]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/libgnat/a-rbtgbk.adb
[Ada] Bump copyright year
[thirdparty/gcc.git] / gcc / ada / libgnat / a-rbtgbk.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
29
30 package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys is
31
32 package Ops renames Tree_Operations;
33
34 -------------
35 -- Ceiling --
36 -------------
37
38 -- AKA Lower_Bound
39
40 function Ceiling
41 (Tree : Tree_Type'Class;
42 Key : Key_Type) return Count_Type
43 is
44 Y : Count_Type;
45 X : Count_Type;
46 N : Nodes_Type renames Tree.Nodes;
47
48 begin
49 Y := 0;
50
51 X := Tree.Root;
52 while X /= 0 loop
53 if Is_Greater_Key_Node (Key, N (X)) then
54 X := Ops.Right (N (X));
55 else
56 Y := X;
57 X := Ops.Left (N (X));
58 end if;
59 end loop;
60
61 return Y;
62 end Ceiling;
63
64 ----------
65 -- Find --
66 ----------
67
68 function Find
69 (Tree : Tree_Type'Class;
70 Key : Key_Type) return Count_Type
71 is
72 Y : Count_Type;
73 X : Count_Type;
74 N : Nodes_Type renames Tree.Nodes;
75
76 begin
77 Y := 0;
78
79 X := Tree.Root;
80 while X /= 0 loop
81 if Is_Greater_Key_Node (Key, N (X)) then
82 X := Ops.Right (N (X));
83 else
84 Y := X;
85 X := Ops.Left (N (X));
86 end if;
87 end loop;
88
89 if Y = 0 then
90 return 0;
91 end if;
92
93 if Is_Less_Key_Node (Key, N (Y)) then
94 return 0;
95 end if;
96
97 return Y;
98 end Find;
99
100 -----------
101 -- Floor --
102 -----------
103
104 function Floor
105 (Tree : Tree_Type'Class;
106 Key : Key_Type) return Count_Type
107 is
108 Y : Count_Type;
109 X : Count_Type;
110 N : Nodes_Type renames Tree.Nodes;
111
112 begin
113 Y := 0;
114
115 X := Tree.Root;
116 while X /= 0 loop
117 if Is_Less_Key_Node (Key, N (X)) then
118 X := Ops.Left (N (X));
119 else
120 Y := X;
121 X := Ops.Right (N (X));
122 end if;
123 end loop;
124
125 return Y;
126 end Floor;
127
128 --------------------------------
129 -- Generic_Conditional_Insert --
130 --------------------------------
131
132 procedure Generic_Conditional_Insert
133 (Tree : in out Tree_Type'Class;
134 Key : Key_Type;
135 Node : out Count_Type;
136 Inserted : out Boolean)
137 is
138 Y : Count_Type;
139 X : Count_Type;
140 N : Nodes_Type renames Tree.Nodes;
141
142 begin
143 -- This is a "conditional" insertion, meaning that the insertion request
144 -- can "fail" in the sense that no new node is created. If the Key is
145 -- equivalent to an existing node, then we return the existing node and
146 -- Inserted is set to False. Otherwise, we allocate a new node (via
147 -- Insert_Post) and Inserted is set to True.
148
149 -- Note that we are testing for equivalence here, not equality. Key must
150 -- be strictly less than its next neighbor, and strictly greater than
151 -- its previous neighbor, in order for the conditional insertion to
152 -- succeed.
153
154 -- We search the tree to find the nearest neighbor of Key, which is
155 -- either the smallest node greater than Key (Inserted is True), or the
156 -- largest node less or equivalent to Key (Inserted is False).
157
158 Y := 0;
159 X := Tree.Root;
160 Inserted := True;
161 while X /= 0 loop
162 Y := X;
163 Inserted := Is_Less_Key_Node (Key, N (X));
164 X := (if Inserted then Ops.Left (N (X)) else Ops.Right (N (X)));
165 end loop;
166
167 if Inserted then
168
169 -- Either Tree is empty, or Key is less than Y. If Y is the first
170 -- node in the tree, then there are no other nodes that we need to
171 -- search for, and we insert a new node into the tree.
172
173 if Y = Tree.First then
174 Insert_Post (Tree, Y, True, Node);
175 return;
176 end if;
177
178 -- Y is the next nearest-neighbor of Key. We know that Key is not
179 -- equivalent to Y (because Key is strictly less than Y), so we move
180 -- to the previous node, the nearest-neighbor just smaller or
181 -- equivalent to Key.
182
183 Node := Ops.Previous (Tree, Y);
184
185 else
186 -- Y is the previous nearest-neighbor of Key. We know that Key is not
187 -- less than Y, which means either that Key is equivalent to Y, or
188 -- greater than Y.
189
190 Node := Y;
191 end if;
192
193 -- Key is equivalent to or greater than Node. We must resolve which is
194 -- the case, to determine whether the conditional insertion succeeds.
195
196 if Is_Greater_Key_Node (Key, N (Node)) then
197
198 -- Key is strictly greater than Node, which means that Key is not
199 -- equivalent to Node. In this case, the insertion succeeds, and we
200 -- insert a new node into the tree.
201
202 Insert_Post (Tree, Y, Inserted, Node);
203 Inserted := True;
204 return;
205 end if;
206
207 -- Key is equivalent to Node. This is a conditional insertion, so we do
208 -- not insert a new node in this case. We return the existing node and
209 -- report that no insertion has occurred.
210
211 Inserted := False;
212 end Generic_Conditional_Insert;
213
214 ------------------------------------------
215 -- Generic_Conditional_Insert_With_Hint --
216 ------------------------------------------
217
218 procedure Generic_Conditional_Insert_With_Hint
219 (Tree : in out Tree_Type'Class;
220 Position : Count_Type;
221 Key : Key_Type;
222 Node : out Count_Type;
223 Inserted : out Boolean)
224 is
225 N : Nodes_Type renames Tree.Nodes;
226
227 begin
228 -- The purpose of a hint is to avoid a search from the root of
229 -- tree. If we have it hint it means we only need to traverse the
230 -- subtree rooted at the hint to find the nearest neighbor. Note
231 -- that finding the neighbor means merely walking the tree; this
232 -- is not a search and the only comparisons that occur are with
233 -- the hint and its neighbor.
234
235 -- If Position is 0, this is interpreted to mean that Key is
236 -- large relative to the nodes in the tree. If the tree is empty,
237 -- or Key is greater than the last node in the tree, then we're
238 -- done; otherwise the hint was "wrong" and we must search.
239
240 if Position = 0 then -- largest
241 if Tree.Last = 0
242 or else Is_Greater_Key_Node (Key, N (Tree.Last))
243 then
244 Insert_Post (Tree, Tree.Last, False, Node);
245 Inserted := True;
246 else
247 Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
248 end if;
249
250 return;
251 end if;
252
253 pragma Assert (Tree.Length > 0);
254
255 -- A hint can either name the node that immediately follows Key,
256 -- or immediately precedes Key. We first test whether Key is
257 -- less than the hint, and if so we compare Key to the node that
258 -- precedes the hint. If Key is both less than the hint and
259 -- greater than the hint's preceding neighbor, then we're done;
260 -- otherwise we must search.
261
262 -- Note also that a hint can either be an anterior node or a leaf
263 -- node. A new node is always inserted at the bottom of the tree
264 -- (at least prior to rebalancing), becoming the new left or
265 -- right child of leaf node (which prior to the insertion must
266 -- necessarily be null, since this is a leaf). If the hint names
267 -- an anterior node then its neighbor must be a leaf, and so
268 -- (here) we insert after the neighbor. If the hint names a leaf
269 -- then its neighbor must be anterior and so we insert before the
270 -- hint.
271
272 if Is_Less_Key_Node (Key, N (Position)) then
273 declare
274 Before : constant Count_Type := Ops.Previous (Tree, Position);
275
276 begin
277 if Before = 0 then
278 Insert_Post (Tree, Tree.First, True, Node);
279 Inserted := True;
280
281 elsif Is_Greater_Key_Node (Key, N (Before)) then
282 if Ops.Right (N (Before)) = 0 then
283 Insert_Post (Tree, Before, False, Node);
284 else
285 Insert_Post (Tree, Position, True, Node);
286 end if;
287
288 Inserted := True;
289
290 else
291 Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
292 end if;
293 end;
294
295 return;
296 end if;
297
298 -- We know that Key isn't less than the hint so we try again,
299 -- this time to see if it's greater than the hint. If so we
300 -- compare Key to the node that follows the hint. If Key is both
301 -- greater than the hint and less than the hint's next neighbor,
302 -- then we're done; otherwise we must search.
303
304 if Is_Greater_Key_Node (Key, N (Position)) then
305 declare
306 After : constant Count_Type := Ops.Next (Tree, Position);
307
308 begin
309 if After = 0 then
310 Insert_Post (Tree, Tree.Last, False, Node);
311 Inserted := True;
312
313 elsif Is_Less_Key_Node (Key, N (After)) then
314 if Ops.Right (N (Position)) = 0 then
315 Insert_Post (Tree, Position, False, Node);
316 else
317 Insert_Post (Tree, After, True, Node);
318 end if;
319
320 Inserted := True;
321
322 else
323 Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
324 end if;
325 end;
326
327 return;
328 end if;
329
330 -- We know that Key is neither less than the hint nor greater
331 -- than the hint, and that's the definition of equivalence.
332 -- There's nothing else we need to do, since a search would just
333 -- reach the same conclusion.
334
335 Node := Position;
336 Inserted := False;
337 end Generic_Conditional_Insert_With_Hint;
338
339 -------------------------
340 -- Generic_Insert_Post --
341 -------------------------
342
343 procedure Generic_Insert_Post
344 (Tree : in out Tree_Type'Class;
345 Y : Count_Type;
346 Before : Boolean;
347 Z : out Count_Type)
348 is
349 N : Nodes_Type renames Tree.Nodes;
350
351 begin
352 TC_Check (Tree.TC);
353
354 if Checks and then Tree.Length >= Tree.Capacity then
355 raise Capacity_Error with "not enough capacity to insert new item";
356 end if;
357
358 Z := New_Node;
359 pragma Assert (Z /= 0);
360
361 if Y = 0 then
362 pragma Assert (Tree.Length = 0);
363 pragma Assert (Tree.Root = 0);
364 pragma Assert (Tree.First = 0);
365 pragma Assert (Tree.Last = 0);
366
367 Tree.Root := Z;
368 Tree.First := Z;
369 Tree.Last := Z;
370
371 elsif Before then
372 pragma Assert (Ops.Left (N (Y)) = 0);
373
374 Ops.Set_Left (N (Y), Z);
375
376 if Y = Tree.First then
377 Tree.First := Z;
378 end if;
379
380 else
381 pragma Assert (Ops.Right (N (Y)) = 0);
382
383 Ops.Set_Right (N (Y), Z);
384
385 if Y = Tree.Last then
386 Tree.Last := Z;
387 end if;
388 end if;
389
390 Ops.Set_Color (N (Z), Red);
391 Ops.Set_Parent (N (Z), Y);
392 Ops.Rebalance_For_Insert (Tree, Z);
393 Tree.Length := Tree.Length + 1;
394 end Generic_Insert_Post;
395
396 -----------------------
397 -- Generic_Iteration --
398 -----------------------
399
400 procedure Generic_Iteration
401 (Tree : Tree_Type'Class;
402 Key : Key_Type)
403 is
404 procedure Iterate (Index : Count_Type);
405
406 -------------
407 -- Iterate --
408 -------------
409
410 procedure Iterate (Index : Count_Type) is
411 J : Count_Type;
412 N : Nodes_Type renames Tree.Nodes;
413
414 begin
415 J := Index;
416 while J /= 0 loop
417 if Is_Less_Key_Node (Key, N (J)) then
418 J := Ops.Left (N (J));
419 elsif Is_Greater_Key_Node (Key, N (J)) then
420 J := Ops.Right (N (J));
421 else
422 Iterate (Ops.Left (N (J)));
423 Process (J);
424 J := Ops.Right (N (J));
425 end if;
426 end loop;
427 end Iterate;
428
429 -- Start of processing for Generic_Iteration
430
431 begin
432 Iterate (Tree.Root);
433 end Generic_Iteration;
434
435 -------------------------------
436 -- Generic_Reverse_Iteration --
437 -------------------------------
438
439 procedure Generic_Reverse_Iteration
440 (Tree : Tree_Type'Class;
441 Key : Key_Type)
442 is
443 procedure Iterate (Index : Count_Type);
444
445 -------------
446 -- Iterate --
447 -------------
448
449 procedure Iterate (Index : Count_Type) is
450 J : Count_Type;
451 N : Nodes_Type renames Tree.Nodes;
452
453 begin
454 J := Index;
455 while J /= 0 loop
456 if Is_Less_Key_Node (Key, N (J)) then
457 J := Ops.Left (N (J));
458 elsif Is_Greater_Key_Node (Key, N (J)) then
459 J := Ops.Right (N (J));
460 else
461 Iterate (Ops.Right (N (J)));
462 Process (J);
463 J := Ops.Left (N (J));
464 end if;
465 end loop;
466 end Iterate;
467
468 -- Start of processing for Generic_Reverse_Iteration
469
470 begin
471 Iterate (Tree.Root);
472 end Generic_Reverse_Iteration;
473
474 ----------------------------------
475 -- Generic_Unconditional_Insert --
476 ----------------------------------
477
478 procedure Generic_Unconditional_Insert
479 (Tree : in out Tree_Type'Class;
480 Key : Key_Type;
481 Node : out Count_Type)
482 is
483 Y : Count_Type;
484 X : Count_Type;
485 N : Nodes_Type renames Tree.Nodes;
486
487 Before : Boolean;
488
489 begin
490 Y := 0;
491 Before := False;
492
493 X := Tree.Root;
494 while X /= 0 loop
495 Y := X;
496 Before := Is_Less_Key_Node (Key, N (X));
497 X := (if Before then Ops.Left (N (X)) else Ops.Right (N (X)));
498 end loop;
499
500 Insert_Post (Tree, Y, Before, Node);
501 end Generic_Unconditional_Insert;
502
503 --------------------------------------------
504 -- Generic_Unconditional_Insert_With_Hint --
505 --------------------------------------------
506
507 procedure Generic_Unconditional_Insert_With_Hint
508 (Tree : in out Tree_Type'Class;
509 Hint : Count_Type;
510 Key : Key_Type;
511 Node : out Count_Type)
512 is
513 N : Nodes_Type renames Tree.Nodes;
514
515 begin
516 -- There are fewer constraints for an unconditional insertion
517 -- than for a conditional insertion, since we allow duplicate
518 -- keys. So instead of having to check (say) whether Key is
519 -- (strictly) greater than the hint's previous neighbor, here we
520 -- allow Key to be equal to or greater than the previous node.
521
522 -- There is the issue of what to do if Key is equivalent to the
523 -- hint. Does the new node get inserted before or after the hint?
524 -- We decide that it gets inserted after the hint, reasoning that
525 -- this is consistent with behavior for non-hint insertion, which
526 -- inserts a new node after existing nodes with equivalent keys.
527
528 -- First we check whether the hint is null, which is interpreted
529 -- to mean that Key is large relative to existing nodes.
530 -- Following our rule above, if Key is equal to or greater than
531 -- the last node, then we insert the new node immediately after
532 -- last. (We don't have an operation for testing whether a key is
533 -- "equal to or greater than" a node, so we must say instead "not
534 -- less than", which is equivalent.)
535
536 if Hint = 0 then -- largest
537 if Tree.Last = 0 then
538 Insert_Post (Tree, 0, False, Node);
539 elsif Is_Less_Key_Node (Key, N (Tree.Last)) then
540 Unconditional_Insert_Sans_Hint (Tree, Key, Node);
541 else
542 Insert_Post (Tree, Tree.Last, False, Node);
543 end if;
544
545 return;
546 end if;
547
548 pragma Assert (Tree.Length > 0);
549
550 -- We decide here whether to insert the new node prior to the
551 -- hint. Key could be equivalent to the hint, so in theory we
552 -- could write the following test as "not greater than" (same as
553 -- "less than or equal to"). If Key were equivalent to the hint,
554 -- that would mean that the new node gets inserted before an
555 -- equivalent node. That wouldn't break any container invariants,
556 -- but our rule above says that new nodes always get inserted
557 -- after equivalent nodes. So here we test whether Key is both
558 -- less than the hint and equal to or greater than the hint's
559 -- previous neighbor, and if so insert it before the hint.
560
561 if Is_Less_Key_Node (Key, N (Hint)) then
562 declare
563 Before : constant Count_Type := Ops.Previous (Tree, Hint);
564 begin
565 if Before = 0 then
566 Insert_Post (Tree, Hint, True, Node);
567 elsif Is_Less_Key_Node (Key, N (Before)) then
568 Unconditional_Insert_Sans_Hint (Tree, Key, Node);
569 elsif Ops.Right (N (Before)) = 0 then
570 Insert_Post (Tree, Before, False, Node);
571 else
572 Insert_Post (Tree, Hint, True, Node);
573 end if;
574 end;
575
576 return;
577 end if;
578
579 -- We know that Key isn't less than the hint, so it must be equal
580 -- or greater. So we just test whether Key is less than or equal
581 -- to (same as "not greater than") the hint's next neighbor, and
582 -- if so insert it after the hint.
583
584 declare
585 After : constant Count_Type := Ops.Next (Tree, Hint);
586 begin
587 if After = 0 then
588 Insert_Post (Tree, Hint, False, Node);
589 elsif Is_Greater_Key_Node (Key, N (After)) then
590 Unconditional_Insert_Sans_Hint (Tree, Key, Node);
591 elsif Ops.Right (N (Hint)) = 0 then
592 Insert_Post (Tree, Hint, False, Node);
593 else
594 Insert_Post (Tree, After, True, Node);
595 end if;
596 end;
597 end Generic_Unconditional_Insert_With_Hint;
598
599 -----------------
600 -- Upper_Bound --
601 -----------------
602
603 function Upper_Bound
604 (Tree : Tree_Type'Class;
605 Key : Key_Type) return Count_Type
606 is
607 Y : Count_Type;
608 X : Count_Type;
609 N : Nodes_Type renames Tree.Nodes;
610
611 begin
612 Y := 0;
613
614 X := Tree.Root;
615 while X /= 0 loop
616 if Is_Less_Key_Node (Key, N (X)) then
617 Y := X;
618 X := Ops.Left (N (X));
619 else
620 X := Ops.Right (N (X));
621 end if;
622 end loop;
623
624 return Y;
625 end Upper_Bound;
626
627 end Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;