
5572 expectations.
5573 @end itemize
5574 @end table
5575
5576 @geindex Stdcall
5577
5578 @geindex Convention Stdcall
5579
5580
5581 @table @asis
5582
5583 @item @code{Stdcall}
5584
5585 This is relevant only to Windows implementations of GNAT,
5586 and specifies that the @code{Stdcall} calling sequence will be used,
5587 as defined by the NT API. Nevertheless, to ease building
5588 cross-platform bindings this convention will be handled as a @code{C} calling
5589 convention on non-Windows platforms.
5590 @end table
5591
5592 @geindex DLL
5593
5594 @geindex Convention DLL
5595
5596
5597 @table @asis
5598
5599 @item @code{DLL}
5600
5601 This is equivalent to @code{Stdcall}.
5602 @end table
5603
5604 @geindex Win32
5605
5606 @geindex Convention Win32
5607
5608
5609 @table @asis
5610
5611 @item @code{Win32}
5612
5613 This is equivalent to @code{Stdcall}.
5614 @end table
5615
5616 @geindex Stubbed
5617
5618 @geindex Convention Stubbed
5619
5620
5621 @table @asis
5622
5623 @item @code{Stubbed}
5624
5625 This is a special convention that indicates that the compiler
5626 should provide a stub body that raises @code{Program_Error}.
5627 @end table
5628
5629 GNAT additionally provides a useful pragma @code{Convention_Identifier}
5630 that can be used to parameterize conventions and allow additional synonyms
5631 to be specified. For example if you have legacy code in which the convention
5632 identifier Fortran77 was used for Fortran, you can use the configuration
5633 pragma:
5634
5635 @example
5636 pragma Convention_Identifier (Fortran77, Fortran);
5637 @end example
5638
5639 And from now on the identifier Fortran77 may be used as a convention
5640 identifier (for example in an @code{Import} pragma) with the same
5641 meaning as Fortran.
5642
5643 @node Building Mixed Ada and C++ Programs,Partition-Wide Settings,Calling Conventions,Mixed Language Programming
5644 @anchor{gnat_ugn/the_gnat_compilation_model building-mixed-ada-and-c-programs}@anchor{a3}@anchor{gnat_ugn/the_gnat_compilation_model id64}@anchor{a4}
5645 @subsection Building Mixed Ada and C++ Programs
5646
5647
5648 A programmer inexperienced with mixed-language development may find that
5649 building an application containing both Ada and C++ code can be a
5650 challenge. This section gives a few hints that should make this task easier.
5651
5652 @menu
5653 * Interfacing to C++::
5654 * Linking a Mixed C++ & Ada Program::
5655 * A Simple Example::
5656 * Interfacing with C++ constructors::
5657 * Interfacing with C++ at the Class Level::
5658
5659 @end menu
5660
5661 @node Interfacing to C++,Linking a Mixed C++ & Ada Program,,Building Mixed Ada and C++ Programs
5662 @anchor{gnat_ugn/the_gnat_compilation_model id65}@anchor{a5}@anchor{gnat_ugn/the_gnat_compilation_model id66}@anchor{a6}
5663 @subsubsection Interfacing to C++
5664
5665
5666 GNAT supports interfacing with the G++ compiler (or any C++ compiler
5667 generating code that is compatible with the G++ Application Binary
5668 Interface —see @indicateurl{http://itanium-cxx-abi.github.io/cxx-abi/abi.html}).
5669
5670 Interfacing can be done at 3 levels: simple data, subprograms, and
5671 classes. In the first two cases, GNAT offers a specific @code{Convention C_Plus_Plus}
5672 (or @code{CPP}) that behaves exactly like @code{Convention C}.
5673 Usually, C++ mangles the names of subprograms. To generate proper mangled
5674 names automatically, see @ref{a7,,Generating Ada Bindings for C and C++ headers}).
5675 This problem can also be addressed manually in two ways:
5676
5677
5678 @itemize *
5679
5680 @item
5681 by modifying the C++ code in order to force a C convention using
5682 the @code{extern "C"} syntax.
5683
5684 @item
5685 by figuring out the mangled name (using e.g. @code{nm}) and using it as the
5686 Link_Name argument of the pragma import.
5687 @end itemize
5688
5689 Interfacing at the class level can be achieved by using the GNAT specific
5690 pragmas such as @code{CPP_Constructor}. See the @cite{GNAT_Reference_Manual} for additional information.
5691
5692 @node Linking a Mixed C++ & Ada Program,A Simple Example,Interfacing to C++,Building Mixed Ada and C++ Programs
5693 @anchor{gnat_ugn/the_gnat_compilation_model linking-a-mixed-c-ada-program}@anchor{a8}@anchor{gnat_ugn/the_gnat_compilation_model linking-a-mixed-c-and-ada-program}@anchor{a9}
5694 @subsubsection Linking a Mixed C++ & Ada Program
5695
5696
5697 Usually the linker of the C++ development system must be used to link
5698 mixed applications because most C++ systems will resolve elaboration
5699 issues (such as calling constructors on global class instances)
5700 transparently during the link phase. GNAT has been adapted to ease the
5701 use of a foreign linker for the last phase. Three cases can be
5702 considered:
5703
5704
5705 @itemize *
5706
5707 @item
5708 Using GNAT and G++ (GNU C++ compiler) from the same GCC installation:
5709 The C++ linker can simply be called by using the C++ specific driver
5710 called @code{g++}.
5711
5712 Note that if the C++ code uses inline functions, you will need to
5713 compile your C++ code with the @code{-fkeep-inline-functions} switch in
5714 order to provide an existing function implementation that the Ada code can
5715 link with.
5716
5717 @example
5718 $ g++ -c -fkeep-inline-functions file1.C
5719 $ g++ -c -fkeep-inline-functions file2.C
5720 $ gnatmake ada_unit -largs file1.o file2.o --LINK=g++
5721 @end example
5722
5723 @item
5724 Using GNAT and G++ from two different GCC installations: If both
5725 compilers are on the
5726 @geindex PATH
5727 @geindex environment variable; PATH
5728 @code{PATH}, the previous method may be used. It is
5729 important to note that environment variables such as
5730 @geindex C_INCLUDE_PATH
5731 @geindex environment variable; C_INCLUDE_PATH
5732 @code{C_INCLUDE_PATH},
5733 @geindex GCC_EXEC_PREFIX
5734 @geindex environment variable; GCC_EXEC_PREFIX
5735 @code{GCC_EXEC_PREFIX},
5736 @geindex BINUTILS_ROOT
5737 @geindex environment variable; BINUTILS_ROOT
5738 @code{BINUTILS_ROOT}, and
5739 @geindex GCC_ROOT
5740 @geindex environment variable; GCC_ROOT
5741 @code{GCC_ROOT} will affect both compilers
5742 at the same time and may make one of the two compilers operate
5743 improperly if set during invocation of the wrong compiler. It is also
5744 very important that the linker uses the proper @code{libgcc.a} GCC
5745 library – that is, the one from the C++ compiler installation. The
5746 implicit link command as suggested in the @code{gnatmake} command
5747 from the former example can be replaced by an explicit link command with
5748 the full-verbosity option in order to verify which library is used:
5749
5750 @example
5751 $ gnatbind ada_unit
5752 $ gnatlink -v -v ada_unit file1.o file2.o --LINK=c++
5753 @end example
5754
5755 If there is a problem due to interfering environment variables, it can
5756 be worked around by using an intermediate script. The following example
5757 shows the proper script to use when GNAT has not been installed at its
5758 default location and g++ has been installed at its default location:
5759
5760 @example
5761 $ cat ./my_script
5762 #!/bin/sh
5763 unset BINUTILS_ROOT
5764 unset GCC_ROOT
5765 c++ $*
5766 $ gnatlink -v -v ada_unit file1.o file2.o --LINK=./my_script
5767 @end example
5768
5769 @item
5770 Using a non-GNU C++ compiler: The commands previously described can be
5771 used to insure that the C++ linker is used. Nonetheless, you need to add
5772 a few more parameters to the link command line, depending on the exception
5773 mechanism used.
5774
5775 If the @code{setjmp} / @code{longjmp} exception mechanism is used, only the paths
5776 to the @code{libgcc} libraries are required:
5777
5778 @example
5779 $ cat ./my_script
5780 #!/bin/sh
5781 CC $* gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a
5782 $ gnatlink ada_unit file1.o file2.o --LINK=./my_script
5783 @end example
5784
5785 where CC is the name of the non-GNU C++ compiler.
5786
5787 If the “zero cost” exception mechanism is used, and the platform
5788 supports automatic registration of exception tables (e.g., Solaris),
5789 paths to more objects are required:
5790
5791 @example
5792 $ cat ./my_script
5793 #!/bin/sh
5794 CC gcc -print-file-name=crtbegin.o $* \\
5795 gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a \\
5796 gcc -print-file-name=crtend.o
5797 $ gnatlink ada_unit file1.o file2.o --LINK=./my_script
5798 @end example
5799
5800 If the “zero cost exception” mechanism is used, and the platform
5801 doesn’t support automatic registration of exception tables (e.g., HP-UX
5802 or AIX), the simple approach described above will not work and
5803 a pre-linking phase using GNAT will be necessary.
5804 @end itemize
5805
5806 Another alternative is to use the @code{gprbuild} multi-language builder
5807 which has a large knowledge base and knows how to link Ada and C++ code
5808 together automatically in most cases.
5809
5810 @node A Simple Example,Interfacing with C++ constructors,Linking a Mixed C++ & Ada Program,Building Mixed Ada and C++ Programs
5811 @anchor{gnat_ugn/the_gnat_compilation_model a-simple-example}@anchor{aa}@anchor{gnat_ugn/the_gnat_compilation_model id67}@anchor{ab}
5812 @subsubsection A Simple Example
5813
5814
5815 The following example, provided as part of the GNAT examples, shows how
5816 to achieve procedural interfacing between Ada and C++ in both
5817 directions. The C++ class A has two methods. The first method is exported
5818 to Ada by the means of an extern C wrapper function. The second method
5819 calls an Ada subprogram. On the Ada side, the C++ calls are modelled by
5820 a limited record with a layout comparable to the C++ class. The Ada
5821 subprogram, in turn, calls the C++ method. So, starting from the C++
5822 main program, the process passes back and forth between the two
5823 languages.
5824
5825 Here are the compilation commands:
5826
5827 @example
5828 $ gnatmake -c simple_cpp_interface
5829 $ g++ -c cpp_main.C
5830 $ g++ -c ex7.C
5831 $ gnatbind -n simple_cpp_interface
5832 $ gnatlink simple_cpp_interface -o cpp_main --LINK=g++ -lstdc++ ex7.o cpp_main.o
5833 @end example
5834
5835 Here are the corresponding sources:
5836
5837 @example
5838 //cpp_main.C
5839
5840 #include "ex7.h"
5841
5842 extern "C" @{
5843 void adainit (void);
5844 void adafinal (void);
5845 void method1 (A *t);
5846 @}
5847
5848 void method1 (A *t)
5849 @{
5850 t->method1 ();
5851 @}
5852
5853 int main ()
5854 @{
5855 A obj;
5856 adainit ();
5857 obj.method2 (3030);
5858 adafinal ();
5859 @}
5860 @end example
5861
5862 @example
5863 //ex7.h
5864
5865 class Origin @{
5866 public:
5867 int o_value;
5868 @};
5869 class A : public Origin @{
5870 public:
5871 void method1 (void);
5872 void method2 (int v);
5873 A();
5874 int a_value;
5875 @};
5876 @end example
5877
5878 @example
5879 //ex7.C
5880
5881 #include "ex7.h"
5882 #include <stdio.h>
5883
5884 extern "C" @{ void ada_method2 (A *t, int v);@}
5885
5886 void A::method1 (void)
5887 @{
5888 a_value = 2020;
5889 printf ("in A::method1, a_value = %d \\n",a_value);
5890 @}
5891
5892 void A::method2 (int v)
5893 @{
5894 ada_method2 (this, v);
5895 printf ("in A::method2, a_value = %d \\n",a_value);
5896 @}
5897
5898 A::A(void)
5899 @{
5900 a_value = 1010;
5901 printf ("in A::A, a_value = %d \\n",a_value);
5902 @}
5903 @end example
5904
5905 @example
5906 -- simple_cpp_interface.ads
5907 with System;
5908 package Simple_Cpp_Interface is
5909 type A is limited
5910 record
5911 Vptr : System.Address;
5912 O_Value : Integer;
5913 A_Value : Integer;
5914 end record;
5915 pragma Convention (C, A);
5916
5917 procedure Method1 (This : in out A);
5918 pragma Import (C, Method1);
5919
5920 procedure Ada_Method2 (This : in out A; V : Integer);
5921 pragma Export (C, Ada_Method2);
5922
5923 end Simple_Cpp_Interface;
5924 @end example
5925
5926 @example
5927 -- simple_cpp_interface.adb
5928 package body Simple_Cpp_Interface is
5929
5930 procedure Ada_Method2 (This : in out A; V : Integer) is
5931 begin
5932 Method1 (This);
5933 This.A_Value := V;
5934 end Ada_Method2;
5935
5936 end Simple_Cpp_Interface;
5937 @end example
5938
5939 @node Interfacing with C++ constructors,Interfacing with C++ at the Class Level,A Simple Example,Building Mixed Ada and C++ Programs
5940 @anchor{gnat_ugn/the_gnat_compilation_model id68}@anchor{ac}@anchor{gnat_ugn/the_gnat_compilation_model interfacing-with-c-constructors}@anchor{ad}
5941 @subsubsection Interfacing with C++ constructors
5942
5943
5944 In order to interface with C++ constructors GNAT provides the
5945 @code{pragma CPP_Constructor} (see the @cite{GNAT_Reference_Manual}
5946 for additional information).
5947 In this section we present some common uses of C++ constructors
5948 in mixed-languages programs in GNAT.
5949
5950 Let us assume that we need to interface with the following
5951 C++ class:
5952
5953 @example
5954 class Root @{
5955 public:
5956 int a_value;
5957 int b_value;
5958 virtual int Get_Value ();
5959 Root(); // Default constructor
5960 Root(int v); // 1st non-default constructor
5961 Root(int v, int w); // 2nd non-default constructor
5962 @};
5963 @end example
5964
5965 For this purpose we can write the following package spec (further
5966 information on how to build this spec is available in
5967 @ref{ae,,Interfacing with C++ at the Class Level} and
5968 @ref{a7,,Generating Ada Bindings for C and C++ headers}).
5969
5970 @example
5971 with Interfaces.C; use Interfaces.C;
5972 package Pkg_Root is
5973 type Root is tagged limited record
5974 A_Value : int;
5975 B_Value : int;
5976 end record;
5977 pragma Import (CPP, Root);
5978
5979 function Get_Value (Obj : Root) return int;
5980 pragma Import (CPP, Get_Value);
5981
5982 function Constructor return Root;
5983 pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ev");
5984
5985 function Constructor (v : Integer) return Root;
5986 pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ei");
5987
5988 function Constructor (v, w : Integer) return Root;
5989 pragma Cpp_Constructor (Constructor, "_ZN4RootC1Eii");
5990 end Pkg_Root;
5991 @end example
5992
5993 On the Ada side the constructor is represented by a function (whose
5994 name is arbitrary) that returns the classwide type corresponding to
5995 the imported C++ class. Although the constructor is described as a
5996 function, it is typically a procedure with an extra implicit argument
5997 (the object being initialized) at the implementation level. GNAT
5998 issues the appropriate call, whatever it is, to get the object
5999 properly initialized.
6000
6001 Constructors can only appear in the following contexts:
6002
6003
6004 @itemize *
6005
6006 @item
6007 On the right side of an initialization of an object of type @code{T}.
6008
6009 @item
6010 On the right side of an initialization of a record component of type @code{T}.
6011
6012 @item
6013 In an Ada 2005 limited aggregate.
6014
6015 @item
6016 In an Ada 2005 nested limited aggregate.
6017
6018 @item
6019 In an Ada 2005 limited aggregate that initializes an object built in
6020 place by an extended return statement.
6021 @end itemize
6022
6023 In a declaration of an object whose type is a class imported from C++,
6024 either the default C++ constructor is implicitly called by GNAT, or
6025 else the required C++ constructor must be explicitly called in the
6026 expression that initializes the object. For example:
6027
6028 @example
6029 Obj1 : Root;
6030 Obj2 : Root := Constructor;
6031 Obj3 : Root := Constructor (v => 10);
6032 Obj4 : Root := Constructor (30, 40);
6033 @end example
6034
6035 The first two declarations are equivalent: in both cases the default C++
6036 constructor is invoked (in the former case the call to the constructor is
6037 implicit, and in the latter case the call is explicit in the object
6038 declaration). @code{Obj3} is initialized by the C++ non-default constructor
6039 that takes an integer argument, and @code{Obj4} is initialized by the
6040 non-default C++ constructor that takes two integers.
6041
6042 Let us derive the imported C++ class in the Ada side. For example:
6043
6044 @example
6045 type DT is new Root with record
6046 C_Value : Natural := 2009;
6047 end record;
6048 @end example
6049
6050 In this case the components DT inherited from the C++ side must be
6051 initialized by a C++ constructor, and the additional Ada components
6052 of type DT are initialized by GNAT. The initialization of such an
6053 object is done either by default, or by means of a function returning
6054 an aggregate of type DT, or by means of an extension aggregate.
6055
6056 @example
6057 Obj5 : DT;
6058 Obj6 : DT := Function_Returning_DT (50);
6059 Obj7 : DT := (Constructor (30,40) with C_Value => 50);
6060 @end example
6061
6062 The declaration of @code{Obj5} invokes the default constructors: the
6063 C++ default constructor of the parent type takes care of the initialization
6064 of the components inherited from Root, and GNAT takes care of the default
6065 initialization of the additional Ada components of type DT (that is,
6066 @code{C_Value} is initialized to value 2009). The order of invocation of
6067 the constructors is consistent with the order of elaboration required by
6068 Ada and C++. That is, the constructor of the parent type is always called
6069 before the constructor of the derived type.
6070
6071 Let us now consider a record that has components whose type is imported
6072 from C++. For example:
6073
6074 @example
6075 type Rec1 is limited record
6076 Data1 : Root := Constructor (10);
6077 Value : Natural := 1000;
6078 end record;
6079
6080 type Rec2 (D : Integer := 20) is limited record
6081 Rec : Rec1;
6082 Data2 : Root := Constructor (D, 30);
6083 end record;
6084 @end example
6085
6086 The initialization of an object of type @code{Rec2} will call the
6087 non-default C++ constructors specified for the imported components.
6088 For example:
6089
6090 @example
6091 Obj8 : Rec2 (40);
6092 @end example
6093
6094 Using Ada 2005 we can use limited aggregates to initialize an object
6095 invoking C++ constructors that differ from those specified in the type
6096 declarations. For example:
6097
6098 @example
6099 Obj9 : Rec2 := (Rec => (Data1 => Constructor (15, 16),
6100 others => <>),
6101 others => <>);
6102 @end example
6103
6104 The above declaration uses an Ada 2005 limited aggregate to
6105 initialize @code{Obj9}, and the C++ constructor that has two integer
6106 arguments is invoked to initialize the @code{Data1} component instead
6107 of the constructor specified in the declaration of type @code{Rec1}. In
6108 Ada 2005 the box in the aggregate indicates that unspecified components
6109 are initialized using the expression (if any) available in the component
6110 declaration. That is, in this case discriminant @code{D} is initialized
6111 to value @code{20}, @code{Value} is initialized to value 1000, and the
6112 non-default C++ constructor that handles two integers takes care of
6113 initializing component @code{Data2} with values @code{20,30}.
6114
6115 In Ada 2005 we can use the extended return statement to build the Ada
6116 equivalent to C++ non-default constructors. For example:
6117
6118 @example
6119 function Constructor (V : Integer) return Rec2 is
6120 begin
6121 return Obj : Rec2 := (Rec => (Data1 => Constructor (V, 20),
6122 others => <>),
6123 others => <>) do
6124 -- Further actions required for construction of
6125 -- objects of type Rec2
6126 ...
6127 end record;
6128 end Constructor;
6129 @end example
6130
6131 In this example the extended return statement construct is used to
6132 build in place the returned object whose components are initialized
6133 by means of a limited aggregate. Any further action associated with
6134 the constructor can be placed inside the construct.
6135
6136 @node Interfacing with C++ at the Class Level,,Interfacing with C++ constructors,Building Mixed Ada and C++ Programs
6137 @anchor{gnat_ugn/the_gnat_compilation_model id69}@anchor{af}@anchor{gnat_ugn/the_gnat_compilation_model interfacing-with-c-at-the-class-level}@anchor{ae}
6138 @subsubsection Interfacing with C++ at the Class Level
6139
6140
6141 In this section we demonstrate the GNAT features for interfacing with
6142 C++ by means of an example making use of Ada 2005 abstract interface
6143 types. This example consists of a classification of animals; classes
6144 have been used to model our main classification of animals, and
6145 interfaces provide support for the management of secondary
6146 classifications. We first demonstrate a case in which the types and
6147 constructors are defined on the C++ side and imported from the Ada
6148 side, and latter the reverse case.
6149
6150 The root of our derivation will be the @code{Animal} class, with a
6151 single private attribute (the @code{Age} of the animal), a constructor,
6152 and two public primitives to set and get the value of this attribute.
6153
6154 @example
6155 class Animal @{
6156 public:
6157 virtual void Set_Age (int New_Age);
6158 virtual int Age ();
6159 Animal() @{Age_Count = 0;@};
6160 private:
6161 int Age_Count;
6162 @};
6163 @end example
6164
6165 Abstract interface types are defined in C++ by means of classes with pure
6166 virtual functions and no data members. In our example we will use two
6167 interfaces that provide support for the common management of @code{Carnivore}
6168 and @code{Domestic} animals:
6169
6170 @example
6171 class Carnivore @{
6172 public:
6173 virtual int Number_Of_Teeth () = 0;
6174 @};
6175
6176 class Domestic @{
6177 public:
6178 virtual void Set_Owner (char* Name) = 0;
6179 @};
6180 @end example
6181
6182 Using these declarations, we can now say that a @code{Dog} is an animal that is
6183 both Carnivore and Domestic, that is:
6184
6185 @example
6186 class Dog : Animal, Carnivore, Domestic @{
6187 public:
6188 virtual int Number_Of_Teeth ();
6189 virtual void Set_Owner (char* Name);
6190
6191 Dog(); // Constructor
6192 private:
6193 int Tooth_Count;
6194 char *Owner;
6195 @};
6196 @end example
6197
6198 In the following examples we will assume that the previous declarations are
6199 located in a file named @code{animals.h}. The following package demonstrates
6200 how to import these C++ declarations from the Ada side:
6201
6202 @example
6203 with Interfaces.C.Strings; use Interfaces.C.Strings;
6204 package Animals is
6205 type Carnivore is limited interface;
6206 pragma Convention (C_Plus_Plus, Carnivore);
6207 function Number_Of_Teeth (X : Carnivore)
6208 return Natural is abstract;
6209
6210 type Domestic is limited interface;
6211 pragma Convention (C_Plus_Plus, Domestic);
6212 procedure Set_Owner
6213 (X : in out Domestic;
6214 Name : Chars_Ptr) is abstract;
6215
6216 type Animal is tagged limited record
6217 Age : Natural;
6218 end record;
6219 pragma Import (C_Plus_Plus, Animal);
6220
6221 procedure Set_Age (X : in out Animal; Age : Integer);
6222 pragma Import (C_Plus_Plus, Set_Age);
6223
6224 function Age (X : Animal) return Integer;
6225 pragma Import (C_Plus_Plus, Age);
6226
6227 function New_Animal return Animal;
6228 pragma CPP_Constructor (New_Animal);
6229 pragma Import (CPP, New_Animal, "_ZN6AnimalC1Ev");
6230
6231 type Dog is new Animal and Carnivore and Domestic with record
6232 Tooth_Count : Natural;
6233 Owner : Chars_Ptr;
6234 end record;
6235 pragma Import (C_Plus_Plus, Dog);
6236
6237 function Number_Of_Teeth (A : Dog) return Natural;
6238 pragma Import (C_Plus_Plus, Number_Of_Teeth);
6239
6240 procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
6241 pragma Import (C_Plus_Plus, Set_Owner);
6242
6243 function New_Dog return Dog;
6244 pragma CPP_Constructor (New_Dog);
6245 pragma Import (CPP, New_Dog, "_ZN3DogC2Ev");
6246 end Animals;
6247 @end example
6248
6249 Thanks to the compatibility between GNAT run-time structures and the C++ ABI,
6250 interfacing with these C++ classes is easy. The only requirement is that all
6251 the primitives and components must be declared exactly in the same order in
6252 the two languages.
6253
6254 Regarding the abstract interfaces, we must indicate to the GNAT compiler by
6255 means of a @code{pragma Convention (C_Plus_Plus)}, the convention used to pass
6256 the arguments to the called primitives will be the same as for C++. For the
6257 imported classes we use @code{pragma Import} with convention @code{C_Plus_Plus}
6258 to indicate that they have been defined on the C++ side; this is required
6259 because the dispatch table associated with these tagged types will be built
6260 in the C++ side and therefore will not contain the predefined Ada primitives
6261 which Ada would otherwise expect.
6262
6263 As the reader can see there is no need to indicate the C++ mangled names
6264 associated with each subprogram because it is assumed that all the calls to
6265 these primitives will be dispatching calls. The only exception is the
6266 constructor, which must be registered with the compiler by means of
6267 @code{pragma CPP_Constructor} and needs to provide its associated C++
6268 mangled name because the Ada compiler generates direct calls to it.
6269
6270 With the above packages we can now declare objects of type Dog on the Ada side
6271 and dispatch calls to the corresponding subprograms on the C++ side. We can
6272 also extend the tagged type Dog with further fields and primitives, and
6273 override some of its C++ primitives on the Ada side. For example, here we have
6274 a type derivation defined on the Ada side that inherits all the dispatching
6275 primitives of the ancestor from the C++ side.
6276
6277 @example
6278 with Animals; use Animals;
6279 package Vaccinated_Animals is
6280 type Vaccinated_Dog is new Dog with null record;
6281 function Vaccination_Expired (A : Vaccinated_Dog) return Boolean;
6282 end Vaccinated_Animals;
6283 @end example
6284
6285 It is important to note that, because of the ABI compatibility, the programmer
6286 does not need to add any further information to indicate either the object
6287 layout or the dispatch table entry associated with each dispatching operation.
6288
6289 Now let us define all the types and constructors on the Ada side and export
6290 them to C++, using the same hierarchy of our previous example:
6291
6292 @example
6293 with Interfaces.C.Strings;
6294 use Interfaces.C.Strings;
6295 package Animals is
6296 type Carnivore is limited interface;
6297 pragma Convention (C_Plus_Plus, Carnivore);
6298 function Number_Of_Teeth (X : Carnivore)
6299 return Natural is abstract;
6300
6301 type Domestic is limited interface;
6302 pragma Convention (C_Plus_Plus, Domestic);
6303 procedure Set_Owner
6304 (X : in out Domestic;
6305 Name : Chars_Ptr) is abstract;
6306
6307 type Animal is tagged record
6308 Age : Natural;
6309 end record;
6310 pragma Convention (C_Plus_Plus, Animal);
6311
6312 procedure Set_Age (X : in out Animal; Age : Integer);
6313 pragma Export (C_Plus_Plus, Set_Age);
6314
6315 function Age (X : Animal) return Integer;
6316 pragma Export (C_Plus_Plus, Age);
6317
6318 function New_Animal return Animal'Class;
6319 pragma Export (C_Plus_Plus, New_Animal);
6320
6321 type Dog is new Animal and Carnivore and Domestic with record
6322 Tooth_Count : Natural;
6323 Owner : String (1 .. 30);
6324 end record;
6325 pragma Convention (C_Plus_Plus, Dog);
6326
6327 function Number_Of_Teeth (A : Dog) return Natural;
6328 pragma Export (C_Plus_Plus, Number_Of_Teeth);
6329
6330 procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
6331 pragma Export (C_Plus_Plus, Set_Owner);
6332
6333 function New_Dog return Dog'Class;
6334 pragma Export (C_Plus_Plus, New_Dog);
6335 end Animals;
6336 @end example
6337
6338 Compared with our previous example the only differences are the use of
6339 @code{pragma Convention} (instead of @code{pragma Import}), and the use of
6340 @code{pragma Export} to indicate to the GNAT compiler that the primitives will
6341 be available to C++. Thanks to the ABI compatibility, on the C++ side there is
6342 nothing else to be done; as explained above, the only requirement is that all
6343 the primitives and components are declared in exactly the same order.
6344
6345 For completeness, let us see a brief C++ main program that uses the
6346 declarations available in @code{animals.h} (presented in our first example) to
6347 import and use the declarations from the Ada side, properly initializing and
6348 finalizing the Ada run-time system along the way:
6349
6350 @example
6351 #include "animals.h"
6352 #include <iostream>
6353 using namespace std;
6354
6355 void Check_Carnivore (Carnivore *obj) @{...@}
6356 void Check_Domestic (Domestic *obj) @{...@}
6357 void Check_Animal (Animal *obj) @{...@}
6358 void Check_Dog (Dog *obj) @{...@}
6359
6360 extern "C" @{
6361 void adainit (void);
6362 void adafinal (void);
6363 Dog* new_dog ();
6364 @}
6365
6366 void test ()
6367 @{
6368 Dog *obj = new_dog(); // Ada constructor
6369 Check_Carnivore (obj); // Check secondary DT
6370 Check_Domestic (obj); // Check secondary DT
6371 Check_Animal (obj); // Check primary DT
6372 Check_Dog (obj); // Check primary DT
6373 @}
6374
6375 int main ()
6376 @{
6377 adainit (); test(); adafinal ();
6378 return 0;
6379 @}
6380 @end example
6381
6382 @node Partition-Wide Settings,Generating Ada Bindings for C and C++ headers,Building Mixed Ada and C++ Programs,Mixed Language Programming
6383 @anchor{gnat_ugn/the_gnat_compilation_model id70}@anchor{b0}@anchor{gnat_ugn/the_gnat_compilation_model partition-wide-settings}@anchor{b1}
6384 @subsection Partition-Wide Settings
6385
6386
6387 When building a mixed-language application it is important to be aware that
6388 Ada enforces some partition-wide settings that may implicitly impact the
6389 behavior of the other languages.
6390
6391 This is the case of certain signals that are reserved to the
6392 implementation to implement proper Ada semantics (such as the behavior
6393 of @code{abort} statements).
6394
6395 It means that the Ada part of the application may override signal handlers
6396 that were previously installed by either the system or by other user code.
6397
6398 If your application requires that either system or user signals be preserved
6399 then you need to instruct the Ada part not to install its own signal handler.
6400 This is done using @code{pragma Interrupt_State} that provides a general
6401 mechanism for overriding such uses of interrupts.
6402
6403 The set of interrupts for which the Ada run-time library sets a specific signal
6404 handler is the following:
6405
6406
6407 @itemize *
6408
6409 @item
6410 Ada.Interrupts.Names.SIGSEGV
6411
6412 @item
6413 Ada.Interrupts.Names.SIGBUS
6414
6415 @item
6416 Ada.Interrupts.Names.SIGFPE
6417
6418 @item
6419 Ada.Interrupts.Names.SIGILL
6420
6421 @item
6422 Ada.Interrupts.Names.SIGABRT
6423 @end itemize
6424
6425 The run-time library can be instructed not to install its signal handler for a
6426 particular signal by using the configuration pragma @code{Interrupt_State} in the
6427 Ada code. For example:
6428
6429 @example
6430 pragma Interrupt_State (Ada.Interrupts.Names.SIGSEGV, System);
6431 pragma Interrupt_State (Ada.Interrupts.Names.SIGBUS, System);
6432 pragma Interrupt_State (Ada.Interrupts.Names.SIGFPE, System);
6433 pragma Interrupt_State (Ada.Interrupts.Names.SIGILL, System);
6434 pragma Interrupt_State (Ada.Interrupts.Names.SIGABRT, System);
6435 @end example
6436
6437 Obviously, if the Ada run-time system cannot set these handlers it comes with the
6438 drawback of not fully preserving Ada semantics. @code{SIGSEGV}, @code{SIGBUS}, @code{SIGFPE}
6439 and @code{SIGILL} are used to raise corresponding Ada exceptions in the application,
6440 while @code{SIGABRT} is used to asynchronously abort an action or a task.
6441
6442 @node Generating Ada Bindings for C and C++ headers,Generating C Headers for Ada Specifications,Partition-Wide Settings,Mixed Language Programming
6443 @anchor{gnat_ugn/the_gnat_compilation_model generating-ada-bindings-for-c-and-c-headers}@anchor{a7}@anchor{gnat_ugn/the_gnat_compilation_model id71}@anchor{b2}
6444 @subsection Generating Ada Bindings for C and C++ headers
6445
6446
6447 @geindex Binding generation (for C and C++ headers)
6448
6449 @geindex C headers (binding generation)
6450
6451 @geindex C++ headers (binding generation)
6452
6453 GNAT includes a binding generator for C and C++ headers which is
6454 intended to do 95% of the tedious work of generating Ada specs from C
6455 or C++ header files.
6456
6457 Note that this capability is not intended to generate 100% correct Ada specs,
6458 and will is some cases require manual adjustments, although it can often
6459 be used out of the box in practice.
6460
6461 Some of the known limitations include:
6462
6463
6464 @itemize *
6465
6466 @item
6467 only very simple character constant macros are translated into Ada
6468 constants. Function macros (macros with arguments) are partially translated
6469 as comments, to be completed manually if needed.
6470
6471 @item
6472 some extensions (e.g. vector types) are not supported
6473
6474 @item
6475 pointers to pointers are mapped to System.Address
6476
6477 @item
6478 identifiers with identical name (except casing) may generate compilation
6479 errors (e.g. @code{shm_get} vs @code{SHM_GET}).
6480 @end itemize
6481
6482 The code is generated using Ada 2012 syntax, which makes it easier to interface
6483 with other languages. In most cases you can still use the generated binding
6484 even if your code is compiled using earlier versions of Ada (e.g. @code{-gnat95}).
6485
6486 @menu
6487 * Running the Binding Generator::
6488 * Generating Bindings for C++ Headers::
6489 * Switches::
6490
6491 @end menu
6492
6493 @node Running the Binding Generator,Generating Bindings for C++ Headers,,Generating Ada Bindings for C and C++ headers
6494 @anchor{gnat_ugn/the_gnat_compilation_model id72}@anchor{b3}@anchor{gnat_ugn/the_gnat_compilation_model running-the-binding-generator}@anchor{b4}
6495 @subsubsection Running the Binding Generator
6496
6497
6498 The binding generator is part of the @code{gcc} compiler and can be
6499 invoked via the @code{-fdump-ada-spec} switch, which will generate Ada
6500 spec files for the header files specified on the command line, and all
6501 header files needed by these files transitively. For example:
6502
6503 @example
6504 $ gcc -c -fdump-ada-spec -C /usr/include/time.h
6505 $ gcc -c *.ads
6506 @end example
6507
6508 will generate, under GNU/Linux, the following files: @code{time_h.ads},
6509 @code{bits_time_h.ads}, @code{stddef_h.ads}, @code{bits_types_h.ads} which
6510 correspond to the files @code{/usr/include/time.h},
6511 @code{/usr/include/bits/time.h}, etc…, and then compile these Ada specs.
6512 That is to say, the name of the Ada specs is in keeping with the relative path
6513 under @code{/usr/include/} of the header files. This behavior is specific to
6514 paths ending with @code{/include/}; in all the other cases, the name of the
6515 Ada specs is derived from the simple name of the header files instead.
6516
6517 The @code{-C} switch tells @code{gcc} to extract comments from headers,
6518 and will attempt to generate corresponding Ada comments.
6519
6520 If you want to generate a single Ada file and not the transitive closure, you
6521 can use instead the @code{-fdump-ada-spec-slim} switch.
6522
6523 You can optionally specify a parent unit, of which all generated units will
6524 be children, using @code{-fada-spec-parent=`unit'}.
6525
6526 The simple @code{gcc}-based command works only for C headers. For C++ headers
6527 you need to use either the @code{g++} command or the combination @code{gcc -x c++}.
6528
6529 In some cases, the generated bindings will be more complete or more meaningful
6530 when defining some macros, which you can do via the @code{-D} switch. This
6531 is for example the case with @code{Xlib.h} under GNU/Linux:
6532
6533 @example
6534 $ gcc -c -fdump-ada-spec -DXLIB_ILLEGAL_ACCESS -C /usr/include/X11/Xlib.h
6535 @end example
6536
6537 The above will generate more complete bindings than a straight call without
6538 the @code{-DXLIB_ILLEGAL_ACCESS} switch.
6539
6540 In other cases, it is not possible to parse a header file in a stand-alone
6541 manner, because other include files need to be included first. In this
6542 case, the solution is to create a small header file including the needed
6543 @code{#include} and possible @code{#define} directives. For example, to
6544 generate Ada bindings for @code{readline/readline.h}, you need to first
6545 include @code{stdio.h}, so you can create a file with the following two
6546 lines in e.g. @code{readline1.h}:
6547
6548 @example
6549 #include <stdio.h>
6550 #include <readline/readline.h>
6551 @end example
6552
6553 and then generate Ada bindings from this file:
6554
6555 @example
6556 $ gcc -c -fdump-ada-spec readline1.h
6557 @end example
6558
6559 @node Generating Bindings for C++ Headers,Switches,Running the Binding Generator,Generating Ada Bindings for C and C++ headers
6560 @anchor{gnat_ugn/the_gnat_compilation_model generating-bindings-for-c-headers}@anchor{b5}@anchor{gnat_ugn/the_gnat_compilation_model id73}@anchor{b6}
6561 @subsubsection Generating Bindings for C++ Headers
6562
6563
6564 Generating bindings for C++ headers is done using the same options, always
6565 with the `g++' compiler. Note that generating Ada spec from C++ headers is a
6566 much more complex job and support for C++ headers is much more limited that
6567 support for C headers. As a result, you will need to modify the resulting
6568 bindings by hand more extensively when using C++ headers.
6569
6570 In this mode, C++ classes will be mapped to Ada tagged types, constructors
6571 will be mapped using the @code{CPP_Constructor} pragma, and when possible,
6572 multiple inheritance of abstract classes will be mapped to Ada interfaces
6573 (see the `Interfacing to C++' section in the @cite{GNAT Reference Manual}
6574 for additional information on interfacing to C++).
6575
6576 For example, given the following C++ header file:
6577
6578 @example
6579 class Carnivore @{
6580 public:
6581 virtual int Number_Of_Teeth () = 0;
6582 @};
6583
6584 class Domestic @{
6585 public:
6586 virtual void Set_Owner (char* Name) = 0;
6587 @};
6588
6589 class Animal @{
6590 public:
6591 int Age_Count;
6592 virtual void Set_Age (int New_Age);
6593 @};
6594
6595 class Dog : Animal, Carnivore, Domestic @{
6596 public:
6597 int Tooth_Count;
6598 char *Owner;
6599
6600 virtual int Number_Of_Teeth ();
6601 virtual void Set_Owner (char* Name);
6602
6603 Dog();
6604 @};
6605 @end example
6606
6607 The corresponding Ada code is generated:
6608
6609 @example
6610 package Class_Carnivore is
6611 type Carnivore is limited interface;
6612 pragma Import (CPP, Carnivore);
6613
6614 function Number_Of_Teeth (this : access Carnivore) return int is abstract;
6615 end;
6616 use Class_Carnivore;
6617
6618 package Class_Domestic is
6619 type Domestic is limited interface;
6620 pragma Import (CPP, Domestic);
6621
6622 procedure Set_Owner
6623 (this : access Domestic;
6624 Name : Interfaces.C.Strings.chars_ptr) is abstract;
6625 end;
6626 use Class_Domestic;
6627
6628 package Class_Animal is
6629 type Animal is tagged limited record
6630 Age_Count : aliased int;
6631 end record;
6632 pragma Import (CPP, Animal);
6633
6634 procedure Set_Age (this : access Animal; New_Age : int);
6635 pragma Import (CPP, Set_Age, "_ZN6Animal7Set_AgeEi");
6636 end;
6637 use Class_Animal;
6638
6639 package Class_Dog is
6640 type Dog is new Animal and Carnivore and Domestic with record
6641 Tooth_Count : aliased int;
6642 Owner : Interfaces.C.Strings.chars_ptr;
6643 end record;
6644 pragma Import (CPP, Dog);
6645
6646 function Number_Of_Teeth (this : access Dog) return int;
6647 pragma Import (CPP, Number_Of_Teeth, "_ZN3Dog15Number_Of_TeethEv");
6648
6649 procedure Set_Owner
6650 (this : access Dog; Name : Interfaces.C.Strings.chars_ptr);
6651 pragma Import (CPP, Set_Owner, "_ZN3Dog9Set_OwnerEPc");
6652
6653 function New_Dog return Dog;
6654 pragma CPP_Constructor (New_Dog);
6655 pragma Import (CPP, New_Dog, "_ZN3DogC1Ev");
6656 end;
6657 use Class_Dog;
6658 @end example
6659
6660 @node Switches,,Generating Bindings for C++ Headers,Generating Ada Bindings for C and C++ headers
6661 @anchor{gnat_ugn/the_gnat_compilation_model switches}@anchor{b7}@anchor{gnat_ugn/the_gnat_compilation_model switches-for-ada-binding-generation}@anchor{b8}
6662 @subsubsection Switches
6663
6664
6665 @geindex -fdump-ada-spec (gcc)
6666
6667
6668 @table @asis
6669
6670 @item @code{-fdump-ada-spec}
6671
6672 Generate Ada spec files for the given header files transitively (including
6673 all header files that these headers depend upon).
6674 @end table
6675
6676 @geindex -fdump-ada-spec-slim (gcc)
6677
6678
6679 @table @asis
6680
6681 @item @code{-fdump-ada-spec-slim}
6682
6683 Generate Ada spec files for the header files specified on the command line
6684 only.
6685 @end table
6686
6687 @geindex -fada-spec-parent (gcc)
6688
6689
6690 @table @asis
6691
6692 @item @code{-fada-spec-parent=`unit'}
6693
6694 Specifies that all files generated by @code{-fdump-ada-spec} are
6695 to be child units of the specified parent unit.
6696 @end table
6697
6698 @geindex -C (gcc)
6699
6700
6701 @table @asis
6702
6703 @item @code{-C}
6704
6705 Extract comments from headers and generate Ada comments in the Ada spec files.
6706 @end table
6707
6708 @node Generating C Headers for Ada Specifications,,Generating Ada Bindings for C and C++ headers,Mixed Language Programming
6709 @anchor{gnat_ugn/the_gnat_compilation_model generating-c-headers-for-ada-specifications}@anchor{b9}@anchor{gnat_ugn/the_gnat_compilation_model id74}@anchor{ba}
6710 @subsection Generating C Headers for Ada Specifications
6711
6712
6713 @geindex Binding generation (for Ada specs)
6714
6715 @geindex C headers (binding generation)
6716
6717 GNAT includes a C header generator for Ada specifications which supports
6718 Ada types that have a direct mapping to C types. This includes in particular
6719 support for:
6720
6721
6722 @itemize *
6723
6724 @item
6725 Scalar types
6726
6727 @item
6728 Constrained arrays
6729
6730 @item
6731 Records (untagged)
6732
6733 @item
6734 Composition of the above types
6735
6736 @item
6737 Constant declarations
6738
6739 @item
6740 Object declarations
6741
6742 @item
6743 Subprogram declarations
6744 @end itemize
6745
6746 @menu
6747 * Running the C Header Generator::
6748
6749 @end menu
6750
6751 @node Running the C Header Generator,,,Generating C Headers for Ada Specifications
6752 @anchor{gnat_ugn/the_gnat_compilation_model running-the-c-header-generator}@anchor{bb}
6753 @subsubsection Running the C Header Generator
6754
6755
6756 The C header generator is part of the GNAT compiler and can be invoked via
6757 the @code{-gnatceg} combination of switches, which will generate a @code{.h}
6758 file corresponding to the given input file (Ada spec or body). Note that
6759 only spec files are processed in any case, so giving a spec or a body file
6760 as input is equivalent. For example:
6761
6762 @example
6763 $ gcc -c -gnatceg pack1.ads
6764 @end example
6765
6766 will generate a self-contained file called @code{pack1.h} including
6767 common definitions from the Ada Standard package, followed by the
6768 definitions included in @code{pack1.ads}, as well as all the other units
6769 withed by this file.
6770
6771 For instance, given the following Ada files:
6772
6773 @example
6774 package Pack2 is
6775 type Int is range 1 .. 10;
6776 end Pack2;
6777 @end example
6778
6779 @example
6780 with Pack2;
6781
6782 package Pack1 is
6783 type Rec is record
6784 Field1, Field2 : Pack2.Int;
6785 end record;
6786
6787 Global : Rec := (1, 2);
6788
6789 procedure Proc1 (R : Rec);
6790 procedure Proc2 (R : in out Rec);
6791 end Pack1;
6792 @end example
6793
6794 The above @code{gcc} command will generate the following @code{pack1.h} file:
6795
6796 @example
6797 /* Standard definitions skipped */
6798 #ifndef PACK2_ADS
6799 #define PACK2_ADS
6800 typedef short_short_integer pack2__TintB;
6801 typedef pack2__TintB pack2__int;
6802 #endif /* PACK2_ADS */
6803
6804 #ifndef PACK1_ADS
6805 #define PACK1_ADS
6806 typedef struct _pack1__rec @{
6807 pack2__int field1;
6808 pack2__int field2;
6809 @} pack1__rec;
6810 extern pack1__rec pack1__global;
6811 extern void pack1__proc1(const pack1__rec r);
6812 extern void pack1__proc2(pack1__rec *r);
6813 #endif /* PACK1_ADS */
6814 @end example
6815
6816 You can then @code{include} @code{pack1.h} from a C source file and use the types,
6817 call subprograms, reference objects, and constants.
6818
6819 @node GNAT and Other Compilation Models,Using GNAT Files with External Tools,Mixed Language Programming,The GNAT Compilation Model
6820 @anchor{gnat_ugn/the_gnat_compilation_model gnat-and-other-compilation-models}@anchor{2d}@anchor{gnat_ugn/the_gnat_compilation_model id75}@anchor{bc}
6821 @section GNAT and Other Compilation Models
6822
6823
6824 This section compares the GNAT model with the approaches taken in
6825 other environments, first the C/C++ model and then the mechanism that
6826 has been used in other Ada systems, in particular those traditionally
6827 used for Ada 83.
6828
6829 @menu
6830 * Comparison between GNAT and C/C++ Compilation Models::
6831 * Comparison between GNAT and Conventional Ada Library Models::
6832
6833 @end menu
6834
6835 @node Comparison between GNAT and C/C++ Compilation Models,Comparison between GNAT and Conventional Ada Library Models,,GNAT and Other Compilation Models
6836 @anchor{gnat_ugn/the_gnat_compilation_model comparison-between-gnat-and-c-c-compilation-models}@anchor{bd}@anchor{gnat_ugn/the_gnat_compilation_model id76}@anchor{be}
6837 @subsection Comparison between GNAT and C/C++ Compilation Models
6838
6839
6840 The GNAT model of compilation is close to the C and C++ models. You can
6841 think of Ada specs as corresponding to header files in C. As in C, you
6842 don’t need to compile specs; they are compiled when they are used. The
6843 Ada `with' is similar in effect to the @code{#include} of a C
6844 header.
6845
6846 One notable difference is that, in Ada, you may compile specs separately
6847 to check them for semantic and syntactic accuracy. This is not always
6848 possible with C headers because they are fragments of programs that have
6849 less specific syntactic or semantic rules.
6850
6851 The other major difference is the requirement for running the binder,
6852 which performs two important functions. First, it checks for
6853 consistency. In C or C++, the only defense against assembling
6854 inconsistent programs lies outside the compiler, in a makefile, for
6855 example. The binder satisfies the Ada requirement that it be impossible
6856 to construct an inconsistent program when the compiler is used in normal
6857 mode.
6858
6859 @geindex Elaboration order control
6860
6861 The other important function of the binder is to deal with elaboration
6862 issues. There are also elaboration issues in C++ that are handled
6863 automatically. This automatic handling has the advantage of being
6864 simpler to use, but the C++ programmer has no control over elaboration.
6865 Where @code{gnatbind} might complain there was no valid order of
6866 elaboration, a C++ compiler would simply construct a program that
6867 malfunctioned at run time.
6868
6869 @node Comparison between GNAT and Conventional Ada Library Models,,Comparison between GNAT and C/C++ Compilation Models,GNAT and Other Compilation Models
6870 @anchor{gnat_ugn/the_gnat_compilation_model comparison-between-gnat-and-conventional-ada-library-models}@anchor{bf}@anchor{gnat_ugn/the_gnat_compilation_model id77}@anchor{c0}
6871 @subsection Comparison between GNAT and Conventional Ada Library Models
6872
6873
6874 This section is intended for Ada programmers who have
6875 used an Ada compiler implementing the traditional Ada library
6876 model, as described in the Ada Reference Manual.
6877
6878 @geindex GNAT library
6879
6880 In GNAT, there is no ‘library’ in the normal sense. Instead, the set of
6881 source files themselves acts as the library. Compiling Ada programs does
6882 not generate any centralized information, but rather an object file and
6883 a ALI file, which are of interest only to the binder and linker.
6884 In a traditional system, the compiler reads information not only from
6885 the source file being compiled, but also from the centralized library.
6886 This means that the effect of a compilation depends on what has been
6887 previously compiled. In particular:
6888
6889
6890 @itemize *
6891
6892 @item
6893 When a unit is `with'ed, the unit seen by the compiler corresponds
6894 to the version of the unit most recently compiled into the library.
6895
6896 @item
6897 Inlining is effective only if the necessary body has already been
6898 compiled into the library.
6899
6900 @item
6901 Compiling a unit may obsolete other units in the library.
6902 @end itemize
6903
6904 In GNAT, compiling one unit never affects the compilation of any other
6905 units because the compiler reads only source files. Only changes to source
6906 files can affect the results of a compilation. In particular:
6907
6908
6909 @itemize *
6910
6911 @item
6912 When a unit is `with'ed, the unit seen by the compiler corresponds
6913 to the source version of the unit that is currently accessible to the
6914 compiler.
6915
6916 @geindex Inlining
6917
6918 @item
6919 Inlining requires the appropriate source files for the package or
6920 subprogram bodies to be available to the compiler. Inlining is always
6921 effective, independent of the order in which units are compiled.
6922
6923 @item
6924 Compiling a unit never affects any other compilations. The editing of
6925 sources may cause previous compilations to be out of date if they
6926 depended on the source file being modified.
6927 @end itemize
6928
6929 The most important result of these differences is that order of compilation
6930 is never significant in GNAT. There is no situation in which one is
6931 required to do one compilation before another. What shows up as order of
6932 compilation requirements in the traditional Ada library becomes, in
6933 GNAT, simple source dependencies; in other words, there is only a set
6934 of rules saying what source files must be present when a file is
6935 compiled.
6936
6937 @node Using GNAT Files with External Tools,,GNAT and Other Compilation Models,The GNAT Compilation Model
6938 @anchor{gnat_ugn/the_gnat_compilation_model id78}@anchor{c1}@anchor{gnat_ugn/the_gnat_compilation_model using-gnat-files-with-external-tools}@anchor{2e}
6939 @section Using GNAT Files with External Tools
6940
6941
6942 This section explains how files that are produced by GNAT may be
6943 used with tools designed for other languages.
6944
6945 @menu
6946 * Using Other Utility Programs with GNAT::
6947 * The External Symbol Naming Scheme of GNAT::
6948
6949 @end menu
6950
6951 @node Using Other Utility Programs with GNAT,The External Symbol Naming Scheme of GNAT,,Using GNAT Files with External Tools
6952 @anchor{gnat_ugn/the_gnat_compilation_model id79}@anchor{c2}@anchor{gnat_ugn/the_gnat_compilation_model using-other-utility-programs-with-gnat}@anchor{c3}
6953 @subsection Using Other Utility Programs with GNAT
6954
6955
6956 The object files generated by GNAT are in standard system format and in
6957 particular the debugging information uses this format. This means
6958 programs generated by GNAT can be used with existing utilities that
6959 depend on these formats.
6960
6961 In general, any utility program that works with C will also often work with
6962 Ada programs generated by GNAT. This includes software utilities such as
6963 gprof (a profiling program), gdb (the FSF debugger), and utilities such
6964 as Purify.
6965
6966 @node The External Symbol Naming Scheme of GNAT,,Using Other Utility Programs with GNAT,Using GNAT Files with External Tools
6967 @anchor{gnat_ugn/the_gnat_compilation_model id80}@anchor{c4}@anchor{gnat_ugn/the_gnat_compilation_model the-external-symbol-naming-scheme-of-gnat}@anchor{c5}
6968 @subsection The External Symbol Naming Scheme of GNAT
6969
6970
6971 In order to interpret the output from GNAT, when using tools that are
6972 originally intended for use with other languages, it is useful to
6973 understand the conventions used to generate link names from the Ada
6974 entity names.
6975
6976 All link names are in all lowercase letters. With the exception of library
6977 procedure names, the mechanism used is simply to use the full expanded
6978 Ada name with dots replaced by double underscores. For example, suppose
6979 we have the following package spec:
6980
6981 @example
6982 package QRS is
6983 MN : Integer;
6984 end QRS;
6985 @end example
6986
6987 @geindex pragma Export
6988
6989 The variable @code{MN} has a full expanded Ada name of @code{QRS.MN}, so
6990 the corresponding link name is @code{qrs__mn}.
6991 Of course if a @code{pragma Export} is used this may be overridden:
6992
6993 @example
6994 package Exports is
6995 Var1 : Integer;
6996 pragma Export (Var1, C, External_Name => "var1_name");
6997 Var2 : Integer;
6998 pragma Export (Var2, C, Link_Name => "var2_link_name");
6999 end Exports;
7000 @end example
7001
7002 In this case, the link name for @code{Var1} is whatever link name the
7003 C compiler would assign for the C function @code{var1_name}. This typically
7004 would be either @code{var1_name} or @code{_var1_name}, depending on operating
7005 system conventions, but other possibilities exist. The link name for
7006 @code{Var2} is @code{var2_link_name}, and this is not operating system
7007 dependent.
7008
7009 One exception occurs for library level procedures. A potential ambiguity
7010 arises between the required name @code{_main} for the C main program,
7011 and the name we would otherwise assign to an Ada library level procedure
7012 called @code{Main} (which might well not be the main program).
7013
7014 To avoid this ambiguity, we attach the prefix @code{_ada_} to such
7015 names. So if we have a library level procedure such as:
7016
7017 @example
7018 procedure Hello (S : String);
7019 @end example
7020
7021 the external name of this procedure will be @code{_ada_hello}.
7022
7023 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
7024
7025 @node Building Executable Programs with GNAT,GNAT Utility Programs,The GNAT Compilation Model,Top
7026 @anchor{gnat_ugn/building_executable_programs_with_gnat doc}@anchor{c6}@anchor{gnat_ugn/building_executable_programs_with_gnat building-executable-programs-with-gnat}@anchor{a}@anchor{gnat_ugn/building_executable_programs_with_gnat id1}@anchor{c7}
7027 @chapter Building Executable Programs with GNAT
7028
7029
7030 This chapter describes first the gnatmake tool
7031 (@ref{c8,,Building with gnatmake}),
7032 which automatically determines the set of sources
7033 needed by an Ada compilation unit and executes the necessary
7034 (re)compilations, binding and linking.
7035 It also explains how to use each tool individually: the
7036 compiler (gcc, see @ref{c9,,Compiling with gcc}),
7037 binder (gnatbind, see @ref{ca,,Binding with gnatbind}),
7038 and linker (gnatlink, see @ref{cb,,Linking with gnatlink})
7039 to build executable programs.
7040 Finally, this chapter provides examples of
7041 how to make use of the general GNU make mechanism
7042 in a GNAT context (see @ref{70,,Using the GNU make Utility}).
7043
7044
7045 @menu
7046 * Building with gnatmake::
7047 * Compiling with gcc::
7048 * Compiler Switches::
7049 * Linker Switches::
7050 * Binding with gnatbind::
7051 * Linking with gnatlink::
7052 * Using the GNU make Utility::
7053
7054 @end menu
7055
7056 @node Building with gnatmake,Compiling with gcc,,Building Executable Programs with GNAT
7057 @anchor{gnat_ugn/building_executable_programs_with_gnat building-with-gnatmake}@anchor{cc}@anchor{gnat_ugn/building_executable_programs_with_gnat the-gnat-make-program-gnatmake}@anchor{c8}
7058 @section Building with @code{gnatmake}
7059
7060
7061 @geindex gnatmake
7062
7063 A typical development cycle when working on an Ada program consists of
7064 the following steps:
7065
7066
7067 @enumerate
7068
7069 @item
7070 Edit some sources to fix bugs;
7071
7072 @item
7073 Add enhancements;
7074
7075 @item
7076 Compile all sources affected;
7077
7078 @item
7079 Rebind and relink; and
7080
7081 @item
7082 Test.
7083 @end enumerate
7084
7085 @geindex Dependency rules (compilation)
7086
7087 The third step in particular can be tricky, because not only do the modified
7088 files have to be compiled, but any files depending on these files must also be
7089 recompiled. The dependency rules in Ada can be quite complex, especially
7090 in the presence of overloading, @code{use} clauses, generics and inlined
7091 subprograms.
7092
7093 @code{gnatmake} automatically takes care of the third and fourth steps
7094 of this process. It determines which sources need to be compiled,
7095 compiles them, and binds and links the resulting object files.
7096
7097 Unlike some other Ada make programs, the dependencies are always
7098 accurately recomputed from the new sources. The source based approach of
7099 the GNAT compilation model makes this possible. This means that if
7100 changes to the source program cause corresponding changes in
7101 dependencies, they will always be tracked exactly correctly by
7102 @code{gnatmake}.
7103
7104 Note that for advanced forms of project structure, we recommend creating
7105 a project file as explained in the `GNAT_Project_Manager' chapter in the
7106 `GPRbuild User’s Guide', and using the
7107 @code{gprbuild} tool which supports building with project files and works similarly
7108 to @code{gnatmake}.
7109
7110 @menu
7111 * Running gnatmake::
7112 * Switches for gnatmake::
7113 * Mode Switches for gnatmake::
7114 * Notes on the Command Line::
7115 * How gnatmake Works::
7116 * Examples of gnatmake Usage::
7117
7118 @end menu
7119
7120 @node Running gnatmake,Switches for gnatmake,,Building with gnatmake
7121 @anchor{gnat_ugn/building_executable_programs_with_gnat id2}@anchor{cd}@anchor{gnat_ugn/building_executable_programs_with_gnat running-gnatmake}@anchor{ce}
7122 @subsection Running @code{gnatmake}
7123
7124
7125 The usual form of the @code{gnatmake} command is
7126
7127 @example
7128 $ gnatmake [<switches>] <file_name> [<file_names>] [<mode_switches>]
7129 @end example
7130
7131 The only required argument is one @code{file_name}, which specifies
7132 a compilation unit that is a main program. Several @code{file_names} can be
7133 specified: this will result in several executables being built.
7134 If @code{switches} are present, they can be placed before the first
7135 @code{file_name}, between @code{file_names} or after the last @code{file_name}.
7136 If @code{mode_switches} are present, they must always be placed after
7137 the last @code{file_name} and all @code{switches}.
7138
7139 If you are using standard file extensions (@code{.adb} and
7140 @code{.ads}), then the
7141 extension may be omitted from the @code{file_name} arguments. However, if
7142 you are using non-standard extensions, then it is required that the
7143 extension be given. A relative or absolute directory path can be
7144 specified in a @code{file_name}, in which case, the input source file will
7145 be searched for in the specified directory only. Otherwise, the input
7146 source file will first be searched in the directory where
7147 @code{gnatmake} was invoked and if it is not found, it will be search on
7148 the source path of the compiler as described in
7149 @ref{73,,Search Paths and the Run-Time Library (RTL)}.
7150
7151 All @code{gnatmake} output (except when you specify @code{-M}) is sent to
7152 @code{stderr}. The output produced by the
7153 @code{-M} switch is sent to @code{stdout}.
7154
7155 @node Switches for gnatmake,Mode Switches for gnatmake,Running gnatmake,Building with gnatmake
7156 @anchor{gnat_ugn/building_executable_programs_with_gnat id3}@anchor{cf}@anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gnatmake}@anchor{d0}
7157 @subsection Switches for @code{gnatmake}
7158
7159
7160 You may specify any of the following switches to @code{gnatmake}:
7161
7162 @geindex --version (gnatmake)
7163
7164
7165 @table @asis
7166
7167 @item @code{--version}
7168
7169 Display Copyright and version, then exit disregarding all other options.
7170 @end table
7171
7172 @geindex --help (gnatmake)
7173
7174
7175 @table @asis
7176
7177 @item @code{--help}
7178
7179 If @code{--version} was not used, display usage, then exit disregarding
7180 all other options.
7181 @end table
7182
7183 @geindex -P (gnatmake)
7184
7185
7186 @table @asis
7187
7188 @item @code{-P`project'}
7189
7190 Build GNAT project file @code{project} using GPRbuild. When this switch is
7191 present, all other command-line switches are treated as GPRbuild switches
7192 and not @code{gnatmake} switches.
7193 @end table
7194
7195 @c -- Comment:
7196 @c :ref:`gnatmake_and_Project_Files`.
7197
7198 @geindex --GCC=compiler_name (gnatmake)
7199
7200
7201 @table @asis
7202
7203 @item @code{--GCC=`compiler_name'}
7204
7205 Program used for compiling. The default is @code{gcc}. You need to use
7206 quotes around @code{compiler_name} if @code{compiler_name} contains
7207 spaces or other separator characters.
7208 As an example @code{--GCC="foo -x -y"}
7209 will instruct @code{gnatmake} to use @code{foo -x -y} as your
7210 compiler. A limitation of this syntax is that the name and path name of
7211 the executable itself must not include any embedded spaces. Note that
7212 switch @code{-c} is always inserted after your command name. Thus in the
7213 above example the compiler command that will be used by @code{gnatmake}
7214 will be @code{foo -c -x -y}. If several @code{--GCC=compiler_name} are
7215 used, only the last @code{compiler_name} is taken into account. However,
7216 all the additional switches are also taken into account. Thus,
7217 @code{--GCC="foo -x -y" --GCC="bar -z -t"} is equivalent to
7218 @code{--GCC="bar -x -y -z -t"}.
7219 @end table
7220
7221 @geindex --GNATBIND=binder_name (gnatmake)
7222
7223
7224 @table @asis
7225
7226 @item @code{--GNATBIND=`binder_name'}
7227
7228 Program used for binding. The default is @code{gnatbind}. You need to
7229 use quotes around @code{binder_name} if @code{binder_name} contains spaces
7230 or other separator characters.
7231 As an example @code{--GNATBIND="bar -x -y"}
7232 will instruct @code{gnatmake} to use @code{bar -x -y} as your
7233 binder. Binder switches that are normally appended by @code{gnatmake}
7234 to @code{gnatbind} are now appended to the end of @code{bar -x -y}.
7235 A limitation of this syntax is that the name and path name of the executable
7236 itself must not include any embedded spaces.
7237 @end table
7238
7239 @geindex --GNATLINK=linker_name (gnatmake)
7240
7241
7242 @table @asis
7243
7244 @item @code{--GNATLINK=`linker_name'}
7245
7246 Program used for linking. The default is @code{gnatlink}. You need to
7247 use quotes around @code{linker_name} if @code{linker_name} contains spaces
7248 or other separator characters.
7249 As an example @code{--GNATLINK="lan -x -y"}
7250 will instruct @code{gnatmake} to use @code{lan -x -y} as your
7251 linker. Linker switches that are normally appended by @code{gnatmake} to
7252 @code{gnatlink} are now appended to the end of @code{lan -x -y}.
7253 A limitation of this syntax is that the name and path name of the executable
7254 itself must not include any embedded spaces.
7255
7256 @item @code{--create-map-file}
7257
7258 When linking an executable, create a map file. The name of the map file
7259 has the same name as the executable with extension “.map”.
7260
7261 @item @code{--create-map-file=`mapfile'}
7262
7263 When linking an executable, create a map file with the specified name.
7264 @end table
7265
7266 @geindex --create-missing-dirs (gnatmake)
7267
7268
7269 @table @asis
7270
7271 @item @code{--create-missing-dirs}
7272
7273 When using project files (@code{-P`project'}), automatically create
7274 missing object directories, library directories and exec
7275 directories.
7276
7277 @item @code{--single-compile-per-obj-dir}
7278
7279 Disallow simultaneous compilations in the same object directory when
7280 project files are used.
7281
7282 @item @code{--subdirs=`subdir'}
7283
7284 Actual object directory of each project file is the subdirectory subdir of the
7285 object directory specified or defaulted in the project file.
7286
7287 @item @code{--unchecked-shared-lib-imports}
7288
7289 By default, shared library projects are not allowed to import static library
7290 projects. When this switch is used on the command line, this restriction is
7291 relaxed.
7292
7293 @item @code{--source-info=`source info file'}
7294
7295 Specify a source info file. This switch is active only when project files
7296 are used. If the source info file is specified as a relative path, then it is
7297 relative to the object directory of the main project. If the source info file
7298 does not exist, then after the Project Manager has successfully parsed and
7299 processed the project files and found the sources, it creates the source info
7300 file. If the source info file already exists and can be read successfully,
7301 then the Project Manager will get all the needed information about the sources
7302 from the source info file and will not look for them. This reduces the time
7303 to process the project files, especially when looking for sources that take a
7304 long time. If the source info file exists but cannot be parsed successfully,
7305 the Project Manager will attempt to recreate it. If the Project Manager fails
7306 to create the source info file, a message is issued, but gnatmake does not
7307 fail. @code{gnatmake} “trusts” the source info file. This means that
7308 if the source files have changed (addition, deletion, moving to a different
7309 source directory), then the source info file need to be deleted and recreated.
7310 @end table
7311
7312 @geindex -a (gnatmake)
7313
7314
7315 @table @asis
7316
7317 @item @code{-a}
7318
7319 Consider all files in the make process, even the GNAT internal system
7320 files (for example, the predefined Ada library files), as well as any
7321 locked files. Locked files are files whose ALI file is write-protected.
7322 By default,
7323 @code{gnatmake} does not check these files,
7324 because the assumption is that the GNAT internal files are properly up
7325 to date, and also that any write protected ALI files have been properly
7326 installed. Note that if there is an installation problem, such that one
7327 of these files is not up to date, it will be properly caught by the
7328 binder.
7329 You may have to specify this switch if you are working on GNAT
7330 itself. The switch @code{-a} is also useful
7331 in conjunction with @code{-f}
7332 if you need to recompile an entire application,
7333 including run-time files, using special configuration pragmas,
7334 such as a @code{Normalize_Scalars} pragma.
7335
7336 By default
7337 @code{gnatmake -a} compiles all GNAT
7338 internal files with
7339 @code{gcc -c -gnatpg} rather than @code{gcc -c}.
7340 @end table
7341
7342 @geindex -b (gnatmake)
7343
7344
7345 @table @asis
7346
7347 @item @code{-b}
7348
7349 Bind only. Can be combined with @code{-c} to do
7350 compilation and binding, but no link.
7351 Can be combined with @code{-l}
7352 to do binding and linking. When not combined with
7353 @code{-c}
7354 all the units in the closure of the main program must have been previously
7355 compiled and must be up to date. The root unit specified by @code{file_name}
7356 may be given without extension, with the source extension or, if no GNAT
7357 Project File is specified, with the ALI file extension.
7358 @end table
7359
7360 @geindex -c (gnatmake)
7361
7362
7363 @table @asis
7364
7365 @item @code{-c}
7366
7367 Compile only. Do not perform binding, except when @code{-b}
7368 is also specified. Do not perform linking, except if both
7369 @code{-b} and
7370 @code{-l} are also specified.
7371 If the root unit specified by @code{file_name} is not a main unit, this is the
7372 default. Otherwise @code{gnatmake} will attempt binding and linking
7373 unless all objects are up to date and the executable is more recent than
7374 the objects.
7375 @end table
7376
7377 @geindex -C (gnatmake)
7378
7379
7380 @table @asis
7381
7382 @item @code{-C}
7383
7384 Use a temporary mapping file. A mapping file is a way to communicate
7385 to the compiler two mappings: from unit names to file names (without
7386 any directory information) and from file names to path names (with
7387 full directory information). A mapping file can make the compiler’s
7388 file searches faster, especially if there are many source directories,
7389 or the sources are read over a slow network connection. If
7390 @code{-P} is used, a mapping file is always used, so
7391 @code{-C} is unnecessary; in this case the mapping file
7392 is initially populated based on the project file. If
7393 @code{-C} is used without
7394 @code{-P},
7395 the mapping file is initially empty. Each invocation of the compiler
7396 will add any newly accessed sources to the mapping file.
7397 @end table
7398
7399 @geindex -C= (gnatmake)
7400
7401
7402 @table @asis
7403
7404 @item @code{-C=`file'}
7405
7406 Use a specific mapping file. The file, specified as a path name (absolute or
7407 relative) by this switch, should already exist, otherwise the switch is
7408 ineffective. The specified mapping file will be communicated to the compiler.
7409 This switch is not compatible with a project file
7410 (-P`file`) or with multiple compiling processes
7411 (-jnnn, when nnn is greater than 1).
7412 @end table
7413
7414 @geindex -d (gnatmake)
7415
7416
7417 @table @asis
7418
7419 @item @code{-d}
7420
7421 Display progress for each source, up to date or not, as a single line:
7422
7423 @example
7424 completed x out of y (zz%)
7425 @end example
7426
7427 If the file needs to be compiled this is displayed after the invocation of
7428 the compiler. These lines are displayed even in quiet output mode.
7429 @end table
7430
7431 @geindex -D (gnatmake)
7432
7433
7434 @table @asis
7435
7436 @item @code{-D `dir'}
7437
7438 Put all object files and ALI file in directory @code{dir}.
7439 If the @code{-D} switch is not used, all object files
7440 and ALI files go in the current working directory.
7441
7442 This switch cannot be used when using a project file.
7443 @end table
7444
7445 @geindex -eI (gnatmake)
7446
7447
7448 @table @asis
7449
7450 @item @code{-eI`nnn'}
7451
7452 Indicates that the main source is a multi-unit source and the rank of the unit
7453 in the source file is nnn. nnn needs to be a positive number and a valid
7454 index in the source. This switch cannot be used when @code{gnatmake} is
7455 invoked for several mains.
7456 @end table
7457
7458 @geindex -eL (gnatmake)
7459
7460 @geindex symbolic links
7461
7462
7463 @table @asis
7464
7465 @item @code{-eL}
7466
7467 Follow all symbolic links when processing project files.
7468 This should be used if your project uses symbolic links for files or
7469 directories, but is not needed in other cases.
7470
7471 @geindex naming scheme
7472
7473 This also assumes that no directory matches the naming scheme for files (for
7474 instance that you do not have a directory called “sources.ads” when using the
7475 default GNAT naming scheme).
7476
7477 When you do not have to use this switch (i.e., by default), gnatmake is able to
7478 save a lot of system calls (several per source file and object file), which
7479 can result in a significant speed up to load and manipulate a project file,
7480 especially when using source files from a remote system.
7481 @end table
7482
7483 @geindex -eS (gnatmake)
7484
7485
7486 @table @asis
7487
7488 @item @code{-eS}
7489
7490 Output the commands for the compiler, the binder and the linker
7491 on standard output,
7492 instead of standard error.
7493 @end table
7494
7495 @geindex -f (gnatmake)
7496
7497
7498 @table @asis
7499
7500 @item @code{-f}
7501
7502 Force recompilations. Recompile all sources, even though some object
7503 files may be up to date, but don’t recompile predefined or GNAT internal
7504 files or locked files (files with a write-protected ALI file),
7505 unless the @code{-a} switch is also specified.
7506 @end table
7507
7508 @geindex -F (gnatmake)
7509
7510
7511 @table @asis
7512
7513 @item @code{-F}
7514
7515 When using project files, if some errors or warnings are detected during
7516 parsing and verbose mode is not in effect (no use of switch
7517 -v), then error lines start with the full path name of the project
7518 file, rather than its simple file name.
7519 @end table
7520
7521 @geindex -g (gnatmake)
7522
7523
7524 @table @asis
7525
7526 @item @code{-g}
7527
7528 Enable debugging. This switch is simply passed to the compiler and to the
7529 linker.
7530 @end table
7531
7532 @geindex -i (gnatmake)
7533
7534
7535 @table @asis
7536
7537 @item @code{-i}
7538
7539 In normal mode, @code{gnatmake} compiles all object files and ALI files
7540 into the current directory. If the @code{-i} switch is used,
7541 then instead object files and ALI files that already exist are overwritten
7542 in place. This means that once a large project is organized into separate
7543 directories in the desired manner, then @code{gnatmake} will automatically
7544 maintain and update this organization. If no ALI files are found on the
7545 Ada object path (see @ref{73,,Search Paths and the Run-Time Library (RTL)}),
7546 the new object and ALI files are created in the
7547 directory containing the source being compiled. If another organization
7548 is desired, where objects and sources are kept in different directories,
7549 a useful technique is to create dummy ALI files in the desired directories.
7550 When detecting such a dummy file, @code{gnatmake} will be forced to
7551 recompile the corresponding source file, and it will be put the resulting
7552 object and ALI files in the directory where it found the dummy file.
7553 @end table
7554
7555 @geindex -j (gnatmake)
7556
7557 @geindex Parallel make
7558
7559
7560 @table @asis
7561
7562 @item @code{-j`n'}
7563
7564 Use @code{n} processes to carry out the (re)compilations. On a multiprocessor
7565 machine compilations will occur in parallel. If @code{n} is 0, then the
7566 maximum number of parallel compilations is the number of core processors
7567 on the platform. In the event of compilation errors, messages from various
7568 compilations might get interspersed (but @code{gnatmake} will give you the
7569 full ordered list of failing compiles at the end). If this is problematic,
7570 rerun the make process with n set to 1 to get a clean list of messages.
7571 @end table
7572
7573 @geindex -k (gnatmake)
7574
7575
7576 @table @asis
7577
7578 @item @code{-k}
7579
7580 Keep going. Continue as much as possible after a compilation error. To
7581 ease the programmer’s task in case of compilation errors, the list of
7582 sources for which the compile fails is given when @code{gnatmake}
7583 terminates.
7584
7585 If @code{gnatmake} is invoked with several @code{file_names} and with this
7586 switch, if there are compilation errors when building an executable,
7587 @code{gnatmake} will not attempt to build the following executables.
7588 @end table
7589
7590 @geindex -l (gnatmake)
7591
7592
7593 @table @asis
7594
7595 @item @code{-l}
7596
7597 Link only. Can be combined with @code{-b} to binding
7598 and linking. Linking will not be performed if combined with
7599 @code{-c}
7600 but not with @code{-b}.
7601 When not combined with @code{-b}
7602 all the units in the closure of the main program must have been previously
7603 compiled and must be up to date, and the main program needs to have been bound.
7604 The root unit specified by @code{file_name}
7605 may be given without extension, with the source extension or, if no GNAT
7606 Project File is specified, with the ALI file extension.
7607 @end table
7608
7609 @geindex -m (gnatmake)
7610
7611
7612 @table @asis
7613
7614 @item @code{-m}
7615
7616 Specify that the minimum necessary amount of recompilations
7617 be performed. In this mode @code{gnatmake} ignores time
7618 stamp differences when the only
7619 modifications to a source file consist in adding/removing comments,
7620 empty lines, spaces or tabs. This means that if you have changed the
7621 comments in a source file or have simply reformatted it, using this
7622 switch will tell @code{gnatmake} not to recompile files that depend on it
7623 (provided other sources on which these files depend have undergone no
7624 semantic modifications). Note that the debugging information may be
7625 out of date with respect to the sources if the @code{-m} switch causes
7626 a compilation to be switched, so the use of this switch represents a
7627 trade-off between compilation time and accurate debugging information.
7628 @end table
7629
7630 @geindex Dependencies
7631 @geindex producing list
7632
7633 @geindex -M (gnatmake)
7634
7635
7636 @table @asis
7637
7638 @item @code{-M}
7639
7640 Check if all objects are up to date. If they are, output the object
7641 dependences to @code{stdout} in a form that can be directly exploited in
7642 a @code{Makefile}. By default, each source file is prefixed with its
7643 (relative or absolute) directory name. This name is whatever you
7644 specified in the various @code{-aI}
7645 and @code{-I} switches. If you use
7646 @code{gnatmake -M} @code{-q}
7647 (see below), only the source file names,
7648 without relative paths, are output. If you just specify the @code{-M}
7649 switch, dependencies of the GNAT internal system files are omitted. This
7650 is typically what you want. If you also specify
7651 the @code{-a} switch,
7652 dependencies of the GNAT internal files are also listed. Note that
7653 dependencies of the objects in external Ada libraries (see
7654 switch @code{-aL`dir'} in the following list)
7655 are never reported.
7656 @end table
7657
7658 @geindex -n (gnatmake)
7659
7660
7661 @table @asis
7662
7663 @item @code{-n}
7664
7665 Don’t compile, bind, or link. Checks if all objects are up to date.
7666 If they are not, the full name of the first file that needs to be
7667 recompiled is printed.
7668 Repeated use of this option, followed by compiling the indicated source
7669 file, will eventually result in recompiling all required units.
7670 @end table
7671
7672 @geindex -o (gnatmake)
7673
7674
7675 @table @asis
7676
7677 @item @code{-o `exec_name'}
7678
7679 Output executable name. The name of the final executable program will be
7680 @code{exec_name}. If the @code{-o} switch is omitted the default
7681 name for the executable will be the name of the input file in appropriate form
7682 for an executable file on the host system.
7683
7684 This switch cannot be used when invoking @code{gnatmake} with several
7685 @code{file_names}.
7686 @end table
7687
7688 @geindex -p (gnatmake)
7689
7690
7691 @table @asis
7692
7693 @item @code{-p}
7694
7695 Same as @code{--create-missing-dirs}
7696 @end table
7697
7698 @geindex -q (gnatmake)
7699
7700
7701 @table @asis
7702
7703 @item @code{-q}
7704
7705 Quiet. When this flag is not set, the commands carried out by
7706 @code{gnatmake} are displayed.
7707 @end table
7708
7709 @geindex -s (gnatmake)
7710
7711
7712 @table @asis
7713
7714 @item @code{-s}
7715
7716 Recompile if compiler switches have changed since last compilation.
7717 All compiler switches but -I and -o are taken into account in the
7718 following way:
7719 orders between different ‘first letter’ switches are ignored, but
7720 orders between same switches are taken into account. For example,
7721 @code{-O -O2} is different than @code{-O2 -O}, but @code{-g -O}
7722 is equivalent to @code{-O -g}.
7723
7724 This switch is recommended when Integrated Preprocessing is used.
7725 @end table
7726
7727 @geindex -u (gnatmake)
7728
7729
7730 @table @asis
7731
7732 @item @code{-u}
7733
7734 Unique. Recompile at most the main files. It implies -c. Combined with
7735 -f, it is equivalent to calling the compiler directly. Note that using
7736 -u with a project file and no main has a special meaning.
7737 @end table
7738
7739 @c --Comment
7740 @c (See :ref:`Project_Files_and_Main_Subprograms`.)
7741
7742 @geindex -U (gnatmake)
7743
7744
7745 @table @asis
7746
7747 @item @code{-U}
7748
7749 When used without a project file or with one or several mains on the command
7750 line, is equivalent to -u. When used with a project file and no main
7751 on the command line, all sources of all project files are checked and compiled
7752 if not up to date, and libraries are rebuilt, if necessary.
7753 @end table
7754
7755 @geindex -v (gnatmake)
7756
7757
7758 @table @asis
7759
7760 @item @code{-v}
7761
7762 Verbose. Display the reason for all recompilations @code{gnatmake}
7763 decides are necessary, with the highest verbosity level.
7764 @end table
7765
7766 @geindex -vl (gnatmake)
7767
7768
7769 @table @asis
7770
7771 @item @code{-vl}
7772
7773 Verbosity level Low. Display fewer lines than in verbosity Medium.
7774 @end table
7775
7776 @geindex -vm (gnatmake)
7777
7778
7779 @table @asis
7780
7781 @item @code{-vm}
7782
7783 Verbosity level Medium. Potentially display fewer lines than in verbosity High.
7784 @end table
7785
7786 @geindex -vm (gnatmake)
7787
7788
7789 @table @asis
7790
7791 @item @code{-vh}
7792
7793 Verbosity level High. Equivalent to -v.
7794
7795 @item @code{-vP`x'}
7796
7797 Indicate the verbosity of the parsing of GNAT project files.
7798 See @ref{d1,,Switches Related to Project Files}.
7799 @end table
7800
7801 @geindex -x (gnatmake)
7802
7803
7804 @table @asis
7805
7806 @item @code{-x}
7807
7808 Indicate that sources that are not part of any Project File may be compiled.
7809 Normally, when using Project Files, only sources that are part of a Project
7810 File may be compile. When this switch is used, a source outside of all Project
7811 Files may be compiled. The ALI file and the object file will be put in the
7812 object directory of the main Project. The compilation switches used will only
7813 be those specified on the command line. Even when
7814 @code{-x} is used, mains specified on the
7815 command line need to be sources of a project file.
7816
7817 @item @code{-X`name'=`value'}
7818
7819 Indicate that external variable @code{name} has the value @code{value}.
7820 The Project Manager will use this value for occurrences of
7821 @code{external(name)} when parsing the project file.
7822 @ref{d1,,Switches Related to Project Files}.
7823 @end table
7824
7825 @geindex -z (gnatmake)
7826
7827
7828 @table @asis
7829
7830 @item @code{-z}
7831
7832 No main subprogram. Bind and link the program even if the unit name
7833 given on the command line is a package name. The resulting executable
7834 will execute the elaboration routines of the package and its closure,
7835 then the finalization routines.
7836 @end table
7837
7838 @subsubheading GCC switches
7839
7840
7841 Any uppercase or multi-character switch that is not a @code{gnatmake} switch
7842 is passed to @code{gcc} (e.g., @code{-O}, @code{-gnato,} etc.)
7843
7844 @subsubheading Source and library search path switches
7845
7846
7847 @geindex -aI (gnatmake)
7848
7849
7850 @table @asis
7851
7852 @item @code{-aI`dir'}
7853
7854 When looking for source files also look in directory @code{dir}.
7855 The order in which source files search is undertaken is
7856 described in @ref{73,,Search Paths and the Run-Time Library (RTL)}.
7857 @end table
7858
7859 @geindex -aL (gnatmake)
7860
7861
7862 @table @asis
7863
7864 @item @code{-aL`dir'}
7865
7866 Consider @code{dir} as being an externally provided Ada library.
7867 Instructs @code{gnatmake} to skip compilation units whose @code{.ALI}
7868 files have been located in directory @code{dir}. This allows you to have
7869 missing bodies for the units in @code{dir} and to ignore out of date bodies
7870 for the same units. You still need to specify
7871 the location of the specs for these units by using the switches
7872 @code{-aI`dir'} or @code{-I`dir'}.
7873 Note: this switch is provided for compatibility with previous versions
7874 of @code{gnatmake}. The easier method of causing standard libraries
7875 to be excluded from consideration is to write-protect the corresponding
7876 ALI files.
7877 @end table
7878
7879 @geindex -aO (gnatmake)
7880
7881
7882 @table @asis
7883
7884 @item @code{-aO`dir'}
7885
7886 When searching for library and object files, look in directory
7887 @code{dir}. The order in which library files are searched is described in
7888 @ref{76,,Search Paths for gnatbind}.
7889 @end table
7890
7891 @geindex Search paths
7892 @geindex for gnatmake
7893
7894 @geindex -A (gnatmake)
7895
7896
7897 @table @asis
7898
7899 @item @code{-A`dir'}
7900
7901 Equivalent to @code{-aL`dir'} @code{-aI`dir'}.
7902
7903 @geindex -I (gnatmake)
7904
7905 @item @code{-I`dir'}
7906
7907 Equivalent to @code{-aO`dir' -aI`dir'}.
7908 @end table
7909
7910 @geindex -I- (gnatmake)
7911
7912 @geindex Source files
7913 @geindex suppressing search
7914
7915
7916 @table @asis
7917
7918 @item @code{-I-}
7919
7920 Do not look for source files in the directory containing the source
7921 file named in the command line.
7922 Do not look for ALI or object files in the directory
7923 where @code{gnatmake} was invoked.
7924 @end table
7925
7926 @geindex -L (gnatmake)
7927
7928 @geindex Linker libraries
7929
7930
7931 @table @asis
7932
7933 @item @code{-L`dir'}
7934
7935 Add directory @code{dir} to the list of directories in which the linker
7936 will search for libraries. This is equivalent to
7937 @code{-largs} @code{-L`dir'}.
7938 Furthermore, under Windows, the sources pointed to by the libraries path
7939 set in the registry are not searched for.
7940 @end table
7941
7942 @geindex -nostdinc (gnatmake)
7943
7944
7945 @table @asis
7946
7947 @item @code{-nostdinc}
7948
7949 Do not look for source files in the system default directory.
7950 @end table
7951
7952 @geindex -nostdlib (gnatmake)
7953
7954
7955 @table @asis
7956
7957 @item @code{-nostdlib}
7958
7959 Do not look for library files in the system default directory.
7960 @end table
7961
7962 @geindex --RTS (gnatmake)
7963
7964
7965 @table @asis
7966
7967 @item @code{--RTS=`rts-path'}
7968
7969 Specifies the default location of the run-time library. GNAT looks for the
7970 run-time
7971 in the following directories, and stops as soon as a valid run-time is found
7972 (@code{adainclude} or @code{ada_source_path}, and @code{adalib} or
7973 @code{ada_object_path} present):
7974
7975
7976 @itemize *
7977
7978 @item
7979 `<current directory>/$rts_path'
7980
7981 @item
7982 `<default-search-dir>/$rts_path'
7983
7984 @item
7985 `<default-search-dir>/rts-$rts_path'
7986
7987 @item
7988 The selected path is handled like a normal RTS path.
7989 @end itemize
7990 @end table
7991
7992 @node Mode Switches for gnatmake,Notes on the Command Line,Switches for gnatmake,Building with gnatmake
7993 @anchor{gnat_ugn/building_executable_programs_with_gnat id4}@anchor{d2}@anchor{gnat_ugn/building_executable_programs_with_gnat mode-switches-for-gnatmake}@anchor{d3}
7994 @subsection Mode Switches for @code{gnatmake}
7995
7996
7997 The mode switches (referred to as @code{mode_switches}) allow the
7998 inclusion of switches that are to be passed to the compiler itself, the
7999 binder or the linker. The effect of a mode switch is to cause all
8000 subsequent switches up to the end of the switch list, or up to the next
8001 mode switch, to be interpreted as switches to be passed on to the
8002 designated component of GNAT.
8003
8004 @geindex -cargs (gnatmake)
8005
8006
8007 @table @asis
8008
8009 @item @code{-cargs `switches'}
8010
8011 Compiler switches. Here @code{switches} is a list of switches
8012 that are valid switches for @code{gcc}. They will be passed on to
8013 all compile steps performed by @code{gnatmake}.
8014 @end table
8015
8016 @geindex -bargs (gnatmake)
8017
8018
8019 @table @asis
8020
8021 @item @code{-bargs `switches'}
8022
8023 Binder switches. Here @code{switches} is a list of switches
8024 that are valid switches for @code{gnatbind}. They will be passed on to
8025 all bind steps performed by @code{gnatmake}.
8026 @end table
8027
8028 @geindex -largs (gnatmake)
8029
8030
8031 @table @asis
8032
8033 @item @code{-largs `switches'}
8034
8035 Linker switches. Here @code{switches} is a list of switches
8036 that are valid switches for @code{gnatlink}. They will be passed on to
8037 all link steps performed by @code{gnatmake}.
8038 @end table
8039
8040 @geindex -margs (gnatmake)
8041
8042
8043 @table @asis
8044
8045 @item @code{-margs `switches'}
8046
8047 Make switches. The switches are directly interpreted by @code{gnatmake},
8048 regardless of any previous occurrence of @code{-cargs}, @code{-bargs}
8049 or @code{-largs}.
8050 @end table
8051
8052 @node Notes on the Command Line,How gnatmake Works,Mode Switches for gnatmake,Building with gnatmake
8053 @anchor{gnat_ugn/building_executable_programs_with_gnat id5}@anchor{d4}@anchor{gnat_ugn/building_executable_programs_with_gnat notes-on-the-command-line}@anchor{d5}
8054 @subsection Notes on the Command Line
8055
8056
8057 This section contains some additional useful notes on the operation
8058 of the @code{gnatmake} command.
8059
8060 @geindex Recompilation (by gnatmake)
8061
8062
8063 @itemize *
8064
8065 @item
8066 If @code{gnatmake} finds no ALI files, it recompiles the main program
8067 and all other units required by the main program.
8068 This means that @code{gnatmake}
8069 can be used for the initial compile, as well as during subsequent steps of
8070 the development cycle.
8071
8072 @item
8073 If you enter @code{gnatmake foo.adb}, where @code{foo}
8074 is a subunit or body of a generic unit, @code{gnatmake} recompiles
8075 @code{foo.adb} (because it finds no ALI) and stops, issuing a
8076 warning.
8077
8078 @item
8079 In @code{gnatmake} the switch @code{-I}
8080 is used to specify both source and
8081 library file paths. Use @code{-aI}
8082 instead if you just want to specify
8083 source paths only and @code{-aO}
8084 if you want to specify library paths
8085 only.
8086
8087 @item
8088 @code{gnatmake} will ignore any files whose ALI file is write-protected.
8089 This may conveniently be used to exclude standard libraries from
8090 consideration and in particular it means that the use of the
8091 @code{-f} switch will not recompile these files
8092 unless @code{-a} is also specified.
8093
8094 @item
8095 @code{gnatmake} has been designed to make the use of Ada libraries
8096 particularly convenient. Assume you have an Ada library organized
8097 as follows: `obj-dir' contains the objects and ALI files for
8098 of your Ada compilation units,
8099 whereas `include-dir' contains the
8100 specs of these units, but no bodies. Then to compile a unit
8101 stored in @code{main.adb}, which uses this Ada library you would just type:
8102
8103 @example
8104 $ gnatmake -aI`include-dir` -aL`obj-dir` main
8105 @end example
8106
8107 @item
8108 Using @code{gnatmake} along with the @code{-m (minimal recompilation)}
8109 switch provides a mechanism for avoiding unnecessary recompilations. Using
8110 this switch,
8111 you can update the comments/format of your
8112 source files without having to recompile everything. Note, however, that
8113 adding or deleting lines in a source files may render its debugging
8114 info obsolete. If the file in question is a spec, the impact is rather
8115 limited, as that debugging info will only be useful during the
8116 elaboration phase of your program. For bodies the impact can be more
8117 significant. In all events, your debugger will warn you if a source file
8118 is more recent than the corresponding object, and alert you to the fact
8119 that the debugging information may be out of date.
8120 @end itemize
8121
8122 @node How gnatmake Works,Examples of gnatmake Usage,Notes on the Command Line,Building with gnatmake
8123 @anchor{gnat_ugn/building_executable_programs_with_gnat how-gnatmake-works}@anchor{d6}@anchor{gnat_ugn/building_executable_programs_with_gnat id6}@anchor{d7}
8124 @subsection How @code{gnatmake} Works
8125
8126
8127 Generally @code{gnatmake} automatically performs all necessary
8128 recompilations and you don’t need to worry about how it works. However,
8129 it may be useful to have some basic understanding of the @code{gnatmake}
8130 approach and in particular to understand how it uses the results of
8131 previous compilations without incorrectly depending on them.
8132
8133 First a definition: an object file is considered `up to date' if the
8134 corresponding ALI file exists and if all the source files listed in the
8135 dependency section of this ALI file have time stamps matching those in
8136 the ALI file. This means that neither the source file itself nor any
8137 files that it depends on have been modified, and hence there is no need
8138 to recompile this file.
8139
8140 @code{gnatmake} works by first checking if the specified main unit is up
8141 to date. If so, no compilations are required for the main unit. If not,
8142 @code{gnatmake} compiles the main program to build a new ALI file that
8143 reflects the latest sources. Then the ALI file of the main unit is
8144 examined to find all the source files on which the main program depends,
8145 and @code{gnatmake} recursively applies the above procedure on all these
8146 files.
8147
8148 This process ensures that @code{gnatmake} only trusts the dependencies
8149 in an existing ALI file if they are known to be correct. Otherwise it
8150 always recompiles to determine a new, guaranteed accurate set of
8151 dependencies. As a result the program is compiled ‘upside down’ from what may
8152 be more familiar as the required order of compilation in some other Ada
8153 systems. In particular, clients are compiled before the units on which
8154 they depend. The ability of GNAT to compile in any order is critical in
8155 allowing an order of compilation to be chosen that guarantees that
8156 @code{gnatmake} will recompute a correct set of new dependencies if
8157 necessary.
8158
8159 When invoking @code{gnatmake} with several @code{file_names}, if a unit is
8160 imported by several of the executables, it will be recompiled at most once.
8161
8162 Note: when using non-standard naming conventions
8163 (@ref{1c,,Using Other File Names}), changing through a configuration pragmas
8164 file the version of a source and invoking @code{gnatmake} to recompile may
8165 have no effect, if the previous version of the source is still accessible
8166 by @code{gnatmake}. It may be necessary to use the switch
8167 -f.
8168
8169 @node Examples of gnatmake Usage,,How gnatmake Works,Building with gnatmake
8170 @anchor{gnat_ugn/building_executable_programs_with_gnat examples-of-gnatmake-usage}@anchor{d8}@anchor{gnat_ugn/building_executable_programs_with_gnat id7}@anchor{d9}
8171 @subsection Examples of @code{gnatmake} Usage
8172
8173
8174
8175 @table @asis
8176
8177 @item @code{gnatmake hello.adb}
8178
8179 Compile all files necessary to bind and link the main program
8180 @code{hello.adb} (containing unit @code{Hello}) and bind and link the
8181 resulting object files to generate an executable file @code{hello}.
8182
8183 @item @code{gnatmake main1 main2 main3}
8184
8185 Compile all files necessary to bind and link the main programs
8186 @code{main1.adb} (containing unit @code{Main1}), @code{main2.adb}
8187 (containing unit @code{Main2}) and @code{main3.adb}
8188 (containing unit @code{Main3}) and bind and link the resulting object files
8189 to generate three executable files @code{main1},
8190 @code{main2} and @code{main3}.
8191
8192 @item @code{gnatmake -q Main_Unit -cargs -O2 -bargs -l}
8193
8194 Compile all files necessary to bind and link the main program unit
8195 @code{Main_Unit} (from file @code{main_unit.adb}). All compilations will
8196 be done with optimization level 2 and the order of elaboration will be
8197 listed by the binder. @code{gnatmake} will operate in quiet mode, not
8198 displaying commands it is executing.
8199 @end table
8200
8201 @node Compiling with gcc,Compiler Switches,Building with gnatmake,Building Executable Programs with GNAT
8202 @anchor{gnat_ugn/building_executable_programs_with_gnat compiling-with-gcc}@anchor{c9}@anchor{gnat_ugn/building_executable_programs_with_gnat id8}@anchor{da}
8203 @section Compiling with @code{gcc}
8204
8205
8206 This section discusses how to compile Ada programs using the @code{gcc}
8207 command. It also describes the set of switches
8208 that can be used to control the behavior of the compiler.
8209
8210 @menu
8211 * Compiling Programs::
8212 * Search Paths and the Run-Time Library (RTL): Search Paths and the Run-Time Library RTL.
8213 * Order of Compilation Issues::
8214 * Examples::
8215
8216 @end menu
8217
8218 @node Compiling Programs,Search Paths and the Run-Time Library RTL,,Compiling with gcc
8219 @anchor{gnat_ugn/building_executable_programs_with_gnat compiling-programs}@anchor{db}@anchor{gnat_ugn/building_executable_programs_with_gnat id9}@anchor{dc}
8220 @subsection Compiling Programs
8221
8222
8223 The first step in creating an executable program is to compile the units
8224 of the program using the @code{gcc} command. You must compile the
8225 following files:
8226
8227
8228 @itemize *
8229
8230 @item
8231 the body file (@code{.adb}) for a library level subprogram or generic
8232 subprogram
8233
8234 @item
8235 the spec file (@code{.ads}) for a library level package or generic
8236 package that has no body
8237
8238 @item
8239 the body file (@code{.adb}) for a library level package
8240 or generic package that has a body
8241 @end itemize
8242
8243 You need `not' compile the following files
8244
8245
8246 @itemize *
8247
8248 @item
8249 the spec of a library unit which has a body
8250
8251 @item
8252 subunits
8253 @end itemize
8254
8255 because they are compiled as part of compiling related units. GNAT compiles
8256 package specs
8257 when the corresponding body is compiled, and subunits when the parent is
8258 compiled.
8259
8260 @geindex cannot generate code
8261
8262 If you attempt to compile any of these files, you will get one of the
8263 following error messages (where @code{fff} is the name of the file you
8264 compiled):
8265
8266 @quotation
8267
8268 @example
8269 cannot generate code for file `@w{`}fff`@w{`} (package spec)
8270 to check package spec, use -gnatc
8271
8272 cannot generate code for file `@w{`}fff`@w{`} (missing subunits)
8273 to check parent unit, use -gnatc
8274
8275 cannot generate code for file `@w{`}fff`@w{`} (subprogram spec)
8276 to check subprogram spec, use -gnatc
8277
8278 cannot generate code for file `@w{`}fff`@w{`} (subunit)
8279 to check subunit, use -gnatc
8280 @end example
8281 @end quotation
8282
8283 As indicated by the above error messages, if you want to submit
8284 one of these files to the compiler to check for correct semantics
8285 without generating code, then use the @code{-gnatc} switch.
8286
8287 The basic command for compiling a file containing an Ada unit is:
8288
8289 @example
8290 $ gcc -c [switches] <file name>
8291 @end example
8292
8293 where @code{file name} is the name of the Ada file (usually
8294 having an extension @code{.ads} for a spec or @code{.adb} for a body).
8295 You specify the
8296 @code{-c} switch to tell @code{gcc} to compile, but not link, the file.
8297 The result of a successful compilation is an object file, which has the
8298 same name as the source file but an extension of @code{.o} and an Ada
8299 Library Information (ALI) file, which also has the same name as the
8300 source file, but with @code{.ali} as the extension. GNAT creates these
8301 two output files in the current directory, but you may specify a source
8302 file in any directory using an absolute or relative path specification
8303 containing the directory information.
8304
8305 @geindex gnat1
8306
8307 @code{gcc} is actually a driver program that looks at the extensions of
8308 the file arguments and loads the appropriate compiler. For example, the
8309 GNU C compiler is @code{cc1}, and the Ada compiler is @code{gnat1}.
8310 These programs are in directories known to the driver program (in some
8311 configurations via environment variables you set), but need not be in
8312 your path. The @code{gcc} driver also calls the assembler and any other
8313 utilities needed to complete the generation of the required object
8314 files.
8315
8316 It is possible to supply several file names on the same @code{gcc}
8317 command. This causes @code{gcc} to call the appropriate compiler for
8318 each file. For example, the following command lists two separate
8319 files to be compiled:
8320
8321 @example
8322 $ gcc -c x.adb y.adb
8323 @end example
8324
8325 calls @code{gnat1} (the Ada compiler) twice to compile @code{x.adb} and
8326 @code{y.adb}.
8327 The compiler generates two object files @code{x.o} and @code{y.o}
8328 and the two ALI files @code{x.ali} and @code{y.ali}.
8329
8330 Any switches apply to all the files listed, see @ref{dd,,Compiler Switches} for a
8331 list of available @code{gcc} switches.
8332
8333 @node Search Paths and the Run-Time Library RTL,Order of Compilation Issues,Compiling Programs,Compiling with gcc
8334 @anchor{gnat_ugn/building_executable_programs_with_gnat id10}@anchor{de}@anchor{gnat_ugn/building_executable_programs_with_gnat search-paths-and-the-run-time-library-rtl}@anchor{73}
8335 @subsection Search Paths and the Run-Time Library (RTL)
8336
8337
8338 With the GNAT source-based library system, the compiler must be able to
8339 find source files for units that are needed by the unit being compiled.
8340 Search paths are used to guide this process.
8341
8342 The compiler compiles one source file whose name must be given
8343 explicitly on the command line. In other words, no searching is done
8344 for this file. To find all other source files that are needed (the most
8345 common being the specs of units), the compiler examines the following
8346 directories, in the following order:
8347
8348
8349 @itemize *
8350
8351 @item
8352 The directory containing the source file of the main unit being compiled
8353 (the file name on the command line).
8354
8355 @item
8356 Each directory named by an @code{-I} switch given on the @code{gcc}
8357 command line, in the order given.
8358
8359 @geindex ADA_PRJ_INCLUDE_FILE
8360
8361 @item
8362 Each of the directories listed in the text file whose name is given
8363 by the
8364 @geindex ADA_PRJ_INCLUDE_FILE
8365 @geindex environment variable; ADA_PRJ_INCLUDE_FILE
8366 @code{ADA_PRJ_INCLUDE_FILE} environment variable.
8367 @geindex ADA_PRJ_INCLUDE_FILE
8368 @geindex environment variable; ADA_PRJ_INCLUDE_FILE
8369 @code{ADA_PRJ_INCLUDE_FILE} is normally set by gnatmake or by the gnat
8370 driver when project files are used. It should not normally be set
8371 by other means.
8372
8373 @geindex ADA_INCLUDE_PATH
8374
8375 @item
8376 Each of the directories listed in the value of the
8377 @geindex ADA_INCLUDE_PATH
8378 @geindex environment variable; ADA_INCLUDE_PATH
8379 @code{ADA_INCLUDE_PATH} environment variable.
8380 Construct this value
8381 exactly as the
8382 @geindex PATH
8383 @geindex environment variable; PATH
8384 @code{PATH} environment variable: a list of directory
8385 names separated by colons (semicolons when working with the NT version).
8386
8387 @item
8388 The content of the @code{ada_source_path} file which is part of the GNAT
8389 installation tree and is used to store standard libraries such as the
8390 GNAT Run Time Library (RTL) source files.
8391 See also @ref{72,,Installing a library}.
8392 @end itemize
8393
8394 Specifying the switch @code{-I-}
8395 inhibits the use of the directory
8396 containing the source file named in the command line. You can still
8397 have this directory on your search path, but in this case it must be
8398 explicitly requested with a @code{-I} switch.
8399
8400 Specifying the switch @code{-nostdinc}
8401 inhibits the search of the default location for the GNAT Run Time
8402 Library (RTL) source files.
8403
8404 The compiler outputs its object files and ALI files in the current
8405 working directory.
8406 Caution: The object file can be redirected with the @code{-o} switch;
8407 however, @code{gcc} and @code{gnat1} have not been coordinated on this
8408 so the @code{ALI} file will not go to the right place. Therefore, you should
8409 avoid using the @code{-o} switch.
8410
8411 @geindex System.IO
8412
8413 The packages @code{Ada}, @code{System}, and @code{Interfaces} and their
8414 children make up the GNAT RTL, together with the simple @code{System.IO}
8415 package used in the @code{"Hello World"} example. The sources for these units
8416 are needed by the compiler and are kept together in one directory. Not
8417 all of the bodies are needed, but all of the sources are kept together
8418 anyway. In a normal installation, you need not specify these directory
8419 names when compiling or binding. Either the environment variables or
8420 the built-in defaults cause these files to be found.
8421
8422 In addition to the language-defined hierarchies (@code{System}, @code{Ada} and
8423 @code{Interfaces}), the GNAT distribution provides a fourth hierarchy,
8424 consisting of child units of @code{GNAT}. This is a collection of generally
8425 useful types, subprograms, etc. See the @cite{GNAT_Reference_Manual}
8426 for further details.
8427
8428 Besides simplifying access to the RTL, a major use of search paths is
8429 in compiling sources from multiple directories. This can make
8430 development environments much more flexible.
8431
8432 @node Order of Compilation Issues,Examples,Search Paths and the Run-Time Library RTL,Compiling with gcc
8433 @anchor{gnat_ugn/building_executable_programs_with_gnat id11}@anchor{df}@anchor{gnat_ugn/building_executable_programs_with_gnat order-of-compilation-issues}@anchor{e0}
8434 @subsection Order of Compilation Issues
8435
8436
8437 If, in our earlier example, there was a spec for the @code{hello}
8438 procedure, it would be contained in the file @code{hello.ads}; yet this
8439 file would not have to be explicitly compiled. This is the result of the
8440 model we chose to implement library management. Some of the consequences
8441 of this model are as follows:
8442
8443
8444 @itemize *
8445
8446 @item
8447 There is no point in compiling specs (except for package
8448 specs with no bodies) because these are compiled as needed by clients. If
8449 you attempt a useless compilation, you will receive an error message.
8450 It is also useless to compile subunits because they are compiled as needed
8451 by the parent.
8452
8453 @item
8454 There are no order of compilation requirements: performing a
8455 compilation never obsoletes anything. The only way you can obsolete
8456 something and require recompilations is to modify one of the
8457 source files on which it depends.
8458
8459 @item
8460 There is no library as such, apart from the ALI files
8461 (@ref{28,,The Ada Library Information Files}, for information on the format
8462 of these files). For now we find it convenient to create separate ALI files,
8463 but eventually the information therein may be incorporated into the object
8464 file directly.
8465
8466 @item
8467 When you compile a unit, the source files for the specs of all units
8468 that it `with's, all its subunits, and the bodies of any generics it
8469 instantiates must be available (reachable by the search-paths mechanism
8470 described above), or you will receive a fatal error message.
8471 @end itemize
8472
8473 @node Examples,,Order of Compilation Issues,Compiling with gcc
8474 @anchor{gnat_ugn/building_executable_programs_with_gnat examples}@anchor{e1}@anchor{gnat_ugn/building_executable_programs_with_gnat id12}@anchor{e2}
8475 @subsection Examples
8476
8477
8478 The following are some typical Ada compilation command line examples:
8479
8480 @example
8481 $ gcc -c xyz.adb
8482 @end example
8483
8484 Compile body in file @code{xyz.adb} with all default options.
8485
8486 @example
8487 $ gcc -c -O2 -gnata xyz-def.adb
8488 @end example
8489
8490 Compile the child unit package in file @code{xyz-def.adb} with extensive
8491 optimizations, and pragma @code{Assert}/@code{Debug} statements
8492 enabled.
8493
8494 @example
8495 $ gcc -c -gnatc abc-def.adb
8496 @end example
8497
8498 Compile the subunit in file @code{abc-def.adb} in semantic-checking-only
8499 mode.
8500
8501 @node Compiler Switches,Linker Switches,Compiling with gcc,Building Executable Programs with GNAT
8502 @anchor{gnat_ugn/building_executable_programs_with_gnat compiler-switches}@anchor{e3}@anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gcc}@anchor{dd}
8503 @section Compiler Switches
8504
8505
8506 The @code{gcc} command accepts switches that control the
8507 compilation process. These switches are fully described in this section:
8508 first an alphabetical listing of all switches with a brief description,
8509 and then functionally grouped sets of switches with more detailed
8510 information.
8511
8512 More switches exist for GCC than those documented here, especially
8513 for specific targets. However, their use is not recommended as
8514 they may change code generation in ways that are incompatible with
8515 the Ada run-time library, or can cause inconsistencies between
8516 compilation units.
8517
8518 @menu
8519 * Alphabetical List of All Switches::
8520 * Output and Error Message Control::
8521 * Warning Message Control::
8522 * Debugging and Assertion Control::
8523 * Validity Checking::
8524 * Style Checking::
8525 * Run-Time Checks::
8526 * Using gcc for Syntax Checking::
8527 * Using gcc for Semantic Checking::
8528 * Compiling Different Versions of Ada::
8529 * Character Set Control::
8530 * File Naming Control::
8531 * Subprogram Inlining Control::
8532 * Auxiliary Output Control::
8533 * Debugging Control::
8534 * Exception Handling Control::
8535 * Units to Sources Mapping Files::
8536 * Code Generation Control::
8537
8538 @end menu
8539
8540 @node Alphabetical List of All Switches,Output and Error Message Control,,Compiler Switches
8541 @anchor{gnat_ugn/building_executable_programs_with_gnat alphabetical-list-of-all-switches}@anchor{e4}@anchor{gnat_ugn/building_executable_programs_with_gnat id13}@anchor{e5}
8542 @subsection Alphabetical List of All Switches
8543
8544
8545 @geindex -b (gcc)
8546
8547
8548 @table @asis
8549
8550 @item @code{-b `target'}
8551
8552 Compile your program to run on @code{target}, which is the name of a
8553 system configuration. You must have a GNAT cross-compiler built if
8554 @code{target} is not the same as your host system.
8555 @end table
8556
8557 @geindex -B (gcc)
8558
8559
8560 @table @asis
8561
8562 @item @code{-B`dir'}
8563
8564 Load compiler executables (for example, @code{gnat1}, the Ada compiler)
8565 from @code{dir} instead of the default location. Only use this switch
8566 when multiple versions of the GNAT compiler are available.
8567 See the “Options for Directory Search” section in the
8568 @cite{Using the GNU Compiler Collection (GCC)} manual for further details.
8569 You would normally use the @code{-b} or @code{-V} switch instead.
8570 @end table
8571
8572 @geindex -c (gcc)
8573
8574
8575 @table @asis
8576
8577 @item @code{-c}
8578
8579 Compile. Always use this switch when compiling Ada programs.
8580
8581 Note: for some other languages when using @code{gcc}, notably in
8582 the case of C and C++, it is possible to use
8583 use @code{gcc} without a @code{-c} switch to
8584 compile and link in one step. In the case of GNAT, you
8585 cannot use this approach, because the binder must be run
8586 and @code{gcc} cannot be used to run the GNAT binder.
8587 @end table
8588
8589 @geindex -fcallgraph-info (gcc)
8590
8591
8592 @table @asis
8593
8594 @item @code{-fcallgraph-info[=su,da]}
8595
8596 Makes the compiler output callgraph information for the program, on a
8597 per-file basis. The information is generated in the VCG format. It can
8598 be decorated with additional, per-node and/or per-edge information, if a
8599 list of comma-separated markers is additionally specified. When the
8600 @code{su} marker is specified, the callgraph is decorated with stack usage
8601 information; it is equivalent to @code{-fstack-usage}. When the @code{da}
8602 marker is specified, the callgraph is decorated with information about
8603 dynamically allocated objects.
8604 @end table
8605
8606 @geindex -fdiagnostics-format (gcc)
8607
8608
8609 @table @asis
8610
8611 @item @code{-fdiagnostics-format=json}
8612
8613 Makes GNAT emit warning and error messages as JSON. Inhibits printing of
8614 text warning and errors messages except if @code{-gnatv} or
8615 @code{-gnatl} are present. Uses absolute file paths when used along
8616 @code{-gnatef}.
8617 @end table
8618
8619 @geindex -fdump-scos (gcc)
8620
8621
8622 @table @asis
8623
8624 @item @code{-fdump-scos}
8625
8626 Generates SCO (Source Coverage Obligation) information in the ALI file.
8627 This information is used by advanced coverage tools. See unit @code{SCOs}
8628 in the compiler sources for details in files @code{scos.ads} and
8629 @code{scos.adb}.
8630 @end table
8631
8632 @geindex -fgnat-encodings (gcc)
8633
8634
8635 @table @asis
8636
8637 @item @code{-fgnat-encodings=[all|gdb|minimal]}
8638
8639 This switch controls the balance between GNAT encodings and standard DWARF
8640 emitted in the debug information.
8641 @end table
8642
8643 @geindex -flto (gcc)
8644
8645
8646 @table @asis
8647
8648 @item @code{-flto[=`n']}
8649
8650 Enables Link Time Optimization. This switch must be used in conjunction
8651 with the @code{-Ox} switches (but not with the @code{-gnatn} switch
8652 since it is a full replacement for the latter) and instructs the compiler
8653 to defer most optimizations until the link stage. The advantage of this
8654 approach is that the compiler can do a whole-program analysis and choose
8655 the best interprocedural optimization strategy based on a complete view
8656 of the program, instead of a fragmentary view with the usual approach.
8657 This can also speed up the compilation of big programs and reduce the
8658 size of the executable, compared with a traditional per-unit compilation
8659 with inlining across units enabled by the @code{-gnatn} switch.
8660 The drawback of this approach is that it may require more memory and that
8661 the debugging information generated by @code{-g} with it might be hardly usable.
8662 The switch, as well as the accompanying @code{-Ox} switches, must be
8663 specified both for the compilation and the link phases.
8664 If the @code{n} parameter is specified, the optimization and final code
8665 generation at link time are executed using @code{n} parallel jobs by
8666 means of an installed @code{make} program.
8667 @end table
8668
8669 @geindex -fno-inline (gcc)
8670
8671
8672 @table @asis
8673
8674 @item @code{-fno-inline}
8675
8676 Suppresses all inlining, unless requested with pragma @code{Inline_Always}. The
8677 effect is enforced regardless of other optimization or inlining switches.
8678 Note that inlining can also be suppressed on a finer-grained basis with
8679 pragma @code{No_Inline}.
8680 @end table
8681
8682 @geindex -fno-inline-functions (gcc)
8683
8684
8685 @table @asis
8686
8687 @item @code{-fno-inline-functions}
8688
8689 Suppresses automatic inlining of subprograms, which is enabled
8690 if @code{-O3} is used.
8691 @end table
8692
8693 @geindex -fno-inline-small-functions (gcc)
8694
8695
8696 @table @asis
8697
8698 @item @code{-fno-inline-small-functions}
8699
8700 Suppresses automatic inlining of small subprograms, which is enabled
8701 if @code{-O2} is used.
8702 @end table
8703
8704 @geindex -fno-inline-functions-called-once (gcc)
8705
8706
8707 @table @asis
8708
8709 @item @code{-fno-inline-functions-called-once}
8710
8711 Suppresses inlining of subprograms local to the unit and called once
8712 from within it, which is enabled if @code{-O1} is used.
8713 @end table
8714
8715 @geindex -fno-ivopts (gcc)
8716
8717
8718 @table @asis
8719
8720 @item @code{-fno-ivopts}
8721
8722 Suppresses high-level loop induction variable optimizations, which are
8723 enabled if @code{-O1} is used. These optimizations are generally
8724 profitable but, for some specific cases of loops with numerous uses
8725 of the iteration variable that follow a common pattern, they may end
8726 up destroying the regularity that could be exploited at a lower level
8727 and thus producing inferior code.
8728 @end table
8729
8730 @geindex -fno-strict-aliasing (gcc)
8731
8732
8733 @table @asis
8734
8735 @item @code{-fno-strict-aliasing}
8736
8737 Causes the compiler to avoid assumptions regarding non-aliasing
8738 of objects of different types. See
8739 @ref{e6,,Optimization and Strict Aliasing} for details.
8740 @end table
8741
8742 @geindex -fno-strict-overflow (gcc)
8743
8744
8745 @table @asis
8746
8747 @item @code{-fno-strict-overflow}
8748
8749 Causes the compiler to avoid assumptions regarding the rules of signed
8750 integer overflow. These rules specify that signed integer overflow will
8751 result in a Constraint_Error exception at run time and are enforced in
8752 default mode by the compiler, so this switch should not be necessary in
8753 normal operating mode. It might be useful in conjunction with @code{-gnato0}
8754 for very peculiar cases of low-level programming.
8755 @end table
8756
8757 @geindex -fstack-check (gcc)
8758
8759
8760 @table @asis
8761
8762 @item @code{-fstack-check}
8763
8764 Activates stack checking.
8765 See @ref{e7,,Stack Overflow Checking} for details.
8766 @end table
8767
8768 @geindex -fstack-usage (gcc)
8769
8770
8771 @table @asis
8772
8773 @item @code{-fstack-usage}
8774
8775 Makes the compiler output stack usage information for the program, on a
8776 per-subprogram basis. See @ref{e8,,Static Stack Usage Analysis} for details.
8777 @end table
8778
8779 @geindex -g (gcc)
8780
8781
8782 @table @asis
8783
8784 @item @code{-g}
8785
8786 Generate debugging information. This information is stored in the object
8787 file and copied from there to the final executable file by the linker,
8788 where it can be read by the debugger. You must use the
8789 @code{-g} switch if you plan on using the debugger.
8790 @end table
8791
8792 @geindex -gnat05 (gcc)
8793
8794
8795 @table @asis
8796
8797 @item @code{-gnat05}
8798
8799 Allow full Ada 2005 features.
8800 @end table
8801
8802 @geindex -gnat12 (gcc)
8803
8804
8805 @table @asis
8806
8807 @item @code{-gnat12}
8808
8809 Allow full Ada 2012 features.
8810 @end table
8811
8812 @geindex -gnat83 (gcc)
8813
8814 @geindex -gnat2005 (gcc)
8815
8816
8817 @table @asis
8818
8819 @item @code{-gnat2005}
8820
8821 Allow full Ada 2005 features (same as @code{-gnat05})
8822 @end table
8823
8824 @geindex -gnat2012 (gcc)
8825
8826
8827 @table @asis
8828
8829 @item @code{-gnat2012}
8830
8831 Allow full Ada 2012 features (same as @code{-gnat12})
8832 @end table
8833
8834 @geindex -gnat2022 (gcc)
8835
8836
8837 @table @asis
8838
8839 @item @code{-gnat2022}
8840
8841 Allow full Ada 2022 features
8842
8843 @item @code{-gnat83}
8844
8845 Enforce Ada 83 restrictions.
8846 @end table
8847
8848 @geindex -gnat95 (gcc)
8849
8850
8851 @table @asis
8852
8853 @item @code{-gnat95}
8854
8855 Enforce Ada 95 restrictions.
8856
8857 Note: for compatibility with some Ada 95 compilers which support only
8858 the @code{overriding} keyword of Ada 2005, the @code{-gnatd.D} switch can
8859 be used along with @code{-gnat95} to achieve a similar effect with GNAT.
8860
8861 @code{-gnatd.D} instructs GNAT to consider @code{overriding} as a keyword
8862 and handle its associated semantic checks, even in Ada 95 mode.
8863 @end table
8864
8865 @geindex -gnata (gcc)
8866
8867
8868 @table @asis
8869
8870 @item @code{-gnata}
8871
8872 Assertions enabled. @code{Pragma Assert} and @code{pragma Debug} to be
8873 activated. Note that these pragmas can also be controlled using the
8874 configuration pragmas @code{Assertion_Policy} and @code{Debug_Policy}.
8875 It also activates pragmas @code{Check}, @code{Precondition}, and
8876 @code{Postcondition}. Note that these pragmas can also be controlled
8877 using the configuration pragma @code{Check_Policy}. In Ada 2012, it
8878 also activates all assertions defined in the RM as aspects: preconditions,
8879 postconditions, type invariants and (sub)type predicates. In all Ada modes,
8880 corresponding pragmas for type invariants and (sub)type predicates are
8881 also activated. The default is that all these assertions are disabled,
8882 and have no effect, other than being checked for syntactic validity, and
8883 in the case of subtype predicates, constructions such as membership tests
8884 still test predicates even if assertions are turned off.
8885 @end table
8886
8887 @geindex -gnatA (gcc)
8888
8889
8890 @table @asis
8891
8892 @item @code{-gnatA}
8893
8894 Avoid processing @code{gnat.adc}. If a @code{gnat.adc} file is present,
8895 it will be ignored.
8896 @end table
8897
8898 @geindex -gnatb (gcc)
8899
8900
8901 @table @asis
8902
8903 @item @code{-gnatb}
8904
8905 Generate brief messages to @code{stderr} even if verbose mode set.
8906 @end table
8907
8908 @geindex -gnatB (gcc)
8909
8910
8911 @table @asis
8912
8913 @item @code{-gnatB}
8914
8915 Assume no invalid (bad) values except for ‘Valid attribute use
8916 (@ref{e9,,Validity Checking}).
8917 @end table
8918
8919 @geindex -gnatc (gcc)
8920
8921
8922 @table @asis
8923
8924 @item @code{-gnatc}
8925
8926 Check syntax and semantics only (no code generation attempted). When the
8927 compiler is invoked by @code{gnatmake}, if the switch @code{-gnatc} is
8928 only given to the compiler (after @code{-cargs} or in package Compiler of
8929 the project file), @code{gnatmake} will fail because it will not find the
8930 object file after compilation. If @code{gnatmake} is called with
8931 @code{-gnatc} as a builder switch (before @code{-cargs} or in package
8932 Builder of the project file) then @code{gnatmake} will not fail because
8933 it will not look for the object files after compilation, and it will not try
8934 to build and link.
8935 @end table
8936
8937 @geindex -gnatC (gcc)
8938
8939
8940 @table @asis
8941
8942 @item @code{-gnatC}
8943
8944 Generate CodePeer intermediate format (no code generation attempted).
8945 This switch will generate an intermediate representation suitable for
8946 use by CodePeer (@code{.scil} files). This switch is not compatible with
8947 code generation (it will, among other things, disable some switches such
8948 as @code{-gnatn}, and enable others such as @code{-gnata}).
8949 @end table
8950
8951 @geindex -gnatd (gcc)
8952
8953
8954 @table @asis
8955
8956 @item @code{-gnatd}
8957
8958 Specify debug options for the compiler. The string of characters after
8959 the @code{-gnatd} specifies the specific debug options. The possible
8960 characters are 0-9, a-z, A-Z, optionally preceded by a dot or underscore.
8961 See compiler source file @code{debug.adb} for details of the implemented
8962 debug options. Certain debug options are relevant to application
8963 programmers, and these are documented at appropriate points in this
8964 user’s guide.
8965 @end table
8966
8967 @geindex -gnatD[nn] (gcc)
8968
8969
8970 @table @asis
8971
8972 @item @code{-gnatD}
8973
8974 Create expanded source files for source level debugging. This switch
8975 also suppresses generation of cross-reference information
8976 (see @code{-gnatx}). Note that this switch is not allowed if a previous
8977 @code{-gnatR} switch has been given, since these two switches are not compatible.
8978 @end table
8979
8980 @geindex -gnateA (gcc)
8981
8982
8983 @table @asis
8984
8985 @item @code{-gnateA}
8986
8987 Check that the actual parameters of a subprogram call are not aliases of one
8988 another. To qualify as aliasing, their memory locations must be identical or
8989 overlapping, at least one of the corresponding formal parameters must be of
8990 mode OUT or IN OUT, and at least one of the corresponding formal parameters
8991 must have its parameter passing mechanism not specified.
8992
8993 @example
8994 type Rec_Typ is record
8995 Data : Integer := 0;
8996 end record;
8997
8998 function Self (Val : Rec_Typ) return Rec_Typ is
8999 begin
9000 return Val;
9001 end Self;
9002
9003 procedure Detect_Aliasing (Val_1 : in out Rec_Typ; Val_2 : Rec_Typ) is
9004 begin
9005 null;
9006 end Detect_Aliasing;
9007
9008 Obj : Rec_Typ;
9009
9010 Detect_Aliasing (Obj, Obj);
9011 Detect_Aliasing (Obj, Self (Obj));
9012 @end example
9013
9014 In the example above, the first call to @code{Detect_Aliasing} fails with a
9015 @code{Program_Error} at run time because the actuals for @code{Val_1} and
9016 @code{Val_2} denote the same object. The second call executes without raising
9017 an exception because @code{Self(Obj)} produces an anonymous object which does
9018 not share the memory location of @code{Obj}.
9019 @end table
9020
9021 @geindex -gnateb (gcc)
9022
9023
9024 @table @asis
9025
9026 @item @code{-gnateb}
9027
9028 Store configuration files by their basename in ALI files. This switch is
9029 used for instance by gprbuild for distributed builds in order to prevent
9030 issues where machine-specific absolute paths could end up being stored in
9031 ALI files.
9032 @end table
9033
9034 @geindex -gnatec (gcc)
9035
9036
9037 @table @asis
9038
9039 @item @code{-gnatec=`path'}
9040
9041 Specify a configuration pragma file
9042 (the equal sign is optional)
9043 (@ref{63,,The Configuration Pragmas Files}).
9044 @end table
9045
9046 @geindex -gnateC (gcc)
9047
9048
9049 @table @asis
9050
9051 @item @code{-gnateC}
9052
9053 Generate CodePeer messages in a compiler-like format. This switch is only
9054 effective if @code{-gnatcC} is also specified and requires an installation
9055 of CodePeer.
9056 @end table
9057
9058 @geindex -gnated (gcc)
9059
9060
9061 @table @asis
9062
9063 @item @code{-gnated}
9064
9065 Disable atomic synchronization
9066 @end table
9067
9068 @geindex -gnateD (gcc)
9069
9070
9071 @table @asis
9072
9073 @item @code{-gnateDsymbol[=`value']}
9074
9075 Defines a symbol, associated with @code{value}, for preprocessing.
9076 (@ref{90,,Integrated Preprocessing}).
9077 @end table
9078
9079 @geindex -gnateE (gcc)
9080
9081
9082 @table @asis
9083
9084 @item @code{-gnateE}
9085
9086 Generate extra information in exception messages. In particular, display
9087 extra column information and the value and range associated with index and
9088 range check failures, and extra column information for access checks.
9089 In cases where the compiler is able to determine at compile time that
9090 a check will fail, it gives a warning, and the extra information is not
9091 produced at run time.
9092 @end table
9093
9094 @geindex -gnatef (gcc)
9095
9096
9097 @table @asis
9098
9099 @item @code{-gnatef}
9100
9101 Display full source path name in brief error messages and absolute paths in
9102 @code{-fdiagnostics-format=json}’s output.
9103 @end table
9104
9105 @geindex -gnateF (gcc)
9106
9107
9108 @table @asis
9109
9110 @item @code{-gnateF}
9111
9112 Check for overflow on all floating-point operations, including those
9113 for unconstrained predefined types. See description of pragma
9114 @code{Check_Float_Overflow} in GNAT RM.
9115 @end table
9116
9117 @geindex -gnateg (gcc)
9118
9119 @code{-gnateg}
9120 @code{-gnatceg}
9121
9122 @quotation
9123
9124 The @code{-gnatc} switch must always be specified before this switch, e.g.
9125 @code{-gnatceg}. Generate a C header from the Ada input file. See
9126 @ref{b9,,Generating C Headers for Ada Specifications} for more
9127 information.
9128 @end quotation
9129
9130 @geindex -gnateG (gcc)
9131
9132
9133 @table @asis
9134
9135 @item @code{-gnateG}
9136
9137 Save result of preprocessing in a text file.
9138 @end table
9139
9140 @geindex -gnateH (gcc)
9141
9142
9143 @table @asis
9144
9145 @item @code{-gnateH}
9146
9147 Set the threshold from which the RM 13.5.1(13.3/2) clause applies to 64.
9148 This is useful only on 64-bit plaforms where this threshold is 128, but
9149 used to be 64 in earlier versions of the compiler.
9150 @end table
9151
9152 @geindex -gnatei (gcc)
9153
9154
9155 @table @asis
9156
9157 @item @code{-gnatei`nnn'}
9158
9159 Set maximum number of instantiations during compilation of a single unit to
9160 @code{nnn}. This may be useful in increasing the default maximum of 8000 for
9161 the rare case when a single unit legitimately exceeds this limit.
9162 @end table
9163
9164 @geindex -gnateI (gcc)
9165
9166
9167 @table @asis
9168
9169 @item @code{-gnateI`nnn'}
9170
9171 Indicates that the source is a multi-unit source and that the index of the
9172 unit to compile is @code{nnn}. @code{nnn} needs to be a positive number and need
9173 to be a valid index in the multi-unit source.
9174 @end table
9175
9176 @geindex -gnatel (gcc)
9177
9178
9179 @table @asis
9180
9181 @item @code{-gnatel}
9182
9183 This switch can be used with the static elaboration model to issue info
9184 messages showing
9185 where implicit @code{pragma Elaborate} and @code{pragma Elaborate_All}
9186 are generated. This is useful in diagnosing elaboration circularities
9187 caused by these implicit pragmas when using the static elaboration
9188 model. See the section in this guide on elaboration checking for
9189 further details. These messages are not generated by default, and are
9190 intended only for temporary use when debugging circularity problems.
9191 @end table
9192
9193 @geindex -gnatel (gcc)
9194
9195
9196 @table @asis
9197
9198 @item @code{-gnateL}
9199
9200 This switch turns off the info messages about implicit elaboration pragmas.
9201 @end table
9202
9203 @geindex -gnatem (gcc)
9204
9205
9206 @table @asis
9207
9208 @item @code{-gnatem=`path'}
9209
9210 Specify a mapping file
9211 (the equal sign is optional)
9212 (@ref{ea,,Units to Sources Mapping Files}).
9213 @end table
9214
9215 @geindex -gnatep (gcc)
9216
9217
9218 @table @asis
9219
9220 @item @code{-gnatep=`file'}
9221
9222 Specify a preprocessing data file
9223 (the equal sign is optional)
9224 (@ref{90,,Integrated Preprocessing}).
9225 @end table
9226
9227 @geindex -gnateP (gcc)
9228
9229
9230 @table @asis
9231
9232 @item @code{-gnateP}
9233
9234 Turn categorization dependency errors into warnings.
9235 Ada requires that units that WITH one another have compatible categories, for
9236 example a Pure unit cannot WITH a Preelaborate unit. If this switch is used,
9237 these errors become warnings (which can be ignored, or suppressed in the usual
9238 manner). This can be useful in some specialized circumstances such as the
9239 temporary use of special test software.
9240 @end table
9241
9242 @geindex -gnateS (gcc)
9243
9244
9245 @table @asis
9246
9247 @item @code{-gnateS}
9248
9249 Synonym of @code{-fdump-scos}, kept for backwards compatibility.
9250 @end table
9251
9252 @geindex -gnatet=file (gcc)
9253
9254
9255 @table @asis
9256
9257 @item @code{-gnatet=`path'}
9258
9259 Generate target dependent information. The format of the output file is
9260 described in the section about switch @code{-gnateT}.
9261 @end table
9262
9263 @geindex -gnateT (gcc)
9264
9265
9266 @table @asis
9267
9268 @item @code{-gnateT=`path'}
9269
9270 Read target dependent information, such as endianness or sizes and alignments
9271 of base type. If this switch is passed, the default target dependent
9272 information of the compiler is replaced by the one read from the input file.
9273 This is used by tools other than the compiler, e.g. to do
9274 semantic analysis of programs that will run on some other target than
9275 the machine on which the tool is run.
9276
9277 The following target dependent values should be defined,
9278 where @code{Nat} denotes a natural integer value, @code{Pos} denotes a
9279 positive integer value, and fields marked with a question mark are
9280 boolean fields, where a value of 0 is False, and a value of 1 is True:
9281
9282 @example
9283 Bits_BE : Nat; -- Bits stored big-endian?
9284 Bits_Per_Unit : Pos; -- Bits in a storage unit
9285 Bits_Per_Word : Pos; -- Bits in a word
9286 Bytes_BE : Nat; -- Bytes stored big-endian?
9287 Char_Size : Pos; -- Standard.Character'Size
9288 Double_Float_Alignment : Nat; -- Alignment of double float
9289 Double_Scalar_Alignment : Nat; -- Alignment of double length scalar
9290 Double_Size : Pos; -- Standard.Long_Float'Size
9291 Float_Size : Pos; -- Standard.Float'Size
9292 Float_Words_BE : Nat; -- Float words stored big-endian?
9293 Int_Size : Pos; -- Standard.Integer'Size
9294 Long_Double_Size : Pos; -- Standard.Long_Long_Float'Size
9295 Long_Long_Long_Size : Pos; -- Standard.Long_Long_Long_Integer'Size
9296 Long_Long_Size : Pos; -- Standard.Long_Long_Integer'Size
9297 Long_Size : Pos; -- Standard.Long_Integer'Size
9298 Maximum_Alignment : Pos; -- Maximum permitted alignment
9299 Max_Unaligned_Field : Pos; -- Maximum size for unaligned bit field
9300 Pointer_Size : Pos; -- System.Address'Size
9301 Short_Enums : Nat; -- Foreign enums use short size?
9302 Short_Size : Pos; -- Standard.Short_Integer'Size
9303 Strict_Alignment : Nat; -- Strict alignment?
9304 System_Allocator_Alignment : Nat; -- Alignment for malloc calls
9305 Wchar_T_Size : Pos; -- Interfaces.C.wchar_t'Size
9306 Words_BE : Nat; -- Words stored big-endian?
9307 @end example
9308
9309 @code{Bits_Per_Unit} is the number of bits in a storage unit, the equivalent of
9310 GCC macro @code{BITS_PER_UNIT} documented as follows: @cite{Define this macro to be the number of bits in an addressable storage unit (byte); normally 8.}
9311
9312 @code{Bits_Per_Word} is the number of bits in a machine word, the equivalent of
9313 GCC macro @code{BITS_PER_WORD} documented as follows: @cite{Number of bits in a word; normally 32.}
9314
9315 @code{Double_Float_Alignment}, if not zero, is the maximum alignment that the
9316 compiler can choose by default for a 64-bit floating-point type or object.
9317
9318 @code{Double_Scalar_Alignment}, if not zero, is the maximum alignment that the
9319 compiler can choose by default for a 64-bit or larger scalar type or object.
9320
9321 @code{Maximum_Alignment} is the maximum alignment that the compiler can choose
9322 by default for a type or object, which is also the maximum alignment that can
9323 be specified in GNAT. It is computed for GCC backends as @code{BIGGEST_ALIGNMENT
9324 / BITS_PER_UNIT} where GCC macro @code{BIGGEST_ALIGNMENT} is documented as
9325 follows: @cite{Biggest alignment that any data type can require on this machine@comma{} in bits.}
9326
9327 @code{Max_Unaligned_Field} is the maximum size for unaligned bit field, which is
9328 64 for the majority of GCC targets (but can be different on some targets).
9329
9330 @code{Strict_Alignment} is the equivalent of GCC macro @code{STRICT_ALIGNMENT}
9331 documented as follows: @cite{Define this macro to be the value 1 if instructions will fail to work if given data not on the nominal alignment. If instructions will merely go slower in that case@comma{} define this macro as 0.}
9332
9333 @code{System_Allocator_Alignment} is the guaranteed alignment of data returned
9334 by calls to @code{malloc}.
9335
9336 The format of the input file is as follows. First come the values of
9337 the variables defined above, with one line per value:
9338
9339 @example
9340 name value
9341 @end example
9342
9343 where @code{name} is the name of the parameter, spelled out in full,
9344 and cased as in the above list, and @code{value} is an unsigned decimal
9345 integer. Two or more blanks separates the name from the value.
9346
9347 All the variables must be present, in alphabetical order (i.e. the
9348 same order as the list above).
9349
9350 Then there is a blank line to separate the two parts of the file. Then
9351 come the lines showing the floating-point types to be registered, with
9352 one line per registered mode:
9353
9354 @example
9355 name digs float_rep size alignment
9356 @end example
9357
9358 where @code{name} is the string name of the type (which can have
9359 single spaces embedded in the name, e.g. long double), @code{digs} is
9360 the number of digits for the floating-point type, @code{float_rep} is
9361 the float representation (I for IEEE-754-Binary, which is
9362 the only one supported at this time),
9363 @code{size} is the size in bits, @code{alignment} is the
9364 alignment in bits. The name is followed by at least two blanks, fields
9365 are separated by at least one blank, and a LF character immediately
9366 follows the alignment field.
9367
9368 Here is an example of a target parameterization file:
9369
9370 @example
9371 Bits_BE 0
9372 Bits_Per_Unit 8
9373 Bits_Per_Word 64
9374 Bytes_BE 0
9375 Char_Size 8
9376 Double_Float_Alignment 0
9377 Double_Scalar_Alignment 0
9378 Double_Size 64
9379 Float_Size 32
9380 Float_Words_BE 0
9381 Int_Size 64
9382 Long_Double_Size 128
9383 Long_Long_Long_Size 128
9384 Long_Long_Size 64
9385 Long_Size 64
9386 Maximum_Alignment 16
9387 Max_Unaligned_Field 64
9388 Pointer_Size 64
9389 Short_Size 16
9390 Strict_Alignment 0
9391 System_Allocator_Alignment 16
9392 Wchar_T_Size 32
9393 Words_BE 0
9394
9395 float 15 I 64 64
9396 double 15 I 64 64
9397 long double 18 I 80 128
9398 TF 33 I 128 128
9399 @end example
9400 @end table
9401
9402 @geindex -gnateu (gcc)
9403
9404
9405 @table @asis
9406
9407 @item @code{-gnateu}
9408
9409 Ignore unrecognized validity, warning, and style switches that
9410 appear after this switch is given. This may be useful when
9411 compiling sources developed on a later version of the compiler
9412 with an earlier version. Of course the earlier version must
9413 support this switch.
9414 @end table
9415
9416 @geindex -gnateV (gcc)
9417
9418
9419 @table @asis
9420
9421 @item @code{-gnateV}
9422
9423 Check that all actual parameters of a subprogram call are valid according to
9424 the rules of validity checking (@ref{e9,,Validity Checking}).
9425 @end table
9426
9427 @geindex -gnateY (gcc)
9428
9429
9430 @table @asis
9431
9432 @item @code{-gnateY}
9433
9434 Ignore all STYLE_CHECKS pragmas. Full legality checks
9435 are still carried out, but the pragmas have no effect
9436 on what style checks are active. This allows all style
9437 checking options to be controlled from the command line.
9438 @end table
9439
9440 @geindex -gnatE (gcc)
9441
9442
9443 @table @asis
9444
9445 @item @code{-gnatE}
9446
9447 Dynamic elaboration checking mode enabled. For further details see
9448 @ref{f,,Elaboration Order Handling in GNAT}.
9449 @end table
9450
9451 @geindex -gnatf (gcc)
9452
9453
9454 @table @asis
9455
9456 @item @code{-gnatf}
9457
9458 Full errors. Multiple errors per line, all undefined references, do not
9459 attempt to suppress cascaded errors.
9460 @end table
9461
9462 @geindex -gnatF (gcc)
9463
9464
9465 @table @asis
9466
9467 @item @code{-gnatF}
9468
9469 Externals names are folded to all uppercase.
9470 @end table
9471
9472 @geindex -gnatg (gcc)
9473
9474
9475 @table @asis
9476
9477 @item @code{-gnatg}
9478
9479 Internal GNAT implementation mode. This should not be used for applications
9480 programs, it is intended only for use by the compiler and its run-time
9481 library. For documentation, see the GNAT sources. Note that @code{-gnatg}
9482 implies @code{-gnatw.ge} and @code{-gnatyg} so that all standard
9483 warnings and all standard style options are turned on. All warnings and style
9484 messages are treated as errors.
9485 @end table
9486
9487 @geindex -gnatG[nn] (gcc)
9488
9489
9490 @table @asis
9491
9492 @item @code{-gnatG=nn}
9493
9494 List generated expanded code in source form.
9495 @end table
9496
9497 @geindex -gnath (gcc)
9498
9499
9500 @table @asis
9501
9502 @item @code{-gnath}
9503
9504 Output usage information. The output is written to @code{stdout}.
9505 @end table
9506
9507 @geindex -gnatH (gcc)
9508
9509
9510 @table @asis
9511
9512 @item @code{-gnatH}
9513
9514 Legacy elaboration-checking mode enabled. When this switch is in effect,
9515 the pre-18.x access-before-elaboration model becomes the de facto model.
9516 For further details see @ref{f,,Elaboration Order Handling in GNAT}.
9517 @end table
9518
9519 @geindex -gnati (gcc)
9520
9521
9522 @table @asis
9523
9524 @item @code{-gnati`c'}
9525
9526 Identifier character set (@code{c} = 1/2/3/4/5/9/p/8/f/n/w).
9527 For details of the possible selections for @code{c},
9528 see @ref{31,,Character Set Control}.
9529 @end table
9530
9531 @geindex -gnatI (gcc)
9532
9533
9534 @table @asis
9535
9536 @item @code{-gnatI}
9537
9538 Ignore representation clauses. When this switch is used,
9539 representation clauses are treated as comments. This is useful
9540 when initially porting code where you want to ignore rep clause
9541 problems, and also for compiling foreign code (particularly
9542 for use with ASIS). The representation clauses that are ignored
9543 are: enumeration_representation_clause, record_representation_clause,
9544 and attribute_definition_clause for the following attributes:
9545 Address, Alignment, Bit_Order, Component_Size, Machine_Radix,
9546 Object_Size, Scalar_Storage_Order, Size, Small, Stream_Size,
9547 and Value_Size. Pragma Default_Scalar_Storage_Order is also ignored.
9548 Note that this option should be used only for compiling – the
9549 code is likely to malfunction at run time.
9550 @end table
9551
9552 @geindex -gnatjnn (gcc)
9553
9554
9555 @table @asis
9556
9557 @item @code{-gnatj`nn'}
9558
9559 Reformat error messages to fit on @code{nn} character lines
9560 @end table
9561
9562 @geindex -gnatJ (gcc)
9563
9564
9565 @table @asis
9566
9567 @item @code{-gnatJ}
9568
9569 Permissive elaboration-checking mode enabled. When this switch is in effect,
9570 the post-18.x access-before-elaboration model ignores potential issues with:
9571
9572
9573 @itemize -
9574
9575 @item
9576 Accept statements
9577
9578 @item
9579 Activations of tasks defined in instances
9580
9581 @item
9582 Assertion pragmas
9583
9584 @item
9585 Calls from within an instance to its enclosing context
9586
9587 @item
9588 Calls through generic formal parameters
9589
9590 @item
9591 Calls to subprograms defined in instances
9592
9593 @item
9594 Entry calls
9595
9596 @item
9597 Indirect calls using ‘Access
9598
9599 @item
9600 Requeue statements
9601
9602 @item
9603 Select statements
9604
9605 @item
9606 Synchronous task suspension
9607 @end itemize
9608
9609 and does not emit compile-time diagnostics or run-time checks. For further
9610 details see @ref{f,,Elaboration Order Handling in GNAT}.
9611 @end table
9612
9613 @geindex -gnatk (gcc)
9614
9615
9616 @table @asis
9617
9618 @item @code{-gnatk=`n'}
9619
9620 Limit file names to @code{n} (1-999) characters (@code{k} = krunch).
9621 @end table
9622
9623 @geindex -gnatl (gcc)
9624
9625
9626 @table @asis
9627
9628 @item @code{-gnatl}
9629
9630 Output full source listing with embedded error messages.
9631 @end table
9632
9633 @geindex -gnatL (gcc)
9634
9635
9636 @table @asis
9637
9638 @item @code{-gnatL}
9639
9640 Used in conjunction with -gnatG or -gnatD to intersperse original
9641 source lines (as comment lines with line numbers) in the expanded
9642 source output.
9643 @end table
9644
9645 @geindex -gnatm (gcc)
9646
9647
9648 @table @asis
9649
9650 @item @code{-gnatm=`n'}
9651
9652 Limit number of detected error or warning messages to @code{n}
9653 where @code{n} is in the range 1..999999. The default setting if
9654 no switch is given is 9999. If the number of warnings reaches this
9655 limit, then a message is output and further warnings are suppressed,
9656 but the compilation is continued. If the number of error messages
9657 reaches this limit, then a message is output and the compilation
9658 is abandoned. The equal sign here is optional. A value of zero
9659 means that no limit applies.
9660 @end table
9661
9662 @geindex -gnatn (gcc)
9663
9664
9665 @table @asis
9666
9667 @item @code{-gnatn[12]}
9668
9669 Activate inlining across units for subprograms for which pragma @code{Inline}
9670 is specified. This inlining is performed by the GCC back-end. An optional
9671 digit sets the inlining level: 1 for moderate inlining across units
9672 or 2 for full inlining across units. If no inlining level is specified,
9673 the compiler will pick it based on the optimization level.
9674 @end table
9675
9676 @geindex -gnatN (gcc)
9677
9678
9679 @table @asis
9680
9681 @item @code{-gnatN}
9682
9683 Activate front end inlining for subprograms for which
9684 pragma @code{Inline} is specified. This inlining is performed
9685 by the front end and will be visible in the
9686 @code{-gnatG} output.
9687
9688 When using a gcc-based back end, then the use of
9689 @code{-gnatN} is deprecated, and the use of @code{-gnatn} is preferred.
9690 Historically front end inlining was more extensive than the gcc back end
9691 inlining, but that is no longer the case.
9692 @end table
9693
9694 @geindex -gnato0 (gcc)
9695
9696
9697 @table @asis
9698
9699 @item @code{-gnato0}
9700
9701 Suppresses overflow checking. This causes the behavior of the compiler to
9702 match the default for older versions where overflow checking was suppressed
9703 by default. This is equivalent to having
9704 @code{pragma Suppress (Overflow_Check)} in a configuration pragma file.
9705 @end table
9706
9707 @geindex -gnato?? (gcc)
9708
9709
9710 @table @asis
9711
9712 @item @code{-gnato??}
9713
9714 Set default mode for handling generation of code to avoid intermediate
9715 arithmetic overflow. Here @code{??} is two digits, a
9716 single digit, or nothing. Each digit is one of the digits @code{1}
9717 through @code{3}:
9718
9719
9720 @multitable {xxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
9721 @item
9722
9723 Digit
9724
9725 @tab
9726
9727 Interpretation
9728
9729 @item
9730
9731 `1'
9732
9733 @tab
9734
9735 All intermediate overflows checked against base type (@code{STRICT})
9736
9737 @item
9738
9739 `2'
9740
9741 @tab
9742
9743 Minimize intermediate overflows (@code{MINIMIZED})
9744
9745 @item
9746
9747 `3'
9748
9749 @tab
9750
9751 Eliminate intermediate overflows (@code{ELIMINATED})
9752
9753 @end multitable
9754
9755
9756 If only one digit appears, then it applies to all
9757 cases; if two digits are given, then the first applies outside
9758 assertions, pre/postconditions, and type invariants, and the second
9759 applies within assertions, pre/postconditions, and type invariants.
9760
9761 If no digits follow the @code{-gnato}, then it is equivalent to
9762 @code{-gnato11},
9763 causing all intermediate overflows to be handled in strict
9764 mode.
9765
9766 This switch also causes arithmetic overflow checking to be performed
9767 (as though @code{pragma Unsuppress (Overflow_Check)} had been specified).
9768
9769 The default if no option @code{-gnato} is given is that overflow handling
9770 is in @code{STRICT} mode (computations done using the base type), and that
9771 overflow checking is enabled.
9772
9773 Note that division by zero is a separate check that is not
9774 controlled by this switch (divide-by-zero checking is on by default).
9775
9776 See also @ref{eb,,Specifying the Desired Mode}.
9777 @end table
9778
9779 @geindex -gnatp (gcc)
9780
9781
9782 @table @asis
9783
9784 @item @code{-gnatp}
9785
9786 Suppress all checks. See @ref{ec,,Run-Time Checks} for details. This switch
9787 has no effect if cancelled by a subsequent @code{-gnat-p} switch.
9788 @end table
9789
9790 @geindex -gnat-p (gcc)
9791
9792
9793 @table @asis
9794
9795 @item @code{-gnat-p}
9796
9797 Cancel effect of previous @code{-gnatp} switch.
9798 @end table
9799
9800 @geindex -gnatq (gcc)
9801
9802
9803 @table @asis
9804
9805 @item @code{-gnatq}
9806
9807 Don’t quit. Try semantics, even if parse errors.
9808 @end table
9809
9810 @geindex -gnatQ (gcc)
9811
9812
9813 @table @asis
9814
9815 @item @code{-gnatQ}
9816
9817 Don’t quit. Generate @code{ALI} and tree files even if illegalities.
9818 Note that code generation is still suppressed in the presence of any
9819 errors, so even with @code{-gnatQ} no object file is generated.
9820 @end table
9821
9822 @geindex -gnatr (gcc)
9823
9824
9825 @table @asis
9826
9827 @item @code{-gnatr}
9828
9829 Treat pragma Restrictions as Restriction_Warnings.
9830 @end table
9831
9832 @geindex -gnatR (gcc)
9833
9834
9835 @table @asis
9836
9837 @item @code{-gnatR[0|1|2|3|4][e][j][m][s]}
9838
9839 Output representation information for declared types, objects and
9840 subprograms. Note that this switch is not allowed if a previous
9841 @code{-gnatD} switch has been given, since these two switches
9842 are not compatible.
9843 @end table
9844
9845 @geindex -gnats (gcc)
9846
9847
9848 @table @asis
9849
9850 @item @code{-gnats}
9851
9852 Syntax check only.
9853 @end table
9854
9855 @geindex -gnatS (gcc)
9856
9857
9858 @table @asis
9859
9860 @item @code{-gnatS}
9861
9862 Print package Standard.
9863 @end table
9864
9865 @geindex -gnatT (gcc)
9866
9867
9868 @table @asis
9869
9870 @item @code{-gnatT`nnn'}
9871
9872 All compiler tables start at @code{nnn} times usual starting size.
9873 @end table
9874
9875 @geindex -gnatu (gcc)
9876
9877
9878 @table @asis
9879
9880 @item @code{-gnatu}
9881
9882 List units for this compilation.
9883 @end table
9884
9885 @geindex -gnatU (gcc)
9886
9887
9888 @table @asis
9889
9890 @item @code{-gnatU}
9891
9892 Tag all error messages with the unique string ‘error:’
9893 @end table
9894
9895 @geindex -gnatv (gcc)
9896
9897
9898 @table @asis
9899
9900 @item @code{-gnatv}
9901
9902 Verbose mode. Full error output with source lines to @code{stdout}.
9903 @end table
9904
9905 @geindex -gnatV (gcc)
9906
9907
9908 @table @asis
9909
9910 @item @code{-gnatV}
9911
9912 Control level of validity checking (@ref{e9,,Validity Checking}).
9913 @end table
9914
9915 @geindex -gnatw (gcc)
9916
9917
9918 @table @asis
9919
9920 @item @code{-gnatw`xxx'}
9921
9922 Warning mode where
9923 @code{xxx} is a string of option letters that denotes
9924 the exact warnings that
9925 are enabled or disabled (@ref{ed,,Warning Message Control}).
9926 @end table
9927
9928 @geindex -gnatW (gcc)
9929
9930
9931 @table @asis
9932
9933 @item @code{-gnatW`e'}
9934
9935 Wide character encoding method
9936 (@code{e}=n/h/u/s/e/8).
9937 @end table
9938
9939 @geindex -gnatx (gcc)
9940
9941
9942 @table @asis
9943
9944 @item @code{-gnatx}
9945
9946 Suppress generation of cross-reference information.
9947 @end table
9948
9949 @geindex -gnatX (gcc)
9950
9951
9952 @table @asis
9953
9954 @item @code{-gnatX}
9955
9956 Enable core GNAT implementation extensions and latest Ada version.
9957 @end table
9958
9959 @geindex -gnatX0 (gcc)
9960
9961
9962 @table @asis
9963
9964 @item @code{-gnatX0}
9965
9966 Enable all GNAT implementation extensions and latest Ada version.
9967 @end table
9968
9969 @geindex -gnaty (gcc)
9970
9971
9972 @table @asis
9973
9974 @item @code{-gnaty}
9975
9976 Enable built-in style checks (@ref{ee,,Style Checking}).
9977 @end table
9978
9979 @geindex -gnatz (gcc)
9980
9981
9982 @table @asis
9983
9984 @item @code{-gnatz`m'}
9985
9986 Distribution stub generation and compilation
9987 (@code{m}=r/c for receiver/caller stubs).
9988 @end table
9989
9990 @geindex -I (gcc)
9991
9992
9993 @table @asis
9994
9995 @item @code{-I`dir'}
9996
9997 @geindex RTL
9998
9999 Direct GNAT to search the @code{dir} directory for source files needed by
10000 the current compilation
10001 (see @ref{73,,Search Paths and the Run-Time Library (RTL)}).
10002 @end table
10003
10004 @geindex -I- (gcc)
10005
10006
10007 @table @asis
10008
10009 @item @code{-I-}
10010
10011 @geindex RTL
10012
10013 Except for the source file named in the command line, do not look for source
10014 files in the directory containing the source file named in the command line
10015 (see @ref{73,,Search Paths and the Run-Time Library (RTL)}).
10016 @end table
10017
10018 @geindex -o (gcc)
10019
10020
10021 @table @asis
10022
10023 @item @code{-o `file'}
10024
10025 This switch is used in @code{gcc} to redirect the generated object file
10026 and its associated ALI file. Beware of this switch with GNAT, because it may
10027 cause the object file and ALI file to have different names which in turn
10028 may confuse the binder and the linker.
10029 @end table
10030
10031 @geindex -nostdinc (gcc)
10032
10033
10034 @table @asis
10035
10036 @item @code{-nostdinc}
10037
10038 Inhibit the search of the default location for the GNAT Run Time
10039 Library (RTL) source files.
10040 @end table
10041
10042 @geindex -nostdlib (gcc)
10043
10044
10045 @table @asis
10046
10047 @item @code{-nostdlib}
10048
10049 Inhibit the search of the default location for the GNAT Run Time
10050 Library (RTL) ALI files.
10051 @end table
10052
10053 @geindex -O (gcc)
10054
10055
10056 @table @asis
10057
10058 @item @code{-O[`n']}
10059
10060 @code{n} controls the optimization level:
10061
10062
10063 @multitable {xxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
10064 @item
10065
10066 `n'
10067
10068 @tab
10069
10070 Effect
10071
10072 @item
10073
10074 `0'
10075
10076 @tab
10077
10078 No optimization, the default setting if no @code{-O} appears
10079
10080 @item
10081
10082 `1'
10083
10084 @tab
10085
10086 Normal optimization, the default if you specify @code{-O} without an
10087 operand. A good compromise between code quality and compilation
10088 time.
10089
10090 @item
10091
10092 `2'
10093
10094 @tab
10095
10096 Extensive optimization, may improve execution time, possibly at
10097 the cost of substantially increased compilation time.
10098
10099 @item
10100
10101 `3'
10102
10103 @tab
10104
10105 Same as @code{-O2}, and also includes inline expansion for small
10106 subprograms in the same unit.
10107
10108 @item
10109
10110 `s'
10111
10112 @tab
10113
10114 Optimize space usage
10115
10116 @end multitable
10117
10118
10119 See also @ref{ef,,Optimization Levels}.
10120 @end table
10121
10122 @geindex -pass-exit-codes (gcc)
10123
10124
10125 @table @asis
10126
10127 @item @code{-pass-exit-codes}
10128
10129 Catch exit codes from the compiler and use the most meaningful as
10130 exit status.
10131 @end table
10132
10133 @geindex --RTS (gcc)
10134
10135
10136 @table @asis
10137
10138 @item @code{--RTS=`rts-path'}
10139
10140 Specifies the default location of the run-time library. Same meaning as the
10141 equivalent @code{gnatmake} flag (@ref{d0,,Switches for gnatmake}).
10142 @end table
10143
10144 @geindex -S (gcc)
10145
10146
10147 @table @asis
10148
10149 @item @code{-S}
10150
10151 Used in place of @code{-c} to
10152 cause the assembler source file to be
10153 generated, using @code{.s} as the extension,
10154 instead of the object file.
10155 This may be useful if you need to examine the generated assembly code.
10156 @end table
10157
10158 @geindex -fverbose-asm (gcc)
10159
10160
10161 @table @asis
10162
10163 @item @code{-fverbose-asm}
10164
10165 Used in conjunction with @code{-S}
10166 to cause the generated assembly code file to be annotated with variable
10167 names, making it significantly easier to follow.
10168 @end table
10169
10170 @geindex -v (gcc)
10171
10172
10173 @table @asis
10174
10175 @item @code{-v}
10176
10177 Show commands generated by the @code{gcc} driver. Normally used only for
10178 debugging purposes or if you need to be sure what version of the
10179 compiler you are executing.
10180 @end table
10181
10182 @geindex -V (gcc)
10183
10184
10185 @table @asis
10186
10187 @item @code{-V `ver'}
10188
10189 Execute @code{ver} version of the compiler. This is the @code{gcc}
10190 version, not the GNAT version.
10191 @end table
10192
10193 @geindex -w (gcc)
10194
10195
10196 @table @asis
10197
10198 @item @code{-w}
10199
10200 Turn off warnings generated by the back end of the compiler. Use of
10201 this switch also causes the default for front end warnings to be set
10202 to suppress (as though @code{-gnatws} had appeared at the start of
10203 the options).
10204 @end table
10205
10206 @geindex Combining GNAT switches
10207
10208 You may combine a sequence of GNAT switches into a single switch. For
10209 example, the combined switch
10210
10211 @quotation
10212
10213 @example
10214 -gnatofi3
10215 @end example
10216 @end quotation
10217
10218 is equivalent to specifying the following sequence of switches:
10219
10220 @quotation
10221
10222 @example
10223 -gnato -gnatf -gnati3
10224 @end example
10225 @end quotation
10226
10227 The following restrictions apply to the combination of switches
10228 in this manner:
10229
10230
10231 @itemize *
10232
10233 @item
10234 The switch @code{-gnatc} if combined with other switches must come
10235 first in the string.
10236
10237 @item
10238 The switch @code{-gnats} if combined with other switches must come
10239 first in the string.
10240
10241 @item
10242 The switches
10243 @code{-gnatzc} and @code{-gnatzr} may not be combined with any other
10244 switches, and only one of them may appear in the command line.
10245
10246 @item
10247 The switch @code{-gnat-p} may not be combined with any other switch.
10248
10249 @item
10250 Once a ‘y’ appears in the string (that is a use of the @code{-gnaty}
10251 switch), then all further characters in the switch are interpreted
10252 as style modifiers (see description of @code{-gnaty}).
10253
10254 @item
10255 Once a ‘d’ appears in the string (that is a use of the @code{-gnatd}
10256 switch), then all further characters in the switch are interpreted
10257 as debug flags (see description of @code{-gnatd}).
10258
10259 @item
10260 Once a ‘w’ appears in the string (that is a use of the @code{-gnatw}
10261 switch), then all further characters in the switch are interpreted
10262 as warning mode modifiers (see description of @code{-gnatw}).
10263
10264 @item
10265 Once a ‘V’ appears in the string (that is a use of the @code{-gnatV}
10266 switch), then all further characters in the switch are interpreted
10267 as validity checking options (@ref{e9,,Validity Checking}).
10268
10269 @item
10270 Option ‘em’, ‘ec’, ‘ep’, ‘l=’ and ‘R’ must be the last options in
10271 a combined list of options.
10272 @end itemize
10273
10274 @node Output and Error Message Control,Warning Message Control,Alphabetical List of All Switches,Compiler Switches
10275 @anchor{gnat_ugn/building_executable_programs_with_gnat id14}@anchor{f0}@anchor{gnat_ugn/building_executable_programs_with_gnat output-and-error-message-control}@anchor{f1}
10276 @subsection Output and Error Message Control
10277
10278
10279 @geindex stderr
10280
10281 The standard default format for error messages is called ‘brief format’.
10282 Brief format messages are written to @code{stderr} (the standard error
10283 file) and have the following form:
10284
10285 @example
10286 e.adb:3:04: Incorrect spelling of keyword "function"
10287 e.adb:4:20: ";" should be "is"
10288 @end example
10289
10290 The first integer after the file name is the line number in the file,
10291 and the second integer is the column number within the line.
10292 @code{GNAT Studio} can parse the error messages
10293 and point to the referenced character.
10294 The following switches provide control over the error message
10295 format:
10296
10297 @geindex -gnatv (gcc)
10298
10299
10300 @table @asis
10301
10302 @item @code{-gnatv}
10303
10304 The @code{v} stands for verbose.
10305 The effect of this setting is to write long-format error
10306 messages to @code{stdout} (the standard output file).
10307 The same program compiled with the
10308 @code{-gnatv} switch would generate:
10309
10310 @example
10311 3. funcion X (Q : Integer)
10312 |
10313 >>> Incorrect spelling of keyword "function"
10314 4. return Integer;
10315 |
10316 >>> ";" should be "is"
10317 @end example
10318
10319 The vertical bar indicates the location of the error, and the @code{>>>}
10320 prefix can be used to search for error messages. When this switch is
10321 used the only source lines output are those with errors.
10322 @end table
10323
10324 @geindex -gnatl (gcc)
10325
10326
10327 @table @asis
10328
10329 @item @code{-gnatl}
10330
10331 The @code{l} stands for list.
10332 This switch causes a full listing of
10333 the file to be generated. In the case where a body is
10334 compiled, the corresponding spec is also listed, along
10335 with any subunits. Typical output from compiling a package
10336 body @code{p.adb} might look like:
10337
10338 @example
10339 Compiling: p.adb
10340
10341 1. package body p is
10342 2. procedure a;
10343 3. procedure a is separate;
10344 4. begin
10345 5. null
10346 |
10347 >>> missing ";"
10348
10349 6. end;
10350
10351 Compiling: p.ads
10352
10353 1. package p is
10354 2. pragma Elaborate_Body
10355 |
10356 >>> missing ";"
10357
10358 3. end p;
10359
10360 Compiling: p-a.adb
10361
10362 1. separate p
10363 |
10364 >>> missing "("
10365
10366 2. procedure a is
10367 3. begin
10368 4. null
10369 |
10370 >>> missing ";"
10371
10372 5. end;
10373 @end example
10374
10375 When you specify the @code{-gnatv} or @code{-gnatl} switches and
10376 standard output is redirected, a brief summary is written to
10377 @code{stderr} (standard error) giving the number of error messages and
10378 warning messages generated.
10379 @end table
10380
10381 @geindex -gnatl=fname (gcc)
10382
10383
10384 @table @asis
10385
10386 @item @code{-gnatl=`fname'}
10387
10388 This has the same effect as @code{-gnatl} except that the output is
10389 written to a file instead of to standard output. If the given name
10390 @code{fname} does not start with a period, then it is the full name
10391 of the file to be written. If @code{fname} is an extension, it is
10392 appended to the name of the file being compiled. For example, if
10393 file @code{xyz.adb} is compiled with @code{-gnatl=.lst},
10394 then the output is written to file xyz.adb.lst.
10395 @end table
10396
10397 @geindex -gnatU (gcc)
10398
10399
10400 @table @asis
10401
10402 @item @code{-gnatU}
10403
10404 This switch forces all error messages to be preceded by the unique
10405 string ‘error:’. This means that error messages take a few more
10406 characters in space, but allows easy searching for and identification
10407 of error messages.
10408 @end table
10409
10410 @geindex -gnatb (gcc)
10411
10412
10413 @table @asis
10414
10415 @item @code{-gnatb}
10416
10417 The @code{b} stands for brief.
10418 This switch causes GNAT to generate the
10419 brief format error messages to @code{stderr} (the standard error
10420 file) as well as the verbose
10421 format message or full listing (which as usual is written to
10422 @code{stdout}, the standard output file).
10423 @end table
10424
10425 @geindex -gnatm (gcc)
10426
10427
10428 @table @asis
10429
10430 @item @code{-gnatm=`n'}
10431
10432 The @code{m} stands for maximum.
10433 @code{n} is a decimal integer in the
10434 range of 1 to 999999 and limits the number of error or warning
10435 messages to be generated. For example, using
10436 @code{-gnatm2} might yield
10437
10438 @example
10439 e.adb:3:04: Incorrect spelling of keyword "function"
10440 e.adb:5:35: missing ".."
10441 fatal error: maximum number of errors detected
10442 compilation abandoned
10443 @end example
10444
10445 The default setting if
10446 no switch is given is 9999. If the number of warnings reaches this
10447 limit, then a message is output and further warnings are suppressed,
10448 but the compilation is continued. If the number of error messages
10449 reaches this limit, then a message is output and the compilation
10450 is abandoned. A value of zero means that no limit applies.
10451
10452 Note that the equal sign is optional, so the switches
10453 @code{-gnatm2} and @code{-gnatm=2} are equivalent.
10454 @end table
10455
10456 @geindex -gnatf (gcc)
10457
10458
10459 @table @asis
10460
10461 @item @code{-gnatf}
10462
10463 @geindex Error messages
10464 @geindex suppressing
10465
10466 The @code{f} stands for full.
10467 Normally, the compiler suppresses error messages that are likely to be
10468 redundant. This switch causes all error
10469 messages to be generated. In particular, in the case of
10470 references to undefined variables. If a given variable is referenced
10471 several times, the normal format of messages is
10472
10473 @example
10474 e.adb:7:07: "V" is undefined (more references follow)
10475 @end example
10476
10477 where the parenthetical comment warns that there are additional
10478 references to the variable @code{V}. Compiling the same program with the
10479 @code{-gnatf} switch yields
10480
10481 @example
10482 e.adb:7:07: "V" is undefined
10483 e.adb:8:07: "V" is undefined
10484 e.adb:8:12: "V" is undefined
10485 e.adb:8:16: "V" is undefined
10486 e.adb:9:07: "V" is undefined
10487 e.adb:9:12: "V" is undefined
10488 @end example
10489
10490 The @code{-gnatf} switch also generates additional information for
10491 some error messages. Some examples are:
10492
10493
10494 @itemize *
10495
10496 @item
10497 Details on possibly non-portable unchecked conversion
10498
10499 @item
10500 List possible interpretations for ambiguous calls
10501
10502 @item
10503 Additional details on incorrect parameters
10504 @end itemize
10505 @end table
10506
10507 @geindex -gnatjnn (gcc)
10508
10509
10510 @table @asis
10511
10512 @item @code{-gnatjnn}
10513
10514 In normal operation mode (or if @code{-gnatj0} is used), then error messages
10515 with continuation lines are treated as though the continuation lines were
10516 separate messages (and so a warning with two continuation lines counts as
10517 three warnings, and is listed as three separate messages).
10518
10519 If the @code{-gnatjnn} switch is used with a positive value for nn, then
10520 messages are output in a different manner. A message and all its continuation
10521 lines are treated as a unit, and count as only one warning or message in the
10522 statistics totals. Furthermore, the message is reformatted so that no line
10523 is longer than nn characters.
10524 @end table
10525
10526 @geindex -gnatq (gcc)
10527
10528
10529 @table @asis
10530
10531 @item @code{-gnatq}
10532
10533 The @code{q} stands for quit (really ‘don’t quit’).
10534 In normal operation mode, the compiler first parses the program and
10535 determines if there are any syntax errors. If there are, appropriate
10536 error messages are generated and compilation is immediately terminated.
10537 This switch tells
10538 GNAT to continue with semantic analysis even if syntax errors have been
10539 found. This may enable the detection of more errors in a single run. On
10540 the other hand, the semantic analyzer is more likely to encounter some
10541 internal fatal error when given a syntactically invalid tree.
10542 @end table
10543
10544 @geindex -gnatQ (gcc)
10545
10546
10547 @table @asis
10548
10549 @item @code{-gnatQ}
10550
10551 In normal operation mode, the @code{ALI} file is not generated if any
10552 illegalities are detected in the program. The use of @code{-gnatQ} forces
10553 generation of the @code{ALI} file. This file is marked as being in
10554 error, so it cannot be used for binding purposes, but it does contain
10555 reasonably complete cross-reference information, and thus may be useful
10556 for use by tools (e.g., semantic browsing tools or integrated development
10557 environments) that are driven from the @code{ALI} file. This switch
10558 implies @code{-gnatq}, since the semantic phase must be run to get a
10559 meaningful ALI file.
10560
10561 When @code{-gnatQ} is used and the generated @code{ALI} file is marked as
10562 being in error, @code{gnatmake} will attempt to recompile the source when it
10563 finds such an @code{ALI} file, including with switch @code{-gnatc}.
10564
10565 Note that @code{-gnatQ} has no effect if @code{-gnats} is specified,
10566 since ALI files are never generated if @code{-gnats} is set.
10567 @end table
10568
10569 @node Warning Message Control,Debugging and Assertion Control,Output and Error Message Control,Compiler Switches
10570 @anchor{gnat_ugn/building_executable_programs_with_gnat id15}@anchor{f2}@anchor{gnat_ugn/building_executable_programs_with_gnat warning-message-control}@anchor{ed}
10571 @subsection Warning Message Control
10572
10573
10574 @geindex Warning messages
10575
10576 In addition to error messages, which correspond to illegalities as defined
10577 in the Ada Reference Manual, the compiler detects two kinds of warning
10578 situations.
10579
10580 First, the compiler considers some constructs suspicious and generates a
10581 warning message to alert you to a possible error. Second, if the
10582 compiler detects a situation that is sure to raise an exception at
10583 run time, it generates a warning message. The following shows an example
10584 of warning messages:
10585
10586 @example
10587 e.adb:4:24: warning: creation of object may raise Storage_Error
10588 e.adb:10:17: warning: static value out of range
10589 e.adb:10:17: warning: "Constraint_Error" will be raised at run time
10590 @end example
10591
10592 GNAT considers a large number of situations as appropriate
10593 for the generation of warning messages. As always, warnings are not
10594 definite indications of errors. For example, if you do an out-of-range
10595 assignment with the deliberate intention of raising a
10596 @code{Constraint_Error} exception, then the warning that may be
10597 issued does not indicate an error. Some of the situations for which GNAT
10598 issues warnings (at least some of the time) are given in the following
10599 list. This list is not complete, and new warnings are often added to
10600 subsequent versions of GNAT. The list is intended to give a general idea
10601 of the kinds of warnings that are generated.
10602
10603
10604 @itemize *
10605
10606 @item
10607 Possible infinitely recursive calls
10608
10609 @item
10610 Out-of-range values being assigned
10611
10612 @item
10613 Possible order of elaboration problems
10614
10615 @item
10616 Size not a multiple of alignment for a record type
10617
10618 @item
10619 Assertions (pragma Assert) that are sure to fail
10620
10621 @item
10622 Unreachable code
10623
10624 @item
10625 Address clauses with possibly unaligned values, or where an attempt is
10626 made to overlay a smaller variable with a larger one.
10627
10628 @item
10629 Fixed-point type declarations with a null range
10630
10631 @item
10632 Direct_IO or Sequential_IO instantiated with a type that has access values
10633
10634 @item
10635 Variables that are never assigned a value
10636
10637 @item
10638 Variables that are referenced before being initialized
10639
10640 @item
10641 Task entries with no corresponding @code{accept} statement
10642
10643 @item
10644 Duplicate accepts for the same task entry in a @code{select}
10645
10646 @item
10647 Objects that take too much storage
10648
10649 @item
10650 Unchecked conversion between types of differing sizes
10651
10652 @item
10653 Missing @code{return} statement along some execution path in a function
10654
10655 @item
10656 Incorrect (unrecognized) pragmas
10657
10658 @item
10659 Incorrect external names
10660
10661 @item
10662 Allocation from empty storage pool
10663
10664 @item
10665 Potentially blocking operation in protected type
10666
10667 @item
10668 Suspicious parenthesization of expressions
10669
10670 @item
10671 Mismatching bounds in an aggregate
10672
10673 @item
10674 Attempt to return local value by reference
10675
10676 @item
10677 Premature instantiation of a generic body
10678
10679 @item
10680 Attempt to pack aliased components
10681
10682 @item
10683 Out of bounds array subscripts
10684
10685 @item
10686 Wrong length on string assignment
10687
10688 @item
10689 Violations of style rules if style checking is enabled
10690
10691 @item
10692 Unused `with' clauses
10693
10694 @item
10695 @code{Bit_Order} usage that does not have any effect
10696
10697 @item
10698 @code{Standard.Duration} used to resolve universal fixed expression
10699
10700 @item
10701 Dereference of possibly null value
10702
10703 @item
10704 Declaration that is likely to cause storage error
10705
10706 @item
10707 Internal GNAT unit `with'ed by application unit
10708
10709 @item
10710 Values known to be out of range at compile time
10711
10712 @item
10713 Unreferenced or unmodified variables. Note that a special
10714 exemption applies to variables which contain any of the substrings
10715 @code{DISCARD, DUMMY, IGNORE, JUNK, UNUSED}, in any casing. Such variables
10716 are considered likely to be intentionally used in a situation where
10717 otherwise a warning would be given, so warnings of this kind are
10718 always suppressed for such variables.
10719
10720 @item
10721 Address overlays that could clobber memory
10722
10723 @item
10724 Unexpected initialization when address clause present
10725
10726 @item
10727 Bad alignment for address clause
10728
10729 @item
10730 Useless type conversions
10731
10732 @item
10733 Redundant assignment statements and other redundant constructs
10734
10735 @item
10736 Useless exception handlers
10737
10738 @item
10739 Accidental hiding of name by child unit
10740
10741 @item
10742 Access before elaboration detected at compile time
10743
10744 @item
10745 A range in a @code{for} loop that is known to be null or might be null
10746 @end itemize
10747
10748 The following section lists compiler switches that are available
10749 to control the handling of warning messages. It is also possible
10750 to exercise much finer control over what warnings are issued and
10751 suppressed using the GNAT pragma Warnings (see the description
10752 of the pragma in the @cite{GNAT_Reference_manual}).
10753
10754 @geindex -gnatwa (gcc)
10755
10756
10757 @table @asis
10758
10759 @item @code{-gnatwa}
10760
10761 `Activate most optional warnings.'
10762
10763 This switch activates most optional warning messages. See the remaining list
10764 in this section for details on optional warning messages that can be
10765 individually controlled. The warnings that are not turned on by this
10766 switch are:
10767
10768
10769 @itemize *
10770
10771 @item
10772 @code{-gnatwd} (implicit dereferencing)
10773
10774 @item
10775 @code{-gnatw.d} (tag warnings with -gnatw switch)
10776
10777 @item
10778 @code{-gnatwh} (hiding)
10779
10780 @item
10781 @code{-gnatw.h} (holes in record layouts)
10782
10783 @item
10784 @code{-gnatw.j} (late primitives of tagged types)
10785
10786 @item
10787 @code{-gnatw.k} (redefinition of names in standard)
10788
10789 @item
10790 @code{-gnatwl} (elaboration warnings)
10791
10792 @item
10793 @code{-gnatw.l} (inherited aspects)
10794
10795 @item
10796 @code{-gnatw.n} (atomic synchronization)
10797
10798 @item
10799 @code{-gnatwo} (address clause overlay)
10800
10801 @item
10802 @code{-gnatw.o} (values set by out parameters ignored)
10803
10804 @item
10805 @code{-gnatw.q} (questionable layout of record types)
10806
10807 @item
10808 @code{-gnatw_q} (ignored equality)
10809
10810 @item
10811 @code{-gnatw_r} (out-of-order record representation clauses)
10812
10813 @item
10814 @code{-gnatw.s} (overridden size clause)
10815
10816 @item
10817 @code{-gnatw_s} (ineffective predicate test)
10818
10819 @item
10820 @code{-gnatwt} (tracking of deleted conditional code)
10821
10822 @item
10823 @code{-gnatw.u} (unordered enumeration)
10824
10825 @item
10826 @code{-gnatw.w} (use of Warnings Off)
10827
10828 @item
10829 @code{-gnatw.y} (reasons for package needing body)
10830 @end itemize
10831
10832 All other optional warnings are turned on.
10833 @end table
10834
10835 @geindex -gnatwA (gcc)
10836
10837
10838 @table @asis
10839
10840 @item @code{-gnatwA}
10841
10842 `Suppress all optional errors.'
10843
10844 This switch suppresses all optional warning messages, see remaining list
10845 in this section for details on optional warning messages that can be
10846 individually controlled. Note that unlike switch @code{-gnatws}, the
10847 use of switch @code{-gnatwA} does not suppress warnings that are
10848 normally given unconditionally and cannot be individually controlled
10849 (for example, the warning about a missing exit path in a function).
10850 Also, again unlike switch @code{-gnatws}, warnings suppressed by
10851 the use of switch @code{-gnatwA} can be individually turned back
10852 on. For example the use of switch @code{-gnatwA} followed by
10853 switch @code{-gnatwd} will suppress all optional warnings except
10854 the warnings for implicit dereferencing.
10855 @end table
10856
10857 @geindex -gnatw.a (gcc)
10858
10859
10860 @table @asis
10861
10862 @item @code{-gnatw.a}
10863
10864 `Activate warnings on failing assertions.'
10865
10866 @geindex Assert failures
10867
10868 This switch activates warnings for assertions where the compiler can tell at
10869 compile time that the assertion will fail. Note that this warning is given
10870 even if assertions are disabled. The default is that such warnings are
10871 generated.
10872 @end table
10873
10874 @geindex -gnatw.A (gcc)
10875
10876
10877 @table @asis
10878
10879 @item @code{-gnatw.A}
10880
10881 `Suppress warnings on failing assertions.'
10882
10883 @geindex Assert failures
10884
10885 This switch suppresses warnings for assertions where the compiler can tell at
10886 compile time that the assertion will fail.
10887 @end table
10888
10889 @geindex -gnatw_a
10890
10891
10892 @table @asis
10893
10894 @item @code{-gnatw_a}
10895
10896 `Activate warnings on anonymous allocators.'
10897
10898 @geindex Anonymous allocators
10899
10900 This switch activates warnings for allocators of anonymous access types,
10901 which can involve run-time accessibility checks and lead to unexpected
10902 accessibility violations. For more details on the rules involved, see
10903 RM 3.10.2 (14).
10904 @end table
10905
10906 @geindex -gnatw_A
10907
10908
10909 @table @asis
10910
10911 @item @code{-gnatw_A}
10912
10913 `Suppress warnings on anonymous allocators.'
10914
10915 @geindex Anonymous allocators
10916
10917 This switch suppresses warnings for anonymous access type allocators.
10918 @end table
10919
10920 @geindex -gnatwb (gcc)
10921
10922
10923 @table @asis
10924
10925 @item @code{-gnatwb}
10926
10927 `Activate warnings on bad fixed values.'
10928
10929 @geindex Bad fixed values
10930
10931 @geindex Fixed-point Small value
10932
10933 @geindex Small value
10934
10935 This switch activates warnings for static fixed-point expressions whose
10936 value is not an exact multiple of Small. Such values are implementation
10937 dependent, since an implementation is free to choose either of the multiples
10938 that surround the value. GNAT always chooses the closer one, but this is not
10939 required behavior, and it is better to specify a value that is an exact
10940 multiple, ensuring predictable execution. The default is that such warnings
10941 are not generated.
10942 @end table
10943
10944 @geindex -gnatwB (gcc)
10945
10946
10947 @table @asis
10948
10949 @item @code{-gnatwB}
10950
10951 `Suppress warnings on bad fixed values.'
10952
10953 This switch suppresses warnings for static fixed-point expressions whose
10954 value is not an exact multiple of Small.
10955 @end table
10956
10957 @geindex -gnatw.b (gcc)
10958
10959
10960 @table @asis
10961
10962 @item @code{-gnatw.b}
10963
10964 `Activate warnings on biased representation.'
10965
10966 @geindex Biased representation
10967
10968 This switch activates warnings when a size clause, value size clause, component
10969 clause, or component size clause forces the use of biased representation for an
10970 integer type (e.g. representing a range of 10..11 in a single bit by using 0/1
10971 to represent 10/11). The default is that such warnings are generated.
10972 @end table
10973
10974 @geindex -gnatwB (gcc)
10975
10976
10977 @table @asis
10978
10979 @item @code{-gnatw.B}
10980
10981 `Suppress warnings on biased representation.'
10982
10983 This switch suppresses warnings for representation clauses that force the use
10984 of biased representation.
10985 @end table
10986
10987 @geindex -gnatwc (gcc)
10988
10989
10990 @table @asis
10991
10992 @item @code{-gnatwc}
10993
10994 `Activate warnings on conditionals.'
10995
10996 @geindex Conditionals
10997 @geindex constant
10998
10999 This switch activates warnings for conditional expressions used in
11000 tests that are known to be True or False at compile time. The default
11001 is that such warnings are not generated.
11002 Note that this warning does
11003 not get issued for the use of boolean constants whose
11004 values are known at compile time, since this is a standard technique
11005 for conditional compilation in Ada, and this would generate too many
11006 false positive warnings.
11007
11008 This warning option also activates a special test for comparisons using
11009 the operators ‘>=’ and’ <=’.
11010 If the compiler can tell that only the equality condition is possible,
11011 then it will warn that the ‘>’ or ‘<’ part of the test
11012 is useless and that the operator could be replaced by ‘=’.
11013 An example would be comparing a @code{Natural} variable <= 0.
11014
11015 This warning option also generates warnings if
11016 one or both tests is optimized away in a membership test for integer
11017 values if the result can be determined at compile time. Range tests on
11018 enumeration types are not included, since it is common for such tests
11019 to include an end point.
11020
11021 This warning can also be turned on using @code{-gnatwa}.
11022 @end table
11023
11024 @geindex -gnatwC (gcc)
11025
11026
11027 @table @asis
11028
11029 @item @code{-gnatwC}
11030
11031 `Suppress warnings on conditionals.'
11032
11033 This switch suppresses warnings for conditional expressions used in
11034 tests that are known to be True or False at compile time.
11035 @end table
11036
11037 @geindex -gnatw.c (gcc)
11038
11039
11040 @table @asis
11041
11042 @item @code{-gnatw.c}
11043
11044 `Activate warnings on missing component clauses.'
11045
11046 @geindex Component clause
11047 @geindex missing
11048
11049 This switch activates warnings for record components where a record
11050 representation clause is present and has component clauses for the
11051 majority, but not all, of the components. A warning is given for each
11052 component for which no component clause is present.
11053 @end table
11054
11055 @geindex -gnatw.C (gcc)
11056
11057
11058 @table @asis
11059
11060 @item @code{-gnatw.C}
11061
11062 `Suppress warnings on missing component clauses.'
11063
11064 This switch suppresses warnings for record components that are
11065 missing a component clause in the situation described above.
11066 @end table
11067
11068 @geindex -gnatw_c (gcc)
11069
11070
11071 @table @asis
11072
11073 @item @code{-gnatw_c}
11074
11075 `Activate warnings on unknown condition in Compile_Time_Warning.'
11076
11077 @geindex Compile_Time_Warning
11078
11079 @geindex Compile_Time_Error
11080
11081 This switch activates warnings on a pragma Compile_Time_Warning
11082 or Compile_Time_Error whose condition has a value that is not
11083 known at compile time.
11084 The default is that such warnings are generated.
11085 @end table
11086
11087 @geindex -gnatw_C (gcc)
11088
11089
11090 @table @asis
11091
11092 @item @code{-gnatw_C}
11093
11094 `Suppress warnings on unknown condition in Compile_Time_Warning.'
11095
11096 This switch suppresses warnings on a pragma Compile_Time_Warning
11097 or Compile_Time_Error whose condition has a value that is not
11098 known at compile time.
11099 @end table
11100
11101 @geindex -gnatwd (gcc)
11102
11103
11104 @table @asis
11105
11106 @item @code{-gnatwd}
11107
11108 `Activate warnings on implicit dereferencing.'
11109
11110 If this switch is set, then the use of a prefix of an access type
11111 in an indexed component, slice, or selected component without an
11112 explicit @code{.all} will generate a warning. With this warning
11113 enabled, access checks occur only at points where an explicit
11114 @code{.all} appears in the source code (assuming no warnings are
11115 generated as a result of this switch). The default is that such
11116 warnings are not generated.
11117 @end table
11118
11119 @geindex -gnatwD (gcc)
11120
11121
11122 @table @asis
11123
11124 @item @code{-gnatwD}
11125
11126 `Suppress warnings on implicit dereferencing.'
11127
11128 @geindex Implicit dereferencing
11129
11130 @geindex Dereferencing
11131 @geindex implicit
11132
11133 This switch suppresses warnings for implicit dereferences in
11134 indexed components, slices, and selected components.
11135 @end table
11136
11137 @geindex -gnatw.d (gcc)
11138
11139
11140 @table @asis
11141
11142 @item @code{-gnatw.d}
11143
11144 `Activate tagging of warning and info messages.'
11145
11146 If this switch is set, then warning messages are tagged, with one of the
11147 following strings:
11148
11149 @quotation
11150
11151
11152 @itemize -
11153
11154 @item
11155 `[-gnatw?]'
11156 Used to tag warnings controlled by the switch @code{-gnatwx} where x
11157 is a letter a-z.
11158
11159 @item
11160 `[-gnatw.?]'
11161 Used to tag warnings controlled by the switch @code{-gnatw.x} where x
11162 is a letter a-z.
11163
11164 @item
11165 `[-gnatel]'
11166 Used to tag elaboration information (info) messages generated when the
11167 static model of elaboration is used and the @code{-gnatel} switch is set.
11168
11169 @item
11170 `[restriction warning]'
11171 Used to tag warning messages for restriction violations, activated by use
11172 of the pragma @code{Restriction_Warnings}.
11173
11174 @item
11175 `[warning-as-error]'
11176 Used to tag warning messages that have been converted to error messages by
11177 use of the pragma Warning_As_Error. Note that such warnings are prefixed by
11178 the string “error: ” rather than “warning: “.
11179
11180 @item
11181 `[enabled by default]'
11182 Used to tag all other warnings that are always given by default, unless
11183 warnings are completely suppressed using pragma `Warnings(Off)' or
11184 the switch @code{-gnatws}.
11185 @end itemize
11186 @end quotation
11187 @end table
11188
11189 @geindex -gnatw.d (gcc)
11190
11191
11192 @table @asis
11193
11194 @item @code{-gnatw.D}
11195
11196 `Deactivate tagging of warning and info messages messages.'
11197
11198 If this switch is set, then warning messages return to the default
11199 mode in which warnings and info messages are not tagged as described above for
11200 @code{-gnatw.d}.
11201 @end table
11202
11203 @geindex -gnatwe (gcc)
11204
11205 @geindex Warnings
11206 @geindex treat as error
11207
11208
11209 @table @asis
11210
11211 @item @code{-gnatwe}
11212
11213 `Treat warnings and style checks as errors.'
11214
11215 This switch causes warning messages and style check messages to be
11216 treated as errors.
11217 The warning string still appears, but the warning messages are counted
11218 as errors, and prevent the generation of an object file. Note that this
11219 is the only -gnatw switch that affects the handling of style check messages.
11220 Note also that this switch has no effect on info (information) messages, which
11221 are not treated as errors if this switch is present.
11222 @end table
11223
11224 @geindex -gnatw.e (gcc)
11225
11226
11227 @table @asis
11228
11229 @item @code{-gnatw.e}
11230
11231 `Activate every optional warning.'
11232
11233 @geindex Warnings
11234 @geindex activate every optional warning
11235
11236 This switch activates all optional warnings, including those which
11237 are not activated by @code{-gnatwa}. The use of this switch is not
11238 recommended for normal use. If you turn this switch on, it is almost
11239 certain that you will get large numbers of useless warnings. The
11240 warnings that are excluded from @code{-gnatwa} are typically highly
11241 specialized warnings that are suitable for use only in code that has
11242 been specifically designed according to specialized coding rules.
11243 @end table
11244
11245 @geindex -gnatwE (gcc)
11246
11247 @geindex Warnings
11248 @geindex treat as error
11249
11250
11251 @table @asis
11252
11253 @item @code{-gnatwE}
11254
11255 `Treat all run-time exception warnings as errors.'
11256
11257 This switch causes warning messages regarding errors that will be raised
11258 during run-time execution to be treated as errors.
11259 @end table
11260
11261 @geindex -gnatwf (gcc)
11262
11263
11264 @table @asis
11265
11266 @item @code{-gnatwf}
11267
11268 `Activate warnings on unreferenced formals.'
11269
11270 @geindex Formals
11271 @geindex unreferenced
11272
11273 This switch causes a warning to be generated if a formal parameter
11274 is not referenced in the body of the subprogram. This warning can
11275 also be turned on using @code{-gnatwu}. The
11276 default is that these warnings are not generated.
11277 @end table
11278
11279 @geindex -gnatwF (gcc)
11280
11281
11282 @table @asis
11283
11284 @item @code{-gnatwF}
11285
11286 `Suppress warnings on unreferenced formals.'
11287
11288 This switch suppresses warnings for unreferenced formal
11289 parameters. Note that the
11290 combination @code{-gnatwu} followed by @code{-gnatwF} has the
11291 effect of warning on unreferenced entities other than subprogram
11292 formals.
11293 @end table
11294
11295 @geindex -gnatwg (gcc)
11296
11297
11298 @table @asis
11299
11300 @item @code{-gnatwg}
11301
11302 `Activate warnings on unrecognized pragmas.'
11303
11304 @geindex Pragmas
11305 @geindex unrecognized
11306
11307 This switch causes a warning to be generated if an unrecognized
11308 pragma is encountered. Apart from issuing this warning, the
11309 pragma is ignored and has no effect. The default
11310 is that such warnings are issued (satisfying the Ada Reference
11311 Manual requirement that such warnings appear).
11312 @end table
11313
11314 @geindex -gnatwG (gcc)
11315
11316
11317 @table @asis
11318
11319 @item @code{-gnatwG}
11320
11321 `Suppress warnings on unrecognized pragmas.'
11322
11323 This switch suppresses warnings for unrecognized pragmas.
11324 @end table
11325
11326 @geindex -gnatw.g (gcc)
11327
11328
11329 @table @asis
11330
11331 @item @code{-gnatw.g}
11332
11333 `Warnings used for GNAT sources.'
11334
11335 This switch sets the warning categories that are used by the standard
11336 GNAT style. Currently this is equivalent to
11337 @code{-gnatwAao.q.s.CI.V.X.Z}
11338 but more warnings may be added in the future without advanced notice.
11339 @end table
11340
11341 @geindex -gnatwh (gcc)
11342
11343
11344 @table @asis
11345
11346 @item @code{-gnatwh}
11347
11348 `Activate warnings on hiding.'
11349
11350 @geindex Hiding of Declarations
11351
11352 This switch activates warnings on hiding declarations that are considered
11353 potentially confusing. Not all cases of hiding cause warnings; for example an
11354 overriding declaration hides an implicit declaration, which is just normal
11355 code. The default is that warnings on hiding are not generated.
11356 @end table
11357
11358 @geindex -gnatwH (gcc)
11359
11360
11361 @table @asis
11362
11363 @item @code{-gnatwH}
11364
11365 `Suppress warnings on hiding.'
11366
11367 This switch suppresses warnings on hiding declarations.
11368 @end table
11369
11370 @geindex -gnatw.h (gcc)
11371
11372
11373 @table @asis
11374
11375 @item @code{-gnatw.h}
11376
11377 `Activate warnings on holes/gaps in records.'
11378
11379 @geindex Record Representation (gaps)
11380
11381 This switch activates warnings on component clauses in record
11382 representation clauses that leave holes (gaps) in the record layout.
11383 If a record representation clause does not specify a location for
11384 every component of the record type, then the warnings generated (or not
11385 generated) are unspecified. For example, there may be gaps for which
11386 either no warning is generated or a warning is generated that
11387 incorrectly describes the location of the gap. This undesirable situation
11388 can sometimes be avoided by adding (and specifying the location for) unused
11389 fill fields.
11390 @end table
11391
11392 @geindex -gnatw.H (gcc)
11393
11394
11395 @table @asis
11396
11397 @item @code{-gnatw.H}
11398
11399 `Suppress warnings on holes/gaps in records.'
11400
11401 This switch suppresses warnings on component clauses in record
11402 representation clauses that leave holes (haps) in the record layout.
11403 @end table
11404
11405 @geindex -gnatwi (gcc)
11406
11407
11408 @table @asis
11409
11410 @item @code{-gnatwi}
11411
11412 `Activate warnings on implementation units.'
11413
11414 This switch activates warnings for a `with' of an internal GNAT
11415 implementation unit, defined as any unit from the @code{Ada},
11416 @code{Interfaces}, @code{GNAT},
11417 or @code{System}
11418 hierarchies that is not
11419 documented in either the Ada Reference Manual or the GNAT
11420 Programmer’s Reference Manual. Such units are intended only
11421 for internal implementation purposes and should not be `with'ed
11422 by user programs. The default is that such warnings are generated
11423 @end table
11424
11425 @geindex -gnatwI (gcc)
11426
11427
11428 @table @asis
11429
11430 @item @code{-gnatwI}
11431
11432 `Disable warnings on implementation units.'
11433
11434 This switch disables warnings for a `with' of an internal GNAT
11435 implementation unit.
11436 @end table
11437
11438 @geindex -gnatw.i (gcc)
11439
11440
11441 @table @asis
11442
11443 @item @code{-gnatw.i}
11444
11445 `Activate warnings on overlapping actuals.'
11446
11447 This switch enables a warning on statically detectable overlapping actuals in
11448 a subprogram call, when one of the actuals is an in-out parameter, and the
11449 types of the actuals are not by-copy types. This warning is off by default.
11450 @end table
11451
11452 @geindex -gnatw.I (gcc)
11453
11454
11455 @table @asis
11456
11457 @item @code{-gnatw.I}
11458
11459 `Disable warnings on overlapping actuals.'
11460
11461 This switch disables warnings on overlapping actuals in a call.
11462 @end table
11463
11464 @geindex -gnatwj (gcc)
11465
11466
11467 @table @asis
11468
11469 @item @code{-gnatwj}
11470
11471 `Activate warnings on obsolescent features (Annex J).'
11472
11473 @geindex Features
11474 @geindex obsolescent
11475
11476 @geindex Obsolescent features
11477
11478 If this warning option is activated, then warnings are generated for
11479 calls to subprograms marked with @code{pragma Obsolescent} and
11480 for use of features in Annex J of the Ada Reference Manual. In the
11481 case of Annex J, not all features are flagged. In particular, uses of package
11482 @code{ASCII} are not flagged, since these are very common and
11483 would generate many annoying positive warnings. The default is that
11484 such warnings are not generated.
11485
11486 In addition to the above cases, warnings are also generated for
11487 GNAT features that have been provided in past versions but which
11488 have been superseded (typically by features in the new Ada standard).
11489 For example, @code{pragma Ravenscar} will be flagged since its
11490 function is replaced by @code{pragma Profile(Ravenscar)}, and
11491 @code{pragma Interface_Name} will be flagged since its function
11492 is replaced by @code{pragma Import}.
11493
11494 Note that this warning option functions differently from the
11495 restriction @code{No_Obsolescent_Features} in two respects.
11496 First, the restriction applies only to annex J features.
11497 Second, the restriction does flag uses of package @code{ASCII}.
11498 @end table
11499
11500 @geindex -gnatwJ (gcc)
11501
11502
11503 @table @asis
11504
11505 @item @code{-gnatwJ}
11506
11507 `Suppress warnings on obsolescent features (Annex J).'
11508
11509 This switch disables warnings on use of obsolescent features.
11510 @end table
11511
11512 @geindex -gnatw.j (gcc)
11513
11514
11515 @table @asis
11516
11517 @item @code{-gnatw.j}
11518
11519 `Activate warnings on late declarations of tagged type primitives.'
11520
11521 This switch activates warnings on visible primitives added to a
11522 tagged type after deriving a private extension from it.
11523 @end table
11524
11525 @geindex -gnatw.J (gcc)
11526
11527
11528 @table @asis
11529
11530 @item @code{-gnatw.J}
11531
11532 `Suppress warnings on late declarations of tagged type primitives.'
11533
11534 This switch suppresses warnings on visible primitives added to a
11535 tagged type after deriving a private extension from it.
11536 @end table
11537
11538 @geindex -gnatwk (gcc)
11539
11540
11541 @table @asis
11542
11543 @item @code{-gnatwk}
11544
11545 `Activate warnings on variables that could be constants.'
11546
11547 This switch activates warnings for variables that are initialized but
11548 never modified, and then could be declared constants. The default is that
11549 such warnings are not given.
11550 @end table
11551
11552 @geindex -gnatwK (gcc)
11553
11554
11555 @table @asis
11556
11557 @item @code{-gnatwK}
11558
11559 `Suppress warnings on variables that could be constants.'
11560
11561 This switch disables warnings on variables that could be declared constants.
11562 @end table
11563
11564 @geindex -gnatw.k (gcc)
11565
11566
11567 @table @asis
11568
11569 @item @code{-gnatw.k}
11570
11571 `Activate warnings on redefinition of names in standard.'
11572
11573 This switch activates warnings for declarations that declare a name that
11574 is defined in package Standard. Such declarations can be confusing,
11575 especially since the names in package Standard continue to be directly
11576 visible, meaning that use visibility on such redeclared names does not
11577 work as expected. Names of discriminants and components in records are
11578 not included in this check.
11579 @end table
11580
11581 @geindex -gnatwK (gcc)
11582
11583
11584 @table @asis
11585
11586 @item @code{-gnatw.K}
11587
11588 `Suppress warnings on redefinition of names in standard.'
11589
11590 This switch disables warnings for declarations that declare a name that
11591 is defined in package Standard.
11592 @end table
11593
11594 @geindex -gnatwl (gcc)
11595
11596
11597 @table @asis
11598
11599 @item @code{-gnatwl}
11600
11601 `Activate warnings for elaboration pragmas.'
11602
11603 @geindex Elaboration
11604 @geindex warnings
11605
11606 This switch activates warnings for possible elaboration problems,
11607 including suspicious use
11608 of @code{Elaborate} pragmas, when using the static elaboration model, and
11609 possible situations that may raise @code{Program_Error} when using the
11610 dynamic elaboration model.
11611 See the section in this guide on elaboration checking for further details.
11612 The default is that such warnings
11613 are not generated.
11614 @end table
11615
11616 @geindex -gnatwL (gcc)
11617
11618
11619 @table @asis
11620
11621 @item @code{-gnatwL}
11622
11623 `Suppress warnings for elaboration pragmas.'
11624
11625 This switch suppresses warnings for possible elaboration problems.
11626 @end table
11627
11628 @geindex -gnatw.l (gcc)
11629
11630
11631 @table @asis
11632
11633 @item @code{-gnatw.l}
11634
11635 `List inherited aspects.'
11636
11637 This switch causes the compiler to list inherited invariants,
11638 preconditions, and postconditions from Type_Invariant’Class, Invariant’Class,
11639 Pre’Class, and Post’Class aspects. Also list inherited subtype predicates.
11640 @end table
11641
11642 @geindex -gnatw.L (gcc)
11643
11644
11645 @table @asis
11646
11647 @item @code{-gnatw.L}
11648
11649 `Suppress listing of inherited aspects.'
11650
11651 This switch suppresses listing of inherited aspects.
11652 @end table
11653
11654 @geindex -gnatwm (gcc)
11655
11656
11657 @table @asis
11658
11659 @item @code{-gnatwm}
11660
11661 `Activate warnings on modified but unreferenced variables.'
11662
11663 This switch activates warnings for variables that are assigned (using
11664 an initialization value or with one or more assignment statements) but
11665 whose value is never read. The warning is suppressed for volatile
11666 variables and also for variables that are renamings of other variables
11667 or for which an address clause is given.
11668 The default is that these warnings are not given.
11669 @end table
11670
11671 @geindex -gnatwM (gcc)
11672
11673
11674 @table @asis
11675
11676 @item @code{-gnatwM}
11677
11678 `Disable warnings on modified but unreferenced variables.'
11679
11680 This switch disables warnings for variables that are assigned or
11681 initialized, but never read.
11682 @end table
11683
11684 @geindex -gnatw.m (gcc)
11685
11686
11687 @table @asis
11688
11689 @item @code{-gnatw.m}
11690
11691 `Activate warnings on suspicious modulus values.'
11692
11693 This switch activates warnings for modulus values that seem suspicious.
11694 The cases caught are where the size is the same as the modulus (e.g.
11695 a modulus of 7 with a size of 7 bits), and modulus values of 32 or 64
11696 with no size clause. The guess in both cases is that 2**x was intended
11697 rather than x. In addition expressions of the form 2*x for small x
11698 generate a warning (the almost certainly accurate guess being that
11699 2**x was intended). This switch also activates warnings for negative
11700 literal values of a modular type, which are interpreted as large positive
11701 integers after wrap-around. The default is that these warnings are given.
11702 @end table
11703
11704 @geindex -gnatw.M (gcc)
11705
11706
11707 @table @asis
11708
11709 @item @code{-gnatw.M}
11710
11711 `Disable warnings on suspicious modulus values.'
11712
11713 This switch disables warnings for suspicious modulus values.
11714 @end table
11715
11716 @geindex -gnatwn (gcc)
11717
11718
11719 @table @asis
11720
11721 @item @code{-gnatwn}
11722
11723 `Set normal warnings mode.'
11724
11725 This switch sets normal warning mode, in which enabled warnings are
11726 issued and treated as warnings rather than errors. This is the default
11727 mode. the switch @code{-gnatwn} can be used to cancel the effect of
11728 an explicit @code{-gnatws} or
11729 @code{-gnatwe}. It also cancels the effect of the
11730 implicit @code{-gnatwe} that is activated by the
11731 use of @code{-gnatg}.
11732 @end table
11733
11734 @geindex -gnatw.n (gcc)
11735
11736 @geindex Atomic Synchronization
11737 @geindex warnings
11738
11739
11740 @table @asis
11741
11742 @item @code{-gnatw.n}
11743
11744 `Activate warnings on atomic synchronization.'
11745
11746 This switch actives warnings when an access to an atomic variable
11747 requires the generation of atomic synchronization code. These
11748 warnings are off by default.
11749 @end table
11750
11751 @geindex -gnatw.N (gcc)
11752
11753
11754 @table @asis
11755
11756 @item @code{-gnatw.N}
11757
11758 `Suppress warnings on atomic synchronization.'
11759
11760 @geindex Atomic Synchronization
11761 @geindex warnings
11762
11763 This switch suppresses warnings when an access to an atomic variable
11764 requires the generation of atomic synchronization code.
11765 @end table
11766
11767 @geindex -gnatwo (gcc)
11768
11769 @geindex Address Clauses
11770 @geindex warnings
11771
11772
11773 @table @asis
11774
11775 @item @code{-gnatwo}
11776
11777 `Activate warnings on address clause overlays.'
11778
11779 This switch activates warnings for possibly unintended initialization
11780 effects of defining address clauses that cause one variable to overlap
11781 another. The default is that such warnings are generated.
11782 @end table
11783
11784 @geindex -gnatwO (gcc)
11785
11786
11787 @table @asis
11788
11789 @item @code{-gnatwO}
11790
11791 `Suppress warnings on address clause overlays.'
11792
11793 This switch suppresses warnings on possibly unintended initialization
11794 effects of defining address clauses that cause one variable to overlap
11795 another.
11796 @end table
11797
11798 @geindex -gnatw.o (gcc)
11799
11800
11801 @table @asis
11802
11803 @item @code{-gnatw.o}
11804
11805 `Activate warnings on modified but unreferenced out parameters.'
11806
11807 This switch activates warnings for variables that are modified by using
11808 them as actuals for a call to a procedure with an out mode formal, where
11809 the resulting assigned value is never read. It is applicable in the case
11810 where there is more than one out mode formal. If there is only one out
11811 mode formal, the warning is issued by default (controlled by -gnatwu).
11812 The warning is suppressed for volatile
11813 variables and also for variables that are renamings of other variables
11814 or for which an address clause is given.
11815 The default is that these warnings are not given.
11816 @end table
11817
11818 @geindex -gnatw.O (gcc)
11819
11820
11821 @table @asis
11822
11823 @item @code{-gnatw.O}
11824
11825 `Disable warnings on modified but unreferenced out parameters.'
11826
11827 This switch suppresses warnings for variables that are modified by using
11828 them as actuals for a call to a procedure with an out mode formal, where
11829 the resulting assigned value is never read.
11830 @end table
11831
11832 @geindex -gnatwp (gcc)
11833
11834 @geindex Inlining
11835 @geindex warnings
11836
11837
11838 @table @asis
11839
11840 @item @code{-gnatwp}
11841
11842 `Activate warnings on ineffective pragma Inlines.'
11843
11844 This switch activates warnings for failure of front end inlining
11845 (activated by @code{-gnatN}) to inline a particular call. There are
11846 many reasons for not being able to inline a call, including most
11847 commonly that the call is too complex to inline. The default is
11848 that such warnings are not given.
11849 Warnings on ineffective inlining by the gcc back-end can be activated
11850 separately, using the gcc switch -Winline.
11851 @end table
11852
11853 @geindex -gnatwP (gcc)
11854
11855
11856 @table @asis
11857
11858 @item @code{-gnatwP}
11859
11860 `Suppress warnings on ineffective pragma Inlines.'
11861
11862 This switch suppresses warnings on ineffective pragma Inlines. If the
11863 inlining mechanism cannot inline a call, it will simply ignore the
11864 request silently.
11865 @end table
11866
11867 @geindex -gnatw.p (gcc)
11868
11869 @geindex Parameter order
11870 @geindex warnings
11871
11872
11873 @table @asis
11874
11875 @item @code{-gnatw.p}
11876
11877 `Activate warnings on parameter ordering.'
11878
11879 This switch activates warnings for cases of suspicious parameter
11880 ordering when the list of arguments are all simple identifiers that
11881 match the names of the formals, but are in a different order. The
11882 warning is suppressed if any use of named parameter notation is used,
11883 so this is the appropriate way to suppress a false positive (and
11884 serves to emphasize that the “misordering” is deliberate). The
11885 default is that such warnings are not given.
11886 @end table
11887
11888 @geindex -gnatw.P (gcc)
11889
11890
11891 @table @asis
11892
11893 @item @code{-gnatw.P}
11894
11895 `Suppress warnings on parameter ordering.'
11896
11897 This switch suppresses warnings on cases of suspicious parameter
11898 ordering.
11899 @end table
11900
11901 @geindex -gnatw_p (gcc)
11902
11903
11904 @table @asis
11905
11906 @item @code{-gnatw_p}
11907
11908 `Activate warnings for pedantic checks.'
11909
11910 This switch activates warnings for the failure of certain pedantic checks.
11911 The only case currently supported is a check that the subtype_marks given
11912 for corresponding formal parameter and function results in a subprogram
11913 declaration and its body denote the same subtype declaration. The default
11914 is that such warnings are not given.
11915 @end table
11916
11917 @geindex -gnatw_P (gcc)
11918
11919
11920 @table @asis
11921
11922 @item @code{-gnatw_P}
11923
11924 `Suppress warnings for pedantic checks.'
11925
11926 This switch suppresses warnings on violations of pedantic checks.
11927 @end table
11928
11929 @geindex -gnatwq (gcc)
11930
11931 @geindex Parentheses
11932 @geindex warnings
11933
11934
11935 @table @asis
11936
11937 @item @code{-gnatwq}
11938
11939 `Activate warnings on questionable missing parentheses.'
11940
11941 This switch activates warnings for cases where parentheses are not used and
11942 the result is potential ambiguity from a readers point of view. For example
11943 (not a > b) when a and b are modular means ((not a) > b) and very likely the
11944 programmer intended (not (a > b)). Similarly (-x mod 5) means (-(x mod 5)) and
11945 quite likely ((-x) mod 5) was intended. In such situations it seems best to
11946 follow the rule of always parenthesizing to make the association clear, and
11947 this warning switch warns if such parentheses are not present. The default
11948 is that these warnings are given.
11949 @end table
11950
11951 @geindex -gnatwQ (gcc)
11952
11953
11954 @table @asis
11955
11956 @item @code{-gnatwQ}
11957
11958 `Suppress warnings on questionable missing parentheses.'
11959
11960 This switch suppresses warnings for cases where the association is not
11961 clear and the use of parentheses is preferred.
11962 @end table
11963
11964 @geindex -gnatw.q (gcc)
11965
11966 @geindex Layout
11967 @geindex warnings
11968
11969
11970 @table @asis
11971
11972 @item @code{-gnatw.q}
11973
11974 `Activate warnings on questionable layout of record types.'
11975
11976 This switch activates warnings for cases where the default layout of
11977 a record type, that is to say the layout of its components in textual
11978 order of the source code, would very likely cause inefficiencies in
11979 the code generated by the compiler, both in terms of space and speed
11980 during execution. One warning is issued for each problematic component
11981 without representation clause in the nonvariant part and then in each
11982 variant recursively, if any.
11983
11984 The purpose of these warnings is neither to prescribe an optimal layout
11985 nor to force the use of representation clauses, but rather to get rid of
11986 the most blatant inefficiencies in the layout. Therefore, the default
11987 layout is matched against the following synthetic ordered layout and
11988 the deviations are flagged on a component-by-component basis:
11989
11990
11991 @itemize *
11992
11993 @item
11994 first all components or groups of components whose length is fixed
11995 and a multiple of the storage unit,
11996
11997 @item
11998 then the remaining components whose length is fixed and not a multiple
11999 of the storage unit,
12000
12001 @item
12002 then the remaining components whose length doesn’t depend on discriminants
12003 (that is to say, with variable but uniform length for all objects),
12004
12005 @item
12006 then all components whose length depends on discriminants,
12007
12008 @item
12009 finally the variant part (if any),
12010 @end itemize
12011
12012 for the nonvariant part and for each variant recursively, if any.
12013
12014 The exact wording of the warning depends on whether the compiler is allowed
12015 to reorder the components in the record type or precluded from doing it by
12016 means of pragma @code{No_Component_Reordering}.
12017
12018 The default is that these warnings are not given.
12019 @end table
12020
12021 @geindex -gnatw.Q (gcc)
12022
12023
12024 @table @asis
12025
12026 @item @code{-gnatw.Q}
12027
12028 `Suppress warnings on questionable layout of record types.'
12029
12030 This switch suppresses warnings for cases where the default layout of
12031 a record type would very likely cause inefficiencies.
12032 @end table
12033
12034 @geindex -gnatw_q (gcc)
12035
12036
12037 @table @asis
12038
12039 @item @code{-gnatw_q}
12040
12041 `Activate warnings for ignored equality operators.'
12042
12043 This switch activates warnings for a user-defined “=” function that does
12044 not compose (i.e. is ignored for a predefined “=” for a composite type
12045 containing a component whose type has the user-defined “=” as
12046 primitive). Note that the user-defined “=” must be a primitive operator
12047 in order to trigger the warning.
12048 See RM-4.5.2(14/3-15/5, 21, 24/3, 32.1/1)
12049 for the exact Ada rules on composability of “=”.
12050
12051 The default is that these warnings are not given.
12052 @end table
12053
12054 @geindex -gnatw_Q (gcc)
12055
12056
12057 @table @asis
12058
12059 @item @code{-gnatw_Q}
12060
12061 `Suppress warnings for ignored equality operators.'
12062 @end table
12063
12064 @geindex -gnatwr (gcc)
12065
12066
12067 @table @asis
12068
12069 @item @code{-gnatwr}
12070
12071 `Activate warnings on redundant constructs.'
12072
12073 This switch activates warnings for redundant constructs. The following
12074 is the current list of constructs regarded as redundant:
12075
12076
12077 @itemize *
12078
12079 @item
12080 Assignment of an item to itself.
12081
12082 @item
12083 Type conversion that converts an expression to its own type.
12084
12085 @item
12086 Use of the attribute @code{Base} where @code{typ'Base} is the same
12087 as @code{typ}.
12088
12089 @item
12090 Use of pragma @code{Pack} when all components are placed by a record
12091 representation clause.
12092
12093 @item
12094 Exception handler containing only a reraise statement (raise with no
12095 operand) which has no effect.
12096
12097 @item
12098 Use of the operator abs on an operand that is known at compile time
12099 to be non-negative
12100
12101 @item
12102 Comparison of an object or (unary or binary) operation of boolean type to
12103 an explicit True value.
12104
12105 @item
12106 Import of parent package.
12107 @end itemize
12108
12109 The default is that warnings for redundant constructs are not given.
12110 @end table
12111
12112 @geindex -gnatwR (gcc)
12113
12114
12115 @table @asis
12116
12117 @item @code{-gnatwR}
12118
12119 `Suppress warnings on redundant constructs.'
12120
12121 This switch suppresses warnings for redundant constructs.
12122 @end table
12123
12124 @geindex -gnatw.r (gcc)
12125
12126
12127 @table @asis
12128
12129 @item @code{-gnatw.r}
12130
12131 `Activate warnings for object renaming function.'
12132
12133 This switch activates warnings for an object renaming that renames a
12134 function call, which is equivalent to a constant declaration (as
12135 opposed to renaming the function itself). The default is that these
12136 warnings are given.
12137 @end table
12138
12139 @geindex -gnatw.R (gcc)
12140
12141
12142 @table @asis
12143
12144 @item @code{-gnatw.R}
12145
12146 `Suppress warnings for object renaming function.'
12147
12148 This switch suppresses warnings for object renaming function.
12149 @end table
12150
12151 @geindex -gnatw_r (gcc)
12152
12153
12154 @table @asis
12155
12156 @item @code{-gnatw_r}
12157
12158 `Activate warnings for out-of-order record representation clauses.'
12159
12160 This switch activates warnings for record representation clauses,
12161 if the order of component declarations, component clauses,
12162 and bit-level layout do not all agree.
12163 The default is that these warnings are not given.
12164 @end table
12165
12166 @geindex -gnatw_R (gcc)
12167
12168
12169 @table @asis
12170
12171 @item @code{-gnatw_R}
12172
12173 `Suppress warnings for out-of-order record representation clauses.'
12174 @end table
12175
12176 @geindex -gnatws (gcc)
12177
12178
12179 @table @asis
12180
12181 @item @code{-gnatws}
12182
12183 `Suppress all warnings.'
12184
12185 This switch completely suppresses the
12186 output of all warning messages from the GNAT front end, including
12187 both warnings that can be controlled by switches described in this
12188 section, and those that are normally given unconditionally. The
12189 effect of this suppress action can only be cancelled by a subsequent
12190 use of the switch @code{-gnatwn}.
12191
12192 Note that switch @code{-gnatws} does not suppress
12193 warnings from the @code{gcc} back end.
12194 To suppress these back end warnings as well, use the switch @code{-w}
12195 in addition to @code{-gnatws}. Also this switch has no effect on the
12196 handling of style check messages.
12197 @end table
12198
12199 @geindex -gnatw.s (gcc)
12200
12201 @geindex Record Representation (component sizes)
12202
12203
12204 @table @asis
12205
12206 @item @code{-gnatw.s}
12207
12208 `Activate warnings on overridden size clauses.'
12209
12210 This switch activates warnings on component clauses in record
12211 representation clauses where the length given overrides that
12212 specified by an explicit size clause for the component type. A
12213 warning is similarly given in the array case if a specified
12214 component size overrides an explicit size clause for the array
12215 component type.
12216 @end table
12217
12218 @geindex -gnatw.S (gcc)
12219
12220
12221 @table @asis
12222
12223 @item @code{-gnatw.S}
12224
12225 `Suppress warnings on overridden size clauses.'
12226
12227 This switch suppresses warnings on component clauses in record
12228 representation clauses that override size clauses, and similar
12229 warnings when an array component size overrides a size clause.
12230 @end table
12231
12232 @geindex -gnatw_s (gcc)
12233
12234 @geindex Warnings
12235
12236
12237 @table @asis
12238
12239 @item @code{-gnatw_s}
12240
12241 `Activate warnings on ineffective predicate tests.'
12242
12243 This switch activates warnings on Static_Predicate aspect
12244 specifications that test for values that do not belong to
12245 the parent subtype. Not all such ineffective tests are detected.
12246 @end table
12247
12248 @geindex -gnatw_S (gcc)
12249
12250
12251 @table @asis
12252
12253 @item @code{-gnatw_S}
12254
12255 `Suppress warnings on ineffective predicate tests.'
12256
12257 This switch suppresses warnings on Static_Predicate aspect
12258 specifications that test for values that do not belong to
12259 the parent subtype.
12260 @end table
12261
12262 @geindex -gnatwt (gcc)
12263
12264 @geindex Deactivated code
12265 @geindex warnings
12266
12267 @geindex Deleted code
12268 @geindex warnings
12269
12270
12271 @table @asis
12272
12273 @item @code{-gnatwt}
12274
12275 `Activate warnings for tracking of deleted conditional code.'
12276
12277 This switch activates warnings for tracking of code in conditionals (IF and
12278 CASE statements) that is detected to be dead code which cannot be executed, and
12279 which is removed by the front end. This warning is off by default. This may be
12280 useful for detecting deactivated code in certified applications.
12281 @end table
12282
12283 @geindex -gnatwT (gcc)
12284
12285
12286 @table @asis
12287
12288 @item @code{-gnatwT}
12289
12290 `Suppress warnings for tracking of deleted conditional code.'
12291
12292 This switch suppresses warnings for tracking of deleted conditional code.
12293 @end table
12294
12295 @geindex -gnatw.t (gcc)
12296
12297
12298 @table @asis
12299
12300 @item @code{-gnatw.t}
12301
12302 `Activate warnings on suspicious contracts.'
12303
12304 This switch activates warnings on suspicious contracts. This includes
12305 warnings on suspicious postconditions (whether a pragma @code{Postcondition} or a
12306 @code{Post} aspect in Ada 2012) and suspicious contract cases (pragma or aspect
12307 @code{Contract_Cases}). A function postcondition or contract case is suspicious
12308 when no postcondition or contract case for this function mentions the result
12309 of the function. A procedure postcondition or contract case is suspicious
12310 when it only refers to the pre-state of the procedure, because in that case
12311 it should rather be expressed as a precondition. This switch also controls
12312 warnings on suspicious cases of expressions typically found in contracts like
12313 quantified expressions and uses of Update attribute. The default is that such
12314 warnings are generated.
12315 @end table
12316
12317 @geindex -gnatw.T (gcc)
12318
12319
12320 @table @asis
12321
12322 @item @code{-gnatw.T}
12323
12324 `Suppress warnings on suspicious contracts.'
12325
12326 This switch suppresses warnings on suspicious contracts.
12327 @end table
12328
12329 @geindex -gnatwu (gcc)
12330
12331
12332 @table @asis
12333
12334 @item @code{-gnatwu}
12335
12336 `Activate warnings on unused entities.'
12337
12338 This switch activates warnings to be generated for entities that
12339 are declared but not referenced, and for units that are `with'ed
12340 and not
12341 referenced. In the case of packages, a warning is also generated if
12342 no entities in the package are referenced. This means that if a with’ed
12343 package is referenced but the only references are in @code{use}
12344 clauses or @code{renames}
12345 declarations, a warning is still generated. A warning is also generated
12346 for a generic package that is `with'ed but never instantiated.
12347 In the case where a package or subprogram body is compiled, and there
12348 is a `with' on the corresponding spec
12349 that is only referenced in the body,
12350 a warning is also generated, noting that the
12351 `with' can be moved to the body. The default is that
12352 such warnings are not generated.
12353 This switch also activates warnings on unreferenced formals
12354 (it includes the effect of @code{-gnatwf}).
12355 @end table
12356
12357 @geindex -gnatwU (gcc)
12358
12359
12360 @table @asis
12361
12362 @item @code{-gnatwU}
12363
12364 `Suppress warnings on unused entities.'
12365
12366 This switch suppresses warnings for unused entities and packages.
12367 It also turns off warnings on unreferenced formals (and thus includes
12368 the effect of @code{-gnatwF}).
12369 @end table
12370
12371 @geindex -gnatw.u (gcc)
12372
12373
12374 @table @asis
12375
12376 @item @code{-gnatw.u}
12377
12378 `Activate warnings on unordered enumeration types.'
12379
12380 This switch causes enumeration types to be considered as conceptually
12381 unordered, unless an explicit pragma @code{Ordered} is given for the type.
12382 The effect is to generate warnings in clients that use explicit comparisons
12383 or subranges, since these constructs both treat objects of the type as
12384 ordered. (A `client' is defined as a unit that is other than the unit in
12385 which the type is declared, or its body or subunits.) Please refer to
12386 the description of pragma @code{Ordered} in the
12387 @cite{GNAT Reference Manual} for further details.
12388 The default is that such warnings are not generated.
12389 @end table
12390
12391 @geindex -gnatw.U (gcc)
12392
12393
12394 @table @asis
12395
12396 @item @code{-gnatw.U}
12397
12398 `Deactivate warnings on unordered enumeration types.'
12399
12400 This switch causes all enumeration types to be considered as ordered, so
12401 that no warnings are given for comparisons or subranges for any type.
12402 @end table
12403
12404 @geindex -gnatwv (gcc)
12405
12406 @geindex Unassigned variable warnings
12407
12408
12409 @table @asis
12410
12411 @item @code{-gnatwv}
12412
12413 `Activate warnings on unassigned variables.'
12414
12415 This switch activates warnings for access to variables which
12416 may not be properly initialized. The default is that
12417 such warnings are generated. This switch will also be emitted when
12418 initializing an array or record object via the following aggregate:
12419
12420 @example
12421 Array_Or_Record : XXX := (others => <>);
12422 @end example
12423
12424 unless the relevant type fully initializes all components.
12425 @end table
12426
12427 @geindex -gnatwV (gcc)
12428
12429
12430 @table @asis
12431
12432 @item @code{-gnatwV}
12433
12434 `Suppress warnings on unassigned variables.'
12435
12436 This switch suppresses warnings for access to variables which
12437 may not be properly initialized.
12438 @end table
12439
12440 @geindex -gnatw.v (gcc)
12441
12442 @geindex bit order warnings
12443
12444
12445 @table @asis
12446
12447 @item @code{-gnatw.v}
12448
12449 `Activate info messages for non-default bit order.'
12450
12451 This switch activates messages (labeled “info”, they are not warnings,
12452 just informational messages) about the effects of non-default bit-order
12453 on records to which a component clause is applied. The effect of specifying
12454 non-default bit ordering is a bit subtle (and changed with Ada 2005), so
12455 these messages, which are given by default, are useful in understanding the
12456 exact consequences of using this feature.
12457 @end table
12458
12459 @geindex -gnatw.V (gcc)
12460
12461
12462 @table @asis
12463
12464 @item @code{-gnatw.V}
12465
12466 `Suppress info messages for non-default bit order.'
12467
12468 This switch suppresses information messages for the effects of specifying
12469 non-default bit order on record components with component clauses.
12470 @end table
12471
12472 @geindex -gnatww (gcc)
12473
12474 @geindex String indexing warnings
12475
12476
12477 @table @asis
12478
12479 @item @code{-gnatww}
12480
12481 `Activate warnings on wrong low bound assumption.'
12482
12483 This switch activates warnings for indexing an unconstrained string parameter
12484 with a literal or S’Length. This is a case where the code is assuming that the
12485 low bound is one, which is in general not true (for example when a slice is
12486 passed). The default is that such warnings are generated.
12487 @end table
12488
12489 @geindex -gnatwW (gcc)
12490
12491
12492 @table @asis
12493
12494 @item @code{-gnatwW}
12495
12496 `Suppress warnings on wrong low bound assumption.'
12497
12498 This switch suppresses warnings for indexing an unconstrained string parameter
12499 with a literal or S’Length. Note that this warning can also be suppressed
12500 in a particular case by adding an assertion that the lower bound is 1,
12501 as shown in the following example:
12502
12503 @example
12504 procedure K (S : String) is
12505 pragma Assert (S'First = 1);
12506 ...
12507 @end example
12508 @end table
12509
12510 @geindex -gnatw.w (gcc)
12511
12512 @geindex Warnings Off control
12513
12514
12515 @table @asis
12516
12517 @item @code{-gnatw.w}
12518
12519 `Activate warnings on Warnings Off pragmas.'
12520
12521 This switch activates warnings for use of @code{pragma Warnings (Off, entity)}
12522 where either the pragma is entirely useless (because it suppresses no
12523 warnings), or it could be replaced by @code{pragma Unreferenced} or
12524 @code{pragma Unmodified}.
12525 Also activates warnings for the case of
12526 Warnings (Off, String), where either there is no matching
12527 Warnings (On, String), or the Warnings (Off) did not suppress any warning.
12528 The default is that these warnings are not given.
12529 @end table
12530
12531 @geindex -gnatw.W (gcc)
12532
12533
12534 @table @asis
12535
12536 @item @code{-gnatw.W}
12537
12538 `Suppress warnings on unnecessary Warnings Off pragmas.'
12539
12540 This switch suppresses warnings for use of @code{pragma Warnings (Off, ...)}.
12541 @end table
12542
12543 @geindex -gnatwx (gcc)
12544
12545 @geindex Export/Import pragma warnings
12546
12547
12548 @table @asis
12549
12550 @item @code{-gnatwx}
12551
12552 `Activate warnings on Export/Import pragmas.'
12553
12554 This switch activates warnings on Export/Import pragmas when
12555 the compiler detects a possible conflict between the Ada and
12556 foreign language calling sequences. For example, the use of
12557 default parameters in a convention C procedure is dubious
12558 because the C compiler cannot supply the proper default, so
12559 a warning is issued. The default is that such warnings are
12560 generated.
12561 @end table
12562
12563 @geindex -gnatwX (gcc)
12564
12565
12566 @table @asis
12567
12568 @item @code{-gnatwX}
12569
12570 `Suppress warnings on Export/Import pragmas.'
12571
12572 This switch suppresses warnings on Export/Import pragmas.
12573 The sense of this is that you are telling the compiler that
12574 you know what you are doing in writing the pragma, and it
12575 should not complain at you.
12576 @end table
12577
12578 @geindex -gnatwm (gcc)
12579
12580
12581 @table @asis
12582
12583 @item @code{-gnatw.x}
12584
12585 `Activate warnings for No_Exception_Propagation mode.'
12586
12587 This switch activates warnings for exception usage when pragma Restrictions
12588 (No_Exception_Propagation) is in effect. Warnings are given for implicit or
12589 explicit exception raises which are not covered by a local handler, and for
12590 exception handlers which do not cover a local raise. The default is that
12591 these warnings are given for units that contain exception handlers.
12592
12593 @item @code{-gnatw.X}
12594
12595 `Disable warnings for No_Exception_Propagation mode.'
12596
12597 This switch disables warnings for exception usage when pragma Restrictions
12598 (No_Exception_Propagation) is in effect.
12599 @end table
12600
12601 @geindex -gnatwy (gcc)
12602
12603 @geindex Ada compatibility issues warnings
12604
12605
12606 @table @asis
12607
12608 @item @code{-gnatwy}
12609
12610 `Activate warnings for Ada compatibility issues.'
12611
12612 For the most part, newer versions of Ada are upwards compatible
12613 with older versions. For example, Ada 2005 programs will almost
12614 always work when compiled as Ada 2012.
12615 However there are some exceptions (for example the fact that
12616 @code{some} is now a reserved word in Ada 2012). This
12617 switch activates several warnings to help in identifying
12618 and correcting such incompatibilities. The default is that
12619 these warnings are generated. Note that at one point Ada 2005
12620 was called Ada 0Y, hence the choice of character.
12621 @end table
12622
12623 @geindex -gnatwY (gcc)
12624
12625 @geindex Ada compatibility issues warnings
12626
12627
12628 @table @asis
12629
12630 @item @code{-gnatwY}
12631
12632 `Disable warnings for Ada compatibility issues.'
12633
12634 This switch suppresses the warnings intended to help in identifying
12635 incompatibilities between Ada language versions.
12636 @end table
12637
12638 @geindex -gnatw.y (gcc)
12639
12640 @geindex Package spec needing body
12641
12642
12643 @table @asis
12644
12645 @item @code{-gnatw.y}
12646
12647 `Activate information messages for why package spec needs body.'
12648
12649 There are a number of cases in which a package spec needs a body.
12650 For example, the use of pragma Elaborate_Body, or the declaration
12651 of a procedure specification requiring a completion. This switch
12652 causes information messages to be output showing why a package
12653 specification requires a body. This can be useful in the case of
12654 a large package specification which is unexpectedly requiring a
12655 body. The default is that such information messages are not output.
12656 @end table
12657
12658 @geindex -gnatw.Y (gcc)
12659
12660 @geindex No information messages for why package spec needs body
12661
12662
12663 @table @asis
12664
12665 @item @code{-gnatw.Y}
12666
12667 `Disable information messages for why package spec needs body.'
12668
12669 This switch suppresses the output of information messages showing why
12670 a package specification needs a body.
12671 @end table
12672
12673 @geindex -gnatwz (gcc)
12674
12675 @geindex Unchecked_Conversion warnings
12676
12677
12678 @table @asis
12679
12680 @item @code{-gnatwz}
12681
12682 `Activate warnings on unchecked conversions.'
12683
12684 This switch activates warnings for unchecked conversions
12685 where the types are known at compile time to have different
12686 sizes. The default is that such warnings are generated. Warnings are also
12687 generated for subprogram pointers with different conventions.
12688 @end table
12689
12690 @geindex -gnatwZ (gcc)
12691
12692
12693 @table @asis
12694
12695 @item @code{-gnatwZ}
12696
12697 `Suppress warnings on unchecked conversions.'
12698
12699 This switch suppresses warnings for unchecked conversions
12700 where the types are known at compile time to have different
12701 sizes or conventions.
12702 @end table
12703
12704 @geindex -gnatw.z (gcc)
12705
12706 @geindex Size/Alignment warnings
12707
12708
12709 @table @asis
12710
12711 @item @code{-gnatw.z}
12712
12713 `Activate warnings for size not a multiple of alignment.'
12714
12715 This switch activates warnings for cases of array and record types
12716 with specified @code{Size} and @code{Alignment} attributes where the
12717 size is not a multiple of the alignment, resulting in an object
12718 size that is greater than the specified size. The default
12719 is that such warnings are generated.
12720 @end table
12721
12722 @geindex -gnatw.Z (gcc)
12723
12724 @geindex Size/Alignment warnings
12725
12726
12727 @table @asis
12728
12729 @item @code{-gnatw.Z}
12730
12731 `Suppress warnings for size not a multiple of alignment.'
12732
12733 This switch suppresses warnings for cases of array and record types
12734 with specified @code{Size} and @code{Alignment} attributes where the
12735 size is not a multiple of the alignment, resulting in an object
12736 size that is greater than the specified size. The warning can also
12737 be suppressed by giving an explicit @code{Object_Size} value.
12738 @end table
12739
12740 @geindex -Wunused (gcc)
12741
12742
12743 @table @asis
12744
12745 @item @code{-Wunused}
12746
12747 The warnings controlled by the @code{-gnatw} switch are generated by
12748 the front end of the compiler. The GCC back end can provide
12749 additional warnings and they are controlled by the @code{-W} switch.
12750 For example, @code{-Wunused} activates back end
12751 warnings for entities that are declared but not referenced.
12752 @end table
12753
12754 @geindex -Wuninitialized (gcc)
12755
12756
12757 @table @asis
12758
12759 @item @code{-Wuninitialized}
12760
12761 Similarly, @code{-Wuninitialized} activates
12762 the back end warning for uninitialized variables. This switch must be
12763 used in conjunction with an optimization level greater than zero.
12764 @end table
12765
12766 @geindex -Wstack-usage (gcc)
12767
12768
12769 @table @asis
12770
12771 @item @code{-Wstack-usage=`len'}
12772
12773 Warn if the stack usage of a subprogram might be larger than @code{len} bytes.
12774 See @ref{e8,,Static Stack Usage Analysis} for details.
12775 @end table
12776
12777 @geindex -Wall (gcc)
12778
12779
12780 @table @asis
12781
12782 @item @code{-Wall}
12783
12784 This switch enables most warnings from the GCC back end.
12785 The code generator detects a number of warning situations that are missed
12786 by the GNAT front end, and this switch can be used to activate them.
12787 The use of this switch also sets the default front-end warning mode to
12788 @code{-gnatwa}, that is, most front-end warnings are activated as well.
12789 @end table
12790
12791 @geindex -w (gcc)
12792
12793
12794 @table @asis
12795
12796 @item @code{-w}
12797
12798 Conversely, this switch suppresses warnings from the GCC back end.
12799 The use of this switch also sets the default front-end warning mode to
12800 @code{-gnatws}, that is, front-end warnings are suppressed as well.
12801 @end table
12802
12803 @geindex -Werror (gcc)
12804
12805
12806 @table @asis
12807
12808 @item @code{-Werror}
12809
12810 This switch causes warnings from the GCC back end to be treated as
12811 errors. The warning string still appears, but the warning messages are
12812 counted as errors, and prevent the generation of an object file.
12813 The use of this switch also sets the default front-end warning mode to
12814 @code{-gnatwe}, that is, front-end warning messages and style check
12815 messages are treated as errors as well.
12816 @end table
12817
12818 A string of warning parameters can be used in the same parameter. For example:
12819
12820 @example
12821 -gnatwaGe
12822 @end example
12823
12824 will turn on all optional warnings except for unrecognized pragma warnings,
12825 and also specify that warnings should be treated as errors.
12826
12827 When no switch @code{-gnatw} is used, this is equivalent to:
12828
12829 @quotation
12830
12831
12832 @itemize *
12833
12834 @item
12835 @code{-gnatw.a}
12836
12837 @item
12838 @code{-gnatwB}
12839
12840 @item
12841 @code{-gnatw.b}
12842
12843 @item
12844 @code{-gnatwC}
12845
12846 @item
12847 @code{-gnatw.C}
12848
12849 @item
12850 @code{-gnatwD}
12851
12852 @item
12853 @code{-gnatw.D}
12854
12855 @item
12856 @code{-gnatwF}
12857
12858 @item
12859 @code{-gnatw.F}
12860
12861 @item
12862 @code{-gnatwg}
12863
12864 @item
12865 @code{-gnatwH}
12866
12867 @item
12868 @code{-gnatw.H}
12869
12870 @item
12871 @code{-gnatwi}
12872
12873 @item
12874 @code{-gnatwJ}
12875
12876 @item
12877 @code{-gnatw.J}
12878
12879 @item
12880 @code{-gnatwK}
12881
12882 @item
12883 @code{-gnatw.K}
12884
12885 @item
12886 @code{-gnatwL}
12887
12888 @item
12889 @code{-gnatw.L}
12890
12891 @item
12892 @code{-gnatwM}
12893
12894 @item
12895 @code{-gnatw.m}
12896
12897 @item
12898 @code{-gnatwn}
12899
12900 @item
12901 @code{-gnatw.N}
12902
12903 @item
12904 @code{-gnatwo}
12905
12906 @item
12907 @code{-gnatw.O}
12908
12909 @item
12910 @code{-gnatwP}
12911
12912 @item
12913 @code{-gnatw.P}
12914
12915 @item
12916 @code{-gnatwq}
12917
12918 @item
12919 @code{-gnatw.Q}
12920
12921 @item
12922 @code{-gnatwR}
12923
12924 @item
12925 @code{-gnatw.R}
12926
12927 @item
12928 @code{-gnatw.S}
12929
12930 @item
12931 @code{-gnatwT}
12932
12933 @item
12934 @code{-gnatw.t}
12935
12936 @item
12937 @code{-gnatwU}
12938
12939 @item
12940 @code{-gnatw.U}
12941
12942 @item
12943 @code{-gnatwv}
12944
12945 @item
12946 @code{-gnatw.v}
12947
12948 @item
12949 @code{-gnatww}
12950
12951 @item
12952 @code{-gnatw.W}
12953
12954 @item
12955 @code{-gnatwx}
12956
12957 @item
12958 @code{-gnatw.X}
12959
12960 @item
12961 @code{-gnatwy}
12962
12963 @item
12964 @code{-gnatw.Y}
12965
12966 @item
12967 @code{-gnatwz}
12968
12969 @item
12970 @code{-gnatw.z}
12971 @end itemize
12972 @end quotation
12973
12974 @node Debugging and Assertion Control,Validity Checking,Warning Message Control,Compiler Switches
12975 @anchor{gnat_ugn/building_executable_programs_with_gnat debugging-and-assertion-control}@anchor{f3}@anchor{gnat_ugn/building_executable_programs_with_gnat id16}@anchor{f4}
12976 @subsection Debugging and Assertion Control
12977
12978
12979 @geindex -gnata (gcc)
12980
12981
12982 @table @asis
12983
12984 @item @code{-gnata}
12985
12986 @geindex Assert
12987
12988 @geindex Debug
12989
12990 @geindex Assertions
12991
12992 @geindex Precondition
12993
12994 @geindex Postcondition
12995
12996 @geindex Type invariants
12997
12998 @geindex Subtype predicates
12999
13000 The @code{-gnata} option is equivalent to the following @code{Assertion_Policy} pragma:
13001
13002 @example
13003 pragma Assertion_Policy (Check);
13004 @end example
13005
13006 Which is a shorthand for:
13007
13008 @example
13009 pragma Assertion_Policy
13010 -- Ada RM assertion pragmas
13011 (Assert => Check,
13012 Static_Predicate => Check,
13013 Dynamic_Predicate => Check,
13014 Pre => Check,
13015 Pre'Class => Check,
13016 Post => Check,
13017 Post'Class => Check,
13018 Type_Invariant => Check,
13019 Type_Invariant'Class => Check,
13020 Default_Initial_Condition => Check,
13021 -- GNAT specific assertion pragmas
13022 Assert_And_Cut => Check,
13023 Assume => Check,
13024 Contract_Cases => Check,
13025 Debug => Check,
13026 Ghost => Check,
13027 Initial_Condition => Check,
13028 Loop_Invariant => Check,
13029 Loop_Variant => Check,
13030 Postcondition => Check,
13031 Precondition => Check,
13032 Predicate => Check,
13033 Refined_Post => Check,
13034 Subprogram_Variant => Check);
13035 @end example
13036
13037 The pragmas @code{Assert} and @code{Debug} normally have no effect and
13038 are ignored. This switch, where @code{a} stands for ‘assert’, causes
13039 pragmas @code{Assert} and @code{Debug} to be activated. This switch also
13040 causes preconditions, postconditions, subtype predicates, and
13041 type invariants to be activated.
13042
13043 The pragmas have the form:
13044
13045 @example
13046 pragma Assert (<Boolean-expression> [, <static-string-expression>])
13047 pragma Debug (<procedure call>)
13048 pragma Type_Invariant (<type-local-name>, <Boolean-expression>)
13049 pragma Predicate (<type-local-name>, <Boolean-expression>)
13050 pragma Precondition (<Boolean-expression>, <string-expression>)
13051 pragma Postcondition (<Boolean-expression>, <string-expression>)
13052 @end example
13053
13054 The aspects have the form:
13055
13056 @example
13057 with [Pre|Post|Type_Invariant|Dynamic_Predicate|Static_Predicate]
13058 => <Boolean-expression>;
13059 @end example
13060
13061 The @code{Assert} pragma causes @code{Boolean-expression} to be tested.
13062 If the result is @code{True}, the pragma has no effect (other than
13063 possible side effects from evaluating the expression). If the result is
13064 @code{False}, the exception @code{Assert_Failure} declared in the package
13065 @code{System.Assertions} is raised (passing @code{static-string-expression}, if
13066 present, as the message associated with the exception). If no string
13067 expression is given, the default is a string containing the file name and
13068 line number of the pragma.
13069
13070 The @code{Debug} pragma causes @code{procedure} to be called. Note that
13071 @code{pragma Debug} may appear within a declaration sequence, allowing
13072 debugging procedures to be called between declarations.
13073
13074 For the aspect specification, the @code{Boolean-expression} is evaluated.
13075 If the result is @code{True}, the aspect has no effect. If the result
13076 is @code{False}, the exception @code{Assert_Failure} is raised.
13077 @end table
13078
13079 @node Validity Checking,Style Checking,Debugging and Assertion Control,Compiler Switches
13080 @anchor{gnat_ugn/building_executable_programs_with_gnat id17}@anchor{f5}@anchor{gnat_ugn/building_executable_programs_with_gnat validity-checking}@anchor{e9}
13081 @subsection Validity Checking
13082
13083
13084 @geindex Validity Checking
13085
13086 The Ada Reference Manual defines the concept of invalid values (see
13087 RM 13.9.1). The primary source of invalid values is uninitialized
13088 variables. A scalar variable that is left uninitialized may contain
13089 an invalid value; the concept of invalid does not apply to access or
13090 composite types.
13091
13092 It is an error to read an invalid value, but the RM does not require
13093 run-time checks to detect such errors, except for some minimal
13094 checking to prevent erroneous execution (i.e. unpredictable
13095 behavior). This corresponds to the @code{-gnatVd} switch below,
13096 which is the default. For example, by default, if the expression of a
13097 case statement is invalid, it will raise Constraint_Error rather than
13098 causing a wild jump, and if an array index on the left-hand side of an
13099 assignment is invalid, it will raise Constraint_Error rather than
13100 overwriting an arbitrary memory location.
13101
13102 The @code{-gnatVa} may be used to enable additional validity checks,
13103 which are not required by the RM. These checks are often very
13104 expensive (which is why the RM does not require them). These checks
13105 are useful in tracking down uninitialized variables, but they are
13106 not usually recommended for production builds, and in particular
13107 we do not recommend using these extra validity checking options in
13108 combination with optimization, since this can confuse the optimizer.
13109 If performance is a consideration, leading to the need to optimize,
13110 then the validity checking options should not be used.
13111
13112 The other @code{-gnatV`x'} switches below allow finer-grained
13113 control; you can enable whichever validity checks you desire. However,
13114 for most debugging purposes, @code{-gnatVa} is sufficient, and the
13115 default @code{-gnatVd} (i.e. standard Ada behavior) is usually
13116 sufficient for non-debugging use.
13117
13118 The @code{-gnatB} switch tells the compiler to assume that all
13119 values are valid (that is, within their declared subtype range)
13120 except in the context of a use of the Valid attribute. This means
13121 the compiler can generate more efficient code, since the range
13122 of values is better known at compile time. However, an uninitialized
13123 variable can cause wild jumps and memory corruption in this mode.
13124
13125 The @code{-gnatV`x'} switch allows control over the validity
13126 checking mode as described below.
13127 The @code{x} argument is a string of letters that
13128 indicate validity checks that are performed or not performed in addition
13129 to the default checks required by Ada as described above.
13130
13131 @geindex -gnatVa (gcc)
13132
13133
13134 @table @asis
13135
13136 @item @code{-gnatVa}
13137
13138 `All validity checks.'
13139
13140 All validity checks are turned on.
13141 That is, @code{-gnatVa} is
13142 equivalent to @code{gnatVcdefimoprst}.
13143 @end table
13144
13145 @geindex -gnatVc (gcc)
13146
13147
13148 @table @asis
13149
13150 @item @code{-gnatVc}
13151
13152 `Validity checks for copies.'
13153
13154 The right-hand side of assignments, and the (explicit) initializing values
13155 of object declarations are validity checked.
13156 @end table
13157
13158 @geindex -gnatVd (gcc)
13159
13160
13161 @table @asis
13162
13163 @item @code{-gnatVd}
13164
13165 `Default (RM) validity checks.'
13166
13167 Some validity checks are required by Ada (see RM 13.9.1 (9-11)); these
13168 (and only these) validity checks are enabled by default.
13169 For case statements (and case expressions) that lack a “when others =>”
13170 choice, a check is made that the value of the selector expression
13171 belongs to its nominal subtype. If it does not, Constraint_Error is raised.
13172 For assignments to array components (and for indexed components in some
13173 other contexts), a check is made that each index expression belongs to the
13174 corresponding index subtype. If it does not, Constraint_Error is raised.
13175 Both these validity checks may be turned off using switch @code{-gnatVD}.
13176 They are turned on by default. If @code{-gnatVD} is specified, a subsequent
13177 switch @code{-gnatVd} will leave the checks turned on.
13178 Switch @code{-gnatVD} should be used only if you are sure that all such
13179 expressions have valid values. If you use this switch and invalid values
13180 are present, then the program is erroneous, and wild jumps or memory
13181 overwriting may occur.
13182 @end table
13183
13184 @geindex -gnatVe (gcc)
13185
13186
13187 @table @asis
13188
13189 @item @code{-gnatVe}
13190
13191 `Validity checks for scalar components.'
13192
13193 In the absence of this switch, assignments to scalar components of
13194 enclosing record or array objects are not validity checked, even if
13195 validity checks for assignments generally (@code{-gnatVc}) are turned on.
13196 Specifying this switch enables such checks.
13197 This switch has no effect if the @code{-gnatVc} switch is not specified.
13198 @end table
13199
13200 @geindex -gnatVf (gcc)
13201
13202
13203 @table @asis
13204
13205 @item @code{-gnatVf}
13206
13207 `Validity checks for floating-point values.'
13208
13209 Specifying this switch enables validity checking for floating-point
13210 values in the same contexts where validity checking is enabled for
13211 other scalar values.
13212 In the absence of this switch, validity checking is not performed for
13213 floating-point values. This takes precedence over other statements about
13214 performing validity checking for scalar objects in various scenarios.
13215 One way to look at it is that if this switch is not set, then whenever
13216 any of the other rules in this section use the word “scalar” they
13217 really mean “scalar and not floating-point”.
13218 If @code{-gnatVf} is specified, then validity checking also applies
13219 for floating-point values, and NaNs and infinities are considered invalid,
13220 as well as out-of-range values for constrained types. The exact contexts
13221 in which floating-point values are checked depends on the setting of other
13222 options. For example, @code{-gnatVif} or @code{-gnatVfi}
13223 (the order does not matter) specifies that floating-point parameters of mode
13224 @code{in} should be validity checked.
13225 @end table
13226
13227 @geindex -gnatVi (gcc)
13228
13229
13230 @table @asis
13231
13232 @item @code{-gnatVi}
13233
13234 `Validity checks for `@w{`}in`@w{`} mode parameters.'
13235
13236 Arguments for parameters of mode @code{in} are validity checked in function
13237 and procedure calls at the point of call.
13238 @end table
13239
13240 @geindex -gnatVm (gcc)
13241
13242
13243 @table @asis
13244
13245 @item @code{-gnatVm}
13246
13247 `Validity checks for `@w{`}in out`@w{`} mode parameters.'
13248
13249 Arguments for parameters of mode @code{in out} are validity checked in
13250 procedure calls at the point of call. The @code{'m'} here stands for
13251 modify, since this concerns parameters that can be modified by the call.
13252 Note that there is no specific option to test @code{out} parameters,
13253 but any reference within the subprogram will be tested in the usual
13254 manner, and if an invalid value is copied back, any reference to it
13255 will be subject to validity checking.
13256 @end table
13257
13258 @geindex -gnatVn (gcc)
13259
13260
13261 @table @asis
13262
13263 @item @code{-gnatVn}
13264
13265 `No validity checks.'
13266
13267 This switch turns off all validity checking, including the default checking
13268 for case statements and left hand side subscripts. Note that the use of
13269 the switch @code{-gnatp} suppresses all run-time checks, including
13270 validity checks, and thus implies @code{-gnatVn}. When this switch
13271 is used, it cancels any other @code{-gnatV} previously issued.
13272 @end table
13273
13274 @geindex -gnatVo (gcc)
13275
13276
13277 @table @asis
13278
13279 @item @code{-gnatVo}
13280
13281 `Validity checks for operator and attribute operands.'
13282
13283 Scalar arguments for predefined operators and for attributes are
13284 validity checked.
13285 This includes all operators in package @code{Standard},
13286 the shift operators defined as intrinsic in package @code{Interfaces}
13287 and operands for attributes such as @code{Pos}. Checks are also made
13288 on individual component values for composite comparisons, and on the
13289 expressions in type conversions and qualified expressions. Checks are
13290 also made on explicit ranges using @code{..} (e.g., slices, loops etc).
13291 @end table
13292
13293 @geindex -gnatVp (gcc)
13294
13295
13296 @table @asis
13297
13298 @item @code{-gnatVp}
13299
13300 `Validity checks for parameters.'
13301
13302 This controls the treatment of formal parameters within a subprogram (as
13303 opposed to @code{-gnatVi} and @code{-gnatVm}, which control validity
13304 testing of actual parameters of a call). If either of these call options is
13305 specified, then normally an assumption is made within a subprogram that
13306 the validity of any incoming formal parameters of the corresponding mode(s)
13307 has already been checked at the point of call and does not need rechecking.
13308 If @code{-gnatVp} is set, then this assumption is not made and so their
13309 validity may be checked (or rechecked) within the subprogram. If neither of
13310 the two call-related options is specified, then this switch has no effect.
13311 @end table
13312
13313 @geindex -gnatVr (gcc)
13314
13315
13316 @table @asis
13317
13318 @item @code{-gnatVr}
13319
13320 `Validity checks for function returns.'
13321
13322 The expression in simple @code{return} statements in functions is validity
13323 checked.
13324 @end table
13325
13326 @geindex -gnatVs (gcc)
13327
13328
13329 @table @asis
13330
13331 @item @code{-gnatVs}
13332
13333 `Validity checks for subscripts.'
13334
13335 All subscript expressions are checked for validity, whatever context
13336 they occur in (in default mode some subscripts are not validity checked;
13337 for example, validity checking may be omitted in some cases involving
13338 a read of a component of an array).
13339 @end table
13340
13341 @geindex -gnatVt (gcc)
13342
13343
13344 @table @asis
13345
13346 @item @code{-gnatVt}
13347
13348 `Validity checks for tests.'
13349
13350 Expressions used as conditions in @code{if}, @code{while} or @code{exit}
13351 statements are checked, as well as guard expressions in entry calls.
13352 @end table
13353
13354 The @code{-gnatV} switch may be followed by a string of letters
13355 to turn on a series of validity checking options.
13356 For example, @code{-gnatVcr}
13357 specifies that in addition to the default validity checking, copies and
13358 function return expressions are to be validity checked.
13359 In order to make it easier to specify the desired combination of effects,
13360 the upper case letters @code{CDFIMORST} may
13361 be used to turn off the corresponding lower case option.
13362 Thus @code{-gnatVaM} turns on all validity checking options except for
13363 checking of @code{in out} parameters.
13364
13365 The specification of additional validity checking generates extra code (and
13366 in the case of @code{-gnatVa} the code expansion can be substantial).
13367 However, these additional checks can be very useful in detecting
13368 uninitialized variables, incorrect use of unchecked conversion, and other
13369 errors leading to invalid values. The use of pragma @code{Initialize_Scalars}
13370 is useful in conjunction with the extra validity checking, since this
13371 ensures that wherever possible uninitialized variables have invalid values.
13372
13373 See also the pragma @code{Validity_Checks} which allows modification of
13374 the validity checking mode at the program source level, and also allows for
13375 temporary disabling of validity checks.
13376
13377 @node Style Checking,Run-Time Checks,Validity Checking,Compiler Switches
13378 @anchor{gnat_ugn/building_executable_programs_with_gnat id18}@anchor{f6}@anchor{gnat_ugn/building_executable_programs_with_gnat style-checking}@anchor{ee}
13379 @subsection Style Checking
13380
13381
13382 @geindex Style checking
13383
13384 @geindex -gnaty (gcc)
13385
13386 The @code{-gnaty} switch causes the compiler to
13387 enforce specified style rules. A limited set of style rules has been used
13388 in writing the GNAT sources themselves. This switch allows user programs
13389 to activate all or some of these checks. If the source program fails a
13390 specified style check, an appropriate message is given, preceded by
13391 the character sequence ‘(style)’. This message does not prevent
13392 successful compilation (unless the @code{-gnatwe} switch is used).
13393
13394 Note that this is by no means intended to be a general facility for
13395 checking arbitrary coding standards. It is simply an embedding of the
13396 style rules we have chosen for the GNAT sources. If you are starting
13397 a project which does not have established style standards, you may
13398 find it useful to adopt the entire set of GNAT coding standards, or
13399 some subset of them.
13400
13401
13402 The string @code{x} is a sequence of letters or digits
13403 indicating the particular style
13404 checks to be performed. The following checks are defined:
13405
13406 @geindex -gnaty[0-9] (gcc)
13407
13408
13409 @table @asis
13410
13411 @item @code{-gnaty0}
13412
13413 `Specify indentation level.'
13414
13415 If a digit from 1-9 appears
13416 in the string after @code{-gnaty}
13417 then proper indentation is checked, with the digit indicating the
13418 indentation level required. A value of zero turns off this style check.
13419 The rule checks that the following constructs start on a column that is
13420 a multiple of the alignment level:
13421
13422
13423 @itemize *
13424
13425 @item
13426 beginnings of declarations (except record component declarations)
13427 and statements;
13428
13429 @item
13430 beginnings of the structural components of compound statements;
13431
13432 @item
13433 @code{end} keyword that completes the declaration of a program unit declaration
13434 or body or that completes a compound statement.
13435 @end itemize
13436
13437 Full line comments must be
13438 aligned with the @code{--} starting on a column that is a multiple of
13439 the alignment level, or they may be aligned the same way as the following
13440 non-blank line (this is useful when full line comments appear in the middle
13441 of a statement, or they may be aligned with the source line on the previous
13442 non-blank line.
13443 @end table
13444
13445 @geindex -gnatya (gcc)
13446
13447
13448 @table @asis
13449
13450 @item @code{-gnatya}
13451
13452 `Check attribute casing.'
13453
13454 Attribute names, including the case of keywords such as @code{digits}
13455 used as attributes names, must be written in mixed case, that is, the
13456 initial letter and any letter following an underscore must be uppercase.
13457 All other letters must be lowercase.
13458 @end table
13459
13460 @geindex -gnatyA (gcc)
13461
13462
13463 @table @asis
13464
13465 @item @code{-gnatyA}
13466
13467 `Use of array index numbers in array attributes.'
13468
13469 When using the array attributes First, Last, Range,
13470 or Length, the index number must be omitted for one-dimensional arrays
13471 and is required for multi-dimensional arrays.
13472 @end table
13473
13474 @geindex -gnatyb (gcc)
13475
13476
13477 @table @asis
13478
13479 @item @code{-gnatyb}
13480
13481 `Blanks not allowed at statement end.'
13482
13483 Trailing blanks are not allowed at the end of statements. The purpose of this
13484 rule, together with h (no horizontal tabs), is to enforce a canonical format
13485 for the use of blanks to separate source tokens.
13486 @end table
13487
13488 @geindex -gnatyB (gcc)
13489
13490
13491 @table @asis
13492
13493 @item @code{-gnatyB}
13494
13495 `Check Boolean operators.'
13496
13497 The use of AND/OR operators is not permitted except in the cases of modular
13498 operands, array operands, and simple stand-alone boolean variables or
13499 boolean constants. In all other cases @code{and then}/@cite{or else} are
13500 required.
13501 @end table
13502
13503 @geindex -gnatyc (gcc)
13504
13505
13506 @table @asis
13507
13508 @item @code{-gnatyc}
13509
13510 `Check comments, double space.'
13511
13512 Comments must meet the following set of rules:
13513
13514
13515 @itemize *
13516
13517 @item
13518 The @code{--} that starts the column must either start in column one,
13519 or else at least one blank must precede this sequence.
13520
13521 @item
13522 Comments that follow other tokens on a line must have at least one blank
13523 following the @code{--} at the start of the comment.
13524
13525 @item
13526 Full line comments must have at least two blanks following the
13527 @code{--} that starts the comment, with the following exceptions.
13528
13529 @item
13530 A line consisting only of the @code{--} characters, possibly preceded
13531 by blanks is permitted.
13532
13533 @item
13534 A comment starting with @code{--x} where @code{x} is a special character
13535 is permitted.
13536 This allows proper processing of the output from specialized tools
13537 such as @code{gnatprep} (where @code{--!} is used) and in earlier versions of the SPARK
13538 annotation
13539 language (where @code{--#} is used). For the purposes of this rule, a
13540 special character is defined as being in one of the ASCII ranges
13541 @code{16#21#...16#2F#} or @code{16#3A#...16#3F#}.
13542 Note that this usage is not permitted
13543 in GNAT implementation units (i.e., when @code{-gnatg} is used).
13544
13545 @item
13546 A line consisting entirely of minus signs, possibly preceded by blanks, is
13547 permitted. This allows the construction of box comments where lines of minus
13548 signs are used to form the top and bottom of the box.
13549
13550 @item
13551 A comment that starts and ends with @code{--} is permitted as long as at
13552 least one blank follows the initial @code{--}. Together with the preceding
13553 rule, this allows the construction of box comments, as shown in the following
13554 example:
13555
13556 @example
13557 ---------------------------
13558 -- This is a box comment --
13559 -- with two text lines. --
13560 ---------------------------
13561 @end example
13562 @end itemize
13563 @end table
13564
13565 @geindex -gnatyC (gcc)
13566
13567
13568 @table @asis
13569
13570 @item @code{-gnatyC}
13571
13572 `Check comments, single space.'
13573
13574 This is identical to @code{c} except that only one space
13575 is required following the @code{--} of a comment instead of two.
13576 @end table
13577
13578 @geindex -gnatyd (gcc)
13579
13580
13581 @table @asis
13582
13583 @item @code{-gnatyd}
13584
13585 `Check no DOS line terminators present.'
13586
13587 All lines must be terminated by a single ASCII.LF
13588 character (in particular the DOS line terminator sequence CR/LF is not
13589 allowed).
13590 @end table
13591
13592 @geindex -gnatyD (gcc)
13593
13594
13595 @table @asis
13596
13597 @item @code{-gnatyD}
13598
13599 `Check declared identifiers in mixed case.'
13600
13601 Declared identifiers must be in mixed case, as in
13602 This_Is_An_Identifier. Use -gnatyr in addition to ensure
13603 that references match declarations.
13604 @end table
13605
13606 @geindex -gnatye (gcc)
13607
13608
13609 @table @asis
13610
13611 @item @code{-gnatye}
13612
13613 `Check end/exit labels.'
13614
13615 Optional labels on @code{end} statements ending subprograms and on
13616 @code{exit} statements exiting named loops, are required to be present.
13617 @end table
13618
13619 @geindex -gnatyf (gcc)
13620
13621
13622 @table @asis
13623
13624 @item @code{-gnatyf}
13625
13626 `No form feeds or vertical tabs.'
13627
13628 Neither form feeds nor vertical tab characters are permitted
13629 in the source text.
13630 @end table
13631
13632 @geindex -gnatyg (gcc)
13633
13634
13635 @table @asis
13636
13637 @item @code{-gnatyg}
13638
13639 `GNAT style mode.'
13640
13641 The set of style check switches is set to match that used by the GNAT sources.
13642 This may be useful when developing code that is eventually intended to be
13643 incorporated into GNAT. Currently this is equivalent to
13644 @code{-gnatyydISuxz}) but additional style switches may be added to this
13645 set in the future without advance notice.
13646 @end table
13647
13648 @geindex -gnatyh (gcc)
13649
13650
13651 @table @asis
13652
13653 @item @code{-gnatyh}
13654
13655 `No horizontal tabs.'
13656
13657 Horizontal tab characters are not permitted in the source text.
13658 Together with the b (no blanks at end of line) check, this
13659 enforces a canonical form for the use of blanks to separate
13660 source tokens.
13661 @end table
13662
13663 @geindex -gnatyi (gcc)
13664
13665
13666 @table @asis
13667
13668 @item @code{-gnatyi}
13669
13670 `Check if-then layout.'
13671
13672 The keyword @code{then} must appear either on the same
13673 line as corresponding @code{if}, or on a line on its own, lined
13674 up under the @code{if}.
13675 @end table
13676
13677 @geindex -gnatyI (gcc)
13678
13679
13680 @table @asis
13681
13682 @item @code{-gnatyI}
13683
13684 `check mode IN keywords.'
13685
13686 Mode @code{in} (the default mode) is not
13687 allowed to be given explicitly. @code{in out} is fine,
13688 but not @code{in} on its own.
13689 @end table
13690
13691 @geindex -gnatyk (gcc)
13692
13693
13694 @table @asis
13695
13696 @item @code{-gnatyk}
13697
13698 `Check keyword casing.'
13699
13700 All keywords must be in lower case (with the exception of keywords
13701 such as @code{digits} used as attribute names to which this check
13702 does not apply). A single error is reported for each line breaking
13703 this rule even if multiple casing issues exist on a same line.
13704 @end table
13705
13706 @geindex -gnatyl (gcc)
13707
13708
13709 @table @asis
13710
13711 @item @code{-gnatyl}
13712
13713 `Check layout.'
13714
13715 Layout of statement and declaration constructs must follow the
13716 recommendations in the Ada Reference Manual, as indicated by the
13717 form of the syntax rules. For example an @code{else} keyword must
13718 be lined up with the corresponding @code{if} keyword.
13719
13720 There are two respects in which the style rule enforced by this check
13721 option are more liberal than those in the Ada Reference Manual. First
13722 in the case of record declarations, it is permissible to put the
13723 @code{record} keyword on the same line as the @code{type} keyword, and
13724 then the @code{end} in @code{end record} must line up under @code{type}.
13725 This is also permitted when the type declaration is split on two lines.
13726 For example, any of the following three layouts is acceptable:
13727
13728 @example
13729 type q is record
13730 a : integer;
13731 b : integer;
13732 end record;
13733
13734 type q is
13735 record
13736 a : integer;
13737 b : integer;
13738 end record;
13739
13740 type q is
13741 record
13742 a : integer;
13743 b : integer;
13744 end record;
13745 @end example
13746
13747 Second, in the case of a block statement, a permitted alternative
13748 is to put the block label on the same line as the @code{declare} or
13749 @code{begin} keyword, and then line the @code{end} keyword up under
13750 the block label. For example both the following are permitted:
13751
13752 @example
13753 Block : declare
13754 A : Integer := 3;
13755 begin
13756 Proc (A, A);
13757 end Block;
13758
13759 Block :
13760 declare
13761 A : Integer := 3;
13762 begin
13763 Proc (A, A);
13764 end Block;
13765 @end example
13766
13767 The same alternative format is allowed for loops. For example, both of
13768 the following are permitted:
13769
13770 @example
13771 Clear : while J < 10 loop
13772 A (J) := 0;
13773 end loop Clear;
13774
13775 Clear :
13776 while J < 10 loop
13777 A (J) := 0;
13778 end loop Clear;
13779 @end example
13780 @end table
13781
13782 @geindex -gnatyLnnn (gcc)
13783
13784
13785 @table @asis
13786
13787 @item @code{-gnatyL}
13788
13789 `Set maximum nesting level.'
13790
13791 The maximum level of nesting of constructs (including subprograms, loops,
13792 blocks, packages, and conditionals) may not exceed the given value
13793 `nnn'. A value of zero disconnects this style check.
13794 @end table
13795
13796 @geindex -gnatym (gcc)
13797
13798
13799 @table @asis
13800
13801 @item @code{-gnatym}
13802
13803 `Check maximum line length.'
13804
13805 The length of source lines must not exceed 79 characters, including
13806 any trailing blanks. The value of 79 allows convenient display on an
13807 80 character wide device or window, allowing for possible special
13808 treatment of 80 character lines. Note that this count is of
13809 characters in the source text. This means that a tab character counts
13810 as one character in this count and a wide character sequence counts as
13811 a single character (however many bytes are needed in the encoding).
13812 @end table
13813
13814 @geindex -gnatyMnnn (gcc)
13815
13816
13817 @table @asis
13818
13819 @item @code{-gnatyM}
13820
13821 `Set maximum line length.'
13822
13823 The length of lines must not exceed the
13824 given value `nnn'. The maximum value that can be specified is 32767.
13825 If neither style option for setting the line length is used, then the
13826 default is 255. This also controls the maximum length of lexical elements,
13827 where the only restriction is that they must fit on a single line.
13828 @end table
13829
13830 @geindex -gnatyn (gcc)
13831
13832
13833 @table @asis
13834
13835 @item @code{-gnatyn}
13836
13837 `Check casing of entities in Standard.'
13838
13839 Any identifier from Standard must be cased
13840 to match the presentation in the Ada Reference Manual (for example,
13841 @code{Integer} and @code{ASCII.NUL}).
13842 @end table
13843
13844 @geindex -gnatyN (gcc)
13845
13846
13847 @table @asis
13848
13849 @item @code{-gnatyN}
13850
13851 `Turn off all style checks.'
13852
13853 All style check options are turned off.
13854 @end table
13855
13856 @geindex -gnatyo (gcc)
13857
13858
13859 @table @asis
13860
13861 @item @code{-gnatyo}
13862
13863 `Check order of subprogram bodies.'
13864
13865 All subprogram bodies in a given scope
13866 (e.g., a package body) must be in alphabetical order. The ordering
13867 rule uses normal Ada rules for comparing strings, ignoring casing
13868 of letters, except that if there is a trailing numeric suffix, then
13869 the value of this suffix is used in the ordering (e.g., Junk2 comes
13870 before Junk10).
13871 @end table
13872
13873 @geindex -gnatyO (gcc)
13874
13875
13876 @table @asis
13877
13878 @item @code{-gnatyO}
13879
13880 `Check that overriding subprograms are explicitly marked as such.'
13881
13882 This applies to all subprograms of a derived type that override a primitive
13883 operation of the type, for both tagged and untagged types. In particular,
13884 the declaration of a primitive operation of a type extension that overrides
13885 an inherited operation must carry an overriding indicator. Another case is
13886 the declaration of a function that overrides a predefined operator (such
13887 as an equality operator).
13888 @end table
13889
13890 @geindex -gnatyp (gcc)
13891
13892
13893 @table @asis
13894
13895 @item @code{-gnatyp}
13896
13897 `Check pragma casing.'
13898
13899 Pragma names must be written in mixed case, that is, the
13900 initial letter and any letter following an underscore must be uppercase.
13901 All other letters must be lowercase. An exception is that SPARK_Mode is
13902 allowed as an alternative for Spark_Mode.
13903 @end table
13904
13905 @geindex -gnatyr (gcc)
13906
13907
13908 @table @asis
13909
13910 @item @code{-gnatyr}
13911
13912 `Check references.'
13913
13914 All identifier references must be cased in the same way as the
13915 corresponding declaration. No specific casing style is imposed on
13916 identifiers. The only requirement is for consistency of references
13917 with declarations.
13918 @end table
13919
13920 @geindex -gnatys (gcc)
13921
13922
13923 @table @asis
13924
13925 @item @code{-gnatys}
13926
13927 `Check separate specs.'
13928
13929 Separate declarations (‘specs’) are required for subprograms (a
13930 body is not allowed to serve as its own declaration). The only
13931 exception is that parameterless library level procedures are
13932 not required to have a separate declaration. This exception covers
13933 the most frequent form of main program procedures.
13934 @end table
13935
13936 @geindex -gnatyS (gcc)
13937
13938
13939 @table @asis
13940
13941 @item @code{-gnatyS}
13942
13943 `Check no statements after then/else.'
13944
13945 No statements are allowed
13946 on the same line as a @code{then} or @code{else} keyword following the
13947 keyword in an @code{if} statement. @code{or else} and @code{and then} are not
13948 affected, and a special exception allows a pragma to appear after @code{else}.
13949 @end table
13950
13951 @geindex -gnatyt (gcc)
13952
13953
13954 @table @asis
13955
13956 @item @code{-gnatyt}
13957
13958 `Check token spacing.'
13959
13960 The following token spacing rules are enforced:
13961
13962
13963 @itemize *
13964
13965 @item
13966 The keywords @code{abs} and @code{not} must be followed by a space.
13967
13968 @item
13969 The token @code{=>} must be surrounded by spaces.
13970
13971 @item
13972 The token @code{<>} must be preceded by a space or a left parenthesis.
13973
13974 @item
13975 Binary operators other than @code{**} must be surrounded by spaces.
13976 There is no restriction on the layout of the @code{**} binary operator.
13977
13978 @item
13979 Colon must be surrounded by spaces.
13980
13981 @item
13982 Colon-equal (assignment, initialization) must be surrounded by spaces.
13983
13984 @item
13985 Comma must be the first non-blank character on the line, or be
13986 immediately preceded by a non-blank character, and must be followed
13987 by a space.
13988
13989 @item
13990 If the token preceding a left parenthesis ends with a letter or digit, then
13991 a space must separate the two tokens.
13992
13993 @item
13994 If the token following a right parenthesis starts with a letter or digit, then
13995 a space must separate the two tokens.
13996
13997 @item
13998 A right parenthesis must either be the first non-blank character on
13999 a line, or it must be preceded by a non-blank character.
14000
14001 @item
14002 A semicolon must not be preceded by a space, and must not be followed by
14003 a non-blank character.
14004
14005 @item
14006 A unary plus or minus may not be followed by a space.
14007
14008 @item
14009 A vertical bar must be surrounded by spaces.
14010 @end itemize
14011
14012 Exactly one blank (and no other white space) must appear between
14013 a @code{not} token and a following @code{in} token.
14014 @end table
14015
14016 @geindex -gnatyu (gcc)
14017
14018
14019 @table @asis
14020
14021 @item @code{-gnatyu}
14022
14023 `Check unnecessary blank lines.'
14024
14025 Unnecessary blank lines are not allowed. A blank line is considered
14026 unnecessary if it appears at the end of the file, or if more than
14027 one blank line occurs in sequence.
14028 @end table
14029
14030 @geindex -gnatyx (gcc)
14031
14032
14033 @table @asis
14034
14035 @item @code{-gnatyx}
14036
14037 `Check extra parentheses.'
14038
14039 Unnecessary extra levels of parentheses (C-style) are not allowed
14040 around conditions (or selection expressions) in @code{if}, @code{while},
14041 @code{case}, and @code{exit} statements, as well as part of ranges.
14042 @end table
14043
14044 @geindex -gnatyy (gcc)
14045
14046
14047 @table @asis
14048
14049 @item @code{-gnatyy}
14050
14051 `Set all standard style check options.'
14052
14053 This is equivalent to @code{gnaty3aAbcefhiklmnprst}, that is all checking
14054 options enabled with the exception of @code{-gnatyB}, @code{-gnatyd},
14055 @code{-gnatyI}, @code{-gnatyLnnn}, @code{-gnatyo}, @code{-gnatyO},
14056 @code{-gnatyS}, @code{-gnatyu}, and @code{-gnatyx}.
14057 @end table
14058
14059 @geindex -gnatyz (gcc)
14060
14061
14062 @table @asis
14063
14064 @item @code{-gnatyz}
14065
14066 `Check extra parentheses (operator precedence).'
14067
14068 Extra levels of parentheses that are not required by operator precedence
14069 rules are flagged. See also @code{-gnatyx}.
14070 @end table
14071
14072 @geindex -gnaty- (gcc)
14073
14074
14075 @table @asis
14076
14077 @item @code{-gnaty-}
14078
14079 `Remove style check options.'
14080
14081 This causes any subsequent options in the string to act as canceling the
14082 corresponding style check option. To cancel maximum nesting level control,
14083 use the @code{L} parameter without any integer value after that, because any
14084 digit following `-' in the parameter string of the @code{-gnaty}
14085 option will be treated as canceling the indentation check. The same is true
14086 for the @code{M} parameter. @code{y} and @code{N} parameters are not
14087 allowed after `-'.
14088 @end table
14089
14090 @geindex -gnaty+ (gcc)
14091
14092
14093 @table @asis
14094
14095 @item @code{-gnaty+}
14096
14097 `Enable style check options.'
14098
14099 This causes any subsequent options in the string to enable the corresponding
14100 style check option. That is, it cancels the effect of a previous -,
14101 if any.
14102 @end table
14103
14104 @c end of switch description (leave this comment to ease automatic parsing for
14105
14106 @c GNAT Studio)
14107
14108 In the above rules, appearing in column one is always permitted, that is,
14109 counts as meeting either a requirement for a required preceding space,
14110 or as meeting a requirement for no preceding space.
14111
14112 Appearing at the end of a line is also always permitted, that is, counts
14113 as meeting either a requirement for a following space, or as meeting
14114 a requirement for no following space.
14115
14116 If any of these style rules is violated, a message is generated giving
14117 details on the violation. The initial characters of such messages are
14118 always ‘@cite{(style)}’. Note that these messages are treated as warning
14119 messages, so they normally do not prevent the generation of an object
14120 file. The @code{-gnatwe} switch can be used to treat warning messages,
14121 including style messages, as fatal errors.
14122
14123 The switch @code{-gnaty} on its own (that is not
14124 followed by any letters or digits) is equivalent
14125 to the use of @code{-gnatyy} as described above, that is all
14126 built-in standard style check options are enabled.
14127
14128 The switch @code{-gnatyN} clears any previously set style checks.
14129
14130 @node Run-Time Checks,Using gcc for Syntax Checking,Style Checking,Compiler Switches
14131 @anchor{gnat_ugn/building_executable_programs_with_gnat id19}@anchor{f7}@anchor{gnat_ugn/building_executable_programs_with_gnat run-time-checks}@anchor{ec}
14132 @subsection Run-Time Checks
14133
14134
14135 @geindex Division by zero
14136
14137 @geindex Access before elaboration
14138
14139 @geindex Checks
14140 @geindex division by zero
14141
14142 @geindex Checks
14143 @geindex access before elaboration
14144
14145 @geindex Checks
14146 @geindex stack overflow checking
14147
14148 By default, the following checks are suppressed: stack overflow
14149 checks, and checks for access before elaboration on subprogram
14150 calls. All other checks, including overflow checks, range checks and
14151 array bounds checks, are turned on by default. The following @code{gcc}
14152 switches refine this default behavior.
14153
14154 @geindex -gnatp (gcc)
14155
14156
14157 @table @asis
14158
14159 @item @code{-gnatp}
14160
14161 @geindex Suppressing checks
14162
14163 @geindex Checks
14164 @geindex suppressing
14165
14166 This switch causes the unit to be compiled
14167 as though @code{pragma Suppress (All_checks)}
14168 had been present in the source. Validity checks are also eliminated (in
14169 other words @code{-gnatp} also implies @code{-gnatVn}.
14170 Use this switch to improve the performance
14171 of the code at the expense of safety in the presence of invalid data or
14172 program bugs.
14173
14174 Note that when checks are suppressed, the compiler is allowed, but not
14175 required, to omit the checking code. If the run-time cost of the
14176 checking code is zero or near-zero, the compiler will generate it even
14177 if checks are suppressed. In particular, if the compiler can prove
14178 that a certain check will necessarily fail, it will generate code to
14179 do an unconditional ‘raise’, even if checks are suppressed. The
14180 compiler warns in this case. Another case in which checks may not be
14181 eliminated is when they are embedded in certain run-time routines such
14182 as math library routines.
14183
14184 Of course, run-time checks are omitted whenever the compiler can prove
14185 that they will not fail, whether or not checks are suppressed.
14186
14187 Note that if you suppress a check that would have failed, program
14188 execution is erroneous, which means the behavior is totally
14189 unpredictable. The program might crash, or print wrong answers, or
14190 do anything else. It might even do exactly what you wanted it to do
14191 (and then it might start failing mysteriously next week or next
14192 year). The compiler will generate code based on the assumption that
14193 the condition being checked is true, which can result in erroneous
14194 execution if that assumption is wrong.
14195
14196 The checks subject to suppression include all the checks defined by the Ada
14197 standard, the additional implementation defined checks @code{Alignment_Check},
14198 @code{Duplicated_Tag_Check}, @code{Predicate_Check}, @code{Container_Checks}, @code{Tampering_Check},
14199 and @code{Validity_Check}, as well as any checks introduced using @code{pragma Check_Name}.
14200 Note that @code{Atomic_Synchronization} is not automatically suppressed by use of this option.
14201
14202 If the code depends on certain checks being active, you can use
14203 pragma @code{Unsuppress} either as a configuration pragma or as
14204 a local pragma to make sure that a specified check is performed
14205 even if @code{gnatp} is specified.
14206
14207 The @code{-gnatp} switch has no effect if a subsequent
14208 @code{-gnat-p} switch appears.
14209 @end table
14210
14211 @geindex -gnat-p (gcc)
14212
14213 @geindex Suppressing checks
14214
14215 @geindex Checks
14216 @geindex suppressing
14217
14218 @geindex Suppress
14219
14220
14221 @table @asis
14222
14223 @item @code{-gnat-p}
14224
14225 This switch cancels the effect of a previous @code{gnatp} switch.
14226 @end table
14227
14228 @geindex -gnato?? (gcc)
14229
14230 @geindex Overflow checks
14231
14232 @geindex Overflow mode
14233
14234 @geindex Check
14235 @geindex overflow
14236
14237
14238 @table @asis
14239
14240 @item @code{-gnato??}
14241
14242 This switch controls the mode used for computing intermediate
14243 arithmetic integer operations, and also enables overflow checking.
14244 For a full description of overflow mode and checking control, see
14245 the ‘Overflow Check Handling in GNAT’ appendix in this
14246 User’s Guide.
14247
14248 Overflow checks are always enabled by this switch. The argument
14249 controls the mode, using the codes
14250
14251
14252 @table @asis
14253
14254 @item `1 = STRICT'
14255
14256 In STRICT mode, intermediate operations are always done using the
14257 base type, and overflow checking ensures that the result is within
14258 the base type range.
14259
14260 @item `2 = MINIMIZED'
14261
14262 In MINIMIZED mode, overflows in intermediate operations are avoided
14263 where possible by using a larger integer type for the computation
14264 (typically @code{Long_Long_Integer}). Overflow checking ensures that
14265 the result fits in this larger integer type.
14266
14267 @item `3 = ELIMINATED'
14268
14269 In ELIMINATED mode, overflows in intermediate operations are avoided
14270 by using multi-precision arithmetic. In this case, overflow checking
14271 has no effect on intermediate operations (since overflow is impossible).
14272 @end table
14273
14274 If two digits are present after @code{-gnato} then the first digit
14275 sets the mode for expressions outside assertions, and the second digit
14276 sets the mode for expressions within assertions. Here assertions is used
14277 in the technical sense (which includes for example precondition and
14278 postcondition expressions).
14279
14280 If one digit is present, the corresponding mode is applicable to both
14281 expressions within and outside assertion expressions.
14282
14283 If no digits are present, the default is to enable overflow checks
14284 and set STRICT mode for both kinds of expressions. This is compatible
14285 with the use of @code{-gnato} in previous versions of GNAT.
14286
14287 @geindex Machine_Overflows
14288
14289 Note that the @code{-gnato??} switch does not affect the code generated
14290 for any floating-point operations; it applies only to integer semantics.
14291 For floating-point, GNAT has the @code{Machine_Overflows}
14292 attribute set to @code{False} and the normal mode of operation is to
14293 generate IEEE NaN and infinite values on overflow or invalid operations
14294 (such as dividing 0.0 by 0.0).
14295
14296 The reason that we distinguish overflow checking from other kinds of
14297 range constraint checking is that a failure of an overflow check, unlike
14298 for example the failure of a range check, can result in an incorrect
14299 value, but cannot cause random memory destruction (like an out of range
14300 subscript), or a wild jump (from an out of range case value). Overflow
14301 checking is also quite expensive in time and space, since in general it
14302 requires the use of double length arithmetic.
14303
14304 Note again that the default is @code{-gnato11} (equivalent to @code{-gnato1}),
14305 so overflow checking is performed in STRICT mode by default.
14306 @end table
14307
14308 @geindex -gnatE (gcc)
14309
14310 @geindex Elaboration checks
14311
14312 @geindex Check
14313 @geindex elaboration
14314
14315
14316 @table @asis
14317
14318 @item @code{-gnatE}
14319
14320 Enables dynamic checks for access-before-elaboration
14321 on subprogram calls and generic instantiations.
14322 Note that @code{-gnatE} is not necessary for safety, because in the
14323 default mode, GNAT ensures statically that the checks would not fail.
14324 For full details of the effect and use of this switch,
14325 @ref{c9,,Compiling with gcc}.
14326 @end table
14327
14328 @geindex -fstack-check (gcc)
14329
14330 @geindex Stack Overflow Checking
14331
14332 @geindex Checks
14333 @geindex stack overflow checking
14334
14335
14336 @table @asis
14337
14338 @item @code{-fstack-check}
14339
14340 Activates stack overflow checking. For full details of the effect and use of
14341 this switch see @ref{e7,,Stack Overflow Checking}.
14342 @end table
14343
14344 @geindex Unsuppress
14345
14346 The setting of these switches only controls the default setting of the
14347 checks. You may modify them using either @code{Suppress} (to remove
14348 checks) or @code{Unsuppress} (to add back suppressed checks) pragmas in
14349 the program source.
14350
14351 @node Using gcc for Syntax Checking,Using gcc for Semantic Checking,Run-Time Checks,Compiler Switches
14352 @anchor{gnat_ugn/building_executable_programs_with_gnat id20}@anchor{f8}@anchor{gnat_ugn/building_executable_programs_with_gnat using-gcc-for-syntax-checking}@anchor{f9}
14353 @subsection Using @code{gcc} for Syntax Checking
14354
14355
14356 @geindex -gnats (gcc)
14357
14358
14359 @table @asis
14360
14361 @item @code{-gnats}
14362
14363 The @code{s} stands for ‘syntax’.
14364
14365 Run GNAT in syntax checking only mode. For
14366 example, the command
14367
14368 @example
14369 $ gcc -c -gnats x.adb
14370 @end example
14371
14372 compiles file @code{x.adb} in syntax-check-only mode. You can check a
14373 series of files in a single command
14374 , and can use wildcards to specify such a group of files.
14375 Note that you must specify the @code{-c} (compile
14376 only) flag in addition to the @code{-gnats} flag.
14377
14378 You may use other switches in conjunction with @code{-gnats}. In
14379 particular, @code{-gnatl} and @code{-gnatv} are useful to control the
14380 format of any generated error messages.
14381
14382 When the source file is empty or contains only empty lines and/or comments,
14383 the output is a warning:
14384
14385 @example
14386 $ gcc -c -gnats -x ada toto.txt
14387 toto.txt:1:01: warning: empty file, contains no compilation units
14388 $
14389 @end example
14390
14391 Otherwise, the output is simply the error messages, if any. No object file or
14392 ALI file is generated by a syntax-only compilation. Also, no units other
14393 than the one specified are accessed. For example, if a unit @code{X}
14394 `with's a unit @code{Y}, compiling unit @code{X} in syntax
14395 check only mode does not access the source file containing unit
14396 @code{Y}.
14397
14398 @geindex Multiple units
14399 @geindex syntax checking
14400
14401 Normally, GNAT allows only a single unit in a source file. However, this
14402 restriction does not apply in syntax-check-only mode, and it is possible
14403 to check a file containing multiple compilation units concatenated
14404 together. This is primarily used by the @code{gnatchop} utility
14405 (@ref{1d,,Renaming Files with gnatchop}).
14406 @end table
14407
14408 @node Using gcc for Semantic Checking,Compiling Different Versions of Ada,Using gcc for Syntax Checking,Compiler Switches
14409 @anchor{gnat_ugn/building_executable_programs_with_gnat id21}@anchor{fa}@anchor{gnat_ugn/building_executable_programs_with_gnat using-gcc-for-semantic-checking}@anchor{fb}
14410 @subsection Using @code{gcc} for Semantic Checking
14411
14412
14413 @geindex -gnatc (gcc)
14414
14415
14416 @table @asis
14417
14418 @item @code{-gnatc}
14419
14420 The @code{c} stands for ‘check’.
14421 Causes the compiler to operate in semantic check mode,
14422 with full checking for all illegalities specified in the
14423 Ada Reference Manual, but without generation of any object code
14424 (no object file is generated).
14425
14426 Because dependent files must be accessed, you must follow the GNAT
14427 semantic restrictions on file structuring to operate in this mode:
14428
14429
14430 @itemize *
14431
14432 @item
14433 The needed source files must be accessible
14434 (see @ref{73,,Search Paths and the Run-Time Library (RTL)}).
14435
14436 @item
14437 Each file must contain only one compilation unit.
14438
14439 @item
14440 The file name and unit name must match (@ref{3b,,File Naming Rules}).
14441 @end itemize
14442
14443 The output consists of error messages as appropriate. No object file is
14444 generated. An @code{ALI} file is generated for use in the context of
14445 cross-reference tools, but this file is marked as not being suitable
14446 for binding (since no object file is generated).
14447 The checking corresponds exactly to the notion of
14448 legality in the Ada Reference Manual.
14449
14450 Any unit can be compiled in semantics-checking-only mode, including
14451 units that would not normally be compiled (subunits,
14452 and specifications where a separate body is present).
14453 @end table
14454
14455 @node Compiling Different Versions of Ada,Character Set Control,Using gcc for Semantic Checking,Compiler Switches
14456 @anchor{gnat_ugn/building_executable_programs_with_gnat compiling-different-versions-of-ada}@anchor{6}@anchor{gnat_ugn/building_executable_programs_with_gnat id22}@anchor{fc}
14457 @subsection Compiling Different Versions of Ada
14458
14459
14460 The switches described in this section allow you to explicitly specify
14461 the version of the Ada language that your programs are written in.
14462 The default mode is Ada 2012,
14463 but you can also specify Ada 95, Ada 2005 mode, or
14464 indicate Ada 83 compatibility mode.
14465
14466 @geindex Compatibility with Ada 83
14467
14468 @geindex -gnat83 (gcc)
14469
14470 @geindex ACVC
14471 @geindex Ada 83 tests
14472
14473 @geindex Ada 83 mode
14474
14475
14476 @table @asis
14477
14478 @item @code{-gnat83} (Ada 83 Compatibility Mode)
14479
14480 Although GNAT is primarily an Ada 95 / Ada 2005 compiler, this switch
14481 specifies that the program is to be compiled in Ada 83 mode. With
14482 @code{-gnat83}, GNAT rejects most post-Ada 83 extensions and applies Ada 83
14483 semantics where this can be done easily.
14484 It is not possible to guarantee this switch does a perfect
14485 job; some subtle tests, such as are
14486 found in earlier ACVC tests (and that have been removed from the ACATS suite
14487 for Ada 95), might not compile correctly.
14488 Nevertheless, this switch may be useful in some circumstances, for example
14489 where, due to contractual reasons, existing code needs to be maintained
14490 using only Ada 83 features.
14491
14492 With few exceptions (most notably the need to use @code{<>} on
14493 unconstrained
14494 @geindex Generic formal parameters
14495 generic formal parameters,
14496 the use of the new Ada 95 / Ada 2005
14497 reserved words, and the use of packages
14498 with optional bodies), it is not necessary to specify the
14499 @code{-gnat83} switch when compiling Ada 83 programs, because, with rare
14500 exceptions, Ada 95 and Ada 2005 are upwardly compatible with Ada 83. Thus
14501 a correct Ada 83 program is usually also a correct program
14502 in these later versions of the language standard. For further information
14503 please refer to the `Compatibility and Porting Guide' chapter in the
14504 @cite{GNAT Reference Manual}.
14505 @end table
14506
14507 @geindex -gnat95 (gcc)
14508
14509 @geindex Ada 95 mode
14510
14511
14512 @table @asis
14513
14514 @item @code{-gnat95} (Ada 95 mode)
14515
14516 This switch directs the compiler to implement the Ada 95 version of the
14517 language.
14518 Since Ada 95 is almost completely upwards
14519 compatible with Ada 83, Ada 83 programs may generally be compiled using
14520 this switch (see the description of the @code{-gnat83} switch for further
14521 information about Ada 83 mode).
14522 If an Ada 2005 program is compiled in Ada 95 mode,
14523 uses of the new Ada 2005 features will cause error
14524 messages or warnings.
14525
14526 This switch also can be used to cancel the effect of a previous
14527 @code{-gnat83}, @code{-gnat05/2005}, or @code{-gnat12/2012}
14528 switch earlier in the command line.
14529 @end table
14530
14531 @geindex -gnat05 (gcc)
14532
14533 @geindex -gnat2005 (gcc)
14534
14535 @geindex Ada 2005 mode
14536
14537
14538 @table @asis
14539
14540 @item @code{-gnat05} or @code{-gnat2005} (Ada 2005 mode)
14541
14542 This switch directs the compiler to implement the Ada 2005 version of the
14543 language, as documented in the official Ada standards document.
14544 Since Ada 2005 is almost completely upwards
14545 compatible with Ada 95 (and thus also with Ada 83), Ada 83 and Ada 95 programs
14546 may generally be compiled using this switch (see the description of the
14547 @code{-gnat83} and @code{-gnat95} switches for further
14548 information).
14549 @end table
14550
14551 @geindex -gnat12 (gcc)
14552
14553 @geindex -gnat2012 (gcc)
14554
14555 @geindex Ada 2012 mode
14556
14557
14558 @table @asis
14559
14560 @item @code{-gnat12} or @code{-gnat2012} (Ada 2012 mode)
14561
14562 This switch directs the compiler to implement the Ada 2012 version of the
14563 language (also the default).
14564 Since Ada 2012 is almost completely upwards
14565 compatible with Ada 2005 (and thus also with Ada 83, and Ada 95),
14566 Ada 83 and Ada 95 programs
14567 may generally be compiled using this switch (see the description of the
14568 @code{-gnat83}, @code{-gnat95}, and @code{-gnat05/2005} switches
14569 for further information).
14570 @end table
14571
14572 @geindex -gnat2022 (gcc)
14573
14574 @geindex Ada 2022 mode
14575
14576
14577 @table @asis
14578
14579 @item @code{-gnat2022} (Ada 2022 mode)
14580
14581 This switch directs the compiler to implement the Ada 2022 version of the
14582 language.
14583 @end table
14584
14585 @geindex -gnatX0 (gcc)
14586
14587 @geindex Ada language extensions
14588
14589 @geindex GNAT extensions
14590
14591
14592 @table @asis
14593
14594 @item @code{-gnatX0} (Enable GNAT Extensions)
14595
14596 This switch directs the compiler to implement the latest version of the
14597 language (currently Ada 2022) and also to enable certain GNAT implementation
14598 extensions that are not part of any Ada standard. For a full list of these
14599 extensions, see the GNAT reference manual, @code{Pragma Extensions_Allowed}.
14600 @end table
14601
14602 @geindex -gnatX (gcc)
14603
14604 @geindex Ada language extensions
14605
14606 @geindex GNAT extensions
14607
14608
14609 @table @asis
14610
14611 @item @code{-gnatX} (Enable core GNAT Extensions)
14612
14613 This switch is similar to -gnatX0 except that only some, not all, of the
14614 GNAT-defined language extensions are enabled. For a list of the
14615 extensions enabled by this switch, see the GNAT reference manual
14616 @code{Pragma Extensions_Allowed} and the description of that pragma’s
14617 “On” (as opposed to “All”) argument.
14618 @end table
14619
14620 @node Character Set Control,File Naming Control,Compiling Different Versions of Ada,Compiler Switches
14621 @anchor{gnat_ugn/building_executable_programs_with_gnat character-set-control}@anchor{31}@anchor{gnat_ugn/building_executable_programs_with_gnat id23}@anchor{fd}
14622 @subsection Character Set Control
14623
14624
14625 @geindex -gnati (gcc)
14626
14627
14628 @table @asis
14629
14630 @item @code{-gnati`c'}
14631
14632 Normally GNAT recognizes the Latin-1 character set in source program
14633 identifiers, as described in the Ada Reference Manual.
14634 This switch causes
14635 GNAT to recognize alternate character sets in identifiers. @code{c} is a
14636 single character indicating the character set, as follows:
14637
14638
14639 @multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
14640 @item
14641
14642 `1'
14643
14644 @tab
14645
14646 ISO 8859-1 (Latin-1) identifiers
14647
14648 @item
14649
14650 `2'
14651
14652 @tab
14653
14654 ISO 8859-2 (Latin-2) letters allowed in identifiers
14655
14656 @item
14657
14658 `3'
14659
14660 @tab
14661
14662 ISO 8859-3 (Latin-3) letters allowed in identifiers
14663
14664 @item
14665
14666 `4'
14667
14668 @tab
14669
14670 ISO 8859-4 (Latin-4) letters allowed in identifiers
14671
14672 @item
14673
14674 `5'
14675
14676 @tab
14677
14678 ISO 8859-5 (Cyrillic) letters allowed in identifiers
14679
14680 @item
14681
14682 `9'
14683
14684 @tab
14685
14686 ISO 8859-15 (Latin-9) letters allowed in identifiers
14687
14688 @item
14689
14690 `p'
14691
14692 @tab
14693
14694 IBM PC letters (code page 437) allowed in identifiers
14695
14696 @item
14697
14698 `8'
14699
14700 @tab
14701
14702 IBM PC letters (code page 850) allowed in identifiers
14703
14704 @item
14705
14706 `f'
14707
14708 @tab
14709
14710 Full upper-half codes allowed in identifiers
14711
14712 @item
14713
14714 `n'
14715
14716 @tab
14717
14718 No upper-half codes allowed in identifiers
14719
14720 @item
14721
14722 `w'
14723
14724 @tab
14725
14726 Wide-character codes (that is, codes greater than 255)
14727 allowed in identifiers
14728
14729 @end multitable
14730
14731
14732 See @ref{23,,Foreign Language Representation} for full details on the
14733 implementation of these character sets.
14734 @end table
14735
14736 @geindex -gnatW (gcc)
14737
14738
14739 @table @asis
14740
14741 @item @code{-gnatW`e'}
14742
14743 Specify the method of encoding for wide characters.
14744 @code{e} is one of the following:
14745
14746
14747 @multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
14748 @item
14749
14750 `h'
14751
14752 @tab
14753
14754 Hex encoding (brackets coding also recognized)
14755
14756 @item
14757
14758 `u'
14759
14760 @tab
14761
14762 Upper half encoding (brackets encoding also recognized)
14763
14764 @item
14765
14766 `s'
14767
14768 @tab
14769
14770 Shift/JIS encoding (brackets encoding also recognized)
14771
14772 @item
14773
14774 `e'
14775
14776 @tab
14777
14778 EUC encoding (brackets encoding also recognized)
14779
14780 @item
14781
14782 `8'
14783
14784 @tab
14785
14786 UTF-8 encoding (brackets encoding also recognized)
14787
14788 @item
14789
14790 `b'
14791
14792 @tab
14793
14794 Brackets encoding only (default value)
14795
14796 @end multitable
14797
14798
14799 For full details on these encoding
14800 methods see @ref{37,,Wide_Character Encodings}.
14801 Note that brackets coding is always accepted, even if one of the other
14802 options is specified, so for example @code{-gnatW8} specifies that both
14803 brackets and UTF-8 encodings will be recognized. The units that are
14804 with’ed directly or indirectly will be scanned using the specified
14805 representation scheme, and so if one of the non-brackets scheme is
14806 used, it must be used consistently throughout the program. However,
14807 since brackets encoding is always recognized, it may be conveniently
14808 used in standard libraries, allowing these libraries to be used with
14809 any of the available coding schemes.
14810
14811 Note that brackets encoding only applies to program text. Within comments,
14812 brackets are considered to be normal graphic characters, and bracket sequences
14813 are never recognized as wide characters.
14814
14815 If no @code{-gnatW?} parameter is present, then the default
14816 representation is normally Brackets encoding only. However, if the
14817 first three characters of the file are 16#EF# 16#BB# 16#BF# (the standard
14818 byte order mark or BOM for UTF-8), then these three characters are
14819 skipped and the default representation for the file is set to UTF-8.
14820
14821 Note that the wide character representation that is specified (explicitly
14822 or by default) for the main program also acts as the default encoding used
14823 for Wide_Text_IO files if not specifically overridden by a WCEM form
14824 parameter.
14825 @end table
14826
14827 When no @code{-gnatW?} is specified, then characters (other than wide
14828 characters represented using brackets notation) are treated as 8-bit
14829 Latin-1 codes. The codes recognized are the Latin-1 graphic characters,
14830 and ASCII format effectors (CR, LF, HT, VT). Other lower half control
14831 characters in the range 16#00#..16#1F# are not accepted in program text
14832 or in comments. Upper half control characters (16#80#..16#9F#) are rejected
14833 in program text, but allowed and ignored in comments. Note in particular
14834 that the Next Line (NEL) character whose encoding is 16#85# is not recognized
14835 as an end of line in this default mode. If your source program contains
14836 instances of the NEL character used as a line terminator,
14837 you must use UTF-8 encoding for the whole
14838 source program. In default mode, all lines must be ended by a standard
14839 end of line sequence (CR, CR/LF, or LF).
14840
14841 Note that the convention of simply accepting all upper half characters in
14842 comments means that programs that use standard ASCII for program text, but
14843 UTF-8 encoding for comments are accepted in default mode, providing that the
14844 comments are ended by an appropriate (CR, or CR/LF, or LF) line terminator.
14845 This is a common mode for many programs with foreign language comments.
14846
14847 @node File Naming Control,Subprogram Inlining Control,Character Set Control,Compiler Switches
14848 @anchor{gnat_ugn/building_executable_programs_with_gnat file-naming-control}@anchor{fe}@anchor{gnat_ugn/building_executable_programs_with_gnat id24}@anchor{ff}
14849 @subsection File Naming Control
14850
14851
14852 @geindex -gnatk (gcc)
14853
14854
14855 @table @asis
14856
14857 @item @code{-gnatk`n'}
14858
14859 Activates file name ‘krunching’. @code{n}, a decimal integer in the range
14860 1-999, indicates the maximum allowable length of a file name (not
14861 including the @code{.ads} or @code{.adb} extension). The default is not
14862 to enable file name krunching.
14863
14864 For the source file naming rules, @ref{3b,,File Naming Rules}.
14865 @end table
14866
14867 @node Subprogram Inlining Control,Auxiliary Output Control,File Naming Control,Compiler Switches
14868 @anchor{gnat_ugn/building_executable_programs_with_gnat id25}@anchor{100}@anchor{gnat_ugn/building_executable_programs_with_gnat subprogram-inlining-control}@anchor{101}
14869 @subsection Subprogram Inlining Control
14870
14871
14872 @geindex -gnatn (gcc)
14873
14874
14875 @table @asis
14876
14877 @item @code{-gnatn[12]}
14878
14879 The @code{n} here is intended to suggest the first syllable of the word ‘inline’.
14880 GNAT recognizes and processes @code{Inline} pragmas. However, for inlining to
14881 actually occur, optimization must be enabled and, by default, inlining of
14882 subprograms across units is not performed. If you want to additionally
14883 enable inlining of subprograms specified by pragma @code{Inline} across units,
14884 you must also specify this switch.
14885
14886 In the absence of this switch, GNAT does not attempt inlining across units
14887 and does not access the bodies of subprograms for which @code{pragma Inline} is
14888 specified if they are not in the current unit.
14889
14890 You can optionally specify the inlining level: 1 for moderate inlining across
14891 units, which is a good compromise between compilation times and performances
14892 at run time, or 2 for full inlining across units, which may bring about
14893 longer compilation times. If no inlining level is specified, the compiler will
14894 pick it based on the optimization level: 1 for @code{-O1}, @code{-O2} or
14895 @code{-Os} and 2 for @code{-O3}.
14896
14897 If you specify this switch the compiler will access these bodies,
14898 creating an extra source dependency for the resulting object file, and
14899 where possible, the call will be inlined.
14900 For further details on when inlining is possible
14901 see @ref{102,,Inlining of Subprograms}.
14902 @end table
14903
14904 @geindex -gnatN (gcc)
14905
14906
14907 @table @asis
14908
14909 @item @code{-gnatN}
14910
14911 This switch activates front-end inlining which also
14912 generates additional dependencies.
14913
14914 When using a gcc-based back end, then the use of
14915 @code{-gnatN} is deprecated, and the use of @code{-gnatn} is preferred.
14916 Historically front end inlining was more extensive than the gcc back end
14917 inlining, but that is no longer the case.
14918 @end table
14919
14920 @node Auxiliary Output Control,Debugging Control,Subprogram Inlining Control,Compiler Switches
14921 @anchor{gnat_ugn/building_executable_programs_with_gnat auxiliary-output-control}@anchor{103}@anchor{gnat_ugn/building_executable_programs_with_gnat id26}@anchor{104}
14922 @subsection Auxiliary Output Control
14923
14924
14925 @geindex -gnatu (gcc)
14926
14927
14928 @table @asis
14929
14930 @item @code{-gnatu}
14931
14932 Print a list of units required by this compilation on @code{stdout}.
14933 The listing includes all units on which the unit being compiled depends
14934 either directly or indirectly.
14935 @end table
14936
14937 @geindex -pass-exit-codes (gcc)
14938
14939
14940 @table @asis
14941
14942 @item @code{-pass-exit-codes}
14943
14944 If this switch is not used, the exit code returned by @code{gcc} when
14945 compiling multiple files indicates whether all source files have
14946 been successfully used to generate object files or not.
14947
14948 When @code{-pass-exit-codes} is used, @code{gcc} exits with an extended
14949 exit status and allows an integrated development environment to better
14950 react to a compilation failure. Those exit status are:
14951
14952
14953 @multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
14954 @item
14955
14956 `5'
14957
14958 @tab
14959
14960 There was an error in at least one source file.
14961
14962 @item
14963
14964 `3'
14965
14966 @tab
14967
14968 At least one source file did not generate an object file.
14969
14970 @item
14971
14972 `2'
14973
14974 @tab
14975
14976 The compiler died unexpectedly (internal error for example).
14977
14978 @item
14979
14980 `0'
14981
14982 @tab
14983
14984 An object file has been generated for every source file.
14985
14986 @end multitable
14987
14988 @end table
14989
14990 @node Debugging Control,Exception Handling Control,Auxiliary Output Control,Compiler Switches
14991 @anchor{gnat_ugn/building_executable_programs_with_gnat debugging-control}@anchor{105}@anchor{gnat_ugn/building_executable_programs_with_gnat id27}@anchor{106}
14992 @subsection Debugging Control
14993
14994
14995 @quotation
14996
14997 @geindex Debugging options
14998 @end quotation
14999
15000 @geindex -gnatd (gcc)
15001
15002
15003 @table @asis
15004
15005 @item @code{-gnatd`x'}
15006
15007 Activate internal debugging switches. @code{x} is a letter or digit, or
15008 string of letters or digits, which specifies the type of debugging
15009 outputs desired. Normally these are used only for internal development
15010 or system debugging purposes. You can find full documentation for these
15011 switches in the body of the @code{Debug} unit in the compiler source
15012 file @code{debug.adb}.
15013 @end table
15014
15015 @geindex -gnatG (gcc)
15016
15017
15018 @table @asis
15019
15020 @item @code{-gnatG[=`nn']}
15021
15022 This switch causes the compiler to generate auxiliary output containing
15023 a pseudo-source listing of the generated expanded code. Like most Ada
15024 compilers, GNAT works by first transforming the high level Ada code into
15025 lower level constructs. For example, tasking operations are transformed
15026 into calls to the tasking run-time routines. A unique capability of GNAT
15027 is to list this expanded code in a form very close to normal Ada source.
15028 This is very useful in understanding the implications of various Ada
15029 usage on the efficiency of the generated code. There are many cases in
15030 Ada (e.g., the use of controlled types), where simple Ada statements can
15031 generate a lot of run-time code. By using @code{-gnatG} you can identify
15032 these cases, and consider whether it may be desirable to modify the coding
15033 approach to improve efficiency.
15034
15035 The optional parameter @code{nn} if present after -gnatG specifies an
15036 alternative maximum line length that overrides the normal default of 72.
15037 This value is in the range 40-999999, values less than 40 being silently
15038 reset to 40. The equal sign is optional.
15039
15040 The format of the output is very similar to standard Ada source, and is
15041 easily understood by an Ada programmer. The following special syntactic
15042 additions correspond to low level features used in the generated code that
15043 do not have any exact analogies in pure Ada source form. The following
15044 is a partial list of these special constructions. See the spec
15045 of package @code{Sprint} in file @code{sprint.ads} for a full list.
15046
15047 @geindex -gnatL (gcc)
15048
15049 If the switch @code{-gnatL} is used in conjunction with
15050 @code{-gnatG}, then the original source lines are interspersed
15051 in the expanded source (as comment lines with the original line number).
15052
15053
15054 @table @asis
15055
15056 @item @code{new @var{xxx} [storage_pool = @var{yyy}]}
15057
15058 Shows the storage pool being used for an allocator.
15059
15060 @item @code{at end @var{procedure-name};}
15061
15062 Shows the finalization (cleanup) procedure for a scope.
15063
15064 @item @code{(if @var{expr} then @var{expr} else @var{expr})}
15065
15066 Conditional expression equivalent to the @code{x?y:z} construction in C.
15067
15068 @item @code{@var{target}^(@var{source})}
15069
15070 A conversion with floating-point truncation instead of rounding.
15071
15072 @item @code{@var{target}?(@var{source})}
15073
15074 A conversion that bypasses normal Ada semantic checking. In particular
15075 enumeration types and fixed-point types are treated simply as integers.
15076
15077 @item @code{@var{target}?^(@var{source})}
15078
15079 Combines the above two cases.
15080 @end table
15081
15082 @code{@var{x} #/ @var{y}}
15083
15084 @code{@var{x} #mod @var{y}}
15085
15086 @code{@var{x} # @var{y}}
15087
15088
15089 @table @asis
15090
15091 @item @code{@var{x} #rem @var{y}}
15092
15093 A division or multiplication of fixed-point values which are treated as
15094 integers without any kind of scaling.
15095
15096 @item @code{free @var{expr} [storage_pool = @var{xxx}]}
15097
15098 Shows the storage pool associated with a @code{free} statement.
15099
15100 @item @code{[subtype or type declaration]}
15101
15102 Used to list an equivalent declaration for an internally generated
15103 type that is referenced elsewhere in the listing.
15104
15105 @item @code{freeze @var{type-name} [@var{actions}]}
15106
15107 Shows the point at which @code{type-name} is frozen, with possible
15108 associated actions to be performed at the freeze point.
15109
15110 @item @code{reference @var{itype}}
15111
15112 Reference (and hence definition) to internal type @code{itype}.
15113
15114 @item @code{@var{function-name}! (@var{arg}, @var{arg}, @var{arg})}
15115
15116 Intrinsic function call.
15117
15118 @item @code{@var{label-name} : label}
15119
15120 Declaration of label @code{labelname}.
15121
15122 @item @code{#$ @var{subprogram-name}}
15123
15124 An implicit call to a run-time support routine
15125 (to meet the requirement of H.3.1(9) in a
15126 convenient manner).
15127
15128 @item @code{@var{expr} && @var{expr} && @var{expr} ... && @var{expr}}
15129
15130 A multiple concatenation (same effect as @code{expr} & @code{expr} &
15131 @code{expr}, but handled more efficiently).
15132
15133 @item @code{[constraint_error]}
15134
15135 Raise the @code{Constraint_Error} exception.
15136
15137 @item @code{@var{expression}'reference}
15138
15139 A pointer to the result of evaluating @{expression@}.
15140
15141 @item @code{@var{target-type}!(@var{source-expression})}
15142
15143 An unchecked conversion of @code{source-expression} to @code{target-type}.
15144
15145 @item @code{[@var{numerator}/@var{denominator}]}
15146
15147 Used to represent internal real literals (that) have no exact
15148 representation in base 2-16 (for example, the result of compile time
15149 evaluation of the expression 1.0/27.0).
15150 @end table
15151 @end table
15152
15153 @geindex -gnatD (gcc)
15154
15155
15156 @table @asis
15157
15158 @item @code{-gnatD[=nn]}
15159
15160 When used in conjunction with @code{-gnatG}, this switch causes
15161 the expanded source, as described above for
15162 @code{-gnatG} to be written to files with names
15163 @code{xxx.dg}, where @code{xxx} is the normal file name,
15164 instead of to the standard output file. For
15165 example, if the source file name is @code{hello.adb}, then a file
15166 @code{hello.adb.dg} will be written. The debugging
15167 information generated by the @code{gcc} @code{-g} switch
15168 will refer to the generated @code{xxx.dg} file. This allows
15169 you to do source level debugging using the generated code which is
15170 sometimes useful for complex code, for example to find out exactly
15171 which part of a complex construction raised an exception. This switch
15172 also suppresses generation of cross-reference information (see
15173 @code{-gnatx}) since otherwise the cross-reference information
15174 would refer to the @code{.dg} file, which would cause
15175 confusion since this is not the original source file.
15176
15177 Note that @code{-gnatD} actually implies @code{-gnatG}
15178 automatically, so it is not necessary to give both options.
15179 In other words @code{-gnatD} is equivalent to @code{-gnatDG}).
15180
15181 @geindex -gnatL (gcc)
15182
15183 If the switch @code{-gnatL} is used in conjunction with
15184 @code{-gnatDG}, then the original source lines are interspersed
15185 in the expanded source (as comment lines with the original line number).
15186
15187 The optional parameter @code{nn} if present after -gnatD specifies an
15188 alternative maximum line length that overrides the normal default of 72.
15189 This value is in the range 40-999999, values less than 40 being silently
15190 reset to 40. The equal sign is optional.
15191 @end table
15192
15193 @geindex -gnatr (gcc)
15194
15195 @geindex pragma Restrictions
15196
15197
15198 @table @asis
15199
15200 @item @code{-gnatr}
15201
15202 This switch causes pragma Restrictions to be treated as Restriction_Warnings
15203 so that violation of restrictions causes warnings rather than illegalities.
15204 This is useful during the development process when new restrictions are added
15205 or investigated. The switch also causes pragma Profile to be treated as
15206 Profile_Warnings, and pragma Restricted_Run_Time and pragma Ravenscar set
15207 restriction warnings rather than restrictions.
15208 @end table
15209
15210 @geindex -gnatR (gcc)
15211
15212
15213 @table @asis
15214
15215 @item @code{-gnatR[0|1|2|3|4][e][j][m][s]}
15216
15217 This switch controls output from the compiler of a listing showing
15218 representation information for declared types, objects and subprograms.
15219 For @code{-gnatR0}, no information is output (equivalent to omitting
15220 the @code{-gnatR} switch). For @code{-gnatR1} (which is the default,
15221 so @code{-gnatR} with no parameter has the same effect), size and
15222 alignment information is listed for declared array and record types.
15223
15224 For @code{-gnatR2}, size and alignment information is listed for all
15225 declared types and objects. The @code{Linker_Section} is also listed for any
15226 entity for which the @code{Linker_Section} is set explicitly or implicitly (the
15227 latter case occurs for objects of a type for which a @code{Linker_Section}
15228 is set).
15229
15230 For @code{-gnatR3}, symbolic expressions for values that are computed
15231 at run time for records are included. These symbolic expressions have
15232 a mostly obvious format with #n being used to represent the value of the
15233 n’th discriminant. See source files @code{repinfo.ads/adb} in the
15234 GNAT sources for full details on the format of @code{-gnatR3} output.
15235
15236 For @code{-gnatR4}, information for relevant compiler-generated types
15237 is also listed, i.e. when they are structurally part of other declared
15238 types and objects.
15239
15240 If the switch is followed by an @code{e} (e.g. @code{-gnatR2e}), then
15241 extended representation information for record sub-components of records
15242 is included.
15243
15244 If the switch is followed by an @code{m} (e.g. @code{-gnatRm}), then
15245 subprogram conventions and parameter passing mechanisms for all the
15246 subprograms are included.
15247
15248 If the switch is followed by a @code{j} (e.g., @code{-gnatRj}), then
15249 the output is in the JSON data interchange format specified by the
15250 ECMA-404 standard. The semantic description of this JSON output is
15251 available in the specification of the Repinfo unit present in the
15252 compiler sources.
15253
15254 If the switch is followed by an @code{s} (e.g., @code{-gnatR3s}), then
15255 the output is to a file with the name @code{file.rep} where @code{file} is
15256 the name of the corresponding source file, except if @code{j} is also
15257 specified, in which case the file name is @code{file.json}.
15258
15259 Note that it is possible for record components to have zero size. In
15260 this case, the component clause uses an obvious extension of permitted
15261 Ada syntax, for example @code{at 0 range 0 .. -1}.
15262 @end table
15263
15264 @geindex -gnatS (gcc)
15265
15266
15267 @table @asis
15268
15269 @item @code{-gnatS}
15270
15271 The use of the switch @code{-gnatS} for an
15272 Ada compilation will cause the compiler to output a
15273 representation of package Standard in a form very
15274 close to standard Ada. It is not quite possible to
15275 do this entirely in standard Ada (since new
15276 numeric base types cannot be created in standard
15277 Ada), but the output is easily
15278 readable to any Ada programmer, and is useful to
15279 determine the characteristics of target dependent
15280 types in package Standard.
15281 @end table
15282
15283 @geindex -gnatx (gcc)
15284
15285
15286 @table @asis
15287
15288 @item @code{-gnatx}
15289
15290 Normally the compiler generates full cross-referencing information in
15291 the @code{ALI} file. This information is used by a number of tools.
15292 The @code{-gnatx} switch suppresses this information. This saves some space
15293 and may slightly speed up compilation, but means that tools depending
15294 on this information cannot be used.
15295 @end table
15296
15297 @geindex -fgnat-encodings (gcc)
15298
15299
15300 @table @asis
15301
15302 @item @code{-fgnat-encodings=[all|gdb|minimal]}
15303
15304 This switch controls the balance between GNAT encodings and standard DWARF
15305 emitted in the debug information.
15306
15307 Historically, old debug formats like stabs were not powerful enough to
15308 express some Ada types (for instance, variant records or fixed-point types).
15309 To work around this, GNAT introduced proprietary encodings that embed the
15310 missing information (“GNAT encodings”).
15311
15312 Recent versions of the DWARF debug information format are now able to
15313 correctly describe most of these Ada constructs (“standard DWARF”). As
15314 third-party tools started to use this format, GNAT has been enhanced to
15315 generate it. However, most tools (including GDB) are still relying on GNAT
15316 encodings.
15317
15318 To support all tools, GNAT needs to be versatile about the balance between
15319 generation of GNAT encodings and standard DWARF. This is what
15320 @code{-fgnat-encodings} is about.
15321
15322
15323 @itemize *
15324
15325 @item
15326 @code{=all}: Emit all GNAT encodings, and then emit as much standard DWARF as
15327 possible so it does not conflict with GNAT encodings.
15328
15329 @item
15330 @code{=gdb}: Emit as much standard DWARF as possible as long as the current
15331 GDB handles it. Emit GNAT encodings for the rest.
15332
15333 @item
15334 @code{=minimal}: Emit as much standard DWARF as possible and emit GNAT
15335 encodings for the rest.
15336 @end itemize
15337 @end table
15338
15339 @node Exception Handling Control,Units to Sources Mapping Files,Debugging Control,Compiler Switches
15340 @anchor{gnat_ugn/building_executable_programs_with_gnat exception-handling-control}@anchor{107}@anchor{gnat_ugn/building_executable_programs_with_gnat id28}@anchor{108}
15341 @subsection Exception Handling Control
15342
15343
15344 GNAT uses two methods for handling exceptions at run time. The
15345 @code{setjmp/longjmp} method saves the context when entering
15346 a frame with an exception handler. Then when an exception is
15347 raised, the context can be restored immediately, without the
15348 need for tracing stack frames. This method provides very fast
15349 exception propagation, but introduces significant overhead for
15350 the use of exception handlers, even if no exception is raised.
15351
15352 The other approach is called ‘zero cost’ exception handling.
15353 With this method, the compiler builds static tables to describe
15354 the exception ranges. No dynamic code is required when entering
15355 a frame containing an exception handler. When an exception is
15356 raised, the tables are used to control a back trace of the
15357 subprogram invocation stack to locate the required exception
15358 handler. This method has considerably poorer performance for
15359 the propagation of exceptions, but there is no overhead for
15360 exception handlers if no exception is raised. Note that in this
15361 mode and in the context of mixed Ada and C/C++ programming,
15362 to propagate an exception through a C/C++ code, the C/C++ code
15363 must be compiled with the @code{-funwind-tables} GCC’s
15364 option.
15365
15366 The following switches may be used to control which of the
15367 two exception handling methods is used.
15368
15369 @geindex --RTS=sjlj (gnatmake)
15370
15371
15372 @table @asis
15373
15374 @item @code{--RTS=sjlj}
15375
15376 This switch causes the setjmp/longjmp run-time (when available) to be used
15377 for exception handling. If the default
15378 mechanism for the target is zero cost exceptions, then
15379 this switch can be used to modify this default, and must be
15380 used for all units in the partition.
15381 This option is rarely used. One case in which it may be
15382 advantageous is if you have an application where exception
15383 raising is common and the overall performance of the
15384 application is improved by favoring exception propagation.
15385 @end table
15386
15387 @geindex --RTS=zcx (gnatmake)
15388
15389 @geindex Zero Cost Exceptions
15390
15391
15392 @table @asis
15393
15394 @item @code{--RTS=zcx}
15395
15396 This switch causes the zero cost approach to be used
15397 for exception handling. If this is the default mechanism for the
15398 target (see below), then this switch is unneeded. If the default
15399 mechanism for the target is setjmp/longjmp exceptions, then
15400 this switch can be used to modify this default, and must be
15401 used for all units in the partition.
15402 This option can only be used if the zero cost approach
15403 is available for the target in use, otherwise it will generate an error.
15404 @end table
15405
15406 The same option @code{--RTS} must be used both for @code{gcc}
15407 and @code{gnatbind}. Passing this option to @code{gnatmake}
15408 (@ref{d0,,Switches for gnatmake}) will ensure the required consistency
15409 through the compilation and binding steps.
15410
15411 @node Units to Sources Mapping Files,Code Generation Control,Exception Handling Control,Compiler Switches
15412 @anchor{gnat_ugn/building_executable_programs_with_gnat id29}@anchor{109}@anchor{gnat_ugn/building_executable_programs_with_gnat units-to-sources-mapping-files}@anchor{ea}
15413 @subsection Units to Sources Mapping Files
15414
15415
15416 @geindex -gnatem (gcc)
15417
15418
15419 @table @asis
15420
15421 @item @code{-gnatem=`path'}
15422
15423 A mapping file is a way to communicate to the compiler two mappings:
15424 from unit names to file names (without any directory information) and from
15425 file names to path names (with full directory information). These mappings
15426 are used by the compiler to short-circuit the path search.
15427
15428 The use of mapping files is not required for correct operation of the
15429 compiler, but mapping files can improve efficiency, particularly when
15430 sources are read over a slow network connection. In normal operation,
15431 you need not be concerned with the format or use of mapping files,
15432 and the @code{-gnatem} switch is not a switch that you would use
15433 explicitly. It is intended primarily for use by automatic tools such as
15434 @code{gnatmake} running under the project file facility. The
15435 description here of the format of mapping files is provided
15436 for completeness and for possible use by other tools.
15437
15438 A mapping file is a sequence of sets of three lines. In each set, the
15439 first line is the unit name, in lower case, with @code{%s} appended
15440 for specs and @code{%b} appended for bodies; the second line is the
15441 file name; and the third line is the path name.
15442
15443 Example:
15444
15445 @example
15446 main%b
15447 main.2.ada
15448 /gnat/project1/sources/main.2.ada
15449 @end example
15450
15451 When the switch @code{-gnatem} is specified, the compiler will
15452 create in memory the two mappings from the specified file. If there is
15453 any problem (nonexistent file, truncated file or duplicate entries),
15454 no mapping will be created.
15455
15456 Several @code{-gnatem} switches may be specified; however, only the
15457 last one on the command line will be taken into account.
15458
15459 When using a project file, @code{gnatmake} creates a temporary
15460 mapping file and communicates it to the compiler using this switch.
15461 @end table
15462
15463 @node Code Generation Control,,Units to Sources Mapping Files,Compiler Switches
15464 @anchor{gnat_ugn/building_executable_programs_with_gnat code-generation-control}@anchor{10a}@anchor{gnat_ugn/building_executable_programs_with_gnat id30}@anchor{10b}
15465 @subsection Code Generation Control
15466
15467
15468 The GCC technology provides a wide range of target dependent
15469 @code{-m} switches for controlling
15470 details of code generation with respect to different versions of
15471 architectures. This includes variations in instruction sets (e.g.,
15472 different members of the power pc family), and different requirements
15473 for optimal arrangement of instructions (e.g., different members of
15474 the x86 family). The list of available @code{-m} switches may be
15475 found in the GCC documentation.
15476
15477 Use of these @code{-m} switches may in some cases result in improved
15478 code performance.
15479
15480 The GNAT technology is tested and qualified without any
15481 @code{-m} switches,
15482 so generally the most reliable approach is to avoid the use of these
15483 switches. However, we generally expect most of these switches to work
15484 successfully with GNAT, and many customers have reported successful
15485 use of these options.
15486
15487 Our general advice is to avoid the use of @code{-m} switches unless
15488 special needs lead to requirements in this area. In particular,
15489 there is no point in using @code{-m} switches to improve performance
15490 unless you actually see a performance improvement.
15491
15492 @node Linker Switches,Binding with gnatbind,Compiler Switches,Building Executable Programs with GNAT
15493 @anchor{gnat_ugn/building_executable_programs_with_gnat id31}@anchor{10c}@anchor{gnat_ugn/building_executable_programs_with_gnat linker-switches}@anchor{10d}
15494 @section Linker Switches
15495
15496
15497 Linker switches can be specified after @code{-largs} builder switch.
15498
15499 @geindex -fuse-ld=name
15500
15501
15502 @table @asis
15503
15504 @item @code{-fuse-ld=`name'}
15505
15506 Linker to be used. The default is @code{bfd} for @code{ld.bfd}; @code{gold}
15507 (for @code{ld.gold}) and @code{mold} (for @code{ld.mold}) are more
15508 recent and faster alternatives, but only available on GNU/Linux
15509 platforms.
15510
15511 @end table
15512
15513 @node Binding with gnatbind,Linking with gnatlink,Linker Switches,Building Executable Programs with GNAT
15514 @anchor{gnat_ugn/building_executable_programs_with_gnat binding-with-gnatbind}@anchor{ca}@anchor{gnat_ugn/building_executable_programs_with_gnat id32}@anchor{10e}
15515 @section Binding with @code{gnatbind}
15516
15517
15518 @geindex gnatbind
15519
15520 This chapter describes the GNAT binder, @code{gnatbind}, which is used
15521 to bind compiled GNAT objects.
15522
15523 The @code{gnatbind} program performs four separate functions:
15524
15525
15526 @itemize *
15527
15528 @item
15529 Checks that a program is consistent, in accordance with the rules in
15530 Chapter 10 of the Ada Reference Manual. In particular, error
15531 messages are generated if a program uses inconsistent versions of a
15532 given unit.
15533
15534 @item
15535 Checks that an acceptable order of elaboration exists for the program
15536 and issues an error message if it cannot find an order of elaboration
15537 that satisfies the rules in Chapter 10 of the Ada Language Manual.
15538
15539 @item
15540 Generates a main program incorporating the given elaboration order.
15541 This program is a small Ada package (body and spec) that
15542 must be subsequently compiled
15543 using the GNAT compiler. The necessary compilation step is usually
15544 performed automatically by @code{gnatlink}. The two most important
15545 functions of this program
15546 are to call the elaboration routines of units in an appropriate order
15547 and to call the main program.
15548
15549 @item
15550 Determines the set of object files required by the given main program.
15551 This information is output in the forms of comments in the generated program,
15552 to be read by the @code{gnatlink} utility used to link the Ada application.
15553 @end itemize
15554
15555 @menu
15556 * Running gnatbind::
15557 * Switches for gnatbind::
15558 * Command-Line Access::
15559 * Search Paths for gnatbind::
15560 * Examples of gnatbind Usage::
15561
15562 @end menu
15563
15564 @node Running gnatbind,Switches for gnatbind,,Binding with gnatbind
15565 @anchor{gnat_ugn/building_executable_programs_with_gnat id33}@anchor{10f}@anchor{gnat_ugn/building_executable_programs_with_gnat running-gnatbind}@anchor{110}
15566 @subsection Running @code{gnatbind}
15567
15568
15569 The form of the @code{gnatbind} command is
15570
15571 @example
15572 $ gnatbind [ switches ] mainprog[.ali] [ switches ]
15573 @end example
15574
15575 where @code{mainprog.adb} is the Ada file containing the main program
15576 unit body. @code{gnatbind} constructs an Ada
15577 package in two files whose names are
15578 @code{b~mainprog.ads}, and @code{b~mainprog.adb}.
15579 For example, if given the
15580 parameter @code{hello.ali}, for a main program contained in file
15581 @code{hello.adb}, the binder output files would be @code{b~hello.ads}
15582 and @code{b~hello.adb}.
15583
15584 When doing consistency checking, the binder takes into consideration
15585 any source files it can locate. For example, if the binder determines
15586 that the given main program requires the package @code{Pack}, whose
15587 @code{.ALI}
15588 file is @code{pack.ali} and whose corresponding source spec file is
15589 @code{pack.ads}, it attempts to locate the source file @code{pack.ads}
15590 (using the same search path conventions as previously described for the
15591 @code{gcc} command). If it can locate this source file, it checks that
15592 the time stamps
15593 or source checksums of the source and its references to in @code{ALI} files
15594 match. In other words, any @code{ALI} files that mentions this spec must have
15595 resulted from compiling this version of the source file (or in the case
15596 where the source checksums match, a version close enough that the
15597 difference does not matter).
15598
15599 @geindex Source files
15600 @geindex use by binder
15601
15602 The effect of this consistency checking, which includes source files, is
15603 that the binder ensures that the program is consistent with the latest
15604 version of the source files that can be located at bind time. Editing a
15605 source file without compiling files that depend on the source file cause
15606 error messages to be generated by the binder.
15607
15608 For example, suppose you have a main program @code{hello.adb} and a
15609 package @code{P}, from file @code{p.ads} and you perform the following
15610 steps:
15611
15612
15613 @itemize *
15614
15615 @item
15616 Enter @code{gcc -c hello.adb} to compile the main program.
15617
15618 @item
15619 Enter @code{gcc -c p.ads} to compile package @code{P}.
15620
15621 @item
15622 Edit file @code{p.ads}.
15623
15624 @item
15625 Enter @code{gnatbind hello}.
15626 @end itemize
15627
15628 At this point, the file @code{p.ali} contains an out-of-date time stamp
15629 because the file @code{p.ads} has been edited. The attempt at binding
15630 fails, and the binder generates the following error messages:
15631
15632 @example
15633 error: "hello.adb" must be recompiled ("p.ads" has been modified)
15634 error: "p.ads" has been modified and must be recompiled
15635 @end example
15636
15637 Now both files must be recompiled as indicated, and then the bind can
15638 succeed, generating a main program. You need not normally be concerned
15639 with the contents of this file, but for reference purposes a sample
15640 binder output file is given in @ref{e,,Example of Binder Output File}.
15641
15642 In most normal usage, the default mode of @code{gnatbind} which is to
15643 generate the main package in Ada, as described in the previous section.
15644 In particular, this means that any Ada programmer can read and understand
15645 the generated main program. It can also be debugged just like any other
15646 Ada code provided the @code{-g} switch is used for
15647 @code{gnatbind} and @code{gnatlink}.
15648
15649 @node Switches for gnatbind,Command-Line Access,Running gnatbind,Binding with gnatbind
15650 @anchor{gnat_ugn/building_executable_programs_with_gnat id34}@anchor{111}@anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gnatbind}@anchor{112}
15651 @subsection Switches for @code{gnatbind}
15652
15653
15654 The following switches are available with @code{gnatbind}; details will
15655 be presented in subsequent sections.
15656
15657 @geindex --version (gnatbind)
15658
15659
15660 @table @asis
15661
15662 @item @code{--version}
15663
15664 Display Copyright and version, then exit disregarding all other options.
15665 @end table
15666
15667 @geindex --help (gnatbind)
15668
15669
15670 @table @asis
15671
15672 @item @code{--help}
15673
15674 If @code{--version} was not used, display usage, then exit disregarding
15675 all other options.
15676 @end table
15677
15678 @geindex -a (gnatbind)
15679
15680
15681 @table @asis
15682
15683 @item @code{-a}
15684
15685 Indicates that, if supported by the platform, the adainit procedure should
15686 be treated as an initialisation routine by the linker (a constructor). This
15687 is intended to be used by the Project Manager to automatically initialize
15688 shared Stand-Alone Libraries.
15689 @end table
15690
15691 @geindex -aO (gnatbind)
15692
15693
15694 @table @asis
15695
15696 @item @code{-aO}
15697
15698 Specify directory to be searched for ALI files.
15699 @end table
15700
15701 @geindex -aI (gnatbind)
15702
15703
15704 @table @asis
15705
15706 @item @code{-aI}
15707
15708 Specify directory to be searched for source file.
15709 @end table
15710
15711 @geindex -A (gnatbind)
15712
15713
15714 @table @asis
15715
15716 @item @code{-A[=`filename']}
15717
15718 Output ALI list (to standard output or to the named file).
15719 @end table
15720
15721 @geindex -b (gnatbind)
15722
15723
15724 @table @asis
15725
15726 @item @code{-b}
15727
15728 Generate brief messages to @code{stderr} even if verbose mode set.
15729 @end table
15730
15731 @geindex -c (gnatbind)
15732
15733
15734 @table @asis
15735
15736 @item @code{-c}
15737
15738 Check only, no generation of binder output file.
15739 @end table
15740
15741 @geindex -dnn[k|m] (gnatbind)
15742
15743
15744 @table @asis
15745
15746 @item @code{-d`nn'[k|m]}
15747
15748 This switch can be used to change the default task stack size value
15749 to a specified size @code{nn}, which is expressed in bytes by default, or
15750 in kilobytes when suffixed with @code{k} or in megabytes when suffixed
15751 with @code{m}.
15752 In the absence of a @code{[k|m]} suffix, this switch is equivalent,
15753 in effect, to completing all task specs with
15754
15755 @example
15756 pragma Storage_Size (nn);
15757 @end example
15758
15759 When they do not already have such a pragma.
15760 @end table
15761
15762 @geindex -D (gnatbind)
15763
15764
15765 @table @asis
15766
15767 @item @code{-D`nn'[k|m]}
15768
15769 Set the default secondary stack size to @code{nn}. The suffix indicates whether
15770 the size is in bytes (no suffix), kilobytes (@code{k} suffix) or megabytes
15771 (@code{m} suffix).
15772
15773 The secondary stack holds objects of unconstrained types that are returned by
15774 functions, for example unconstrained Strings. The size of the secondary stack
15775 can be dynamic or fixed depending on the target.
15776
15777 For most targets, the secondary stack grows on demand and is implemented as
15778 a chain of blocks in the heap. In this case, the default secondary stack size
15779 determines the initial size of the secondary stack for each task and the
15780 smallest amount the secondary stack can grow by.
15781
15782 For Ravenscar, ZFP, and Cert run-times the size of the secondary stack is
15783 fixed. This switch can be used to change the default size of these stacks.
15784 The default secondary stack size can be overridden on a per-task basis if
15785 individual tasks have different secondary stack requirements. This is
15786 achieved through the Secondary_Stack_Size aspect that takes the size of the
15787 secondary stack in bytes.
15788 @end table
15789
15790 @geindex -e (gnatbind)
15791
15792
15793 @table @asis
15794
15795 @item @code{-e}
15796
15797 Output complete list of elaboration-order dependencies.
15798 @end table
15799
15800 @geindex -Ea (gnatbind)
15801
15802
15803 @table @asis
15804
15805 @item @code{-Ea}
15806
15807 Store tracebacks in exception occurrences when the target supports it.
15808 The “a” is for “address”; tracebacks will contain hexadecimal addresses,
15809 unless symbolic tracebacks are enabled.
15810
15811 See also the packages @code{GNAT.Traceback} and
15812 @code{GNAT.Traceback.Symbolic} for more information.
15813 Note that on x86 ports, you must not use @code{-fomit-frame-pointer}
15814 @code{gcc} option.
15815 @end table
15816
15817 @geindex -Es (gnatbind)
15818
15819
15820 @table @asis
15821
15822 @item @code{-Es}
15823
15824 Store tracebacks in exception occurrences when the target supports it.
15825 The “s” is for “symbolic”; symbolic tracebacks are enabled.
15826 @end table
15827
15828 @geindex -E (gnatbind)
15829
15830
15831 @table @asis
15832
15833 @item @code{-E}
15834
15835 Currently the same as @code{-Ea}.
15836 @end table
15837
15838 @geindex -f (gnatbind)
15839
15840
15841 @table @asis
15842
15843 @item @code{-f`elab-order'}
15844
15845 Force elaboration order. For further details see @ref{113,,Elaboration Control}
15846 and @ref{f,,Elaboration Order Handling in GNAT}.
15847 @end table
15848
15849 @geindex -F (gnatbind)
15850
15851
15852 @table @asis
15853
15854 @item @code{-F}
15855
15856 Force the checks of elaboration flags. @code{gnatbind} does not normally
15857 generate checks of elaboration flags for the main executable, except when
15858 a Stand-Alone Library is used. However, there are cases when this cannot be
15859 detected by gnatbind. An example is importing an interface of a Stand-Alone
15860 Library through a pragma Import and only specifying through a linker switch
15861 this Stand-Alone Library. This switch is used to guarantee that elaboration
15862 flag checks are generated.
15863 @end table
15864
15865 @geindex -h (gnatbind)
15866
15867
15868 @table @asis
15869
15870 @item @code{-h}
15871
15872 Output usage (help) information.
15873 @end table
15874
15875 @geindex -H (gnatbind)
15876
15877
15878 @table @asis
15879
15880 @item @code{-H}
15881
15882 Legacy elaboration order model enabled. For further details see
15883 @ref{f,,Elaboration Order Handling in GNAT}.
15884 @end table
15885
15886 @geindex -H32 (gnatbind)
15887
15888
15889 @table @asis
15890
15891 @item @code{-H32}
15892
15893 Use 32-bit allocations for @code{__gnat_malloc} (and thus for access types).
15894 For further details see @ref{114,,Dynamic Allocation Control}.
15895 @end table
15896
15897 @geindex -H64 (gnatbind)
15898
15899 @geindex __gnat_malloc
15900
15901
15902 @table @asis
15903
15904 @item @code{-H64}
15905
15906 Use 64-bit allocations for @code{__gnat_malloc} (and thus for access types).
15907 For further details see @ref{114,,Dynamic Allocation Control}.
15908
15909 @geindex -I (gnatbind)
15910
15911 @item @code{-I}
15912
15913 Specify directory to be searched for source and ALI files.
15914
15915 @geindex -I- (gnatbind)
15916
15917 @item @code{-I-}
15918
15919 Do not look for sources in the current directory where @code{gnatbind} was
15920 invoked, and do not look for ALI files in the directory containing the
15921 ALI file named in the @code{gnatbind} command line.
15922
15923 @geindex -k (gnatbind)
15924
15925 @item @code{-k}
15926
15927 Disable checking of elaboration flags. When using @code{-n}
15928 either explicitly or implicitly, @code{-F} is also implied,
15929 unless @code{-k} is used. This switch should be used with care
15930 and you should ensure manually that elaboration routines are not called
15931 twice unintentionally.
15932
15933 @geindex -K (gnatbind)
15934
15935 @item @code{-K}
15936
15937 Give list of linker options specified for link.
15938
15939 @geindex -l (gnatbind)
15940
15941 @item @code{-l}
15942
15943 Output chosen elaboration order.
15944
15945 @geindex -L (gnatbind)
15946
15947 @item @code{-L`xxx'}
15948
15949 Bind the units for library building. In this case the @code{adainit} and
15950 @code{adafinal} procedures (@ref{a0,,Binding with Non-Ada Main Programs})
15951 are renamed to @code{@var{xxx}init} and
15952 @code{@var{xxx}final}.
15953 Implies -n.
15954 (@ref{2a,,GNAT and Libraries}, for more details.)
15955
15956 @geindex -M (gnatbind)
15957
15958 @item @code{-M`xyz'}
15959
15960 Rename generated main program from main to xyz. This option is
15961 supported on cross environments only.
15962
15963 @geindex -m (gnatbind)
15964
15965 @item @code{-m`n'}
15966
15967 Limit number of detected errors or warnings to @code{n}, where @code{n} is
15968 in the range 1..999999. The default value if no switch is
15969 given is 9999. If the number of warnings reaches this limit, then a
15970 message is output and further warnings are suppressed, the bind
15971 continues in this case. If the number of errors reaches this
15972 limit, then a message is output and the bind is abandoned.
15973 A value of zero means that no limit is enforced. The equal
15974 sign is optional.
15975
15976 @geindex -minimal (gnatbind)
15977
15978 @item @code{-minimal}
15979
15980 Generate a binder file suitable for space-constrained applications. When
15981 active, binder-generated objects not required for program operation are no
15982 longer generated. `Warning:' this option comes with the following
15983 limitations:
15984
15985
15986 @itemize *
15987
15988 @item
15989 Starting the program’s execution in the debugger will cause it to
15990 stop at the start of the @code{main} function instead of the main subprogram.
15991 This can be worked around by manually inserting a breakpoint on that
15992 subprogram and resuming the program’s execution until reaching that breakpoint.
15993
15994 @item
15995 Programs using GNAT.Compiler_Version will not link.
15996 @end itemize
15997
15998 @geindex -n (gnatbind)
15999
16000 @item @code{-n}
16001
16002 No main program.
16003
16004 @geindex -nostdinc (gnatbind)
16005
16006 @item @code{-nostdinc}
16007
16008 Do not look for sources in the system default directory.
16009
16010 @geindex -nostdlib (gnatbind)
16011
16012 @item @code{-nostdlib}
16013
16014 Do not look for library files in the system default directory.
16015
16016 @geindex --RTS (gnatbind)
16017
16018 @item @code{--RTS=`rts-path'}
16019
16020 Specifies the default location of the run-time library. Same meaning as the
16021 equivalent @code{gnatmake} flag (@ref{d0,,Switches for gnatmake}).
16022
16023 @geindex -o (gnatbind)
16024
16025 @item @code{-o `file'}
16026
16027 Name the output file @code{file} (default is @code{b~`xxx}.adb`).
16028 Note that if this option is used, then linking must be done manually,
16029 gnatlink cannot be used.
16030
16031 @geindex -O (gnatbind)
16032
16033 @item @code{-O[=`filename']}
16034
16035 Output object list (to standard output or to the named file).
16036
16037 @geindex -p (gnatbind)
16038
16039 @item @code{-p}
16040
16041 Pessimistic (worst-case) elaboration order.
16042
16043 @geindex -P (gnatbind)
16044
16045 @item @code{-P}
16046
16047 Generate binder file suitable for CodePeer.
16048
16049 @geindex -R (gnatbind)
16050
16051 @item @code{-R}
16052
16053 Output closure source list, which includes all non-run-time units that are
16054 included in the bind.
16055
16056 @geindex -Ra (gnatbind)
16057
16058 @item @code{-Ra}
16059
16060 Like @code{-R} but the list includes run-time units.
16061
16062 @geindex -s (gnatbind)
16063
16064 @item @code{-s}
16065
16066 Require all source files to be present.
16067
16068 @geindex -S (gnatbind)
16069
16070 @item @code{-S`xxx'}
16071
16072 Specifies the value to be used when detecting uninitialized scalar
16073 objects with pragma Initialize_Scalars.
16074 The @code{xxx} string specified with the switch is one of:
16075
16076
16077 @itemize *
16078
16079 @item
16080 @code{in} for an invalid value.
16081
16082 If zero is invalid for the discrete type in question,
16083 then the scalar value is set to all zero bits.
16084 For signed discrete types, the largest possible negative value of
16085 the underlying scalar is set (i.e. a one bit followed by all zero bits).
16086 For unsigned discrete types, the underlying scalar value is set to all
16087 one bits. For floating-point types, a NaN value is set
16088 (see body of package System.Scalar_Values for exact values).
16089
16090 @item
16091 @code{lo} for low value.
16092
16093 If zero is invalid for the discrete type in question,
16094 then the scalar value is set to all zero bits.
16095 For signed discrete types, the largest possible negative value of
16096 the underlying scalar is set (i.e. a one bit followed by all zero bits).
16097 For unsigned discrete types, the underlying scalar value is set to all
16098 zero bits. For floating-point, a small value is set
16099 (see body of package System.Scalar_Values for exact values).
16100
16101 @item
16102 @code{hi} for high value.
16103
16104 If zero is invalid for the discrete type in question,
16105 then the scalar value is set to all one bits.
16106 For signed discrete types, the largest possible positive value of
16107 the underlying scalar is set (i.e. a zero bit followed by all one bits).
16108 For unsigned discrete types, the underlying scalar value is set to all
16109 one bits. For floating-point, a large value is set
16110 (see body of package System.Scalar_Values for exact values).
16111
16112 @item
16113 @code{xx} for hex value (two hex digits).
16114
16115 The underlying scalar is set to a value consisting of repeated bytes, whose
16116 value corresponds to the given value. For example if @code{BF} is given,
16117 then a 32-bit scalar value will be set to the bit pattern @code{16#BFBFBFBF#}.
16118 @end itemize
16119
16120 @geindex GNAT_INIT_SCALARS
16121
16122 In addition, you can specify @code{-Sev} to indicate that the value is
16123 to be set at run time. In this case, the program will look for an environment
16124 variable of the form @code{GNAT_INIT_SCALARS=@var{yy}}, where @code{yy} is one
16125 of @code{in/lo/hi/@var{xx}} with the same meanings as above.
16126 If no environment variable is found, or if it does not have a valid value,
16127 then the default is @code{in} (invalid values).
16128 @end table
16129
16130 @geindex -static (gnatbind)
16131
16132
16133 @table @asis
16134
16135 @item @code{-static}
16136
16137 Link against a static GNAT run-time.
16138
16139 @geindex -shared (gnatbind)
16140
16141 @item @code{-shared}
16142
16143 Link against a shared GNAT run-time when available.
16144
16145 @geindex -t (gnatbind)
16146
16147 @item @code{-t}
16148
16149 Tolerate time stamp and other consistency errors.
16150
16151 @geindex -T (gnatbind)
16152
16153 @item @code{-T`n'}
16154
16155 Set the time slice value to @code{n} milliseconds. If the system supports
16156 the specification of a specific time slice value, then the indicated value
16157 is used. If the system does not support specific time slice values, but
16158 does support some general notion of round-robin scheduling, then any
16159 nonzero value will activate round-robin scheduling.
16160
16161 A value of zero is treated specially. It turns off time
16162 slicing, and in addition, indicates to the tasking run-time that the
16163 semantics should match as closely as possible the Annex D
16164 requirements of the Ada RM, and in particular sets the default
16165 scheduling policy to @code{FIFO_Within_Priorities}.
16166
16167 @geindex -u (gnatbind)
16168
16169 @item @code{-u`n'}
16170
16171 Enable dynamic stack usage, with @code{n} results stored and displayed
16172 at program termination. A result is generated when a task
16173 terminates. Results that can’t be stored are displayed on the fly, at
16174 task termination. This option is currently not supported on Itanium
16175 platforms. (See @ref{115,,Dynamic Stack Usage Analysis} for details.)
16176
16177 @geindex -v (gnatbind)
16178
16179 @item @code{-v}
16180
16181 Verbose mode. Write error messages, header, summary output to
16182 @code{stdout}.
16183
16184 @geindex -V (gnatbind)
16185
16186 @item @code{-V`key'=`value'}
16187
16188 Store the given association of @code{key} to @code{value} in the bind environment.
16189 Values stored this way can be retrieved at run time using
16190 @code{GNAT.Bind_Environment}.
16191
16192 @geindex -w (gnatbind)
16193
16194 @item @code{-w`x'}
16195
16196 Warning mode; @code{x} = s/e for suppress/treat as error.
16197
16198 @geindex -Wx (gnatbind)
16199
16200 @item @code{-Wx`e'}
16201
16202 Override default wide character encoding for standard Text_IO files.
16203
16204 @geindex -x (gnatbind)
16205
16206 @item @code{-x}
16207
16208 Exclude source files (check object consistency only).
16209
16210 @geindex -xdr (gnatbind)
16211
16212 @item @code{-xdr}
16213
16214 Use the target-independent XDR protocol for stream oriented attributes
16215 instead of the default implementation which is based on direct binary
16216 representations and is therefore target-and endianness-dependent.
16217 However it does not support 128-bit integer types and the exception
16218 @code{Ada.IO_Exceptions.Device_Error} is raised if any attempt is made
16219 at streaming 128-bit integer types with it.
16220
16221 @geindex -Xnnn (gnatbind)
16222
16223 @item @code{-X`nnn'}
16224
16225 Set default exit status value, normally 0 for POSIX compliance.
16226
16227 @geindex -y (gnatbind)
16228
16229 @item @code{-y}
16230
16231 Enable leap seconds support in @code{Ada.Calendar} and its children.
16232
16233 @geindex -z (gnatbind)
16234
16235 @item @code{-z}
16236
16237 No main subprogram.
16238 @end table
16239
16240 You may obtain this listing of switches by running @code{gnatbind} with
16241 no arguments.
16242
16243 @menu
16244 * Consistency-Checking Modes::
16245 * Binder Error Message Control::
16246 * Elaboration Control::
16247 * Output Control::
16248 * Dynamic Allocation Control::
16249 * Binding with Non-Ada Main Programs::
16250 * Binding Programs with No Main Subprogram::
16251
16252 @end menu
16253
16254 @node Consistency-Checking Modes,Binder Error Message Control,,Switches for gnatbind
16255 @anchor{gnat_ugn/building_executable_programs_with_gnat consistency-checking-modes}@anchor{116}@anchor{gnat_ugn/building_executable_programs_with_gnat id35}@anchor{117}
16256 @subsubsection Consistency-Checking Modes
16257
16258
16259 As described earlier, by default @code{gnatbind} checks
16260 that object files are consistent with one another and are consistent
16261 with any source files it can locate. The following switches control binder
16262 access to sources.
16263
16264 @quotation
16265
16266 @geindex -s (gnatbind)
16267 @end quotation
16268
16269
16270 @table @asis
16271
16272 @item @code{-s}
16273
16274 Require source files to be present. In this mode, the binder must be
16275 able to locate all source files that are referenced, in order to check
16276 their consistency. In normal mode, if a source file cannot be located it
16277 is simply ignored. If you specify this switch, a missing source
16278 file is an error.
16279
16280 @geindex -Wx (gnatbind)
16281
16282 @item @code{-Wx`e'}
16283
16284 Override default wide character encoding for standard Text_IO files.
16285 Normally the default wide character encoding method used for standard
16286 [Wide_[Wide_]]Text_IO files is taken from the encoding specified for
16287 the main source input (see description of switch
16288 @code{-gnatWx} for the compiler). The
16289 use of this switch for the binder (which has the same set of
16290 possible arguments) overrides this default as specified.
16291
16292 @geindex -x (gnatbind)
16293
16294 @item @code{-x}
16295
16296 Exclude source files. In this mode, the binder only checks that ALI
16297 files are consistent with one another. Source files are not accessed.
16298 The binder runs faster in this mode, and there is still a guarantee that
16299 the resulting program is self-consistent.
16300 If a source file has been edited since it was last compiled, and you
16301 specify this switch, the binder will not detect that the object
16302 file is out of date with respect to the source file. Note that this is the
16303 mode that is automatically used by @code{gnatmake} because in this
16304 case the checking against sources has already been performed by
16305 @code{gnatmake} in the course of compilation (i.e., before binding).
16306 @end table
16307
16308 @node Binder Error Message Control,Elaboration Control,Consistency-Checking Modes,Switches for gnatbind
16309 @anchor{gnat_ugn/building_executable_programs_with_gnat binder-error-message-control}@anchor{118}@anchor{gnat_ugn/building_executable_programs_with_gnat id36}@anchor{119}
16310 @subsubsection Binder Error Message Control
16311
16312
16313 The following switches provide control over the generation of error
16314 messages from the binder:
16315
16316 @quotation
16317
16318 @geindex -v (gnatbind)
16319 @end quotation
16320
16321
16322 @table @asis
16323
16324 @item @code{-v}
16325
16326 Verbose mode. In the normal mode, brief error messages are generated to
16327 @code{stderr}. If this switch is present, a header is written
16328 to @code{stdout} and any error messages are directed to @code{stdout}.
16329 All that is written to @code{stderr} is a brief summary message.
16330
16331 @geindex -b (gnatbind)
16332
16333 @item @code{-b}
16334
16335 Generate brief error messages to @code{stderr} even if verbose mode is
16336 specified. This is relevant only when used with the
16337 @code{-v} switch.
16338
16339 @geindex -m (gnatbind)
16340
16341 @item @code{-m`n'}
16342
16343 Limits the number of error messages to @code{n}, a decimal integer in the
16344 range 1-999. The binder terminates immediately if this limit is reached.
16345
16346 @geindex -M (gnatbind)
16347
16348 @item @code{-M`xxx'}
16349
16350 Renames the generated main program from @code{main} to @code{xxx}.
16351 This is useful in the case of some cross-building environments, where
16352 the actual main program is separate from the one generated
16353 by @code{gnatbind}.
16354
16355 @geindex -ws (gnatbind)
16356
16357 @geindex Warnings
16358
16359 @item @code{-ws}
16360
16361 Suppress all warning messages.
16362
16363 @geindex -we (gnatbind)
16364
16365 @item @code{-we}
16366
16367 Treat any warning messages as fatal errors.
16368
16369 @geindex -t (gnatbind)
16370
16371 @geindex Time stamp checks
16372 @geindex in binder
16373
16374 @geindex Binder consistency checks
16375
16376 @geindex Consistency checks
16377 @geindex in binder
16378
16379 @item @code{-t}
16380
16381 The binder performs a number of consistency checks including:
16382
16383
16384 @itemize *
16385
16386 @item
16387 Check that time stamps of a given source unit are consistent
16388
16389 @item
16390 Check that checksums of a given source unit are consistent
16391
16392 @item
16393 Check that consistent versions of @code{GNAT} were used for compilation
16394
16395 @item
16396 Check consistency of configuration pragmas as required
16397 @end itemize
16398
16399 Normally failure of such checks, in accordance with the consistency
16400 requirements of the Ada Reference Manual, causes error messages to be
16401 generated which abort the binder and prevent the output of a binder
16402 file and subsequent link to obtain an executable.
16403
16404 The @code{-t} switch converts these error messages
16405 into warnings, so that
16406 binding and linking can continue to completion even in the presence of such
16407 errors. The result may be a failed link (due to missing symbols), or a
16408 non-functional executable which has undefined semantics.
16409
16410 @cartouche
16411 @quotation Note
16412 This means that @code{-t} should be used only in unusual situations,
16413 with extreme care.
16414 @end quotation
16415 @end cartouche
16416 @end table
16417
16418 @node Elaboration Control,Output Control,Binder Error Message Control,Switches for gnatbind
16419 @anchor{gnat_ugn/building_executable_programs_with_gnat elaboration-control}@anchor{113}@anchor{gnat_ugn/building_executable_programs_with_gnat id37}@anchor{11a}
16420 @subsubsection Elaboration Control
16421
16422
16423 The following switches provide additional control over the elaboration
16424 order. For further details see @ref{f,,Elaboration Order Handling in GNAT}.
16425
16426 @geindex -f (gnatbind)
16427
16428
16429 @table @asis
16430
16431 @item @code{-f`elab-order'}
16432
16433 Force elaboration order.
16434
16435 @code{elab-order} should be the name of a “forced elaboration order file”, that
16436 is, a text file containing library item names, one per line. A name of the
16437 form “some.unit%s” or “some.unit (spec)” denotes the spec of Some.Unit. A
16438 name of the form “some.unit%b” or “some.unit (body)” denotes the body of
16439 Some.Unit. Each pair of lines is taken to mean that there is an elaboration
16440 dependence of the second line on the first. For example, if the file
16441 contains:
16442
16443 @example
16444 this (spec)
16445 this (body)
16446 that (spec)
16447 that (body)
16448 @end example
16449
16450 then the spec of This will be elaborated before the body of This, and the
16451 body of This will be elaborated before the spec of That, and the spec of That
16452 will be elaborated before the body of That. The first and last of these three
16453 dependences are already required by Ada rules, so this file is really just
16454 forcing the body of This to be elaborated before the spec of That.
16455
16456 The given order must be consistent with Ada rules, or else @code{gnatbind} will
16457 give elaboration cycle errors. For example, if you say x (body) should be
16458 elaborated before x (spec), there will be a cycle, because Ada rules require
16459 x (spec) to be elaborated before x (body); you can’t have the spec and body
16460 both elaborated before each other.
16461
16462 If you later add “with That;” to the body of This, there will be a cycle, in
16463 which case you should erase either “this (body)” or “that (spec)” from the
16464 above forced elaboration order file.
16465
16466 Blank lines and Ada-style comments are ignored. Unit names that do not exist
16467 in the program are ignored. Units in the GNAT predefined library are also
16468 ignored.
16469 @end table
16470
16471 @geindex -p (gnatbind)
16472
16473
16474 @table @asis
16475
16476 @item @code{-p}
16477
16478 Pessimistic elaboration order
16479
16480 This switch is only applicable to the pre-20.x legacy elaboration models.
16481 The post-20.x elaboration model uses a more informed approach of ordering
16482 the units.
16483
16484 Normally the binder attempts to choose an elaboration order that is likely to
16485 minimize the likelihood of an elaboration order error resulting in raising a
16486 @code{Program_Error} exception. This switch reverses the action of the binder,
16487 and requests that it deliberately choose an order that is likely to maximize
16488 the likelihood of an elaboration error. This is useful in ensuring
16489 portability and avoiding dependence on accidental fortuitous elaboration
16490 ordering.
16491
16492 Normally it only makes sense to use the @code{-p} switch if dynamic
16493 elaboration checking is used (@code{-gnatE} switch used for compilation).
16494 This is because in the default static elaboration mode, all necessary
16495 @code{Elaborate} and @code{Elaborate_All} pragmas are implicitly inserted.
16496 These implicit pragmas are still respected by the binder in @code{-p}
16497 mode, so a safe elaboration order is assured.
16498
16499 Note that @code{-p} is not intended for production use; it is more for
16500 debugging/experimental use.
16501 @end table
16502
16503 @node Output Control,Dynamic Allocation Control,Elaboration Control,Switches for gnatbind
16504 @anchor{gnat_ugn/building_executable_programs_with_gnat id38}@anchor{11b}@anchor{gnat_ugn/building_executable_programs_with_gnat output-control}@anchor{11c}
16505 @subsubsection Output Control
16506
16507
16508 The following switches allow additional control over the output
16509 generated by the binder.
16510
16511 @quotation
16512
16513 @geindex -c (gnatbind)
16514 @end quotation
16515
16516
16517 @table @asis
16518
16519 @item @code{-c}
16520
16521 Check only. Do not generate the binder output file. In this mode the
16522 binder performs all error checks but does not generate an output file.
16523
16524 @geindex -e (gnatbind)
16525
16526 @item @code{-e}
16527
16528 Output complete list of elaboration-order dependencies, showing the
16529 reason for each dependency. This output can be rather extensive but may
16530 be useful in diagnosing problems with elaboration order. The output is
16531 written to @code{stdout}.
16532
16533 @geindex -h (gnatbind)
16534
16535 @item @code{-h}
16536
16537 Output usage information. The output is written to @code{stdout}.
16538
16539 @geindex -K (gnatbind)
16540
16541 @item @code{-K}
16542
16543 Output linker options to @code{stdout}. Includes library search paths,
16544 contents of pragmas Ident and Linker_Options, and libraries added
16545 by @code{gnatbind}.
16546
16547 @geindex -l (gnatbind)
16548
16549 @item @code{-l}
16550
16551 Output chosen elaboration order. The output is written to @code{stdout}.
16552
16553 @geindex -O (gnatbind)
16554
16555 @item @code{-O}
16556
16557 Output full names of all the object files that must be linked to provide
16558 the Ada component of the program. The output is written to @code{stdout}.
16559 This list includes the files explicitly supplied and referenced by the user
16560 as well as implicitly referenced run-time unit files. The latter are
16561 omitted if the corresponding units reside in shared libraries. The
16562 directory names for the run-time units depend on the system configuration.
16563
16564 @geindex -o (gnatbind)
16565
16566 @item @code{-o `file'}
16567
16568 Set name of output file to @code{file} instead of the normal
16569 @code{b~`mainprog}.adb` default. Note that @code{file} denote the Ada
16570 binder generated body filename.
16571 Note that if this option is used, then linking must be done manually.
16572 It is not possible to use gnatlink in this case, since it cannot locate
16573 the binder file.
16574
16575 @geindex -r (gnatbind)
16576
16577 @item @code{-r}
16578
16579 Generate list of @code{pragma Restrictions} that could be applied to
16580 the current unit. This is useful for code audit purposes, and also may
16581 be used to improve code generation in some cases.
16582 @end table
16583
16584 @node Dynamic Allocation Control,Binding with Non-Ada Main Programs,Output Control,Switches for gnatbind
16585 @anchor{gnat_ugn/building_executable_programs_with_gnat dynamic-allocation-control}@anchor{114}@anchor{gnat_ugn/building_executable_programs_with_gnat id39}@anchor{11d}
16586 @subsubsection Dynamic Allocation Control
16587
16588
16589 The heap control switches – @code{-H32} and @code{-H64} –
16590 determine whether dynamic allocation uses 32-bit or 64-bit memory.
16591 They only affect compiler-generated allocations via @code{__gnat_malloc};
16592 explicit calls to @code{malloc} and related functions from the C
16593 run-time library are unaffected.
16594
16595
16596 @table @asis
16597
16598 @item @code{-H32}
16599
16600 Allocate memory on 32-bit heap
16601
16602 @item @code{-H64}
16603
16604 Allocate memory on 64-bit heap. This is the default
16605 unless explicitly overridden by a @code{'Size} clause on the access type.
16606 @end table
16607
16608 These switches are only effective on VMS platforms.
16609
16610 @node Binding with Non-Ada Main Programs,Binding Programs with No Main Subprogram,Dynamic Allocation Control,Switches for gnatbind
16611 @anchor{gnat_ugn/building_executable_programs_with_gnat binding-with-non-ada-main-programs}@anchor{a0}@anchor{gnat_ugn/building_executable_programs_with_gnat id40}@anchor{11e}
16612 @subsubsection Binding with Non-Ada Main Programs
16613
16614
16615 The description so far has assumed that the main
16616 program is in Ada, and that the task of the binder is to generate a
16617 corresponding function @code{main} that invokes this Ada main
16618 program. GNAT also supports the building of executable programs where
16619 the main program is not in Ada, but some of the called routines are
16620 written in Ada and compiled using GNAT (@ref{2c,,Mixed Language Programming}).
16621 The following switch is used in this situation:
16622
16623 @quotation
16624
16625 @geindex -n (gnatbind)
16626 @end quotation
16627
16628
16629 @table @asis
16630
16631 @item @code{-n}
16632
16633 No main program. The main program is not in Ada.
16634 @end table
16635
16636 In this case, most of the functions of the binder are still required,
16637 but instead of generating a main program, the binder generates a file
16638 containing the following callable routines:
16639
16640 @quotation
16641
16642 @geindex adainit
16643
16644
16645 @table @asis
16646
16647 @item @code{adainit}
16648
16649 You must call this routine to initialize the Ada part of the program by
16650 calling the necessary elaboration routines. A call to @code{adainit} is
16651 required before the first call to an Ada subprogram.
16652
16653 Note that it is assumed that the basic execution environment must be setup
16654 to be appropriate for Ada execution at the point where the first Ada
16655 subprogram is called. In particular, if the Ada code will do any
16656 floating-point operations, then the FPU must be setup in an appropriate
16657 manner. For the case of the x86, for example, full precision mode is
16658 required. The procedure GNAT.Float_Control.Reset may be used to ensure
16659 that the FPU is in the right state.
16660 @end table
16661
16662 @geindex adafinal
16663
16664
16665 @table @asis
16666
16667 @item @code{adafinal}
16668
16669 You must call this routine to perform any library-level finalization
16670 required by the Ada subprograms. A call to @code{adafinal} is required
16671 after the last call to an Ada subprogram, and before the program
16672 terminates.
16673 @end table
16674 @end quotation
16675
16676 @geindex -n (gnatbind)
16677
16678 @geindex Binder
16679 @geindex multiple input files
16680
16681 If the @code{-n} switch
16682 is given, more than one ALI file may appear on
16683 the command line for @code{gnatbind}. The normal @code{closure}
16684 calculation is performed for each of the specified units. Calculating
16685 the closure means finding out the set of units involved by tracing
16686 `with' references. The reason it is necessary to be able to
16687 specify more than one ALI file is that a given program may invoke two or
16688 more quite separate groups of Ada units.
16689
16690 The binder takes the name of its output file from the last specified ALI
16691 file, unless overridden by the use of the @code{-o file}.
16692
16693 @geindex -o (gnatbind)
16694
16695 The output is an Ada unit in source form that can be compiled with GNAT.
16696 This compilation occurs automatically as part of the @code{gnatlink}
16697 processing.
16698
16699 Currently the GNAT run-time requires a FPU using 80 bits mode
16700 precision. Under targets where this is not the default it is required to
16701 call GNAT.Float_Control.Reset before using floating point numbers (this
16702 include float computation, float input and output) in the Ada code. A
16703 side effect is that this could be the wrong mode for the foreign code
16704 where floating point computation could be broken after this call.
16705
16706 @node Binding Programs with No Main Subprogram,,Binding with Non-Ada Main Programs,Switches for gnatbind
16707 @anchor{gnat_ugn/building_executable_programs_with_gnat binding-programs-with-no-main-subprogram}@anchor{11f}@anchor{gnat_ugn/building_executable_programs_with_gnat id41}@anchor{120}
16708 @subsubsection Binding Programs with No Main Subprogram
16709
16710
16711 It is possible to have an Ada program which does not have a main
16712 subprogram. This program will call the elaboration routines of all the
16713 packages, then the finalization routines.
16714
16715 The following switch is used to bind programs organized in this manner:
16716
16717 @quotation
16718
16719 @geindex -z (gnatbind)
16720 @end quotation
16721
16722
16723 @table @asis
16724
16725 @item @code{-z}
16726
16727 Normally the binder checks that the unit name given on the command line
16728 corresponds to a suitable main subprogram. When this switch is used,
16729 a list of ALI files can be given, and the execution of the program
16730 consists of elaboration of these units in an appropriate order. Note
16731 that the default wide character encoding method for standard Text_IO
16732 files is always set to Brackets if this switch is set (you can use
16733 the binder switch
16734 @code{-Wx} to override this default).
16735 @end table
16736
16737 @node Command-Line Access,Search Paths for gnatbind,Switches for gnatbind,Binding with gnatbind
16738 @anchor{gnat_ugn/building_executable_programs_with_gnat command-line-access}@anchor{121}@anchor{gnat_ugn/building_executable_programs_with_gnat id42}@anchor{122}
16739 @subsection Command-Line Access
16740
16741
16742 The package @code{Ada.Command_Line} provides access to the command-line
16743 arguments and program name. In order for this interface to operate
16744 correctly, the two variables
16745
16746 @example
16747 int gnat_argc;
16748 char **gnat_argv;
16749 @end example
16750
16751 @geindex gnat_argv
16752
16753 @geindex gnat_argc
16754
16755 are declared in one of the GNAT library routines. These variables must
16756 be set from the actual @code{argc} and @code{argv} values passed to the
16757 main program. With no `n' present, @code{gnatbind}
16758 generates the C main program to automatically set these variables.
16759 If the `n' switch is used, there is no automatic way to
16760 set these variables. If they are not set, the procedures in
16761 @code{Ada.Command_Line} will not be available, and any attempt to use
16762 them will raise @code{Constraint_Error}. If command line access is
16763 required, your main program must set @code{gnat_argc} and
16764 @code{gnat_argv} from the @code{argc} and @code{argv} values passed to
16765 it.
16766
16767 @node Search Paths for gnatbind,Examples of gnatbind Usage,Command-Line Access,Binding with gnatbind
16768 @anchor{gnat_ugn/building_executable_programs_with_gnat id43}@anchor{123}@anchor{gnat_ugn/building_executable_programs_with_gnat search-paths-for-gnatbind}@anchor{76}
16769 @subsection Search Paths for @code{gnatbind}
16770
16771
16772 The binder takes the name of an ALI file as its argument and needs to
16773 locate source files as well as other ALI files to verify object consistency.
16774
16775 For source files, it follows exactly the same search rules as @code{gcc}
16776 (see @ref{73,,Search Paths and the Run-Time Library (RTL)}). For ALI files the
16777 directories searched are:
16778
16779
16780 @itemize *
16781
16782 @item
16783 The directory containing the ALI file named in the command line, unless
16784 the switch @code{-I-} is specified.
16785
16786 @item
16787 All directories specified by @code{-I}
16788 switches on the @code{gnatbind}
16789 command line, in the order given.
16790
16791 @geindex ADA_PRJ_OBJECTS_FILE
16792
16793 @item
16794 Each of the directories listed in the text file whose name is given
16795 by the
16796 @geindex ADA_PRJ_OBJECTS_FILE
16797 @geindex environment variable; ADA_PRJ_OBJECTS_FILE
16798 @code{ADA_PRJ_OBJECTS_FILE} environment variable.
16799
16800 @geindex ADA_PRJ_OBJECTS_FILE
16801 @geindex environment variable; ADA_PRJ_OBJECTS_FILE
16802 @code{ADA_PRJ_OBJECTS_FILE} is normally set by gnatmake or by the gnat
16803 driver when project files are used. It should not normally be set
16804 by other means.
16805
16806 @geindex ADA_OBJECTS_PATH
16807
16808 @item
16809 Each of the directories listed in the value of the
16810 @geindex ADA_OBJECTS_PATH
16811 @geindex environment variable; ADA_OBJECTS_PATH
16812 @code{ADA_OBJECTS_PATH} environment variable.
16813 Construct this value
16814 exactly as the
16815 @geindex PATH
16816 @geindex environment variable; PATH
16817 @code{PATH} environment variable: a list of directory
16818 names separated by colons (semicolons when working with the NT version
16819 of GNAT).
16820
16821 @item
16822 The content of the @code{ada_object_path} file which is part of the GNAT
16823 installation tree and is used to store standard libraries such as the
16824 GNAT Run-Time Library (RTL) unless the switch @code{-nostdlib} is
16825 specified. See @ref{72,,Installing a library}
16826 @end itemize
16827
16828 @geindex -I (gnatbind)
16829
16830 @geindex -aI (gnatbind)
16831
16832 @geindex -aO (gnatbind)
16833
16834 In the binder the switch @code{-I}
16835 is used to specify both source and
16836 library file paths. Use @code{-aI}
16837 instead if you want to specify
16838 source paths only, and @code{-aO}
16839 if you want to specify library paths
16840 only. This means that for the binder
16841 @code{-I`dir'} is equivalent to
16842 @code{-aI`dir'}
16843 @code{-aO``dir'}.
16844 The binder generates the bind file (a C language source file) in the
16845 current working directory.
16846
16847 @geindex Ada
16848
16849 @geindex System
16850
16851 @geindex Interfaces
16852
16853 @geindex GNAT
16854
16855 The packages @code{Ada}, @code{System}, and @code{Interfaces} and their
16856 children make up the GNAT Run-Time Library, together with the package
16857 GNAT and its children, which contain a set of useful additional
16858 library functions provided by GNAT. The sources for these units are
16859 needed by the compiler and are kept together in one directory. The ALI
16860 files and object files generated by compiling the RTL are needed by the
16861 binder and the linker and are kept together in one directory, typically
16862 different from the directory containing the sources. In a normal
16863 installation, you need not specify these directory names when compiling
16864 or binding. Either the environment variables or the built-in defaults
16865 cause these files to be found.
16866
16867 Besides simplifying access to the RTL, a major use of search paths is
16868 in compiling sources from multiple directories. This can make
16869 development environments much more flexible.
16870
16871 @node Examples of gnatbind Usage,,Search Paths for gnatbind,Binding with gnatbind
16872 @anchor{gnat_ugn/building_executable_programs_with_gnat examples-of-gnatbind-usage}@anchor{124}@anchor{gnat_ugn/building_executable_programs_with_gnat id44}@anchor{125}
16873 @subsection Examples of @code{gnatbind} Usage
16874
16875
16876 Here are some examples of @code{gnatbind} invocations:
16877
16878 @quotation
16879
16880 @example
16881 gnatbind hello
16882 @end example
16883
16884 The main program @code{Hello} (source program in @code{hello.adb}) is
16885 bound using the standard switch settings. The generated main program is
16886 @code{b~hello.adb}. This is the normal, default use of the binder.
16887
16888 @example
16889 gnatbind hello -o mainprog.adb
16890 @end example
16891
16892 The main program @code{Hello} (source program in @code{hello.adb}) is
16893 bound using the standard switch settings. The generated main program is
16894 @code{mainprog.adb} with the associated spec in
16895 @code{mainprog.ads}. Note that you must specify the body here not the
16896 spec. Note that if this option is used, then linking must be done manually,
16897 since gnatlink will not be able to find the generated file.
16898 @end quotation
16899
16900 @node Linking with gnatlink,Using the GNU make Utility,Binding with gnatbind,Building Executable Programs with GNAT
16901 @anchor{gnat_ugn/building_executable_programs_with_gnat id45}@anchor{126}@anchor{gnat_ugn/building_executable_programs_with_gnat linking-with-gnatlink}@anchor{cb}
16902 @section Linking with @code{gnatlink}
16903
16904
16905 @geindex gnatlink
16906
16907 This chapter discusses @code{gnatlink}, a tool that links
16908 an Ada program and builds an executable file. This utility
16909 invokes the system linker (via the @code{gcc} command)
16910 with a correct list of object files and library references.
16911 @code{gnatlink} automatically determines the list of files and
16912 references for the Ada part of a program. It uses the binder file
16913 generated by the @code{gnatbind} to determine this list.
16914
16915 @menu
16916 * Running gnatlink::
16917 * Switches for gnatlink::
16918
16919 @end menu
16920
16921 @node Running gnatlink,Switches for gnatlink,,Linking with gnatlink
16922 @anchor{gnat_ugn/building_executable_programs_with_gnat id46}@anchor{127}@anchor{gnat_ugn/building_executable_programs_with_gnat running-gnatlink}@anchor{128}
16923 @subsection Running @code{gnatlink}
16924
16925
16926 The form of the @code{gnatlink} command is
16927
16928 @example
16929 $ gnatlink [ switches ] mainprog [.ali]
16930 [ non-Ada objects ] [ linker options ]
16931 @end example
16932
16933 The arguments of @code{gnatlink} (switches, main @code{ALI} file,
16934 non-Ada objects
16935 or linker options) may be in any order, provided that no non-Ada object may
16936 be mistaken for a main @code{ALI} file.
16937 Any file name @code{F} without the @code{.ali}
16938 extension will be taken as the main @code{ALI} file if a file exists
16939 whose name is the concatenation of @code{F} and @code{.ali}.
16940
16941 @code{mainprog.ali} references the ALI file of the main program.
16942 The @code{.ali} extension of this file can be omitted. From this
16943 reference, @code{gnatlink} locates the corresponding binder file
16944 @code{b~mainprog.adb} and, using the information in this file along
16945 with the list of non-Ada objects and linker options, constructs a
16946 linker command file to create the executable.
16947
16948 The arguments other than the @code{gnatlink} switches and the main
16949 @code{ALI} file are passed to the linker uninterpreted.
16950 They typically include the names of
16951 object files for units written in other languages than Ada and any library
16952 references required to resolve references in any of these foreign language
16953 units, or in @code{Import} pragmas in any Ada units.
16954
16955 @code{linker options} is an optional list of linker specific
16956 switches.
16957 The default linker called by gnatlink is @code{gcc} which in
16958 turn calls the appropriate system linker.
16959
16960 One useful option for the linker is @code{-s}: it reduces the size of the
16961 executable by removing all symbol table and relocation information from the
16962 executable.
16963
16964 Standard options for the linker such as @code{-lmy_lib} or
16965 @code{-Ldir} can be added as is.
16966 For options that are not recognized by
16967 @code{gcc} as linker options, use the @code{gcc} switches
16968 @code{-Xlinker} or @code{-Wl,}.
16969
16970 Refer to the GCC documentation for
16971 details.
16972
16973 Here is an example showing how to generate a linker map:
16974
16975 @example
16976 $ gnatlink my_prog -Wl,-Map,MAPFILE
16977 @end example
16978
16979 Using @code{linker options} it is possible to set the program stack and
16980 heap size.
16981 See @ref{129,,Setting Stack Size from gnatlink} and
16982 @ref{12a,,Setting Heap Size from gnatlink}.
16983
16984 @code{gnatlink} determines the list of objects required by the Ada
16985 program and prepends them to the list of objects passed to the linker.
16986 @code{gnatlink} also gathers any arguments set by the use of
16987 @code{pragma Linker_Options} and adds them to the list of arguments
16988 presented to the linker.
16989
16990 @node Switches for gnatlink,,Running gnatlink,Linking with gnatlink
16991 @anchor{gnat_ugn/building_executable_programs_with_gnat id47}@anchor{12b}@anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gnatlink}@anchor{12c}
16992 @subsection Switches for @code{gnatlink}
16993
16994
16995 The following switches are available with the @code{gnatlink} utility:
16996
16997 @geindex --version (gnatlink)
16998
16999
17000 @table @asis
17001
17002 @item @code{--version}
17003
17004 Display Copyright and version, then exit disregarding all other options.
17005 @end table
17006
17007 @geindex --help (gnatlink)
17008
17009
17010 @table @asis
17011
17012 @item @code{--help}
17013
17014 If @code{--version} was not used, display usage, then exit disregarding
17015 all other options.
17016 @end table
17017
17018 @geindex Command line length
17019
17020 @geindex -f (gnatlink)
17021
17022
17023 @table @asis
17024
17025 @item @code{-f}
17026
17027 On some targets, the command line length is limited, and @code{gnatlink}
17028 will generate a separate file for the linker if the list of object files
17029 is too long.
17030 The @code{-f} switch forces this file
17031 to be generated even if
17032 the limit is not exceeded. This is useful in some cases to deal with
17033 special situations where the command line length is exceeded.
17034 @end table
17035
17036 @geindex Debugging information
17037 @geindex including
17038
17039 @geindex -g (gnatlink)
17040
17041
17042 @table @asis
17043
17044 @item @code{-g}
17045
17046 The option to include debugging information causes the Ada bind file (in
17047 other words, @code{b~mainprog.adb}) to be compiled with @code{-g}.
17048 In addition, the binder does not delete the @code{b~mainprog.adb},
17049 @code{b~mainprog.o} and @code{b~mainprog.ali} files.
17050 Without @code{-g}, the binder removes these files by default.
17051 @end table
17052
17053 @geindex -n (gnatlink)
17054
17055
17056 @table @asis
17057
17058 @item @code{-n}
17059
17060 Do not compile the file generated by the binder. This may be used when
17061 a link is rerun with different options, but there is no need to recompile
17062 the binder file.
17063 @end table
17064
17065 @geindex -v (gnatlink)
17066
17067
17068 @table @asis
17069
17070 @item @code{-v}
17071
17072 Verbose mode. Causes additional information to be output, including a full
17073 list of the included object files.
17074 This switch option is most useful when you want
17075 to see what set of object files are being used in the link step.
17076 @end table
17077
17078 @geindex -v -v (gnatlink)
17079
17080
17081 @table @asis
17082
17083 @item @code{-v -v}
17084
17085 Very verbose mode. Requests that the compiler operate in verbose mode when
17086 it compiles the binder file, and that the system linker run in verbose mode.
17087 @end table
17088
17089 @geindex -o (gnatlink)
17090
17091
17092 @table @asis
17093
17094 @item @code{-o `exec-name'}
17095
17096 @code{exec-name} specifies an alternate name for the generated
17097 executable program. If this switch is omitted, the executable has the same
17098 name as the main unit. For example, @code{gnatlink try.ali} creates
17099 an executable called @code{try}.
17100 @end table
17101
17102 @geindex -B (gnatlink)
17103
17104
17105 @table @asis
17106
17107 @item @code{-B`dir'}
17108
17109 Load compiler executables (for example, @code{gnat1}, the Ada compiler)
17110 from @code{dir} instead of the default location. Only use this switch
17111 when multiple versions of the GNAT compiler are available.
17112 See the @code{Directory Options} section in @cite{The_GNU_Compiler_Collection}
17113 for further details. You would normally use the @code{-b} or
17114 @code{-V} switch instead.
17115 @end table
17116
17117 @geindex -M (gnatlink)
17118
17119
17120 @table @asis
17121
17122 @item @code{-M}
17123
17124 When linking an executable, create a map file. The name of the map file
17125 has the same name as the executable with extension “.map”.
17126 @end table
17127
17128 @geindex -M= (gnatlink)
17129
17130
17131 @table @asis
17132
17133 @item @code{-M=`mapfile'}
17134
17135 When linking an executable, create a map file. The name of the map file is
17136 @code{mapfile}.
17137 @end table
17138
17139 @geindex --GCC=compiler_name (gnatlink)
17140
17141
17142 @table @asis
17143
17144 @item @code{--GCC=`compiler_name'}
17145
17146 Program used for compiling the binder file. The default is
17147 @code{gcc}. You need to use quotes around @code{compiler_name} if
17148 @code{compiler_name} contains spaces or other separator characters.
17149 As an example @code{--GCC="foo -x -y"} will instruct @code{gnatlink} to
17150 use @code{foo -x -y} as your compiler. Note that switch @code{-c} is always
17151 inserted after your command name. Thus in the above example the compiler
17152 command that will be used by @code{gnatlink} will be @code{foo -c -x -y}.
17153 A limitation of this syntax is that the name and path name of the executable
17154 itself must not include any embedded spaces. If the compiler executable is
17155 different from the default one (gcc or <prefix>-gcc), then the back-end
17156 switches in the ALI file are not used to compile the binder generated source.
17157 For example, this is the case with @code{--GCC="foo -x -y"}. But the back end
17158 switches will be used for @code{--GCC="gcc -gnatv"}. If several
17159 @code{--GCC=compiler_name} are used, only the last @code{compiler_name}
17160 is taken into account. However, all the additional switches are also taken
17161 into account. Thus,
17162 @code{--GCC="foo -x -y" --GCC="bar -z -t"} is equivalent to
17163 @code{--GCC="bar -x -y -z -t"}.
17164 @end table
17165
17166 @geindex --LINK= (gnatlink)
17167
17168
17169 @table @asis
17170
17171 @item @code{--LINK=`name'}
17172
17173 @code{name} is the name of the linker to be invoked. This is especially
17174 useful in mixed language programs since languages such as C++ require
17175 their own linker to be used. When this switch is omitted, the default
17176 name for the linker is @code{gcc}. When this switch is used, the
17177 specified linker is called instead of @code{gcc} with exactly the same
17178 parameters that would have been passed to @code{gcc} so if the desired
17179 linker requires different parameters it is necessary to use a wrapper
17180 script that massages the parameters before invoking the real linker. It
17181 may be useful to control the exact invocation by using the verbose
17182 switch.
17183 @end table
17184
17185 @node Using the GNU make Utility,,Linking with gnatlink,Building Executable Programs with GNAT
17186 @anchor{gnat_ugn/building_executable_programs_with_gnat id48}@anchor{12d}@anchor{gnat_ugn/building_executable_programs_with_gnat using-the-gnu-make-utility}@anchor{70}
17187 @section Using the GNU @code{make} Utility
17188
17189
17190 @geindex make (GNU)
17191 @geindex GNU make
17192
17193 This chapter offers some examples of makefiles that solve specific
17194 problems. It does not explain how to write a makefile, nor does it try to replace the
17195 @code{gnatmake} utility (@ref{c8,,Building with gnatmake}).
17196
17197 All the examples in this section are specific to the GNU version of
17198 make. Although @code{make} is a standard utility, and the basic language
17199 is the same, these examples use some advanced features found only in
17200 @code{GNU make}.
17201
17202 @menu
17203 * Using gnatmake in a Makefile::
17204 * Automatically Creating a List of Directories::
17205 * Generating the Command Line Switches::
17206 * Overcoming Command Line Length Limits::
17207
17208 @end menu
17209
17210 @node Using gnatmake in a Makefile,Automatically Creating a List of Directories,,Using the GNU make Utility
17211 @anchor{gnat_ugn/building_executable_programs_with_gnat id49}@anchor{12e}@anchor{gnat_ugn/building_executable_programs_with_gnat using-gnatmake-in-a-makefile}@anchor{12f}
17212 @subsection Using gnatmake in a Makefile
17213
17214
17215 @c index makefile (GNU make)
17216
17217 Complex project organizations can be handled in a very powerful way by
17218 using GNU make combined with gnatmake. For instance, here is a Makefile
17219 which allows you to build each subsystem of a big project into a separate
17220 shared library. Such a makefile allows you to significantly reduce the link
17221 time of very big applications while maintaining full coherence at
17222 each step of the build process.
17223
17224 The list of dependencies are handled automatically by
17225 @code{gnatmake}. The Makefile is simply used to call gnatmake in each of
17226 the appropriate directories.
17227
17228 Note that you should also read the example on how to automatically
17229 create the list of directories
17230 (@ref{130,,Automatically Creating a List of Directories})
17231 which might help you in case your project has a lot of subdirectories.
17232
17233 @example
17234 ## This Makefile is intended to be used with the following directory
17235 ## configuration:
17236 ## - The sources are split into a series of csc (computer software components)
17237 ## Each of these csc is put in its own directory.
17238 ## Their name are referenced by the directory names.
17239 ## They will be compiled into shared library (although this would also work
17240 ## with static libraries)
17241 ## - The main program (and possibly other packages that do not belong to any
17242 ## csc) is put in the top level directory (where the Makefile is).
17243 ## toplevel_dir __ first_csc (sources) __ lib (will contain the library)
17244 ## \\_ second_csc (sources) __ lib (will contain the library)
17245 ## \\_ ...
17246 ## Although this Makefile is build for shared library, it is easy to modify
17247 ## to build partial link objects instead (modify the lines with -shared and
17248 ## gnatlink below)
17249 ##
17250 ## With this makefile, you can change any file in the system or add any new
17251 ## file, and everything will be recompiled correctly (only the relevant shared
17252 ## objects will be recompiled, and the main program will be re-linked).
17253
17254 # The list of computer software component for your project. This might be
17255 # generated automatically.
17256 CSC_LIST=aa bb cc
17257
17258 # Name of the main program (no extension)
17259 MAIN=main
17260
17261 # If we need to build objects with -fPIC, uncomment the following line
17262 #NEED_FPIC=-fPIC
17263
17264 # The following variable should give the directory containing libgnat.so
17265 # You can get this directory through 'gnatls -v'. This is usually the last
17266 # directory in the Object_Path.
17267 GLIB=...
17268
17269 # The directories for the libraries
17270 # (This macro expands the list of CSC to the list of shared libraries, you
17271 # could simply use the expanded form:
17272 # LIB_DIR=aa/lib/libaa.so bb/lib/libbb.so cc/lib/libcc.so
17273 LIB_DIR=$@{foreach dir,$@{CSC_LIST@},$@{dir@}/lib/lib$@{dir@}.so@}
17274
17275 $@{MAIN@}: objects $@{LIB_DIR@}
17276 gnatbind $@{MAIN@} $@{CSC_LIST:%=-aO%/lib@} -shared
17277 gnatlink $@{MAIN@} $@{CSC_LIST:%=-l%@}
17278
17279 objects::
17280 # recompile the sources
17281 gnatmake -c -i $@{MAIN@}.adb $@{NEED_FPIC@} $@{CSC_LIST:%=-I%@}
17282
17283 # Note: In a future version of GNAT, the following commands will be simplified
17284 # by a new tool, gnatmlib
17285 $@{LIB_DIR@}:
17286 mkdir -p $@{dir $@@ @}
17287 cd $@{dir $@@ @} && gcc -shared -o $@{notdir $@@ @} ../*.o -L$@{GLIB@} -lgnat
17288 cd $@{dir $@@ @} && cp -f ../*.ali .
17289
17290 # The dependencies for the modules
17291 # Note that we have to force the expansion of *.o, since in some cases
17292 # make won't be able to do it itself.
17293 aa/lib/libaa.so: $@{wildcard aa/*.o@}
17294 bb/lib/libbb.so: $@{wildcard bb/*.o@}
17295 cc/lib/libcc.so: $@{wildcard cc/*.o@}
17296
17297 # Make sure all of the shared libraries are in the path before starting the
17298 # program
17299 run::
17300 LD_LIBRARY_PATH=`pwd`/aa/lib:`pwd`/bb/lib:`pwd`/cc/lib ./$@{MAIN@}
17301
17302 clean::
17303 $@{RM@} -rf $@{CSC_LIST:%=%/lib@}
17304 $@{RM@} $@{CSC_LIST:%=%/*.ali@}
17305 $@{RM@} $@{CSC_LIST:%=%/*.o@}
17306 $@{RM@} *.o *.ali $@{MAIN@}
17307 @end example
17308
17309 @node Automatically Creating a List of Directories,Generating the Command Line Switches,Using gnatmake in a Makefile,Using the GNU make Utility
17310 @anchor{gnat_ugn/building_executable_programs_with_gnat automatically-creating-a-list-of-directories}@anchor{130}@anchor{gnat_ugn/building_executable_programs_with_gnat id50}@anchor{131}
17311 @subsection Automatically Creating a List of Directories
17312
17313
17314 In most makefiles, you will have to specify a list of directories, and
17315 store it in a variable. For small projects, it is often easier to
17316 specify each of them by hand, since you then have full control over what
17317 is the proper order for these directories, which ones should be
17318 included.
17319
17320 However, in larger projects, which might involve hundreds of
17321 subdirectories, it might be more convenient to generate this list
17322 automatically.
17323
17324 The example below presents two methods. The first one, although less
17325 general, gives you more control over the list. It involves wildcard
17326 characters, that are automatically expanded by @code{make}. Its
17327 shortcoming is that you need to explicitly specify some of the
17328 organization of your project, such as for instance the directory tree
17329 depth, whether some directories are found in a separate tree, etc.
17330
17331 The second method is the most general one. It requires an external
17332 program, called @code{find}, which is standard on all Unix systems. All
17333 the directories found under a given root directory will be added to the
17334 list.
17335
17336 @example
17337 # The examples below are based on the following directory hierarchy:
17338 # All the directories can contain any number of files
17339 # ROOT_DIRECTORY -> a -> aa -> aaa
17340 # -> ab
17341 # -> ac
17342 # -> b -> ba -> baa
17343 # -> bb
17344 # -> bc
17345 # This Makefile creates a variable called DIRS, that can be reused any time
17346 # you need this list (see the other examples in this section)
17347
17348 # The root of your project's directory hierarchy
17349 ROOT_DIRECTORY=.
17350
17351 ####
17352 # First method: specify explicitly the list of directories
17353 # This allows you to specify any subset of all the directories you need.
17354 ####
17355
17356 DIRS := a/aa/ a/ab/ b/ba/
17357
17358 ####
17359 # Second method: use wildcards
17360 # Note that the argument(s) to wildcard below should end with a '/'.
17361 # Since wildcards also return file names, we have to filter them out
17362 # to avoid duplicate directory names.
17363 # We thus use make's `@w{`}dir`@w{`} and `@w{`}sort`@w{`} functions.
17364 # It sets DIRs to the following value (note that the directories aaa and baa
17365 # are not given, unless you change the arguments to wildcard).
17366 # DIRS= ./a/a/ ./b/ ./a/aa/ ./a/ab/ ./a/ac/ ./b/ba/ ./b/bb/ ./b/bc/
17367 ####
17368
17369 DIRS := $@{sort $@{dir $@{wildcard $@{ROOT_DIRECTORY@}/*/
17370 $@{ROOT_DIRECTORY@}/*/*/@}@}@}
17371
17372 ####
17373 # Third method: use an external program
17374 # This command is much faster if run on local disks, avoiding NFS slowdowns.
17375 # This is the most complete command: it sets DIRs to the following value:
17376 # DIRS= ./a ./a/aa ./a/aa/aaa ./a/ab ./a/ac ./b ./b/ba ./b/ba/baa ./b/bb ./b/bc
17377 ####
17378
17379 DIRS := $@{shell find $@{ROOT_DIRECTORY@} -type d -print@}
17380 @end example
17381
17382 @node Generating the Command Line Switches,Overcoming Command Line Length Limits,Automatically Creating a List of Directories,Using the GNU make Utility
17383 @anchor{gnat_ugn/building_executable_programs_with_gnat generating-the-command-line-switches}@anchor{132}@anchor{gnat_ugn/building_executable_programs_with_gnat id51}@anchor{133}
17384 @subsection Generating the Command Line Switches
17385
17386
17387 Once you have created the list of directories as explained in the
17388 previous section (@ref{130,,Automatically Creating a List of Directories}),
17389 you can easily generate the command line arguments to pass to gnatmake.
17390
17391 For the sake of completeness, this example assumes that the source path
17392 is not the same as the object path, and that you have two separate lists
17393 of directories.
17394
17395 @example
17396 # see "Automatically creating a list of directories" to create
17397 # these variables
17398 SOURCE_DIRS=
17399 OBJECT_DIRS=
17400
17401 GNATMAKE_SWITCHES := $@{patsubst %,-aI%,$@{SOURCE_DIRS@}@}
17402 GNATMAKE_SWITCHES += $@{patsubst %,-aO%,$@{OBJECT_DIRS@}@}
17403
17404 all:
17405 gnatmake $@{GNATMAKE_SWITCHES@} main_unit
17406 @end example
17407
17408 @node Overcoming Command Line Length Limits,,Generating the Command Line Switches,Using the GNU make Utility
17409 @anchor{gnat_ugn/building_executable_programs_with_gnat id52}@anchor{134}@anchor{gnat_ugn/building_executable_programs_with_gnat overcoming-command-line-length-limits}@anchor{135}
17410 @subsection Overcoming Command Line Length Limits
17411
17412
17413 One problem that might be encountered on big projects is that many
17414 operating systems limit the length of the command line. It is thus hard to give
17415 gnatmake the list of source and object directories.
17416
17417 This example shows how you can set up environment variables, which will
17418 make @code{gnatmake} behave exactly as if the directories had been
17419 specified on the command line, but have a much higher length limit (or
17420 even none on most systems).
17421
17422 It assumes that you have created a list of directories in your Makefile,
17423 using one of the methods presented in
17424 @ref{130,,Automatically Creating a List of Directories}.
17425 For the sake of completeness, we assume that the object
17426 path (where the ALI files are found) is different from the sources patch.
17427
17428 Note a small trick in the Makefile below: for efficiency reasons, we
17429 create two temporary variables (SOURCE_LIST and OBJECT_LIST), that are
17430 expanded immediately by @code{make}. This way we overcome the standard
17431 make behavior which is to expand the variables only when they are
17432 actually used.
17433
17434 On Windows, if you are using the standard Windows command shell, you must
17435 replace colons with semicolons in the assignments to these variables.
17436
17437 @example
17438 # In this example, we create both ADA_INCLUDE_PATH and ADA_OBJECTS_PATH.
17439 # This is the same thing as putting the -I arguments on the command line.
17440 # (the equivalent of using -aI on the command line would be to define
17441 # only ADA_INCLUDE_PATH, the equivalent of -aO is ADA_OBJECTS_PATH).
17442 # You can of course have different values for these variables.
17443 #
17444 # Note also that we need to keep the previous values of these variables, since
17445 # they might have been set before running 'make' to specify where the GNAT
17446 # library is installed.
17447
17448 # see "Automatically creating a list of directories" to create these
17449 # variables
17450 SOURCE_DIRS=
17451 OBJECT_DIRS=
17452
17453 empty:=
17454 space:=$@{empty@} $@{empty@}
17455 SOURCE_LIST := $@{subst $@{space@},:,$@{SOURCE_DIRS@}@}
17456 OBJECT_LIST := $@{subst $@{space@},:,$@{OBJECT_DIRS@}@}
17457 ADA_INCLUDE_PATH += $@{SOURCE_LIST@}
17458 ADA_OBJECTS_PATH += $@{OBJECT_LIST@}
17459 export ADA_INCLUDE_PATH
17460 export ADA_OBJECTS_PATH
17461
17462 all:
17463 gnatmake main_unit
17464 @end example
17465
17466 @node GNAT Utility Programs,GNAT and Program Execution,Building Executable Programs with GNAT,Top
17467 @anchor{gnat_ugn/gnat_utility_programs doc}@anchor{136}@anchor{gnat_ugn/gnat_utility_programs gnat-utility-programs}@anchor{b}@anchor{gnat_ugn/gnat_utility_programs id1}@anchor{137}
17468 @chapter GNAT Utility Programs
17469
17470
17471 This chapter describes a number of utility programs:
17472
17473
17474
17475 @itemize *
17476
17477 @item
17478 @ref{138,,The File Cleanup Utility gnatclean}
17479
17480 @item
17481 @ref{139,,The GNAT Library Browser gnatls}
17482 @end itemize
17483
17484 Other GNAT utilities are described elsewhere in this manual:
17485
17486
17487 @itemize *
17488
17489 @item
17490 @ref{42,,Handling Arbitrary File Naming Conventions with gnatname}
17491
17492 @item
17493 @ref{4c,,File Name Krunching with gnatkr}
17494
17495 @item
17496 @ref{1d,,Renaming Files with gnatchop}
17497
17498 @item
17499 @ref{8f,,Preprocessing with gnatprep}
17500 @end itemize
17501
17502 @menu
17503 * The File Cleanup Utility gnatclean::
17504 * The GNAT Library Browser gnatls::
17505
17506 @end menu
17507
17508 @node The File Cleanup Utility gnatclean,The GNAT Library Browser gnatls,,GNAT Utility Programs
17509 @anchor{gnat_ugn/gnat_utility_programs id2}@anchor{13a}@anchor{gnat_ugn/gnat_utility_programs the-file-cleanup-utility-gnatclean}@anchor{138}
17510 @section The File Cleanup Utility @code{gnatclean}
17511
17512
17513 @geindex File cleanup tool
17514
17515 @geindex gnatclean
17516
17517 @code{gnatclean} is a tool that allows the deletion of files produced by the
17518 compiler, binder and linker, including ALI files, object files, tree files,
17519 expanded source files, library files, interface copy source files, binder
17520 generated files and executable files.
17521
17522 @menu
17523 * Running gnatclean::
17524 * Switches for gnatclean::
17525
17526 @end menu
17527
17528 @node Running gnatclean,Switches for gnatclean,,The File Cleanup Utility gnatclean
17529 @anchor{gnat_ugn/gnat_utility_programs id3}@anchor{13b}@anchor{gnat_ugn/gnat_utility_programs running-gnatclean}@anchor{13c}
17530 @subsection Running @code{gnatclean}
17531
17532
17533 The @code{gnatclean} command has the form:
17534
17535 @quotation
17536
17537 @example
17538 $ gnatclean switches names
17539 @end example
17540 @end quotation
17541
17542 where @code{names} is a list of source file names. Suffixes @code{.ads} and
17543 @code{adb} may be omitted. If a project file is specified using switch
17544 @code{-P}, then @code{names} may be completely omitted.
17545
17546 In normal mode, @code{gnatclean} delete the files produced by the compiler and,
17547 if switch @code{-c} is not specified, by the binder and
17548 the linker. In informative-only mode, specified by switch
17549 @code{-n}, the list of files that would have been deleted in
17550 normal mode is listed, but no file is actually deleted.
17551
17552 @node Switches for gnatclean,,Running gnatclean,The File Cleanup Utility gnatclean
17553 @anchor{gnat_ugn/gnat_utility_programs id4}@anchor{13d}@anchor{gnat_ugn/gnat_utility_programs switches-for-gnatclean}@anchor{13e}
17554 @subsection Switches for @code{gnatclean}
17555
17556
17557 @code{gnatclean} recognizes the following switches:
17558
17559 @geindex --version (gnatclean)
17560
17561
17562 @table @asis
17563
17564 @item @code{--version}
17565
17566 Display copyright and version, then exit disregarding all other options.
17567 @end table
17568
17569 @geindex --help (gnatclean)
17570
17571
17572 @table @asis
17573
17574 @item @code{--help}
17575
17576 If @code{--version} was not used, display usage, then exit disregarding
17577 all other options.
17578
17579 @item @code{--subdirs=`subdir'}
17580
17581 Actual object directory of each project file is the subdirectory subdir of the
17582 object directory specified or defaulted in the project file.
17583
17584 @item @code{--unchecked-shared-lib-imports}
17585
17586 By default, shared library projects are not allowed to import static library
17587 projects. When this switch is used on the command line, this restriction is
17588 relaxed.
17589 @end table
17590
17591 @geindex -c (gnatclean)
17592
17593
17594 @table @asis
17595
17596 @item @code{-c}
17597
17598 Only attempt to delete the files produced by the compiler, not those produced
17599 by the binder or the linker. The files that are not to be deleted are library
17600 files, interface copy files, binder generated files and executable files.
17601 @end table
17602
17603 @geindex -D (gnatclean)
17604
17605
17606 @table @asis
17607
17608 @item @code{-D `dir'}
17609
17610 Indicate that ALI and object files should normally be found in directory @code{dir}.
17611 @end table
17612
17613 @geindex -F (gnatclean)
17614
17615
17616 @table @asis
17617
17618 @item @code{-F}
17619
17620 When using project files, if some errors or warnings are detected during
17621 parsing and verbose mode is not in effect (no use of switch
17622 -v), then error lines start with the full path name of the project
17623 file, rather than its simple file name.
17624 @end table
17625
17626 @geindex -h (gnatclean)
17627
17628
17629 @table @asis
17630
17631 @item @code{-h}
17632
17633 Output a message explaining the usage of @code{gnatclean}.
17634 @end table
17635
17636 @geindex -n (gnatclean)
17637
17638
17639 @table @asis
17640
17641 @item @code{-n}
17642
17643 Informative-only mode. Do not delete any files. Output the list of the files
17644 that would have been deleted if this switch was not specified.
17645 @end table
17646
17647 @geindex -P (gnatclean)
17648
17649
17650 @table @asis
17651
17652 @item @code{-P`project'}
17653
17654 Use project file @code{project}. Only one such switch can be used.
17655 When cleaning a project file, the files produced by the compilation of the
17656 immediate sources or inherited sources of the project files are to be
17657 deleted. This is not depending on the presence or not of executable names
17658 on the command line.
17659 @end table
17660
17661 @geindex -q (gnatclean)
17662
17663
17664 @table @asis
17665
17666 @item @code{-q}
17667
17668 Quiet output. If there are no errors, do not output anything, except in
17669 verbose mode (switch -v) or in informative-only mode
17670 (switch -n).
17671 @end table
17672
17673 @geindex -r (gnatclean)
17674
17675
17676 @table @asis
17677
17678 @item @code{-r}
17679
17680 When a project file is specified (using switch -P),
17681 clean all imported and extended project files, recursively. If this switch
17682 is not specified, only the files related to the main project file are to be
17683 deleted. This switch has no effect if no project file is specified.
17684 @end table
17685
17686 @geindex -v (gnatclean)
17687
17688
17689 @table @asis
17690
17691 @item @code{-v}
17692
17693 Verbose mode.
17694 @end table
17695
17696 @geindex -vP (gnatclean)
17697
17698
17699 @table @asis
17700
17701 @item @code{-vP`x'}
17702
17703 Indicates the verbosity of the parsing of GNAT project files.
17704 @ref{d1,,Switches Related to Project Files}.
17705 @end table
17706
17707 @geindex -X (gnatclean)
17708
17709
17710 @table @asis
17711
17712 @item @code{-X`name'=`value'}
17713
17714 Indicates that external variable @code{name} has the value @code{value}.
17715 The Project Manager will use this value for occurrences of
17716 @code{external(name)} when parsing the project file.
17717 See @ref{d1,,Switches Related to Project Files}.
17718 @end table
17719
17720 @geindex -aO (gnatclean)
17721
17722
17723 @table @asis
17724
17725 @item @code{-aO`dir'}
17726
17727 When searching for ALI and object files, look in directory @code{dir}.
17728 @end table
17729
17730 @geindex -I (gnatclean)
17731
17732
17733 @table @asis
17734
17735 @item @code{-I`dir'}
17736
17737 Equivalent to @code{-aO`dir'}.
17738 @end table
17739
17740 @geindex -I- (gnatclean)
17741
17742 @geindex Source files
17743 @geindex suppressing search
17744
17745
17746 @table @asis
17747
17748 @item @code{-I-}
17749
17750 Do not look for ALI or object files in the directory
17751 where @code{gnatclean} was invoked.
17752 @end table
17753
17754 @node The GNAT Library Browser gnatls,,The File Cleanup Utility gnatclean,GNAT Utility Programs
17755 @anchor{gnat_ugn/gnat_utility_programs id5}@anchor{13f}@anchor{gnat_ugn/gnat_utility_programs the-gnat-library-browser-gnatls}@anchor{139}
17756 @section The GNAT Library Browser @code{gnatls}
17757
17758
17759 @geindex Library browser
17760
17761 @geindex gnatls
17762
17763 @code{gnatls} is a tool that outputs information about compiled
17764 units. It gives the relationship between objects, unit names and source
17765 files. It can also be used to check the source dependencies of a unit
17766 as well as various characteristics.
17767
17768 @menu
17769 * Running gnatls::
17770 * Switches for gnatls::
17771 * Example of gnatls Usage::
17772
17773 @end menu
17774
17775 @node Running gnatls,Switches for gnatls,,The GNAT Library Browser gnatls
17776 @anchor{gnat_ugn/gnat_utility_programs id6}@anchor{140}@anchor{gnat_ugn/gnat_utility_programs running-gnatls}@anchor{141}
17777 @subsection Running @code{gnatls}
17778
17779
17780 The @code{gnatls} command has the form
17781
17782 @quotation
17783
17784 @example
17785 $ gnatls switches object_or_ali_file
17786 @end example
17787 @end quotation
17788
17789 The main argument is the list of object or @code{ali} files
17790 (see @ref{28,,The Ada Library Information Files})
17791 for which information is requested.
17792
17793 In normal mode, without additional option, @code{gnatls} produces a
17794 four-column listing. Each line represents information for a specific
17795 object. The first column gives the full path of the object, the second
17796 column gives the name of the principal unit in this object, the third
17797 column gives the status of the source and the fourth column gives the
17798 full path of the source representing this unit.
17799 Here is a simple example of use:
17800
17801 @quotation
17802
17803 @example
17804 $ gnatls *.o
17805 ./demo1.o demo1 DIF demo1.adb
17806 ./demo2.o demo2 OK demo2.adb
17807 ./hello.o h1 OK hello.adb
17808 ./instr-child.o instr.child MOK instr-child.adb
17809 ./instr.o instr OK instr.adb
17810 ./tef.o tef DIF tef.adb
17811 ./text_io_example.o text_io_example OK text_io_example.adb
17812 ./tgef.o tgef DIF tgef.adb
17813 @end example
17814 @end quotation
17815
17816 The first line can be interpreted as follows: the main unit which is
17817 contained in
17818 object file @code{demo1.o} is demo1, whose main source is in
17819 @code{demo1.adb}. Furthermore, the version of the source used for the
17820 compilation of demo1 has been modified (DIF). Each source file has a status
17821 qualifier which can be:
17822
17823
17824 @table @asis
17825
17826 @item `OK (unchanged)'
17827
17828 The version of the source file used for the compilation of the
17829 specified unit corresponds exactly to the actual source file.
17830
17831 @item `MOK (slightly modified)'
17832
17833 The version of the source file used for the compilation of the
17834 specified unit differs from the actual source file but not enough to
17835 require recompilation. If you use gnatmake with the option
17836 @code{-m} (minimal recompilation), a file marked
17837 MOK will not be recompiled.
17838
17839 @item `DIF (modified)'
17840
17841 No version of the source found on the path corresponds to the source
17842 used to build this object.
17843
17844 @item `??? (file not found)'
17845
17846 No source file was found for this unit.
17847
17848 @item `HID (hidden, unchanged version not first on PATH)'
17849
17850 The version of the source that corresponds exactly to the source used
17851 for compilation has been found on the path but it is hidden by another
17852 version of the same source that has been modified.
17853 @end table
17854
17855 @node Switches for gnatls,Example of gnatls Usage,Running gnatls,The GNAT Library Browser gnatls
17856 @anchor{gnat_ugn/gnat_utility_programs id7}@anchor{142}@anchor{gnat_ugn/gnat_utility_programs switches-for-gnatls}@anchor{143}
17857 @subsection Switches for @code{gnatls}
17858
17859
17860 @code{gnatls} recognizes the following switches:
17861
17862 @geindex --version (gnatls)
17863
17864
17865 @table @asis
17866
17867 @item @code{--version}
17868
17869 Display copyright and version, then exit disregarding all other options.
17870 @end table
17871
17872 @geindex --help (gnatls)
17873
17874
17875 @table @asis
17876
17877 @item @code{--help}
17878
17879 If @code{--version} was not used, display usage, then exit disregarding
17880 all other options.
17881 @end table
17882
17883 @geindex -a (gnatls)
17884
17885
17886 @table @asis
17887
17888 @item @code{-a}
17889
17890 Consider all units, including those of the predefined Ada library.
17891 Especially useful with @code{-d}.
17892 @end table
17893
17894 @geindex -d (gnatls)
17895
17896
17897 @table @asis
17898
17899 @item @code{-d}
17900
17901 List sources from which specified units depend on.
17902 @end table
17903
17904 @geindex -h (gnatls)
17905
17906
17907 @table @asis
17908
17909 @item @code{-h}
17910
17911 Output the list of options.
17912 @end table
17913
17914 @geindex -o (gnatls)
17915
17916
17917 @table @asis
17918
17919 @item @code{-o}
17920
17921 Only output information about object files.
17922 @end table
17923
17924 @geindex -s (gnatls)
17925
17926
17927 @table @asis
17928
17929 @item @code{-s}
17930
17931 Only output information about source files.
17932 @end table
17933
17934 @geindex -u (gnatls)
17935
17936
17937 @table @asis
17938
17939 @item @code{-u}
17940
17941 Only output information about compilation units.
17942 @end table
17943
17944 @geindex -files (gnatls)
17945
17946
17947 @table @asis
17948
17949 @item @code{-files=`file'}
17950
17951 Take as arguments the files listed in text file @code{file}.
17952 Text file @code{file} may contain empty lines that are ignored.
17953 Each nonempty line should contain the name of an existing file.
17954 Several such switches may be specified simultaneously.
17955 @end table
17956
17957 @geindex -aO (gnatls)
17958
17959 @geindex -aI (gnatls)
17960
17961 @geindex -I (gnatls)
17962
17963 @geindex -I- (gnatls)
17964
17965
17966 @table @asis
17967
17968 @item @code{-aO`dir'}, @code{-aI`dir'}, @code{-I`dir'}, @code{-I-}, @code{-nostdinc}
17969
17970 Source path manipulation. Same meaning as the equivalent @code{gnatmake}
17971 flags (@ref{d0,,Switches for gnatmake}).
17972 @end table
17973
17974 @geindex -aP (gnatls)
17975
17976
17977 @table @asis
17978
17979 @item @code{-aP`dir'}
17980
17981 Add @code{dir} at the beginning of the project search dir.
17982 @end table
17983
17984 @geindex --RTS (gnatls)
17985
17986
17987 @table @asis
17988
17989 @item @code{--RTS=`rts-path'}
17990
17991 Specifies the default location of the runtime library. Same meaning as the
17992 equivalent @code{gnatmake} flag (@ref{d0,,Switches for gnatmake}).
17993 @end table
17994
17995 @geindex -v (gnatls)
17996
17997
17998 @table @asis
17999
18000 @item @code{-v}
18001
18002 Verbose mode. Output the complete source, object and project paths. Do not use
18003 the default column layout but instead use long format giving as much as
18004 information possible on each requested units, including special
18005 characteristics such as:
18006
18007
18008 @itemize *
18009
18010 @item
18011 `Preelaborable': The unit is preelaborable in the Ada sense.
18012
18013 @item
18014 `No_Elab_Code': No elaboration code has been produced by the compiler for this unit.
18015
18016 @item
18017 `Pure': The unit is pure in the Ada sense.
18018
18019 @item
18020 `Elaborate_Body': The unit contains a pragma Elaborate_Body.
18021
18022 @item
18023 `Remote_Types': The unit contains a pragma Remote_Types.
18024
18025 @item
18026 `Shared_Passive': The unit contains a pragma Shared_Passive.
18027
18028 @item
18029 `Predefined': This unit is part of the predefined environment and cannot be modified
18030 by the user.
18031
18032 @item
18033 `Remote_Call_Interface': The unit contains a pragma Remote_Call_Interface.
18034 @end itemize
18035 @end table
18036
18037 @node Example of gnatls Usage,,Switches for gnatls,The GNAT Library Browser gnatls
18038 @anchor{gnat_ugn/gnat_utility_programs example-of-gnatls-usage}@anchor{144}@anchor{gnat_ugn/gnat_utility_programs id8}@anchor{145}
18039 @subsection Example of @code{gnatls} Usage
18040
18041
18042 Example of using the verbose switch. Note how the source and
18043 object paths are affected by the -I switch.
18044
18045 @quotation
18046
18047 @example
18048 $ gnatls -v -I.. demo1.o
18049
18050 GNATLS 5.03w (20041123-34)
18051 Copyright 1997-2004 Free Software Foundation, Inc.
18052
18053 Source Search Path:
18054 <Current_Directory>
18055 ../
18056 /home/comar/local/adainclude/
18057
18058 Object Search Path:
18059 <Current_Directory>
18060 ../
18061 /home/comar/local/lib/gcc-lib/x86-linux/3.4.3/adalib/
18062
18063 Project Search Path:
18064 <Current_Directory>
18065 /home/comar/local/lib/gnat/
18066
18067 ./demo1.o
18068 Unit =>
18069 Name => demo1
18070 Kind => subprogram body
18071 Flags => No_Elab_Code
18072 Source => demo1.adb modified
18073 @end example
18074 @end quotation
18075
18076 The following is an example of use of the dependency list.
18077 Note the use of the -s switch
18078 which gives a straight list of source files. This can be useful for
18079 building specialized scripts.
18080
18081 @quotation
18082
18083 @example
18084 $ gnatls -d demo2.o
18085 ./demo2.o demo2 OK demo2.adb
18086 OK gen_list.ads
18087 OK gen_list.adb
18088 OK instr.ads
18089 OK instr-child.ads
18090
18091 $ gnatls -d -s -a demo1.o
18092 demo1.adb
18093 /home/comar/local/adainclude/ada.ads
18094 /home/comar/local/adainclude/a-finali.ads
18095 /home/comar/local/adainclude/a-filico.ads
18096 /home/comar/local/adainclude/a-stream.ads
18097 /home/comar/local/adainclude/a-tags.ads
18098 gen_list.ads
18099 gen_list.adb
18100 /home/comar/local/adainclude/gnat.ads
18101 /home/comar/local/adainclude/g-io.ads
18102 instr.ads
18103 /home/comar/local/adainclude/system.ads
18104 /home/comar/local/adainclude/s-exctab.ads
18105 /home/comar/local/adainclude/s-finimp.ads
18106 /home/comar/local/adainclude/s-finroo.ads
18107 /home/comar/local/adainclude/s-secsta.ads
18108 /home/comar/local/adainclude/s-stalib.ads
18109 /home/comar/local/adainclude/s-stoele.ads
18110 /home/comar/local/adainclude/s-stratt.ads
18111 /home/comar/local/adainclude/s-tasoli.ads
18112 /home/comar/local/adainclude/s-unstyp.ads
18113 /home/comar/local/adainclude/unchconv.ads
18114 @end example
18115 @end quotation
18116
18117
18118
18119
18120
18121 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
18122
18123 @node GNAT and Program Execution,Platform-Specific Information,GNAT Utility Programs,Top
18124 @anchor{gnat_ugn/gnat_and_program_execution doc}@anchor{146}@anchor{gnat_ugn/gnat_and_program_execution gnat-and-program-execution}@anchor{c}@anchor{gnat_ugn/gnat_and_program_execution id1}@anchor{147}
18125 @chapter GNAT and Program Execution
18126
18127
18128 This chapter covers several topics:
18129
18130
18131 @itemize *
18132
18133 @item
18134 @ref{148,,Running and Debugging Ada Programs}
18135
18136 @item
18137 @ref{149,,Profiling}
18138
18139 @item
18140 @ref{14a,,Improving Performance}
18141
18142 @item
18143 @ref{14b,,Overflow Check Handling in GNAT}
18144
18145 @item
18146 @ref{14c,,Performing Dimensionality Analysis in GNAT}
18147
18148 @item
18149 @ref{14d,,Stack Related Facilities}
18150
18151 @item
18152 @ref{14e,,Memory Management Issues}
18153 @end itemize
18154
18155 @menu
18156 * Running and Debugging Ada Programs::
18157 * Profiling::
18158 * Improving Performance::
18159 * Overflow Check Handling in GNAT::
18160 * Performing Dimensionality Analysis in GNAT::
18161 * Stack Related Facilities::
18162 * Memory Management Issues::
18163
18164 @end menu
18165
18166 @node Running and Debugging Ada Programs,Profiling,,GNAT and Program Execution
18167 @anchor{gnat_ugn/gnat_and_program_execution id2}@anchor{148}@anchor{gnat_ugn/gnat_and_program_execution running-and-debugging-ada-programs}@anchor{14f}
18168 @section Running and Debugging Ada Programs
18169
18170
18171 @geindex Debugging
18172
18173 This section discusses how to debug Ada programs.
18174
18175 An incorrect Ada program may be handled in three ways by the GNAT compiler:
18176
18177
18178 @itemize *
18179
18180 @item
18181 The illegality may be a violation of the static semantics of Ada. In
18182 that case GNAT diagnoses the constructs in the program that are illegal.
18183 It is then a straightforward matter for the user to modify those parts of
18184 the program.
18185
18186 @item
18187 The illegality may be a violation of the dynamic semantics of Ada. In
18188 that case the program compiles and executes, but may generate incorrect
18189 results, or may terminate abnormally with some exception.
18190
18191 @item
18192 When presented with a program that contains convoluted errors, GNAT
18193 itself may terminate abnormally without providing full diagnostics on
18194 the incorrect user program.
18195 @end itemize
18196
18197 @geindex Debugger
18198
18199 @geindex gdb
18200
18201 @menu
18202 * The GNAT Debugger GDB::
18203 * Running GDB::
18204 * Introduction to GDB Commands::
18205 * Using Ada Expressions::
18206 * Calling User-Defined Subprograms::
18207 * Using the next Command in a Function::
18208 * Stopping When Ada Exceptions Are Raised::
18209 * Ada Tasks::
18210 * Debugging Generic Units::
18211 * Remote Debugging with gdbserver::
18212 * GNAT Abnormal Termination or Failure to Terminate::
18213 * Naming Conventions for GNAT Source Files::
18214 * Getting Internal Debugging Information::
18215 * Stack Traceback::
18216 * Pretty-Printers for the GNAT runtime::
18217
18218 @end menu
18219
18220 @node The GNAT Debugger GDB,Running GDB,,Running and Debugging Ada Programs
18221 @anchor{gnat_ugn/gnat_and_program_execution id3}@anchor{150}@anchor{gnat_ugn/gnat_and_program_execution the-gnat-debugger-gdb}@anchor{151}
18222 @subsection The GNAT Debugger GDB
18223
18224
18225 @code{GDB} is a general purpose, platform-independent debugger that
18226 can be used to debug mixed-language programs compiled with @code{gcc},
18227 and in particular is capable of debugging Ada programs compiled with
18228 GNAT. The latest versions of @code{GDB} are Ada-aware and can handle
18229 complex Ada data structures.
18230
18231 See @cite{Debugging with GDB},
18232 for full details on the usage of @code{GDB}, including a section on
18233 its usage on programs. This manual should be consulted for full
18234 details. The section that follows is a brief introduction to the
18235 philosophy and use of @code{GDB}.
18236
18237 When GNAT programs are compiled, the compiler optionally writes debugging
18238 information into the generated object file, including information on
18239 line numbers, and on declared types and variables. This information is
18240 separate from the generated code. It makes the object files considerably
18241 larger, but it does not add to the size of the actual executable that
18242 will be loaded into memory, and has no impact on run-time performance. The
18243 generation of debug information is triggered by the use of the
18244 @code{-g} switch in the @code{gcc} or @code{gnatmake} command
18245 used to carry out the compilations. It is important to emphasize that
18246 the use of these options does not change the generated code.
18247
18248 The debugging information is written in standard system formats that
18249 are used by many tools, including debuggers and profilers. The format
18250 of the information is typically designed to describe C types and
18251 semantics, but GNAT implements a translation scheme which allows full
18252 details about Ada types and variables to be encoded into these
18253 standard C formats. Details of this encoding scheme may be found in
18254 the file exp_dbug.ads in the GNAT source distribution. However, the
18255 details of this encoding are, in general, of no interest to a user,
18256 since @code{GDB} automatically performs the necessary decoding.
18257
18258 When a program is bound and linked, the debugging information is
18259 collected from the object files, and stored in the executable image of
18260 the program. Again, this process significantly increases the size of
18261 the generated executable file, but it does not increase the size of
18262 the executable program itself. Furthermore, if this program is run in
18263 the normal manner, it runs exactly as if the debug information were
18264 not present, and takes no more actual memory.
18265
18266 However, if the program is run under control of @code{GDB}, the
18267 debugger is activated. The image of the program is loaded, at which
18268 point it is ready to run. If a run command is given, then the program
18269 will run exactly as it would have if @code{GDB} were not present. This
18270 is a crucial part of the @code{GDB} design philosophy. @code{GDB} is
18271 entirely non-intrusive until a breakpoint is encountered. If no
18272 breakpoint is ever hit, the program will run exactly as it would if no
18273 debugger were present. When a breakpoint is hit, @code{GDB} accesses
18274 the debugging information and can respond to user commands to inspect
18275 variables, and more generally to report on the state of execution.
18276
18277 @node Running GDB,Introduction to GDB Commands,The GNAT Debugger GDB,Running and Debugging Ada Programs
18278 @anchor{gnat_ugn/gnat_and_program_execution id4}@anchor{152}@anchor{gnat_ugn/gnat_and_program_execution running-gdb}@anchor{153}
18279 @subsection Running GDB
18280
18281
18282 This section describes how to initiate the debugger.
18283
18284 The debugger can be launched from a @code{GNAT Studio} menu or
18285 directly from the command line. The description below covers the latter use.
18286 All the commands shown can be used in the @code{GNAT Studio} debug console window,
18287 but there are usually more GUI-based ways to achieve the same effect.
18288
18289 The command to run @code{GDB} is
18290
18291 @quotation
18292
18293 @example
18294 $ gdb program
18295 @end example
18296 @end quotation
18297
18298 where @code{program} is the name of the executable file. This
18299 activates the debugger and results in a prompt for debugger commands.
18300 The simplest command is simply @code{run}, which causes the program to run
18301 exactly as if the debugger were not present. The following section
18302 describes some of the additional commands that can be given to @code{GDB}.
18303
18304 @node Introduction to GDB Commands,Using Ada Expressions,Running GDB,Running and Debugging Ada Programs
18305 @anchor{gnat_ugn/gnat_and_program_execution id5}@anchor{154}@anchor{gnat_ugn/gnat_and_program_execution introduction-to-gdb-commands}@anchor{155}
18306 @subsection Introduction to GDB Commands
18307
18308
18309 @code{GDB} contains a large repertoire of commands.
18310 See @cite{Debugging with GDB} for extensive documentation on the use
18311 of these commands, together with examples of their use. Furthermore,
18312 the command `help' invoked from within GDB activates a simple help
18313 facility which summarizes the available commands and their options.
18314 In this section we summarize a few of the most commonly
18315 used commands to give an idea of what @code{GDB} is about. You should create
18316 a simple program with debugging information and experiment with the use of
18317 these @code{GDB} commands on the program as you read through the
18318 following section.
18319
18320
18321 @itemize *
18322
18323 @item
18324
18325 @table @asis
18326
18327 @item @code{set args @var{arguments}}
18328
18329 The `arguments' list above is a list of arguments to be passed to
18330 the program on a subsequent run command, just as though the arguments
18331 had been entered on a normal invocation of the program. The @code{set args}
18332 command is not needed if the program does not require arguments.
18333 @end table
18334
18335 @item
18336
18337 @table @asis
18338
18339 @item @code{run}
18340
18341 The @code{run} command causes execution of the program to start from
18342 the beginning. If the program is already running, that is to say if
18343 you are currently positioned at a breakpoint, then a prompt will ask
18344 for confirmation that you want to abandon the current execution and
18345 restart.
18346 @end table
18347
18348 @item
18349
18350 @table @asis
18351
18352 @item @code{breakpoint @var{location}}
18353
18354 The breakpoint command sets a breakpoint, that is to say a point at which
18355 execution will halt and @code{GDB} will await further
18356 commands. `location' is
18357 either a line number within a file, given in the format @code{file:linenumber},
18358 or it is the name of a subprogram. If you request that a breakpoint be set on
18359 a subprogram that is overloaded, a prompt will ask you to specify on which of
18360 those subprograms you want to breakpoint. You can also
18361 specify that all of them should be breakpointed. If the program is run
18362 and execution encounters the breakpoint, then the program
18363 stops and @code{GDB} signals that the breakpoint was encountered by
18364 printing the line of code before which the program is halted.
18365 @end table
18366
18367 @item
18368
18369 @table @asis
18370
18371 @item @code{catch exception @var{name}}
18372
18373 This command causes the program execution to stop whenever exception
18374 @code{name} is raised. If @code{name} is omitted, then the execution is
18375 suspended when any exception is raised.
18376 @end table
18377
18378 @item
18379
18380 @table @asis
18381
18382 @item @code{print @var{expression}}
18383
18384 This will print the value of the given expression. Most simple
18385 Ada expression formats are properly handled by @code{GDB}, so the expression
18386 can contain function calls, variables, operators, and attribute references.
18387 @end table
18388
18389 @item
18390
18391 @table @asis
18392
18393 @item @code{continue}
18394
18395 Continues execution following a breakpoint, until the next breakpoint or the
18396 termination of the program.
18397 @end table
18398
18399 @item
18400
18401 @table @asis
18402
18403 @item @code{step}
18404
18405 Executes a single line after a breakpoint. If the next statement
18406 is a subprogram call, execution continues into (the first statement of)
18407 the called subprogram.
18408 @end table
18409
18410 @item
18411
18412 @table @asis
18413
18414 @item @code{next}
18415
18416 Executes a single line. If this line is a subprogram call, executes and
18417 returns from the call.
18418 @end table
18419
18420 @item
18421
18422 @table @asis
18423
18424 @item @code{list}
18425
18426 Lists a few lines around the current source location. In practice, it
18427 is usually more convenient to have a separate edit window open with the
18428 relevant source file displayed. Successive applications of this command
18429 print subsequent lines. The command can be given an argument which is a
18430 line number, in which case it displays a few lines around the specified one.
18431 @end table
18432
18433 @item
18434
18435 @table @asis
18436
18437 @item @code{backtrace}
18438
18439 Displays a backtrace of the call chain. This command is typically
18440 used after a breakpoint has occurred, to examine the sequence of calls that
18441 leads to the current breakpoint. The display includes one line for each
18442 activation record (frame) corresponding to an active subprogram.
18443 @end table
18444
18445 @item
18446
18447 @table @asis
18448
18449 @item @code{up}
18450
18451 At a breakpoint, @code{GDB} can display the values of variables local
18452 to the current frame. The command @code{up} can be used to
18453 examine the contents of other active frames, by moving the focus up
18454 the stack, that is to say from callee to caller, one frame at a time.
18455 @end table
18456
18457 @item
18458
18459 @table @asis
18460
18461 @item @code{down}
18462
18463 Moves the focus of @code{GDB} down from the frame currently being
18464 examined to the frame of its callee (the reverse of the previous command),
18465 @end table
18466
18467 @item
18468
18469 @table @asis
18470
18471 @item @code{frame @var{n}}
18472
18473 Inspect the frame with the given number. The value 0 denotes the frame
18474 of the current breakpoint, that is to say the top of the call stack.
18475 @end table
18476
18477 @item
18478
18479 @table @asis
18480
18481 @item @code{kill}
18482
18483 Kills the child process in which the program is running under GDB.
18484 This may be useful for several purposes:
18485
18486
18487 @itemize *
18488
18489 @item
18490 It allows you to recompile and relink your program, since on many systems
18491 you cannot regenerate an executable file while it is running in a process.
18492
18493 @item
18494 You can run your program outside the debugger, on systems that do not
18495 permit executing a program outside GDB while breakpoints are set
18496 within GDB.
18497
18498 @item
18499 It allows you to debug a core dump rather than a running process.
18500 @end itemize
18501 @end table
18502 @end itemize
18503
18504 The above list is a very short introduction to the commands that
18505 @code{GDB} provides. Important additional capabilities, including conditional
18506 breakpoints, the ability to execute command sequences on a breakpoint,
18507 the ability to debug at the machine instruction level and many other
18508 features are described in detail in @cite{Debugging with GDB}.
18509 Note that most commands can be abbreviated
18510 (for example, c for continue, bt for backtrace).
18511
18512 @node Using Ada Expressions,Calling User-Defined Subprograms,Introduction to GDB Commands,Running and Debugging Ada Programs
18513 @anchor{gnat_ugn/gnat_and_program_execution id6}@anchor{156}@anchor{gnat_ugn/gnat_and_program_execution using-ada-expressions}@anchor{157}
18514 @subsection Using Ada Expressions
18515
18516
18517 @geindex Ada expressions (in gdb)
18518
18519 @code{GDB} supports a fairly large subset of Ada expression syntax, with some
18520 extensions. The philosophy behind the design of this subset is
18521
18522 @quotation
18523
18524
18525 @itemize *
18526
18527 @item
18528 That @code{GDB} should provide basic literals and access to operations for
18529 arithmetic, dereferencing, field selection, indexing, and subprogram calls,
18530 leaving more sophisticated computations to subprograms written into the
18531 program (which therefore may be called from @code{GDB}).
18532
18533 @item
18534 That type safety and strict adherence to Ada language restrictions
18535 are not particularly relevant in a debugging context.
18536
18537 @item
18538 That brevity is important to the @code{GDB} user.
18539 @end itemize
18540 @end quotation
18541
18542 Thus, for brevity, the debugger acts as if there were
18543 implicit @code{with} and @code{use} clauses in effect for all user-written
18544 packages, thus making it unnecessary to fully qualify most names with
18545 their packages, regardless of context. Where this causes ambiguity,
18546 @code{GDB} asks the user’s intent.
18547
18548 For details on the supported Ada syntax, see @cite{Debugging with GDB}.
18549
18550 @node Calling User-Defined Subprograms,Using the next Command in a Function,Using Ada Expressions,Running and Debugging Ada Programs
18551 @anchor{gnat_ugn/gnat_and_program_execution calling-user-defined-subprograms}@anchor{158}@anchor{gnat_ugn/gnat_and_program_execution id7}@anchor{159}
18552 @subsection Calling User-Defined Subprograms
18553
18554
18555 An important capability of @code{GDB} is the ability to call user-defined
18556 subprograms while debugging. This is achieved simply by entering
18557 a subprogram call statement in the form:
18558
18559 @quotation
18560
18561 @example
18562 call subprogram-name (parameters)
18563 @end example
18564 @end quotation
18565
18566 The keyword @code{call} can be omitted in the normal case where the
18567 @code{subprogram-name} does not coincide with any of the predefined
18568 @code{GDB} commands.
18569
18570 The effect is to invoke the given subprogram, passing it the
18571 list of parameters that is supplied. The parameters can be expressions and
18572 can include variables from the program being debugged. The
18573 subprogram must be defined
18574 at the library level within your program, and @code{GDB} will call the
18575 subprogram within the environment of your program execution (which
18576 means that the subprogram is free to access or even modify variables
18577 within your program).
18578
18579 The most important use of this facility is in allowing the inclusion of
18580 debugging routines that are tailored to particular data structures
18581 in your program. Such debugging routines can be written to provide a suitably
18582 high-level description of an abstract type, rather than a low-level dump
18583 of its physical layout. After all, the standard
18584 @code{GDB print} command only knows the physical layout of your
18585 types, not their abstract meaning. Debugging routines can provide information
18586 at the desired semantic level and are thus enormously useful.
18587
18588 For example, when debugging GNAT itself, it is crucial to have access to
18589 the contents of the tree nodes used to represent the program internally.
18590 But tree nodes are represented simply by an integer value (which in turn
18591 is an index into a table of nodes).
18592 Using the @code{print} command on a tree node would simply print this integer
18593 value, which is not very useful. But the PN routine (defined in file
18594 treepr.adb in the GNAT sources) takes a tree node as input, and displays
18595 a useful high level representation of the tree node, which includes the
18596 syntactic category of the node, its position in the source, the integers
18597 that denote descendant nodes and parent node, as well as varied
18598 semantic information. To study this example in more detail, you might want to
18599 look at the body of the PN procedure in the stated file.
18600
18601 Another useful application of this capability is to deal with situations of
18602 complex data which are not handled suitably by GDB. For example, if you specify
18603 Convention Fortran for a multi-dimensional array, GDB does not know that
18604 the ordering of array elements has been switched and will not properly
18605 address the array elements. In such a case, instead of trying to print the
18606 elements directly from GDB, you can write a callable procedure that prints
18607 the elements in the desired format.
18608
18609 @node Using the next Command in a Function,Stopping When Ada Exceptions Are Raised,Calling User-Defined Subprograms,Running and Debugging Ada Programs
18610 @anchor{gnat_ugn/gnat_and_program_execution id8}@anchor{15a}@anchor{gnat_ugn/gnat_and_program_execution using-the-next-command-in-a-function}@anchor{15b}
18611 @subsection Using the `next' Command in a Function
18612
18613
18614 When you use the @code{next} command in a function, the current source
18615 location will advance to the next statement as usual. A special case
18616 arises in the case of a @code{return} statement.
18617
18618 Part of the code for a return statement is the ‘epilogue’ of the function.
18619 This is the code that returns to the caller. There is only one copy of
18620 this epilogue code, and it is typically associated with the last return
18621 statement in the function if there is more than one return. In some
18622 implementations, this epilogue is associated with the first statement
18623 of the function.
18624
18625 The result is that if you use the @code{next} command from a return
18626 statement that is not the last return statement of the function you
18627 may see a strange apparent jump to the last return statement or to
18628 the start of the function. You should simply ignore this odd jump.
18629 The value returned is always that from the first return statement
18630 that was stepped through.
18631
18632 @node Stopping When Ada Exceptions Are Raised,Ada Tasks,Using the next Command in a Function,Running and Debugging Ada Programs
18633 @anchor{gnat_ugn/gnat_and_program_execution id9}@anchor{15c}@anchor{gnat_ugn/gnat_and_program_execution stopping-when-ada-exceptions-are-raised}@anchor{15d}
18634 @subsection Stopping When Ada Exceptions Are Raised
18635
18636
18637 @geindex Exceptions (in gdb)
18638
18639 You can set catchpoints that stop the program execution when your program
18640 raises selected exceptions.
18641
18642
18643 @itemize *
18644
18645 @item
18646
18647 @table @asis
18648
18649 @item @code{catch exception}
18650
18651 Set a catchpoint that stops execution whenever (any task in the) program
18652 raises any exception.
18653 @end table
18654
18655 @item
18656
18657 @table @asis
18658
18659 @item @code{catch exception @var{name}}
18660
18661 Set a catchpoint that stops execution whenever (any task in the) program
18662 raises the exception `name'.
18663 @end table
18664
18665 @item
18666
18667 @table @asis
18668
18669 @item @code{catch exception unhandled}
18670
18671 Set a catchpoint that stops executing whenever (any task in the) program
18672 raises an exception for which there is no handler.
18673 @end table
18674
18675 @item
18676
18677 @table @asis
18678
18679 @item @code{info exceptions}, @code{info exceptions @var{regexp}}
18680
18681 The @code{info exceptions} command permits the user to examine all defined
18682 exceptions within Ada programs. With a regular expression, `regexp', as
18683 argument, prints out only those exceptions whose name matches `regexp'.
18684 @end table
18685 @end itemize
18686
18687 @geindex Tasks (in gdb)
18688
18689 @node Ada Tasks,Debugging Generic Units,Stopping When Ada Exceptions Are Raised,Running and Debugging Ada Programs
18690 @anchor{gnat_ugn/gnat_and_program_execution ada-tasks}@anchor{15e}@anchor{gnat_ugn/gnat_and_program_execution id10}@anchor{15f}
18691 @subsection Ada Tasks
18692
18693
18694 @code{GDB} allows the following task-related commands:
18695
18696
18697 @itemize *
18698
18699 @item
18700
18701 @table @asis
18702
18703 @item @code{info tasks}
18704
18705 This command shows a list of current Ada tasks, as in the following example:
18706
18707 @example
18708 (gdb) info tasks
18709 ID TID P-ID Thread Pri State Name
18710 1 8088000 0 807e000 15 Child Activation Wait main_task
18711 2 80a4000 1 80ae000 15 Accept/Select Wait b
18712 3 809a800 1 80a4800 15 Child Activation Wait a
18713 * 4 80ae800 3 80b8000 15 Running c
18714 @end example
18715
18716 In this listing, the asterisk before the first task indicates it to be the
18717 currently running task. The first column lists the task ID that is used
18718 to refer to tasks in the following commands.
18719 @end table
18720 @end itemize
18721
18722 @geindex Breakpoints and tasks
18723
18724
18725 @itemize *
18726
18727 @item
18728 @code{break} `linespec' @code{task} `taskid', @code{break} `linespec' @code{task} `taskid' @code{if} …
18729
18730 @quotation
18731
18732 These commands are like the @code{break ... thread ...}.
18733 `linespec' specifies source lines.
18734
18735 Use the qualifier @code{task @var{taskid}} with a breakpoint command
18736 to specify that you only want @code{GDB} to stop the program when a
18737 particular Ada task reaches this breakpoint. `taskid' is one of the
18738 numeric task identifiers assigned by @code{GDB}, shown in the first
18739 column of the @code{info tasks} display.
18740
18741 If you do not specify @code{task @var{taskid}} when you set a
18742 breakpoint, the breakpoint applies to `all' tasks of your
18743 program.
18744
18745 You can use the @code{task} qualifier on conditional breakpoints as
18746 well; in this case, place @code{task @var{taskid}} before the
18747 breakpoint condition (before the @code{if}).
18748 @end quotation
18749 @end itemize
18750
18751 @geindex Task switching (in gdb)
18752
18753
18754 @itemize *
18755
18756 @item
18757 @code{task @var{taskno}}
18758
18759 @quotation
18760
18761 This command allows switching to the task referred by `taskno'. In
18762 particular, this allows browsing of the backtrace of the specified
18763 task. It is advisable to switch back to the original task before
18764 continuing execution otherwise the scheduling of the program may be
18765 perturbed.
18766 @end quotation
18767 @end itemize
18768
18769 For more detailed information on the tasking support,
18770 see @cite{Debugging with GDB}.
18771
18772 @geindex Debugging Generic Units
18773
18774 @geindex Generics
18775
18776 @node Debugging Generic Units,Remote Debugging with gdbserver,Ada Tasks,Running and Debugging Ada Programs
18777 @anchor{gnat_ugn/gnat_and_program_execution debugging-generic-units}@anchor{160}@anchor{gnat_ugn/gnat_and_program_execution id11}@anchor{161}
18778 @subsection Debugging Generic Units
18779
18780
18781 GNAT always uses code expansion for generic instantiation. This means that
18782 each time an instantiation occurs, a complete copy of the original code is
18783 made, with appropriate substitutions of formals by actuals.
18784
18785 It is not possible to refer to the original generic entities in
18786 @code{GDB}, but it is always possible to debug a particular instance of
18787 a generic, by using the appropriate expanded names. For example, if we have
18788
18789 @quotation
18790
18791 @example
18792 procedure g is
18793
18794 generic package k is
18795 procedure kp (v1 : in out integer);
18796 end k;
18797
18798 package body k is
18799 procedure kp (v1 : in out integer) is
18800 begin
18801 v1 := v1 + 1;
18802 end kp;
18803 end k;
18804
18805 package k1 is new k;
18806 package k2 is new k;
18807
18808 var : integer := 1;
18809
18810 begin
18811 k1.kp (var);
18812 k2.kp (var);
18813 k1.kp (var);
18814 k2.kp (var);
18815 end;
18816 @end example
18817 @end quotation
18818
18819 Then to break on a call to procedure kp in the k2 instance, simply
18820 use the command:
18821
18822 @quotation
18823
18824 @example
18825 (gdb) break g.k2.kp
18826 @end example
18827 @end quotation
18828
18829 When the breakpoint occurs, you can step through the code of the
18830 instance in the normal manner and examine the values of local variables, as for
18831 other units.
18832
18833 @geindex Remote Debugging with gdbserver
18834
18835 @node Remote Debugging with gdbserver,GNAT Abnormal Termination or Failure to Terminate,Debugging Generic Units,Running and Debugging Ada Programs
18836 @anchor{gnat_ugn/gnat_and_program_execution id12}@anchor{162}@anchor{gnat_ugn/gnat_and_program_execution remote-debugging-with-gdbserver}@anchor{163}
18837 @subsection Remote Debugging with gdbserver
18838
18839
18840 On platforms where gdbserver is supported, it is possible to use this tool
18841 to debug your application remotely. This can be useful in situations
18842 where the program needs to be run on a target host that is different
18843 from the host used for development, particularly when the target has
18844 a limited amount of resources (either CPU and/or memory).
18845
18846 To do so, start your program using gdbserver on the target machine.
18847 gdbserver then automatically suspends the execution of your program
18848 at its entry point, waiting for a debugger to connect to it. The
18849 following commands starts an application and tells gdbserver to
18850 wait for a connection with the debugger on localhost port 4444.
18851
18852 @quotation
18853
18854 @example
18855 $ gdbserver localhost:4444 program
18856 Process program created; pid = 5685
18857 Listening on port 4444
18858 @end example
18859 @end quotation
18860
18861 Once gdbserver has started listening, we can tell the debugger to establish
18862 a connection with this gdbserver, and then start the same debugging session
18863 as if the program was being debugged on the same host, directly under
18864 the control of GDB.
18865
18866 @quotation
18867
18868 @example
18869 $ gdb program
18870 (gdb) target remote targethost:4444
18871 Remote debugging using targethost:4444
18872 0x00007f29936d0af0 in ?? () from /lib64/ld-linux-x86-64.so.
18873 (gdb) b foo.adb:3
18874 Breakpoint 1 at 0x401f0c: file foo.adb, line 3.
18875 (gdb) continue
18876 Continuing.
18877
18878 Breakpoint 1, foo () at foo.adb:4
18879 4 end foo;
18880 @end example
18881 @end quotation
18882
18883 It is also possible to use gdbserver to attach to an already running
18884 program, in which case the execution of that program is simply suspended
18885 until the connection between the debugger and gdbserver is established.
18886
18887 For more information on how to use gdbserver, see the `Using the gdbserver Program'
18888 section in @cite{Debugging with GDB}.
18889 GNAT provides support for gdbserver on x86-linux, x86-windows and x86_64-linux.
18890
18891 @geindex Abnormal Termination or Failure to Terminate
18892
18893 @node GNAT Abnormal Termination or Failure to Terminate,Naming Conventions for GNAT Source Files,Remote Debugging with gdbserver,Running and Debugging Ada Programs
18894 @anchor{gnat_ugn/gnat_and_program_execution gnat-abnormal-termination-or-failure-to-terminate}@anchor{164}@anchor{gnat_ugn/gnat_and_program_execution id13}@anchor{165}
18895 @subsection GNAT Abnormal Termination or Failure to Terminate
18896
18897
18898 When presented with programs that contain serious errors in syntax
18899 or semantics,
18900 GNAT may on rare occasions experience problems in operation, such
18901 as aborting with a
18902 segmentation fault or illegal memory access, raising an internal
18903 exception, terminating abnormally, or failing to terminate at all.
18904 In such cases, you can activate
18905 various features of GNAT that can help you pinpoint the construct in your
18906 program that is the likely source of the problem.
18907
18908 The following strategies are presented in increasing order of
18909 difficulty, corresponding to your experience in using GNAT and your
18910 familiarity with compiler internals.
18911
18912
18913 @itemize *
18914
18915 @item
18916 Run @code{gcc} with the @code{-gnatf}. This first
18917 switch causes all errors on a given line to be reported. In its absence,
18918 only the first error on a line is displayed.
18919
18920 The @code{-gnatdO} switch causes errors to be displayed as soon as they
18921 are encountered, rather than after compilation is terminated. If GNAT
18922 terminates prematurely or goes into an infinite loop, the last error
18923 message displayed may help to pinpoint the culprit.
18924
18925 @item
18926 Run @code{gcc} with the @code{-v} (verbose) switch. In this
18927 mode, @code{gcc} produces ongoing information about the progress of the
18928 compilation and provides the name of each procedure as code is
18929 generated. This switch allows you to find which Ada procedure was being
18930 compiled when it encountered a code generation problem.
18931 @end itemize
18932
18933 @geindex -gnatdc switch
18934
18935
18936 @itemize *
18937
18938 @item
18939 Run @code{gcc} with the @code{-gnatdc} switch. This is a GNAT specific
18940 switch that does for the front-end what @code{-v} does
18941 for the back end. The system prints the name of each unit,
18942 either a compilation unit or nested unit, as it is being analyzed.
18943
18944 @item
18945 Finally, you can start
18946 @code{gdb} directly on the @code{gnat1} executable. @code{gnat1} is the
18947 front-end of GNAT, and can be run independently (normally it is just
18948 called from @code{gcc}). You can use @code{gdb} on @code{gnat1} as you
18949 would on a C program (but @ref{151,,The GNAT Debugger GDB} for caveats). The
18950 @code{where} command is the first line of attack; the variable
18951 @code{lineno} (seen by @code{print lineno}), used by the second phase of
18952 @code{gnat1} and by the @code{gcc} backend, indicates the source line at
18953 which the execution stopped, and @code{input_file name} indicates the name of
18954 the source file.
18955 @end itemize
18956
18957 @node Naming Conventions for GNAT Source Files,Getting Internal Debugging Information,GNAT Abnormal Termination or Failure to Terminate,Running and Debugging Ada Programs
18958 @anchor{gnat_ugn/gnat_and_program_execution id14}@anchor{166}@anchor{gnat_ugn/gnat_and_program_execution naming-conventions-for-gnat-source-files}@anchor{167}
18959 @subsection Naming Conventions for GNAT Source Files
18960
18961
18962 In order to examine the workings of the GNAT system, the following
18963 brief description of its organization may be helpful:
18964
18965
18966 @itemize *
18967
18968 @item
18969 Files with prefix @code{sc} contain the lexical scanner.
18970
18971 @item
18972 All files prefixed with @code{par} are components of the parser. The
18973 numbers correspond to chapters of the Ada Reference Manual. For example,
18974 parsing of select statements can be found in @code{par-ch9.adb}.
18975
18976 @item
18977 All files prefixed with @code{sem} perform semantic analysis. The
18978 numbers correspond to chapters of the Ada standard. For example, all
18979 issues involving context clauses can be found in @code{sem_ch10.adb}. In
18980 addition, some features of the language require sufficient special processing
18981 to justify their own semantic files: sem_aggr for aggregates, sem_disp for
18982 dynamic dispatching, etc.
18983
18984 @item
18985 All files prefixed with @code{exp} perform normalization and
18986 expansion of the intermediate representation (abstract syntax tree, or AST).
18987 these files use the same numbering scheme as the parser and semantics files.
18988 For example, the construction of record initialization procedures is done in
18989 @code{exp_ch3.adb}.
18990
18991 @item
18992 The files prefixed with @code{bind} implement the binder, which
18993 verifies the consistency of the compilation, determines an order of
18994 elaboration, and generates the bind file.
18995
18996 @item
18997 The files @code{atree.ads} and @code{atree.adb} detail the low-level
18998 data structures used by the front-end.
18999
19000 @item
19001 The files @code{sinfo.ads} and @code{sinfo.adb} detail the structure of
19002 the abstract syntax tree as produced by the parser.
19003
19004 @item
19005 The files @code{einfo.ads} and @code{einfo.adb} detail the attributes of
19006 all entities, computed during semantic analysis.
19007
19008 @item
19009 Library management issues are dealt with in files with prefix
19010 @code{lib}.
19011
19012 @geindex Annex A (in Ada Reference Manual)
19013
19014 @item
19015 Ada files with the prefix @code{a-} are children of @code{Ada}, as
19016 defined in Annex A.
19017
19018 @geindex Annex B (in Ada reference Manual)
19019
19020 @item
19021 Files with prefix @code{i-} are children of @code{Interfaces}, as
19022 defined in Annex B.
19023
19024 @geindex System (package in Ada Reference Manual)
19025
19026 @item
19027 Files with prefix @code{s-} are children of @code{System}. This includes
19028 both language-defined children and GNAT run-time routines.
19029
19030 @geindex GNAT (package)
19031
19032 @item
19033 Files with prefix @code{g-} are children of @code{GNAT}. These are useful
19034 general-purpose packages, fully documented in their specs. All
19035 the other @code{.c} files are modifications of common @code{gcc} files.
19036 @end itemize
19037
19038 @node Getting Internal Debugging Information,Stack Traceback,Naming Conventions for GNAT Source Files,Running and Debugging Ada Programs
19039 @anchor{gnat_ugn/gnat_and_program_execution getting-internal-debugging-information}@anchor{168}@anchor{gnat_ugn/gnat_and_program_execution id15}@anchor{169}
19040 @subsection Getting Internal Debugging Information
19041
19042
19043 Most compilers have internal debugging switches and modes. GNAT
19044 does also, except GNAT internal debugging switches and modes are not
19045 secret. A summary and full description of all the compiler and binder
19046 debug flags are in the file @code{debug.adb}. You must obtain the
19047 sources of the compiler to see the full detailed effects of these flags.
19048
19049 The switches that print the source of the program (reconstructed from
19050 the internal tree) are of general interest for user programs, as are the
19051 options to print
19052 the full internal tree, and the entity table (the symbol table
19053 information). The reconstructed source provides a readable version of the
19054 program after the front-end has completed analysis and expansion,
19055 and is useful when studying the performance of specific constructs.
19056 For example, constraint checks are indicated, complex aggregates
19057 are replaced with loops and assignments, and tasking primitives
19058 are replaced with run-time calls.
19059
19060 @geindex traceback
19061
19062 @geindex stack traceback
19063
19064 @geindex stack unwinding
19065
19066 @node Stack Traceback,Pretty-Printers for the GNAT runtime,Getting Internal Debugging Information,Running and Debugging Ada Programs
19067 @anchor{gnat_ugn/gnat_and_program_execution id16}@anchor{16a}@anchor{gnat_ugn/gnat_and_program_execution stack-traceback}@anchor{16b}
19068 @subsection Stack Traceback
19069
19070
19071 Traceback is a mechanism to display the sequence of subprogram calls that
19072 leads to a specified execution point in a program. Often (but not always)
19073 the execution point is an instruction at which an exception has been raised.
19074 This mechanism is also known as `stack unwinding' because it obtains
19075 its information by scanning the run-time stack and recovering the activation
19076 records of all active subprograms. Stack unwinding is one of the most
19077 important tools for program debugging.
19078
19079 The first entry stored in traceback corresponds to the deepest calling level,
19080 that is to say the subprogram currently executing the instruction
19081 from which we want to obtain the traceback.
19082
19083 Note that there is no runtime performance penalty when stack traceback
19084 is enabled, and no exception is raised during program execution.
19085
19086 @geindex traceback
19087 @geindex non-symbolic
19088
19089 @menu
19090 * Non-Symbolic Traceback::
19091 * Symbolic Traceback::
19092
19093 @end menu
19094
19095 @node Non-Symbolic Traceback,Symbolic Traceback,,Stack Traceback
19096 @anchor{gnat_ugn/gnat_and_program_execution id17}@anchor{16c}@anchor{gnat_ugn/gnat_and_program_execution non-symbolic-traceback}@anchor{16d}
19097 @subsubsection Non-Symbolic Traceback
19098
19099
19100 Note: this feature is not supported on all platforms. See
19101 @code{GNAT.Traceback} spec in @code{g-traceb.ads}
19102 for a complete list of supported platforms.
19103
19104 @subsubheading Tracebacks From an Unhandled Exception
19105
19106
19107 A runtime non-symbolic traceback is a list of addresses of call instructions.
19108 To enable this feature you must use the @code{-E} @code{gnatbind} option. With
19109 this option a stack traceback is stored as part of exception information.
19110
19111 You can translate this information using the @code{addr2line} tool, provided that
19112 the program is compiled with debugging options (see @ref{dd,,Compiler Switches})
19113 and linked at a fixed position with @code{-no-pie}.
19114
19115 Here is a simple example with @code{gnatmake}:
19116
19117 @quotation
19118
19119 @example
19120 procedure STB is
19121
19122 procedure P1 is
19123 begin
19124 raise Constraint_Error;
19125 end P1;
19126
19127 procedure P2 is
19128 begin
19129 P1;
19130 end P2;
19131
19132 begin
19133 P2;
19134 end STB;
19135 @end example
19136
19137 @example
19138 $ gnatmake stb -g -bargs -E -largs -no-pie
19139 $ stb
19140
19141 Execution of stb terminated by unhandled exception
19142 raised CONSTRAINT_ERROR : stb.adb:5 explicit raise
19143 Load address: 0x400000
19144 Call stack traceback locations:
19145 0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4
19146 @end example
19147 @end quotation
19148
19149 As we see the traceback lists a sequence of addresses for the unhandled
19150 exception @code{CONSTRAINT_ERROR} raised in procedure P1. It is easy to
19151 guess that this exception come from procedure P1. To translate these
19152 addresses into the source lines where the calls appear, the @code{addr2line}
19153 tool needs to be invoked like this:
19154
19155 @quotation
19156
19157 @example
19158 $ addr2line -e stb 0x401373 0x40138b 0x40139c 0x401335 0x4011c4
19159 0x4011f1 0x77e892a4
19160
19161 d:/stb/stb.adb:5
19162 d:/stb/stb.adb:10
19163 d:/stb/stb.adb:14
19164 d:/stb/b~stb.adb:197
19165 crtexe.c:?
19166 crtexe.c:?
19167 ??:0
19168 @end example
19169 @end quotation
19170
19171 The @code{addr2line} tool has several other useful options:
19172
19173 @quotation
19174
19175
19176 @multitable {xxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
19177 @item
19178
19179 @code{-a --addresses}
19180
19181 @tab
19182
19183 to show the addresses alongside the line numbers
19184
19185 @item
19186
19187 @code{-f --functions}
19188
19189 @tab
19190
19191 to get the function name corresponding to a location
19192
19193 @item
19194
19195 @code{-p --pretty-print}
19196
19197 @tab
19198
19199 to print all the information on a single line
19200
19201 @item
19202
19203 @code{--demangle=gnat}
19204
19205 @tab
19206
19207 to use the GNAT decoding mode for the function names
19208
19209 @end multitable
19210
19211
19212 @example
19213 $ addr2line -e stb -a -f -p --demangle=gnat 0x401373 0x40138b
19214 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4
19215
19216 0x00401373: stb.p1 at d:/stb/stb.adb:5
19217 0x0040138B: stb.p2 at d:/stb/stb.adb:10
19218 0x0040139C: stb at d:/stb/stb.adb:14
19219 0x00401335: main at d:/stb/b~stb.adb:197
19220 0x004011c4: ?? at crtexe.c:?
19221 0x004011f1: ?? at crtexe.c:?
19222 0x77e892a4: ?? ??:0
19223 @end example
19224 @end quotation
19225
19226 From this traceback we can see that the exception was raised in @code{stb.adb}
19227 at line 5, which was reached from a procedure call in @code{stb.adb} at line
19228 10, and so on. The @code{b~std.adb} is the binder file, which contains the
19229 call to the main program. @ref{110,,Running gnatbind}. The remaining entries are
19230 assorted runtime routines and the output will vary from platform to platform.
19231
19232 It is also possible to use @code{GDB} with these traceback addresses to debug
19233 the program. For example, we can break at a given code location, as reported
19234 in the stack traceback:
19235
19236 @example
19237 $ gdb -nw stb
19238
19239 (gdb) break *0x401373
19240 Breakpoint 1 at 0x401373: file stb.adb, line 5.
19241 @end example
19242
19243 It is important to note that the stack traceback addresses do not change when
19244 debug information is included. This is particularly useful because it makes it
19245 possible to release software without debug information (to minimize object
19246 size), get a field report that includes a stack traceback whenever an internal
19247 bug occurs, and then be able to retrieve the sequence of calls with the same
19248 program compiled with debug information.
19249
19250 However the @code{addr2line} tool does not work with Position-Independent Code
19251 (PIC), the historical example being Linux dynamic libraries and Windows DLLs,
19252 which nowadays encompasse Position-Independent Executables (PIE) on recent
19253 Linux and Windows versions.
19254
19255 In order to translate addresses the source lines with Position-Independent
19256 Executables on recent Linux and Windows versions, in other words without
19257 using the switch @code{-no-pie} during linking, you need to use the
19258 @code{gnatsymbolize} tool with @code{--load} instead of the @code{addr2line}
19259 tool. The main difference is that you need to copy the Load Address output
19260 in the traceback ahead of the sequence of addresses. And the default mode
19261 of @code{gnatsymbolize} is equivalent to that of @code{addr2line} with the above
19262 switches, so none of them is needed:
19263
19264 @example
19265 $ gnatmake stb -g -bargs -E
19266 $ stb
19267
19268 Execution of stb terminated by unhandled exception
19269 raised CONSTRAINT_ERROR : stb.adb:5 explicit raise
19270 Load address: 0x400000
19271 Call stack traceback locations:
19272 0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4
19273
19274 $ gnatsymbolize --load stb 0x400000 0x401373 0x40138b 0x40139c 0x401335 \
19275 0x4011c4 0x4011f1 0x77e892a4
19276
19277 0x00401373 Stb.P1 at stb.adb:5
19278 0x0040138B Stb.P2 at stb.adb:10
19279 0x0040139C Stb at stb.adb:14
19280 0x00401335 Main at b~stb.adb:197
19281 0x004011c4 __tmainCRTStartup at ???
19282 0x004011f1 mainCRTStartup at ???
19283 0x77e892a4 ??? at ???
19284 @end example
19285
19286 @subsubheading Tracebacks From Exception Occurrences
19287
19288
19289 Non-symbolic tracebacks are obtained by using the @code{-E} binder argument.
19290 The stack traceback is attached to the exception information string, and can
19291 be retrieved in an exception handler within the Ada program, by means of the
19292 Ada facilities defined in @code{Ada.Exceptions}. Here is a simple example:
19293
19294 @quotation
19295
19296 @example
19297 with Ada.Text_IO;
19298 with Ada.Exceptions;
19299
19300 procedure STB is
19301
19302 use Ada;
19303 use Ada.Exceptions;
19304
19305 procedure P1 is
19306 K : Positive := 1;
19307 begin
19308 K := K - 1;
19309 exception
19310 when E : others =>
19311 Text_IO.Put_Line (Exception_Information (E));
19312 end P1;
19313
19314 procedure P2 is
19315 begin
19316 P1;
19317 end P2;
19318
19319 begin
19320 P2;
19321 end STB;
19322 @end example
19323
19324 @example
19325 $ gnatmake stb -g -bargs -E -largs -no-pie
19326 $ stb
19327
19328 raised CONSTRAINT_ERROR : stb.adb:12 range check failed
19329 Load address: 0x400000
19330 Call stack traceback locations:
19331 0x4015e4 0x401633 0x401644 0x401461 0x4011c4 0x4011f1 0x77e892a4
19332 @end example
19333 @end quotation
19334
19335 @subsubheading Tracebacks From Anywhere in a Program
19336
19337
19338 It is also possible to retrieve a stack traceback from anywhere in a program.
19339 For this you need to use the @code{GNAT.Traceback} API. This package includes a
19340 procedure called @code{Call_Chain} that computes a complete stack traceback, as
19341 well as useful display procedures described below. It is not necessary to use
19342 the @code{-E} @code{gnatbind} option in this case, because the stack traceback
19343 mechanism is invoked explicitly.
19344
19345 In the following example we compute a traceback at a specific location in the
19346 program, and we display it using @code{GNAT.Debug_Utilities.Image} to convert
19347 addresses to strings:
19348
19349 @quotation
19350
19351 @example
19352 with Ada.Text_IO;
19353 with GNAT.Traceback;
19354 with GNAT.Debug_Utilities;
19355 with System;
19356
19357 procedure STB is
19358
19359 use Ada;
19360 use Ada.Text_IO;
19361 use GNAT;
19362 use GNAT.Traceback;
19363 use System;
19364
19365 LA : constant Address := Executable_Load_Address;
19366
19367 procedure P1 is
19368 TB : Tracebacks_Array (1 .. 10);
19369 -- We are asking for a maximum of 10 stack frames.
19370 Len : Natural;
19371 -- Len will receive the actual number of stack frames returned.
19372 begin
19373 Call_Chain (TB, Len);
19374
19375 Put ("In STB.P1 : ");
19376
19377 for K in 1 .. Len loop
19378 Put (Debug_Utilities.Image_C (TB (K)));
19379 Put (' ');
19380 end loop;
19381
19382 New_Line;
19383 end P1;
19384
19385 procedure P2 is
19386 begin
19387 P1;
19388 end P2;
19389
19390 begin
19391 if LA /= Null_Address then
19392 Put_Line ("Load address: " & Debug_Utilities.Image_C (LA));
19393 end if;
19394
19395 P2;
19396 end STB;
19397 @end example
19398
19399 @example
19400 $ gnatmake stb -g
19401 $ stb
19402
19403 Load address: 0x400000
19404 In STB.P1 : 0x40F1E4 0x4014F2 0x40170B 0x40171C 0x401461 0x4011C4 \
19405 0x4011F1 0x77E892A4
19406 @end example
19407 @end quotation
19408
19409 You can then get further information by invoking the @code{addr2line} tool or
19410 the @code{gnatsymbolize} tool as described earlier (note that the hexadecimal
19411 addresses need to be specified in C format, with a leading ‘0x’).
19412
19413 @geindex traceback
19414 @geindex symbolic
19415
19416 @node Symbolic Traceback,,Non-Symbolic Traceback,Stack Traceback
19417 @anchor{gnat_ugn/gnat_and_program_execution id18}@anchor{16e}@anchor{gnat_ugn/gnat_and_program_execution symbolic-traceback}@anchor{16f}
19418 @subsubsection Symbolic Traceback
19419
19420
19421 A symbolic traceback is a stack traceback in which procedure names are
19422 associated with each code location.
19423
19424 Note that this feature is not supported on all platforms. See
19425 @code{GNAT.Traceback.Symbolic} spec in @code{g-trasym.ads} for a complete
19426 list of currently supported platforms.
19427
19428 Note that the symbolic traceback requires that the program be compiled
19429 with debug information. If it is not compiled with debug information
19430 only the non-symbolic information will be valid.
19431
19432 @subsubheading Tracebacks From Exception Occurrences
19433
19434
19435 Here is an example:
19436
19437 @quotation
19438
19439 @example
19440 with Ada.Text_IO;
19441 with GNAT.Traceback.Symbolic;
19442
19443 procedure STB is
19444
19445 procedure P1 is
19446 begin
19447 raise Constraint_Error;
19448 end P1;
19449
19450 procedure P2 is
19451 begin
19452 P1;
19453 end P2;
19454
19455 procedure P3 is
19456 begin
19457 P2;
19458 end P3;
19459
19460 begin
19461 P3;
19462 exception
19463 when E : others =>
19464 Ada.Text_IO.Put_Line (GNAT.Traceback.Symbolic.Symbolic_Traceback (E));
19465 end STB;
19466 @end example
19467
19468 @example
19469 $ gnatmake -g stb -bargs -E
19470 $ stb
19471
19472 0040149F in stb.p1 at stb.adb:8
19473 004014B7 in stb.p2 at stb.adb:13
19474 004014CF in stb.p3 at stb.adb:18
19475 004015DD in ada.stb at stb.adb:22
19476 00401461 in main at b~stb.adb:168
19477 004011C4 in __mingw_CRTStartup at crt1.c:200
19478 004011F1 in mainCRTStartup at crt1.c:222
19479 77E892A4 in ?? at ??:0
19480 @end example
19481 @end quotation
19482
19483 @subsubheading Tracebacks From Anywhere in a Program
19484
19485
19486 It is possible to get a symbolic stack traceback
19487 from anywhere in a program, just as for non-symbolic tracebacks.
19488 The first step is to obtain a non-symbolic
19489 traceback, and then call @code{Symbolic_Traceback} to compute the symbolic
19490 information. Here is an example:
19491
19492 @quotation
19493
19494 @example
19495 with Ada.Text_IO;
19496 with GNAT.Traceback;
19497 with GNAT.Traceback.Symbolic;
19498
19499 procedure STB is
19500
19501 use Ada;
19502 use GNAT.Traceback;
19503 use GNAT.Traceback.Symbolic;
19504
19505 procedure P1 is
19506 TB : Tracebacks_Array (1 .. 10);
19507 -- We are asking for a maximum of 10 stack frames.
19508 Len : Natural;
19509 -- Len will receive the actual number of stack frames returned.
19510 begin
19511 Call_Chain (TB, Len);
19512 Text_IO.Put_Line (Symbolic_Traceback (TB (1 .. Len)));
19513 end P1;
19514
19515 procedure P2 is
19516 begin
19517 P1;
19518 end P2;
19519
19520 begin
19521 P2;
19522 end STB;
19523 @end example
19524 @end quotation
19525
19526 @subsubheading Automatic Symbolic Tracebacks
19527
19528
19529 Symbolic tracebacks may also be enabled by using the -Es switch to gnatbind (as
19530 in @code{gprbuild -g ... -bargs -Es}).
19531 This will cause the Exception_Information to contain a symbolic traceback,
19532 which will also be printed if an unhandled exception terminates the
19533 program.
19534
19535 @node Pretty-Printers for the GNAT runtime,,Stack Traceback,Running and Debugging Ada Programs
19536 @anchor{gnat_ugn/gnat_and_program_execution id19}@anchor{170}@anchor{gnat_ugn/gnat_and_program_execution pretty-printers-for-the-gnat-runtime}@anchor{171}
19537 @subsection Pretty-Printers for the GNAT runtime
19538
19539
19540 As discussed in @cite{Calling User-Defined Subprograms}, GDB’s
19541 @code{print} command only knows about the physical layout of program data
19542 structures and therefore normally displays only low-level dumps, which
19543 are often hard to understand.
19544
19545 An example of this is when trying to display the contents of an Ada
19546 standard container, such as @code{Ada.Containers.Ordered_Maps.Map}:
19547
19548 @quotation
19549
19550 @example
19551 with Ada.Containers.Ordered_Maps;
19552
19553 procedure PP is
19554 package Int_To_Nat is
19555 new Ada.Containers.Ordered_Maps (Integer, Natural);
19556
19557 Map : Int_To_Nat.Map;
19558 begin
19559 Map.Insert (1, 10);
19560 Map.Insert (2, 20);
19561 Map.Insert (3, 30);
19562
19563 Map.Clear; -- BREAK HERE
19564 end PP;
19565 @end example
19566 @end quotation
19567
19568 When this program is built with debugging information and run under
19569 GDB up to the @code{Map.Clear} statement, trying to print @code{Map} will
19570 yield information that is only relevant to the developers of our standard
19571 containers:
19572
19573 @quotation
19574
19575 @example
19576 (gdb) print map
19577 $1 = (
19578 tree => (
19579 first => 0x64e010,
19580 last => 0x64e070,
19581 root => 0x64e040,
19582 length => 3,
19583 tc => (
19584 busy => 0,
19585 lock => 0
19586 )
19587 )
19588 )
19589 @end example
19590 @end quotation
19591
19592 Fortunately, GDB has a feature called pretty-printers@footnote{http://docs.adacore.com/gdb-docs/html/gdb.html#Pretty_002dPrinter-Introduction},
19593 which allows customizing how GDB displays data structures. The GDB
19594 shipped with GNAT embeds such pretty-printers for the most common
19595 containers in the standard library. To enable them, either run the
19596 following command manually under GDB or add it to your @code{.gdbinit} file:
19597
19598 @quotation
19599
19600 @example
19601 python import gnatdbg; gnatdbg.setup()
19602 @end example
19603 @end quotation
19604
19605 Once this is done, GDB’s @code{print} command will automatically use
19606 these pretty-printers when appropriate. Using the previous example:
19607
19608 @quotation
19609
19610 @example
19611 (gdb) print map
19612 $1 = pp.int_to_nat.map of length 3 = @{
19613 [1] = 10,
19614 [2] = 20,
19615 [3] = 30
19616 @}
19617 @end example
19618 @end quotation
19619
19620 Pretty-printers are invoked each time GDB tries to display a value,
19621 including when displaying the arguments of a called subprogram (in
19622 GDB’s @code{backtrace} command) or when printing the value returned by a
19623 function (in GDB’s @code{finish} command).
19624
19625 To display a value without involving pretty-printers, @code{print} can be
19626 invoked with its @code{/r} option:
19627
19628 @quotation
19629
19630 @example
19631 (gdb) print/r map
19632 $1 = (
19633 tree => (...
19634 @end example
19635 @end quotation
19636
19637 Finer control of pretty-printers is also possible: see GDB's online documentation@footnote{http://docs.adacore.com/gdb-docs/html/gdb.html#Pretty_002dPrinter-Commands}
19638 for more information.
19639
19640 @geindex Profiling
19641
19642 @node Profiling,Improving Performance,Running and Debugging Ada Programs,GNAT and Program Execution
19643 @anchor{gnat_ugn/gnat_and_program_execution id20}@anchor{172}@anchor{gnat_ugn/gnat_and_program_execution profiling}@anchor{149}
19644 @section Profiling
19645
19646
19647 This section describes how to use the @code{gprof} profiler tool on Ada programs.
19648
19649 @geindex gprof
19650
19651 @geindex Profiling
19652
19653 @menu
19654 * Profiling an Ada Program with gprof::
19655
19656 @end menu
19657
19658 @node Profiling an Ada Program with gprof,,,Profiling
19659 @anchor{gnat_ugn/gnat_and_program_execution id21}@anchor{173}@anchor{gnat_ugn/gnat_and_program_execution profiling-an-ada-program-with-gprof}@anchor{174}
19660 @subsection Profiling an Ada Program with gprof
19661
19662
19663 This section is not meant to be an exhaustive documentation of @code{gprof}.
19664 Full documentation for it can be found in the @cite{GNU Profiler User’s Guide}
19665 documentation that is part of this GNAT distribution.
19666
19667 Profiling a program helps determine the parts of a program that are executed
19668 most often, and are therefore the most time-consuming.
19669
19670 @code{gprof} is the standard GNU profiling tool; it has been enhanced to
19671 better handle Ada programs and multitasking.
19672 It is currently supported on the following platforms
19673
19674
19675 @itemize *
19676
19677 @item
19678 Linux x86/x86_64
19679
19680 @item
19681 Windows x86/x86_64 (without PIE support)
19682 @end itemize
19683
19684 In order to profile a program using @code{gprof}, several steps are needed:
19685
19686
19687 @enumerate
19688
19689 @item
19690 Instrument the code, which requires a full recompilation of the project with the
19691 proper switches.
19692
19693 @item
19694 Execute the program under the analysis conditions, i.e. with the desired
19695 input.
19696
19697 @item
19698 Analyze the results using the @code{gprof} tool.
19699 @end enumerate
19700
19701 The following sections detail the different steps, and indicate how
19702 to interpret the results.
19703
19704 @menu
19705 * Compilation for profiling::
19706 * Program execution::
19707 * Running gprof::
19708 * Interpretation of profiling results::
19709
19710 @end menu
19711
19712 @node Compilation for profiling,Program execution,,Profiling an Ada Program with gprof
19713 @anchor{gnat_ugn/gnat_and_program_execution compilation-for-profiling}@anchor{175}@anchor{gnat_ugn/gnat_and_program_execution id22}@anchor{176}
19714 @subsubsection Compilation for profiling
19715
19716
19717 @geindex -pg (gcc)
19718 @geindex for profiling
19719
19720 @geindex -pg (gnatlink)
19721 @geindex for profiling
19722
19723 In order to profile a program the first step is to tell the compiler
19724 to generate the necessary profiling information. The compiler switch to be used
19725 is @code{-pg}, which must be added to other compilation switches. This
19726 switch needs to be specified both during compilation and link stages, and can
19727 be specified once when using gnatmake:
19728
19729 @quotation
19730
19731 @example
19732 $ gnatmake -f -pg -P my_project
19733 @end example
19734 @end quotation
19735
19736 Note that only the objects that were compiled with the @code{-pg} switch will
19737 be profiled; if you need to profile your whole project, use the @code{-f}
19738 gnatmake switch to force full recompilation.
19739
19740 Note that on Windows, gprof does not support PIE. The @code{-no-pie} switch
19741 should be added to the linker flags to disable this feature.
19742
19743 @node Program execution,Running gprof,Compilation for profiling,Profiling an Ada Program with gprof
19744 @anchor{gnat_ugn/gnat_and_program_execution id23}@anchor{177}@anchor{gnat_ugn/gnat_and_program_execution program-execution}@anchor{178}
19745 @subsubsection Program execution
19746
19747
19748 Once the program has been compiled for profiling, you can run it as usual.
19749
19750 The only constraint imposed by profiling is that the program must terminate
19751 normally. An interrupted program (via a Ctrl-C, kill, etc.) will not be
19752 properly analyzed.
19753
19754 Once the program completes execution, a data file called @code{gmon.out} is
19755 generated in the directory where the program was launched from. If this file
19756 already exists, it will be overwritten.
19757
19758 @node Running gprof,Interpretation of profiling results,Program execution,Profiling an Ada Program with gprof
19759 @anchor{gnat_ugn/gnat_and_program_execution id24}@anchor{179}@anchor{gnat_ugn/gnat_and_program_execution running-gprof}@anchor{17a}
19760 @subsubsection Running gprof
19761
19762
19763 The @code{gprof} tool is called as follow:
19764
19765 @quotation
19766
19767 @example
19768 $ gprof my_prog gmon.out
19769 @end example
19770 @end quotation
19771
19772 or simply:
19773
19774 @quotation
19775
19776 @example
19777 $ gprof my_prog
19778 @end example
19779 @end quotation
19780
19781 The complete form of the gprof command line is the following:
19782
19783 @quotation
19784
19785 @example
19786 $ gprof [switches] [executable [data-file]]
19787 @end example
19788 @end quotation
19789
19790 @code{gprof} supports numerous switches. The order of these
19791 switch does not matter. The full list of options can be found in
19792 the GNU Profiler User’s Guide documentation that comes with this documentation.
19793
19794 The following is the subset of those switches that is most relevant:
19795
19796 @geindex --demangle (gprof)
19797
19798
19799 @table @asis
19800
19801 @item @code{--demangle[=@var{style}]}, @code{--no-demangle}
19802
19803 These options control whether symbol names should be demangled when
19804 printing output. The default is to demangle C++ symbols. The
19805 @code{--no-demangle} option may be used to turn off demangling. Different
19806 compilers have different mangling styles. The optional demangling style
19807 argument can be used to choose an appropriate demangling style for your
19808 compiler, in particular Ada symbols generated by GNAT can be demangled using
19809 @code{--demangle=gnat}.
19810 @end table
19811
19812 @geindex -e (gprof)
19813
19814
19815 @table @asis
19816
19817 @item @code{-e @var{function_name}}
19818
19819 The @code{-e @var{function}} option tells @code{gprof} not to print
19820 information about the function @code{function_name} (and its
19821 children…) in the call graph. The function will still be listed
19822 as a child of any functions that call it, but its index number will be
19823 shown as @code{[not printed]}. More than one @code{-e} option may be
19824 given; only one @code{function_name} may be indicated with each @code{-e}
19825 option.
19826 @end table
19827
19828 @geindex -E (gprof)
19829
19830
19831 @table @asis
19832
19833 @item @code{-E @var{function_name}}
19834
19835 The @code{-E @var{function}} option works like the @code{-e} option, but
19836 execution time spent in the function (and children who were not called from
19837 anywhere else), will not be used to compute the percentages-of-time for
19838 the call graph. More than one @code{-E} option may be given; only one
19839 @code{function_name} may be indicated with each @code{-E`} option.
19840 @end table
19841
19842 @geindex -f (gprof)
19843
19844
19845 @table @asis
19846
19847 @item @code{-f @var{function_name}}
19848
19849 The @code{-f @var{function}} option causes @code{gprof} to limit the
19850 call graph to the function @code{function_name} and its children (and
19851 their children…). More than one @code{-f} option may be given;
19852 only one @code{function_name} may be indicated with each @code{-f}
19853 option.
19854 @end table
19855
19856 @geindex -F (gprof)
19857
19858
19859 @table @asis
19860
19861 @item @code{-F @var{function_name}}
19862
19863 The @code{-F @var{function}} option works like the @code{-f} option, but
19864 only time spent in the function and its children (and their
19865 children…) will be used to determine total-time and
19866 percentages-of-time for the call graph. More than one @code{-F} option
19867 may be given; only one @code{function_name} may be indicated with each
19868 @code{-F} option. The @code{-F} option overrides the @code{-E} option.
19869 @end table
19870
19871 @node Interpretation of profiling results,,Running gprof,Profiling an Ada Program with gprof
19872 @anchor{gnat_ugn/gnat_and_program_execution id25}@anchor{17b}@anchor{gnat_ugn/gnat_and_program_execution interpretation-of-profiling-results}@anchor{17c}
19873 @subsubsection Interpretation of profiling results
19874
19875
19876 The results of the profiling analysis are represented by two arrays: the
19877 ‘flat profile’ and the ‘call graph’. Full documentation of those outputs
19878 can be found in the GNU Profiler User’s Guide.
19879
19880 The flat profile shows the time spent in each function of the program, and how
19881 many time it has been called. This allows you to locate easily the most
19882 time-consuming functions.
19883
19884 The call graph shows, for each subprogram, the subprograms that call it,
19885 and the subprograms that it calls. It also provides an estimate of the time
19886 spent in each of those callers/called subprograms.
19887
19888 @node Improving Performance,Overflow Check Handling in GNAT,Profiling,GNAT and Program Execution
19889 @anchor{gnat_ugn/gnat_and_program_execution id26}@anchor{14a}@anchor{gnat_ugn/gnat_and_program_execution improving-performance}@anchor{17d}
19890 @section Improving Performance
19891
19892
19893 @geindex Improving performance
19894
19895 This section presents several topics related to program performance.
19896 It first describes some of the tradeoffs that need to be considered
19897 and some of the techniques for making your program run faster.
19898
19899 It then documents the unused subprogram/data elimination feature,
19900 which can reduce the size of program executables.
19901
19902 @menu
19903 * Performance Considerations::
19904 * Text_IO Suggestions::
19905 * Reducing Size of Executables with Unused Subprogram/Data Elimination::
19906
19907 @end menu
19908
19909 @node Performance Considerations,Text_IO Suggestions,,Improving Performance
19910 @anchor{gnat_ugn/gnat_and_program_execution id27}@anchor{17e}@anchor{gnat_ugn/gnat_and_program_execution performance-considerations}@anchor{17f}
19911 @subsection Performance Considerations
19912
19913
19914 The GNAT system provides a number of options that allow a trade-off
19915 between
19916
19917
19918 @itemize *
19919
19920 @item
19921 performance of the generated code
19922
19923 @item
19924 speed of compilation
19925
19926 @item
19927 minimization of dependences and recompilation
19928
19929 @item
19930 the degree of run-time checking.
19931 @end itemize
19932
19933 The defaults (if no options are selected) aim at improving the speed
19934 of compilation and minimizing dependences, at the expense of performance
19935 of the generated code:
19936
19937
19938 @itemize *
19939
19940 @item
19941 no optimization
19942
19943 @item
19944 no inlining of subprogram calls
19945
19946 @item
19947 all run-time checks enabled except overflow and elaboration checks
19948 @end itemize
19949
19950 These options are suitable for most program development purposes. This
19951 section describes how you can modify these choices, and also provides
19952 some guidelines on debugging optimized code.
19953
19954 @menu
19955 * Controlling Run-Time Checks::
19956 * Use of Restrictions::
19957 * Optimization Levels::
19958 * Debugging Optimized Code::
19959 * Inlining of Subprograms::
19960 * Floating Point Operations::
19961 * Vectorization of loops::
19962 * Other Optimization Switches::
19963 * Optimization and Strict Aliasing::
19964 * Aliased Variables and Optimization::
19965 * Atomic Variables and Optimization::
19966 * Passive Task Optimization::
19967
19968 @end menu
19969
19970 @node Controlling Run-Time Checks,Use of Restrictions,,Performance Considerations
19971 @anchor{gnat_ugn/gnat_and_program_execution controlling-run-time-checks}@anchor{180}@anchor{gnat_ugn/gnat_and_program_execution id28}@anchor{181}
19972 @subsubsection Controlling Run-Time Checks
19973
19974
19975 By default, GNAT generates all run-time checks, except stack overflow
19976 checks, and checks for access before elaboration on subprogram
19977 calls. The latter are not required in default mode, because all
19978 necessary checking is done at compile time.
19979
19980 @geindex -gnatp (gcc)
19981
19982 @geindex -gnato (gcc)
19983
19984 The gnat switch, @code{-gnatp} allows this default to be modified. See
19985 @ref{ec,,Run-Time Checks}.
19986
19987 Our experience is that the default is suitable for most development
19988 purposes.
19989
19990 Elaboration checks are off by default, and also not needed by default, since
19991 GNAT uses a static elaboration analysis approach that avoids the need for
19992 run-time checking. This manual contains a full chapter discussing the issue
19993 of elaboration checks, and if the default is not satisfactory for your use,
19994 you should read this chapter.
19995
19996 For validity checks, the minimal checks required by the Ada Reference
19997 Manual (for case statements and assignments to array elements) are on
19998 by default. These can be suppressed by use of the @code{-gnatVn} switch.
19999 Note that in Ada 83, there were no validity checks, so if the Ada 83 mode
20000 is acceptable (or when comparing GNAT performance with an Ada 83 compiler),
20001 it may be reasonable to routinely use @code{-gnatVn}. Validity checks
20002 are also suppressed entirely if @code{-gnatp} is used.
20003
20004 @geindex Overflow checks
20005
20006 @geindex Checks
20007 @geindex overflow
20008
20009 @geindex Suppress
20010
20011 @geindex Unsuppress
20012
20013 @geindex pragma Suppress
20014
20015 @geindex pragma Unsuppress
20016
20017 Note that the setting of the switches controls the default setting of
20018 the checks. They may be modified using either @code{pragma Suppress} (to
20019 remove checks) or @code{pragma Unsuppress} (to add back suppressed
20020 checks) in the program source.
20021
20022 @node Use of Restrictions,Optimization Levels,Controlling Run-Time Checks,Performance Considerations
20023 @anchor{gnat_ugn/gnat_and_program_execution id29}@anchor{182}@anchor{gnat_ugn/gnat_and_program_execution use-of-restrictions}@anchor{183}
20024 @subsubsection Use of Restrictions
20025
20026
20027 The use of pragma Restrictions allows you to control which features are
20028 permitted in your program. Apart from the obvious point that if you avoid
20029 relatively expensive features like finalization (enforceable by the use
20030 of pragma Restrictions (No_Finalization)), the use of this pragma does not
20031 affect the generated code in most cases.
20032
20033 One notable exception to this rule is that the possibility of task abort
20034 results in some distributed overhead, particularly if finalization or
20035 exception handlers are used. The reason is that certain sections of code
20036 have to be marked as non-abortable.
20037
20038 If you use neither the @code{abort} statement, nor asynchronous transfer
20039 of control (@code{select ... then abort}), then this distributed overhead
20040 is removed, which may have a general positive effect in improving
20041 overall performance. Especially code involving frequent use of tasking
20042 constructs and controlled types will show much improved performance.
20043 The relevant restrictions pragmas are
20044
20045 @quotation
20046
20047 @example
20048 pragma Restrictions (No_Abort_Statements);
20049 pragma Restrictions (Max_Asynchronous_Select_Nesting => 0);
20050 @end example
20051 @end quotation
20052
20053 It is recommended that these restriction pragmas be used if possible. Note
20054 that this also means that you can write code without worrying about the
20055 possibility of an immediate abort at any point.
20056
20057 @node Optimization Levels,Debugging Optimized Code,Use of Restrictions,Performance Considerations
20058 @anchor{gnat_ugn/gnat_and_program_execution id30}@anchor{184}@anchor{gnat_ugn/gnat_and_program_execution optimization-levels}@anchor{ef}
20059 @subsubsection Optimization Levels
20060
20061
20062 @geindex -O (gcc)
20063
20064 Without any optimization option,
20065 the compiler’s goal is to reduce the cost of
20066 compilation and to make debugging produce the expected results.
20067 Statements are independent: if you stop the program with a breakpoint between
20068 statements, you can then assign a new value to any variable or change
20069 the program counter to any other statement in the subprogram and get exactly
20070 the results you would expect from the source code.
20071
20072 Turning on optimization makes the compiler attempt to improve the
20073 performance and/or code size at the expense of compilation time and
20074 possibly the ability to debug the program.
20075
20076 If you use multiple
20077 -O options, with or without level numbers,
20078 the last such option is the one that is effective.
20079
20080 The default is optimization off. This results in the fastest compile
20081 times, but GNAT makes absolutely no attempt to optimize, and the
20082 generated programs are considerably larger and slower than when
20083 optimization is enabled. You can use the
20084 @code{-O} switch (the permitted forms are @code{-O0}, @code{-O1}
20085 @code{-O2}, @code{-O3}, and @code{-Os})
20086 to @code{gcc} to control the optimization level:
20087
20088
20089 @itemize *
20090
20091 @item
20092
20093 @table @asis
20094
20095 @item @code{-O0}
20096
20097 No optimization (the default);
20098 generates unoptimized code but has
20099 the fastest compilation time.
20100
20101 Note that many other compilers do substantial optimization even
20102 if ‘no optimization’ is specified. With gcc, it is very unusual
20103 to use @code{-O0} for production if execution time is of any concern,
20104 since @code{-O0} means (almost) no optimization. This difference
20105 between gcc and other compilers should be kept in mind when
20106 doing performance comparisons.
20107 @end table
20108
20109 @item
20110
20111 @table @asis
20112
20113 @item @code{-O1}
20114
20115 Moderate optimization;
20116 optimizes reasonably well but does not
20117 degrade compilation time significantly.
20118 @end table
20119
20120 @item
20121
20122 @table @asis
20123
20124 @item @code{-O2}
20125
20126 Full optimization;
20127 generates highly optimized code and has
20128 the slowest compilation time.
20129 @end table
20130
20131 @item
20132
20133 @table @asis
20134
20135 @item @code{-O3}
20136
20137 Full optimization as in @code{-O2};
20138 also uses more aggressive automatic inlining of subprograms within a unit
20139 (@ref{102,,Inlining of Subprograms}) and attempts to vectorize loops.
20140 @end table
20141
20142 @item
20143
20144 @table @asis
20145
20146 @item @code{-Os}
20147
20148 Optimize space usage (code and data) of resulting program.
20149 @end table
20150 @end itemize
20151
20152 Higher optimization levels perform more global transformations on the
20153 program and apply more expensive analysis algorithms in order to generate
20154 faster and more compact code. The price in compilation time, and the
20155 resulting improvement in execution time,
20156 both depend on the particular application and the hardware environment.
20157 You should experiment to find the best level for your application.
20158
20159 Since the precise set of optimizations done at each level will vary from
20160 release to release (and sometime from target to target), it is best to think
20161 of the optimization settings in general terms.
20162 See the `Options That Control Optimization' section in
20163 @cite{Using the GNU Compiler Collection (GCC)}
20164 for details about
20165 the @code{-O} settings and a number of @code{-f} options that
20166 individually enable or disable specific optimizations.
20167
20168 Unlike some other compilation systems, @code{gcc} has
20169 been tested extensively at all optimization levels. There are some bugs
20170 which appear only with optimization turned on, but there have also been
20171 bugs which show up only in `unoptimized' code. Selecting a lower
20172 level of optimization does not improve the reliability of the code
20173 generator, which in practice is highly reliable at all optimization
20174 levels.
20175
20176 Note regarding the use of @code{-O3}: The use of this optimization level
20177 ought not to be automatically preferred over that of level @code{-O2},
20178 since it often results in larger executables which may run more slowly.
20179 See further discussion of this point in @ref{102,,Inlining of Subprograms}.
20180
20181 @node Debugging Optimized Code,Inlining of Subprograms,Optimization Levels,Performance Considerations
20182 @anchor{gnat_ugn/gnat_and_program_execution debugging-optimized-code}@anchor{185}@anchor{gnat_ugn/gnat_and_program_execution id31}@anchor{186}
20183 @subsubsection Debugging Optimized Code
20184
20185
20186 @geindex Debugging optimized code
20187
20188 @geindex Optimization and debugging
20189
20190 Although it is possible to do a reasonable amount of debugging at
20191 nonzero optimization levels,
20192 the higher the level the more likely that
20193 source-level constructs will have been eliminated by optimization.
20194 For example, if a loop is strength-reduced, the loop
20195 control variable may be completely eliminated and thus cannot be
20196 displayed in the debugger.
20197 This can only happen at @code{-O2} or @code{-O3}.
20198 Explicit temporary variables that you code might be eliminated at
20199 level @code{-O1} or higher.
20200
20201 @geindex -g (gcc)
20202
20203 The use of the @code{-g} switch,
20204 which is needed for source-level debugging,
20205 affects the size of the program executable on disk,
20206 and indeed the debugging information can be quite large.
20207 However, it has no effect on the generated code (and thus does not
20208 degrade performance)
20209
20210 Since the compiler generates debugging tables for a compilation unit before
20211 it performs optimizations, the optimizing transformations may invalidate some
20212 of the debugging data. You therefore need to anticipate certain
20213 anomalous situations that may arise while debugging optimized code.
20214 These are the most common cases:
20215
20216
20217 @itemize *
20218
20219 @item
20220 `The ‘hopping Program Counter’:' Repeated @code{step} or @code{next}
20221 commands show
20222 the PC bouncing back and forth in the code. This may result from any of
20223 the following optimizations:
20224
20225
20226 @itemize -
20227
20228 @item
20229 `Common subexpression elimination:' using a single instance of code for a
20230 quantity that the source computes several times. As a result you
20231 may not be able to stop on what looks like a statement.
20232
20233 @item
20234 `Invariant code motion:' moving an expression that does not change within a
20235 loop, to the beginning of the loop.
20236
20237 @item
20238 `Instruction scheduling:' moving instructions so as to
20239 overlap loads and stores (typically) with other code, or in
20240 general to move computations of values closer to their uses. Often
20241 this causes you to pass an assignment statement without the assignment
20242 happening and then later bounce back to the statement when the
20243 value is actually needed. Placing a breakpoint on a line of code
20244 and then stepping over it may, therefore, not always cause all the
20245 expected side-effects.
20246 @end itemize
20247
20248 @item
20249 `The ‘big leap’:' More commonly known as `cross-jumping', in which
20250 two identical pieces of code are merged and the program counter suddenly
20251 jumps to a statement that is not supposed to be executed, simply because
20252 it (and the code following) translates to the same thing as the code
20253 that `was' supposed to be executed. This effect is typically seen in
20254 sequences that end in a jump, such as a @code{goto}, a @code{return}, or
20255 a @code{break} in a C @code{switch} statement.
20256
20257 @item
20258 `The ‘roving variable’:' The symptom is an unexpected value in a variable.
20259 There are various reasons for this effect:
20260
20261
20262 @itemize -
20263
20264 @item
20265 In a subprogram prologue, a parameter may not yet have been moved to its
20266 ‘home’.
20267
20268 @item
20269 A variable may be dead, and its register re-used. This is
20270 probably the most common cause.
20271
20272 @item
20273 As mentioned above, the assignment of a value to a variable may
20274 have been moved.
20275
20276 @item
20277 A variable may be eliminated entirely by value propagation or
20278 other means. In this case, GCC may incorrectly generate debugging
20279 information for the variable
20280 @end itemize
20281
20282 In general, when an unexpected value appears for a local variable or parameter
20283 you should first ascertain if that value was actually computed by
20284 your program, as opposed to being incorrectly reported by the debugger.
20285 Record fields or
20286 array elements in an object designated by an access value
20287 are generally less of a problem, once you have ascertained that the access
20288 value is sensible.
20289 Typically, this means checking variables in the preceding code and in the
20290 calling subprogram to verify that the value observed is explainable from other
20291 values (one must apply the procedure recursively to those
20292 other values); or re-running the code and stopping a little earlier
20293 (perhaps before the call) and stepping to better see how the variable obtained
20294 the value in question; or continuing to step `from' the point of the
20295 strange value to see if code motion had simply moved the variable’s
20296 assignments later.
20297 @end itemize
20298
20299 In light of such anomalies, a recommended technique is to use @code{-O0}
20300 early in the software development cycle, when extensive debugging capabilities
20301 are most needed, and then move to @code{-O1} and later @code{-O2} as
20302 the debugger becomes less critical.
20303 Whether to use the @code{-g} switch in the release version is
20304 a release management issue.
20305 Note that if you use @code{-g} you can then use the @code{strip} program
20306 on the resulting executable,
20307 which removes both debugging information and global symbols.
20308
20309 @node Inlining of Subprograms,Floating Point Operations,Debugging Optimized Code,Performance Considerations
20310 @anchor{gnat_ugn/gnat_and_program_execution id32}@anchor{187}@anchor{gnat_ugn/gnat_and_program_execution inlining-of-subprograms}@anchor{102}
20311 @subsubsection Inlining of Subprograms
20312
20313
20314 A call to a subprogram in the current unit is inlined if all the
20315 following conditions are met:
20316
20317
20318 @itemize *
20319
20320 @item
20321 The optimization level is at least @code{-O1}.
20322
20323 @item
20324 The called subprogram is suitable for inlining: It must be small enough
20325 and not contain something that @code{gcc} cannot support in inlined
20326 subprograms.
20327
20328 @geindex pragma Inline
20329
20330 @geindex Inline
20331
20332 @item
20333 Any one of the following applies: @code{pragma Inline} is applied to the
20334 subprogram; the subprogram is local to the unit and called once from
20335 within it; the subprogram is small and optimization level @code{-O2} is
20336 specified; optimization level @code{-O3} is specified.
20337 @end itemize
20338
20339 Calls to subprograms in `with'ed units are normally not inlined.
20340 To achieve actual inlining (that is, replacement of the call by the code
20341 in the body of the subprogram), the following conditions must all be true:
20342
20343
20344 @itemize *
20345
20346 @item
20347 The optimization level is at least @code{-O1}.
20348
20349 @item
20350 The called subprogram is suitable for inlining: It must be small enough
20351 and not contain something that @code{gcc} cannot support in inlined
20352 subprograms.
20353
20354 @item
20355 There is a @code{pragma Inline} for the subprogram.
20356
20357 @item
20358 The @code{-gnatn} switch is used on the command line.
20359 @end itemize
20360
20361 Even if all these conditions are met, it may not be possible for
20362 the compiler to inline the call, due to the length of the body,
20363 or features in the body that make it impossible for the compiler
20364 to do the inlining.
20365
20366 Note that specifying the @code{-gnatn} switch causes additional
20367 compilation dependencies. Consider the following:
20368
20369 @quotation
20370
20371 @example
20372 package R is
20373 procedure Q;
20374 pragma Inline (Q);
20375 end R;
20376 package body R is
20377 ...
20378 end R;
20379
20380 with R;
20381 procedure Main is
20382 begin
20383 ...
20384 R.Q;
20385 end Main;
20386 @end example
20387 @end quotation
20388
20389 With the default behavior (no @code{-gnatn} switch specified), the
20390 compilation of the @code{Main} procedure depends only on its own source,
20391 @code{main.adb}, and the spec of the package in file @code{r.ads}. This
20392 means that editing the body of @code{R} does not require recompiling
20393 @code{Main}.
20394
20395 On the other hand, the call @code{R.Q} is not inlined under these
20396 circumstances. If the @code{-gnatn} switch is present when @code{Main}
20397 is compiled, the call will be inlined if the body of @code{Q} is small
20398 enough, but now @code{Main} depends on the body of @code{R} in
20399 @code{r.adb} as well as on the spec. This means that if this body is edited,
20400 the main program must be recompiled. Note that this extra dependency
20401 occurs whether or not the call is in fact inlined by @code{gcc}.
20402
20403 The use of front end inlining with @code{-gnatN} generates similar
20404 additional dependencies.
20405
20406 @geindex -fno-inline (gcc)
20407
20408 Note: The @code{-fno-inline} switch overrides all other conditions and ensures that
20409 no inlining occurs, unless requested with pragma Inline_Always for @code{gcc}
20410 back-ends. The extra dependences resulting from @code{-gnatn} will still be active,
20411 even if this switch is used to suppress the resulting inlining actions.
20412
20413 @geindex -fno-inline-functions (gcc)
20414
20415 Note: The @code{-fno-inline-functions} switch can be used to prevent
20416 automatic inlining of subprograms if @code{-O3} is used.
20417
20418 @geindex -fno-inline-small-functions (gcc)
20419
20420 Note: The @code{-fno-inline-small-functions} switch can be used to prevent
20421 automatic inlining of small subprograms if @code{-O2} is used.
20422
20423 @geindex -fno-inline-functions-called-once (gcc)
20424
20425 Note: The @code{-fno-inline-functions-called-once} switch
20426 can be used to prevent inlining of subprograms local to the unit
20427 and called once from within it if @code{-O1} is used.
20428
20429 Note regarding the use of @code{-O3}: @code{-gnatn} is made up of two
20430 sub-switches @code{-gnatn1} and @code{-gnatn2} that can be directly
20431 specified in lieu of it, @code{-gnatn} being translated into one of them
20432 based on the optimization level. With @code{-O2} or below, @code{-gnatn}
20433 is equivalent to @code{-gnatn1} which activates pragma @code{Inline} with
20434 moderate inlining across modules. With @code{-O3}, @code{-gnatn} is
20435 equivalent to @code{-gnatn2} which activates pragma @code{Inline} with
20436 full inlining across modules. If you have used pragma @code{Inline} in
20437 appropriate cases, then it is usually much better to use @code{-O2}
20438 and @code{-gnatn} and avoid the use of @code{-O3} which has the additional
20439 effect of inlining subprograms you did not think should be inlined. We have
20440 found that the use of @code{-O3} may slow down the compilation and increase
20441 the code size by performing excessive inlining, leading to increased
20442 instruction cache pressure from the increased code size and thus minor
20443 performance improvements. So the bottom line here is that you should not
20444 automatically assume that @code{-O3} is better than @code{-O2}, and
20445 indeed you should use @code{-O3} only if tests show that it actually
20446 improves performance for your program.
20447
20448 @node Floating Point Operations,Vectorization of loops,Inlining of Subprograms,Performance Considerations
20449 @anchor{gnat_ugn/gnat_and_program_execution floating-point-operations}@anchor{188}@anchor{gnat_ugn/gnat_and_program_execution id33}@anchor{189}
20450 @subsubsection Floating Point Operations
20451
20452
20453 @geindex Floating-Point Operations
20454
20455 On almost all targets, GNAT maps Float and Long_Float to the 32-bit and
20456 64-bit standard IEEE floating-point representations, and operations will
20457 use standard IEEE arithmetic as provided by the processor. On most, but
20458 not all, architectures, the attribute Machine_Overflows is False for these
20459 types, meaning that the semantics of overflow is implementation-defined.
20460 In the case of GNAT, these semantics correspond to the normal IEEE
20461 treatment of infinities and NaN (not a number) values. For example,
20462 1.0 / 0.0 yields plus infinitiy and 0.0 / 0.0 yields a NaN. By
20463 avoiding explicit overflow checks, the performance is greatly improved
20464 on many targets. However, if required, floating-point overflow can be
20465 enabled by the use of the pragma Check_Float_Overflow.
20466
20467 Another consideration that applies specifically to x86 32-bit
20468 architectures is which form of floating-point arithmetic is used.
20469 By default the operations use the old style x86 floating-point,
20470 which implements an 80-bit extended precision form (on these
20471 architectures the type Long_Long_Float corresponds to that form).
20472 In addition, generation of efficient code in this mode means that
20473 the extended precision form will be used for intermediate results.
20474 This may be helpful in improving the final precision of a complex
20475 expression. However it means that the results obtained on the x86
20476 will be different from those on other architectures, and for some
20477 algorithms, the extra intermediate precision can be detrimental.
20478
20479 In addition to this old-style floating-point, all modern x86 chips
20480 implement an alternative floating-point operation model referred
20481 to as SSE2. In this model there is no extended form, and furthermore
20482 execution performance is significantly enhanced. To force GNAT to use
20483 this more modern form, use both of the switches:
20484
20485 @quotation
20486
20487 -msse2 -mfpmath=sse
20488 @end quotation
20489
20490 A unit compiled with these switches will automatically use the more
20491 efficient SSE2 instruction set for Float and Long_Float operations.
20492 Note that the ABI has the same form for both floating-point models,
20493 so it is permissible to mix units compiled with and without these
20494 switches.
20495
20496 @node Vectorization of loops,Other Optimization Switches,Floating Point Operations,Performance Considerations
20497 @anchor{gnat_ugn/gnat_and_program_execution id34}@anchor{18a}@anchor{gnat_ugn/gnat_and_program_execution vectorization-of-loops}@anchor{18b}
20498 @subsubsection Vectorization of loops
20499
20500
20501 @geindex Optimization Switches
20502
20503 You can take advantage of the auto-vectorizer present in the @code{gcc}
20504 back end to vectorize loops with GNAT. The corresponding command line switch
20505 is @code{-ftree-vectorize} but, as it is enabled by default at @code{-O3}
20506 and other aggressive optimizations helpful for vectorization also are enabled
20507 by default at this level, using @code{-O3} directly is recommended.
20508
20509 You also need to make sure that the target architecture features a supported
20510 SIMD instruction set. For example, for the x86 architecture, you should at
20511 least specify @code{-msse2} to get significant vectorization (but you don’t
20512 need to specify it for x86-64 as it is part of the base 64-bit architecture).
20513 Similarly, for the PowerPC architecture, you should specify @code{-maltivec}.
20514
20515 The preferred loop form for vectorization is the @code{for} iteration scheme.
20516 Loops with a @code{while} iteration scheme can also be vectorized if they are
20517 very simple, but the vectorizer will quickly give up otherwise. With either
20518 iteration scheme, the flow of control must be straight, in particular no
20519 @code{exit} statement may appear in the loop body. The loop may however
20520 contain a single nested loop, if it can be vectorized when considered alone:
20521
20522 @quotation
20523
20524 @example
20525 A : array (1..4, 1..4) of Long_Float;
20526 S : array (1..4) of Long_Float;
20527
20528 procedure Sum is
20529 begin
20530 for I in A'Range(1) loop
20531 for J in A'Range(2) loop
20532 S (I) := S (I) + A (I, J);
20533 end loop;
20534 end loop;
20535 end Sum;
20536 @end example
20537 @end quotation
20538
20539 The vectorizable operations depend on the targeted SIMD instruction set, but
20540 the adding and some of the multiplying operators are generally supported, as
20541 well as the logical operators for modular types. Note that compiling
20542 with @code{-gnatp} might well reveal cases where some checks do thwart
20543 vectorization.
20544
20545 Type conversions may also prevent vectorization if they involve semantics that
20546 are not directly supported by the code generator or the SIMD instruction set.
20547 A typical example is direct conversion from floating-point to integer types.
20548 The solution in this case is to use the following idiom:
20549
20550 @quotation
20551
20552 @example
20553 Integer (S'Truncation (F))
20554 @end example
20555 @end quotation
20556
20557 if @code{S} is the subtype of floating-point object @code{F}.
20558
20559 In most cases, the vectorizable loops are loops that iterate over arrays.
20560 All kinds of array types are supported, i.e. constrained array types with
20561 static bounds:
20562
20563 @quotation
20564
20565 @example
20566 type Array_Type is array (1 .. 4) of Long_Float;
20567 @end example
20568 @end quotation
20569
20570 constrained array types with dynamic bounds:
20571
20572 @quotation
20573
20574 @example
20575 type Array_Type is array (1 .. Q.N) of Long_Float;
20576
20577 type Array_Type is array (Q.K .. 4) of Long_Float;
20578
20579 type Array_Type is array (Q.K .. Q.N) of Long_Float;
20580 @end example
20581 @end quotation
20582
20583 or unconstrained array types:
20584
20585 @quotation
20586
20587 @example
20588 type Array_Type is array (Positive range <>) of Long_Float;
20589 @end example
20590 @end quotation
20591
20592 The quality of the generated code decreases when the dynamic aspect of the
20593 array type increases, the worst code being generated for unconstrained array
20594 types. This is so because, the less information the compiler has about the
20595 bounds of the array, the more fallback code it needs to generate in order to
20596 fix things up at run time.
20597
20598 It is possible to specify that a given loop should be subject to vectorization
20599 preferably to other optimizations by means of pragma @code{Loop_Optimize}:
20600
20601 @quotation
20602
20603 @example
20604 pragma Loop_Optimize (Vector);
20605 @end example
20606 @end quotation
20607
20608 placed immediately within the loop will convey the appropriate hint to the
20609 compiler for this loop.
20610
20611 It is also possible to help the compiler generate better vectorized code
20612 for a given loop by asserting that there are no loop-carried dependencies
20613 in the loop. Consider for example the procedure:
20614
20615 @quotation
20616
20617 @example
20618 type Arr is array (1 .. 4) of Long_Float;
20619
20620 procedure Add (X, Y : not null access Arr; R : not null access Arr) is
20621 begin
20622 for I in Arr'Range loop
20623 R(I) := X(I) + Y(I);
20624 end loop;
20625 end;
20626 @end example
20627 @end quotation
20628
20629 By default, the compiler cannot unconditionally vectorize the loop because
20630 assigning to a component of the array designated by R in one iteration could
20631 change the value read from the components of the array designated by X or Y
20632 in a later iteration. As a result, the compiler will generate two versions
20633 of the loop in the object code, one vectorized and the other not vectorized,
20634 as well as a test to select the appropriate version at run time. This can
20635 be overcome by another hint:
20636
20637 @quotation
20638
20639 @example
20640 pragma Loop_Optimize (Ivdep);
20641 @end example
20642 @end quotation
20643
20644 placed immediately within the loop will tell the compiler that it can safely
20645 omit the non-vectorized version of the loop as well as the run-time test.
20646
20647 @node Other Optimization Switches,Optimization and Strict Aliasing,Vectorization of loops,Performance Considerations
20648 @anchor{gnat_ugn/gnat_and_program_execution id35}@anchor{18c}@anchor{gnat_ugn/gnat_and_program_execution other-optimization-switches}@anchor{18d}
20649 @subsubsection Other Optimization Switches
20650
20651
20652 @geindex Optimization Switches
20653
20654 Since GNAT uses the @code{gcc} back end, all the specialized
20655 @code{gcc} optimization switches are potentially usable. These switches
20656 have not been extensively tested with GNAT but can generally be expected
20657 to work. Examples of switches in this category are @code{-funroll-loops}
20658 and the various target-specific @code{-m} options (in particular, it has
20659 been observed that @code{-march=xxx} can significantly improve performance
20660 on appropriate machines). For full details of these switches, see
20661 the `Submodel Options' section in the `Hardware Models and Configurations'
20662 chapter of @cite{Using the GNU Compiler Collection (GCC)}.
20663
20664 @node Optimization and Strict Aliasing,Aliased Variables and Optimization,Other Optimization Switches,Performance Considerations
20665 @anchor{gnat_ugn/gnat_and_program_execution id36}@anchor{18e}@anchor{gnat_ugn/gnat_and_program_execution optimization-and-strict-aliasing}@anchor{e6}
20666 @subsubsection Optimization and Strict Aliasing
20667
20668
20669 @geindex Aliasing
20670
20671 @geindex Strict Aliasing
20672
20673 @geindex No_Strict_Aliasing
20674
20675 The strong typing capabilities of Ada allow an optimizer to generate
20676 efficient code in situations where other languages would be forced to
20677 make worst case assumptions preventing such optimizations. Consider
20678 the following example:
20679
20680 @quotation
20681
20682 @example
20683 procedure R is
20684 type Int1 is new Integer;
20685 type Int2 is new Integer;
20686 type Int1A is access Int1;
20687 type Int2A is access Int2;
20688 Int1V : Int1A;
20689 Int2V : Int2A;
20690 ...
20691
20692 begin
20693 ...
20694 for J in Data'Range loop
20695 if Data (J) = Int1V.all then
20696 Int2V.all := Int2V.all + 1;
20697 end if;
20698 end loop;
20699 ...
20700 end R;
20701 @end example
20702 @end quotation
20703
20704 In this example, since the variable @code{Int1V} can only access objects
20705 of type @code{Int1}, and @code{Int2V} can only access objects of type
20706 @code{Int2}, there is no possibility that the assignment to
20707 @code{Int2V.all} affects the value of @code{Int1V.all}. This means that
20708 the compiler optimizer can “know” that the value @code{Int1V.all} is constant
20709 for all iterations of the loop and avoid the extra memory reference
20710 required to dereference it each time through the loop.
20711
20712 This kind of optimization, called strict aliasing analysis, is
20713 triggered by specifying an optimization level of @code{-O2} or
20714 higher or @code{-Os} and allows GNAT to generate more efficient code
20715 when access values are involved.
20716
20717 However, although this optimization is always correct in terms of
20718 the formal semantics of the Ada Reference Manual, difficulties can
20719 arise if features like @code{Unchecked_Conversion} are used to break
20720 the typing system. Consider the following complete program example:
20721
20722 @quotation
20723
20724 @example
20725 package p1 is
20726 type int1 is new integer;
20727 type int2 is new integer;
20728 type a1 is access int1;
20729 type a2 is access int2;
20730 end p1;
20731
20732 with p1; use p1;
20733 package p2 is
20734 function to_a2 (Input : a1) return a2;
20735 end p2;
20736
20737 with Ada.Unchecked_Conversion;
20738 package body p2 is
20739 function to_a2 (Input : a1) return a2 is
20740 function to_a2u is
20741 new Ada.Unchecked_Conversion (a1, a2);
20742 begin
20743 return to_a2u (Input);
20744 end to_a2;
20745 end p2;
20746
20747 with p2; use p2;
20748 with p1; use p1;
20749 with Text_IO; use Text_IO;
20750 procedure m is
20751 v1 : a1 := new int1;
20752 v2 : a2 := to_a2 (v1);
20753 begin
20754 v1.all := 1;
20755 v2.all := 0;
20756 put_line (int1'image (v1.all));
20757 end;
20758 @end example
20759 @end quotation
20760
20761 This program prints out 0 in @code{-O0} or @code{-O1}
20762 mode, but it prints out 1 in @code{-O2} mode. That’s
20763 because in strict aliasing mode, the compiler can and
20764 does assume that the assignment to @code{v2.all} could not
20765 affect the value of @code{v1.all}, since different types
20766 are involved.
20767
20768 This behavior is not a case of non-conformance with the standard, since
20769 the Ada RM specifies that an unchecked conversion where the resulting
20770 bit pattern is not a correct value of the target type can result in an
20771 abnormal value and attempting to reference an abnormal value makes the
20772 execution of a program erroneous. That’s the case here since the result
20773 does not point to an object of type @code{int2}. This means that the
20774 effect is entirely unpredictable.
20775
20776 However, although that explanation may satisfy a language
20777 lawyer, in practice an applications programmer expects an
20778 unchecked conversion involving pointers to create true
20779 aliases and the behavior of printing 1 seems plain wrong.
20780 In this case, the strict aliasing optimization is unwelcome.
20781
20782 Indeed the compiler recognizes this possibility, and the
20783 unchecked conversion generates a warning:
20784
20785 @quotation
20786
20787 @example
20788 p2.adb:5:07: warning: possible aliasing problem with type "a2"
20789 p2.adb:5:07: warning: use -fno-strict-aliasing switch for references
20790 p2.adb:5:07: warning: or use "pragma No_Strict_Aliasing (a2);"
20791 @end example
20792 @end quotation
20793
20794 Unfortunately the problem is recognized when compiling the body of
20795 package @code{p2}, but the actual “bad” code is generated while
20796 compiling the body of @code{m} and this latter compilation does not see
20797 the suspicious @code{Unchecked_Conversion}.
20798
20799 As implied by the warning message, there are approaches you can use to
20800 avoid the unwanted strict aliasing optimization in a case like this.
20801
20802 One possibility is to simply avoid the use of @code{-O2}, but
20803 that is a bit drastic, since it throws away a number of useful
20804 optimizations that do not involve strict aliasing assumptions.
20805
20806 A less drastic approach is to compile the program using the
20807 option @code{-fno-strict-aliasing}. Actually it is only the
20808 unit containing the dereferencing of the suspicious pointer
20809 that needs to be compiled. So in this case, if we compile
20810 unit @code{m} with this switch, then we get the expected
20811 value of zero printed. Analyzing which units might need
20812 the switch can be painful, so a more reasonable approach
20813 is to compile the entire program with options @code{-O2}
20814 and @code{-fno-strict-aliasing}. If the performance is
20815 satisfactory with this combination of options, then the
20816 advantage is that the entire issue of possible “wrong”
20817 optimization due to strict aliasing is avoided.
20818
20819 To avoid the use of compiler switches, the configuration
20820 pragma @code{No_Strict_Aliasing} with no parameters may be
20821 used to specify that for all access types, the strict
20822 aliasing optimization should be suppressed.
20823
20824 However, these approaches are still overkill, in that they causes
20825 all manipulations of all access values to be deoptimized. A more
20826 refined approach is to concentrate attention on the specific
20827 access type identified as problematic.
20828
20829 First, if a careful analysis of uses of the pointer shows
20830 that there are no possible problematic references, then
20831 the warning can be suppressed by bracketing the
20832 instantiation of @code{Unchecked_Conversion} to turn
20833 the warning off:
20834
20835 @quotation
20836
20837 @example
20838 pragma Warnings (Off);
20839 function to_a2u is
20840 new Ada.Unchecked_Conversion (a1, a2);
20841 pragma Warnings (On);
20842 @end example
20843 @end quotation
20844
20845 Of course that approach is not appropriate for this particular
20846 example, since indeed there is a problematic reference. In this
20847 case we can take one of two other approaches.
20848
20849 The first possibility is to move the instantiation of unchecked
20850 conversion to the unit in which the type is declared. In
20851 this example, we would move the instantiation of
20852 @code{Unchecked_Conversion} from the body of package
20853 @code{p2} to the spec of package @code{p1}. Now the
20854 warning disappears. That’s because any use of the
20855 access type knows there is a suspicious unchecked
20856 conversion, and the strict aliasing optimization
20857 is automatically suppressed for the type.
20858
20859 If it is not practical to move the unchecked conversion to the same unit
20860 in which the destination access type is declared (perhaps because the
20861 source type is not visible in that unit), you may use pragma
20862 @code{No_Strict_Aliasing} for the type. This pragma must occur in the
20863 same declarative sequence as the declaration of the access type:
20864
20865 @quotation
20866
20867 @example
20868 type a2 is access int2;
20869 pragma No_Strict_Aliasing (a2);
20870 @end example
20871 @end quotation
20872
20873 Here again, the compiler now knows that the strict aliasing optimization
20874 should be suppressed for any reference to type @code{a2} and the
20875 expected behavior is obtained.
20876
20877 Finally, note that although the compiler can generate warnings for
20878 simple cases of unchecked conversions, there are tricker and more
20879 indirect ways of creating type incorrect aliases which the compiler
20880 cannot detect. Examples are the use of address overlays and unchecked
20881 conversions involving composite types containing access types as
20882 components. In such cases, no warnings are generated, but there can
20883 still be aliasing problems. One safe coding practice is to forbid the
20884 use of address clauses for type overlaying, and to allow unchecked
20885 conversion only for primitive types. This is not really a significant
20886 restriction since any possible desired effect can be achieved by
20887 unchecked conversion of access values.
20888
20889 The aliasing analysis done in strict aliasing mode can certainly
20890 have significant benefits. We have seen cases of large scale
20891 application code where the time is increased by up to 5% by turning
20892 this optimization off. If you have code that includes significant
20893 usage of unchecked conversion, you might want to just stick with
20894 @code{-O1} and avoid the entire issue. If you get adequate
20895 performance at this level of optimization level, that’s probably
20896 the safest approach. If tests show that you really need higher
20897 levels of optimization, then you can experiment with @code{-O2}
20898 and @code{-O2 -fno-strict-aliasing} to see how much effect this
20899 has on size and speed of the code. If you really need to use
20900 @code{-O2} with strict aliasing in effect, then you should
20901 review any uses of unchecked conversion of access types,
20902 particularly if you are getting the warnings described above.
20903
20904 @node Aliased Variables and Optimization,Atomic Variables and Optimization,Optimization and Strict Aliasing,Performance Considerations
20905 @anchor{gnat_ugn/gnat_and_program_execution aliased-variables-and-optimization}@anchor{18f}@anchor{gnat_ugn/gnat_and_program_execution id37}@anchor{190}
20906 @subsubsection Aliased Variables and Optimization
20907
20908
20909 @geindex Aliasing
20910
20911 There are scenarios in which programs may
20912 use low level techniques to modify variables
20913 that otherwise might be considered to be unassigned. For example,
20914 a variable can be passed to a procedure by reference, which takes
20915 the address of the parameter and uses the address to modify the
20916 variable’s value, even though it is passed as an IN parameter.
20917 Consider the following example:
20918
20919 @quotation
20920
20921 @example
20922 procedure P is
20923 Max_Length : constant Natural := 16;
20924 type Char_Ptr is access all Character;
20925
20926 procedure Get_String(Buffer: Char_Ptr; Size : Integer);
20927 pragma Import (C, Get_String, "get_string");
20928
20929 Name : aliased String (1 .. Max_Length) := (others => ' ');
20930 Temp : Char_Ptr;
20931
20932 function Addr (S : String) return Char_Ptr is
20933 function To_Char_Ptr is
20934 new Ada.Unchecked_Conversion (System.Address, Char_Ptr);
20935 begin
20936 return To_Char_Ptr (S (S'First)'Address);
20937 end;
20938
20939 begin
20940 Temp := Addr (Name);
20941 Get_String (Temp, Max_Length);
20942 end;
20943 @end example
20944 @end quotation
20945
20946 where Get_String is a C function that uses the address in Temp to
20947 modify the variable @code{Name}. This code is dubious, and arguably
20948 erroneous, and the compiler would be entitled to assume that
20949 @code{Name} is never modified, and generate code accordingly.
20950
20951 However, in practice, this would cause some existing code that
20952 seems to work with no optimization to start failing at high
20953 levels of optimization.
20954
20955 What the compiler does for such cases is to assume that marking
20956 a variable as aliased indicates that some “funny business” may
20957 be going on. The optimizer recognizes the aliased keyword and
20958 inhibits optimizations that assume the value cannot be assigned.
20959 This means that the above example will in fact “work” reliably,
20960 that is, it will produce the expected results.
20961
20962 @node Atomic Variables and Optimization,Passive Task Optimization,Aliased Variables and Optimization,Performance Considerations
20963 @anchor{gnat_ugn/gnat_and_program_execution atomic-variables-and-optimization}@anchor{191}@anchor{gnat_ugn/gnat_and_program_execution id38}@anchor{192}
20964 @subsubsection Atomic Variables and Optimization
20965
20966
20967 @geindex Atomic
20968
20969 There are two considerations with regard to performance when
20970 atomic variables are used.
20971
20972 First, the RM only guarantees that access to atomic variables
20973 be atomic, it has nothing to say about how this is achieved,
20974 though there is a strong implication that this should not be
20975 achieved by explicit locking code. Indeed GNAT will never
20976 generate any locking code for atomic variable access (it will
20977 simply reject any attempt to make a variable or type atomic
20978 if the atomic access cannot be achieved without such locking code).
20979
20980 That being said, it is important to understand that you cannot
20981 assume that the entire variable will always be accessed. Consider
20982 this example:
20983
20984 @quotation
20985
20986 @example
20987 type R is record
20988 A,B,C,D : Character;
20989 end record;
20990 for R'Size use 32;
20991 for R'Alignment use 4;
20992
20993 RV : R;
20994 pragma Atomic (RV);
20995 X : Character;
20996 ...
20997 X := RV.B;
20998 @end example
20999 @end quotation
21000
21001 You cannot assume that the reference to @code{RV.B}
21002 will read the entire 32-bit
21003 variable with a single load instruction. It is perfectly legitimate if
21004 the hardware allows it to do a byte read of just the B field. This read
21005 is still atomic, which is all the RM requires. GNAT can and does take
21006 advantage of this, depending on the architecture and optimization level.
21007 Any assumption to the contrary is non-portable and risky. Even if you
21008 examine the assembly language and see a full 32-bit load, this might
21009 change in a future version of the compiler.
21010
21011 If your application requires that all accesses to @code{RV} in this
21012 example be full 32-bit loads, you need to make a copy for the access
21013 as in:
21014
21015 @quotation
21016
21017 @example
21018 declare
21019 RV_Copy : constant R := RV;
21020 begin
21021 X := RV_Copy.B;
21022 end;
21023 @end example
21024 @end quotation
21025
21026 Now the reference to RV must read the whole variable.
21027 Actually one can imagine some compiler which figures
21028 out that the whole copy is not required (because only
21029 the B field is actually accessed), but GNAT
21030 certainly won’t do that, and we don’t know of any
21031 compiler that would not handle this right, and the
21032 above code will in practice work portably across
21033 all architectures (that permit the Atomic declaration).
21034
21035 The second issue with atomic variables has to do with
21036 the possible requirement of generating synchronization
21037 code. For more details on this, consult the sections on
21038 the pragmas Enable/Disable_Atomic_Synchronization in the
21039 GNAT Reference Manual. If performance is critical, and
21040 such synchronization code is not required, it may be
21041 useful to disable it.
21042
21043 @node Passive Task Optimization,,Atomic Variables and Optimization,Performance Considerations
21044 @anchor{gnat_ugn/gnat_and_program_execution id39}@anchor{193}@anchor{gnat_ugn/gnat_and_program_execution passive-task-optimization}@anchor{194}
21045 @subsubsection Passive Task Optimization
21046
21047
21048 @geindex Passive Task
21049
21050 A passive task is one which is sufficiently simple that
21051 in theory a compiler could recognize it an implement it
21052 efficiently without creating a new thread. The original design
21053 of Ada 83 had in mind this kind of passive task optimization, but
21054 only a few Ada 83 compilers attempted it. The problem was that
21055 it was difficult to determine the exact conditions under which
21056 the optimization was possible. The result is a very fragile
21057 optimization where a very minor change in the program can
21058 suddenly silently make a task non-optimizable.
21059
21060 With the revisiting of this issue in Ada 95, there was general
21061 agreement that this approach was fundamentally flawed, and the
21062 notion of protected types was introduced. When using protected
21063 types, the restrictions are well defined, and you KNOW that the
21064 operations will be optimized, and furthermore this optimized
21065 performance is fully portable.
21066
21067 Although it would theoretically be possible for GNAT to attempt to
21068 do this optimization, but it really doesn’t make sense in the
21069 context of Ada 95, and none of the Ada 95 compilers implement
21070 this optimization as far as we know. In particular GNAT never
21071 attempts to perform this optimization.
21072
21073 In any new Ada 95 code that is written, you should always
21074 use protected types in place of tasks that might be able to
21075 be optimized in this manner.
21076 Of course this does not help if you have legacy Ada 83 code
21077 that depends on this optimization, but it is unusual to encounter
21078 a case where the performance gains from this optimization
21079 are significant.
21080
21081 Your program should work correctly without this optimization. If
21082 you have performance problems, then the most practical
21083 approach is to figure out exactly where these performance problems
21084 arise, and update those particular tasks to be protected types. Note
21085 that typically clients of the tasks who call entries, will not have
21086 to be modified, only the task definition itself.
21087
21088 @node Text_IO Suggestions,Reducing Size of Executables with Unused Subprogram/Data Elimination,Performance Considerations,Improving Performance
21089 @anchor{gnat_ugn/gnat_and_program_execution id40}@anchor{195}@anchor{gnat_ugn/gnat_and_program_execution text-io-suggestions}@anchor{196}
21090 @subsection @code{Text_IO} Suggestions
21091
21092
21093 @geindex Text_IO and performance
21094
21095 The @code{Ada.Text_IO} package has fairly high overheads due in part to
21096 the requirement of maintaining page and line counts. If performance
21097 is critical, a recommendation is to use @code{Stream_IO} instead of
21098 @code{Text_IO} for volume output, since this package has less overhead.
21099
21100 If @code{Text_IO} must be used, note that by default output to the standard
21101 output and standard error files is unbuffered (this provides better
21102 behavior when output statements are used for debugging, or if the
21103 progress of a program is observed by tracking the output, e.g. by
21104 using the Unix `tail -f' command to watch redirected output).
21105
21106 If you are generating large volumes of output with @code{Text_IO} and
21107 performance is an important factor, use a designated file instead
21108 of the standard output file, or change the standard output file to
21109 be buffered using @code{Interfaces.C_Streams.setvbuf}.
21110
21111 @node Reducing Size of Executables with Unused Subprogram/Data Elimination,,Text_IO Suggestions,Improving Performance
21112 @anchor{gnat_ugn/gnat_and_program_execution id41}@anchor{197}@anchor{gnat_ugn/gnat_and_program_execution reducing-size-of-executables-with-unused-subprogram-data-elimination}@anchor{198}
21113 @subsection Reducing Size of Executables with Unused Subprogram/Data Elimination
21114
21115
21116 @geindex Uunused subprogram/data elimination
21117
21118 This section describes how you can eliminate unused subprograms and data from
21119 your executable just by setting options at compilation time.
21120
21121 @menu
21122 * About unused subprogram/data elimination::
21123 * Compilation options::
21124 * Example of unused subprogram/data elimination::
21125
21126 @end menu
21127
21128 @node About unused subprogram/data elimination,Compilation options,,Reducing Size of Executables with Unused Subprogram/Data Elimination
21129 @anchor{gnat_ugn/gnat_and_program_execution about-unused-subprogram-data-elimination}@anchor{199}@anchor{gnat_ugn/gnat_and_program_execution id42}@anchor{19a}
21130 @subsubsection About unused subprogram/data elimination
21131
21132
21133 By default, an executable contains all code and data of its composing objects
21134 (directly linked or coming from statically linked libraries), even data or code
21135 never used by this executable.
21136
21137 This feature will allow you to eliminate such unused code from your
21138 executable, making it smaller (in disk and in memory).
21139
21140 This functionality is available on all Linux platforms except for the IA-64
21141 architecture and on all cross platforms using the ELF binary file format.
21142 In both cases GNU binutils version 2.16 or later are required to enable it.
21143
21144 @node Compilation options,Example of unused subprogram/data elimination,About unused subprogram/data elimination,Reducing Size of Executables with Unused Subprogram/Data Elimination
21145 @anchor{gnat_ugn/gnat_and_program_execution compilation-options}@anchor{19b}@anchor{gnat_ugn/gnat_and_program_execution id43}@anchor{19c}
21146 @subsubsection Compilation options
21147
21148
21149 The operation of eliminating the unused code and data from the final executable
21150 is directly performed by the linker.
21151
21152 @geindex -ffunction-sections (gcc)
21153
21154 @geindex -fdata-sections (gcc)
21155
21156 In order to do this, it has to work with objects compiled with the
21157 following options:
21158 @code{-ffunction-sections} @code{-fdata-sections}.
21159
21160 These options are usable with C and Ada files.
21161 They will place respectively each
21162 function or data in a separate section in the resulting object file.
21163
21164 Once the objects and static libraries are created with these options, the
21165 linker can perform the dead code elimination. You can do this by setting
21166 the @code{-Wl,--gc-sections} option to gcc command or in the
21167 @code{-largs} section of @code{gnatmake}. This will perform a
21168 garbage collection of code and data never referenced.
21169
21170 If the linker performs a partial link (@code{-r} linker option), then you
21171 will need to provide the entry point using the @code{-e} / @code{--entry}
21172 linker option.
21173
21174 Note that objects compiled without the @code{-ffunction-sections} and
21175 @code{-fdata-sections} options can still be linked with the executable.
21176 However, no dead code elimination will be performed on those objects (they will
21177 be linked as is).
21178
21179 The GNAT static library is now compiled with -ffunction-sections and
21180 -fdata-sections on some platforms. This allows you to eliminate the unused code
21181 and data of the GNAT library from your executable.
21182
21183 @node Example of unused subprogram/data elimination,,Compilation options,Reducing Size of Executables with Unused Subprogram/Data Elimination
21184 @anchor{gnat_ugn/gnat_and_program_execution example-of-unused-subprogram-data-elimination}@anchor{19d}@anchor{gnat_ugn/gnat_and_program_execution id44}@anchor{19e}
21185 @subsubsection Example of unused subprogram/data elimination
21186
21187
21188 Here is a simple example:
21189
21190 @quotation
21191
21192 @example
21193 with Aux;
21194
21195 procedure Test is
21196 begin
21197 Aux.Used (10);
21198 end Test;
21199
21200 package Aux is
21201 Used_Data : Integer;
21202 Unused_Data : Integer;
21203
21204 procedure Used (Data : Integer);
21205 procedure Unused (Data : Integer);
21206 end Aux;
21207
21208 package body Aux is
21209 procedure Used (Data : Integer) is
21210 begin
21211 Used_Data := Data;
21212 end Used;
21213
21214 procedure Unused (Data : Integer) is
21215 begin
21216 Unused_Data := Data;
21217 end Unused;
21218 end Aux;
21219 @end example
21220 @end quotation
21221
21222 @code{Unused} and @code{Unused_Data} are never referenced in this code
21223 excerpt, and hence they may be safely removed from the final executable.
21224
21225 @quotation
21226
21227 @example
21228 $ gnatmake test
21229
21230 $ nm test | grep used
21231 020015f0 T aux__unused
21232 02005d88 B aux__unused_data
21233 020015cc T aux__used
21234 02005d84 B aux__used_data
21235
21236 $ gnatmake test -cargs -fdata-sections -ffunction-sections \\
21237 -largs -Wl,--gc-sections
21238
21239 $ nm test | grep used
21240 02005350 T aux__used
21241 0201ffe0 B aux__used_data
21242 @end example
21243 @end quotation
21244
21245 It can be observed that the procedure @code{Unused} and the object
21246 @code{Unused_Data} are removed by the linker when using the
21247 appropriate options.
21248
21249 @geindex Overflow checks
21250
21251 @geindex Checks (overflow)
21252
21253 @node Overflow Check Handling in GNAT,Performing Dimensionality Analysis in GNAT,Improving Performance,GNAT and Program Execution
21254 @anchor{gnat_ugn/gnat_and_program_execution id45}@anchor{14b}@anchor{gnat_ugn/gnat_and_program_execution overflow-check-handling-in-gnat}@anchor{19f}
21255 @section Overflow Check Handling in GNAT
21256
21257
21258 This section explains how to control the handling of overflow checks.
21259
21260 @menu
21261 * Background::
21262 * Management of Overflows in GNAT::
21263 * Specifying the Desired Mode::
21264 * Default Settings::
21265 * Implementation Notes::
21266
21267 @end menu
21268
21269 @node Background,Management of Overflows in GNAT,,Overflow Check Handling in GNAT
21270 @anchor{gnat_ugn/gnat_and_program_execution background}@anchor{1a0}@anchor{gnat_ugn/gnat_and_program_execution id46}@anchor{1a1}
21271 @subsection Background
21272
21273
21274 Overflow checks are checks that the compiler may make to ensure
21275 that intermediate results are not out of range. For example:
21276
21277 @quotation
21278
21279 @example
21280 A : Integer;
21281 ...
21282 A := A + 1;
21283 @end example
21284 @end quotation
21285
21286 If @code{A} has the value @code{Integer'Last}, then the addition may cause
21287 overflow since the result is out of range of the type @code{Integer}.
21288 In this case @code{Constraint_Error} will be raised if checks are
21289 enabled.
21290
21291 A trickier situation arises in examples like the following:
21292
21293 @quotation
21294
21295 @example
21296 A, C : Integer;
21297 ...
21298 A := (A + 1) + C;
21299 @end example
21300 @end quotation
21301
21302 where @code{A} is @code{Integer'Last} and @code{C} is @code{-1}.
21303 Now the final result of the expression on the right hand side is
21304 @code{Integer'Last} which is in range, but the question arises whether the
21305 intermediate addition of @code{(A + 1)} raises an overflow error.
21306
21307 The (perhaps surprising) answer is that the Ada language
21308 definition does not answer this question. Instead it leaves
21309 it up to the implementation to do one of two things if overflow
21310 checks are enabled.
21311
21312
21313 @itemize *
21314
21315 @item
21316 raise an exception (@code{Constraint_Error}), or
21317
21318 @item
21319 yield the correct mathematical result which is then used in
21320 subsequent operations.
21321 @end itemize
21322
21323 If the compiler chooses the first approach, then the assignment of this
21324 example will indeed raise @code{Constraint_Error} if overflow checking is
21325 enabled, or result in erroneous execution if overflow checks are suppressed.
21326
21327 But if the compiler
21328 chooses the second approach, then it can perform both additions yielding
21329 the correct mathematical result, which is in range, so no exception
21330 will be raised, and the right result is obtained, regardless of whether
21331 overflow checks are suppressed.
21332
21333 Note that in the first example an
21334 exception will be raised in either case, since if the compiler
21335 gives the correct mathematical result for the addition, it will
21336 be out of range of the target type of the assignment, and thus
21337 fails the range check.
21338
21339 This lack of specified behavior in the handling of overflow for
21340 intermediate results is a source of non-portability, and can thus
21341 be problematic when programs are ported. Most typically this arises
21342 in a situation where the original compiler did not raise an exception,
21343 and then the application is moved to a compiler where the check is
21344 performed on the intermediate result and an unexpected exception is
21345 raised.
21346
21347 Furthermore, when using Ada 2012’s preconditions and other
21348 assertion forms, another issue arises. Consider:
21349
21350 @quotation
21351
21352 @example
21353 procedure P (A, B : Integer) with
21354 Pre => A + B <= Integer'Last;
21355 @end example
21356 @end quotation
21357
21358 One often wants to regard arithmetic in a context like this from
21359 a mathematical point of view. So for example, if the two actual parameters
21360 for a call to @code{P} are both @code{Integer'Last}, then
21361 the precondition should be regarded as False. If we are executing
21362 in a mode with run-time checks enabled for preconditions, then we would
21363 like this precondition to fail, rather than raising an exception
21364 because of the intermediate overflow.
21365
21366 However, the language definition leaves the specification of
21367 whether the above condition fails (raising @code{Assert_Error}) or
21368 causes an intermediate overflow (raising @code{Constraint_Error})
21369 up to the implementation.
21370
21371 The situation is worse in a case such as the following:
21372
21373 @quotation
21374
21375 @example
21376 procedure Q (A, B, C : Integer) with
21377 Pre => A + B + C <= Integer'Last;
21378 @end example
21379 @end quotation
21380
21381 Consider the call
21382
21383 @quotation
21384
21385 @example
21386 Q (A => Integer'Last, B => 1, C => -1);
21387 @end example
21388 @end quotation
21389
21390 From a mathematical point of view the precondition
21391 is True, but at run time we may (but are not guaranteed to) get an
21392 exception raised because of the intermediate overflow (and we really
21393 would prefer this precondition to be considered True at run time).
21394
21395 @node Management of Overflows in GNAT,Specifying the Desired Mode,Background,Overflow Check Handling in GNAT
21396 @anchor{gnat_ugn/gnat_and_program_execution id47}@anchor{1a2}@anchor{gnat_ugn/gnat_and_program_execution management-of-overflows-in-gnat}@anchor{1a3}
21397 @subsection Management of Overflows in GNAT
21398
21399
21400 To deal with the portability issue, and with the problem of
21401 mathematical versus run-time interpretation of the expressions in
21402 assertions, GNAT provides comprehensive control over the handling
21403 of intermediate overflow. GNAT can operate in three modes, and
21404 furthermore, permits separate selection of operating modes for
21405 the expressions within assertions (here the term ‘assertions’
21406 is used in the technical sense, which includes preconditions and so forth)
21407 and for expressions appearing outside assertions.
21408
21409 The three modes are:
21410
21411
21412 @itemize *
21413
21414 @item
21415 `Use base type for intermediate operations' (@code{STRICT})
21416
21417 In this mode, all intermediate results for predefined arithmetic
21418 operators are computed using the base type, and the result must
21419 be in range of the base type. If this is not the
21420 case then either an exception is raised (if overflow checks are
21421 enabled) or the execution is erroneous (if overflow checks are suppressed).
21422 This is the normal default mode.
21423
21424 @item
21425 `Most intermediate overflows avoided' (@code{MINIMIZED})
21426
21427 In this mode, the compiler attempts to avoid intermediate overflows by
21428 using a larger integer type, typically @code{Long_Long_Integer},
21429 as the type in which arithmetic is
21430 performed for predefined arithmetic operators. This may be slightly more
21431 expensive at
21432 run time (compared to suppressing intermediate overflow checks), though
21433 the cost is negligible on modern 64-bit machines. For the examples given
21434 earlier, no intermediate overflows would have resulted in exceptions,
21435 since the intermediate results are all in the range of
21436 @code{Long_Long_Integer} (typically 64-bits on nearly all implementations
21437 of GNAT). In addition, if checks are enabled, this reduces the number of
21438 checks that must be made, so this choice may actually result in an
21439 improvement in space and time behavior.
21440
21441 However, there are cases where @code{Long_Long_Integer} is not large
21442 enough, consider the following example:
21443
21444 @quotation
21445
21446 @example
21447 procedure R (A, B, C, D : Integer) with
21448 Pre => (A**2 * B**2) / (C**2 * D**2) <= 10;
21449 @end example
21450 @end quotation
21451
21452 where @code{A} = @code{B} = @code{C} = @code{D} = @code{Integer'Last}.
21453 Now the intermediate results are
21454 out of the range of @code{Long_Long_Integer} even though the final result
21455 is in range and the precondition is True (from a mathematical point
21456 of view). In such a case, operating in this mode, an overflow occurs
21457 for the intermediate computation (which is why this mode
21458 says `most' intermediate overflows are avoided). In this case,
21459 an exception is raised if overflow checks are enabled, and the
21460 execution is erroneous if overflow checks are suppressed.
21461
21462 @item
21463 `All intermediate overflows avoided' (@code{ELIMINATED})
21464
21465 In this mode, the compiler avoids all intermediate overflows
21466 by using arbitrary precision arithmetic as required. In this
21467 mode, the above example with @code{A**2 * B**2} would
21468 not cause intermediate overflow, because the intermediate result
21469 would be evaluated using sufficient precision, and the result
21470 of evaluating the precondition would be True.
21471
21472 This mode has the advantage of avoiding any intermediate
21473 overflows, but at the expense of significant run-time overhead,
21474 including the use of a library (included automatically in this
21475 mode) for multiple-precision arithmetic.
21476
21477 This mode provides cleaner semantics for assertions, since now
21478 the run-time behavior emulates true arithmetic behavior for the
21479 predefined arithmetic operators, meaning that there is never a
21480 conflict between the mathematical view of the assertion, and its
21481 run-time behavior.
21482
21483 Note that in this mode, the behavior is unaffected by whether or
21484 not overflow checks are suppressed, since overflow does not occur.
21485 It is possible for gigantic intermediate expressions to raise
21486 @code{Storage_Error} as a result of attempting to compute the
21487 results of such expressions (e.g. @code{Integer'Last ** Integer'Last})
21488 but overflow is impossible.
21489 @end itemize
21490
21491 Note that these modes apply only to the evaluation of predefined
21492 arithmetic, membership, and comparison operators for signed integer
21493 arithmetic.
21494
21495 For fixed-point arithmetic, checks can be suppressed. But if checks
21496 are enabled
21497 then fixed-point values are always checked for overflow against the
21498 base type for intermediate expressions (that is such checks always
21499 operate in the equivalent of @code{STRICT} mode).
21500
21501 For floating-point, on nearly all architectures, @code{Machine_Overflows}
21502 is False, and IEEE infinities are generated, so overflow exceptions
21503 are never raised. If you want to avoid infinities, and check that
21504 final results of expressions are in range, then you can declare a
21505 constrained floating-point type, and range checks will be carried
21506 out in the normal manner (with infinite values always failing all
21507 range checks).
21508
21509 @node Specifying the Desired Mode,Default Settings,Management of Overflows in GNAT,Overflow Check Handling in GNAT
21510 @anchor{gnat_ugn/gnat_and_program_execution id48}@anchor{1a4}@anchor{gnat_ugn/gnat_and_program_execution specifying-the-desired-mode}@anchor{eb}
21511 @subsection Specifying the Desired Mode
21512
21513
21514 @geindex pragma Overflow_Mode
21515
21516 The desired mode of for handling intermediate overflow can be specified using
21517 either the @code{Overflow_Mode} pragma or an equivalent compiler switch.
21518 The pragma has the form
21519
21520 @quotation
21521
21522 @example
21523 pragma Overflow_Mode ([General =>] MODE [, [Assertions =>] MODE]);
21524 @end example
21525 @end quotation
21526
21527 where @code{MODE} is one of
21528
21529
21530 @itemize *
21531
21532 @item
21533 @code{STRICT}: intermediate overflows checked (using base type)
21534
21535 @item
21536 @code{MINIMIZED}: minimize intermediate overflows
21537
21538 @item
21539 @code{ELIMINATED}: eliminate intermediate overflows
21540 @end itemize
21541
21542 The case is ignored, so @code{MINIMIZED}, @code{Minimized} and
21543 @code{minimized} all have the same effect.
21544
21545 If only the @code{General} parameter is present, then the given @code{MODE} applies
21546 to expressions both within and outside assertions. If both arguments
21547 are present, then @code{General} applies to expressions outside assertions,
21548 and @code{Assertions} applies to expressions within assertions. For example:
21549
21550 @quotation
21551
21552 @example
21553 pragma Overflow_Mode
21554 (General => Minimized, Assertions => Eliminated);
21555 @end example
21556 @end quotation
21557
21558 specifies that general expressions outside assertions be evaluated
21559 in ‘minimize intermediate overflows’ mode, and expressions within
21560 assertions be evaluated in ‘eliminate intermediate overflows’ mode.
21561 This is often a reasonable choice, avoiding excessive overhead
21562 outside assertions, but assuring a high degree of portability
21563 when importing code from another compiler, while incurring
21564 the extra overhead for assertion expressions to ensure that
21565 the behavior at run time matches the expected mathematical
21566 behavior.
21567
21568 The @code{Overflow_Mode} pragma has the same scoping and placement
21569 rules as pragma @code{Suppress}, so it can occur either as a
21570 configuration pragma, specifying a default for the whole
21571 program, or in a declarative scope, where it applies to the
21572 remaining declarations and statements in that scope.
21573
21574 Note that pragma @code{Overflow_Mode} does not affect whether
21575 overflow checks are enabled or suppressed. It only controls the
21576 method used to compute intermediate values. To control whether
21577 overflow checking is enabled or suppressed, use pragma @code{Suppress}
21578 or @code{Unsuppress} in the usual manner.
21579
21580 @geindex -gnato? (gcc)
21581
21582 @geindex -gnato?? (gcc)
21583
21584 Additionally, a compiler switch @code{-gnato?} or @code{-gnato??}
21585 can be used to control the checking mode default (which can be subsequently
21586 overridden using pragmas).
21587
21588 Here @code{?} is one of the digits @code{1} through @code{3}:
21589
21590 @quotation
21591
21592
21593 @multitable {xxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
21594 @item
21595
21596 @code{1}
21597
21598 @tab
21599
21600 use base type for intermediate operations (@code{STRICT})
21601
21602 @item
21603
21604 @code{2}
21605
21606 @tab
21607
21608 minimize intermediate overflows (@code{MINIMIZED})
21609
21610 @item
21611
21612 @code{3}
21613
21614 @tab
21615
21616 eliminate intermediate overflows (@code{ELIMINATED})
21617
21618 @end multitable
21619
21620 @end quotation
21621
21622 As with the pragma, if only one digit appears then it applies to all
21623 cases; if two digits are given, then the first applies outside
21624 assertions, and the second within assertions. Thus the equivalent
21625 of the example pragma above would be
21626 @code{-gnato23}.
21627
21628 If no digits follow the @code{-gnato}, then it is equivalent to
21629 @code{-gnato11},
21630 causing all intermediate operations to be computed using the base
21631 type (@code{STRICT} mode).
21632
21633 @node Default Settings,Implementation Notes,Specifying the Desired Mode,Overflow Check Handling in GNAT
21634 @anchor{gnat_ugn/gnat_and_program_execution default-settings}@anchor{1a5}@anchor{gnat_ugn/gnat_and_program_execution id49}@anchor{1a6}
21635 @subsection Default Settings
21636
21637
21638 The default mode for overflow checks is
21639
21640 @quotation
21641
21642 @example
21643 General => Strict
21644 @end example
21645 @end quotation
21646
21647 which causes all computations both inside and outside assertions to use the
21648 base type, and is equivalent to @code{-gnato} (with no digits following).
21649
21650 The pragma @code{Suppress (Overflow_Check)} disables overflow
21651 checking, but it has no effect on the method used for computing
21652 intermediate results.
21653
21654 The pragma @code{Unsuppress (Overflow_Check)} enables overflow
21655 checking, but it has no effect on the method used for computing
21656 intermediate results.
21657
21658 @node Implementation Notes,,Default Settings,Overflow Check Handling in GNAT
21659 @anchor{gnat_ugn/gnat_and_program_execution id50}@anchor{1a7}@anchor{gnat_ugn/gnat_and_program_execution implementation-notes}@anchor{1a8}
21660 @subsection Implementation Notes
21661
21662
21663 In practice on typical 64-bit machines, the @code{MINIMIZED} mode is
21664 reasonably efficient, and can be generally used. It also helps
21665 to ensure compatibility with code imported from some other
21666 compiler to GNAT.
21667
21668 Setting all intermediate overflows checking (@code{STRICT} mode)
21669 makes sense if you want to
21670 make sure that your code is compatible with any other possible
21671 Ada implementation. This may be useful in ensuring portability
21672 for code that is to be exported to some other compiler than GNAT.
21673
21674 The Ada standard allows the reassociation of expressions at
21675 the same precedence level if no parentheses are present. For
21676 example, @code{A+B+C} parses as though it were @code{(A+B)+C}, but
21677 the compiler can reintepret this as @code{A+(B+C)}, possibly
21678 introducing or eliminating an overflow exception. The GNAT
21679 compiler never takes advantage of this freedom, and the
21680 expression @code{A+B+C} will be evaluated as @code{(A+B)+C}.
21681 If you need the other order, you can write the parentheses
21682 explicitly @code{A+(B+C)} and GNAT will respect this order.
21683
21684 The use of @code{ELIMINATED} mode will cause the compiler to
21685 automatically include an appropriate arbitrary precision
21686 integer arithmetic package. The compiler will make calls
21687 to this package, though only in cases where it cannot be
21688 sure that @code{Long_Long_Integer} is sufficient to guard against
21689 intermediate overflows. This package does not use dynamic
21690 allocation, but it does use the secondary stack, so an
21691 appropriate secondary stack package must be present (this
21692 is always true for standard full Ada, but may require
21693 specific steps for restricted run times such as ZFP).
21694
21695 Although @code{ELIMINATED} mode causes expressions to use arbitrary
21696 precision arithmetic, avoiding overflow, the final result
21697 must be in an appropriate range. This is true even if the
21698 final result is of type @code{[Long_[Long_]]Integer'Base}, which
21699 still has the same bounds as its associated constrained
21700 type at run-time.
21701
21702 Currently, the @code{ELIMINATED} mode is only available on target
21703 platforms for which @code{Long_Long_Integer} is 64-bits (nearly all GNAT
21704 platforms).
21705
21706 @node Performing Dimensionality Analysis in GNAT,Stack Related Facilities,Overflow Check Handling in GNAT,GNAT and Program Execution
21707 @anchor{gnat_ugn/gnat_and_program_execution id51}@anchor{14c}@anchor{gnat_ugn/gnat_and_program_execution performing-dimensionality-analysis-in-gnat}@anchor{1a9}
21708 @section Performing Dimensionality Analysis in GNAT
21709
21710
21711 @geindex Dimensionality analysis
21712
21713 The GNAT compiler supports dimensionality checking. The user can
21714 specify physical units for objects, and the compiler will verify that uses
21715 of these objects are compatible with their dimensions, in a fashion that is
21716 familiar to engineering practice. The dimensions of algebraic expressions
21717 (including powers with static exponents) are computed from their constituents.
21718
21719 @geindex Dimension_System aspect
21720
21721 @geindex Dimension aspect
21722
21723 This feature depends on Ada 2012 aspect specifications, and is available from
21724 version 7.0.1 of GNAT onwards.
21725 The GNAT-specific aspect @code{Dimension_System}
21726 allows you to define a system of units; the aspect @code{Dimension}
21727 then allows the user to declare dimensioned quantities within a given system.
21728 (These aspects are described in the `Implementation Defined Aspects'
21729 chapter of the `GNAT Reference Manual').
21730
21731 The major advantage of this model is that it does not require the declaration of
21732 multiple operators for all possible combinations of types: it is only necessary
21733 to use the proper subtypes in object declarations.
21734
21735 @geindex System.Dim.Mks package (GNAT library)
21736
21737 @geindex MKS_Type type
21738
21739 The simplest way to impose dimensionality checking on a computation is to make
21740 use of one of the instantiations of the package @code{System.Dim.Generic_Mks}, which
21741 are part of the GNAT library. This generic package defines a floating-point
21742 type @code{MKS_Type}, for which a sequence of dimension names are specified,
21743 together with their conventional abbreviations. The following should be read
21744 together with the full specification of the package, in file
21745 @code{s-digemk.ads}.
21746
21747 @quotation
21748
21749 @geindex s-digemk.ads file
21750
21751 @example
21752 type Mks_Type is new Float_Type
21753 with
21754 Dimension_System => (
21755 (Unit_Name => Meter, Unit_Symbol => 'm', Dim_Symbol => 'L'),
21756 (Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => 'M'),
21757 (Unit_Name => Second, Unit_Symbol => 's', Dim_Symbol => 'T'),
21758 (Unit_Name => Ampere, Unit_Symbol => 'A', Dim_Symbol => 'I'),
21759 (Unit_Name => Kelvin, Unit_Symbol => 'K', Dim_Symbol => "Theta"),
21760 (Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => 'N'),
21761 (Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => 'J'));
21762 @end example
21763 @end quotation
21764
21765 The package then defines a series of subtypes that correspond to these
21766 conventional units. For example:
21767
21768 @quotation
21769
21770 @example
21771 subtype Length is Mks_Type
21772 with
21773 Dimension => (Symbol => 'm', Meter => 1, others => 0);
21774 @end example
21775 @end quotation
21776
21777 and similarly for @code{Mass}, @code{Time}, @code{Electric_Current},
21778 @code{Thermodynamic_Temperature}, @code{Amount_Of_Substance}, and
21779 @code{Luminous_Intensity} (the standard set of units of the SI system).
21780
21781 The package also defines conventional names for values of each unit, for
21782 example:
21783
21784 @quotation
21785
21786 @example
21787 m : constant Length := 1.0;
21788 kg : constant Mass := 1.0;
21789 s : constant Time := 1.0;
21790 A : constant Electric_Current := 1.0;
21791 @end example
21792 @end quotation
21793
21794 as well as useful multiples of these units:
21795
21796 @quotation
21797
21798 @example
21799 cm : constant Length := 1.0E-02;
21800 g : constant Mass := 1.0E-03;
21801 min : constant Time := 60.0;
21802 day : constant Time := 60.0 * 24.0 * min;
21803 ...
21804 @end example
21805 @end quotation
21806
21807 There are three instantiations of @code{System.Dim.Generic_Mks} defined in the
21808 GNAT library:
21809
21810
21811 @itemize *
21812
21813 @item
21814 @code{System.Dim.Float_Mks} based on @code{Float} defined in @code{s-diflmk.ads}.
21815
21816 @item
21817 @code{System.Dim.Long_Mks} based on @code{Long_Float} defined in @code{s-dilomk.ads}.
21818
21819 @item
21820 @code{System.Dim.Mks} based on @code{Long_Long_Float} defined in @code{s-dimmks.ads}.
21821 @end itemize
21822
21823 Using one of these packages, you can then define a derived unit by providing
21824 the aspect that specifies its dimensions within the MKS system, as well as the
21825 string to be used for output of a value of that unit:
21826
21827 @quotation
21828
21829 @example
21830 subtype Acceleration is Mks_Type
21831 with Dimension => ("m/sec^2",
21832 Meter => 1,
21833 Second => -2,
21834 others => 0);
21835 @end example
21836 @end quotation
21837
21838 Here is a complete example of use:
21839
21840 @quotation
21841
21842 @example
21843 with System.Dim.MKS; use System.Dim.Mks;
21844 with System.Dim.Mks_IO; use System.Dim.Mks_IO;
21845 with Text_IO; use Text_IO;
21846 procedure Free_Fall is
21847 subtype Acceleration is Mks_Type
21848 with Dimension => ("m/sec^2", 1, 0, -2, others => 0);
21849 G : constant acceleration := 9.81 * m / (s ** 2);
21850 T : Time := 10.0*s;
21851 Distance : Length;
21852
21853 begin
21854 Put ("Gravitational constant: ");
21855 Put (G, Aft => 2, Exp => 0); Put_Line ("");
21856 Distance := 0.5 * G * T ** 2;
21857 Put ("distance travelled in 10 seconds of free fall ");
21858 Put (Distance, Aft => 2, Exp => 0);
21859 Put_Line ("");
21860 end Free_Fall;
21861 @end example
21862 @end quotation
21863
21864 Execution of this program yields:
21865
21866 @quotation
21867
21868 @example
21869 Gravitational constant: 9.81 m/sec^2
21870 distance travelled in 10 seconds of free fall 490.50 m
21871 @end example
21872 @end quotation
21873
21874 However, incorrect assignments such as:
21875
21876 @quotation
21877
21878 @example
21879 Distance := 5.0;
21880 Distance := 5.0 * kg;
21881 @end example
21882 @end quotation
21883
21884 are rejected with the following diagnoses:
21885
21886 @quotation
21887
21888 @example
21889 Distance := 5.0;
21890 >>> dimensions mismatch in assignment
21891 >>> left-hand side has dimension [L]
21892 >>> right-hand side is dimensionless
21893
21894 Distance := 5.0 * kg:
21895 >>> dimensions mismatch in assignment
21896 >>> left-hand side has dimension [L]
21897 >>> right-hand side has dimension [M]
21898 @end example
21899 @end quotation
21900
21901 The dimensions of an expression are properly displayed, even if there is
21902 no explicit subtype for it. If we add to the program:
21903
21904 @quotation
21905
21906 @example
21907 Put ("Final velocity: ");
21908 Put (G * T, Aft =>2, Exp =>0);
21909 Put_Line ("");
21910 @end example
21911 @end quotation
21912
21913 then the output includes:
21914
21915 @quotation
21916
21917 @example
21918 Final velocity: 98.10 m.s**(-1)
21919 @end example
21920
21921 @geindex Dimensionable type
21922
21923 @geindex Dimensioned subtype
21924 @end quotation
21925
21926 The type @code{Mks_Type} is said to be a `dimensionable type' since it has a
21927 @code{Dimension_System} aspect, and the subtypes @code{Length}, @code{Mass}, etc.,
21928 are said to be `dimensioned subtypes' since each one has a @code{Dimension}
21929 aspect.
21930
21931 @quotation
21932
21933 @geindex Dimension Vector (for a dimensioned subtype)
21934
21935 @geindex Dimension aspect
21936
21937 @geindex Dimension_System aspect
21938 @end quotation
21939
21940 The @code{Dimension} aspect of a dimensioned subtype @code{S} defines a mapping
21941 from the base type’s Unit_Names to integer (or, more generally, rational)
21942 values. This mapping is the `dimension vector' (also referred to as the
21943 `dimensionality') for that subtype, denoted by @code{DV(S)}, and thus for each
21944 object of that subtype. Intuitively, the value specified for each
21945 @code{Unit_Name} is the exponent associated with that unit; a zero value
21946 means that the unit is not used. For example:
21947
21948 @quotation
21949
21950 @example
21951 declare
21952 Acc : Acceleration;
21953 ...
21954 begin
21955 ...
21956 end;
21957 @end example
21958 @end quotation
21959
21960 Here @code{DV(Acc)} = @code{DV(Acceleration)} =
21961 @code{(Meter=>1, Kilogram=>0, Second=>-2, Ampere=>0, Kelvin=>0, Mole=>0, Candela=>0)}.
21962 Symbolically, we can express this as @code{Meter / Second**2}.
21963
21964 The dimension vector of an arithmetic expression is synthesized from the
21965 dimension vectors of its components, with compile-time dimensionality checks
21966 that help prevent mismatches such as using an @code{Acceleration} where a
21967 @code{Length} is required.
21968
21969 The dimension vector of the result of an arithmetic expression `expr', or
21970 @code{DV(@var{expr})}, is defined as follows, assuming conventional
21971 mathematical definitions for the vector operations that are used:
21972
21973
21974 @itemize *
21975
21976 @item
21977 If `expr' is of the type `universal_real', or is not of a dimensioned subtype,
21978 then `expr' is dimensionless; @code{DV(@var{expr})} is the empty vector.
21979
21980 @item
21981 @code{DV(@var{op expr})}, where `op' is a unary operator, is @code{DV(@var{expr})}
21982
21983 @item
21984 @code{DV(@var{expr1 op expr2})} where `op' is “+” or “-” is @code{DV(@var{expr1})}
21985 provided that @code{DV(@var{expr1})} = @code{DV(@var{expr2})}.
21986 If this condition is not met then the construct is illegal.
21987
21988 @item
21989 @code{DV(@var{expr1} * @var{expr2})} is @code{DV(@var{expr1})} + @code{DV(@var{expr2})},
21990 and @code{DV(@var{expr1} / @var{expr2})} = @code{DV(@var{expr1})} - @code{DV(@var{expr2})}.
21991 In this context if one of the `expr's is dimensionless then its empty
21992 dimension vector is treated as @code{(others => 0)}.
21993
21994 @item
21995 @code{DV(@var{expr} ** @var{power})} is `power' * @code{DV(@var{expr})},
21996 provided that `power' is a static rational value. If this condition is not
21997 met then the construct is illegal.
21998 @end itemize
21999
22000 Note that, by the above rules, it is illegal to use binary “+” or “-” to
22001 combine a dimensioned and dimensionless value. Thus an expression such as
22002 @code{acc-10.0} is illegal, where @code{acc} is an object of subtype
22003 @code{Acceleration}.
22004
22005 The dimensionality checks for relationals use the same rules as
22006 for “+” and “-”, except when comparing to a literal; thus
22007
22008 @quotation
22009
22010 @example
22011 acc > len
22012 @end example
22013 @end quotation
22014
22015 is equivalent to
22016
22017 @quotation
22018
22019 @example
22020 acc-len > 0.0
22021 @end example
22022 @end quotation
22023
22024 and is thus illegal, but
22025
22026 @quotation
22027
22028 @example
22029 acc > 10.0
22030 @end example
22031 @end quotation
22032
22033 is accepted with a warning. Analogously a conditional expression requires the
22034 same dimension vector for each branch (with no exception for literals).
22035
22036 The dimension vector of a type conversion @code{T(@var{expr})} is defined
22037 as follows, based on the nature of @code{T}:
22038
22039
22040 @itemize *
22041
22042 @item
22043 If @code{T} is a dimensioned subtype then @code{DV(T(@var{expr}))} is @code{DV(T)}
22044 provided that either `expr' is dimensionless or
22045 @code{DV(T)} = @code{DV(@var{expr})}. The conversion is illegal
22046 if `expr' is dimensioned and @code{DV(@var{expr})} /= @code{DV(T)}.
22047 Note that vector equality does not require that the corresponding
22048 Unit_Names be the same.
22049
22050 As a consequence of the above rule, it is possible to convert between
22051 different dimension systems that follow the same international system
22052 of units, with the seven physical components given in the standard order
22053 (length, mass, time, etc.). Thus a length in meters can be converted to
22054 a length in inches (with a suitable conversion factor) but cannot be
22055 converted, for example, to a mass in pounds.
22056
22057 @item
22058 If @code{T} is the base type for `expr' (and the dimensionless root type of
22059 the dimension system), then @code{DV(T(@var{expr}))} is @code{DV(expr)}.
22060 Thus, if `expr' is of a dimensioned subtype of @code{T}, the conversion may
22061 be regarded as a “view conversion” that preserves dimensionality.
22062
22063 This rule makes it possible to write generic code that can be instantiated
22064 with compatible dimensioned subtypes. The generic unit will contain
22065 conversions that will consequently be present in instantiations, but
22066 conversions to the base type will preserve dimensionality and make it
22067 possible to write generic code that is correct with respect to
22068 dimensionality.
22069
22070 @item
22071 Otherwise (i.e., @code{T} is neither a dimensioned subtype nor a dimensionable
22072 base type), @code{DV(T(@var{expr}))} is the empty vector. Thus a dimensioned
22073 value can be explicitly converted to a non-dimensioned subtype, which
22074 of course then escapes dimensionality analysis.
22075 @end itemize
22076
22077 The dimension vector for a type qualification @code{T'(@var{expr})} is the same
22078 as for the type conversion @code{T(@var{expr})}.
22079
22080 An assignment statement
22081
22082 @quotation
22083
22084 @example
22085 Source := Target;
22086 @end example
22087 @end quotation
22088
22089 requires @code{DV(Source)} = @code{DV(Target)}, and analogously for parameter
22090 passing (the dimension vector for the actual parameter must be equal to the
22091 dimension vector for the formal parameter).
22092
22093 @node Stack Related Facilities,Memory Management Issues,Performing Dimensionality Analysis in GNAT,GNAT and Program Execution
22094 @anchor{gnat_ugn/gnat_and_program_execution id52}@anchor{14d}@anchor{gnat_ugn/gnat_and_program_execution stack-related-facilities}@anchor{1aa}
22095 @section Stack Related Facilities
22096
22097
22098 This section describes some useful tools associated with stack
22099 checking and analysis. In
22100 particular, it deals with dynamic and static stack usage measurements.
22101
22102 @menu
22103 * Stack Overflow Checking::
22104 * Static Stack Usage Analysis::
22105 * Dynamic Stack Usage Analysis::
22106
22107 @end menu
22108
22109 @node Stack Overflow Checking,Static Stack Usage Analysis,,Stack Related Facilities
22110 @anchor{gnat_ugn/gnat_and_program_execution id53}@anchor{1ab}@anchor{gnat_ugn/gnat_and_program_execution stack-overflow-checking}@anchor{e7}
22111 @subsection Stack Overflow Checking
22112
22113
22114 @geindex Stack Overflow Checking
22115
22116 @geindex -fstack-check (gcc)
22117
22118 For most operating systems, @code{gcc} does not perform stack overflow
22119 checking by default. This means that if the main environment task or
22120 some other task exceeds the available stack space, then unpredictable
22121 behavior will occur. Most native systems offer some level of protection by
22122 adding a guard page at the end of each task stack. This mechanism is usually
22123 not enough for dealing properly with stack overflow situations because
22124 a large local variable could “jump” above the guard page.
22125 Furthermore, when the
22126 guard page is hit, there may not be any space left on the stack for executing
22127 the exception propagation code. Enabling stack checking avoids
22128 such situations.
22129
22130 To activate stack checking, compile all units with the @code{gcc} option
22131 @code{-fstack-check}. For example:
22132
22133 @quotation
22134
22135 @example
22136 $ gcc -c -fstack-check package1.adb
22137 @end example
22138 @end quotation
22139
22140 Units compiled with this option will generate extra instructions to check
22141 that any use of the stack (for procedure calls or for declaring local
22142 variables in declare blocks) does not exceed the available stack space.
22143 If the space is exceeded, then a @code{Storage_Error} exception is raised.
22144
22145 For declared tasks, the default stack size is defined by the GNAT runtime,
22146 whose size may be modified at bind time through the @code{-d} bind switch
22147 (@ref{112,,Switches for gnatbind}). Task specific stack sizes may be set using the
22148 @code{Storage_Size} pragma.
22149
22150 For the environment task, the stack size is determined by the operating system.
22151 Consequently, to modify the size of the environment task please refer to your
22152 operating system documentation.
22153
22154 @node Static Stack Usage Analysis,Dynamic Stack Usage Analysis,Stack Overflow Checking,Stack Related Facilities
22155 @anchor{gnat_ugn/gnat_and_program_execution id54}@anchor{1ac}@anchor{gnat_ugn/gnat_and_program_execution static-stack-usage-analysis}@anchor{e8}
22156 @subsection Static Stack Usage Analysis
22157
22158
22159 @geindex Static Stack Usage Analysis
22160
22161 @geindex -fstack-usage
22162
22163 A unit compiled with @code{-fstack-usage} will generate an extra file
22164 that specifies
22165 the maximum amount of stack used, on a per-function basis.
22166 The file has the same
22167 basename as the target object file with a @code{.su} extension.
22168 Each line of this file is made up of three fields:
22169
22170
22171 @itemize *
22172
22173 @item
22174 The name of the function.
22175
22176 @item
22177 A number of bytes.
22178
22179 @item
22180 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
22181 @end itemize
22182
22183 The second field corresponds to the size of the known part of the function
22184 frame.
22185
22186 The qualifier @code{static} means that the function frame size
22187 is purely static.
22188 It usually means that all local variables have a static size.
22189 In this case, the second field is a reliable measure of the function stack
22190 utilization.
22191
22192 The qualifier @code{dynamic} means that the function frame size is not static.
22193 It happens mainly when some local variables have a dynamic size. When this
22194 qualifier appears alone, the second field is not a reliable measure
22195 of the function stack analysis. When it is qualified with @code{bounded}, it
22196 means that the second field is a reliable maximum of the function stack
22197 utilization.
22198
22199 A unit compiled with @code{-Wstack-usage} will issue a warning for each
22200 subprogram whose stack usage might be larger than the specified amount of
22201 bytes. The wording is in keeping with the qualifier documented above.
22202
22203 @node Dynamic Stack Usage Analysis,,Static Stack Usage Analysis,Stack Related Facilities
22204 @anchor{gnat_ugn/gnat_and_program_execution dynamic-stack-usage-analysis}@anchor{115}@anchor{gnat_ugn/gnat_and_program_execution id55}@anchor{1ad}
22205 @subsection Dynamic Stack Usage Analysis
22206
22207
22208 It is possible to measure the maximum amount of stack used by a task, by
22209 adding a switch to @code{gnatbind}, as:
22210
22211 @quotation
22212
22213 @example
22214 $ gnatbind -u0 file
22215 @end example
22216 @end quotation
22217
22218 With this option, at each task termination, its stack usage is output on
22219 @code{stderr}.
22220 Note that this switch is not compatible with tools like
22221 Valgrind and DrMemory; they will report errors.
22222
22223 It is not always convenient to output the stack usage when the program
22224 is still running. Hence, it is possible to delay this output until program
22225 termination. for a given number of tasks specified as the argument of the
22226 @code{-u} option. For instance:
22227
22228 @quotation
22229
22230 @example
22231 $ gnatbind -u100 file
22232 @end example
22233 @end quotation
22234
22235 will buffer the stack usage information of the first 100 tasks to terminate and
22236 output this info at program termination. Results are displayed in four
22237 columns:
22238
22239 @quotation
22240
22241 @example
22242 Index | Task Name | Stack Size | Stack Usage
22243 @end example
22244 @end quotation
22245
22246 where:
22247
22248
22249 @itemize *
22250
22251 @item
22252 `Index' is a number associated with each task.
22253
22254 @item
22255 `Task Name' is the name of the task analyzed.
22256
22257 @item
22258 `Stack Size' is the maximum size for the stack.
22259
22260 @item
22261 `Stack Usage' is the measure done by the stack analyzer.
22262 In order to prevent overflow, the stack
22263 is not entirely analyzed, and it’s not possible to know exactly how
22264 much has actually been used.
22265 @end itemize
22266
22267 By default the environment task stack, the stack that contains the main unit,
22268 is not processed. To enable processing of the environment task stack, the
22269 environment variable GNAT_STACK_LIMIT needs to be set to the maximum size of
22270 the environment task stack. This amount is given in kilobytes. For example:
22271
22272 @quotation
22273
22274 @example
22275 $ set GNAT_STACK_LIMIT 1600
22276 @end example
22277 @end quotation
22278
22279 would specify to the analyzer that the environment task stack has a limit
22280 of 1.6 megabytes. Any stack usage beyond this will be ignored by the analysis.
22281
22282 The package @code{GNAT.Task_Stack_Usage} provides facilities to get
22283 stack-usage reports at run time. See its body for the details.
22284
22285 @node Memory Management Issues,,Stack Related Facilities,GNAT and Program Execution
22286 @anchor{gnat_ugn/gnat_and_program_execution id56}@anchor{14e}@anchor{gnat_ugn/gnat_and_program_execution memory-management-issues}@anchor{1ae}
22287 @section Memory Management Issues
22288
22289
22290 This section describes some useful memory pools provided in the GNAT library
22291 and in particular the GNAT Debug Pool facility, which can be used to detect
22292 incorrect uses of access values (including ‘dangling references’).
22293
22294
22295 @menu
22296 * Some Useful Memory Pools::
22297 * The GNAT Debug Pool Facility::
22298
22299 @end menu
22300
22301 @node Some Useful Memory Pools,The GNAT Debug Pool Facility,,Memory Management Issues
22302 @anchor{gnat_ugn/gnat_and_program_execution id57}@anchor{1af}@anchor{gnat_ugn/gnat_and_program_execution some-useful-memory-pools}@anchor{1b0}
22303 @subsection Some Useful Memory Pools
22304
22305
22306 @geindex Memory Pool
22307
22308 @geindex storage
22309 @geindex pool
22310
22311 The @code{System.Pool_Global} package offers the Unbounded_No_Reclaim_Pool
22312 storage pool. Allocations use the standard system call @code{malloc} while
22313 deallocations use the standard system call @code{free}. No reclamation is
22314 performed when the pool goes out of scope. For performance reasons, the
22315 standard default Ada allocators/deallocators do not use any explicit storage
22316 pools but if they did, they could use this storage pool without any change in
22317 behavior. That is why this storage pool is used when the user
22318 manages to make the default implicit allocator explicit as in this example:
22319
22320 @quotation
22321
22322 @example
22323 type T1 is access Something;
22324 -- no Storage pool is defined for T2
22325
22326 type T2 is access Something_Else;
22327 for T2'Storage_Pool use T1'Storage_Pool;
22328 -- the above is equivalent to
22329 for T2'Storage_Pool use System.Pool_Global.Global_Pool_Object;
22330 @end example
22331 @end quotation
22332
22333 The @code{System.Pool_Local} package offers the @code{Unbounded_Reclaim_Pool} storage
22334 pool. The allocation strategy is similar to @code{Pool_Local}
22335 except that the all
22336 storage allocated with this pool is reclaimed when the pool object goes out of
22337 scope. This pool provides a explicit mechanism similar to the implicit one
22338 provided by several Ada 83 compilers for allocations performed through a local
22339 access type and whose purpose was to reclaim memory when exiting the
22340 scope of a given local access. As an example, the following program does not
22341 leak memory even though it does not perform explicit deallocation:
22342
22343 @quotation
22344
22345 @example
22346 with System.Pool_Local;
22347 procedure Pooloc1 is
22348 procedure Internal is
22349 type A is access Integer;
22350 X : System.Pool_Local.Unbounded_Reclaim_Pool;
22351 for A'Storage_Pool use X;
22352 v : A;
22353 begin
22354 for I in 1 .. 50 loop
22355 v := new Integer;
22356 end loop;
22357 end Internal;
22358 begin
22359 for I in 1 .. 100 loop
22360 Internal;
22361 end loop;
22362 end Pooloc1;
22363 @end example
22364 @end quotation
22365
22366 The @code{System.Pool_Size} package implements the @code{Stack_Bounded_Pool} used when
22367 @code{Storage_Size} is specified for an access type.
22368 The whole storage for the pool is
22369 allocated at once, usually on the stack at the point where the access type is
22370 elaborated. It is automatically reclaimed when exiting the scope where the
22371 access type is defined. This package is not intended to be used directly by the
22372 user and it is implicitly used for each such declaration:
22373
22374 @quotation
22375
22376 @example
22377 type T1 is access Something;
22378 for T1'Storage_Size use 10_000;
22379 @end example
22380 @end quotation
22381
22382 @node The GNAT Debug Pool Facility,,Some Useful Memory Pools,Memory Management Issues
22383 @anchor{gnat_ugn/gnat_and_program_execution id58}@anchor{1b1}@anchor{gnat_ugn/gnat_and_program_execution the-gnat-debug-pool-facility}@anchor{1b2}
22384 @subsection The GNAT Debug Pool Facility
22385
22386
22387 @geindex Debug Pool
22388
22389 @geindex storage
22390 @geindex pool
22391 @geindex memory corruption
22392
22393 The use of unchecked deallocation and unchecked conversion can easily
22394 lead to incorrect memory references. The problems generated by such
22395 references are usually difficult to tackle because the symptoms can be
22396 very remote from the origin of the problem. In such cases, it is
22397 very helpful to detect the problem as early as possible. This is the
22398 purpose of the Storage Pool provided by @code{GNAT.Debug_Pools}.
22399
22400 In order to use the GNAT specific debugging pool, the user must
22401 associate a debug pool object with each of the access types that may be
22402 related to suspected memory problems. See Ada Reference Manual 13.11.
22403
22404 @quotation
22405
22406 @example
22407 type Ptr is access Some_Type;
22408 Pool : GNAT.Debug_Pools.Debug_Pool;
22409 for Ptr'Storage_Pool use Pool;
22410 @end example
22411 @end quotation
22412
22413 @code{GNAT.Debug_Pools} is derived from a GNAT-specific kind of
22414 pool: the @code{Checked_Pool}. Such pools, like standard Ada storage pools,
22415 allow the user to redefine allocation and deallocation strategies. They
22416 also provide a checkpoint for each dereference, through the use of
22417 the primitive operation @code{Dereference} which is implicitly called at
22418 each dereference of an access value.
22419
22420 Once an access type has been associated with a debug pool, operations on
22421 values of the type may raise four distinct exceptions,
22422 which correspond to four potential kinds of memory corruption:
22423
22424
22425 @itemize *
22426
22427 @item
22428 @code{GNAT.Debug_Pools.Accessing_Not_Allocated_Storage}
22429
22430 @item
22431 @code{GNAT.Debug_Pools.Accessing_Deallocated_Storage}
22432
22433 @item
22434 @code{GNAT.Debug_Pools.Freeing_Not_Allocated_Storage}
22435
22436 @item
22437 @code{GNAT.Debug_Pools.Freeing_Deallocated_Storage}
22438 @end itemize
22439
22440 For types associated with a Debug_Pool, dynamic allocation is performed using
22441 the standard GNAT allocation routine. References to all allocated chunks of
22442 memory are kept in an internal dictionary. Several deallocation strategies are
22443 provided, whereupon the user can choose to release the memory to the system,
22444 keep it allocated for further invalid access checks, or fill it with an easily
22445 recognizable pattern for debug sessions. The memory pattern is the old IBM
22446 hexadecimal convention: @code{16#DEADBEEF#}.
22447
22448 See the documentation in the file g-debpoo.ads for more information on the
22449 various strategies.
22450
22451 Upon each dereference, a check is made that the access value denotes a
22452 properly allocated memory location. Here is a complete example of use of
22453 @code{Debug_Pools}, that includes typical instances of memory corruption:
22454
22455 @quotation
22456
22457 @example
22458 with GNAT.IO; use GNAT.IO;
22459 with Ada.Unchecked_Deallocation;
22460 with Ada.Unchecked_Conversion;
22461 with GNAT.Debug_Pools;
22462 with System.Storage_Elements;
22463 with Ada.Exceptions; use Ada.Exceptions;
22464 procedure Debug_Pool_Test is
22465
22466 type T is access Integer;
22467 type U is access all T;
22468
22469 P : GNAT.Debug_Pools.Debug_Pool;
22470 for T'Storage_Pool use P;
22471
22472 procedure Free is new Ada.Unchecked_Deallocation (Integer, T);
22473 function UC is new Ada.Unchecked_Conversion (U, T);
22474 A, B : aliased T;
22475
22476 procedure Info is new GNAT.Debug_Pools.Print_Info(Put_Line);
22477
22478 begin
22479 Info (P);
22480 A := new Integer;
22481 B := new Integer;
22482 B := A;
22483 Info (P);
22484 Free (A);
22485 begin
22486 Put_Line (Integer'Image(B.all));
22487 exception
22488 when E : others => Put_Line ("raised: " & Exception_Name (E));
22489 end;
22490 begin
22491 Free (B);
22492 exception
22493 when E : others => Put_Line ("raised: " & Exception_Name (E));
22494 end;
22495 B := UC(A'Access);
22496 begin
22497 Put_Line (Integer'Image(B.all));
22498 exception
22499 when E : others => Put_Line ("raised: " & Exception_Name (E));
22500 end;
22501 begin
22502 Free (B);
22503 exception
22504 when E : others => Put_Line ("raised: " & Exception_Name (E));
22505 end;
22506 Info (P);
22507 end Debug_Pool_Test;
22508 @end example
22509 @end quotation
22510
22511 The debug pool mechanism provides the following precise diagnostics on the
22512 execution of this erroneous program:
22513
22514 @quotation
22515
22516 @example
22517 Debug Pool info:
22518 Total allocated bytes : 0
22519 Total deallocated bytes : 0
22520 Current Water Mark: 0
22521 High Water Mark: 0
22522
22523 Debug Pool info:
22524 Total allocated bytes : 8
22525 Total deallocated bytes : 0
22526 Current Water Mark: 8
22527 High Water Mark: 8
22528
22529 raised: GNAT.DEBUG_POOLS.ACCESSING_DEALLOCATED_STORAGE
22530 raised: GNAT.DEBUG_POOLS.FREEING_DEALLOCATED_STORAGE
22531 raised: GNAT.DEBUG_POOLS.ACCESSING_NOT_ALLOCATED_STORAGE
22532 raised: GNAT.DEBUG_POOLS.FREEING_NOT_ALLOCATED_STORAGE
22533 Debug Pool info:
22534 Total allocated bytes : 8
22535 Total deallocated bytes : 4
22536 Current Water Mark: 4
22537 High Water Mark: 8
22538 @end example
22539 @end quotation
22540
22541
22542 @c -- Non-breaking space in running text
22543 @c -- E.g. Ada |nbsp| 95
22544
22545 @node Platform-Specific Information,Example of Binder Output File,GNAT and Program Execution,Top
22546 @anchor{gnat_ugn/platform_specific_information doc}@anchor{1b3}@anchor{gnat_ugn/platform_specific_information id1}@anchor{1b4}@anchor{gnat_ugn/platform_specific_information platform-specific-information}@anchor{d}
22547 @chapter Platform-Specific Information
22548
22549
22550 This appendix contains information relating to the implementation
22551 of run-time libraries on various platforms and also covers topics
22552 related to the GNAT implementation on specific Operating Systems.
22553
22554 @menu
22555 * Run-Time Libraries::
22556 * Specifying a Run-Time Library::
22557 * GNU/Linux Topics::
22558 * Microsoft Windows Topics::
22559 * Mac OS Topics::
22560
22561 @end menu
22562
22563 @node Run-Time Libraries,Specifying a Run-Time Library,,Platform-Specific Information
22564 @anchor{gnat_ugn/platform_specific_information id2}@anchor{1b5}@anchor{gnat_ugn/platform_specific_information run-time-libraries}@anchor{1b6}
22565 @section Run-Time Libraries
22566
22567
22568 @geindex Tasking and threads libraries
22569
22570 @geindex Threads libraries and tasking
22571
22572 @geindex Run-time libraries (platform-specific information)
22573
22574 The GNAT run-time implementation may vary with respect to both the
22575 underlying threads library and the exception-handling scheme.
22576 For threads support, the default run-time will bind to the thread
22577 package of the underlying operating system.
22578
22579 For exception handling, either or both of two models are supplied:
22580
22581 @quotation
22582
22583 @geindex Zero-Cost Exceptions
22584
22585 @geindex ZCX (Zero-Cost Exceptions)
22586 @end quotation
22587
22588
22589 @itemize *
22590
22591 @item
22592 `Zero-Cost Exceptions' (“ZCX”),
22593 which uses binder-generated tables that
22594 are interrogated at run time to locate a handler.
22595
22596 @geindex setjmp/longjmp Exception Model
22597
22598 @geindex SJLJ (setjmp/longjmp Exception Model)
22599
22600 @item
22601 `setjmp / longjmp' (‘SJLJ’),
22602 which uses dynamically-set data to establish
22603 the set of handlers
22604 @end itemize
22605
22606 Most programs should experience a substantial speed improvement by
22607 being compiled with a ZCX run-time.
22608 This is especially true for
22609 tasking applications or applications with many exception handlers.
22610 Note however that the ZCX run-time does not support asynchronous abort
22611 of tasks (@code{abort} and @code{select-then-abort} constructs) and will instead
22612 implement abort by polling points in the runtime. You can also add additional
22613 polling points explicitly if needed in your application via @code{pragma
22614 Abort_Defer}.
22615
22616 This section summarizes which combinations of threads and exception support
22617 are supplied on various GNAT platforms.
22618
22619 @menu
22620 * Summary of Run-Time Configurations::
22621
22622 @end menu
22623
22624 @node Summary of Run-Time Configurations,,,Run-Time Libraries
22625 @anchor{gnat_ugn/platform_specific_information id3}@anchor{1b7}@anchor{gnat_ugn/platform_specific_information summary-of-run-time-configurations}@anchor{1b8}
22626 @subsection Summary of Run-Time Configurations
22627
22628
22629
22630 @multitable {xxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxx}
22631 @headitem
22632
22633 Platform
22634
22635 @tab
22636
22637 Run-Time
22638
22639 @tab
22640
22641 Tasking
22642
22643 @tab
22644
22645 Exceptions
22646
22647 @item
22648
22649 GNU/Linux
22650
22651 @tab
22652
22653 rts-native
22654 (default)
22655
22656 @tab
22657
22658 pthread library
22659
22660 @tab
22661
22662 ZCX
22663
22664 @item
22665
22666 rts-sjlj
22667
22668 @tab
22669
22670 pthread library
22671
22672 @tab
22673
22674 SJLJ
22675
22676 @item
22677
22678 Windows
22679
22680 @tab
22681
22682 rts-native
22683 (default)
22684
22685 @tab
22686
22687 native Win32 threads
22688
22689 @tab
22690
22691 ZCX
22692
22693 @item
22694
22695 rts-sjlj
22696
22697 @tab
22698
22699 native Win32 threads
22700
22701 @tab
22702
22703 SJLJ
22704
22705 @item
22706
22707 Mac OS
22708
22709 @tab
22710
22711 rts-native
22712
22713 @tab
22714
22715 pthread library
22716
22717 @tab
22718
22719 ZCX
22720
22721 @end multitable
22722
22723
22724 @node Specifying a Run-Time Library,GNU/Linux Topics,Run-Time Libraries,Platform-Specific Information
22725 @anchor{gnat_ugn/platform_specific_information id4}@anchor{1b9}@anchor{gnat_ugn/platform_specific_information specifying-a-run-time-library}@anchor{1ba}
22726 @section Specifying a Run-Time Library
22727
22728
22729 The @code{adainclude} subdirectory containing the sources of the GNAT
22730 run-time library, and the @code{adalib} subdirectory containing the
22731 @code{ALI} files and the static and/or shared GNAT library, are located
22732 in the gcc target-dependent area:
22733
22734 @quotation
22735
22736 @example
22737 target=$prefix/lib/gcc/gcc-*dumpmachine*/gcc-*dumpversion*/
22738 @end example
22739 @end quotation
22740
22741 As indicated above, on some platforms several run-time libraries are supplied.
22742 These libraries are installed in the target dependent area and
22743 contain a complete source and binary subdirectory. The detailed description
22744 below explains the differences between the different libraries in terms of
22745 their thread support.
22746
22747 The default run-time library (when GNAT is installed) is `rts-native'.
22748 This default run-time is selected by the means of soft links.
22749 For example on x86-linux:
22750
22751 @c --
22752 @c -- $(target-dir)
22753 @c -- |
22754 @c -- +--- adainclude----------+
22755 @c -- | |
22756 @c -- +--- adalib-----------+ |
22757 @c -- | | |
22758 @c -- +--- rts-native | |
22759 @c -- | | | |
22760 @c -- | +--- adainclude <---+
22761 @c -- | | |
22762 @c -- | +--- adalib <----+
22763 @c -- |
22764 @c -- +--- rts-sjlj
22765 @c -- |
22766 @c -- +--- adainclude
22767 @c -- |
22768 @c -- +--- adalib
22769
22770
22771 @example
22772 $(target-dir)
22773 __/ / \ \___
22774 _______/ / \ \_________________
22775 / / \ \
22776 / / \ \
22777 ADAINCLUDE ADALIB rts-native rts-sjlj
22778 : : / \ / \
22779 : : / \ / \
22780 : : / \ / \
22781 : : / \ / \
22782 +-------------> adainclude adalib adainclude adalib
22783 : ^
22784 : :
22785 +---------------------+
22786
22787 Run-Time Library Directory Structure
22788 (Upper-case names and dotted/dashed arrows represent soft links)
22789 @end example
22790
22791 If the `rts-sjlj' library is to be selected on a permanent basis,
22792 these soft links can be modified with the following commands:
22793
22794 @quotation
22795
22796 @example
22797 $ cd $target
22798 $ rm -f adainclude adalib
22799 $ ln -s rts-sjlj/adainclude adainclude
22800 $ ln -s rts-sjlj/adalib adalib
22801 @end example
22802 @end quotation
22803
22804 Alternatively, you can specify @code{rts-sjlj/adainclude} in the file
22805 @code{$target/ada_source_path} and @code{rts-sjlj/adalib} in
22806 @code{$target/ada_object_path}.
22807
22808 @geindex --RTS option
22809
22810 Selecting another run-time library temporarily can be
22811 achieved by using the @code{--RTS} switch, e.g., @code{--RTS=sjlj}
22812 @anchor{gnat_ugn/platform_specific_information choosing-the-scheduling-policy}@anchor{1bb}
22813 @geindex SCHED_FIFO scheduling policy
22814
22815 @geindex SCHED_RR scheduling policy
22816
22817 @geindex SCHED_OTHER scheduling policy
22818
22819 @menu
22820 * Choosing the Scheduling Policy::
22821
22822 @end menu
22823
22824 @node Choosing the Scheduling Policy,,,Specifying a Run-Time Library
22825 @anchor{gnat_ugn/platform_specific_information id5}@anchor{1bc}
22826 @subsection Choosing the Scheduling Policy
22827
22828
22829 When using a POSIX threads implementation, you have a choice of several
22830 scheduling policies: @code{SCHED_FIFO}, @code{SCHED_RR} and @code{SCHED_OTHER}.
22831
22832 Typically, the default is @code{SCHED_OTHER}, while using @code{SCHED_FIFO}
22833 or @code{SCHED_RR} requires special (e.g., root) privileges.
22834
22835 @geindex pragma Time_Slice
22836
22837 @geindex -T0 option
22838
22839 @geindex pragma Task_Dispatching_Policy
22840
22841 By default, GNAT uses the @code{SCHED_OTHER} policy. To specify
22842 @code{SCHED_FIFO},
22843 you can use one of the following:
22844
22845
22846 @itemize *
22847
22848 @item
22849 @code{pragma Time_Slice (0.0)}
22850
22851 @item
22852 the corresponding binder option @code{-T0}
22853
22854 @item
22855 @code{pragma Task_Dispatching_Policy (FIFO_Within_Priorities)}
22856 @end itemize
22857
22858 To specify @code{SCHED_RR},
22859 you should use @code{pragma Time_Slice} with a
22860 value greater than 0.0, or else use the corresponding @code{-T}
22861 binder option.
22862
22863 To make sure a program is running as root, you can put something like
22864 this in a library package body in your application:
22865
22866 @quotation
22867
22868 @example
22869 function geteuid return Integer;
22870 pragma Import (C, geteuid, "geteuid");
22871 Ignore : constant Boolean :=
22872 (if geteuid = 0 then True else raise Program_Error with "must be root");
22873 @end example
22874 @end quotation
22875
22876 It gets the effective user id, and if it’s not 0 (i.e. root), it raises
22877 Program_Error. Note that if you re running the code in a container, this may
22878 not be sufficient, as you may have sufficient priviledge on the container,
22879 but not on the host machine running the container, so check that you also
22880 have sufficient priviledge for running the container image.
22881
22882 @geindex Linux
22883
22884 @geindex GNU/Linux
22885
22886 @node GNU/Linux Topics,Microsoft Windows Topics,Specifying a Run-Time Library,Platform-Specific Information
22887 @anchor{gnat_ugn/platform_specific_information gnu-linux-topics}@anchor{1bd}@anchor{gnat_ugn/platform_specific_information id6}@anchor{1be}
22888 @section GNU/Linux Topics
22889
22890
22891 This section describes topics that are specific to GNU/Linux platforms.
22892
22893 @menu
22894 * Required Packages on GNU/Linux::
22895 * Position Independent Executable (PIE) Enabled by Default on Linux: Position Independent Executable PIE Enabled by Default on Linux.
22896 * A GNU/Linux Debug Quirk::
22897
22898 @end menu
22899
22900 @node Required Packages on GNU/Linux,Position Independent Executable PIE Enabled by Default on Linux,,GNU/Linux Topics
22901 @anchor{gnat_ugn/platform_specific_information id7}@anchor{1bf}@anchor{gnat_ugn/platform_specific_information required-packages-on-gnu-linux}@anchor{1c0}
22902 @subsection Required Packages on GNU/Linux
22903
22904
22905 GNAT requires the C library developer’s package to be installed.
22906 The name of of that package depends on your GNU/Linux distribution:
22907
22908
22909 @itemize *
22910
22911 @item
22912 RedHat, SUSE: @code{glibc-devel};
22913
22914 @item
22915 Debian, Ubuntu: @code{libc6-dev} (normally installed by default).
22916 @end itemize
22917
22918 If using the 32-bit version of GNAT on a 64-bit version of GNU/Linux,
22919 you’ll need the 32-bit version of the following packages:
22920
22921
22922 @itemize *
22923
22924 @item
22925 RedHat, SUSE: @code{glibc.i686}, @code{glibc-devel.i686}, @code{ncurses-libs.i686}
22926
22927 @item
22928 SUSE: @code{glibc-locale-base-32bit}
22929
22930 @item
22931 Debian, Ubuntu: @code{libc6:i386}, @code{libc6-dev:i386}, @code{lib32ncursesw5}
22932 @end itemize
22933
22934 Other GNU/Linux distributions might be choosing a different name
22935 for those packages.
22936
22937 @node Position Independent Executable PIE Enabled by Default on Linux,A GNU/Linux Debug Quirk,Required Packages on GNU/Linux,GNU/Linux Topics
22938 @anchor{gnat_ugn/platform_specific_information pie-enabled-by-default-on-linux}@anchor{1c1}@anchor{gnat_ugn/platform_specific_information position-independent-executable-pie-enabled-by-default-on-linux}@anchor{1c2}
22939 @subsection Position Independent Executable (PIE) Enabled by Default on Linux
22940
22941
22942 GNAT generates Position Independent Executable (PIE) code by default.
22943 PIE binaries are loaded into random memory locations, introducing
22944 an additional layer of protection against attacks.
22945
22946 Building PIE binaries requires that all of their dependencies also be
22947 built as Position Independent. If the link of your project fails with
22948 an error like:
22949
22950 @example
22951 /[...]/ld: /path/to/object/file: relocation R_X86_64_32S against symbol
22952 `symbol name' can not be used when making a PIE object;
22953 recompile with -fPIE
22954 @end example
22955
22956 it means the identified object file has not been built as Position
22957 Independent.
22958
22959 If you are not interested in building PIE binaries, you can simply
22960 turn this feature off by first compiling your code with @code{-fno-pie}
22961 and then by linking with @code{-no-pie} (note the subtle but important
22962 difference in the names of the options – the linker option does `not'
22963 have an @cite{f} after the dash!). When using gprbuild, this is
22964 achieved by updating the `Required_Switches' attribute in package @cite{Compiler}
22965 and, depending on your type of project, either attribute `Switches'
22966 or attribute `Library_Options' in package @cite{Linker}.
22967
22968 On the other hand, if you would like to build PIE binaries and you are
22969 getting the error above, a quick and easy workaround to allow linking
22970 to succeed again is to disable PIE during the link, thus temporarily
22971 lifting the requirement that all dependencies also be Position
22972 Independent code. To do so, you simply need to add @code{-no-pie} to
22973 the list of switches passed to the linker. As part of this workaround,
22974 there is no need to adjust the compiler switches.
22975
22976 From there, to be able to link your binaries with PIE and therefore
22977 drop the @code{-no-pie} workaround, you’ll need to get the identified
22978 dependencies rebuilt with PIE enabled (compiled with @code{-fPIE}
22979 and linked with @code{-pie}).
22980
22981 @node A GNU/Linux Debug Quirk,,Position Independent Executable PIE Enabled by Default on Linux,GNU/Linux Topics
22982 @anchor{gnat_ugn/platform_specific_information a-gnu-linux-debug-quirk}@anchor{1c3}@anchor{gnat_ugn/platform_specific_information id8}@anchor{1c4}
22983 @subsection A GNU/Linux Debug Quirk
22984
22985
22986 On SuSE 15, some kernels have a defect causing issues when debugging
22987 programs using threads or Ada tasks. Due to the lack of documentation
22988 found regarding this kernel issue, we can only provide limited
22989 information about which kernels are impacted: kernel version 5.3.18 is
22990 known to be impacted, and kernels in the 5.14 range or newer are
22991 believed to fix this problem.
22992
22993 The bug affects the debugging of 32-bit processes on a 64-bit system.
22994 Symptoms can vary: Unexpected @code{SIGABRT} signals being received by
22995 the program, “The futex facility returned an unexpected error code”
22996 error message, and inferior programs hanging indefinitely range among
22997 the symptoms most commonly observed.
22998
22999 @geindex Windows
23000
23001 @node Microsoft Windows Topics,Mac OS Topics,GNU/Linux Topics,Platform-Specific Information
23002 @anchor{gnat_ugn/platform_specific_information id9}@anchor{1c5}@anchor{gnat_ugn/platform_specific_information microsoft-windows-topics}@anchor{1c6}
23003 @section Microsoft Windows Topics
23004
23005
23006 This section describes topics that are specific to the Microsoft Windows
23007 platforms.
23008
23009
23010 @menu
23011 * Using GNAT on Windows::
23012 * Using a network installation of GNAT::
23013 * CONSOLE and WINDOWS subsystems::
23014 * Temporary Files::
23015 * Disabling Command Line Argument Expansion::
23016 * Windows Socket Timeouts::
23017 * Mixed-Language Programming on Windows::
23018 * Windows Specific Add-Ons::
23019
23020 @end menu
23021
23022 @node Using GNAT on Windows,Using a network installation of GNAT,,Microsoft Windows Topics
23023 @anchor{gnat_ugn/platform_specific_information id10}@anchor{1c7}@anchor{gnat_ugn/platform_specific_information using-gnat-on-windows}@anchor{1c8}
23024 @subsection Using GNAT on Windows
23025
23026
23027 One of the strengths of the GNAT technology is that its tool set
23028 (@code{gcc}, @code{gnatbind}, @code{gnatlink}, @code{gnatmake}, the
23029 @code{gdb} debugger, etc.) is used in the same way regardless of the
23030 platform.
23031
23032 On Windows this tool set is complemented by a number of Microsoft-specific
23033 tools that have been provided to facilitate interoperability with Windows
23034 when this is required. With these tools:
23035
23036
23037 @itemize *
23038
23039 @item
23040 You can build applications using the @code{CONSOLE} or @code{WINDOWS}
23041 subsystems.
23042
23043 @item
23044 You can use any Dynamically Linked Library (DLL) in your Ada code (both
23045 relocatable and non-relocatable DLLs are supported).
23046
23047 @item
23048 You can build Ada DLLs for use in other applications. These applications
23049 can be written in a language other than Ada (e.g., C, C++, etc). Again both
23050 relocatable and non-relocatable Ada DLLs are supported.
23051
23052 @item
23053 You can include Windows resources in your Ada application.
23054
23055 @item
23056 You can use or create COM/DCOM objects.
23057 @end itemize
23058
23059 Immediately below are listed all known general GNAT-for-Windows restrictions.
23060 Other restrictions about specific features like Windows Resources and DLLs
23061 are listed in separate sections below.
23062
23063
23064 @itemize *
23065
23066 @item
23067 It is not possible to use @code{GetLastError} and @code{SetLastError}
23068 when tasking, protected records, or exceptions are used. In these
23069 cases, in order to implement Ada semantics, the GNAT run-time system
23070 calls certain Win32 routines that set the last error variable to 0 upon
23071 success. It should be possible to use @code{GetLastError} and
23072 @code{SetLastError} when tasking, protected record, and exception
23073 features are not used, but it is not guaranteed to work.
23074
23075 @item
23076 It is not possible to link against Microsoft C++ libraries except for
23077 import libraries. Interfacing must be done by the mean of DLLs.
23078
23079 @item
23080 It is possible to link against Microsoft C libraries. Yet the preferred
23081 solution is to use C/C++ compiler that comes with GNAT, since it
23082 doesn’t require having two different development environments and makes the
23083 inter-language debugging experience smoother.
23084
23085 @item
23086 When the compilation environment is located on FAT32 drives, users may
23087 experience recompilations of the source files that have not changed if
23088 Daylight Saving Time (DST) state has changed since the last time files
23089 were compiled. NTFS drives do not have this problem.
23090
23091 @item
23092 No components of the GNAT toolset use any entries in the Windows
23093 registry. The only entries that can be created are file associations and
23094 PATH settings, provided the user has chosen to create them at installation
23095 time, as well as some minimal book-keeping information needed to correctly
23096 uninstall or integrate different GNAT products.
23097 @end itemize
23098
23099 @node Using a network installation of GNAT,CONSOLE and WINDOWS subsystems,Using GNAT on Windows,Microsoft Windows Topics
23100 @anchor{gnat_ugn/platform_specific_information id11}@anchor{1c9}@anchor{gnat_ugn/platform_specific_information using-a-network-installation-of-gnat}@anchor{1ca}
23101 @subsection Using a network installation of GNAT
23102
23103
23104 Make sure the system on which GNAT is installed is accessible from the
23105 current machine, i.e., the install location is shared over the network.
23106 Shared resources are accessed on Windows by means of UNC paths, which
23107 have the format @code{\\\\server\\sharename\\path}
23108
23109 In order to use such a network installation, simply add the UNC path of the
23110 @code{bin} directory of your GNAT installation in front of your PATH. For
23111 example, if GNAT is installed in @code{\GNAT} directory of a share location
23112 called @code{c-drive} on a machine @code{LOKI}, the following command will
23113 make it available:
23114
23115 @quotation
23116
23117 @example
23118 $ path \\loki\c-drive\gnat\bin;%path%`
23119 @end example
23120 @end quotation
23121
23122 Be aware that every compilation using the network installation results in the
23123 transfer of large amounts of data across the network and will likely cause
23124 serious performance penalty.
23125
23126 @node CONSOLE and WINDOWS subsystems,Temporary Files,Using a network installation of GNAT,Microsoft Windows Topics
23127 @anchor{gnat_ugn/platform_specific_information console-and-windows-subsystems}@anchor{1cb}@anchor{gnat_ugn/platform_specific_information id12}@anchor{1cc}
23128 @subsection CONSOLE and WINDOWS subsystems
23129
23130
23131 @geindex CONSOLE Subsystem
23132
23133 @geindex WINDOWS Subsystem
23134
23135 @geindex -mwindows
23136
23137 There are two main subsystems under Windows. The @code{CONSOLE} subsystem
23138 (which is the default subsystem) will always create a console when
23139 launching the application. This is not something desirable when the
23140 application has a Windows GUI. To get rid of this console the
23141 application must be using the @code{WINDOWS} subsystem. To do so
23142 the @code{-mwindows} linker option must be specified.
23143
23144 @quotation
23145
23146 @example
23147 $ gnatmake winprog -largs -mwindows
23148 @end example
23149 @end quotation
23150
23151 @node Temporary Files,Disabling Command Line Argument Expansion,CONSOLE and WINDOWS subsystems,Microsoft Windows Topics
23152 @anchor{gnat_ugn/platform_specific_information id13}@anchor{1cd}@anchor{gnat_ugn/platform_specific_information temporary-files}@anchor{1ce}
23153 @subsection Temporary Files
23154
23155
23156 @geindex Temporary files
23157
23158 It is possible to control where temporary files gets created by setting
23159 the
23160 @geindex TMP
23161 @geindex environment variable; TMP
23162 @code{TMP} environment variable. The file will be created:
23163
23164
23165 @itemize *
23166
23167 @item
23168 Under the directory pointed to by the
23169 @geindex TMP
23170 @geindex environment variable; TMP
23171 @code{TMP} environment variable if
23172 this directory exists.
23173
23174 @item
23175 Under @code{c:\temp}, if the
23176 @geindex TMP
23177 @geindex environment variable; TMP
23178 @code{TMP} environment variable is not
23179 set (or not pointing to a directory) and if this directory exists.
23180
23181 @item
23182 Under the current working directory otherwise.
23183 @end itemize
23184
23185 This allows you to determine exactly where the temporary
23186 file will be created. This is particularly useful in networked
23187 environments where you may not have write access to some
23188 directories.
23189
23190 @node Disabling Command Line Argument Expansion,Windows Socket Timeouts,Temporary Files,Microsoft Windows Topics
23191 @anchor{gnat_ugn/platform_specific_information disabling-command-line-argument-expansion}@anchor{1cf}
23192 @subsection Disabling Command Line Argument Expansion
23193
23194
23195 @geindex Command Line Argument Expansion
23196
23197 By default, an executable compiled for the Windows platform will do
23198 the following postprocessing on the arguments passed on the command
23199 line:
23200
23201
23202 @itemize *
23203
23204 @item
23205 If the argument contains the characters @code{*} and/or @code{?}, then
23206 file expansion will be attempted. For example, if the current directory
23207 contains @code{a.txt} and @code{b.txt}, then when calling:
23208
23209 @example
23210 $ my_ada_program *.txt
23211 @end example
23212
23213 The following arguments will effectively be passed to the main program
23214 (for example when using @code{Ada.Command_Line.Argument}):
23215
23216 @example
23217 Ada.Command_Line.Argument (1) -> "a.txt"
23218 Ada.Command_Line.Argument (2) -> "b.txt"
23219 @end example
23220
23221 @item
23222 Filename expansion can be disabled for a given argument by using single
23223 quotes. Thus, calling:
23224
23225 @example
23226 $ my_ada_program '*.txt'
23227 @end example
23228
23229 will result in:
23230
23231 @example
23232 Ada.Command_Line.Argument (1) -> "*.txt"
23233 @end example
23234 @end itemize
23235
23236 Note that if the program is launched from a shell such as Cygwin Bash
23237 then quote removal might be performed by the shell.
23238
23239 In some contexts it might be useful to disable this feature (for example if
23240 the program performs its own argument expansion). In order to do this, a C
23241 symbol needs to be defined and set to @code{0}. You can do this by
23242 adding the following code fragment in one of your Ada units:
23243
23244 @example
23245 Do_Argv_Expansion : Integer := 0;
23246 pragma Export (C, Do_Argv_Expansion, "__gnat_do_argv_expansion");
23247 @end example
23248
23249 The results of previous examples will be respectively:
23250
23251 @example
23252 Ada.Command_Line.Argument (1) -> "*.txt"
23253 @end example
23254
23255 and:
23256
23257 @example
23258 Ada.Command_Line.Argument (1) -> "'*.txt'"
23259 @end example
23260
23261 @node Windows Socket Timeouts,Mixed-Language Programming on Windows,Disabling Command Line Argument Expansion,Microsoft Windows Topics
23262 @anchor{gnat_ugn/platform_specific_information windows-socket-timeouts}@anchor{1d0}
23263 @subsection Windows Socket Timeouts
23264
23265
23266 Microsoft Windows desktops older than @code{8.0} and Microsoft Windows Servers
23267 older than @code{2019} set a socket timeout 500 milliseconds longer than the value
23268 set by setsockopt with @code{SO_RCVTIMEO} and @code{SO_SNDTIMEO} options. The GNAT
23269 runtime makes a correction for the difference in the corresponding Windows
23270 versions. For Windows Server starting with version @code{2019}, the user must
23271 provide a manifest file for the GNAT runtime to be able to recognize that
23272 the Windows version does not need the timeout correction. The manifest file
23273 should be located in the same directory as the executable file, and its file
23274 name must match the executable name suffixed by @code{.manifest}. For example,
23275 if the executable name is @code{sock_wto.exe}, then the manifest file name
23276 has to be @code{sock_wto.exe.manifest}. The manifest file must contain at
23277 least the following data:
23278
23279 @example
23280 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
23281 <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
23282 <compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">
23283 <application>
23284 <!-- Windows Vista -->
23285 <supportedOS Id="@{e2011457-1546-43c5-a5fe-008deee3d3f0@}"/>
23286 <!-- Windows 7 -->
23287 <supportedOS Id="@{35138b9a-5d96-4fbd-8e2d-a2440225f93a@}"/>
23288 <!-- Windows 8 -->
23289 <supportedOS Id="@{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38@}"/>
23290 <!-- Windows 8.1 -->
23291 <supportedOS Id="@{1f676c76-80e1-4239-95bb-83d0f6d0da78@}"/>
23292 <!-- Windows 10 -->
23293 <supportedOS Id="@{8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a@}"/>
23294 </application>
23295 </compatibility>
23296 </assembly>
23297 @end example
23298
23299 Without the manifest file, the socket timeout is going to be overcorrected on
23300 these Windows Server versions and the actual time is going to be 500
23301 milliseconds shorter than what was set with GNAT.Sockets.Set_Socket_Option.
23302 Note that on Microsoft Windows versions where correction is necessary, there
23303 is no way to set a socket timeout shorter than 500 ms. If a socket timeout
23304 shorter than 500 ms is needed on these Windows versions, a call to
23305 Check_Selector should be added before any socket read or write operations.
23306
23307 @node Mixed-Language Programming on Windows,Windows Specific Add-Ons,Windows Socket Timeouts,Microsoft Windows Topics
23308 @anchor{gnat_ugn/platform_specific_information id14}@anchor{1d1}@anchor{gnat_ugn/platform_specific_information mixed-language-programming-on-windows}@anchor{1d2}
23309 @subsection Mixed-Language Programming on Windows
23310
23311
23312 Developing pure Ada applications on Windows is no different than on
23313 other GNAT-supported platforms. However, when developing or porting an
23314 application that contains a mix of Ada and C/C++, the choice of your
23315 Windows C/C++ development environment conditions your overall
23316 interoperability strategy.
23317
23318 If you use @code{gcc} or Microsoft C to compile the non-Ada part of
23319 your application, there are no Windows-specific restrictions that
23320 affect the overall interoperability with your Ada code. If you do want
23321 to use the Microsoft tools for your C++ code, you have two choices:
23322
23323
23324 @itemize *
23325
23326 @item
23327 Encapsulate your C++ code in a DLL to be linked with your Ada
23328 application. In this case, use the Microsoft or whatever environment to
23329 build the DLL and use GNAT to build your executable
23330 (@ref{1d3,,Using DLLs with GNAT}).
23331
23332 @item
23333 Or you can encapsulate your Ada code in a DLL to be linked with the
23334 other part of your application. In this case, use GNAT to build the DLL
23335 (@ref{1d4,,Building DLLs with GNAT Project files}) and use the Microsoft
23336 or whatever environment to build your executable.
23337 @end itemize
23338
23339 In addition to the description about C main in
23340 @ref{2c,,Mixed Language Programming} section, if the C main uses a
23341 stand-alone library it is required on x86-windows to
23342 setup the SEH context. For this the C main must looks like this:
23343
23344 @quotation
23345
23346 @example
23347 /* main.c */
23348 extern void adainit (void);
23349 extern void adafinal (void);
23350 extern void __gnat_initialize(void*);
23351 extern void call_to_ada (void);
23352
23353 int main (int argc, char *argv[])
23354 @{
23355 int SEH [2];
23356
23357 /* Initialize the SEH context */
23358 __gnat_initialize (&SEH);
23359
23360 adainit();
23361
23362 /* Then call Ada services in the stand-alone library */
23363
23364 call_to_ada();
23365
23366 adafinal();
23367 @}
23368 @end example
23369 @end quotation
23370
23371 Note that this is not needed on x86_64-windows where the Windows
23372 native SEH support is used.
23373
23374 @menu
23375 * Windows Calling Conventions::
23376 * Introduction to Dynamic Link Libraries (DLLs): Introduction to Dynamic Link Libraries DLLs.
23377 * Using DLLs with GNAT::
23378 * Building DLLs with GNAT Project files::
23379 * Building DLLs with GNAT::
23380 * Building DLLs with gnatdll::
23381 * Ada DLLs and Finalization::
23382 * Creating a Spec for Ada DLLs::
23383 * GNAT and Windows Resources::
23384 * Using GNAT DLLs from Microsoft Visual Studio Applications::
23385 * Debugging a DLL::
23386 * Setting Stack Size from gnatlink::
23387 * Setting Heap Size from gnatlink::
23388
23389 @end menu
23390
23391 @node Windows Calling Conventions,Introduction to Dynamic Link Libraries DLLs,,Mixed-Language Programming on Windows
23392 @anchor{gnat_ugn/platform_specific_information id15}@anchor{1d5}@anchor{gnat_ugn/platform_specific_information windows-calling-conventions}@anchor{1d6}
23393 @subsubsection Windows Calling Conventions
23394
23395
23396 @geindex Stdcall
23397
23398 @geindex APIENTRY
23399
23400 This section pertain only to Win32. On Win64 there is a single native
23401 calling convention. All convention specifiers are ignored on this
23402 platform.
23403
23404 When a subprogram @code{F} (caller) calls a subprogram @code{G}
23405 (callee), there are several ways to push @code{G}‘s parameters on the
23406 stack and there are several possible scenarios to clean up the stack
23407 upon @code{G}‘s return. A calling convention is an agreed upon software
23408 protocol whereby the responsibilities between the caller (@code{F}) and
23409 the callee (@code{G}) are clearly defined. Several calling conventions
23410 are available for Windows:
23411
23412
23413 @itemize *
23414
23415 @item
23416 @code{C} (Microsoft defined)
23417
23418 @item
23419 @code{Stdcall} (Microsoft defined)
23420
23421 @item
23422 @code{Win32} (GNAT specific)
23423
23424 @item
23425 @code{DLL} (GNAT specific)
23426 @end itemize
23427
23428 @menu
23429 * C Calling Convention::
23430 * Stdcall Calling Convention::
23431 * Win32 Calling Convention::
23432 * DLL Calling Convention::
23433
23434 @end menu
23435
23436 @node C Calling Convention,Stdcall Calling Convention,,Windows Calling Conventions
23437 @anchor{gnat_ugn/platform_specific_information c-calling-convention}@anchor{1d7}@anchor{gnat_ugn/platform_specific_information id16}@anchor{1d8}
23438 @subsubsection @code{C} Calling Convention
23439
23440
23441 This is the default calling convention used when interfacing to C/C++
23442 routines compiled with either @code{gcc} or Microsoft Visual C++.
23443
23444 In the @code{C} calling convention subprogram parameters are pushed on the
23445 stack by the caller from right to left. The caller itself is in charge of
23446 cleaning up the stack after the call. In addition, the name of a routine
23447 with @code{C} calling convention is mangled by adding a leading underscore.
23448
23449 The name to use on the Ada side when importing (or exporting) a routine
23450 with @code{C} calling convention is the name of the routine. For
23451 instance the C function:
23452
23453 @quotation
23454
23455 @example
23456 int get_val (long);
23457 @end example
23458 @end quotation
23459
23460 should be imported from Ada as follows:
23461
23462 @quotation
23463
23464 @example
23465 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
23466 pragma Import (C, Get_Val, External_Name => "get_val");
23467 @end example
23468 @end quotation
23469
23470 Note that in this particular case the @code{External_Name} parameter could
23471 have been omitted since, when missing, this parameter is taken to be the
23472 name of the Ada entity in lower case. When the @code{Link_Name} parameter
23473 is missing, as in the above example, this parameter is set to be the
23474 @code{External_Name} with a leading underscore.
23475
23476 When importing a variable defined in C, you should always use the @code{C}
23477 calling convention unless the object containing the variable is part of a
23478 DLL (in which case you should use the @code{Stdcall} calling
23479 convention, @ref{1d9,,Stdcall Calling Convention}).
23480
23481 @node Stdcall Calling Convention,Win32 Calling Convention,C Calling Convention,Windows Calling Conventions
23482 @anchor{gnat_ugn/platform_specific_information id17}@anchor{1da}@anchor{gnat_ugn/platform_specific_information stdcall-calling-convention}@anchor{1d9}
23483 @subsubsection @code{Stdcall} Calling Convention
23484
23485
23486 This convention, which was the calling convention used for Pascal
23487 programs, is used by Microsoft for all the routines in the Win32 API for
23488 efficiency reasons. It must be used to import any routine for which this
23489 convention was specified.
23490
23491 In the @code{Stdcall} calling convention subprogram parameters are pushed
23492 on the stack by the caller from right to left. The callee (and not the
23493 caller) is in charge of cleaning the stack on routine exit. In addition,
23494 the name of a routine with @code{Stdcall} calling convention is mangled by
23495 adding a leading underscore (as for the @code{C} calling convention) and a
23496 trailing @code{@@@var{nn}}, where @code{nn} is the overall size (in
23497 bytes) of the parameters passed to the routine.
23498
23499 The name to use on the Ada side when importing a C routine with a
23500 @code{Stdcall} calling convention is the name of the C routine. The leading
23501 underscore and trailing @code{@@@var{nn}} are added automatically by
23502 the compiler. For instance the Win32 function:
23503
23504 @quotation
23505
23506 @example
23507 APIENTRY int get_val (long);
23508 @end example
23509 @end quotation
23510
23511 should be imported from Ada as follows:
23512
23513 @quotation
23514
23515 @example
23516 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
23517 pragma Import (Stdcall, Get_Val);
23518 -- On the x86 a long is 4 bytes, so the Link_Name is "_get_val@@4"
23519 @end example
23520 @end quotation
23521
23522 As for the @code{C} calling convention, when the @code{External_Name}
23523 parameter is missing, it is taken to be the name of the Ada entity in lower
23524 case. If instead of writing the above import pragma you write:
23525
23526 @quotation
23527
23528 @example
23529 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
23530 pragma Import (Stdcall, Get_Val, External_Name => "retrieve_val");
23531 @end example
23532 @end quotation
23533
23534 then the imported routine is @code{_retrieve_val@@4}. However, if instead
23535 of specifying the @code{External_Name} parameter you specify the
23536 @code{Link_Name} as in the following example:
23537
23538 @quotation
23539
23540 @example
23541 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
23542 pragma Import (Stdcall, Get_Val, Link_Name => "retrieve_val");
23543 @end example
23544 @end quotation
23545
23546 then the imported routine is @code{retrieve_val}, that is, there is no
23547 decoration at all. No leading underscore and no Stdcall suffix
23548 @code{@@@var{nn}}.
23549
23550 This is especially important as in some special cases a DLL’s entry
23551 point name lacks a trailing @code{@@@var{nn}} while the exported
23552 name generated for a call has it.
23553
23554 It is also possible to import variables defined in a DLL by using an
23555 import pragma for a variable. As an example, if a DLL contains a
23556 variable defined as:
23557
23558 @quotation
23559
23560 @example
23561 int my_var;
23562 @end example
23563 @end quotation
23564
23565 then, to access this variable from Ada you should write:
23566
23567 @quotation
23568
23569 @example
23570 My_Var : Interfaces.C.int;
23571 pragma Import (Stdcall, My_Var);
23572 @end example
23573 @end quotation
23574
23575 Note that to ease building cross-platform bindings this convention
23576 will be handled as a @code{C} calling convention on non-Windows platforms.
23577
23578 @node Win32 Calling Convention,DLL Calling Convention,Stdcall Calling Convention,Windows Calling Conventions
23579 @anchor{gnat_ugn/platform_specific_information id18}@anchor{1db}@anchor{gnat_ugn/platform_specific_information win32-calling-convention}@anchor{1dc}
23580 @subsubsection @code{Win32} Calling Convention
23581
23582
23583 This convention, which is GNAT-specific is fully equivalent to the
23584 @code{Stdcall} calling convention described above.
23585
23586 @node DLL Calling Convention,,Win32 Calling Convention,Windows Calling Conventions
23587 @anchor{gnat_ugn/platform_specific_information dll-calling-convention}@anchor{1dd}@anchor{gnat_ugn/platform_specific_information id19}@anchor{1de}
23588 @subsubsection @code{DLL} Calling Convention
23589
23590
23591 This convention, which is GNAT-specific is fully equivalent to the
23592 @code{Stdcall} calling convention described above.
23593
23594 @node Introduction to Dynamic Link Libraries DLLs,Using DLLs with GNAT,Windows Calling Conventions,Mixed-Language Programming on Windows
23595 @anchor{gnat_ugn/platform_specific_information id20}@anchor{1df}@anchor{gnat_ugn/platform_specific_information introduction-to-dynamic-link-libraries-dlls}@anchor{1e0}
23596 @subsubsection Introduction to Dynamic Link Libraries (DLLs)
23597
23598
23599 @geindex DLL
23600
23601 A Dynamically Linked Library (DLL) is a library that can be shared by
23602 several applications running under Windows. A DLL can contain any number of
23603 routines and variables.
23604
23605 One advantage of DLLs is that you can change and enhance them without
23606 forcing all the applications that depend on them to be relinked or
23607 recompiled. However, you should be aware than all calls to DLL routines are
23608 slower since, as you will understand below, such calls are indirect.
23609
23610 To illustrate the remainder of this section, suppose that an application
23611 wants to use the services of a DLL @code{API.dll}. To use the services
23612 provided by @code{API.dll} you must statically link against the DLL or
23613 an import library which contains a jump table with an entry for each
23614 routine and variable exported by the DLL. In the Microsoft world this
23615 import library is called @code{API.lib}. When using GNAT this import
23616 library is called either @code{libAPI.dll.a}, @code{libapi.dll.a},
23617 @code{libAPI.a} or @code{libapi.a} (names are case insensitive).
23618
23619 After you have linked your application with the DLL or the import library
23620 and you run your application, here is what happens:
23621
23622
23623 @itemize *
23624
23625 @item
23626 Your application is loaded into memory.
23627
23628 @item
23629 The DLL @code{API.dll} is mapped into the address space of your
23630 application. This means that:
23631
23632
23633 @itemize -
23634
23635 @item
23636 The DLL will use the stack of the calling thread.
23637
23638 @item
23639 The DLL will use the virtual address space of the calling process.
23640
23641 @item
23642 The DLL will allocate memory from the virtual address space of the calling
23643 process.
23644
23645 @item
23646 Handles (pointers) can be safely exchanged between routines in the DLL
23647 routines and routines in the application using the DLL.
23648 @end itemize
23649
23650 @item
23651 The entries in the jump table (from the import library @code{libAPI.dll.a}
23652 or @code{API.lib} or automatically created when linking against a DLL)
23653 which is part of your application are initialized with the addresses
23654 of the routines and variables in @code{API.dll}.
23655
23656 @item
23657 If present in @code{API.dll}, routines @code{DllMain} or
23658 @code{DllMainCRTStartup} are invoked. These routines typically contain
23659 the initialization code needed for the well-being of the routines and
23660 variables exported by the DLL.
23661 @end itemize
23662
23663 There is an additional point which is worth mentioning. In the Windows
23664 world there are two kind of DLLs: relocatable and non-relocatable
23665 DLLs. Non-relocatable DLLs can only be loaded at a very specific address
23666 in the target application address space. If the addresses of two
23667 non-relocatable DLLs overlap and these happen to be used by the same
23668 application, a conflict will occur and the application will run
23669 incorrectly. Hence, when possible, it is always preferable to use and
23670 build relocatable DLLs. Both relocatable and non-relocatable DLLs are
23671 supported by GNAT. Note that the @code{-s} linker option (see GNU Linker
23672 User’s Guide) removes the debugging symbols from the DLL but the DLL can
23673 still be relocated.
23674
23675 As a side note, an interesting difference between Microsoft DLLs and
23676 Unix shared libraries, is the fact that on most Unix systems all public
23677 routines are exported by default in a Unix shared library, while under
23678 Windows it is possible (but not required) to list exported routines in
23679 a definition file (see @ref{1e1,,The Definition File}).
23680
23681 @node Using DLLs with GNAT,Building DLLs with GNAT Project files,Introduction to Dynamic Link Libraries DLLs,Mixed-Language Programming on Windows
23682 @anchor{gnat_ugn/platform_specific_information id21}@anchor{1e2}@anchor{gnat_ugn/platform_specific_information using-dlls-with-gnat}@anchor{1d3}
23683 @subsubsection Using DLLs with GNAT
23684
23685
23686 To use the services of a DLL, say @code{API.dll}, in your Ada application
23687 you must have:
23688
23689
23690 @itemize *
23691
23692 @item
23693 The Ada spec for the routines and/or variables you want to access in
23694 @code{API.dll}. If not available this Ada spec must be built from the C/C++
23695 header files provided with the DLL.
23696
23697 @item
23698 The import library (@code{libAPI.dll.a} or @code{API.lib}). As previously
23699 mentioned an import library is a statically linked library containing the
23700 import table which will be filled at load time to point to the actual
23701 @code{API.dll} routines. Sometimes you don’t have an import library for the
23702 DLL you want to use. The following sections will explain how to build
23703 one. Note that this is optional.
23704
23705 @item
23706 The actual DLL, @code{API.dll}.
23707 @end itemize
23708
23709 Once you have all the above, to compile an Ada application that uses the
23710 services of @code{API.dll} and whose main subprogram is @code{My_Ada_App},
23711 you simply issue the command
23712
23713 @quotation
23714
23715 @example
23716 $ gnatmake my_ada_app -largs -lAPI
23717 @end example
23718 @end quotation
23719
23720 The argument @code{-largs -lAPI} at the end of the @code{gnatmake} command
23721 tells the GNAT linker to look for an import library. The linker will
23722 look for a library name in this specific order:
23723
23724
23725 @itemize *
23726
23727 @item
23728 @code{libAPI.dll.a}
23729
23730 @item
23731 @code{API.dll.a}
23732
23733 @item
23734 @code{libAPI.a}
23735
23736 @item
23737 @code{API.lib}
23738
23739 @item
23740 @code{libAPI.dll}
23741
23742 @item
23743 @code{API.dll}
23744 @end itemize
23745
23746 The first three are the GNU style import libraries. The third is the
23747 Microsoft style import libraries. The last two are the actual DLL names.
23748
23749 Note that if the Ada package spec for @code{API.dll} contains the
23750 following pragma
23751
23752 @quotation
23753
23754 @example
23755 pragma Linker_Options ("-lAPI");
23756 @end example
23757 @end quotation
23758
23759 you do not have to add @code{-largs -lAPI} at the end of the
23760 @code{gnatmake} command.
23761
23762 If any one of the items above is missing you will have to create it
23763 yourself. The following sections explain how to do so using as an
23764 example a fictitious DLL called @code{API.dll}.
23765
23766 @menu
23767 * Creating an Ada Spec for the DLL Services::
23768 * Creating an Import Library::
23769
23770 @end menu
23771
23772 @node Creating an Ada Spec for the DLL Services,Creating an Import Library,,Using DLLs with GNAT
23773 @anchor{gnat_ugn/platform_specific_information creating-an-ada-spec-for-the-dll-services}@anchor{1e3}@anchor{gnat_ugn/platform_specific_information id22}@anchor{1e4}
23774 @subsubsection Creating an Ada Spec for the DLL Services
23775
23776
23777 A DLL typically comes with a C/C++ header file which provides the
23778 definitions of the routines and variables exported by the DLL. The Ada
23779 equivalent of this header file is a package spec that contains definitions
23780 for the imported entities. If the DLL you intend to use does not come with
23781 an Ada spec you have to generate one such spec yourself. For example if
23782 the header file of @code{API.dll} is a file @code{api.h} containing the
23783 following two definitions:
23784
23785 @quotation
23786
23787 @example
23788 int some_var;
23789 int get (char *);
23790 @end example
23791 @end quotation
23792
23793 then the equivalent Ada spec could be:
23794
23795 @quotation
23796
23797 @example
23798 with Interfaces.C.Strings;
23799 package API is
23800 use Interfaces;
23801
23802 Some_Var : C.int;
23803 function Get (Str : C.Strings.Chars_Ptr) return C.int;
23804
23805 private
23806 pragma Import (C, Get);
23807 pragma Import (DLL, Some_Var);
23808 end API;
23809 @end example
23810 @end quotation
23811
23812 @node Creating an Import Library,,Creating an Ada Spec for the DLL Services,Using DLLs with GNAT
23813 @anchor{gnat_ugn/platform_specific_information creating-an-import-library}@anchor{1e5}@anchor{gnat_ugn/platform_specific_information id23}@anchor{1e6}
23814 @subsubsection Creating an Import Library
23815
23816
23817 @geindex Import library
23818
23819 If a Microsoft-style import library @code{API.lib} or a GNAT-style
23820 import library @code{libAPI.dll.a} or @code{libAPI.a} is available
23821 with @code{API.dll} you can skip this section. You can also skip this
23822 section if @code{API.dll} or @code{libAPI.dll} is built with GNU tools
23823 as in this case it is possible to link directly against the
23824 DLL. Otherwise read on.
23825
23826 @geindex Definition file
23827 @anchor{gnat_ugn/platform_specific_information the-definition-file}@anchor{1e1}
23828 @subsubheading The Definition File
23829
23830
23831 As previously mentioned, and unlike Unix systems, the list of symbols
23832 that are exported from a DLL must be provided explicitly in Windows.
23833 The main goal of a definition file is precisely that: list the symbols
23834 exported by a DLL. A definition file (usually a file with a @code{.def}
23835 suffix) has the following structure:
23836
23837 @quotation
23838
23839 @example
23840 [LIBRARY `@w{`}name`@w{`}]
23841 [DESCRIPTION `@w{`}string`@w{`}]
23842 EXPORTS
23843 `@w{`}symbol1`@w{`}
23844 `@w{`}symbol2`@w{`}
23845 ...
23846 @end example
23847 @end quotation
23848
23849
23850 @table @asis
23851
23852 @item `LIBRARY name'
23853
23854 This section, which is optional, gives the name of the DLL.
23855
23856 @item `DESCRIPTION string'
23857
23858 This section, which is optional, gives a description string that will be
23859 embedded in the import library.
23860
23861 @item `EXPORTS'
23862
23863 This section gives the list of exported symbols (procedures, functions or
23864 variables). For instance in the case of @code{API.dll} the @code{EXPORTS}
23865 section of @code{API.def} looks like:
23866
23867 @example
23868 EXPORTS
23869 some_var
23870 get
23871 @end example
23872 @end table
23873
23874 Note that you must specify the correct suffix (@code{@@@var{nn}})
23875 (see @ref{1d6,,Windows Calling Conventions}) for a Stdcall
23876 calling convention function in the exported symbols list.
23877
23878 There can actually be other sections in a definition file, but these
23879 sections are not relevant to the discussion at hand.
23880 @anchor{gnat_ugn/platform_specific_information create-def-file-automatically}@anchor{1e7}
23881 @subsubheading Creating a Definition File Automatically
23882
23883
23884 You can automatically create the definition file @code{API.def}
23885 (see @ref{1e1,,The Definition File}) from a DLL.
23886 For that use the @code{dlltool} program as follows:
23887
23888 @quotation
23889
23890 @example
23891 $ dlltool API.dll -z API.def --export-all-symbols
23892 @end example
23893
23894 Note that if some routines in the DLL have the @code{Stdcall} convention
23895 (@ref{1d6,,Windows Calling Conventions}) with stripped @code{@@@var{nn}}
23896 suffix then you’ll have to edit @code{api.def} to add it, and specify
23897 @code{-k} to @code{gnatdll} when creating the import library.
23898
23899 Here are some hints to find the right @code{@@@var{nn}} suffix.
23900
23901
23902 @itemize -
23903
23904 @item
23905 If you have the Microsoft import library (.lib), it is possible to get
23906 the right symbols by using Microsoft @code{dumpbin} tool (see the
23907 corresponding Microsoft documentation for further details).
23908
23909 @example
23910 $ dumpbin /exports api.lib
23911 @end example
23912
23913 @item
23914 If you have a message about a missing symbol at link time the compiler
23915 tells you what symbol is expected. You just have to go back to the
23916 definition file and add the right suffix.
23917 @end itemize
23918 @end quotation
23919 @anchor{gnat_ugn/platform_specific_information gnat-style-import-library}@anchor{1e8}
23920 @subsubheading GNAT-Style Import Library
23921
23922
23923 To create a static import library from @code{API.dll} with the GNAT tools
23924 you should create the .def file, then use @code{gnatdll} tool
23925 (see @ref{1e9,,Using gnatdll}) as follows:
23926
23927 @quotation
23928
23929 @example
23930 $ gnatdll -e API.def -d API.dll
23931 @end example
23932
23933 @code{gnatdll} takes as input a definition file @code{API.def} and the
23934 name of the DLL containing the services listed in the definition file
23935 @code{API.dll}. The name of the static import library generated is
23936 computed from the name of the definition file as follows: if the
23937 definition file name is @code{xyz.def}, the import library name will
23938 be @code{libxyz.a}. Note that in the previous example option
23939 @code{-e} could have been removed because the name of the definition
23940 file (before the @code{.def} suffix) is the same as the name of the
23941 DLL (@ref{1e9,,Using gnatdll} for more information about @code{gnatdll}).
23942 @end quotation
23943 @anchor{gnat_ugn/platform_specific_information msvs-style-import-library}@anchor{1ea}
23944 @subsubheading Microsoft-Style Import Library
23945
23946
23947 A Microsoft import library is needed only if you plan to make an
23948 Ada DLL available to applications developed with Microsoft
23949 tools (@ref{1d2,,Mixed-Language Programming on Windows}).
23950
23951 To create a Microsoft-style import library for @code{API.dll} you
23952 should create the .def file, then build the actual import library using
23953 Microsoft’s @code{lib} utility:
23954
23955 @quotation
23956
23957 @example
23958 $ lib -machine:IX86 -def:API.def -out:API.lib
23959 @end example
23960
23961 If you use the above command the definition file @code{API.def} must
23962 contain a line giving the name of the DLL:
23963
23964 @example
23965 LIBRARY "API"
23966 @end example
23967
23968 See the Microsoft documentation for further details about the usage of
23969 @code{lib}.
23970 @end quotation
23971
23972 @node Building DLLs with GNAT Project files,Building DLLs with GNAT,Using DLLs with GNAT,Mixed-Language Programming on Windows
23973 @anchor{gnat_ugn/platform_specific_information building-dlls-with-gnat-project-files}@anchor{1d4}@anchor{gnat_ugn/platform_specific_information id24}@anchor{1eb}
23974 @subsubsection Building DLLs with GNAT Project files
23975
23976
23977 @geindex DLLs
23978 @geindex building
23979
23980 There is nothing specific to Windows in the build process.
23981 See the `Library Projects' section in the `GNAT Project Manager'
23982 chapter of the `GPRbuild User’s Guide'.
23983
23984 Due to a system limitation, it is not possible under Windows to create threads
23985 when inside the @code{DllMain} routine which is used for auto-initialization
23986 of shared libraries, so it is not possible to have library level tasks in SALs.
23987
23988 @node Building DLLs with GNAT,Building DLLs with gnatdll,Building DLLs with GNAT Project files,Mixed-Language Programming on Windows
23989 @anchor{gnat_ugn/platform_specific_information building-dlls-with-gnat}@anchor{1ec}@anchor{gnat_ugn/platform_specific_information id25}@anchor{1ed}
23990 @subsubsection Building DLLs with GNAT
23991
23992
23993 @geindex DLLs
23994 @geindex building
23995
23996 This section explain how to build DLLs using the GNAT built-in DLL
23997 support. With the following procedure it is straight forward to build
23998 and use DLLs with GNAT.
23999
24000
24001 @itemize *
24002
24003 @item
24004 Building object files.
24005 The first step is to build all objects files that are to be included
24006 into the DLL. This is done by using the standard @code{gnatmake} tool.
24007
24008 @item
24009 Building the DLL.
24010 To build the DLL you must use the @code{gcc} @code{-shared} and
24011 @code{-shared-libgcc} options. It is quite simple to use this method:
24012
24013 @example
24014 $ gcc -shared -shared-libgcc -o api.dll obj1.o obj2.o ...
24015 @end example
24016
24017 It is important to note that in this case all symbols found in the
24018 object files are automatically exported. It is possible to restrict
24019 the set of symbols to export by passing to @code{gcc} a definition
24020 file (see @ref{1e1,,The Definition File}).
24021 For example:
24022
24023 @example
24024 $ gcc -shared -shared-libgcc -o api.dll api.def obj1.o obj2.o ...
24025 @end example
24026
24027 If you use a definition file you must export the elaboration procedures
24028 for every package that required one. Elaboration procedures are named
24029 using the package name followed by “_E”.
24030
24031 @item
24032 Preparing DLL to be used.
24033 For the DLL to be used by client programs the bodies must be hidden
24034 from it and the .ali set with read-only attribute. This is very important
24035 otherwise GNAT will recompile all packages and will not actually use
24036 the code in the DLL. For example:
24037
24038 @example
24039 $ mkdir apilib
24040 $ copy *.ads *.ali api.dll apilib
24041 $ attrib +R apilib\\*.ali
24042 @end example
24043 @end itemize
24044
24045 At this point it is possible to use the DLL by directly linking
24046 against it. Note that you must use the GNAT shared runtime when using
24047 GNAT shared libraries. This is achieved by using the @code{-shared} binder
24048 option.
24049
24050 @quotation
24051
24052 @example
24053 $ gnatmake main -Iapilib -bargs -shared -largs -Lapilib -lAPI
24054 @end example
24055 @end quotation
24056
24057 @node Building DLLs with gnatdll,Ada DLLs and Finalization,Building DLLs with GNAT,Mixed-Language Programming on Windows
24058 @anchor{gnat_ugn/platform_specific_information building-dlls-with-gnatdll}@anchor{1ee}@anchor{gnat_ugn/platform_specific_information id26}@anchor{1ef}
24059 @subsubsection Building DLLs with gnatdll
24060
24061
24062 @geindex DLLs
24063 @geindex building
24064
24065 Note that it is preferred to use GNAT Project files
24066 (@ref{1d4,,Building DLLs with GNAT Project files}) or the built-in GNAT
24067 DLL support (@ref{1ec,,Building DLLs with GNAT}) or to build DLLs.
24068
24069 This section explains how to build DLLs containing Ada code using
24070 @code{gnatdll}. These DLLs will be referred to as Ada DLLs in the
24071 remainder of this section.
24072
24073 The steps required to build an Ada DLL that is to be used by Ada as well as
24074 non-Ada applications are as follows:
24075
24076
24077 @itemize *
24078
24079 @item
24080 You need to mark each Ada entity exported by the DLL with a @code{C} or
24081 @code{Stdcall} calling convention to avoid any Ada name mangling for the
24082 entities exported by the DLL
24083 (see @ref{1f0,,Exporting Ada Entities}). You can
24084 skip this step if you plan to use the Ada DLL only from Ada applications.
24085
24086 @item
24087 Your Ada code must export an initialization routine which calls the routine
24088 @code{adainit} generated by @code{gnatbind} to perform the elaboration of
24089 the Ada code in the DLL (@ref{1f1,,Ada DLLs and Elaboration}). The initialization
24090 routine exported by the Ada DLL must be invoked by the clients of the DLL
24091 to initialize the DLL.
24092
24093 @item
24094 When useful, the DLL should also export a finalization routine which calls
24095 routine @code{adafinal} generated by @code{gnatbind} to perform the
24096 finalization of the Ada code in the DLL (@ref{1f2,,Ada DLLs and Finalization}).
24097 The finalization routine exported by the Ada DLL must be invoked by the
24098 clients of the DLL when the DLL services are no further needed.
24099
24100 @item
24101 You must provide a spec for the services exported by the Ada DLL in each
24102 of the programming languages to which you plan to make the DLL available.
24103
24104 @item
24105 You must provide a definition file listing the exported entities
24106 (@ref{1e1,,The Definition File}).
24107
24108 @item
24109 Finally you must use @code{gnatdll} to produce the DLL and the import
24110 library (@ref{1e9,,Using gnatdll}).
24111 @end itemize
24112
24113 Note that a relocatable DLL stripped using the @code{strip}
24114 binutils tool will not be relocatable anymore. To build a DLL without
24115 debug information pass @code{-largs -s} to @code{gnatdll}. This
24116 restriction does not apply to a DLL built using a Library Project.
24117 See the `Library Projects' section in the `GNAT Project Manager'
24118 chapter of the `GPRbuild User’s Guide'.
24119
24120 @c Limitations_When_Using_Ada_DLLs_from Ada:
24121
24122 @menu
24123 * Limitations When Using Ada DLLs from Ada::
24124 * Exporting Ada Entities::
24125 * Ada DLLs and Elaboration::
24126
24127 @end menu
24128
24129 @node Limitations When Using Ada DLLs from Ada,Exporting Ada Entities,,Building DLLs with gnatdll
24130 @anchor{gnat_ugn/platform_specific_information limitations-when-using-ada-dlls-from-ada}@anchor{1f3}
24131 @subsubsection Limitations When Using Ada DLLs from Ada
24132
24133
24134 When using Ada DLLs from Ada applications there is a limitation users
24135 should be aware of. Because on Windows the GNAT run-time is not in a DLL of
24136 its own, each Ada DLL includes a part of the GNAT run-time. Specifically,
24137 each Ada DLL includes the services of the GNAT run-time that are necessary
24138 to the Ada code inside the DLL. As a result, when an Ada program uses an
24139 Ada DLL there are two independent GNAT run-times: one in the Ada DLL and
24140 one in the main program.
24141
24142 It is therefore not possible to exchange GNAT run-time objects between the
24143 Ada DLL and the main Ada program. Example of GNAT run-time objects are file
24144 handles (e.g., @code{Text_IO.File_Type}), tasks types, protected objects
24145 types, etc.
24146
24147 It is completely safe to exchange plain elementary, array or record types,
24148 Windows object handles, etc.
24149
24150 @node Exporting Ada Entities,Ada DLLs and Elaboration,Limitations When Using Ada DLLs from Ada,Building DLLs with gnatdll
24151 @anchor{gnat_ugn/platform_specific_information exporting-ada-entities}@anchor{1f0}@anchor{gnat_ugn/platform_specific_information id27}@anchor{1f4}
24152 @subsubsection Exporting Ada Entities
24153
24154
24155 @geindex Export table
24156
24157 Building a DLL is a way to encapsulate a set of services usable from any
24158 application. As a result, the Ada entities exported by a DLL should be
24159 exported with the @code{C} or @code{Stdcall} calling conventions to avoid
24160 any Ada name mangling. As an example here is an Ada package
24161 @code{API}, spec and body, exporting two procedures, a function, and a
24162 variable:
24163
24164 @quotation
24165
24166 @example
24167 with Interfaces.C; use Interfaces;
24168 package API is
24169 Count : C.int := 0;
24170 function Factorial (Val : C.int) return C.int;
24171
24172 procedure Initialize_API;
24173 procedure Finalize_API;
24174 -- Initialization & Finalization routines. More in the next section.
24175 private
24176 pragma Export (C, Initialize_API);
24177 pragma Export (C, Finalize_API);
24178 pragma Export (C, Count);
24179 pragma Export (C, Factorial);
24180 end API;
24181 @end example
24182
24183 @example
24184 package body API is
24185 function Factorial (Val : C.int) return C.int is
24186 Fact : C.int := 1;
24187 begin
24188 Count := Count + 1;
24189 for K in 1 .. Val loop
24190 Fact := Fact * K;
24191 end loop;
24192 return Fact;
24193 end Factorial;
24194
24195 procedure Initialize_API is
24196 procedure Adainit;
24197 pragma Import (C, Adainit);
24198 begin
24199 Adainit;
24200 end Initialize_API;
24201
24202 procedure Finalize_API is
24203 procedure Adafinal;
24204 pragma Import (C, Adafinal);
24205 begin
24206 Adafinal;
24207 end Finalize_API;
24208 end API;
24209 @end example
24210 @end quotation
24211
24212 If the Ada DLL you are building will only be used by Ada applications
24213 you do not have to export Ada entities with a @code{C} or @code{Stdcall}
24214 convention. As an example, the previous package could be written as
24215 follows:
24216
24217 @quotation
24218
24219 @example
24220 package API is
24221 Count : Integer := 0;
24222 function Factorial (Val : Integer) return Integer;
24223
24224 procedure Initialize_API;
24225 procedure Finalize_API;
24226 -- Initialization and Finalization routines.
24227 end API;
24228 @end example
24229
24230 @example
24231 package body API is
24232 function Factorial (Val : Integer) return Integer is
24233 Fact : Integer := 1;
24234 begin
24235 Count := Count + 1;
24236 for K in 1 .. Val loop
24237 Fact := Fact * K;
24238 end loop;
24239 return Fact;
24240 end Factorial;
24241
24242 ...
24243 -- The remainder of this package body is unchanged.
24244 end API;
24245 @end example
24246 @end quotation
24247
24248 Note that if you do not export the Ada entities with a @code{C} or
24249 @code{Stdcall} convention you will have to provide the mangled Ada names
24250 in the definition file of the Ada DLL
24251 (@ref{1f5,,Creating the Definition File}).
24252
24253 @node Ada DLLs and Elaboration,,Exporting Ada Entities,Building DLLs with gnatdll
24254 @anchor{gnat_ugn/platform_specific_information ada-dlls-and-elaboration}@anchor{1f1}@anchor{gnat_ugn/platform_specific_information id28}@anchor{1f6}
24255 @subsubsection Ada DLLs and Elaboration
24256
24257
24258 @geindex DLLs and elaboration
24259
24260 The DLL that you are building contains your Ada code as well as all the
24261 routines in the Ada library that are needed by it. The first thing a
24262 user of your DLL must do is elaborate the Ada code
24263 (@ref{f,,Elaboration Order Handling in GNAT}).
24264
24265 To achieve this you must export an initialization routine
24266 (@code{Initialize_API} in the previous example), which must be invoked
24267 before using any of the DLL services. This elaboration routine must call
24268 the Ada elaboration routine @code{adainit} generated by the GNAT binder
24269 (@ref{a0,,Binding with Non-Ada Main Programs}). See the body of
24270 @code{Initialize_Api} for an example. Note that the GNAT binder is
24271 automatically invoked during the DLL build process by the @code{gnatdll}
24272 tool (@ref{1e9,,Using gnatdll}).
24273
24274 When a DLL is loaded, Windows systematically invokes a routine called
24275 @code{DllMain}. It would therefore be possible to call @code{adainit}
24276 directly from @code{DllMain} without having to provide an explicit
24277 initialization routine. Unfortunately, it is not possible to call
24278 @code{adainit} from the @code{DllMain} if your program has library level
24279 tasks because access to the @code{DllMain} entry point is serialized by
24280 the system (that is, only a single thread can execute ‘through’ it at a
24281 time), which means that the GNAT run-time will deadlock waiting for the
24282 newly created task to complete its initialization.
24283
24284 @node Ada DLLs and Finalization,Creating a Spec for Ada DLLs,Building DLLs with gnatdll,Mixed-Language Programming on Windows
24285 @anchor{gnat_ugn/platform_specific_information ada-dlls-and-finalization}@anchor{1f2}@anchor{gnat_ugn/platform_specific_information id29}@anchor{1f7}
24286 @subsubsection Ada DLLs and Finalization
24287
24288
24289 @geindex DLLs and finalization
24290
24291 When the services of an Ada DLL are no longer needed, the client code should
24292 invoke the DLL finalization routine, if available. The DLL finalization
24293 routine is in charge of releasing all resources acquired by the DLL. In the
24294 case of the Ada code contained in the DLL, this is achieved by calling
24295 routine @code{adafinal} generated by the GNAT binder
24296 (@ref{a0,,Binding with Non-Ada Main Programs}).
24297 See the body of @code{Finalize_Api} for an
24298 example. As already pointed out the GNAT binder is automatically invoked
24299 during the DLL build process by the @code{gnatdll} tool
24300 (@ref{1e9,,Using gnatdll}).
24301
24302 @node Creating a Spec for Ada DLLs,GNAT and Windows Resources,Ada DLLs and Finalization,Mixed-Language Programming on Windows
24303 @anchor{gnat_ugn/platform_specific_information creating-a-spec-for-ada-dlls}@anchor{1f8}@anchor{gnat_ugn/platform_specific_information id30}@anchor{1f9}
24304 @subsubsection Creating a Spec for Ada DLLs
24305
24306
24307 To use the services exported by the Ada DLL from another programming
24308 language (e.g., C), you have to translate the specs of the exported Ada
24309 entities in that language. For instance in the case of @code{API.dll},
24310 the corresponding C header file could look like:
24311
24312 @quotation
24313
24314 @example
24315 extern int *_imp__count;
24316 #define count (*_imp__count)
24317 int factorial (int);
24318 @end example
24319 @end quotation
24320
24321 It is important to understand that when building an Ada DLL to be used by
24322 other Ada applications, you need two different specs for the packages
24323 contained in the DLL: one for building the DLL and the other for using
24324 the DLL. This is because the @code{DLL} calling convention is needed to
24325 use a variable defined in a DLL, but when building the DLL, the variable
24326 must have either the @code{Ada} or @code{C} calling convention. As an
24327 example consider a DLL comprising the following package @code{API}:
24328
24329 @quotation
24330
24331 @example
24332 package API is
24333 Count : Integer := 0;
24334 ...
24335 -- Remainder of the package omitted.
24336 end API;
24337 @end example
24338 @end quotation
24339
24340 After producing a DLL containing package @code{API}, the spec that
24341 must be used to import @code{API.Count} from Ada code outside of the
24342 DLL is:
24343
24344 @quotation
24345
24346 @example
24347 package API is
24348 Count : Integer;
24349 pragma Import (DLL, Count);
24350 end API;
24351 @end example
24352 @end quotation
24353
24354 @menu
24355 * Creating the Definition File::
24356 * Using gnatdll::
24357
24358 @end menu
24359
24360 @node Creating the Definition File,Using gnatdll,,Creating a Spec for Ada DLLs
24361 @anchor{gnat_ugn/platform_specific_information creating-the-definition-file}@anchor{1f5}@anchor{gnat_ugn/platform_specific_information id31}@anchor{1fa}
24362 @subsubsection Creating the Definition File
24363
24364
24365 The definition file is the last file needed to build the DLL. It lists
24366 the exported symbols. As an example, the definition file for a DLL
24367 containing only package @code{API} (where all the entities are exported
24368 with a @code{C} calling convention) is:
24369
24370 @quotation
24371
24372 @example
24373 EXPORTS
24374 count
24375 factorial
24376 finalize_api
24377 initialize_api
24378 @end example
24379 @end quotation
24380
24381 If the @code{C} calling convention is missing from package @code{API},
24382 then the definition file contains the mangled Ada names of the above
24383 entities, which in this case are:
24384
24385 @quotation
24386
24387 @example
24388 EXPORTS
24389 api__count
24390 api__factorial
24391 api__finalize_api
24392 api__initialize_api
24393 @end example
24394 @end quotation
24395
24396 @node Using gnatdll,,Creating the Definition File,Creating a Spec for Ada DLLs
24397 @anchor{gnat_ugn/platform_specific_information id32}@anchor{1fb}@anchor{gnat_ugn/platform_specific_information using-gnatdll}@anchor{1e9}
24398 @subsubsection Using @code{gnatdll}
24399
24400
24401 @geindex gnatdll
24402
24403 @code{gnatdll} is a tool to automate the DLL build process once all the Ada
24404 and non-Ada sources that make up your DLL have been compiled.
24405 @code{gnatdll} is actually in charge of two distinct tasks: build the
24406 static import library for the DLL and the actual DLL. The form of the
24407 @code{gnatdll} command is
24408
24409 @quotation
24410
24411 @example
24412 $ gnatdll [ switches ] list-of-files [ -largs opts ]
24413 @end example
24414 @end quotation
24415
24416 where @code{list-of-files} is a list of ALI and object files. The object
24417 file list must be the exact list of objects corresponding to the non-Ada
24418 sources whose services are to be included in the DLL. The ALI file list
24419 must be the exact list of ALI files for the corresponding Ada sources
24420 whose services are to be included in the DLL. If @code{list-of-files} is
24421 missing, only the static import library is generated.
24422
24423 You may specify any of the following switches to @code{gnatdll}:
24424
24425 @quotation
24426
24427 @geindex -a (gnatdll)
24428 @end quotation
24429
24430
24431 @table @asis
24432
24433 @item @code{-a[`address']}
24434
24435 Build a non-relocatable DLL at @code{address}. If @code{address} is not
24436 specified the default address @code{0x11000000} will be used. By default,
24437 when this switch is missing, @code{gnatdll} builds relocatable DLL. We
24438 advise the reader to build relocatable DLL.
24439
24440 @geindex -b (gnatdll)
24441
24442 @item @code{-b `address'}
24443
24444 Set the relocatable DLL base address. By default the address is
24445 @code{0x11000000}.
24446
24447 @geindex -bargs (gnatdll)
24448
24449 @item @code{-bargs `opts'}
24450
24451 Binder options. Pass @code{opts} to the binder.
24452
24453 @geindex -d (gnatdll)
24454
24455 @item @code{-d `dllfile'}
24456
24457 @code{dllfile} is the name of the DLL. This switch must be present for
24458 @code{gnatdll} to do anything. The name of the generated import library is
24459 obtained algorithmically from @code{dllfile} as shown in the following
24460 example: if @code{dllfile} is @code{xyz.dll}, the import library name is
24461 @code{libxyz.dll.a}. The name of the definition file to use (if not specified
24462 by option @code{-e}) is obtained algorithmically from @code{dllfile}
24463 as shown in the following example:
24464 if @code{dllfile} is @code{xyz.dll}, the definition
24465 file used is @code{xyz.def}.
24466
24467 @geindex -e (gnatdll)
24468
24469 @item @code{-e `deffile'}
24470
24471 @code{deffile} is the name of the definition file.
24472
24473 @geindex -g (gnatdll)
24474
24475 @item @code{-g}
24476
24477 Generate debugging information. This information is stored in the object
24478 file and copied from there to the final DLL file by the linker,
24479 where it can be read by the debugger. You must use the
24480 @code{-g} switch if you plan on using the debugger or the symbolic
24481 stack traceback.
24482
24483 @geindex -h (gnatdll)
24484
24485 @item @code{-h}
24486
24487 Help mode. Displays @code{gnatdll} switch usage information.
24488
24489 @geindex -I (gnatdll)
24490
24491 @item @code{-I`dir'}
24492
24493 Direct @code{gnatdll} to search the @code{dir} directory for source and
24494 object files needed to build the DLL.
24495 (@ref{73,,Search Paths and the Run-Time Library (RTL)}).
24496
24497 @geindex -k (gnatdll)
24498
24499 @item @code{-k}
24500
24501 Removes the @code{@@@var{nn}} suffix from the import library’s exported
24502 names, but keeps them for the link names. You must specify this
24503 option if you want to use a @code{Stdcall} function in a DLL for which
24504 the @code{@@@var{nn}} suffix has been removed. This is the case for most
24505 of the Windows NT DLL for example. This option has no effect when
24506 @code{-n} option is specified.
24507
24508 @geindex -l (gnatdll)
24509
24510 @item @code{-l `file'}
24511
24512 The list of ALI and object files used to build the DLL are listed in
24513 @code{file}, instead of being given in the command line. Each line in
24514 @code{file} contains the name of an ALI or object file.
24515
24516 @geindex -n (gnatdll)
24517
24518 @item @code{-n}
24519
24520 No Import. Do not create the import library.
24521
24522 @geindex -q (gnatdll)
24523
24524 @item @code{-q}
24525
24526 Quiet mode. Do not display unnecessary messages.
24527
24528 @geindex -v (gnatdll)
24529
24530 @item @code{-v}
24531
24532 Verbose mode. Display extra information.
24533
24534 @geindex -largs (gnatdll)
24535
24536 @item @code{-largs `opts'}
24537
24538 Linker options. Pass @code{opts} to the linker.
24539 @end table
24540
24541 @subsubheading @code{gnatdll} Example
24542
24543
24544 As an example the command to build a relocatable DLL from @code{api.adb}
24545 once @code{api.adb} has been compiled and @code{api.def} created is
24546
24547 @quotation
24548
24549 @example
24550 $ gnatdll -d api.dll api.ali
24551 @end example
24552 @end quotation
24553
24554 The above command creates two files: @code{libapi.dll.a} (the import
24555 library) and @code{api.dll} (the actual DLL). If you want to create
24556 only the DLL, just type:
24557
24558 @quotation
24559
24560 @example
24561 $ gnatdll -d api.dll -n api.ali
24562 @end example
24563 @end quotation
24564
24565 Alternatively if you want to create just the import library, type:
24566
24567 @quotation
24568
24569 @example
24570 $ gnatdll -d api.dll
24571 @end example
24572 @end quotation
24573
24574 @subsubheading @code{gnatdll} behind the Scenes
24575
24576
24577 This section details the steps involved in creating a DLL. @code{gnatdll}
24578 does these steps for you. Unless you are interested in understanding what
24579 goes on behind the scenes, you should skip this section.
24580
24581 We use the previous example of a DLL containing the Ada package @code{API},
24582 to illustrate the steps necessary to build a DLL. The starting point is a
24583 set of objects that will make up the DLL and the corresponding ALI
24584 files. In the case of this example this means that @code{api.o} and
24585 @code{api.ali} are available. To build a relocatable DLL, @code{gnatdll} does
24586 the following:
24587
24588
24589 @itemize *
24590
24591 @item
24592 @code{gnatdll} builds the base file (@code{api.base}). A base file gives
24593 the information necessary to generate relocation information for the
24594 DLL.
24595
24596 @example
24597 $ gnatbind -n api
24598 $ gnatlink api -o api.jnk -mdll -Wl,--base-file,api.base
24599 @end example
24600
24601 In addition to the base file, the @code{gnatlink} command generates an
24602 output file @code{api.jnk} which can be discarded. The @code{-mdll} switch
24603 asks @code{gnatlink} to generate the routines @code{DllMain} and
24604 @code{DllMainCRTStartup} that are called by the Windows loader when the DLL
24605 is loaded into memory.
24606
24607 @item
24608 @code{gnatdll} uses @code{dlltool} (see @ref{1fc,,Using dlltool}) to build the
24609 export table (@code{api.exp}). The export table contains the relocation
24610 information in a form which can be used during the final link to ensure
24611 that the Windows loader is able to place the DLL anywhere in memory.
24612
24613 @example
24614 $ dlltool --dllname api.dll --def api.def --base-file api.base \\
24615 --output-exp api.exp
24616 @end example
24617
24618 @item
24619 @code{gnatdll} builds the base file using the new export table. Note that
24620 @code{gnatbind} must be called once again since the binder generated file
24621 has been deleted during the previous call to @code{gnatlink}.
24622
24623 @example
24624 $ gnatbind -n api
24625 $ gnatlink api -o api.jnk api.exp -mdll
24626 -Wl,--base-file,api.base
24627 @end example
24628
24629 @item
24630 @code{gnatdll} builds the new export table using the new base file and
24631 generates the DLL import library @code{libAPI.dll.a}.
24632
24633 @example
24634 $ dlltool --dllname api.dll --def api.def --base-file api.base \\
24635 --output-exp api.exp --output-lib libAPI.a
24636 @end example
24637
24638 @item
24639 Finally @code{gnatdll} builds the relocatable DLL using the final export
24640 table.
24641
24642 @example
24643 $ gnatbind -n api
24644 $ gnatlink api api.exp -o api.dll -mdll
24645 @end example
24646 @end itemize
24647 @anchor{gnat_ugn/platform_specific_information using-dlltool}@anchor{1fc}
24648 @subsubheading Using @code{dlltool}
24649
24650
24651 @code{dlltool} is the low-level tool used by @code{gnatdll} to build
24652 DLLs and static import libraries. This section summarizes the most
24653 common @code{dlltool} switches. The form of the @code{dlltool} command
24654 is
24655
24656 @quotation
24657
24658 @example
24659 $ dlltool [`switches`]
24660 @end example
24661 @end quotation
24662
24663 @code{dlltool} switches include:
24664
24665 @geindex --base-file (dlltool)
24666
24667
24668 @table @asis
24669
24670 @item @code{--base-file `basefile'}
24671
24672 Read the base file @code{basefile} generated by the linker. This switch
24673 is used to create a relocatable DLL.
24674 @end table
24675
24676 @geindex --def (dlltool)
24677
24678
24679 @table @asis
24680
24681 @item @code{--def `deffile'}
24682
24683 Read the definition file.
24684 @end table
24685
24686 @geindex --dllname (dlltool)
24687
24688
24689 @table @asis
24690
24691 @item @code{--dllname `name'}
24692
24693 Gives the name of the DLL. This switch is used to embed the name of the
24694 DLL in the static import library generated by @code{dlltool} with switch
24695 @code{--output-lib}.
24696 @end table
24697
24698 @geindex -k (dlltool)
24699
24700
24701 @table @asis
24702
24703 @item @code{-k}
24704
24705 Kill @code{@@@var{nn}} from exported names
24706 (@ref{1d6,,Windows Calling Conventions}
24707 for a discussion about @code{Stdcall}-style symbols).
24708 @end table
24709
24710 @geindex --help (dlltool)
24711
24712
24713 @table @asis
24714
24715 @item @code{--help}
24716
24717 Prints the @code{dlltool} switches with a concise description.
24718 @end table
24719
24720 @geindex --output-exp (dlltool)
24721
24722
24723 @table @asis
24724
24725 @item @code{--output-exp `exportfile'}
24726
24727 Generate an export file @code{exportfile}. The export file contains the
24728 export table (list of symbols in the DLL) and is used to create the DLL.
24729 @end table
24730
24731 @geindex --output-lib (dlltool)
24732
24733
24734 @table @asis
24735
24736 @item @code{--output-lib `libfile'}
24737
24738 Generate a static import library @code{libfile}.
24739 @end table
24740
24741 @geindex -v (dlltool)
24742
24743
24744 @table @asis
24745
24746 @item @code{-v}
24747
24748 Verbose mode.
24749 @end table
24750
24751 @geindex --as (dlltool)
24752
24753
24754 @table @asis
24755
24756 @item @code{--as `assembler-name'}
24757
24758 Use @code{assembler-name} as the assembler. The default is @code{as}.
24759 @end table
24760
24761 @node GNAT and Windows Resources,Using GNAT DLLs from Microsoft Visual Studio Applications,Creating a Spec for Ada DLLs,Mixed-Language Programming on Windows
24762 @anchor{gnat_ugn/platform_specific_information gnat-and-windows-resources}@anchor{1fd}@anchor{gnat_ugn/platform_specific_information id33}@anchor{1fe}
24763 @subsubsection GNAT and Windows Resources
24764
24765
24766 @geindex Resources
24767 @geindex windows
24768
24769 Resources are an easy way to add Windows specific objects to your
24770 application. The objects that can be added as resources include:
24771
24772
24773 @itemize *
24774
24775 @item
24776 menus
24777
24778 @item
24779 accelerators
24780
24781 @item
24782 dialog boxes
24783
24784 @item
24785 string tables
24786
24787 @item
24788 bitmaps
24789
24790 @item
24791 cursors
24792
24793 @item
24794 icons
24795
24796 @item
24797 fonts
24798
24799 @item
24800 version information
24801 @end itemize
24802
24803 For example, a version information resource can be defined as follow and
24804 embedded into an executable or DLL:
24805
24806 A version information resource can be used to embed information into an
24807 executable or a DLL. These information can be viewed using the file properties
24808 from the Windows Explorer. Here is an example of a version information
24809 resource:
24810
24811 @quotation
24812
24813 @example
24814 1 VERSIONINFO
24815 FILEVERSION 1,0,0,0
24816 PRODUCTVERSION 1,0,0,0
24817 BEGIN
24818 BLOCK "StringFileInfo"
24819 BEGIN
24820 BLOCK "080904E4"
24821 BEGIN
24822 VALUE "CompanyName", "My Company Name"
24823 VALUE "FileDescription", "My application"
24824 VALUE "FileVersion", "1.0"
24825 VALUE "InternalName", "my_app"
24826 VALUE "LegalCopyright", "My Name"
24827 VALUE "OriginalFilename", "my_app.exe"
24828 VALUE "ProductName", "My App"
24829 VALUE "ProductVersion", "1.0"
24830 END
24831 END
24832
24833 BLOCK "VarFileInfo"
24834 BEGIN
24835 VALUE "Translation", 0x809, 1252
24836 END
24837 END
24838 @end example
24839 @end quotation
24840
24841 The value @code{0809} (langID) is for the U.K English language and
24842 @code{04E4} (charsetID), which is equal to @code{1252} decimal, for
24843 multilingual.
24844
24845 This section explains how to build, compile and use resources. Note that this
24846 section does not cover all resource objects, for a complete description see
24847 the corresponding Microsoft documentation.
24848
24849 @menu
24850 * Building Resources::
24851 * Compiling Resources::
24852 * Using Resources::
24853
24854 @end menu
24855
24856 @node Building Resources,Compiling Resources,,GNAT and Windows Resources
24857 @anchor{gnat_ugn/platform_specific_information building-resources}@anchor{1ff}@anchor{gnat_ugn/platform_specific_information id34}@anchor{200}
24858 @subsubsection Building Resources
24859
24860
24861 @geindex Resources
24862 @geindex building
24863
24864 A resource file is an ASCII file. By convention resource files have an
24865 @code{.rc} extension.
24866 The easiest way to build a resource file is to use Microsoft tools
24867 such as @code{imagedit.exe} to build bitmaps, icons and cursors and
24868 @code{dlgedit.exe} to build dialogs.
24869 It is always possible to build an @code{.rc} file yourself by writing a
24870 resource script.
24871
24872 It is not our objective to explain how to write a resource file. A
24873 complete description of the resource script language can be found in the
24874 Microsoft documentation.
24875
24876 @node Compiling Resources,Using Resources,Building Resources,GNAT and Windows Resources
24877 @anchor{gnat_ugn/platform_specific_information compiling-resources}@anchor{201}@anchor{gnat_ugn/platform_specific_information id35}@anchor{202}
24878 @subsubsection Compiling Resources
24879
24880
24881 @geindex rc
24882
24883 @geindex windres
24884
24885 @geindex Resources
24886 @geindex compiling
24887
24888 This section describes how to build a GNAT-compatible (COFF) object file
24889 containing the resources. This is done using the Resource Compiler
24890 @code{windres} as follows:
24891
24892 @quotation
24893
24894 @example
24895 $ windres -i myres.rc -o myres.o
24896 @end example
24897 @end quotation
24898
24899 By default @code{windres} will run @code{gcc} to preprocess the @code{.rc}
24900 file. You can specify an alternate preprocessor (usually named
24901 @code{cpp.exe}) using the @code{windres} @code{--preprocessor}
24902 parameter. A list of all possible options may be obtained by entering
24903 the command @code{windres} @code{--help}.
24904
24905 It is also possible to use the Microsoft resource compiler @code{rc.exe}
24906 to produce a @code{.res} file (binary resource file). See the
24907 corresponding Microsoft documentation for further details. In this case
24908 you need to use @code{windres} to translate the @code{.res} file to a
24909 GNAT-compatible object file as follows:
24910
24911 @quotation
24912
24913 @example
24914 $ windres -i myres.res -o myres.o
24915 @end example
24916 @end quotation
24917
24918 @node Using Resources,,Compiling Resources,GNAT and Windows Resources
24919 @anchor{gnat_ugn/platform_specific_information id36}@anchor{203}@anchor{gnat_ugn/platform_specific_information using-resources}@anchor{204}
24920 @subsubsection Using Resources
24921
24922
24923 @geindex Resources
24924 @geindex using
24925
24926 To include the resource file in your program just add the
24927 GNAT-compatible object file for the resource(s) to the linker
24928 arguments. With @code{gnatmake} this is done by using the @code{-largs}
24929 option:
24930
24931 @quotation
24932
24933 @example
24934 $ gnatmake myprog -largs myres.o
24935 @end example
24936 @end quotation
24937
24938 @node Using GNAT DLLs from Microsoft Visual Studio Applications,Debugging a DLL,GNAT and Windows Resources,Mixed-Language Programming on Windows
24939 @anchor{gnat_ugn/platform_specific_information using-gnat-dll-from-msvs}@anchor{205}@anchor{gnat_ugn/platform_specific_information using-gnat-dlls-from-microsoft-visual-studio-applications}@anchor{206}
24940 @subsubsection Using GNAT DLLs from Microsoft Visual Studio Applications
24941
24942
24943 @geindex Microsoft Visual Studio
24944 @geindex use with GNAT DLLs
24945
24946 This section describes a common case of mixed GNAT/Microsoft Visual Studio
24947 application development, where the main program is developed using MSVS, and
24948 is linked with a DLL developed using GNAT. Such a mixed application should
24949 be developed following the general guidelines outlined above; below is the
24950 cookbook-style sequence of steps to follow:
24951
24952
24953 @enumerate
24954
24955 @item
24956 First develop and build the GNAT shared library using a library project
24957 (let’s assume the project is @code{mylib.gpr}, producing the library @code{libmylib.dll}):
24958 @end enumerate
24959
24960 @quotation
24961
24962 @example
24963 $ gprbuild -p mylib.gpr
24964 @end example
24965 @end quotation
24966
24967
24968 @enumerate 2
24969
24970 @item
24971 Produce a .def file for the symbols you need to interface with, either by
24972 hand or automatically with possibly some manual adjustments
24973 (see @ref{1e7,,Creating Definition File Automatically}):
24974 @end enumerate
24975
24976 @quotation
24977
24978 @example
24979 $ dlltool libmylib.dll -z libmylib.def --export-all-symbols
24980 @end example
24981 @end quotation
24982
24983
24984 @enumerate 3
24985
24986 @item
24987 Make sure that MSVS command-line tools are accessible on the path.
24988
24989 @item
24990 Create the Microsoft-style import library (see @ref{1ea,,MSVS-Style Import Library}):
24991 @end enumerate
24992
24993 @quotation
24994
24995 @example
24996 $ lib -machine:IX86 -def:libmylib.def -out:libmylib.lib
24997 @end example
24998 @end quotation
24999
25000 If you are using a 64-bit toolchain, the above becomes…
25001
25002 @quotation
25003
25004 @example
25005 $ lib -machine:X64 -def:libmylib.def -out:libmylib.lib
25006 @end example
25007 @end quotation
25008
25009
25010 @enumerate 5
25011
25012 @item
25013 Build the C main
25014 @end enumerate
25015
25016 @quotation
25017
25018 @example
25019 $ cl /O2 /MD main.c libmylib.lib
25020 @end example
25021 @end quotation
25022
25023
25024 @enumerate 6
25025
25026 @item
25027 Before running the executable, make sure you have set the PATH to the DLL,
25028 or copy the DLL into into the directory containing the .exe.
25029 @end enumerate
25030
25031 @node Debugging a DLL,Setting Stack Size from gnatlink,Using GNAT DLLs from Microsoft Visual Studio Applications,Mixed-Language Programming on Windows
25032 @anchor{gnat_ugn/platform_specific_information debugging-a-dll}@anchor{207}@anchor{gnat_ugn/platform_specific_information id37}@anchor{208}
25033 @subsubsection Debugging a DLL
25034
25035
25036 @geindex DLL debugging
25037
25038 Debugging a DLL is similar to debugging a standard program. But
25039 we have to deal with two different executable parts: the DLL and the
25040 program that uses it. We have the following four possibilities:
25041
25042
25043 @itemize *
25044
25045 @item
25046 The program and the DLL are built with GCC/GNAT.
25047
25048 @item
25049 The program is built with foreign tools and the DLL is built with
25050 GCC/GNAT.
25051
25052 @item
25053 The program is built with GCC/GNAT and the DLL is built with
25054 foreign tools.
25055 @end itemize
25056
25057 In this section we address only cases one and two above.
25058 There is no point in trying to debug
25059 a DLL with GNU/GDB, if there is no GDB-compatible debugging
25060 information in it. To do so you must use a debugger compatible with the
25061 tools suite used to build the DLL.
25062
25063 @menu
25064 * Program and DLL Both Built with GCC/GNAT::
25065 * Program Built with Foreign Tools and DLL Built with GCC/GNAT::
25066
25067 @end menu
25068
25069 @node Program and DLL Both Built with GCC/GNAT,Program Built with Foreign Tools and DLL Built with GCC/GNAT,,Debugging a DLL
25070 @anchor{gnat_ugn/platform_specific_information id38}@anchor{209}@anchor{gnat_ugn/platform_specific_information program-and-dll-both-built-with-gcc-gnat}@anchor{20a}
25071 @subsubsection Program and DLL Both Built with GCC/GNAT
25072
25073
25074 This is the simplest case. Both the DLL and the program have @code{GDB}
25075 compatible debugging information. It is then possible to break anywhere in
25076 the process. Let’s suppose here that the main procedure is named
25077 @code{ada_main} and that in the DLL there is an entry point named
25078 @code{ada_dll}.
25079
25080 The DLL (@ref{1e0,,Introduction to Dynamic Link Libraries (DLLs)}) and
25081 program must have been built with the debugging information (see GNAT -g
25082 switch). Here are the step-by-step instructions for debugging it:
25083
25084
25085 @itemize *
25086
25087 @item
25088 Launch @code{GDB} on the main program.
25089
25090 @example
25091 $ gdb -nw ada_main
25092 @end example
25093
25094 @item
25095 Start the program and stop at the beginning of the main procedure
25096
25097 @example
25098 (gdb) start
25099 @end example
25100
25101 This step is required to be able to set a breakpoint inside the DLL. As long
25102 as the program is not run, the DLL is not loaded. This has the
25103 consequence that the DLL debugging information is also not loaded, so it is not
25104 possible to set a breakpoint in the DLL.
25105
25106 @item
25107 Set a breakpoint inside the DLL
25108
25109 @example
25110 (gdb) break ada_dll
25111 (gdb) cont
25112 @end example
25113 @end itemize
25114
25115 At this stage a breakpoint is set inside the DLL. From there on
25116 you can use the standard approach to debug the whole program
25117 (@ref{14f,,Running and Debugging Ada Programs}).
25118
25119 @node Program Built with Foreign Tools and DLL Built with GCC/GNAT,,Program and DLL Both Built with GCC/GNAT,Debugging a DLL
25120 @anchor{gnat_ugn/platform_specific_information id39}@anchor{20b}@anchor{gnat_ugn/platform_specific_information program-built-with-foreign-tools-and-dll-built-with-gcc-gnat}@anchor{20c}
25121 @subsubsection Program Built with Foreign Tools and DLL Built with GCC/GNAT
25122
25123
25124 In this case things are slightly more complex because it is not possible to
25125 start the main program and then break at the beginning to load the DLL and the
25126 associated DLL debugging information. It is not possible to break at the
25127 beginning of the program because there is no @code{GDB} debugging information,
25128 and therefore there is no direct way of getting initial control. This
25129 section addresses this issue by describing some methods that can be used
25130 to break somewhere in the DLL to debug it.
25131
25132 First suppose that the main procedure is named @code{main} (this is for
25133 example some C code built with Microsoft Visual C) and that there is a
25134 DLL named @code{test.dll} containing an Ada entry point named
25135 @code{ada_dll}.
25136
25137 The DLL (see @ref{1e0,,Introduction to Dynamic Link Libraries (DLLs)}) must have
25138 been built with debugging information (see the GNAT @code{-g} option).
25139
25140 @subsubheading Debugging the DLL Directly
25141
25142
25143
25144 @itemize *
25145
25146 @item
25147 Find out the executable starting address
25148
25149 @example
25150 $ objdump --file-header main.exe
25151 @end example
25152
25153 The starting address is reported on the last line. For example:
25154
25155 @example
25156 main.exe: file format pei-i386
25157 architecture: i386, flags 0x0000010a:
25158 EXEC_P, HAS_DEBUG, D_PAGED
25159 start address 0x00401010
25160 @end example
25161
25162 @item
25163 Launch the debugger on the executable.
25164
25165 @example
25166 $ gdb main.exe
25167 @end example
25168
25169 @item
25170 Set a breakpoint at the starting address, and launch the program.
25171
25172 @example
25173 $ (gdb) break *0x00401010
25174 $ (gdb) run
25175 @end example
25176
25177 The program will stop at the given address.
25178
25179 @item
25180 Set a breakpoint on a DLL subroutine.
25181
25182 @example
25183 (gdb) break ada_dll.adb:45
25184 @end example
25185
25186 Or if you want to break using a symbol on the DLL, you need first to
25187 select the Ada language (language used by the DLL).
25188
25189 @example
25190 (gdb) set language ada
25191 (gdb) break ada_dll
25192 @end example
25193
25194 @item
25195 Continue the program.
25196
25197 @example
25198 (gdb) cont
25199 @end example
25200
25201 This will run the program until it reaches the breakpoint that has been
25202 set. From that point you can use the standard way to debug a program
25203 as described in (@ref{14f,,Running and Debugging Ada Programs}).
25204 @end itemize
25205
25206 It is also possible to debug the DLL by attaching to a running process.
25207
25208 @subsubheading Attaching to a Running Process
25209
25210
25211 @geindex DLL debugging
25212 @geindex attach to process
25213
25214 With @code{GDB} it is always possible to debug a running process by
25215 attaching to it. It is possible to debug a DLL this way. The limitation
25216 of this approach is that the DLL must run long enough to perform the
25217 attach operation. It may be useful for instance to insert a time wasting
25218 loop in the code of the DLL to meet this criterion.
25219
25220
25221 @itemize *
25222
25223 @item
25224 Launch the main program @code{main.exe}.
25225
25226 @example
25227 $ main
25228 @end example
25229
25230 @item
25231 Use the Windows `Task Manager' to find the process ID. Let’s say
25232 that the process PID for @code{main.exe} is 208.
25233
25234 @item
25235 Launch gdb.
25236
25237 @example
25238 $ gdb
25239 @end example
25240
25241 @item
25242 Attach to the running process to be debugged.
25243
25244 @example
25245 (gdb) attach 208
25246 @end example
25247
25248 @item
25249 Load the process debugging information.
25250
25251 @example
25252 (gdb) symbol-file main.exe
25253 @end example
25254
25255 @item
25256 Break somewhere in the DLL.
25257
25258 @example
25259 (gdb) break ada_dll
25260 @end example
25261
25262 @item
25263 Continue process execution.
25264
25265 @example
25266 (gdb) cont
25267 @end example
25268 @end itemize
25269
25270 This last step will resume the process execution, and stop at
25271 the breakpoint we have set. From there you can use the standard
25272 approach to debug a program as described in
25273 @ref{14f,,Running and Debugging Ada Programs}.
25274
25275 @node Setting Stack Size from gnatlink,Setting Heap Size from gnatlink,Debugging a DLL,Mixed-Language Programming on Windows
25276 @anchor{gnat_ugn/platform_specific_information id40}@anchor{20d}@anchor{gnat_ugn/platform_specific_information setting-stack-size-from-gnatlink}@anchor{129}
25277 @subsubsection Setting Stack Size from @code{gnatlink}
25278
25279
25280 It is possible to specify the program stack size at link time. On modern
25281 versions of Windows, starting with XP, this is mostly useful to set the size of
25282 the main stack (environment task). The other task stacks are set with pragma
25283 Storage_Size or with the `gnatbind -d' command.
25284
25285 Since older versions of Windows (2000, NT4, etc.) do not allow setting the
25286 reserve size of individual tasks, the link-time stack size applies to all
25287 tasks, and pragma Storage_Size has no effect.
25288 In particular, Stack Overflow checks are made against this
25289 link-time specified size.
25290
25291 This setting can be done with @code{gnatlink} using either of the following:
25292
25293
25294 @itemize *
25295
25296 @item
25297 @code{-Xlinker} linker option
25298
25299 @example
25300 $ gnatlink hello -Xlinker --stack=0x10000,0x1000
25301 @end example
25302
25303 This sets the stack reserve size to 0x10000 bytes and the stack commit
25304 size to 0x1000 bytes.
25305
25306 @item
25307 @code{-Wl} linker option
25308
25309 @example
25310 $ gnatlink hello -Wl,--stack=0x1000000
25311 @end example
25312
25313 This sets the stack reserve size to 0x1000000 bytes. Note that with
25314 @code{-Wl} option it is not possible to set the stack commit size
25315 because the comma is a separator for this option.
25316 @end itemize
25317
25318 @node Setting Heap Size from gnatlink,,Setting Stack Size from gnatlink,Mixed-Language Programming on Windows
25319 @anchor{gnat_ugn/platform_specific_information id41}@anchor{20e}@anchor{gnat_ugn/platform_specific_information setting-heap-size-from-gnatlink}@anchor{12a}
25320 @subsubsection Setting Heap Size from @code{gnatlink}
25321
25322
25323 Under Windows systems, it is possible to specify the program heap size from
25324 @code{gnatlink} using either of the following:
25325
25326
25327 @itemize *
25328
25329 @item
25330 @code{-Xlinker} linker option
25331
25332 @example
25333 $ gnatlink hello -Xlinker --heap=0x10000,0x1000
25334 @end example
25335
25336 This sets the heap reserve size to 0x10000 bytes and the heap commit
25337 size to 0x1000 bytes.
25338
25339 @item
25340 @code{-Wl} linker option
25341
25342 @example
25343 $ gnatlink hello -Wl,--heap=0x1000000
25344 @end example
25345
25346 This sets the heap reserve size to 0x1000000 bytes. Note that with
25347 @code{-Wl} option it is not possible to set the heap commit size
25348 because the comma is a separator for this option.
25349 @end itemize
25350
25351 @node Windows Specific Add-Ons,,Mixed-Language Programming on Windows,Microsoft Windows Topics
25352 @anchor{gnat_ugn/platform_specific_information win32-specific-addons}@anchor{20f}@anchor{gnat_ugn/platform_specific_information windows-specific-add-ons}@anchor{210}
25353 @subsection Windows Specific Add-Ons
25354
25355
25356 This section describes the Windows specific add-ons.
25357
25358 @menu
25359 * Win32Ada::
25360 * wPOSIX::
25361
25362 @end menu
25363
25364 @node Win32Ada,wPOSIX,,Windows Specific Add-Ons
25365 @anchor{gnat_ugn/platform_specific_information id42}@anchor{211}@anchor{gnat_ugn/platform_specific_information win32ada}@anchor{212}
25366 @subsubsection Win32Ada
25367
25368
25369 Win32Ada is a binding for the Microsoft Win32 API. This binding can be
25370 easily installed from the provided installer. To use the Win32Ada
25371 binding you need to use a project file, and adding a single with_clause
25372 will give you full access to the Win32Ada binding sources and ensure
25373 that the proper libraries are passed to the linker.
25374
25375 @quotation
25376
25377 @example
25378 with "win32ada";
25379 project P is
25380 for Sources use ...;
25381 end P;
25382 @end example
25383 @end quotation
25384
25385 To build the application you just need to call gprbuild for the
25386 application’s project, here p.gpr:
25387
25388 @quotation
25389
25390 @example
25391 gprbuild p.gpr
25392 @end example
25393 @end quotation
25394
25395 @node wPOSIX,,Win32Ada,Windows Specific Add-Ons
25396 @anchor{gnat_ugn/platform_specific_information id43}@anchor{213}@anchor{gnat_ugn/platform_specific_information wposix}@anchor{214}
25397 @subsubsection wPOSIX
25398
25399
25400 wPOSIX is a minimal POSIX binding whose goal is to help with building
25401 cross-platforms applications. This binding is not complete though, as
25402 the Win32 API does not provide the necessary support for all POSIX APIs.
25403
25404 To use the wPOSIX binding you need to use a project file, and adding
25405 a single with_clause will give you full access to the wPOSIX binding
25406 sources and ensure that the proper libraries are passed to the linker.
25407
25408 @quotation
25409
25410 @example
25411 with "wposix";
25412 project P is
25413 for Sources use ...;
25414 end P;
25415 @end example
25416 @end quotation
25417
25418 To build the application you just need to call gprbuild for the
25419 application’s project, here p.gpr:
25420
25421 @quotation
25422
25423 @example
25424 gprbuild p.gpr
25425 @end example
25426 @end quotation
25427
25428 @node Mac OS Topics,,Microsoft Windows Topics,Platform-Specific Information
25429 @anchor{gnat_ugn/platform_specific_information id44}@anchor{215}@anchor{gnat_ugn/platform_specific_information mac-os-topics}@anchor{216}
25430 @section Mac OS Topics
25431
25432
25433 @geindex OS X
25434
25435 This section describes topics that are specific to Apple’s OS X
25436 platform.
25437
25438 @menu
25439 * Codesigning the Debugger::
25440
25441 @end menu
25442
25443 @node Codesigning the Debugger,,,Mac OS Topics
25444 @anchor{gnat_ugn/platform_specific_information codesigning-the-debugger}@anchor{217}
25445 @subsection Codesigning the Debugger
25446
25447
25448 The Darwin Kernel requires the debugger to have special permissions
25449 before it is allowed to control other processes. These permissions
25450 are granted by codesigning the GDB executable. Without these
25451 permissions, the debugger will report error messages such as:
25452
25453 @example
25454 Starting program: /x/y/foo
25455 Unable to find Mach task port for process-id 28885: (os/kern) failure (0x5).
25456 (please check gdb is codesigned - see taskgated(8))
25457 @end example
25458
25459 Codesigning requires a certificate. The following procedure explains
25460 how to create one:
25461
25462
25463 @itemize *
25464
25465 @item
25466 Start the Keychain Access application (in
25467 /Applications/Utilities/Keychain Access.app)
25468
25469 @item
25470 Select the Keychain Access -> Certificate Assistant ->
25471 Create a Certificate… menu
25472
25473 @item
25474 Then:
25475
25476
25477 @itemize *
25478
25479 @item
25480 Choose a name for the new certificate (this procedure will use
25481 “gdb-cert” as an example)
25482
25483 @item
25484 Set “Identity Type” to “Self Signed Root”
25485
25486 @item
25487 Set “Certificate Type” to “Code Signing”
25488
25489 @item
25490 Activate the “Let me override defaults” option
25491 @end itemize
25492
25493 @item
25494 Click several times on “Continue” until the “Specify a Location
25495 For The Certificate” screen appears, then set “Keychain” to “System”
25496
25497 @item
25498 Click on “Continue” until the certificate is created
25499
25500 @item
25501 Finally, in the view, double-click on the new certificate,
25502 and set “When using this certificate” to “Always Trust”
25503
25504 @item
25505 Exit the Keychain Access application and restart the computer
25506 (this is unfortunately required)
25507 @end itemize
25508
25509 Once a certificate has been created, the debugger can be codesigned
25510 as follow. In a Terminal, run the following command:
25511
25512 @quotation
25513
25514 @example
25515 $ codesign -f -s "gdb-cert" <gnat_install_prefix>/bin/gdb
25516 @end example
25517 @end quotation
25518
25519 where “gdb-cert” should be replaced by the actual certificate
25520 name chosen above, and <gnat_install_prefix> should be replaced by
25521 the location where you installed GNAT. Also, be sure that users are
25522 in the Unix group @code{_developer}.
25523
25524 @node Example of Binder Output File,Elaboration Order Handling in GNAT,Platform-Specific Information,Top
25525 @anchor{gnat_ugn/example_of_binder_output doc}@anchor{218}@anchor{gnat_ugn/example_of_binder_output example-of-binder-output-file}@anchor{e}@anchor{gnat_ugn/example_of_binder_output id1}@anchor{219}
25526 @chapter Example of Binder Output File
25527
25528
25529 @geindex Binder output (example)
25530
25531 This Appendix displays the source code for the output file
25532 generated by `gnatbind' for a simple ‘Hello World’ program.
25533 Comments have been added for clarification purposes.
25534
25535 @example
25536 -- The package is called Ada_Main unless this name is actually used
25537 -- as a unit name in the partition, in which case some other unique
25538 -- name is used.
25539
25540 pragma Ada_95;
25541 with System;
25542 package ada_main is
25543 pragma Warnings (Off);
25544
25545 -- The main program saves the parameters (argument count,
25546 -- argument values, environment pointer) in global variables
25547 -- for later access by other units including
25548 -- Ada.Command_Line.
25549
25550 gnat_argc : Integer;
25551 gnat_argv : System.Address;
25552 gnat_envp : System.Address;
25553
25554 -- The actual variables are stored in a library routine. This
25555 -- is useful for some shared library situations, where there
25556 -- are problems if variables are not in the library.
25557
25558 pragma Import (C, gnat_argc);
25559 pragma Import (C, gnat_argv);
25560 pragma Import (C, gnat_envp);
25561
25562 -- The exit status is similarly an external location
25563
25564 gnat_exit_status : Integer;
25565 pragma Import (C, gnat_exit_status);
25566
25567 GNAT_Version : constant String :=
25568 "GNAT Version: Pro 7.4.0w (20141119-49)" & ASCII.NUL;
25569 pragma Export (C, GNAT_Version, "__gnat_version");
25570
25571 Ada_Main_Program_Name : constant String := "_ada_hello" & ASCII.NUL;
25572 pragma Export (C, Ada_Main_Program_Name, "__gnat_ada_main_program_name");
25573
25574 -- This is the generated adainit routine that performs
25575 -- initialization at the start of execution. In the case
25576 -- where Ada is the main program, this main program makes
25577 -- a call to adainit at program startup.
25578
25579 procedure adainit;
25580 pragma Export (C, adainit, "adainit");
25581
25582 -- This is the generated adafinal routine that performs
25583 -- finalization at the end of execution. In the case where
25584 -- Ada is the main program, this main program makes a call
25585 -- to adafinal at program termination.
25586
25587 procedure adafinal;
25588 pragma Export (C, adafinal, "adafinal");
25589
25590 -- This routine is called at the start of execution. It is
25591 -- a dummy routine that is used by the debugger to breakpoint
25592 -- at the start of execution.
25593
25594 -- This is the actual generated main program (it would be
25595 -- suppressed if the no main program switch were used). As
25596 -- required by standard system conventions, this program has
25597 -- the external name main.
25598
25599 function main
25600 (argc : Integer;
25601 argv : System.Address;
25602 envp : System.Address)
25603 return Integer;
25604 pragma Export (C, main, "main");
25605
25606 -- The following set of constants give the version
25607 -- identification values for every unit in the bound
25608 -- partition. This identification is computed from all
25609 -- dependent semantic units, and corresponds to the
25610 -- string that would be returned by use of the
25611 -- Body_Version or Version attributes.
25612
25613 -- The following Export pragmas export the version numbers
25614 -- with symbolic names ending in B (for body) or S
25615 -- (for spec) so that they can be located in a link. The
25616 -- information provided here is sufficient to track down
25617 -- the exact versions of units used in a given build.
25618
25619 type Version_32 is mod 2 ** 32;
25620 u00001 : constant Version_32 := 16#8ad6e54a#;
25621 pragma Export (C, u00001, "helloB");
25622 u00002 : constant Version_32 := 16#fbff4c67#;
25623 pragma Export (C, u00002, "system__standard_libraryB");
25624 u00003 : constant Version_32 := 16#1ec6fd90#;
25625 pragma Export (C, u00003, "system__standard_libraryS");
25626 u00004 : constant Version_32 := 16#3ffc8e18#;
25627 pragma Export (C, u00004, "adaS");
25628 u00005 : constant Version_32 := 16#28f088c2#;
25629 pragma Export (C, u00005, "ada__text_ioB");
25630 u00006 : constant Version_32 := 16#f372c8ac#;
25631 pragma Export (C, u00006, "ada__text_ioS");
25632 u00007 : constant Version_32 := 16#2c143749#;
25633 pragma Export (C, u00007, "ada__exceptionsB");
25634 u00008 : constant Version_32 := 16#f4f0cce8#;
25635 pragma Export (C, u00008, "ada__exceptionsS");
25636 u00009 : constant Version_32 := 16#a46739c0#;
25637 pragma Export (C, u00009, "ada__exceptions__last_chance_handlerB");
25638 u00010 : constant Version_32 := 16#3aac8c92#;
25639 pragma Export (C, u00010, "ada__exceptions__last_chance_handlerS");
25640 u00011 : constant Version_32 := 16#1d274481#;
25641 pragma Export (C, u00011, "systemS");
25642 u00012 : constant Version_32 := 16#a207fefe#;
25643 pragma Export (C, u00012, "system__soft_linksB");
25644 u00013 : constant Version_32 := 16#467d9556#;
25645 pragma Export (C, u00013, "system__soft_linksS");
25646 u00014 : constant Version_32 := 16#b01dad17#;
25647 pragma Export (C, u00014, "system__parametersB");
25648 u00015 : constant Version_32 := 16#630d49fe#;
25649 pragma Export (C, u00015, "system__parametersS");
25650 u00016 : constant Version_32 := 16#b19b6653#;
25651 pragma Export (C, u00016, "system__secondary_stackB");
25652 u00017 : constant Version_32 := 16#b6468be8#;
25653 pragma Export (C, u00017, "system__secondary_stackS");
25654 u00018 : constant Version_32 := 16#39a03df9#;
25655 pragma Export (C, u00018, "system__storage_elementsB");
25656 u00019 : constant Version_32 := 16#30e40e85#;
25657 pragma Export (C, u00019, "system__storage_elementsS");
25658 u00020 : constant Version_32 := 16#41837d1e#;
25659 pragma Export (C, u00020, "system__stack_checkingB");
25660 u00021 : constant Version_32 := 16#93982f69#;
25661 pragma Export (C, u00021, "system__stack_checkingS");
25662 u00022 : constant Version_32 := 16#393398c1#;
25663 pragma Export (C, u00022, "system__exception_tableB");
25664 u00023 : constant Version_32 := 16#b33e2294#;
25665 pragma Export (C, u00023, "system__exception_tableS");
25666 u00024 : constant Version_32 := 16#ce4af020#;
25667 pragma Export (C, u00024, "system__exceptionsB");
25668 u00025 : constant Version_32 := 16#75442977#;
25669 pragma Export (C, u00025, "system__exceptionsS");
25670 u00026 : constant Version_32 := 16#37d758f1#;
25671 pragma Export (C, u00026, "system__exceptions__machineS");
25672 u00027 : constant Version_32 := 16#b895431d#;
25673 pragma Export (C, u00027, "system__exceptions_debugB");
25674 u00028 : constant Version_32 := 16#aec55d3f#;
25675 pragma Export (C, u00028, "system__exceptions_debugS");
25676 u00029 : constant Version_32 := 16#570325c8#;
25677 pragma Export (C, u00029, "system__img_intB");
25678 u00030 : constant Version_32 := 16#1ffca443#;
25679 pragma Export (C, u00030, "system__img_intS");
25680 u00031 : constant Version_32 := 16#b98c3e16#;
25681 pragma Export (C, u00031, "system__tracebackB");
25682 u00032 : constant Version_32 := 16#831a9d5a#;
25683 pragma Export (C, u00032, "system__tracebackS");
25684 u00033 : constant Version_32 := 16#9ed49525#;
25685 pragma Export (C, u00033, "system__traceback_entriesB");
25686 u00034 : constant Version_32 := 16#1d7cb2f1#;
25687 pragma Export (C, u00034, "system__traceback_entriesS");
25688 u00035 : constant Version_32 := 16#8c33a517#;
25689 pragma Export (C, u00035, "system__wch_conB");
25690 u00036 : constant Version_32 := 16#065a6653#;
25691 pragma Export (C, u00036, "system__wch_conS");
25692 u00037 : constant Version_32 := 16#9721e840#;
25693 pragma Export (C, u00037, "system__wch_stwB");
25694 u00038 : constant Version_32 := 16#2b4b4a52#;
25695 pragma Export (C, u00038, "system__wch_stwS");
25696 u00039 : constant Version_32 := 16#92b797cb#;
25697 pragma Export (C, u00039, "system__wch_cnvB");
25698 u00040 : constant Version_32 := 16#09eddca0#;
25699 pragma Export (C, u00040, "system__wch_cnvS");
25700 u00041 : constant Version_32 := 16#6033a23f#;
25701 pragma Export (C, u00041, "interfacesS");
25702 u00042 : constant Version_32 := 16#ece6fdb6#;
25703 pragma Export (C, u00042, "system__wch_jisB");
25704 u00043 : constant Version_32 := 16#899dc581#;
25705 pragma Export (C, u00043, "system__wch_jisS");
25706 u00044 : constant Version_32 := 16#10558b11#;
25707 pragma Export (C, u00044, "ada__streamsB");
25708 u00045 : constant Version_32 := 16#2e6701ab#;
25709 pragma Export (C, u00045, "ada__streamsS");
25710 u00046 : constant Version_32 := 16#db5c917c#;
25711 pragma Export (C, u00046, "ada__io_exceptionsS");
25712 u00047 : constant Version_32 := 16#12c8cd7d#;
25713 pragma Export (C, u00047, "ada__tagsB");
25714 u00048 : constant Version_32 := 16#ce72c228#;
25715 pragma Export (C, u00048, "ada__tagsS");
25716 u00049 : constant Version_32 := 16#c3335bfd#;
25717 pragma Export (C, u00049, "system__htableB");
25718 u00050 : constant Version_32 := 16#99e5f76b#;
25719 pragma Export (C, u00050, "system__htableS");
25720 u00051 : constant Version_32 := 16#089f5cd0#;
25721 pragma Export (C, u00051, "system__string_hashB");
25722 u00052 : constant Version_32 := 16#3bbb9c15#;
25723 pragma Export (C, u00052, "system__string_hashS");
25724 u00053 : constant Version_32 := 16#807fe041#;
25725 pragma Export (C, u00053, "system__unsigned_typesS");
25726 u00054 : constant Version_32 := 16#d27be59e#;
25727 pragma Export (C, u00054, "system__val_lluB");
25728 u00055 : constant Version_32 := 16#fa8db733#;
25729 pragma Export (C, u00055, "system__val_lluS");
25730 u00056 : constant Version_32 := 16#27b600b2#;
25731 pragma Export (C, u00056, "system__val_utilB");
25732 u00057 : constant Version_32 := 16#b187f27f#;
25733 pragma Export (C, u00057, "system__val_utilS");
25734 u00058 : constant Version_32 := 16#d1060688#;
25735 pragma Export (C, u00058, "system__case_utilB");
25736 u00059 : constant Version_32 := 16#392e2d56#;
25737 pragma Export (C, u00059, "system__case_utilS");
25738 u00060 : constant Version_32 := 16#84a27f0d#;
25739 pragma Export (C, u00060, "interfaces__c_streamsB");
25740 u00061 : constant Version_32 := 16#8bb5f2c0#;
25741 pragma Export (C, u00061, "interfaces__c_streamsS");
25742 u00062 : constant Version_32 := 16#6db6928f#;
25743 pragma Export (C, u00062, "system__crtlS");
25744 u00063 : constant Version_32 := 16#4e6a342b#;
25745 pragma Export (C, u00063, "system__file_ioB");
25746 u00064 : constant Version_32 := 16#ba56a5e4#;
25747 pragma Export (C, u00064, "system__file_ioS");
25748 u00065 : constant Version_32 := 16#b7ab275c#;
25749 pragma Export (C, u00065, "ada__finalizationB");
25750 u00066 : constant Version_32 := 16#19f764ca#;
25751 pragma Export (C, u00066, "ada__finalizationS");
25752 u00067 : constant Version_32 := 16#95817ed8#;
25753 pragma Export (C, u00067, "system__finalization_rootB");
25754 u00068 : constant Version_32 := 16#52d53711#;
25755 pragma Export (C, u00068, "system__finalization_rootS");
25756 u00069 : constant Version_32 := 16#769e25e6#;
25757 pragma Export (C, u00069, "interfaces__cB");
25758 u00070 : constant Version_32 := 16#4a38bedb#;
25759 pragma Export (C, u00070, "interfaces__cS");
25760 u00071 : constant Version_32 := 16#07e6ee66#;
25761 pragma Export (C, u00071, "system__os_libB");
25762 u00072 : constant Version_32 := 16#d7b69782#;
25763 pragma Export (C, u00072, "system__os_libS");
25764 u00073 : constant Version_32 := 16#1a817b8e#;
25765 pragma Export (C, u00073, "system__stringsB");
25766 u00074 : constant Version_32 := 16#639855e7#;
25767 pragma Export (C, u00074, "system__stringsS");
25768 u00075 : constant Version_32 := 16#e0b8de29#;
25769 pragma Export (C, u00075, "system__file_control_blockS");
25770 u00076 : constant Version_32 := 16#b5b2aca1#;
25771 pragma Export (C, u00076, "system__finalization_mastersB");
25772 u00077 : constant Version_32 := 16#69316dc1#;
25773 pragma Export (C, u00077, "system__finalization_mastersS");
25774 u00078 : constant Version_32 := 16#57a37a42#;
25775 pragma Export (C, u00078, "system__address_imageB");
25776 u00079 : constant Version_32 := 16#bccbd9bb#;
25777 pragma Export (C, u00079, "system__address_imageS");
25778 u00080 : constant Version_32 := 16#7268f812#;
25779 pragma Export (C, u00080, "system__img_boolB");
25780 u00081 : constant Version_32 := 16#e8fe356a#;
25781 pragma Export (C, u00081, "system__img_boolS");
25782 u00082 : constant Version_32 := 16#d7aac20c#;
25783 pragma Export (C, u00082, "system__ioB");
25784 u00083 : constant Version_32 := 16#8365b3ce#;
25785 pragma Export (C, u00083, "system__ioS");
25786 u00084 : constant Version_32 := 16#6d4d969a#;
25787 pragma Export (C, u00084, "system__storage_poolsB");
25788 u00085 : constant Version_32 := 16#e87cc305#;
25789 pragma Export (C, u00085, "system__storage_poolsS");
25790 u00086 : constant Version_32 := 16#e34550ca#;
25791 pragma Export (C, u00086, "system__pool_globalB");
25792 u00087 : constant Version_32 := 16#c88d2d16#;
25793 pragma Export (C, u00087, "system__pool_globalS");
25794 u00088 : constant Version_32 := 16#9d39c675#;
25795 pragma Export (C, u00088, "system__memoryB");
25796 u00089 : constant Version_32 := 16#445a22b5#;
25797 pragma Export (C, u00089, "system__memoryS");
25798 u00090 : constant Version_32 := 16#6a859064#;
25799 pragma Export (C, u00090, "system__storage_pools__subpoolsB");
25800 u00091 : constant Version_32 := 16#e3b008dc#;
25801 pragma Export (C, u00091, "system__storage_pools__subpoolsS");
25802 u00092 : constant Version_32 := 16#63f11652#;
25803 pragma Export (C, u00092, "system__storage_pools__subpools__finalizationB");
25804 u00093 : constant Version_32 := 16#fe2f4b3a#;
25805 pragma Export (C, u00093, "system__storage_pools__subpools__finalizationS");
25806
25807 -- BEGIN ELABORATION ORDER
25808 -- ada%s
25809 -- interfaces%s
25810 -- system%s
25811 -- system.case_util%s
25812 -- system.case_util%b
25813 -- system.htable%s
25814 -- system.img_bool%s
25815 -- system.img_bool%b
25816 -- system.img_int%s
25817 -- system.img_int%b
25818 -- system.io%s
25819 -- system.io%b
25820 -- system.parameters%s
25821 -- system.parameters%b
25822 -- system.crtl%s
25823 -- interfaces.c_streams%s
25824 -- interfaces.c_streams%b
25825 -- system.standard_library%s
25826 -- system.exceptions_debug%s
25827 -- system.exceptions_debug%b
25828 -- system.storage_elements%s
25829 -- system.storage_elements%b
25830 -- system.stack_checking%s
25831 -- system.stack_checking%b
25832 -- system.string_hash%s
25833 -- system.string_hash%b
25834 -- system.htable%b
25835 -- system.strings%s
25836 -- system.strings%b
25837 -- system.os_lib%s
25838 -- system.traceback_entries%s
25839 -- system.traceback_entries%b
25840 -- ada.exceptions%s
25841 -- system.soft_links%s
25842 -- system.unsigned_types%s
25843 -- system.val_llu%s
25844 -- system.val_util%s
25845 -- system.val_util%b
25846 -- system.val_llu%b
25847 -- system.wch_con%s
25848 -- system.wch_con%b
25849 -- system.wch_cnv%s
25850 -- system.wch_jis%s
25851 -- system.wch_jis%b
25852 -- system.wch_cnv%b
25853 -- system.wch_stw%s
25854 -- system.wch_stw%b
25855 -- ada.exceptions.last_chance_handler%s
25856 -- ada.exceptions.last_chance_handler%b
25857 -- system.address_image%s
25858 -- system.exception_table%s
25859 -- system.exception_table%b
25860 -- ada.io_exceptions%s
25861 -- ada.tags%s
25862 -- ada.streams%s
25863 -- ada.streams%b
25864 -- interfaces.c%s
25865 -- system.exceptions%s
25866 -- system.exceptions%b
25867 -- system.exceptions.machine%s
25868 -- system.finalization_root%s
25869 -- system.finalization_root%b
25870 -- ada.finalization%s
25871 -- ada.finalization%b
25872 -- system.storage_pools%s
25873 -- system.storage_pools%b
25874 -- system.finalization_masters%s
25875 -- system.storage_pools.subpools%s
25876 -- system.storage_pools.subpools.finalization%s
25877 -- system.storage_pools.subpools.finalization%b
25878 -- system.memory%s
25879 -- system.memory%b
25880 -- system.standard_library%b
25881 -- system.pool_global%s
25882 -- system.pool_global%b
25883 -- system.file_control_block%s
25884 -- system.file_io%s
25885 -- system.secondary_stack%s
25886 -- system.file_io%b
25887 -- system.storage_pools.subpools%b
25888 -- system.finalization_masters%b
25889 -- interfaces.c%b
25890 -- ada.tags%b
25891 -- system.soft_links%b
25892 -- system.os_lib%b
25893 -- system.secondary_stack%b
25894 -- system.address_image%b
25895 -- system.traceback%s
25896 -- ada.exceptions%b
25897 -- system.traceback%b
25898 -- ada.text_io%s
25899 -- ada.text_io%b
25900 -- hello%b
25901 -- END ELABORATION ORDER
25902
25903 end ada_main;
25904 @end example
25905
25906 @example
25907 pragma Ada_95;
25908 -- The following source file name pragmas allow the generated file
25909 -- names to be unique for different main programs. They are needed
25910 -- since the package name will always be Ada_Main.
25911
25912 pragma Source_File_Name (ada_main, Spec_File_Name => "b~hello.ads");
25913 pragma Source_File_Name (ada_main, Body_File_Name => "b~hello.adb");
25914
25915 pragma Suppress (Overflow_Check);
25916 with Ada.Exceptions;
25917
25918 -- Generated package body for Ada_Main starts here
25919
25920 package body ada_main is
25921 pragma Warnings (Off);
25922
25923 -- These values are reference counter associated to units which have
25924 -- been elaborated. It is also used to avoid elaborating the
25925 -- same unit twice.
25926
25927 E72 : Short_Integer; pragma Import (Ada, E72, "system__os_lib_E");
25928 E13 : Short_Integer; pragma Import (Ada, E13, "system__soft_links_E");
25929 E23 : Short_Integer; pragma Import (Ada, E23, "system__exception_table_E");
25930 E46 : Short_Integer; pragma Import (Ada, E46, "ada__io_exceptions_E");
25931 E48 : Short_Integer; pragma Import (Ada, E48, "ada__tags_E");
25932 E45 : Short_Integer; pragma Import (Ada, E45, "ada__streams_E");
25933 E70 : Short_Integer; pragma Import (Ada, E70, "interfaces__c_E");
25934 E25 : Short_Integer; pragma Import (Ada, E25, "system__exceptions_E");
25935 E68 : Short_Integer; pragma Import (Ada, E68, "system__finalization_root_E");
25936 E66 : Short_Integer; pragma Import (Ada, E66, "ada__finalization_E");
25937 E85 : Short_Integer; pragma Import (Ada, E85, "system__storage_pools_E");
25938 E77 : Short_Integer; pragma Import (Ada, E77, "system__finalization_masters_E");
25939 E91 : Short_Integer; pragma Import (Ada, E91, "system__storage_pools__subpools_E");
25940 E87 : Short_Integer; pragma Import (Ada, E87, "system__pool_global_E");
25941 E75 : Short_Integer; pragma Import (Ada, E75, "system__file_control_block_E");
25942 E64 : Short_Integer; pragma Import (Ada, E64, "system__file_io_E");
25943 E17 : Short_Integer; pragma Import (Ada, E17, "system__secondary_stack_E");
25944 E06 : Short_Integer; pragma Import (Ada, E06, "ada__text_io_E");
25945
25946 Local_Priority_Specific_Dispatching : constant String := "";
25947 Local_Interrupt_States : constant String := "";
25948
25949 Is_Elaborated : Boolean := False;
25950
25951 procedure finalize_library is
25952 begin
25953 E06 := E06 - 1;
25954 declare
25955 procedure F1;
25956 pragma Import (Ada, F1, "ada__text_io__finalize_spec");
25957 begin
25958 F1;
25959 end;
25960 E77 := E77 - 1;
25961 E91 := E91 - 1;
25962 declare
25963 procedure F2;
25964 pragma Import (Ada, F2, "system__file_io__finalize_body");
25965 begin
25966 E64 := E64 - 1;
25967 F2;
25968 end;
25969 declare
25970 procedure F3;
25971 pragma Import (Ada, F3, "system__file_control_block__finalize_spec");
25972 begin
25973 E75 := E75 - 1;
25974 F3;
25975 end;
25976 E87 := E87 - 1;
25977 declare
25978 procedure F4;
25979 pragma Import (Ada, F4, "system__pool_global__finalize_spec");
25980 begin
25981 F4;
25982 end;
25983 declare
25984 procedure F5;
25985 pragma Import (Ada, F5, "system__storage_pools__subpools__finalize_spec");
25986 begin
25987 F5;
25988 end;
25989 declare
25990 procedure F6;
25991 pragma Import (Ada, F6, "system__finalization_masters__finalize_spec");
25992 begin
25993 F6;
25994 end;
25995 declare
25996 procedure Reraise_Library_Exception_If_Any;
25997 pragma Import (Ada, Reraise_Library_Exception_If_Any, "__gnat_reraise_library_exception_if_any");
25998 begin
25999 Reraise_Library_Exception_If_Any;
26000 end;
26001 end finalize_library;
26002
26003 -------------
26004 -- adainit --
26005 -------------
26006
26007 procedure adainit is
26008
26009 Main_Priority : Integer;
26010 pragma Import (C, Main_Priority, "__gl_main_priority");
26011 Time_Slice_Value : Integer;
26012 pragma Import (C, Time_Slice_Value, "__gl_time_slice_val");
26013 WC_Encoding : Character;
26014 pragma Import (C, WC_Encoding, "__gl_wc_encoding");
26015 Locking_Policy : Character;
26016 pragma Import (C, Locking_Policy, "__gl_locking_policy");
26017 Queuing_Policy : Character;
26018 pragma Import (C, Queuing_Policy, "__gl_queuing_policy");
26019 Task_Dispatching_Policy : Character;
26020 pragma Import (C, Task_Dispatching_Policy, "__gl_task_dispatching_policy");
26021 Priority_Specific_Dispatching : System.Address;
26022 pragma Import (C, Priority_Specific_Dispatching, "__gl_priority_specific_dispatching");
26023 Num_Specific_Dispatching : Integer;
26024 pragma Import (C, Num_Specific_Dispatching, "__gl_num_specific_dispatching");
26025 Main_CPU : Integer;
26026 pragma Import (C, Main_CPU, "__gl_main_cpu");
26027 Interrupt_States : System.Address;
26028 pragma Import (C, Interrupt_States, "__gl_interrupt_states");
26029 Num_Interrupt_States : Integer;
26030 pragma Import (C, Num_Interrupt_States, "__gl_num_interrupt_states");
26031 Unreserve_All_Interrupts : Integer;
26032 pragma Import (C, Unreserve_All_Interrupts, "__gl_unreserve_all_interrupts");
26033 Detect_Blocking : Integer;
26034 pragma Import (C, Detect_Blocking, "__gl_detect_blocking");
26035 Default_Stack_Size : Integer;
26036 pragma Import (C, Default_Stack_Size, "__gl_default_stack_size");
26037 Leap_Seconds_Support : Integer;
26038 pragma Import (C, Leap_Seconds_Support, "__gl_leap_seconds_support");
26039
26040 procedure Runtime_Initialize;
26041 pragma Import (C, Runtime_Initialize, "__gnat_runtime_initialize");
26042
26043 Finalize_Library_Objects : No_Param_Proc;
26044 pragma Import (C, Finalize_Library_Objects, "__gnat_finalize_library_objects");
26045
26046 -- Start of processing for adainit
26047
26048 begin
26049
26050 -- Record various information for this partition. The values
26051 -- are derived by the binder from information stored in the ali
26052 -- files by the compiler.
26053
26054 if Is_Elaborated then
26055 return;
26056 end if;
26057 Is_Elaborated := True;
26058 Main_Priority := -1;
26059 Time_Slice_Value := -1;
26060 WC_Encoding := 'b';
26061 Locking_Policy := ' ';
26062 Queuing_Policy := ' ';
26063 Task_Dispatching_Policy := ' ';
26064 Priority_Specific_Dispatching :=
26065 Local_Priority_Specific_Dispatching'Address;
26066 Num_Specific_Dispatching := 0;
26067 Main_CPU := -1;
26068 Interrupt_States := Local_Interrupt_States'Address;
26069 Num_Interrupt_States := 0;
26070 Unreserve_All_Interrupts := 0;
26071 Detect_Blocking := 0;
26072 Default_Stack_Size := -1;
26073 Leap_Seconds_Support := 0;
26074
26075 Runtime_Initialize;
26076
26077 Finalize_Library_Objects := finalize_library'access;
26078
26079 -- Now we have the elaboration calls for all units in the partition.
26080 -- The Elab_Spec and Elab_Body attributes generate references to the
26081 -- implicit elaboration procedures generated by the compiler for
26082 -- each unit that requires elaboration. Increment a counter of
26083 -- reference for each unit.
26084
26085 System.Soft_Links'Elab_Spec;
26086 System.Exception_Table'Elab_Body;
26087 E23 := E23 + 1;
26088 Ada.Io_Exceptions'Elab_Spec;
26089 E46 := E46 + 1;
26090 Ada.Tags'Elab_Spec;
26091 Ada.Streams'Elab_Spec;
26092 E45 := E45 + 1;
26093 Interfaces.C'Elab_Spec;
26094 System.Exceptions'Elab_Spec;
26095 E25 := E25 + 1;
26096 System.Finalization_Root'Elab_Spec;
26097 E68 := E68 + 1;
26098 Ada.Finalization'Elab_Spec;
26099 E66 := E66 + 1;
26100 System.Storage_Pools'Elab_Spec;
26101 E85 := E85 + 1;
26102 System.Finalization_Masters'Elab_Spec;
26103 System.Storage_Pools.Subpools'Elab_Spec;
26104 System.Pool_Global'Elab_Spec;
26105 E87 := E87 + 1;
26106 System.File_Control_Block'Elab_Spec;
26107 E75 := E75 + 1;
26108 System.File_Io'Elab_Body;
26109 E64 := E64 + 1;
26110 E91 := E91 + 1;
26111 System.Finalization_Masters'Elab_Body;
26112 E77 := E77 + 1;
26113 E70 := E70 + 1;
26114 Ada.Tags'Elab_Body;
26115 E48 := E48 + 1;
26116 System.Soft_Links'Elab_Body;
26117 E13 := E13 + 1;
26118 System.Os_Lib'Elab_Body;
26119 E72 := E72 + 1;
26120 System.Secondary_Stack'Elab_Body;
26121 E17 := E17 + 1;
26122 Ada.Text_Io'Elab_Spec;
26123 Ada.Text_Io'Elab_Body;
26124 E06 := E06 + 1;
26125 end adainit;
26126
26127 --------------
26128 -- adafinal --
26129 --------------
26130
26131 procedure adafinal is
26132 procedure s_stalib_adafinal;
26133 pragma Import (C, s_stalib_adafinal, "system__standard_library__adafinal");
26134
26135 procedure Runtime_Finalize;
26136 pragma Import (C, Runtime_Finalize, "__gnat_runtime_finalize");
26137
26138 begin
26139 if not Is_Elaborated then
26140 return;
26141 end if;
26142 Is_Elaborated := False;
26143 Runtime_Finalize;
26144 s_stalib_adafinal;
26145 end adafinal;
26146
26147 -- We get to the main program of the partition by using
26148 -- pragma Import because if we try to with the unit and
26149 -- call it Ada style, then not only do we waste time
26150 -- recompiling it, but also, we don't really know the right
26151 -- switches (e.g.@@: identifier character set) to be used
26152 -- to compile it.
26153
26154 procedure Ada_Main_Program;
26155 pragma Import (Ada, Ada_Main_Program, "_ada_hello");
26156
26157 ----------
26158 -- main --
26159 ----------
26160
26161 -- main is actually a function, as in the ANSI C standard,
26162 -- defined to return the exit status. The three parameters
26163 -- are the argument count, argument values and environment
26164 -- pointer.
26165
26166 function main
26167 (argc : Integer;
26168 argv : System.Address;
26169 envp : System.Address)
26170 return Integer
26171 is
26172 -- The initialize routine performs low level system
26173 -- initialization using a standard library routine which
26174 -- sets up signal handling and performs any other
26175 -- required setup. The routine can be found in file
26176 -- a-init.c.
26177
26178 procedure initialize;
26179 pragma Import (C, initialize, "__gnat_initialize");
26180
26181 -- The finalize routine performs low level system
26182 -- finalization using a standard library routine. The
26183 -- routine is found in file a-final.c and in the standard
26184 -- distribution is a dummy routine that does nothing, so
26185 -- really this is a hook for special user finalization.
26186
26187 procedure finalize;
26188 pragma Import (C, finalize, "__gnat_finalize");
26189
26190 -- The following is to initialize the SEH exceptions
26191
26192 SEH : aliased array (1 .. 2) of Integer;
26193
26194 Ensure_Reference : aliased System.Address := Ada_Main_Program_Name'Address;
26195 pragma Volatile (Ensure_Reference);
26196
26197 -- Start of processing for main
26198
26199 begin
26200 -- Save global variables
26201
26202 gnat_argc := argc;
26203 gnat_argv := argv;
26204 gnat_envp := envp;
26205
26206 -- Call low level system initialization
26207
26208 Initialize (SEH'Address);
26209
26210 -- Call our generated Ada initialization routine
26211
26212 adainit;
26213
26214 -- Now we call the main program of the partition
26215
26216 Ada_Main_Program;
26217
26218 -- Perform Ada finalization
26219
26220 adafinal;
26221
26222 -- Perform low level system finalization
26223
26224 Finalize;
26225
26226 -- Return the proper exit status
26227 return (gnat_exit_status);
26228 end;
26229
26230 -- This section is entirely comments, so it has no effect on the
26231 -- compilation of the Ada_Main package. It provides the list of
26232 -- object files and linker options, as well as some standard
26233 -- libraries needed for the link. The gnatlink utility parses
26234 -- this b~hello.adb file to read these comment lines to generate
26235 -- the appropriate command line arguments for the call to the
26236 -- system linker. The BEGIN/END lines are used for sentinels for
26237 -- this parsing operation.
26238
26239 -- The exact file names will of course depend on the environment,
26240 -- host/target and location of files on the host system.
26241
26242 -- BEGIN Object file/option list
26243 -- ./hello.o
26244 -- -L./
26245 -- -L/usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/
26246 -- /usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/libgnat.a
26247 -- END Object file/option list
26248
26249 end ada_main;
26250 @end example
26251
26252 The Ada code in the above example is exactly what is generated by the
26253 binder. We have added comments to more clearly indicate the function
26254 of each part of the generated @code{Ada_Main} package.
26255
26256 The code is standard Ada in all respects, and can be processed by any
26257 tools that handle Ada. In particular, it is possible to use the debugger
26258 in Ada mode to debug the generated @code{Ada_Main} package. For example,
26259 suppose that for reasons that you do not understand, your program is crashing
26260 during elaboration of the body of @code{Ada.Text_IO}. To locate this bug,
26261 you can place a breakpoint on the call:
26262
26263 @quotation
26264
26265 @example
26266 Ada.Text_Io'Elab_Body;
26267 @end example
26268 @end quotation
26269
26270 and trace the elaboration routine for this package to find out where
26271 the problem might be (more usually of course you would be debugging
26272 elaboration code in your own application).
26273
26274 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
26275
26276 @node Elaboration Order Handling in GNAT,Inline Assembler,Example of Binder Output File,Top
26277 @anchor{gnat_ugn/elaboration_order_handling_in_gnat doc}@anchor{21a}@anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-order-handling-in-gnat}@anchor{f}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id1}@anchor{21b}
26278 @chapter Elaboration Order Handling in GNAT
26279
26280
26281 @geindex Order of elaboration
26282
26283 @geindex Elaboration control
26284
26285 This appendix describes the handling of elaboration code in Ada and GNAT, and
26286 discusses how the order of elaboration of program units can be controlled in
26287 GNAT, either automatically or with explicit programming features.
26288
26289 @menu
26290 * Elaboration Code::
26291 * Elaboration Order::
26292 * Checking the Elaboration Order::
26293 * Controlling the Elaboration Order in Ada::
26294 * Controlling the Elaboration Order in GNAT::
26295 * Mixing Elaboration Models::
26296 * ABE Diagnostics::
26297 * SPARK Diagnostics::
26298 * Elaboration Circularities::
26299 * Resolving Elaboration Circularities::
26300 * Elaboration-related Compiler Switches::
26301 * Summary of Procedures for Elaboration Control::
26302 * Inspecting the Chosen Elaboration Order::
26303
26304 @end menu
26305
26306 @node Elaboration Code,Elaboration Order,,Elaboration Order Handling in GNAT
26307 @anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-code}@anchor{21c}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id2}@anchor{21d}
26308 @section Elaboration Code
26309
26310
26311 Ada defines the term `execution' as the process by which a construct achieves
26312 its run-time effect. This process is also referred to as `elaboration' for
26313 declarations and `evaluation' for expressions.
26314
26315 The execution model in Ada allows for certain sections of an Ada program to be
26316 executed prior to execution of the program itself, primarily with the intent of
26317 initializing data. These sections are referred to as `elaboration code'.
26318 Elaboration code is executed as follows:
26319
26320
26321 @itemize *
26322
26323 @item
26324 All partitions of an Ada program are executed in parallel with one another,
26325 possibly in a separate address space, and possibly on a separate computer.
26326
26327 @item
26328 The execution of a partition involves running the environment task for that
26329 partition.
26330
26331 @item
26332 The environment task executes all elaboration code (if available) for all
26333 units within that partition. This code is said to be executed at
26334 `elaboration time'.
26335
26336 @item
26337 The environment task executes the Ada program (if available) for that
26338 partition.
26339 @end itemize
26340
26341 In addition to the Ada terminology, this appendix defines the following terms:
26342
26343
26344 @itemize *
26345
26346 @item
26347 `Invocation'
26348
26349 The act of calling a subprogram, instantiating a generic, or activating a
26350 task.
26351
26352 @item
26353 `Scenario'
26354
26355 A construct that is elaborated or invoked by elaboration code is referred to
26356 as an `elaboration scenario' or simply a `scenario'. GNAT recognizes the
26357 following scenarios:
26358
26359
26360 @itemize -
26361
26362 @item
26363 @code{'Access} of entries, operators, and subprograms
26364
26365 @item
26366 Activation of tasks
26367
26368 @item
26369 Calls to entries, operators, and subprograms
26370
26371 @item
26372 Instantiations of generic templates
26373 @end itemize
26374
26375 @item
26376 `Target'
26377
26378 A construct elaborated by a scenario is referred to as `elaboration target'
26379 or simply `target'. GNAT recognizes the following targets:
26380
26381
26382 @itemize -
26383
26384 @item
26385 For @code{'Access} of entries, operators, and subprograms, the target is the
26386 entry, operator, or subprogram being aliased.
26387
26388 @item
26389 For activation of tasks, the target is the task body
26390
26391 @item
26392 For calls to entries, operators, and subprograms, the target is the entry,
26393 operator, or subprogram being invoked.
26394
26395 @item
26396 For instantiations of generic templates, the target is the generic template
26397 being instantiated.
26398 @end itemize
26399 @end itemize
26400
26401 Elaboration code may appear in two distinct contexts:
26402
26403
26404 @itemize *
26405
26406 @item
26407 `Library level'
26408
26409 A scenario appears at the library level when it is encapsulated by a package
26410 [body] compilation unit, ignoring any other package [body] declarations in
26411 between.
26412
26413 @example
26414 with Server;
26415 package Client is
26416 procedure Proc;
26417
26418 package Nested is
26419 Val : ... := Server.Func;
26420 end Nested;
26421 end Client;
26422 @end example
26423
26424 In the example above, the call to @code{Server.Func} is an elaboration scenario
26425 because it appears at the library level of package @code{Client}. Note that the
26426 declaration of package @code{Nested} is ignored according to the definition
26427 given above. As a result, the call to @code{Server.Func} will be invoked when
26428 the spec of unit @code{Client} is elaborated.
26429
26430 @item
26431 `Package body statements'
26432
26433 A scenario appears within the statement sequence of a package body when it is
26434 bounded by the region starting from the @code{begin} keyword of the package body
26435 and ending at the @code{end} keyword of the package body.
26436
26437 @example
26438 package body Client is
26439 procedure Proc is
26440 begin
26441 ...
26442 end Proc;
26443 begin
26444 Proc;
26445 end Client;
26446 @end example
26447
26448 In the example above, the call to @code{Proc} is an elaboration scenario because
26449 it appears within the statement sequence of package body @code{Client}. As a
26450 result, the call to @code{Proc} will be invoked when the body of @code{Client} is
26451 elaborated.
26452 @end itemize
26453
26454 @node Elaboration Order,Checking the Elaboration Order,Elaboration Code,Elaboration Order Handling in GNAT
26455 @anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-order}@anchor{21e}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id3}@anchor{21f}
26456 @section Elaboration Order
26457
26458
26459 The sequence by which the elaboration code of all units within a partition is
26460 executed is referred to as `elaboration order'.
26461
26462 Within a single unit, elaboration code is executed in sequential order.
26463
26464 @quotation
26465
26466 @example
26467 package body Client is
26468 Result : ... := Server.Func;
26469
26470 procedure Proc is
26471 package Inst is new Server.Gen;
26472 begin
26473 Inst.Eval (Result);
26474 end Proc;
26475 begin
26476 Proc;
26477 end Client;
26478 @end example
26479 @end quotation
26480
26481 In the example above, the elaboration order within package body @code{Client} is
26482 as follows:
26483
26484
26485 @enumerate
26486
26487 @item
26488 The object declaration of @code{Result} is elaborated.
26489
26490
26491 @itemize *
26492
26493 @item
26494 Function @code{Server.Func} is invoked.
26495 @end itemize
26496
26497 @item
26498 The subprogram body of @code{Proc} is elaborated.
26499
26500 @item
26501 Procedure @code{Proc} is invoked.
26502
26503
26504 @itemize *
26505
26506 @item
26507 Generic unit @code{Server.Gen} is instantiated as @code{Inst}.
26508
26509 @item
26510 Instance @code{Inst} is elaborated.
26511
26512 @item
26513 Procedure @code{Inst.Eval} is invoked.
26514 @end itemize
26515 @end enumerate
26516
26517 The elaboration order of all units within a partition depends on the following
26518 factors:
26519
26520
26521 @itemize *
26522
26523 @item
26524 `with'ed units
26525
26526 @item
26527 parent units
26528
26529 @item
26530 purity of units
26531
26532 @item
26533 preelaborability of units
26534
26535 @item
26536 presence of elaboration-control pragmas
26537
26538 @item
26539 invocations performed in elaboration code
26540 @end itemize
26541
26542 A program may have several elaboration orders depending on its structure.
26543
26544 @quotation
26545
26546 @example
26547 package Server is
26548 function Func (Index : Integer) return Integer;
26549 end Server;
26550 @end example
26551
26552 @example
26553 package body Server is
26554 Results : array (1 .. 5) of Integer := (1, 2, 3, 4, 5);
26555
26556 function Func (Index : Integer) return Integer is
26557 begin
26558 return Results (Index);
26559 end Func;
26560 end Server;
26561 @end example
26562
26563 @example
26564 with Server;
26565 package Client is
26566 Val : constant Integer := Server.Func (3);
26567 end Client;
26568 @end example
26569
26570 @example
26571 with Client;
26572 procedure Main is begin null; end Main;
26573 @end example
26574 @end quotation
26575
26576 The following elaboration order exhibits a fundamental problem referred to as
26577 `access-before-elaboration' or simply `ABE'.
26578
26579 @quotation
26580
26581 @example
26582 spec of Server
26583 spec of Client
26584 body of Server
26585 body of Main
26586 @end example
26587 @end quotation
26588
26589 The elaboration of @code{Server}’s spec materializes function @code{Func}, making it
26590 callable. The elaboration of @code{Client}’s spec elaborates the declaration of
26591 @code{Val}. This invokes function @code{Server.Func}, however the body of
26592 @code{Server.Func} has not been elaborated yet because @code{Server}’s body comes
26593 after @code{Client}’s spec in the elaboration order. As a result, the value of
26594 constant @code{Val} is now undefined.
26595
26596 Without any guarantees from the language, an undetected ABE problem may hinder
26597 proper initialization of data, which in turn may lead to undefined behavior at
26598 run time. To prevent such ABE problems, Ada employs dynamic checks in the same
26599 vein as index or null exclusion checks. A failed ABE check raises exception
26600 @code{Program_Error}.
26601
26602 The following elaboration order avoids the ABE problem and the program can be
26603 successfully elaborated.
26604
26605 @quotation
26606
26607 @example
26608 spec of Server
26609 body of Server
26610 spec of Client
26611 body of Main
26612 @end example
26613 @end quotation
26614
26615 Ada states that a total elaboration order must exist, but it does not define
26616 what this order is. A compiler is thus tasked with choosing a suitable
26617 elaboration order which satisfies the dependencies imposed by `with' clauses,
26618 unit categorization, elaboration-control pragmas, and invocations performed in
26619 elaboration code. Ideally an order that avoids ABE problems should be chosen,
26620 however a compiler may not always find such an order due to complications with
26621 respect to control and data flow.
26622
26623 @node Checking the Elaboration Order,Controlling the Elaboration Order in Ada,Elaboration Order,Elaboration Order Handling in GNAT
26624 @anchor{gnat_ugn/elaboration_order_handling_in_gnat checking-the-elaboration-order}@anchor{220}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id4}@anchor{221}
26625 @section Checking the Elaboration Order
26626
26627
26628 To avoid placing the entire elaboration-order burden on the programmer, Ada
26629 provides three lines of defense:
26630
26631
26632 @itemize *
26633
26634 @item
26635 `Static semantics'
26636
26637 Static semantic rules restrict the possible choice of elaboration order. For
26638 instance, if unit Client `with's unit Server, then the spec of Server is
26639 always elaborated prior to Client. The same principle applies to child units
26640 - the spec of a parent unit is always elaborated prior to the child unit.
26641
26642 @item
26643 `Dynamic semantics'
26644
26645 Dynamic checks are performed at run time, to ensure that a target is
26646 elaborated prior to a scenario that invokes it, thus avoiding ABE problems.
26647 A failed run-time check raises exception @code{Program_Error}. The following
26648 restrictions apply:
26649
26650
26651 @itemize -
26652
26653 @item
26654 `Restrictions on calls'
26655
26656 An entry, operator, or subprogram can be called from elaboration code only
26657 when the corresponding body has been elaborated.
26658
26659 @item
26660 `Restrictions on instantiations'
26661
26662 A generic unit can be instantiated by elaboration code only when the
26663 corresponding body has been elaborated.
26664
26665 @item
26666 `Restrictions on task activation'
26667
26668 A task can be activated by elaboration code only when the body of the
26669 associated task type has been elaborated.
26670 @end itemize
26671
26672 The restrictions above can be summarized by the following rule:
26673
26674 `If a target has a body, then this body must be elaborated prior to the
26675 scenario that invokes the target.'
26676
26677 @item
26678 `Elaboration control'
26679
26680 Pragmas are provided for the programmer to specify the desired elaboration
26681 order.
26682 @end itemize
26683
26684 @node Controlling the Elaboration Order in Ada,Controlling the Elaboration Order in GNAT,Checking the Elaboration Order,Elaboration Order Handling in GNAT
26685 @anchor{gnat_ugn/elaboration_order_handling_in_gnat controlling-the-elaboration-order-in-ada}@anchor{222}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id5}@anchor{223}
26686 @section Controlling the Elaboration Order in Ada
26687
26688
26689 Ada provides several idioms and pragmas to aid the programmer with specifying
26690 the desired elaboration order and avoiding ABE problems altogether.
26691
26692
26693 @itemize *
26694
26695 @item
26696 `Packages without a body'
26697
26698 A library package which does not require a completing body does not suffer
26699 from ABE problems.
26700
26701 @example
26702 package Pack is
26703 generic
26704 type Element is private;
26705 package Containers is
26706 type Element_Array is array (1 .. 10) of Element;
26707 end Containers;
26708 end Pack;
26709 @end example
26710
26711 In the example above, package @code{Pack} does not require a body because it
26712 does not contain any constructs which require completion in a body. As a
26713 result, generic @code{Pack.Containers} can be instantiated without encountering
26714 any ABE problems.
26715 @end itemize
26716
26717 @geindex pragma Pure
26718
26719
26720 @itemize *
26721
26722 @item
26723 `pragma Pure'
26724
26725 Pragma @code{Pure} places sufficient restrictions on a unit to guarantee that no
26726 scenario within the unit can result in an ABE problem.
26727 @end itemize
26728
26729 @geindex pragma Preelaborate
26730
26731
26732 @itemize *
26733
26734 @item
26735 `pragma Preelaborate'
26736
26737 Pragma @code{Preelaborate} is slightly less restrictive than pragma @code{Pure},
26738 but still strong enough to prevent ABE problems within a unit.
26739 @end itemize
26740
26741 @geindex pragma Elaborate_Body
26742
26743
26744 @itemize *
26745
26746 @item
26747 `pragma Elaborate_Body'
26748
26749 Pragma @code{Elaborate_Body} requires that the body of a unit is elaborated
26750 immediately after its spec. This restriction guarantees that no client
26751 scenario can invoke a server target before the target body has been
26752 elaborated because the spec and body are effectively “glued” together.
26753
26754 @example
26755 package Server is
26756 pragma Elaborate_Body;
26757
26758 function Func return Integer;
26759 end Server;
26760 @end example
26761
26762 @example
26763 package body Server is
26764 function Func return Integer is
26765 begin
26766 ...
26767 end Func;
26768 end Server;
26769 @end example
26770
26771 @example
26772 with Server;
26773 package Client is
26774 Val : constant Integer := Server.Func;
26775 end Client;
26776 @end example
26777
26778 In the example above, pragma @code{Elaborate_Body} guarantees the following
26779 elaboration order:
26780
26781 @example
26782 spec of Server
26783 body of Server
26784 spec of Client
26785 @end example
26786
26787 because the spec of @code{Server} must be elaborated prior to @code{Client} by
26788 virtue of the `with' clause, and in addition the body of @code{Server} must be
26789 elaborated immediately after the spec of @code{Server}.
26790
26791 Removing pragma @code{Elaborate_Body} could result in the following incorrect
26792 elaboration order:
26793
26794 @example
26795 spec of Server
26796 spec of Client
26797 body of Server
26798 @end example
26799
26800 where @code{Client} invokes @code{Server.Func}, but the body of @code{Server.Func} has
26801 not been elaborated yet.
26802 @end itemize
26803
26804 The pragmas outlined above allow a server unit to guarantee safe elaboration
26805 use by client units. Thus it is a good rule to mark units as @code{Pure} or
26806 @code{Preelaborate}, and if this is not possible, mark them as @code{Elaborate_Body}.
26807
26808 There are however situations where @code{Pure}, @code{Preelaborate}, and
26809 @code{Elaborate_Body} are not applicable. Ada provides another set of pragmas for
26810 use by client units to help ensure the elaboration safety of server units they
26811 depend on.
26812
26813 @geindex pragma Elaborate (Unit)
26814
26815
26816 @itemize *
26817
26818 @item
26819 `pragma Elaborate (Unit)'
26820
26821 Pragma @code{Elaborate} can be placed in the context clauses of a unit, after a
26822 `with' clause. It guarantees that both the spec and body of its argument will
26823 be elaborated prior to the unit with the pragma. Note that other unrelated
26824 units may be elaborated in between the spec and the body.
26825
26826 @example
26827 package Server is
26828 function Func return Integer;
26829 end Server;
26830 @end example
26831
26832 @example
26833 package body Server is
26834 function Func return Integer is
26835 begin
26836 ...
26837 end Func;
26838 end Server;
26839 @end example
26840
26841 @example
26842 with Server;
26843 pragma Elaborate (Server);
26844 package Client is
26845 Val : constant Integer := Server.Func;
26846 end Client;
26847 @end example
26848
26849 In the example above, pragma @code{Elaborate} guarantees the following
26850 elaboration order:
26851
26852 @example
26853 spec of Server
26854 body of Server
26855 spec of Client
26856 @end example
26857
26858 Removing pragma @code{Elaborate} could result in the following incorrect
26859 elaboration order:
26860
26861 @example
26862 spec of Server
26863 spec of Client
26864 body of Server
26865 @end example
26866
26867 where @code{Client} invokes @code{Server.Func}, but the body of @code{Server.Func}
26868 has not been elaborated yet.
26869 @end itemize
26870
26871 @geindex pragma Elaborate_All (Unit)
26872
26873
26874 @itemize *
26875
26876 @item
26877 `pragma Elaborate_All (Unit)'
26878
26879 Pragma @code{Elaborate_All} is placed in the context clauses of a unit, after
26880 a `with' clause. It guarantees that both the spec and body of its argument
26881 will be elaborated prior to the unit with the pragma, as well as all units
26882 `with'ed by the spec and body of the argument, recursively. Note that other
26883 unrelated units may be elaborated in between the spec and the body.
26884
26885 @example
26886 package Math is
26887 function Factorial (Val : Natural) return Natural;
26888 end Math;
26889 @end example
26890
26891 @example
26892 package body Math is
26893 function Factorial (Val : Natural) return Natural is
26894 begin
26895 ...;
26896 end Factorial;
26897 end Math;
26898 @end example
26899
26900 @example
26901 package Computer is
26902 type Operation_Kind is (None, Op_Factorial);
26903
26904 function Compute
26905 (Val : Natural;
26906 Op : Operation_Kind) return Natural;
26907 end Computer;
26908 @end example
26909
26910 @example
26911 with Math;
26912 package body Computer is
26913 function Compute
26914 (Val : Natural;
26915 Op : Operation_Kind) return Natural
26916 is
26917 if Op = Op_Factorial then
26918 return Math.Factorial (Val);
26919 end if;
26920
26921 return 0;
26922 end Compute;
26923 end Computer;
26924 @end example
26925
26926 @example
26927 with Computer;
26928 pragma Elaborate_All (Computer);
26929 package Client is
26930 Val : constant Natural :=
26931 Computer.Compute (123, Computer.Op_Factorial);
26932 end Client;
26933 @end example
26934
26935 In the example above, pragma @code{Elaborate_All} can result in the following
26936 elaboration order:
26937
26938 @example
26939 spec of Math
26940 body of Math
26941 spec of Computer
26942 body of Computer
26943 spec of Client
26944 @end example
26945
26946 Note that there are several allowable suborders for the specs and bodies of
26947 @code{Math} and @code{Computer}, but the point is that these specs and bodies will
26948 be elaborated prior to @code{Client}.
26949
26950 Removing pragma @code{Elaborate_All} could result in the following incorrect
26951 elaboration order:
26952
26953 @example
26954 spec of Math
26955 spec of Computer
26956 body of Computer
26957 spec of Client
26958 body of Math
26959 @end example
26960
26961 where @code{Client} invokes @code{Computer.Compute}, which in turn invokes
26962 @code{Math.Factorial}, but the body of @code{Math.Factorial} has not been
26963 elaborated yet.
26964 @end itemize
26965
26966 All pragmas shown above can be summarized by the following rule:
26967
26968 `If a client unit elaborates a server target directly or indirectly, then if
26969 the server unit requires a body and does not have pragma Pure, Preelaborate,
26970 or Elaborate_Body, then the client unit should have pragma Elaborate or
26971 Elaborate_All for the server unit.'
26972
26973 If the rule outlined above is not followed, then a program may fall in one of
26974 the following states:
26975
26976
26977 @itemize *
26978
26979 @item
26980 `No elaboration order exists'
26981
26982 In this case a compiler must diagnose the situation, and refuse to build an
26983 executable program.
26984
26985 @item
26986 `One or more incorrect elaboration orders exist'
26987
26988 In this case a compiler can build an executable program, but
26989 @code{Program_Error} will be raised when the program is run.
26990
26991 @item
26992 `Several elaboration orders exist, some correct, some incorrect'
26993
26994 In this case the programmer has not controlled the elaboration order. As a
26995 result, a compiler may or may not pick one of the correct orders, and the
26996 program may or may not raise @code{Program_Error} when it is run. This is the
26997 worst possible state because the program may fail on another compiler, or
26998 even another version of the same compiler.
26999
27000 @item
27001 `One or more correct orders exist'
27002
27003 In this case a compiler can build an executable program, and the program is
27004 run successfully. This state may be guaranteed by following the outlined
27005 rules, or may be the result of good program architecture.
27006 @end itemize
27007
27008 Note that one additional advantage of using @code{Elaborate} and @code{Elaborate_All}
27009 is that the program continues to stay in the last state (one or more correct
27010 orders exist) even if maintenance changes the bodies of targets.
27011
27012 @node Controlling the Elaboration Order in GNAT,Mixing Elaboration Models,Controlling the Elaboration Order in Ada,Elaboration Order Handling in GNAT
27013 @anchor{gnat_ugn/elaboration_order_handling_in_gnat controlling-the-elaboration-order-in-gnat}@anchor{224}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id6}@anchor{225}
27014 @section Controlling the Elaboration Order in GNAT
27015
27016
27017 In addition to Ada semantics and rules synthesized from them, GNAT offers
27018 three elaboration models to aid the programmer with specifying the correct
27019 elaboration order and to diagnose elaboration problems.
27020
27021 @geindex Dynamic elaboration model
27022
27023
27024 @itemize *
27025
27026 @item
27027 `Dynamic elaboration model'
27028
27029 This is the most permissive of the three elaboration models and emulates the
27030 behavior specified by the Ada Reference Manual. When the dynamic model is in
27031 effect, GNAT makes the following assumptions:
27032
27033
27034 @itemize -
27035
27036 @item
27037 All code within all units in a partition is considered to be elaboration
27038 code.
27039
27040 @item
27041 Some of the invocations in elaboration code may not take place at run time
27042 due to conditional execution.
27043 @end itemize
27044
27045 GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios
27046 that invoke internal targets. In addition, GNAT generates run-time checks for
27047 all external targets and for all scenarios that may exhibit ABE problems.
27048
27049 The elaboration order is obtained by honoring all `with' clauses, purity and
27050 preelaborability of units, and elaboration-control pragmas. The dynamic model
27051 attempts to take all invocations in elaboration code into account. If an
27052 invocation leads to a circularity, GNAT ignores the invocation based on the
27053 assumptions stated above. An order obtained using the dynamic model may fail
27054 an ABE check at run time when GNAT ignored an invocation.
27055
27056 The dynamic model is enabled with compiler switch @code{-gnatE}.
27057 @end itemize
27058
27059 @geindex Static elaboration model
27060
27061
27062 @itemize *
27063
27064 @item
27065 `Static elaboration model'
27066
27067 This is the middle ground of the three models. When the static model is in
27068 effect, GNAT makes the following assumptions:
27069
27070
27071 @itemize -
27072
27073 @item
27074 Only code at the library level and in package body statements within all
27075 units in a partition is considered to be elaboration code.
27076
27077 @item
27078 All invocations in elaboration will take place at run time, regardless of
27079 conditional execution.
27080 @end itemize
27081
27082 GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios
27083 that invoke internal targets. In addition, GNAT generates run-time checks for
27084 all external targets and for all scenarios that may exhibit ABE problems.
27085
27086 The elaboration order is obtained by honoring all `with' clauses, purity and
27087 preelaborability of units, presence of elaboration-control pragmas, and all
27088 invocations in elaboration code. An order obtained using the static model is
27089 guaranteed to be ABE problem-free, excluding dispatching calls and
27090 access-to-subprogram types.
27091
27092 The static model is the default model in GNAT.
27093 @end itemize
27094
27095 @geindex SPARK elaboration model
27096
27097
27098 @itemize *
27099
27100 @item
27101 `SPARK elaboration model'
27102
27103 This is the most conservative of the three models and enforces the SPARK
27104 rules of elaboration as defined in the SPARK Reference Manual, section 7.7.
27105 The SPARK model is in effect only when a scenario and a target reside in a
27106 region subject to @code{SPARK_Mode On}, otherwise the dynamic or static model
27107 is in effect.
27108
27109 The SPARK model is enabled with compiler switch @code{-gnatd.v}.
27110 @end itemize
27111
27112 @geindex Legacy elaboration models
27113
27114
27115 @itemize *
27116
27117 @item
27118 `Legacy elaboration models'
27119
27120 In addition to the three elaboration models outlined above, GNAT provides the
27121 following legacy models:
27122
27123
27124 @itemize -
27125
27126 @item
27127 @cite{Legacy elaboration-checking model} available in pre-18.x versions of GNAT.
27128 This model is enabled with compiler switch @code{-gnatH}.
27129
27130 @item
27131 @cite{Legacy elaboration-order model} available in pre-20.x versions of GNAT.
27132 This model is enabled with binder switch @code{-H}.
27133 @end itemize
27134 @end itemize
27135
27136 @geindex Relaxed elaboration mode
27137
27138 The dynamic, legacy, and static models can be relaxed using compiler switch
27139 @code{-gnatJ}, making them more permissive. Note that in this mode, GNAT
27140 may not diagnose certain elaboration issues or install run-time checks.
27141
27142 @node Mixing Elaboration Models,ABE Diagnostics,Controlling the Elaboration Order in GNAT,Elaboration Order Handling in GNAT
27143 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id7}@anchor{226}@anchor{gnat_ugn/elaboration_order_handling_in_gnat mixing-elaboration-models}@anchor{227}
27144 @section Mixing Elaboration Models
27145
27146
27147 It is possible to mix units compiled with a different elaboration model,
27148 however the following rules must be observed:
27149
27150
27151 @itemize *
27152
27153 @item
27154 A client unit compiled with the dynamic model can only `with' a server unit
27155 that meets at least one of the following criteria:
27156
27157
27158 @itemize -
27159
27160 @item
27161 The server unit is compiled with the dynamic model.
27162
27163 @item
27164 The server unit is a GNAT implementation unit from the @code{Ada}, @code{GNAT},
27165 @code{Interfaces}, or @code{System} hierarchies.
27166
27167 @item
27168 The server unit has pragma @code{Pure} or @code{Preelaborate}.
27169
27170 @item
27171 The client unit has an explicit @code{Elaborate_All} pragma for the server
27172 unit.
27173 @end itemize
27174 @end itemize
27175
27176 These rules ensure that elaboration checks are not omitted. If the rules are
27177 violated, the binder emits a warning:
27178
27179 @quotation
27180
27181 @example
27182 warning: "x.ads" has dynamic elaboration checks and with's
27183 warning: "y.ads" which has static elaboration checks
27184 @end example
27185 @end quotation
27186
27187 The warnings can be suppressed by binder switch @code{-ws}.
27188
27189 @node ABE Diagnostics,SPARK Diagnostics,Mixing Elaboration Models,Elaboration Order Handling in GNAT
27190 @anchor{gnat_ugn/elaboration_order_handling_in_gnat abe-diagnostics}@anchor{228}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id8}@anchor{229}
27191 @section ABE Diagnostics
27192
27193
27194 GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios
27195 that invoke internal targets, regardless of whether the dynamic, SPARK, or
27196 static model is in effect.
27197
27198 Note that GNAT emits warnings rather than hard errors whenever it encounters an
27199 elaboration problem. This is because the elaboration model in effect may be too
27200 conservative, or a particular scenario may not be invoked due conditional
27201 execution. The warnings can be suppressed selectively with @code{pragma Warnings
27202 (Off)} or globally with compiler switch @code{-gnatwL}.
27203
27204 A `guaranteed ABE' arises when the body of a target is not elaborated early
27205 enough, and causes `all' scenarios that directly invoke the target to fail.
27206
27207 @quotation
27208
27209 @example
27210 package body Guaranteed_ABE is
27211 function ABE return Integer;
27212
27213 Val : constant Integer := ABE;
27214
27215 function ABE return Integer is
27216 begin
27217 ...
27218 end ABE;
27219 end Guaranteed_ABE;
27220 @end example
27221 @end quotation
27222
27223 In the example above, the elaboration of @code{Guaranteed_ABE}’s body elaborates
27224 the declaration of @code{Val}. This invokes function @code{ABE}, however the body of
27225 @code{ABE} has not been elaborated yet. GNAT emits the following diagnostic:
27226
27227 @quotation
27228
27229 @example
27230 4. Val : constant Integer := ABE;
27231 |
27232 >>> warning: cannot call "ABE" before body seen
27233 >>> warning: Program_Error will be raised at run time
27234 @end example
27235 @end quotation
27236
27237 A `conditional ABE' arises when the body of a target is not elaborated early
27238 enough, and causes `some' scenarios that directly invoke the target to fail.
27239
27240 @quotation
27241
27242 @example
27243 1. package body Conditional_ABE is
27244 2. procedure Force_Body is null;
27245 3.
27246 4. generic
27247 5. with function Func return Integer;
27248 6. package Gen is
27249 7. Val : constant Integer := Func;
27250 8. end Gen;
27251 9.
27252 10. function ABE return Integer;
27253 11.
27254 12. function Cause_ABE return Boolean is
27255 13. package Inst is new Gen (ABE);
27256 14. begin
27257 15. ...
27258 16. end Cause_ABE;
27259 17.
27260 18. Val : constant Boolean := Cause_ABE;
27261 19.
27262 20. function ABE return Integer is
27263 21. begin
27264 22. ...
27265 23. end ABE;
27266 24.
27267 25. Safe : constant Boolean := Cause_ABE;
27268 26. end Conditional_ABE;
27269 @end example
27270 @end quotation
27271
27272 In the example above, the elaboration of package body @code{Conditional_ABE}
27273 elaborates the declaration of @code{Val}. This invokes function @code{Cause_ABE},
27274 which instantiates generic unit @code{Gen} as @code{Inst}. The elaboration of
27275 @code{Inst} invokes function @code{ABE}, however the body of @code{ABE} has not been
27276 elaborated yet. GNAT emits the following diagnostic:
27277
27278 @quotation
27279
27280 @example
27281 13. package Inst is new Gen (ABE);
27282 |
27283 >>> warning: in instantiation at line 7
27284 >>> warning: cannot call "ABE" before body seen
27285 >>> warning: Program_Error may be raised at run time
27286 >>> warning: body of unit "Conditional_ABE" elaborated
27287 >>> warning: function "Cause_ABE" called at line 18
27288 >>> warning: function "ABE" called at line 7, instance at line 13
27289 @end example
27290 @end quotation
27291
27292 Note that the same ABE problem does not occur with the elaboration of
27293 declaration @code{Safe} because the body of function @code{ABE} has already been
27294 elaborated at that point.
27295
27296 @node SPARK Diagnostics,Elaboration Circularities,ABE Diagnostics,Elaboration Order Handling in GNAT
27297 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id9}@anchor{22a}@anchor{gnat_ugn/elaboration_order_handling_in_gnat spark-diagnostics}@anchor{22b}
27298 @section SPARK Diagnostics
27299
27300
27301 GNAT enforces the SPARK rules of elaboration as defined in the SPARK Reference
27302 Manual section 7.7 when compiler switch @code{-gnatd.v} is in effect. Note
27303 that GNAT emits hard errors whenever it encounters a violation of the SPARK
27304 rules.
27305
27306 @quotation
27307
27308 @example
27309 1. with Server;
27310 2. package body SPARK_Diagnostics with SPARK_Mode is
27311 3. Val : constant Integer := Server.Func;
27312 |
27313 >>> call to "Func" during elaboration in SPARK
27314 >>> unit "SPARK_Diagnostics" requires pragma "Elaborate_All" for "Server"
27315 >>> body of unit "SPARK_Model" elaborated
27316 >>> function "Func" called at line 3
27317
27318 4. end SPARK_Diagnostics;
27319 @end example
27320 @end quotation
27321
27322 @node Elaboration Circularities,Resolving Elaboration Circularities,SPARK Diagnostics,Elaboration Order Handling in GNAT
27323 @anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-circularities}@anchor{22c}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id10}@anchor{22d}
27324 @section Elaboration Circularities
27325
27326
27327 An `elaboration circularity' occurs whenever the elaboration of a set of
27328 units enters a deadlocked state, where each unit is waiting for another unit
27329 to be elaborated. This situation may be the result of improper use of `with'
27330 clauses, elaboration-control pragmas, or invocations in elaboration code.
27331
27332 The following example exhibits an elaboration circularity.
27333
27334 @quotation
27335
27336 @example
27337 with B; pragma Elaborate (B);
27338 package A is
27339 end A;
27340 @end example
27341
27342 @example
27343 package B is
27344 procedure Force_Body;
27345 end B;
27346 @end example
27347
27348 @example
27349 with C;
27350 package body B is
27351 procedure Force_Body is null;
27352
27353 Elab : constant Integer := C.Func;
27354 end B;
27355 @end example
27356
27357 @example
27358 package C is
27359 function Func return Integer;
27360 end C;
27361 @end example
27362
27363 @example
27364 with A;
27365 package body C is
27366 function Func return Integer is
27367 begin
27368 ...
27369 end Func;
27370 end C;
27371 @end example
27372 @end quotation
27373
27374 The binder emits the following diagnostic:
27375
27376 @quotation
27377
27378 @example
27379 error: Elaboration circularity detected
27380 info:
27381 info: Reason:
27382 info:
27383 info: unit "a (spec)" depends on its own elaboration
27384 info:
27385 info: Circularity:
27386 info:
27387 info: unit "a (spec)" has with clause and pragma Elaborate for unit "b (spec)"
27388 info: unit "b (body)" is in the closure of pragma Elaborate
27389 info: unit "b (body)" invokes a construct of unit "c (body)" at elaboration time
27390 info: unit "c (body)" has with clause for unit "a (spec)"
27391 info:
27392 info: Suggestions:
27393 info:
27394 info: remove pragma Elaborate for unit "b (body)" in unit "a (spec)"
27395 info: use the dynamic elaboration model (compiler switch -gnatE)
27396 @end example
27397 @end quotation
27398
27399 The diagnostic consist of the following sections:
27400
27401
27402 @itemize *
27403
27404 @item
27405 Reason
27406
27407 This section provides a short explanation describing why the set of units
27408 could not be ordered.
27409
27410 @item
27411 Circularity
27412
27413 This section enumerates the units comprising the deadlocked set, along with
27414 their interdependencies.
27415
27416 @item
27417 Suggestions
27418
27419 This section enumerates various tactics for eliminating the circularity.
27420 @end itemize
27421
27422 @node Resolving Elaboration Circularities,Elaboration-related Compiler Switches,Elaboration Circularities,Elaboration Order Handling in GNAT
27423 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id11}@anchor{22e}@anchor{gnat_ugn/elaboration_order_handling_in_gnat resolving-elaboration-circularities}@anchor{22f}
27424 @section Resolving Elaboration Circularities
27425
27426
27427 The most desirable option from the point of view of long-term maintenance is to
27428 rearrange the program so that the elaboration problems are avoided. One useful
27429 technique is to place the elaboration code into separate child packages.
27430 Another is to move some of the initialization code to explicitly invoked
27431 subprograms, where the program controls the order of initialization explicitly.
27432 Although this is the most desirable option, it may be impractical and involve
27433 too much modification, especially in the case of complex legacy code.
27434
27435 When faced with an elaboration circularity, the programmer should also consider
27436 the tactics given in the suggestions section of the circularity diagnostic.
27437 Depending on the units involved in the circularity, their `with' clauses,
27438 purity, preelaborability, presence of elaboration-control pragmas and
27439 invocations at elaboration time, the binder may suggest one or more of the
27440 following tactics to eliminate the circularity:
27441
27442
27443 @itemize *
27444
27445 @item
27446 Pragma Elaborate elimination
27447
27448 @example
27449 remove pragma Elaborate for unit "..." in unit "..."
27450 @end example
27451
27452 This tactic is suggested when the binder has determined that pragma
27453 @code{Elaborate}:
27454
27455
27456 @itemize -
27457
27458 @item
27459 Prevents a set of units from being elaborated.
27460
27461 @item
27462 The removal of the pragma will not eliminate the semantic effects of the
27463 pragma. In other words, the argument of the pragma will still be elaborated
27464 prior to the unit containing the pragma.
27465
27466 @item
27467 The removal of the pragma will enable the successful ordering of the units.
27468 @end itemize
27469
27470 The programmer should remove the pragma as advised, and rebuild the program.
27471
27472 @item
27473 Pragma Elaborate_All elimination
27474
27475 @example
27476 remove pragma Elaborate_All for unit "..." in unit "..."
27477 @end example
27478
27479 This tactic is suggested when the binder has determined that pragma
27480 @code{Elaborate_All}:
27481
27482
27483 @itemize -
27484
27485 @item
27486 Prevents a set of units from being elaborated.
27487
27488 @item
27489 The removal of the pragma will not eliminate the semantic effects of the
27490 pragma. In other words, the argument of the pragma along with its `with'
27491 closure will still be elaborated prior to the unit containing the pragma.
27492
27493 @item
27494 The removal of the pragma will enable the successful ordering of the units.
27495 @end itemize
27496
27497 The programmer should remove the pragma as advised, and rebuild the program.
27498
27499 @item
27500 Pragma Elaborate_All downgrade
27501
27502 @example
27503 change pragma Elaborate_All for unit "..." to Elaborate in unit "..."
27504 @end example
27505
27506 This tactic is always suggested with the pragma @code{Elaborate_All} elimination
27507 tactic. It offers a different alternative of guaranteeing that the argument
27508 of the pragma will still be elaborated prior to the unit containing the
27509 pragma.
27510
27511 The programmer should update the pragma as advised, and rebuild the program.
27512
27513 @item
27514 Pragma Elaborate_Body elimination
27515
27516 @example
27517 remove pragma Elaborate_Body in unit "..."
27518 @end example
27519
27520 This tactic is suggested when the binder has determined that pragma
27521 @code{Elaborate_Body}:
27522
27523
27524 @itemize -
27525
27526 @item
27527 Prevents a set of units from being elaborated.
27528
27529 @item
27530 The removal of the pragma will enable the successful ordering of the units.
27531 @end itemize
27532
27533 Note that the binder cannot determine whether the pragma is required for
27534 other purposes, such as guaranteeing the initialization of a variable
27535 declared in the spec by elaboration code in the body.
27536
27537 The programmer should remove the pragma as advised, and rebuild the program.
27538
27539 @item
27540 Use of pragma Restrictions
27541
27542 @example
27543 use pragma Restrictions (No_Entry_Calls_In_Elaboration_Code)
27544 @end example
27545
27546 This tactic is suggested when the binder has determined that a task
27547 activation at elaboration time:
27548
27549
27550 @itemize -
27551
27552 @item
27553 Prevents a set of units from being elaborated.
27554 @end itemize
27555
27556 Note that the binder cannot determine with certainty whether the task will
27557 block at elaboration time.
27558
27559 The programmer should create a configuration file, place the pragma within,
27560 update the general compilation arguments, and rebuild the program.
27561
27562 @item
27563 Use of dynamic elaboration model
27564
27565 @example
27566 use the dynamic elaboration model (compiler switch -gnatE)
27567 @end example
27568
27569 This tactic is suggested when the binder has determined that an invocation at
27570 elaboration time:
27571
27572
27573 @itemize -
27574
27575 @item
27576 Prevents a set of units from being elaborated.
27577
27578 @item
27579 The use of the dynamic model will enable the successful ordering of the
27580 units.
27581 @end itemize
27582
27583 The programmer has two options:
27584
27585
27586 @itemize -
27587
27588 @item
27589 Determine the units involved in the invocation using the detailed
27590 invocation information, and add compiler switch @code{-gnatE} to the
27591 compilation arguments of selected files only. This approach will yield
27592 safer elaboration orders compared to the other option because it will
27593 minimize the opportunities presented to the dynamic model for ignoring
27594 invocations.
27595
27596 @item
27597 Add compiler switch @code{-gnatE} to the general compilation arguments.
27598 @end itemize
27599
27600 @item
27601 Use of detailed invocation information
27602
27603 @example
27604 use detailed invocation information (compiler switch -gnatd_F)
27605 @end example
27606
27607 This tactic is always suggested with the use of the dynamic model tactic. It
27608 causes the circularity section of the circularity diagnostic to describe the
27609 flow of elaboration code from a unit to a unit, enumerating all such paths in
27610 the process.
27611
27612 The programmer should analyze this information to determine which units
27613 should be compiled with the dynamic model.
27614
27615 @item
27616 Forced-dependency elimination
27617
27618 @example
27619 remove the dependency of unit "..." on unit "..." from the argument of switch -f
27620 @end example
27621
27622 This tactic is suggested when the binder has determined that a dependency
27623 present in the forced-elaboration-order file indicated by binder switch
27624 @code{-f}:
27625
27626
27627 @itemize -
27628
27629 @item
27630 Prevents a set of units from being elaborated.
27631
27632 @item
27633 The removal of the dependency will enable the successful ordering of the
27634 units.
27635 @end itemize
27636
27637 The programmer should edit the forced-elaboration-order file, remove the
27638 dependency, and rebind the program.
27639
27640 @item
27641 All forced-dependency elimination
27642
27643 @example
27644 remove switch -f
27645 @end example
27646
27647 This tactic is suggested in case editing the forced-elaboration-order file is
27648 not an option.
27649
27650 The programmer should remove binder switch @code{-f} from the binder
27651 arguments, and rebind.
27652
27653 @item
27654 Multiple-circularities diagnostic
27655
27656 @example
27657 diagnose all circularities (binder switch -d_C)
27658 @end example
27659
27660 By default, the binder will diagnose only the highest-precedence circularity.
27661 If the program contains multiple circularities, the binder will suggest the
27662 use of binder switch @code{-d_C} in order to obtain the diagnostics of all
27663 circularities.
27664
27665 The programmer should add binder switch @code{-d_C} to the binder
27666 arguments, and rebind.
27667 @end itemize
27668
27669 If none of the tactics suggested by the binder eliminate the elaboration
27670 circularity, the programmer should consider using one of the legacy elaboration
27671 models, in the following order:
27672
27673
27674 @itemize *
27675
27676 @item
27677 Use the pre-20.x legacy elaboration-order model, with binder switch
27678 @code{-H}.
27679
27680 @item
27681 Use both pre-18.x and pre-20.x legacy elaboration models, with compiler
27682 switch @code{-gnatH} and binder switch @code{-H}.
27683
27684 @item
27685 Use the relaxed static-elaboration model, with compiler switches
27686 @code{-gnatH} @code{-gnatJ} and binder switch @code{-H}.
27687
27688 @item
27689 Use the relaxed dynamic-elaboration model, with compiler switches
27690 @code{-gnatH} @code{-gnatJ} @code{-gnatE} and binder switch
27691 @code{-H}.
27692 @end itemize
27693
27694 @node Elaboration-related Compiler Switches,Summary of Procedures for Elaboration Control,Resolving Elaboration Circularities,Elaboration Order Handling in GNAT
27695 @anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-related-compiler-switches}@anchor{230}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id12}@anchor{231}
27696 @section Elaboration-related Compiler Switches
27697
27698
27699 GNAT has several switches that affect the elaboration model and consequently
27700 the elaboration order chosen by the binder.
27701
27702 @geindex -gnatE (gnat)
27703
27704
27705 @table @asis
27706
27707 @item @code{-gnatE}
27708
27709 Dynamic elaboration checking mode enabled
27710
27711 When this switch is in effect, GNAT activates the dynamic model.
27712 @end table
27713
27714 @geindex -gnatel (gnat)
27715
27716
27717 @table @asis
27718
27719 @item @code{-gnatel}
27720
27721 Turn on info messages on generated Elaborate[_All] pragmas
27722
27723 This switch is only applicable to the pre-20.x legacy elaboration models.
27724 The post-20.x elaboration model no longer relies on implicitly generated
27725 @code{Elaborate} and @code{Elaborate_All} pragmas to order units.
27726
27727 When this switch is in effect, GNAT will emit the following supplementary
27728 information depending on the elaboration model in effect.
27729
27730
27731 @itemize -
27732
27733 @item
27734 `Dynamic model'
27735
27736 GNAT will indicate missing @code{Elaborate} and @code{Elaborate_All} pragmas for
27737 all library-level scenarios within the partition.
27738
27739 @item
27740 `Static model'
27741
27742 GNAT will indicate all scenarios invoked during elaboration. In addition,
27743 it will provide detailed traceback when an implicit @code{Elaborate} or
27744 @code{Elaborate_All} pragma is generated.
27745
27746 @item
27747 `SPARK model'
27748
27749 GNAT will indicate how an elaboration requirement is met by the context of
27750 a unit. This diagnostic requires compiler switch @code{-gnatd.v}.
27751
27752 @example
27753 1. with Server; pragma Elaborate_All (Server);
27754 2. package Client with SPARK_Mode is
27755 3. Val : constant Integer := Server.Func;
27756 |
27757 >>> info: call to "Func" during elaboration in SPARK
27758 >>> info: "Elaborate_All" requirement for unit "Server" met by pragma at line 1
27759
27760 4. end Client;
27761 @end example
27762 @end itemize
27763 @end table
27764
27765 @geindex -gnatH (gnat)
27766
27767
27768 @table @asis
27769
27770 @item @code{-gnatH}
27771
27772 Legacy elaboration checking mode enabled
27773
27774 When this switch is in effect, GNAT will utilize the pre-18.x elaboration
27775 model.
27776 @end table
27777
27778 @geindex -gnatJ (gnat)
27779
27780
27781 @table @asis
27782
27783 @item @code{-gnatJ}
27784
27785 Relaxed elaboration checking mode enabled
27786
27787 When this switch is in effect, GNAT will not process certain scenarios,
27788 resulting in a more permissive elaboration model. Note that this may
27789 eliminate some diagnostics and run-time checks.
27790 @end table
27791
27792 @geindex -gnatw.f (gnat)
27793
27794
27795 @table @asis
27796
27797 @item @code{-gnatw.f}
27798
27799 Turn on warnings for suspicious Subp’Access
27800
27801 When this switch is in effect, GNAT will treat @code{'Access} of an entry,
27802 operator, or subprogram as a potential call to the target and issue warnings:
27803
27804 @example
27805 1. package body Attribute_Call is
27806 2. function Func return Integer;
27807 3. type Func_Ptr is access function return Integer;
27808 4.
27809 5. Ptr : constant Func_Ptr := Func'Access;
27810 |
27811 >>> warning: "Access" attribute of "Func" before body seen
27812 >>> warning: possible Program_Error on later references
27813 >>> warning: body of unit "Attribute_Call" elaborated
27814 >>> warning: "Access" of "Func" taken at line 5
27815
27816 6.
27817 7. function Func return Integer is
27818 8. begin
27819 9. ...
27820 10. end Func;
27821 11. end Attribute_Call;
27822 @end example
27823
27824 In the example above, the elaboration of declaration @code{Ptr} is assigned
27825 @code{Func'Access} before the body of @code{Func} has been elaborated.
27826 @end table
27827
27828 @geindex -gnatwl (gnat)
27829
27830
27831 @table @asis
27832
27833 @item @code{-gnatwl}
27834
27835 Turn on warnings for elaboration problems
27836
27837 When this switch is in effect, GNAT emits diagnostics in the form of warnings
27838 concerning various elaboration problems. The warnings are enabled by default.
27839 The switch is provided in case all warnings are suppressed, but elaboration
27840 warnings are still desired.
27841
27842 @item @code{-gnatwL}
27843
27844 Turn off warnings for elaboration problems
27845
27846 When this switch is in effect, GNAT no longer emits any diagnostics in the
27847 form of warnings. Selective suppression of elaboration problems is possible
27848 using @code{pragma Warnings (Off)}.
27849
27850 @example
27851 1. package body Selective_Suppression is
27852 2. function ABE return Integer;
27853 3.
27854 4. Val_1 : constant Integer := ABE;
27855 |
27856 >>> warning: cannot call "ABE" before body seen
27857 >>> warning: Program_Error will be raised at run time
27858
27859 5.
27860 6. pragma Warnings (Off);
27861 7. Val_2 : constant Integer := ABE;
27862 8. pragma Warnings (On);
27863 9.
27864 10. function ABE return Integer is
27865 11. begin
27866 12. ...
27867 13. end ABE;
27868 14. end Selective_Suppression;
27869 @end example
27870
27871 Note that suppressing elaboration warnings does not eliminate run-time
27872 checks. The example above will still fail at run time with an ABE.
27873 @end table
27874
27875 @node Summary of Procedures for Elaboration Control,Inspecting the Chosen Elaboration Order,Elaboration-related Compiler Switches,Elaboration Order Handling in GNAT
27876 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id13}@anchor{232}@anchor{gnat_ugn/elaboration_order_handling_in_gnat summary-of-procedures-for-elaboration-control}@anchor{233}
27877 @section Summary of Procedures for Elaboration Control
27878
27879
27880 A programmer should first compile the program with the default options, using
27881 none of the binder or compiler switches. If the binder succeeds in finding an
27882 elaboration order, then apart from possible cases involving dispatching calls
27883 and access-to-subprogram types, the program is free of elaboration errors.
27884
27885 If it is important for the program to be portable to compilers other than GNAT,
27886 then the programmer should use compiler switch @code{-gnatel} and consider
27887 the messages about missing or implicitly created @code{Elaborate} and
27888 @code{Elaborate_All} pragmas.
27889
27890 If the binder reports an elaboration circularity, the programmer has several
27891 options:
27892
27893
27894 @itemize *
27895
27896 @item
27897 Ensure that elaboration warnings are enabled. This will allow the static
27898 model to output trace information of elaboration issues. The trace
27899 information could shed light on previously unforeseen dependencies, as well
27900 as their origins. Elaboration warnings are enabled with compiler switch
27901 @code{-gnatwl}.
27902
27903 @item
27904 Cosider the tactics given in the suggestions section of the circularity
27905 diagnostic.
27906
27907 @item
27908 If none of the steps outlined above resolve the circularity, use a more
27909 permissive elaboration model, in the following order:
27910
27911
27912 @itemize -
27913
27914 @item
27915 Use the pre-20.x legacy elaboration-order model, with binder switch
27916 @code{-H}.
27917
27918 @item
27919 Use both pre-18.x and pre-20.x legacy elaboration models, with compiler
27920 switch @code{-gnatH} and binder switch @code{-H}.
27921
27922 @item
27923 Use the relaxed static elaboration model, with compiler switches
27924 @code{-gnatH} @code{-gnatJ} and binder switch @code{-H}.
27925
27926 @item
27927 Use the relaxed dynamic elaboration model, with compiler switches
27928 @code{-gnatH} @code{-gnatJ} @code{-gnatE} and binder switch
27929 @code{-H}.
27930 @end itemize
27931 @end itemize
27932
27933 @node Inspecting the Chosen Elaboration Order,,Summary of Procedures for Elaboration Control,Elaboration Order Handling in GNAT
27934 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id14}@anchor{234}@anchor{gnat_ugn/elaboration_order_handling_in_gnat inspecting-the-chosen-elaboration-order}@anchor{235}
27935 @section Inspecting the Chosen Elaboration Order
27936
27937
27938 To see the elaboration order chosen by the binder, inspect the contents of file
27939 @cite{b~xxx.adb}. On certain targets, this file appears as @cite{b_xxx.adb}. The
27940 elaboration order appears as a sequence of calls to @code{Elab_Body} and
27941 @code{Elab_Spec}, interspersed with assignments to @cite{Exxx} which indicates that a
27942 particular unit is elaborated. For example:
27943
27944 @quotation
27945
27946 @example
27947 System.Soft_Links'Elab_Body;
27948 E14 := True;
27949 System.Secondary_Stack'Elab_Body;
27950 E18 := True;
27951 System.Exception_Table'Elab_Body;
27952 E24 := True;
27953 Ada.Io_Exceptions'Elab_Spec;
27954 E67 := True;
27955 Ada.Tags'Elab_Spec;
27956 Ada.Streams'Elab_Spec;
27957 E43 := True;
27958 Interfaces.C'Elab_Spec;
27959 E69 := True;
27960 System.Finalization_Root'Elab_Spec;
27961 E60 := True;
27962 System.Os_Lib'Elab_Body;
27963 E71 := True;
27964 System.Finalization_Implementation'Elab_Spec;
27965 System.Finalization_Implementation'Elab_Body;
27966 E62 := True;
27967 Ada.Finalization'Elab_Spec;
27968 E58 := True;
27969 Ada.Finalization.List_Controller'Elab_Spec;
27970 E76 := True;
27971 System.File_Control_Block'Elab_Spec;
27972 E74 := True;
27973 System.File_Io'Elab_Body;
27974 E56 := True;
27975 Ada.Tags'Elab_Body;
27976 E45 := True;
27977 Ada.Text_Io'Elab_Spec;
27978 Ada.Text_Io'Elab_Body;
27979 E07 := True;
27980 @end example
27981 @end quotation
27982
27983 Note also binder switch @code{-l}, which outputs the chosen elaboration
27984 order and provides a more readable form of the above:
27985
27986 @quotation
27987
27988 @example
27989 ada (spec)
27990 interfaces (spec)
27991 system (spec)
27992 system.case_util (spec)
27993 system.case_util (body)
27994 system.concat_2 (spec)
27995 system.concat_2 (body)
27996 system.concat_3 (spec)
27997 system.concat_3 (body)
27998 system.htable (spec)
27999 system.parameters (spec)
28000 system.parameters (body)
28001 system.crtl (spec)
28002 interfaces.c_streams (spec)
28003 interfaces.c_streams (body)
28004 system.restrictions (spec)
28005 system.restrictions (body)
28006 system.standard_library (spec)
28007 system.exceptions (spec)
28008 system.exceptions (body)
28009 system.storage_elements (spec)
28010 system.storage_elements (body)
28011 system.secondary_stack (spec)
28012 system.stack_checking (spec)
28013 system.stack_checking (body)
28014 system.string_hash (spec)
28015 system.string_hash (body)
28016 system.htable (body)
28017 system.strings (spec)
28018 system.strings (body)
28019 system.traceback (spec)
28020 system.traceback (body)
28021 system.traceback_entries (spec)
28022 system.traceback_entries (body)
28023 ada.exceptions (spec)
28024 ada.exceptions.last_chance_handler (spec)
28025 system.soft_links (spec)
28026 system.soft_links (body)
28027 ada.exceptions.last_chance_handler (body)
28028 system.secondary_stack (body)
28029 system.exception_table (spec)
28030 system.exception_table (body)
28031 ada.io_exceptions (spec)
28032 ada.tags (spec)
28033 ada.streams (spec)
28034 interfaces.c (spec)
28035 interfaces.c (body)
28036 system.finalization_root (spec)
28037 system.finalization_root (body)
28038 system.memory (spec)
28039 system.memory (body)
28040 system.standard_library (body)
28041 system.os_lib (spec)
28042 system.os_lib (body)
28043 system.unsigned_types (spec)
28044 system.stream_attributes (spec)
28045 system.stream_attributes (body)
28046 system.finalization_implementation (spec)
28047 system.finalization_implementation (body)
28048 ada.finalization (spec)
28049 ada.finalization (body)
28050 ada.finalization.list_controller (spec)
28051 ada.finalization.list_controller (body)
28052 system.file_control_block (spec)
28053 system.file_io (spec)
28054 system.file_io (body)
28055 system.val_uns (spec)
28056 system.val_util (spec)
28057 system.val_util (body)
28058 system.val_uns (body)
28059 system.wch_con (spec)
28060 system.wch_con (body)
28061 system.wch_cnv (spec)
28062 system.wch_jis (spec)
28063 system.wch_jis (body)
28064 system.wch_cnv (body)
28065 system.wch_stw (spec)
28066 system.wch_stw (body)
28067 ada.tags (body)
28068 ada.exceptions (body)
28069 ada.text_io (spec)
28070 ada.text_io (body)
28071 text_io (spec)
28072 gdbstr (body)
28073 @end example
28074 @end quotation
28075
28076 @node Inline Assembler,GNU Free Documentation License,Elaboration Order Handling in GNAT,Top
28077 @anchor{gnat_ugn/inline_assembler doc}@anchor{236}@anchor{gnat_ugn/inline_assembler id1}@anchor{237}@anchor{gnat_ugn/inline_assembler inline-assembler}@anchor{10}
28078 @chapter Inline Assembler
28079
28080
28081 @geindex Inline Assembler
28082
28083 If you need to write low-level software that interacts directly
28084 with the hardware, Ada provides two ways to incorporate assembly
28085 language code into your program. First, you can import and invoke
28086 external routines written in assembly language, an Ada feature fully
28087 supported by GNAT. However, for small sections of code it may be simpler
28088 or more efficient to include assembly language statements directly
28089 in your Ada source program, using the facilities of the implementation-defined
28090 package @code{System.Machine_Code}, which incorporates the gcc
28091 Inline Assembler. The Inline Assembler approach offers a number of advantages,
28092 including the following:
28093
28094
28095 @itemize *
28096
28097 @item
28098 No need to use non-Ada tools
28099
28100 @item
28101 Consistent interface over different targets
28102
28103 @item
28104 Automatic usage of the proper calling conventions
28105
28106 @item
28107 Access to Ada constants and variables
28108
28109 @item
28110 Definition of intrinsic routines
28111
28112 @item
28113 Possibility of inlining a subprogram comprising assembler code
28114
28115 @item
28116 Code optimizer can take Inline Assembler code into account
28117 @end itemize
28118
28119 This appendix presents a series of examples to show you how to use
28120 the Inline Assembler. Although it focuses on the Intel x86,
28121 the general approach applies also to other processors.
28122 It is assumed that you are familiar with Ada
28123 and with assembly language programming.
28124
28125 @menu
28126 * Basic Assembler Syntax::
28127 * A Simple Example of Inline Assembler::
28128 * Output Variables in Inline Assembler::
28129 * Input Variables in Inline Assembler::
28130 * Inlining Inline Assembler Code::
28131 * Other Asm Functionality::
28132
28133 @end menu
28134
28135 @node Basic Assembler Syntax,A Simple Example of Inline Assembler,,Inline Assembler
28136 @anchor{gnat_ugn/inline_assembler basic-assembler-syntax}@anchor{238}@anchor{gnat_ugn/inline_assembler id2}@anchor{239}
28137 @section Basic Assembler Syntax
28138
28139
28140 The assembler used by GNAT and gcc is based not on the Intel assembly
28141 language, but rather on a language that descends from the AT&T Unix
28142 assembler @code{as} (and which is often referred to as ‘AT&T syntax’).
28143 The following table summarizes the main features of @code{as} syntax
28144 and points out the differences from the Intel conventions.
28145 See the gcc @code{as} and @code{gas} (an @code{as} macro
28146 pre-processor) documentation for further information.
28147
28148
28149 @display
28150 `Register names'@w{ }
28151 @display
28152 gcc / @code{as}: Prefix with ‘%’; for example @code{%eax}@w{ }
28153 Intel: No extra punctuation; for example @code{eax}@w{ }
28154 @end display
28155 @end display
28156
28157
28158
28159
28160 @display
28161 `Immediate operand'@w{ }
28162 @display
28163 gcc / @code{as}: Prefix with ‘$’; for example @code{$4}@w{ }
28164 Intel: No extra punctuation; for example @code{4}@w{ }
28165 @end display
28166 @end display
28167
28168
28169
28170
28171 @display
28172 `Address'@w{ }
28173 @display
28174 gcc / @code{as}: Prefix with ‘$’; for example @code{$loc}@w{ }
28175 Intel: No extra punctuation; for example @code{loc}@w{ }
28176 @end display
28177 @end display
28178
28179
28180
28181
28182 @display
28183 `Memory contents'@w{ }
28184 @display
28185 gcc / @code{as}: No extra punctuation; for example @code{loc}@w{ }
28186 Intel: Square brackets; for example @code{[loc]}@w{ }
28187 @end display
28188 @end display
28189
28190
28191
28192
28193 @display
28194 `Register contents'@w{ }
28195 @display
28196 gcc / @code{as}: Parentheses; for example @code{(%eax)}@w{ }
28197 Intel: Square brackets; for example @code{[eax]}@w{ }
28198 @end display
28199 @end display
28200
28201
28202
28203
28204 @display
28205 `Hexadecimal numbers'@w{ }
28206 @display
28207 gcc / @code{as}: Leading ‘0x’ (C language syntax); for example @code{0xA0}@w{ }
28208 Intel: Trailing ‘h’; for example @code{A0h}@w{ }
28209 @end display
28210 @end display
28211
28212
28213
28214
28215 @display
28216 `Operand size'@w{ }
28217 @display
28218 gcc / @code{as}: Explicit in op code; for example @code{movw} to move a 16-bit word@w{ }
28219 Intel: Implicit, deduced by assembler; for example @code{mov}@w{ }
28220 @end display
28221 @end display
28222
28223
28224
28225
28226 @display
28227 `Instruction repetition'@w{ }
28228 @display
28229 gcc / @code{as}: Split into two lines; for example@w{ }
28230 @display
28231 @code{rep}@w{ }
28232 @code{stosl}@w{ }
28233 @end display
28234 Intel: Keep on one line; for example @code{rep stosl}@w{ }
28235 @end display
28236 @end display
28237
28238
28239
28240
28241 @display
28242 `Order of operands'@w{ }
28243 @display
28244 gcc / @code{as}: Source first; for example @code{movw $4, %eax}@w{ }
28245 Intel: Destination first; for example @code{mov eax, 4}@w{ }
28246 @end display
28247 @end display
28248
28249
28250
28251 @node A Simple Example of Inline Assembler,Output Variables in Inline Assembler,Basic Assembler Syntax,Inline Assembler
28252 @anchor{gnat_ugn/inline_assembler a-simple-example-of-inline-assembler}@anchor{23a}@anchor{gnat_ugn/inline_assembler id3}@anchor{23b}
28253 @section A Simple Example of Inline Assembler
28254
28255
28256 The following example will generate a single assembly language statement,
28257 @code{nop}, which does nothing. Despite its lack of run-time effect,
28258 the example will be useful in illustrating the basics of
28259 the Inline Assembler facility.
28260
28261 @quotation
28262
28263 @example
28264 with System.Machine_Code; use System.Machine_Code;
28265 procedure Nothing is
28266 begin
28267 Asm ("nop");
28268 end Nothing;
28269 @end example
28270 @end quotation
28271
28272 @code{Asm} is a procedure declared in package @code{System.Machine_Code};
28273 here it takes one parameter, a `template string' that must be a static
28274 expression and that will form the generated instruction.
28275 @code{Asm} may be regarded as a compile-time procedure that parses
28276 the template string and additional parameters (none here),
28277 from which it generates a sequence of assembly language instructions.
28278
28279 The examples in this chapter will illustrate several of the forms
28280 for invoking @code{Asm}; a complete specification of the syntax
28281 is found in the @code{Machine_Code_Insertions} section of the
28282 @cite{GNAT Reference Manual}.
28283
28284 Under the standard GNAT conventions, the @code{Nothing} procedure
28285 should be in a file named @code{nothing.adb}.
28286 You can build the executable in the usual way:
28287
28288 @quotation
28289
28290 @example
28291 $ gnatmake nothing
28292 @end example
28293 @end quotation
28294
28295 However, the interesting aspect of this example is not its run-time behavior
28296 but rather the generated assembly code.
28297 To see this output, invoke the compiler as follows:
28298
28299 @quotation
28300
28301 @example
28302 $ gcc -c -S -fomit-frame-pointer -gnatp nothing.adb
28303 @end example
28304 @end quotation
28305
28306 where the options are:
28307
28308
28309 @itemize *
28310
28311 @item
28312
28313 @table @asis
28314
28315 @item @code{-c}
28316
28317 compile only (no bind or link)
28318 @end table
28319
28320 @item
28321
28322 @table @asis
28323
28324 @item @code{-S}
28325
28326 generate assembler listing
28327 @end table
28328
28329 @item
28330
28331 @table @asis
28332
28333 @item @code{-fomit-frame-pointer}
28334
28335 do not set up separate stack frames
28336 @end table
28337
28338 @item
28339
28340 @table @asis
28341
28342 @item @code{-gnatp}
28343
28344 do not add runtime checks
28345 @end table
28346 @end itemize
28347
28348 This gives a human-readable assembler version of the code. The resulting
28349 file will have the same name as the Ada source file, but with a @code{.s}
28350 extension. In our example, the file @code{nothing.s} has the following
28351 contents:
28352
28353 @quotation
28354
28355 @example
28356 .file "nothing.adb"
28357 gcc2_compiled.:
28358 ___gnu_compiled_ada:
28359 .text
28360 .align 4
28361 .globl __ada_nothing
28362 __ada_nothing:
28363 #APP
28364 nop
28365 #NO_APP
28366 jmp L1
28367 .align 2,0x90
28368 L1:
28369 ret
28370 @end example
28371 @end quotation
28372
28373 The assembly code you included is clearly indicated by
28374 the compiler, between the @code{#APP} and @code{#NO_APP}
28375 delimiters. The character before the ‘APP’ and ‘NOAPP’
28376 can differ on different targets. For example, GNU/Linux uses ‘#APP’ while
28377 on NT you will see ‘/APP’.
28378
28379 If you make a mistake in your assembler code (such as using the
28380 wrong size modifier, or using a wrong operand for the instruction) GNAT
28381 will report this error in a temporary file, which will be deleted when
28382 the compilation is finished. Generating an assembler file will help
28383 in such cases, since you can assemble this file separately using the
28384 @code{as} assembler that comes with gcc.
28385
28386 Assembling the file using the command
28387
28388 @quotation
28389
28390 @example
28391 $ as nothing.s
28392 @end example
28393 @end quotation
28394
28395 will give you error messages whose lines correspond to the assembler
28396 input file, so you can easily find and correct any mistakes you made.
28397 If there are no errors, @code{as} will generate an object file
28398 @code{nothing.out}.
28399
28400 @node Output Variables in Inline Assembler,Input Variables in Inline Assembler,A Simple Example of Inline Assembler,Inline Assembler
28401 @anchor{gnat_ugn/inline_assembler id4}@anchor{23c}@anchor{gnat_ugn/inline_assembler output-variables-in-inline-assembler}@anchor{23d}
28402 @section Output Variables in Inline Assembler
28403
28404
28405 The examples in this section, showing how to access the processor flags,
28406 illustrate how to specify the destination operands for assembly language
28407 statements.
28408
28409 @quotation
28410
28411 @example
28412 with Interfaces; use Interfaces;
28413 with Ada.Text_IO; use Ada.Text_IO;
28414 with System.Machine_Code; use System.Machine_Code;
28415 procedure Get_Flags is
28416 Flags : Unsigned_32;
28417 use ASCII;
28418 begin
28419 Asm ("pushfl" & LF & HT & -- push flags on stack
28420 "popl %%eax" & LF & HT & -- load eax with flags
28421 "movl %%eax, %0", -- store flags in variable
28422 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
28423 Put_Line ("Flags register:" & Flags'Img);
28424 end Get_Flags;
28425 @end example
28426 @end quotation
28427
28428 In order to have a nicely aligned assembly listing, we have separated
28429 multiple assembler statements in the Asm template string with linefeed
28430 (ASCII.LF) and horizontal tab (ASCII.HT) characters.
28431 The resulting section of the assembly output file is:
28432
28433 @quotation
28434
28435 @example
28436 #APP
28437 pushfl
28438 popl %eax
28439 movl %eax, -40(%ebp)
28440 #NO_APP
28441 @end example
28442 @end quotation
28443
28444 It would have been legal to write the Asm invocation as:
28445
28446 @quotation
28447
28448 @example
28449 Asm ("pushfl popl %%eax movl %%eax, %0")
28450 @end example
28451 @end quotation
28452
28453 but in the generated assembler file, this would come out as:
28454
28455 @quotation
28456
28457 @example
28458 #APP
28459 pushfl popl %eax movl %eax, -40(%ebp)
28460 #NO_APP
28461 @end example
28462 @end quotation
28463
28464 which is not so convenient for the human reader.
28465
28466 We use Ada comments
28467 at the end of each line to explain what the assembler instructions
28468 actually do. This is a useful convention.
28469
28470 When writing Inline Assembler instructions, you need to precede each register
28471 and variable name with a percent sign. Since the assembler already requires
28472 a percent sign at the beginning of a register name, you need two consecutive
28473 percent signs for such names in the Asm template string, thus @code{%%eax}.
28474 In the generated assembly code, one of the percent signs will be stripped off.
28475
28476 Names such as @code{%0}, @code{%1}, @code{%2}, etc., denote input or output
28477 variables: operands you later define using @code{Input} or @code{Output}
28478 parameters to @code{Asm}.
28479 An output variable is illustrated in
28480 the third statement in the Asm template string:
28481
28482 @quotation
28483
28484 @example
28485 movl %%eax, %0
28486 @end example
28487 @end quotation
28488
28489 The intent is to store the contents of the eax register in a variable that can
28490 be accessed in Ada. Simply writing @code{movl %%eax, Flags} would not
28491 necessarily work, since the compiler might optimize by using a register
28492 to hold Flags, and the expansion of the @code{movl} instruction would not be
28493 aware of this optimization. The solution is not to store the result directly
28494 but rather to advise the compiler to choose the correct operand form;
28495 that is the purpose of the @code{%0} output variable.
28496
28497 Information about the output variable is supplied in the @code{Outputs}
28498 parameter to @code{Asm}:
28499
28500 @quotation
28501
28502 @example
28503 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
28504 @end example
28505 @end quotation
28506
28507 The output is defined by the @code{Asm_Output} attribute of the target type;
28508 the general format is
28509
28510 @quotation
28511
28512 @example
28513 Type'Asm_Output (constraint_string, variable_name)
28514 @end example
28515 @end quotation
28516
28517 The constraint string directs the compiler how
28518 to store/access the associated variable. In the example
28519
28520 @quotation
28521
28522 @example
28523 Unsigned_32'Asm_Output ("=m", Flags);
28524 @end example
28525 @end quotation
28526
28527 the @code{"m"} (memory) constraint tells the compiler that the variable
28528 @code{Flags} should be stored in a memory variable, thus preventing
28529 the optimizer from keeping it in a register. In contrast,
28530
28531 @quotation
28532
28533 @example
28534 Unsigned_32'Asm_Output ("=r", Flags);
28535 @end example
28536 @end quotation
28537
28538 uses the @code{"r"} (register) constraint, telling the compiler to
28539 store the variable in a register.
28540
28541 If the constraint is preceded by the equal character ‘=’, it tells
28542 the compiler that the variable will be used to store data into it.
28543
28544 In the @code{Get_Flags} example, we used the @code{"g"} (global) constraint,
28545 allowing the optimizer to choose whatever it deems best.
28546
28547 There are a fairly large number of constraints, but the ones that are
28548 most useful (for the Intel x86 processor) are the following:
28549
28550 @quotation
28551
28552
28553 @multitable {xxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
28554 @item
28555
28556 `='
28557
28558 @tab
28559
28560 output constraint
28561
28562 @item
28563
28564 `g'
28565
28566 @tab
28567
28568 global (i.e., can be stored anywhere)
28569
28570 @item
28571
28572 `m'
28573
28574 @tab
28575
28576 in memory
28577
28578 @item
28579
28580 `I'
28581
28582 @tab
28583
28584 a constant
28585
28586 @item
28587
28588 `a'
28589
28590 @tab
28591
28592 use eax
28593
28594 @item
28595
28596 `b'
28597
28598 @tab
28599
28600 use ebx
28601
28602 @item
28603
28604 `c'
28605
28606 @tab
28607
28608 use ecx
28609
28610 @item
28611
28612 `d'
28613
28614 @tab
28615
28616 use edx
28617
28618 @item
28619
28620 `S'
28621
28622 @tab
28623
28624 use esi
28625
28626 @item
28627
28628 `D'
28629
28630 @tab
28631
28632 use edi
28633
28634 @item
28635
28636 `r'
28637
28638 @tab
28639
28640 use one of eax, ebx, ecx or edx
28641
28642 @item
28643
28644 `q'
28645
28646 @tab
28647
28648 use one of eax, ebx, ecx, edx, esi or edi
28649
28650 @end multitable
28651
28652 @end quotation
28653
28654 The full set of constraints is described in the gcc and @code{as}
28655 documentation; note that it is possible to combine certain constraints
28656 in one constraint string.
28657
28658 You specify the association of an output variable with an assembler operand
28659 through the @code{%@var{n}} notation, where `n' is a non-negative
28660 integer. Thus in
28661
28662 @quotation
28663
28664 @example
28665 Asm ("pushfl" & LF & HT & -- push flags on stack
28666 "popl %%eax" & LF & HT & -- load eax with flags
28667 "movl %%eax, %0", -- store flags in variable
28668 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
28669 @end example
28670 @end quotation
28671
28672 @code{%0} will be replaced in the expanded code by the appropriate operand,
28673 whatever
28674 the compiler decided for the @code{Flags} variable.
28675
28676 In general, you may have any number of output variables:
28677
28678
28679 @itemize *
28680
28681 @item
28682 Count the operands starting at 0; thus @code{%0}, @code{%1}, etc.
28683
28684 @item
28685 Specify the @code{Outputs} parameter as a parenthesized comma-separated list
28686 of @code{Asm_Output} attributes
28687 @end itemize
28688
28689 For example:
28690
28691 @quotation
28692
28693 @example
28694 Asm ("movl %%eax, %0" & LF & HT &
28695 "movl %%ebx, %1" & LF & HT &
28696 "movl %%ecx, %2",
28697 Outputs => (Unsigned_32'Asm_Output ("=g", Var_A), -- %0 = Var_A
28698 Unsigned_32'Asm_Output ("=g", Var_B), -- %1 = Var_B
28699 Unsigned_32'Asm_Output ("=g", Var_C))); -- %2 = Var_C
28700 @end example
28701 @end quotation
28702
28703 where @code{Var_A}, @code{Var_B}, and @code{Var_C} are variables
28704 in the Ada program.
28705
28706 As a variation on the @code{Get_Flags} example, we can use the constraints
28707 string to direct the compiler to store the eax register into the @code{Flags}
28708 variable, instead of including the store instruction explicitly in the
28709 @code{Asm} template string:
28710
28711 @quotation
28712
28713 @example
28714 with Interfaces; use Interfaces;
28715 with Ada.Text_IO; use Ada.Text_IO;
28716 with System.Machine_Code; use System.Machine_Code;
28717 procedure Get_Flags_2 is
28718 Flags : Unsigned_32;
28719 use ASCII;
28720 begin
28721 Asm ("pushfl" & LF & HT & -- push flags on stack
28722 "popl %%eax", -- save flags in eax
28723 Outputs => Unsigned_32'Asm_Output ("=a", Flags));
28724 Put_Line ("Flags register:" & Flags'Img);
28725 end Get_Flags_2;
28726 @end example
28727 @end quotation
28728
28729 The @code{"a"} constraint tells the compiler that the @code{Flags}
28730 variable will come from the eax register. Here is the resulting code:
28731
28732 @quotation
28733
28734 @example
28735 #APP
28736 pushfl
28737 popl %eax
28738 #NO_APP
28739 movl %eax,-40(%ebp)
28740 @end example
28741 @end quotation
28742
28743 The compiler generated the store of eax into Flags after
28744 expanding the assembler code.
28745
28746 Actually, there was no need to pop the flags into the eax register;
28747 more simply, we could just pop the flags directly into the program variable:
28748
28749 @quotation
28750
28751 @example
28752 with Interfaces; use Interfaces;
28753 with Ada.Text_IO; use Ada.Text_IO;
28754 with System.Machine_Code; use System.Machine_Code;
28755 procedure Get_Flags_3 is
28756 Flags : Unsigned_32;
28757 use ASCII;
28758 begin
28759 Asm ("pushfl" & LF & HT & -- push flags on stack
28760 "pop %0", -- save flags in Flags
28761 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
28762 Put_Line ("Flags register:" & Flags'Img);
28763 end Get_Flags_3;
28764 @end example
28765 @end quotation
28766
28767 @node Input Variables in Inline Assembler,Inlining Inline Assembler Code,Output Variables in Inline Assembler,Inline Assembler
28768 @anchor{gnat_ugn/inline_assembler id5}@anchor{23e}@anchor{gnat_ugn/inline_assembler input-variables-in-inline-assembler}@anchor{23f}
28769 @section Input Variables in Inline Assembler
28770
28771
28772 The example in this section illustrates how to specify the source operands
28773 for assembly language statements.
28774 The program simply increments its input value by 1:
28775
28776 @quotation
28777
28778 @example
28779 with Interfaces; use Interfaces;
28780 with Ada.Text_IO; use Ada.Text_IO;
28781 with System.Machine_Code; use System.Machine_Code;
28782 procedure Increment is
28783
28784 function Incr (Value : Unsigned_32) return Unsigned_32 is
28785 Result : Unsigned_32;
28786 begin
28787 Asm ("incl %0",
28788 Outputs => Unsigned_32'Asm_Output ("=a", Result),
28789 Inputs => Unsigned_32'Asm_Input ("a", Value));
28790 return Result;
28791 end Incr;
28792
28793 Value : Unsigned_32;
28794
28795 begin
28796 Value := 5;
28797 Put_Line ("Value before is" & Value'Img);
28798 Value := Incr (Value);
28799 Put_Line ("Value after is" & Value'Img);
28800 end Increment;
28801 @end example
28802 @end quotation
28803
28804 The @code{Outputs} parameter to @code{Asm} specifies
28805 that the result will be in the eax register and that it is to be stored
28806 in the @code{Result} variable.
28807
28808 The @code{Inputs} parameter looks much like the @code{Outputs} parameter,
28809 but with an @code{Asm_Input} attribute.
28810 The @code{"="} constraint, indicating an output value, is not present.
28811
28812 You can have multiple input variables, in the same way that you can have more
28813 than one output variable.
28814
28815 The parameter count (%0, %1) etc, still starts at the first output statement,
28816 and continues with the input statements.
28817
28818 Just as the @code{Outputs} parameter causes the register to be stored into the
28819 target variable after execution of the assembler statements, so does the
28820 @code{Inputs} parameter cause its variable to be loaded into the register
28821 before execution of the assembler statements.
28822
28823 Thus the effect of the @code{Asm} invocation is:
28824
28825
28826 @itemize *
28827
28828 @item
28829 load the 32-bit value of @code{Value} into eax
28830
28831 @item
28832 execute the @code{incl %eax} instruction
28833
28834 @item
28835 store the contents of eax into the @code{Result} variable
28836 @end itemize
28837
28838 The resulting assembler file (with @code{-O2} optimization) contains:
28839
28840 @quotation
28841
28842 @example
28843 _increment__incr.1:
28844 subl $4,%esp
28845 movl 8(%esp),%eax
28846 #APP
28847 incl %eax
28848 #NO_APP
28849 movl %eax,%edx
28850 movl %ecx,(%esp)
28851 addl $4,%esp
28852 ret
28853 @end example
28854 @end quotation
28855
28856 @node Inlining Inline Assembler Code,Other Asm Functionality,Input Variables in Inline Assembler,Inline Assembler
28857 @anchor{gnat_ugn/inline_assembler id6}@anchor{240}@anchor{gnat_ugn/inline_assembler inlining-inline-assembler-code}@anchor{241}
28858 @section Inlining Inline Assembler Code
28859
28860
28861 For a short subprogram such as the @code{Incr} function in the previous
28862 section, the overhead of the call and return (creating / deleting the stack
28863 frame) can be significant, compared to the amount of code in the subprogram
28864 body. A solution is to apply Ada’s @code{Inline} pragma to the subprogram,
28865 which directs the compiler to expand invocations of the subprogram at the
28866 point(s) of call, instead of setting up a stack frame for out-of-line calls.
28867 Here is the resulting program:
28868
28869 @quotation
28870
28871 @example
28872 with Interfaces; use Interfaces;
28873 with Ada.Text_IO; use Ada.Text_IO;
28874 with System.Machine_Code; use System.Machine_Code;
28875 procedure Increment_2 is
28876
28877 function Incr (Value : Unsigned_32) return Unsigned_32 is
28878 Result : Unsigned_32;
28879 begin
28880 Asm ("incl %0",
28881 Outputs => Unsigned_32'Asm_Output ("=a", Result),
28882 Inputs => Unsigned_32'Asm_Input ("a", Value));
28883 return Result;
28884 end Incr;
28885 pragma Inline (Increment);
28886
28887 Value : Unsigned_32;
28888
28889 begin
28890 Value := 5;
28891 Put_Line ("Value before is" & Value'Img);
28892 Value := Increment (Value);
28893 Put_Line ("Value after is" & Value'Img);
28894 end Increment_2;
28895 @end example
28896 @end quotation
28897
28898 Compile the program with both optimization (@code{-O2}) and inlining
28899 (@code{-gnatn}) enabled.
28900
28901 The @code{Incr} function is still compiled as usual, but at the
28902 point in @code{Increment} where our function used to be called:
28903
28904 @quotation
28905
28906 @example
28907 pushl %edi
28908 call _increment__incr.1
28909 @end example
28910 @end quotation
28911
28912 the code for the function body directly appears:
28913
28914 @quotation
28915
28916 @example
28917 movl %esi,%eax
28918 #APP
28919 incl %eax
28920 #NO_APP
28921 movl %eax,%edx
28922 @end example
28923 @end quotation
28924
28925 thus saving the overhead of stack frame setup and an out-of-line call.
28926
28927 @node Other Asm Functionality,,Inlining Inline Assembler Code,Inline Assembler
28928 @anchor{gnat_ugn/inline_assembler id7}@anchor{242}@anchor{gnat_ugn/inline_assembler other-asm-functionality}@anchor{243}
28929 @section Other @code{Asm} Functionality
28930
28931
28932 This section describes two important parameters to the @code{Asm}
28933 procedure: @code{Clobber}, which identifies register usage;
28934 and @code{Volatile}, which inhibits unwanted optimizations.
28935
28936 @menu
28937 * The Clobber Parameter::
28938 * The Volatile Parameter::
28939
28940 @end menu
28941
28942 @node The Clobber Parameter,The Volatile Parameter,,Other Asm Functionality
28943 @anchor{gnat_ugn/inline_assembler id8}@anchor{244}@anchor{gnat_ugn/inline_assembler the-clobber-parameter}@anchor{245}
28944 @subsection The @code{Clobber} Parameter
28945
28946
28947 One of the dangers of intermixing assembly language and a compiled language
28948 such as Ada is that the compiler needs to be aware of which registers are
28949 being used by the assembly code. In some cases, such as the earlier examples,
28950 the constraint string is sufficient to indicate register usage (e.g.,
28951 @code{"a"} for
28952 the eax register). But more generally, the compiler needs an explicit
28953 identification of the registers that are used by the Inline Assembly
28954 statements.
28955
28956 Using a register that the compiler doesn’t know about
28957 could be a side effect of an instruction (like @code{mull}
28958 storing its result in both eax and edx).
28959 It can also arise from explicit register usage in your
28960 assembly code; for example:
28961
28962 @quotation
28963
28964 @example
28965 Asm ("movl %0, %%ebx" & LF & HT &
28966 "movl %%ebx, %1",
28967 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
28968 Inputs => Unsigned_32'Asm_Input ("g", Var_In));
28969 @end example
28970 @end quotation
28971
28972 where the compiler (since it does not analyze the @code{Asm} template string)
28973 does not know you are using the ebx register.
28974
28975 In such cases you need to supply the @code{Clobber} parameter to @code{Asm},
28976 to identify the registers that will be used by your assembly code:
28977
28978 @quotation
28979
28980 @example
28981 Asm ("movl %0, %%ebx" & LF & HT &
28982 "movl %%ebx, %1",
28983 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
28984 Inputs => Unsigned_32'Asm_Input ("g", Var_In),
28985 Clobber => "ebx");
28986 @end example
28987 @end quotation
28988
28989 The Clobber parameter is a static string expression specifying the
28990 register(s) you are using. Note that register names are `not' prefixed
28991 by a percent sign. Also, if more than one register is used then their names
28992 are separated by commas; e.g., @code{"eax, ebx"}
28993
28994 The @code{Clobber} parameter has several additional uses:
28995
28996
28997 @itemize *
28998
28999 @item
29000 Use ‘register’ name @code{cc} to indicate that flags might have changed
29001
29002 @item
29003 Use ‘register’ name @code{memory} if you changed a memory location
29004 @end itemize
29005
29006 @node The Volatile Parameter,,The Clobber Parameter,Other Asm Functionality
29007 @anchor{gnat_ugn/inline_assembler id9}@anchor{246}@anchor{gnat_ugn/inline_assembler the-volatile-parameter}@anchor{247}
29008 @subsection The @code{Volatile} Parameter
29009
29010
29011 @geindex Volatile parameter
29012
29013 Compiler optimizations in the presence of Inline Assembler may sometimes have
29014 unwanted effects. For example, when an @code{Asm} invocation with an input
29015 variable is inside a loop, the compiler might move the loading of the input
29016 variable outside the loop, regarding it as a one-time initialization.
29017
29018 If this effect is not desired, you can disable such optimizations by setting
29019 the @code{Volatile} parameter to @code{True}; for example:
29020
29021 @quotation
29022
29023 @example
29024 Asm ("movl %0, %%ebx" & LF & HT &
29025 "movl %%ebx, %1",
29026 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
29027 Inputs => Unsigned_32'Asm_Input ("g", Var_In),
29028 Clobber => "ebx",
29029 Volatile => True);
29030 @end example
29031 @end quotation
29032
29033 By default, @code{Volatile} is set to @code{False} unless there is no
29034 @code{Outputs} parameter.
29035
29036 Although setting @code{Volatile} to @code{True} prevents unwanted
29037 optimizations, it will also disable other optimizations that might be
29038 important for efficiency. In general, you should set @code{Volatile}
29039 to @code{True} only if the compiler’s optimizations have created
29040 problems.
29041
29042 @node GNU Free Documentation License,Index,Inline Assembler,Top
29043 @anchor{share/gnu_free_documentation_license doc}@anchor{248}@anchor{share/gnu_free_documentation_license gnu-fdl}@anchor{1}@anchor{share/gnu_free_documentation_license gnu-free-documentation-license}@anchor{249}
29044 @chapter GNU Free Documentation License
29045
29046
29047 Version 1.3, 3 November 2008
29048
29049 Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc
29050 @indicateurl{https://fsf.org/}
29051
29052 Everyone is permitted to copy and distribute verbatim copies of this
29053 license document, but changing it is not allowed.
29054
29055 `Preamble'
29056
29057 The purpose of this License is to make a manual, textbook, or other
29058 functional and useful document “free” in the sense of freedom: to
29059 assure everyone the effective freedom to copy and redistribute it,
29060 with or without modifying it, either commercially or noncommercially.
29061 Secondarily, this License preserves for the author and publisher a way
29062 to get credit for their work, while not being considered responsible
29063 for modifications made by others.
29064
29065 This License is a kind of “copyleft”, which means that derivative
29066 works of the document must themselves be free in the same sense. It
29067 complements the GNU General Public License, which is a copyleft
29068 license designed for free software.
29069
29070 We have designed this License in order to use it for manuals for free
29071 software, because free software needs free documentation: a free
29072 program should come with manuals providing the same freedoms that the
29073 software does. But this License is not limited to software manuals;
29074 it can be used for any textual work, regardless of subject matter or
29075 whether it is published as a printed book. We recommend this License
29076 principally for works whose purpose is instruction or reference.
29077
29078 `1. APPLICABILITY AND DEFINITIONS'
29079
29080 This License applies to any manual or other work, in any medium, that
29081 contains a notice placed by the copyright holder saying it can be
29082 distributed under the terms of this License. Such a notice grants a
29083 world-wide, royalty-free license, unlimited in duration, to use that
29084 work under the conditions stated herein. The `Document', below,
29085 refers to any such manual or work. Any member of the public is a
29086 licensee, and is addressed as “`you'”. You accept the license if you
29087 copy, modify or distribute the work in a way requiring permission
29088 under copyright law.
29089
29090 A “`Modified Version'” of the Document means any work containing the
29091 Document or a portion of it, either copied verbatim, or with
29092 modifications and/or translated into another language.
29093
29094 A “`Secondary Section'” is a named appendix or a front-matter section of
29095 the Document that deals exclusively with the relationship of the
29096 publishers or authors of the Document to the Document’s overall subject
29097 (or to related matters) and contains nothing that could fall directly
29098 within that overall subject. (Thus, if the Document is in part a
29099 textbook of mathematics, a Secondary Section may not explain any
29100 mathematics.) The relationship could be a matter of historical
29101 connection with the subject or with related matters, or of legal,
29102 commercial, philosophical, ethical or political position regarding
29103 them.
29104
29105 The “`Invariant Sections'” are certain Secondary Sections whose titles
29106 are designated, as being those of Invariant Sections, in the notice
29107 that says that the Document is released under this License. If a
29108 section does not fit the above definition of Secondary then it is not
29109 allowed to be designated as Invariant. The Document may contain zero
29110 Invariant Sections. If the Document does not identify any Invariant
29111 Sections then there are none.
29112
29113 The “`Cover Texts'” are certain short passages of text that are listed,
29114 as Front-Cover Texts or Back-Cover Texts, in the notice that says that
29115 the Document is released under this License. A Front-Cover Text may
29116 be at most 5 words, and a Back-Cover Text may be at most 25 words.
29117
29118 A “`Transparent'” copy of the Document means a machine-readable copy,
29119 represented in a format whose specification is available to the
29120 general public, that is suitable for revising the document
29121 straightforwardly with generic text editors or (for images composed of
29122 pixels) generic paint programs or (for drawings) some widely available
29123 drawing editor, and that is suitable for input to text formatters or
29124 for automatic translation to a variety of formats suitable for input
29125 to text formatters. A copy made in an otherwise Transparent file
29126 format whose markup, or absence of markup, has been arranged to thwart
29127 or discourage subsequent modification by readers is not Transparent.
29128 An image format is not Transparent if used for any substantial amount
29129 of text. A copy that is not “Transparent” is called `Opaque'.
29130
29131 Examples of suitable formats for Transparent copies include plain
29132 ASCII without markup, Texinfo input format, LaTeX input format, SGML
29133 or XML using a publicly available DTD, and standard-conforming simple
29134 HTML, PostScript or PDF designed for human modification. Examples of
29135 transparent image formats include PNG, XCF and JPG. Opaque formats
29136 include proprietary formats that can be read and edited only by
29137 proprietary word processors, SGML or XML for which the DTD and/or
29138 processing tools are not generally available, and the
29139 machine-generated HTML, PostScript or PDF produced by some word
29140 processors for output purposes only.
29141
29142 The “`Title Page'” means, for a printed book, the title page itself,
29143 plus such following pages as are needed to hold, legibly, the material
29144 this License requires to appear in the title page. For works in
29145 formats which do not have any title page as such, “Title Page” means
29146 the text near the most prominent appearance of the work’s title,
29147 preceding the beginning of the body of the text.
29148
29149 The “`publisher'” means any person or entity that distributes
29150 copies of the Document to the public.
29151
29152 A section “`Entitled XYZ'” means a named subunit of the Document whose
29153 title either is precisely XYZ or contains XYZ in parentheses following
29154 text that translates XYZ in another language. (Here XYZ stands for a
29155 specific section name mentioned below, such as “`Acknowledgements'”,
29156 “`Dedications'”, “`Endorsements'”, or “`History'”.)
29157 To “`Preserve the Title'”
29158 of such a section when you modify the Document means that it remains a
29159 section “Entitled XYZ” according to this definition.
29160
29161 The Document may include Warranty Disclaimers next to the notice which
29162 states that this License applies to the Document. These Warranty
29163 Disclaimers are considered to be included by reference in this
29164 License, but only as regards disclaiming warranties: any other
29165 implication that these Warranty Disclaimers may have is void and has
29166 no effect on the meaning of this License.
29167
29168 `2. VERBATIM COPYING'
29169
29170 You may copy and distribute the Document in any medium, either
29171 commercially or noncommercially, provided that this License, the
29172 copyright notices, and the license notice saying this License applies
29173 to the Document are reproduced in all copies, and that you add no other
29174 conditions whatsoever to those of this License. You may not use
29175 technical measures to obstruct or control the reading or further
29176 copying of the copies you make or distribute. However, you may accept
29177 compensation in exchange for copies. If you distribute a large enough
29178 number of copies you must also follow the conditions in section 3.
29179
29180 You may also lend copies, under the same conditions stated above, and
29181 you may publicly display copies.
29182
29183 `3. COPYING IN QUANTITY'
29184
29185 If you publish printed copies (or copies in media that commonly have
29186 printed covers) of the Document, numbering more than 100, and the
29187 Document’s license notice requires Cover Texts, you must enclose the
29188 copies in covers that carry, clearly and legibly, all these Cover
29189 Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
29190 the back cover. Both covers must also clearly and legibly identify
29191 you as the publisher of these copies. The front cover must present
29192 the full title with all words of the title equally prominent and
29193 visible. You may add other material on the covers in addition.
29194 Copying with changes limited to the covers, as long as they preserve
29195 the title of the Document and satisfy these conditions, can be treated
29196 as verbatim copying in other respects.
29197
29198 If the required texts for either cover are too voluminous to fit
29199 legibly, you should put the first ones listed (as many as fit
29200 reasonably) on the actual cover, and continue the rest onto adjacent
29201 pages.
29202
29203 If you publish or distribute Opaque copies of the Document numbering
29204 more than 100, you must either include a machine-readable Transparent
29205 copy along with each Opaque copy, or state in or with each Opaque copy
29206 a computer-network location from which the general network-using
29207 public has access to download using public-standard network protocols
29208 a complete Transparent copy of the Document, free of added material.
29209 If you use the latter option, you must take reasonably prudent steps,
29210 when you begin distribution of Opaque copies in quantity, to ensure
29211 that this Transparent copy will remain thus accessible at the stated
29212 location until at least one year after the last time you distribute an
29213 Opaque copy (directly or through your agents or retailers) of that
29214 edition to the public.
29215
29216 It is requested, but not required, that you contact the authors of the
29217 Document well before redistributing any large number of copies, to give
29218 them a chance to provide you with an updated version of the Document.
29219
29220 `4. MODIFICATIONS'
29221
29222 You may copy and distribute a Modified Version of the Document under
29223 the conditions of sections 2 and 3 above, provided that you release
29224 the Modified Version under precisely this License, with the Modified
29225 Version filling the role of the Document, thus licensing distribution
29226 and modification of the Modified Version to whoever possesses a copy
29227 of it. In addition, you must do these things in the Modified Version:
29228
29229
29230 @enumerate A
29231
29232 @item
29233 Use in the Title Page (and on the covers, if any) a title distinct
29234 from that of the Document, and from those of previous versions
29235 (which should, if there were any, be listed in the History section
29236 of the Document). You may use the same title as a previous version
29237 if the original publisher of that version gives permission.
29238
29239 @item
29240 List on the Title Page, as authors, one or more persons or entities
29241 responsible for authorship of the modifications in the Modified
29242 Version, together with at least five of the principal authors of the
29243 Document (all of its principal authors, if it has fewer than five),
29244 unless they release you from this requirement.
29245
29246 @item
29247 State on the Title page the name of the publisher of the
29248 Modified Version, as the publisher.
29249
29250 @item
29251 Preserve all the copyright notices of the Document.
29252
29253 @item
29254 Add an appropriate copyright notice for your modifications
29255 adjacent to the other copyright notices.
29256
29257 @item
29258 Include, immediately after the copyright notices, a license notice
29259 giving the public permission to use the Modified Version under the
29260 terms of this License, in the form shown in the Addendum below.
29261
29262 @item
29263 Preserve in that license notice the full lists of Invariant Sections
29264 and required Cover Texts given in the Document’s license notice.
29265
29266 @item
29267 Include an unaltered copy of this License.
29268
29269 @item
29270 Preserve the section Entitled “History”, Preserve its Title, and add
29271 to it an item stating at least the title, year, new authors, and
29272 publisher of the Modified Version as given on the Title Page. If
29273 there is no section Entitled “History” in the Document, create one
29274 stating the title, year, authors, and publisher of the Document as
29275 given on its Title Page, then add an item describing the Modified
29276 Version as stated in the previous sentence.
29277
29278 @item
29279 Preserve the network location, if any, given in the Document for
29280 public access to a Transparent copy of the Document, and likewise
29281 the network locations given in the Document for previous versions
29282 it was based on. These may be placed in the “History” section.
29283 You may omit a network location for a work that was published at
29284 least four years before the Document itself, or if the original
29285 publisher of the version it refers to gives permission.
29286
29287 @item
29288 For any section Entitled “Acknowledgements” or “Dedications”,
29289 Preserve the Title of the section, and preserve in the section all
29290 the substance and tone of each of the contributor acknowledgements
29291 and/or dedications given therein.
29292
29293 @item
29294 Preserve all the Invariant Sections of the Document,
29295 unaltered in their text and in their titles. Section numbers
29296 or the equivalent are not considered part of the section titles.
29297
29298 @item
29299 Delete any section Entitled “Endorsements”. Such a section
29300 may not be included in the Modified Version.
29301
29302 @item
29303 Do not retitle any existing section to be Entitled “Endorsements”
29304 or to conflict in title with any Invariant Section.
29305
29306 @item
29307 Preserve any Warranty Disclaimers.
29308 @end enumerate
29309
29310 If the Modified Version includes new front-matter sections or
29311 appendices that qualify as Secondary Sections and contain no material
29312 copied from the Document, you may at your option designate some or all
29313 of these sections as invariant. To do this, add their titles to the
29314 list of Invariant Sections in the Modified Version’s license notice.
29315 These titles must be distinct from any other section titles.
29316
29317 You may add a section Entitled “Endorsements”, provided it contains
29318 nothing but endorsements of your Modified Version by various
29319 parties—for example, statements of peer review or that the text has
29320 been approved by an organization as the authoritative definition of a
29321 standard.
29322
29323 You may add a passage of up to five words as a Front-Cover Text, and a
29324 passage of up to 25 words as a Back-Cover Text, to the end of the list
29325 of Cover Texts in the Modified Version. Only one passage of
29326 Front-Cover Text and one of Back-Cover Text may be added by (or
29327 through arrangements made by) any one entity. If the Document already
29328 includes a cover text for the same cover, previously added by you or
29329 by arrangement made by the same entity you are acting on behalf of,
29330 you may not add another; but you may replace the old one, on explicit
29331 permission from the previous publisher that added the old one.
29332
29333 The author(s) and publisher(s) of the Document do not by this License
29334 give permission to use their names for publicity for or to assert or
29335 imply endorsement of any Modified Version.
29336
29337 `5. COMBINING DOCUMENTS'
29338
29339 You may combine the Document with other documents released under this
29340 License, under the terms defined in section 4 above for modified
29341 versions, provided that you include in the combination all of the
29342 Invariant Sections of all of the original documents, unmodified, and
29343 list them all as Invariant Sections of your combined work in its
29344 license notice, and that you preserve all their Warranty Disclaimers.
29345
29346 The combined work need only contain one copy of this License, and
29347 multiple identical Invariant Sections may be replaced with a single
29348 copy. If there are multiple Invariant Sections with the same name but
29349 different contents, make the title of each such section unique by
29350 adding at the end of it, in parentheses, the name of the original
29351 author or publisher of that section if known, or else a unique number.
29352 Make the same adjustment to the section titles in the list of
29353 Invariant Sections in the license notice of the combined work.
29354
29355 In the combination, you must combine any sections Entitled “History”
29356 in the various original documents, forming one section Entitled
29357 “History”; likewise combine any sections Entitled “Acknowledgements”,
29358 and any sections Entitled “Dedications”. You must delete all sections
29359 Entitled “Endorsements”.
29360
29361 `6. COLLECTIONS OF DOCUMENTS'
29362
29363 You may make a collection consisting of the Document and other documents
29364 released under this License, and replace the individual copies of this
29365 License in the various documents with a single copy that is included in
29366 the collection, provided that you follow the rules of this License for
29367 verbatim copying of each of the documents in all other respects.
29368
29369 You may extract a single document from such a collection, and distribute
29370 it individually under this License, provided you insert a copy of this
29371 License into the extracted document, and follow this License in all
29372 other respects regarding verbatim copying of that document.
29373
29374 `7. AGGREGATION WITH INDEPENDENT WORKS'
29375
29376 A compilation of the Document or its derivatives with other separate
29377 and independent documents or works, in or on a volume of a storage or
29378 distribution medium, is called an “aggregate” if the copyright
29379 resulting from the compilation is not used to limit the legal rights
29380 of the compilation’s users beyond what the individual works permit.
29381 When the Document is included in an aggregate, this License does not
29382 apply to the other works in the aggregate which are not themselves
29383 derivative works of the Document.
29384
29385 If the Cover Text requirement of section 3 is applicable to these
29386 copies of the Document, then if the Document is less than one half of
29387 the entire aggregate, the Document’s Cover Texts may be placed on
29388 covers that bracket the Document within the aggregate, or the
29389 electronic equivalent of covers if the Document is in electronic form.
29390 Otherwise they must appear on printed covers that bracket the whole
29391 aggregate.
29392
29393 `8. TRANSLATION'
29394
29395 Translation is considered a kind of modification, so you may
29396 distribute translations of the Document under the terms of section 4.
29397 Replacing Invariant Sections with translations requires special
29398 permission from their copyright holders, but you may include
29399 translations of some or all Invariant Sections in addition to the
29400 original versions of these Invariant Sections. You may include a
29401 translation of this License, and all the license notices in the
29402 Document, and any Warranty Disclaimers, provided that you also include
29403 the original English version of this License and the original versions
29404 of those notices and disclaimers. In case of a disagreement between
29405 the translation and the original version of this License or a notice
29406 or disclaimer, the original version will prevail.
29407
29408 If a section in the Document is Entitled “Acknowledgements”,
29409 “Dedications”, or “History”, the requirement (section 4) to Preserve
29410 its Title (section 1) will typically require changing the actual
29411 title.
29412
29413 `9. TERMINATION'
29414
29415 You may not copy, modify, sublicense, or distribute the Document
29416 except as expressly provided under this License. Any attempt
29417 otherwise to copy, modify, sublicense, or distribute it is void, and
29418 will automatically terminate your rights under this License.
29419
29420 However, if you cease all violation of this License, then your license
29421 from a particular copyright holder is reinstated (a) provisionally,
29422 unless and until the copyright holder explicitly and finally
29423 terminates your license, and (b) permanently, if the copyright holder
29424 fails to notify you of the violation by some reasonable means prior to
29425 60 days after the cessation.
29426
29427 Moreover, your license from a particular copyright holder is
29428 reinstated permanently if the copyright holder notifies you of the
29429 violation by some reasonable means, this is the first time you have
29430 received notice of violation of this License (for any work) from that
29431 copyright holder, and you cure the violation prior to 30 days after
29432 your receipt of the notice.
29433
29434 Termination of your rights under this section does not terminate the
29435 licenses of parties who have received copies or rights from you under
29436 this License. If your rights have been terminated and not permanently
29437 reinstated, receipt of a copy of some or all of the same material does
29438 not give you any rights to use it.
29439
29440 `10. FUTURE REVISIONS OF THIS LICENSE'
29441
29442 The Free Software Foundation may publish new, revised versions
29443 of the GNU Free Documentation License from time to time. Such new
29444 versions will be similar in spirit to the present version, but may
29445 differ in detail to address new problems or concerns. See
29446 @indicateurl{https://www.gnu.org/copyleft/}.
29447
29448 Each version of the License is given a distinguishing version number.
29449 If the Document specifies that a particular numbered version of this
29450 License “or any later version” applies to it, you have the option of
29451 following the terms and conditions either of that specified version or
29452 of any later version that has been published (not as a draft) by the
29453 Free Software Foundation. If the Document does not specify a version
29454 number of this License, you may choose any version ever published (not
29455 as a draft) by the Free Software Foundation. If the Document
29456 specifies that a proxy can decide which future versions of this
29457 License can be used, that proxy’s public statement of acceptance of a
29458 version permanently authorizes you to choose that version for the
29459 Document.
29460
29461 `11. RELICENSING'
29462
29463 “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
29464 World Wide Web server that publishes copyrightable works and also
29465 provides prominent facilities for anybody to edit those works. A
29466 public wiki that anybody can edit is an example of such a server. A
29467 “Massive Multiauthor Collaboration” (or “MMC”) contained in the
29468 site means any set of copyrightable works thus published on the MMC
29469 site.
29470
29471 “CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
29472 license published by Creative Commons Corporation, a not-for-profit
29473 corporation with a principal place of business in San Francisco,
29474 California, as well as future copyleft versions of that license
29475 published by that same organization.
29476
29477 “Incorporate” means to publish or republish a Document, in whole or
29478 in part, as part of another Document.
29479
29480 An MMC is “eligible for relicensing” if it is licensed under this
29481 License, and if all works that were first published under this License
29482 somewhere other than this MMC, and subsequently incorporated in whole
29483 or in part into the MMC, (1) had no cover texts or invariant sections,
29484 and (2) were thus incorporated prior to November 1, 2008.
29485
29486 The operator of an MMC Site may republish an MMC contained in the site
29487 under CC-BY-SA on the same site at any time before August 1, 2009,
29488 provided the MMC is eligible for relicensing.
29489
29490 `ADDENDUM: How to use this License for your documents'
29491
29492 To use this License in a document you have written, include a copy of
29493 the License in the document and put the following copyright and
29494 license notices just after the title page:
29495
29496 @quotation
29497
29498 Copyright © YEAR YOUR NAME.
29499 Permission is granted to copy, distribute and/or modify this document
29500 under the terms of the GNU Free Documentation License, Version 1.3
29501 or any later version published by the Free Software Foundation;
29502 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
29503 A copy of the license is included in the section entitled “GNU
29504 Free Documentation License”.
29505 @end quotation
29506
29507 If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
29508 replace the “with … Texts.” line with this:
29509
29510 @quotation
29511
29512 with the Invariant Sections being LIST THEIR TITLES, with the
29513 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
29514 @end quotation
29515
29516 If you have Invariant Sections without Cover Texts, or some other
29517 combination of the three, merge those two alternatives to suit the
29518 situation.
29519
29520 If your document contains nontrivial examples of program code, we
29521 recommend releasing these examples in parallel under your choice of
29522 free software license, such as the GNU General Public License,
29523 to permit their use in free software.
29524
29525 @node Index,,GNU Free Documentation License,Top
29526 @unnumbered Index
29527
29528
29529 @printindex ge
29530
29531 @anchor{d1}@w{ }
29532 @anchor{gnat_ugn/gnat_utility_programs switches-related-to-project-files}@w{ }
29533
29534 @c %**end of body
29535 @bye