]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_aggr.adb
[Ada] Variable-sized node types
[thirdparty/gcc.git] / gcc / ada / sem_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Einfo.Entities; use Einfo.Entities;
31 with Einfo.Utils; use Einfo.Utils;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Itypes; use Itypes;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Namet.Sp; use Namet.Sp;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch5; use Sem_Ch5;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Res; use Sem_Res;
59 with Sem_Util; use Sem_Util;
60 with Sem_Type; use Sem_Type;
61 with Sem_Warn; use Sem_Warn;
62 with Sinfo; use Sinfo;
63 with Sinfo.Nodes; use Sinfo.Nodes;
64 with Sinfo.Utils; use Sinfo.Utils;
65 with Snames; use Snames;
66 with Stringt; use Stringt;
67 with Stand; use Stand;
68 with Style; use Style;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Ttypes; use Ttypes;
72 with Uintp; use Uintp;
73
74 package body Sem_Aggr is
75
76 type Case_Bounds is record
77 Lo : Node_Id;
78 -- Low bound of choice. Once we sort the Case_Table, then entries
79 -- will be in order of ascending Choice_Lo values.
80
81 Hi : Node_Id;
82 -- High Bound of choice. The sort does not pay any attention to the
83 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
84
85 Highest : Uint;
86 -- If there are duplicates or missing entries, then in the sorted
87 -- table, this records the highest value among Choice_Hi values
88 -- seen so far, including this entry.
89
90 Choice : Node_Id;
91 -- The node of the choice
92 end record;
93
94 type Case_Table_Type is array (Pos range <>) of Case_Bounds;
95 -- Table type used by Check_Case_Choices procedure
96
97 -----------------------
98 -- Local Subprograms --
99 -----------------------
100
101 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
102 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
103 -- simple insertion sort is used since the choices in a case statement will
104 -- usually be in near sorted order.
105
106 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
107 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
108 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
109 -- the array case (the component type of the array will be used) or an
110 -- E_Component/E_Discriminant entity in the record case, in which case the
111 -- type of the component will be used for the test. If Typ is any other
112 -- kind of entity, the call is ignored. Expr is the component node in the
113 -- aggregate which is known to have a null value. A warning message will be
114 -- issued if the component is null excluding.
115 --
116 -- It would be better to pass the proper type for Typ ???
117
118 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
119 -- Check that Expr is either not limited or else is one of the cases of
120 -- expressions allowed for a limited component association (namely, an
121 -- aggregate, function call, or <> notation). Report error for violations.
122 -- Expression is also OK in an instance or inlining context, because we
123 -- have already preanalyzed and it is known to be type correct.
124
125 ------------------------------------------------------
126 -- Subprograms used for RECORD AGGREGATE Processing --
127 ------------------------------------------------------
128
129 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
130 -- This procedure performs all the semantic checks required for record
131 -- aggregates. Note that for aggregates analysis and resolution go
132 -- hand in hand. Aggregate analysis has been delayed up to here and
133 -- it is done while resolving the aggregate.
134 --
135 -- N is the N_Aggregate node.
136 -- Typ is the record type for the aggregate resolution
137 --
138 -- While performing the semantic checks, this procedure builds a new
139 -- Component_Association_List where each record field appears alone in a
140 -- Component_Choice_List along with its corresponding expression. The
141 -- record fields in the Component_Association_List appear in the same order
142 -- in which they appear in the record type Typ.
143 --
144 -- Once this new Component_Association_List is built and all the semantic
145 -- checks performed, the original aggregate subtree is replaced with the
146 -- new named record aggregate just built. This new record aggregate has no
147 -- positional associations, so its Expressions field is set to No_List.
148 -- Note that subtree substitution is performed with Rewrite so as to be
149 -- able to retrieve the original aggregate.
150 --
151 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
152 -- yields the aggregate format expected by Gigi. Typically, this kind of
153 -- tree manipulations are done in the expander. However, because the
154 -- semantic checks that need to be performed on record aggregates really go
155 -- hand in hand with the record aggregate normalization, the aggregate
156 -- subtree transformation is performed during resolution rather than
157 -- expansion. Had we decided otherwise we would have had to duplicate most
158 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
159 -- however, that all the expansion concerning aggregates for tagged records
160 -- is done in Expand_Record_Aggregate.
161 --
162 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
163 --
164 -- 1. Make sure that the record type against which the record aggregate
165 -- has to be resolved is not abstract. Furthermore if the type is a
166 -- null aggregate make sure the input aggregate N is also null.
167 --
168 -- 2. Verify that the structure of the aggregate is that of a record
169 -- aggregate. Specifically, look for component associations and ensure
170 -- that each choice list only has identifiers or the N_Others_Choice
171 -- node. Also make sure that if present, the N_Others_Choice occurs
172 -- last and by itself.
173 --
174 -- 3. If Typ contains discriminants, the values for each discriminant is
175 -- looked for. If the record type Typ has variants, we check that the
176 -- expressions corresponding to each discriminant ruling the (possibly
177 -- nested) variant parts of Typ, are static. This allows us to determine
178 -- the variant parts to which the rest of the aggregate must conform.
179 -- The names of discriminants with their values are saved in a new
180 -- association list, New_Assoc_List which is later augmented with the
181 -- names and values of the remaining components in the record type.
182 --
183 -- During this phase we also make sure that every discriminant is
184 -- assigned exactly one value. Note that when several values for a given
185 -- discriminant are found, semantic processing continues looking for
186 -- further errors. In this case it's the first discriminant value found
187 -- which we will be recorded.
188 --
189 -- IMPORTANT NOTE: For derived tagged types this procedure expects
190 -- First_Discriminant and Next_Discriminant to give the correct list
191 -- of discriminants, in the correct order.
192 --
193 -- 4. After all the discriminant values have been gathered, we can set the
194 -- Etype of the record aggregate. If Typ contains no discriminants this
195 -- is straightforward: the Etype of N is just Typ, otherwise a new
196 -- implicit constrained subtype of Typ is built to be the Etype of N.
197 --
198 -- 5. Gather the remaining record components according to the discriminant
199 -- values. This involves recursively traversing the record type
200 -- structure to see what variants are selected by the given discriminant
201 -- values. This processing is a little more convoluted if Typ is a
202 -- derived tagged types since we need to retrieve the record structure
203 -- of all the ancestors of Typ.
204 --
205 -- 6. After gathering the record components we look for their values in the
206 -- record aggregate and emit appropriate error messages should we not
207 -- find such values or should they be duplicated.
208 --
209 -- 7. We then make sure no illegal component names appear in the record
210 -- aggregate and make sure that the type of the record components
211 -- appearing in a same choice list is the same. Finally we ensure that
212 -- the others choice, if present, is used to provide the value of at
213 -- least a record component.
214 --
215 -- 8. The original aggregate node is replaced with the new named aggregate
216 -- built in steps 3 through 6, as explained earlier.
217 --
218 -- Given the complexity of record aggregate resolution, the primary goal of
219 -- this routine is clarity and simplicity rather than execution and storage
220 -- efficiency. If there are only positional components in the aggregate the
221 -- running time is linear. If there are associations the running time is
222 -- still linear as long as the order of the associations is not too far off
223 -- the order of the components in the record type. If this is not the case
224 -- the running time is at worst quadratic in the size of the association
225 -- list.
226
227 procedure Check_Misspelled_Component
228 (Elements : Elist_Id;
229 Component : Node_Id);
230 -- Give possible misspelling diagnostic if Component is likely to be a
231 -- misspelling of one of the components of the Assoc_List. This is called
232 -- by Resolve_Aggr_Expr after producing an invalid component error message.
233
234 -----------------------------------------------------
235 -- Subprograms used for ARRAY AGGREGATE Processing --
236 -----------------------------------------------------
237
238 function Resolve_Array_Aggregate
239 (N : Node_Id;
240 Index : Node_Id;
241 Index_Constr : Node_Id;
242 Component_Typ : Entity_Id;
243 Others_Allowed : Boolean) return Boolean;
244 -- This procedure performs the semantic checks for an array aggregate.
245 -- True is returned if the aggregate resolution succeeds.
246 --
247 -- The procedure works by recursively checking each nested aggregate.
248 -- Specifically, after checking a sub-aggregate nested at the i-th level
249 -- we recursively check all the subaggregates at the i+1-st level (if any).
250 -- Note that for aggregates analysis and resolution go hand in hand.
251 -- Aggregate analysis has been delayed up to here and it is done while
252 -- resolving the aggregate.
253 --
254 -- N is the current N_Aggregate node to be checked.
255 --
256 -- Index is the index node corresponding to the array sub-aggregate that
257 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
258 -- corresponding index type (or subtype).
259 --
260 -- Index_Constr is the node giving the applicable index constraint if
261 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
262 -- contexts [...] that can be used to determine the bounds of the array
263 -- value specified by the aggregate". If Others_Allowed below is False
264 -- there is no applicable index constraint and this node is set to Index.
265 --
266 -- Component_Typ is the array component type.
267 --
268 -- Others_Allowed indicates whether an others choice is allowed
269 -- in the context where the top-level aggregate appeared.
270 --
271 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
272 --
273 -- 1. Make sure that the others choice, if present, is by itself and
274 -- appears last in the sub-aggregate. Check that we do not have
275 -- positional and named components in the array sub-aggregate (unless
276 -- the named association is an others choice). Finally if an others
277 -- choice is present, make sure it is allowed in the aggregate context.
278 --
279 -- 2. If the array sub-aggregate contains discrete_choices:
280 --
281 -- (A) Verify their validity. Specifically verify that:
282 --
283 -- (a) If a null range is present it must be the only possible
284 -- choice in the array aggregate.
285 --
286 -- (b) Ditto for a non static range.
287 --
288 -- (c) Ditto for a non static expression.
289 --
290 -- In addition this step analyzes and resolves each discrete_choice,
291 -- making sure that its type is the type of the corresponding Index.
292 -- If we are not at the lowest array aggregate level (in the case of
293 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
294 -- recursively on each component expression. Otherwise, resolve the
295 -- bottom level component expressions against the expected component
296 -- type ONLY IF the component corresponds to a single discrete choice
297 -- which is not an others choice (to see why read the DELAYED
298 -- COMPONENT RESOLUTION below).
299 --
300 -- (B) Determine the bounds of the sub-aggregate and lowest and
301 -- highest choice values.
302 --
303 -- 3. For positional aggregates:
304 --
305 -- (A) Loop over the component expressions either recursively invoking
306 -- Resolve_Array_Aggregate on each of these for multi-dimensional
307 -- array aggregates or resolving the bottom level component
308 -- expressions against the expected component type.
309 --
310 -- (B) Determine the bounds of the positional sub-aggregates.
311 --
312 -- 4. Try to determine statically whether the evaluation of the array
313 -- sub-aggregate raises Constraint_Error. If yes emit proper
314 -- warnings. The precise checks are the following:
315 --
316 -- (A) Check that the index range defined by aggregate bounds is
317 -- compatible with corresponding index subtype.
318 -- We also check against the base type. In fact it could be that
319 -- Low/High bounds of the base type are static whereas those of
320 -- the index subtype are not. Thus if we can statically catch
321 -- a problem with respect to the base type we are guaranteed
322 -- that the same problem will arise with the index subtype
323 --
324 -- (B) If we are dealing with a named aggregate containing an others
325 -- choice and at least one discrete choice then make sure the range
326 -- specified by the discrete choices does not overflow the
327 -- aggregate bounds. We also check against the index type and base
328 -- type bounds for the same reasons given in (A).
329 --
330 -- (C) If we are dealing with a positional aggregate with an others
331 -- choice make sure the number of positional elements specified
332 -- does not overflow the aggregate bounds. We also check against
333 -- the index type and base type bounds as mentioned in (A).
334 --
335 -- Finally construct an N_Range node giving the sub-aggregate bounds.
336 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
337 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
338 -- to build the appropriate aggregate subtype. Aggregate_Bounds
339 -- information is needed during expansion.
340 --
341 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
342 -- expressions in an array aggregate may call Duplicate_Subexpr or some
343 -- other routine that inserts code just outside the outermost aggregate.
344 -- If the array aggregate contains discrete choices or an others choice,
345 -- this may be wrong. Consider for instance the following example.
346 --
347 -- type Rec is record
348 -- V : Integer := 0;
349 -- end record;
350 --
351 -- type Acc_Rec is access Rec;
352 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
353 --
354 -- Then the transformation of "new Rec" that occurs during resolution
355 -- entails the following code modifications
356 --
357 -- P7b : constant Acc_Rec := new Rec;
358 -- RecIP (P7b.all);
359 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
360 --
361 -- This code transformation is clearly wrong, since we need to call
362 -- "new Rec" for each of the 3 array elements. To avoid this problem we
363 -- delay resolution of the components of non positional array aggregates
364 -- to the expansion phase. As an optimization, if the discrete choice
365 -- specifies a single value we do not delay resolution.
366
367 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
368 -- This routine returns the type or subtype of an array aggregate.
369 --
370 -- N is the array aggregate node whose type we return.
371 --
372 -- Typ is the context type in which N occurs.
373 --
374 -- This routine creates an implicit array subtype whose bounds are
375 -- those defined by the aggregate. When this routine is invoked
376 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
377 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
378 -- sub-aggregate bounds. When building the aggregate itype, this function
379 -- traverses the array aggregate N collecting such Aggregate_Bounds and
380 -- constructs the proper array aggregate itype.
381 --
382 -- Note that in the case of multidimensional aggregates each inner
383 -- sub-aggregate corresponding to a given array dimension, may provide a
384 -- different bounds. If it is possible to determine statically that
385 -- some sub-aggregates corresponding to the same index do not have the
386 -- same bounds, then a warning is emitted. If such check is not possible
387 -- statically (because some sub-aggregate bounds are dynamic expressions)
388 -- then this job is left to the expander. In all cases the particular
389 -- bounds that this function will chose for a given dimension is the first
390 -- N_Range node for a sub-aggregate corresponding to that dimension.
391 --
392 -- Note that the Raises_Constraint_Error flag of an array aggregate
393 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
394 -- is set in Resolve_Array_Aggregate but the aggregate is not
395 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
396 -- first construct the proper itype for the aggregate (Gigi needs
397 -- this). After constructing the proper itype we will eventually replace
398 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
399 -- Of course in cases such as:
400 --
401 -- type Arr is array (integer range <>) of Integer;
402 -- A : Arr := (positive range -1 .. 2 => 0);
403 --
404 -- The bounds of the aggregate itype are cooked up to look reasonable
405 -- (in this particular case the bounds will be 1 .. 2).
406
407 procedure Make_String_Into_Aggregate (N : Node_Id);
408 -- A string literal can appear in a context in which a one dimensional
409 -- array of characters is expected. This procedure simply rewrites the
410 -- string as an aggregate, prior to resolution.
411
412 ---------------------------------
413 -- Delta aggregate processing --
414 ---------------------------------
415
416 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
417 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
418
419 ------------------------
420 -- Array_Aggr_Subtype --
421 ------------------------
422
423 function Array_Aggr_Subtype
424 (N : Node_Id;
425 Typ : Entity_Id) return Entity_Id
426 is
427 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
428 -- Number of aggregate index dimensions
429
430 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
431 -- Constrained N_Range of each index dimension in our aggregate itype
432
433 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
434 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435 -- Low and High bounds for each index dimension in our aggregate itype
436
437 Is_Fully_Positional : Boolean := True;
438
439 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
440 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
441 -- to (sub-)aggregate N. This procedure collects and removes the side
442 -- effects of the constrained N_Range nodes corresponding to each index
443 -- dimension of our aggregate itype. These N_Range nodes are collected
444 -- in Aggr_Range above.
445 --
446 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
447 -- bounds of each index dimension. If, when collecting, two bounds
448 -- corresponding to the same dimension are static and found to differ,
449 -- then emit a warning, and mark N as raising Constraint_Error.
450
451 -------------------------
452 -- Collect_Aggr_Bounds --
453 -------------------------
454
455 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
456 This_Range : constant Node_Id := Aggregate_Bounds (N);
457 -- The aggregate range node of this specific sub-aggregate
458
459 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
460 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
461 -- The aggregate bounds of this specific sub-aggregate
462
463 Assoc : Node_Id;
464 Expr : Node_Id;
465
466 begin
467 Remove_Side_Effects (This_Low, Variable_Ref => True);
468 Remove_Side_Effects (This_High, Variable_Ref => True);
469
470 -- Collect the first N_Range for a given dimension that you find.
471 -- For a given dimension they must be all equal anyway.
472
473 if No (Aggr_Range (Dim)) then
474 Aggr_Low (Dim) := This_Low;
475 Aggr_High (Dim) := This_High;
476 Aggr_Range (Dim) := This_Range;
477
478 else
479 if Compile_Time_Known_Value (This_Low) then
480 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
481 Aggr_Low (Dim) := This_Low;
482
483 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
484 Set_Raises_Constraint_Error (N);
485 Error_Msg_Warn := SPARK_Mode /= On;
486 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
487 Error_Msg_N ("\Constraint_Error [<<", N);
488 end if;
489 end if;
490
491 if Compile_Time_Known_Value (This_High) then
492 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
493 Aggr_High (Dim) := This_High;
494
495 elsif
496 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
497 then
498 Set_Raises_Constraint_Error (N);
499 Error_Msg_Warn := SPARK_Mode /= On;
500 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
501 Error_Msg_N ("\Constraint_Error [<<", N);
502 end if;
503 end if;
504 end if;
505
506 if Dim < Aggr_Dimension then
507
508 -- Process positional components
509
510 if Present (Expressions (N)) then
511 Expr := First (Expressions (N));
512 while Present (Expr) loop
513 Collect_Aggr_Bounds (Expr, Dim + 1);
514 Next (Expr);
515 end loop;
516 end if;
517
518 -- Process component associations
519
520 if Present (Component_Associations (N)) then
521 Is_Fully_Positional := False;
522
523 Assoc := First (Component_Associations (N));
524 while Present (Assoc) loop
525 Expr := Expression (Assoc);
526 Collect_Aggr_Bounds (Expr, Dim + 1);
527 Next (Assoc);
528 end loop;
529 end if;
530 end if;
531 end Collect_Aggr_Bounds;
532
533 -- Array_Aggr_Subtype variables
534
535 Itype : Entity_Id;
536 -- The final itype of the overall aggregate
537
538 Index_Constraints : constant List_Id := New_List;
539 -- The list of index constraints of the aggregate itype
540
541 -- Start of processing for Array_Aggr_Subtype
542
543 begin
544 -- Make sure that the list of index constraints is properly attached to
545 -- the tree, and then collect the aggregate bounds.
546
547 Set_Parent (Index_Constraints, N);
548 Collect_Aggr_Bounds (N, 1);
549
550 -- Build the list of constrained indexes of our aggregate itype
551
552 for J in 1 .. Aggr_Dimension loop
553 Create_Index : declare
554 Index_Base : constant Entity_Id :=
555 Base_Type (Etype (Aggr_Range (J)));
556 Index_Typ : Entity_Id;
557
558 begin
559 -- Construct the Index subtype, and associate it with the range
560 -- construct that generates it.
561
562 Index_Typ :=
563 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
564
565 Set_Etype (Index_Typ, Index_Base);
566
567 if Is_Character_Type (Index_Base) then
568 Set_Is_Character_Type (Index_Typ);
569 end if;
570
571 Set_Size_Info (Index_Typ, (Index_Base));
572 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
573 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
574 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
575
576 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
577 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
578 end if;
579
580 Set_Etype (Aggr_Range (J), Index_Typ);
581
582 Append (Aggr_Range (J), To => Index_Constraints);
583 end Create_Index;
584 end loop;
585
586 -- Now build the Itype
587
588 Itype := Create_Itype (E_Array_Subtype, N);
589
590 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
591 Set_Convention (Itype, Convention (Typ));
592 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
593 Set_Etype (Itype, Base_Type (Typ));
594 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
595 Set_Is_Aliased (Itype, Is_Aliased (Typ));
596 Set_Is_Independent (Itype, Is_Independent (Typ));
597 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
598
599 Copy_Suppress_Status (Index_Check, Typ, Itype);
600 Copy_Suppress_Status (Length_Check, Typ, Itype);
601
602 Set_First_Index (Itype, First (Index_Constraints));
603 Set_Is_Constrained (Itype, True);
604 Set_Is_Internal (Itype, True);
605
606 if Has_Predicates (Typ) then
607 Set_Has_Predicates (Itype);
608
609 -- If the base type has a predicate, capture the predicated parent
610 -- or the existing predicate function for SPARK use.
611
612 if Present (Predicate_Function (Typ)) then
613 Set_Predicate_Function (Itype, Predicate_Function (Typ));
614
615 elsif Is_Itype (Typ) then
616 Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
617
618 else
619 Set_Predicated_Parent (Itype, Typ);
620 end if;
621 end if;
622
623 -- A simple optimization: purely positional aggregates of static
624 -- components should be passed to gigi unexpanded whenever possible, and
625 -- regardless of the staticness of the bounds themselves. Subsequent
626 -- checks in exp_aggr verify that type is not packed, etc.
627
628 Set_Size_Known_At_Compile_Time
629 (Itype,
630 Is_Fully_Positional
631 and then Comes_From_Source (N)
632 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
633
634 -- We always need a freeze node for a packed array subtype, so that we
635 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
636 -- expansion is disabled, the packed array subtype is not built, and we
637 -- must not generate a freeze node for the type, or else it will appear
638 -- incomplete to gigi.
639
640 if Is_Packed (Itype)
641 and then not In_Spec_Expression
642 and then Expander_Active
643 then
644 Freeze_Itype (Itype, N);
645 end if;
646
647 return Itype;
648 end Array_Aggr_Subtype;
649
650 --------------------------------
651 -- Check_Misspelled_Component --
652 --------------------------------
653
654 procedure Check_Misspelled_Component
655 (Elements : Elist_Id;
656 Component : Node_Id)
657 is
658 Max_Suggestions : constant := 2;
659
660 Nr_Of_Suggestions : Natural := 0;
661 Suggestion_1 : Entity_Id := Empty;
662 Suggestion_2 : Entity_Id := Empty;
663 Component_Elmt : Elmt_Id;
664
665 begin
666 -- All the components of List are matched against Component and a count
667 -- is maintained of possible misspellings. When at the end of the
668 -- analysis there are one or two (not more) possible misspellings,
669 -- these misspellings will be suggested as possible corrections.
670
671 Component_Elmt := First_Elmt (Elements);
672 while Nr_Of_Suggestions <= Max_Suggestions
673 and then Present (Component_Elmt)
674 loop
675 if Is_Bad_Spelling_Of
676 (Chars (Node (Component_Elmt)),
677 Chars (Component))
678 then
679 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
680
681 case Nr_Of_Suggestions is
682 when 1 => Suggestion_1 := Node (Component_Elmt);
683 when 2 => Suggestion_2 := Node (Component_Elmt);
684 when others => null;
685 end case;
686 end if;
687
688 Next_Elmt (Component_Elmt);
689 end loop;
690
691 -- Report at most two suggestions
692
693 if Nr_Of_Suggestions = 1 then
694 Error_Msg_NE -- CODEFIX
695 ("\possible misspelling of&", Component, Suggestion_1);
696
697 elsif Nr_Of_Suggestions = 2 then
698 Error_Msg_Node_2 := Suggestion_2;
699 Error_Msg_NE -- CODEFIX
700 ("\possible misspelling of& or&", Component, Suggestion_1);
701 end if;
702 end Check_Misspelled_Component;
703
704 ----------------------------------------
705 -- Check_Expr_OK_In_Limited_Aggregate --
706 ----------------------------------------
707
708 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
709 begin
710 if Is_Limited_Type (Etype (Expr))
711 and then Comes_From_Source (Expr)
712 then
713 if In_Instance_Body or else In_Inlined_Body then
714 null;
715
716 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
717 Error_Msg_N
718 ("initialization not allowed for limited types", Expr);
719 Explain_Limited_Type (Etype (Expr), Expr);
720 end if;
721 end if;
722 end Check_Expr_OK_In_Limited_Aggregate;
723
724 -------------------------
725 -- Is_Others_Aggregate --
726 -------------------------
727
728 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
729 Assoc : constant List_Id := Component_Associations (Aggr);
730
731 begin
732 return No (Expressions (Aggr))
733 and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
734 end Is_Others_Aggregate;
735
736 -------------------------
737 -- Is_Single_Aggregate --
738 -------------------------
739
740 function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
741 Assoc : constant List_Id := Component_Associations (Aggr);
742
743 begin
744 return No (Expressions (Aggr))
745 and then No (Next (First (Assoc)))
746 and then No (Next (First (Choice_List (First (Assoc)))));
747 end Is_Single_Aggregate;
748
749 --------------------------------
750 -- Make_String_Into_Aggregate --
751 --------------------------------
752
753 procedure Make_String_Into_Aggregate (N : Node_Id) is
754 Exprs : constant List_Id := New_List;
755 Loc : constant Source_Ptr := Sloc (N);
756 Str : constant String_Id := Strval (N);
757 Strlen : constant Nat := String_Length (Str);
758 C : Char_Code;
759 C_Node : Node_Id;
760 New_N : Node_Id;
761 P : Source_Ptr;
762
763 begin
764 P := Loc + 1;
765 for J in 1 .. Strlen loop
766 C := Get_String_Char (Str, J);
767 Set_Character_Literal_Name (C);
768
769 C_Node :=
770 Make_Character_Literal (P,
771 Chars => Name_Find,
772 Char_Literal_Value => UI_From_CC (C));
773 Set_Etype (C_Node, Any_Character);
774 Append_To (Exprs, C_Node);
775
776 P := P + 1;
777 -- Something special for wide strings???
778 end loop;
779
780 New_N := Make_Aggregate (Loc, Expressions => Exprs);
781 Set_Analyzed (New_N);
782 Set_Etype (New_N, Any_Composite);
783
784 Rewrite (N, New_N);
785 end Make_String_Into_Aggregate;
786
787 -----------------------
788 -- Resolve_Aggregate --
789 -----------------------
790
791 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
792 Loc : constant Source_Ptr := Sloc (N);
793
794 Aggr_Subtyp : Entity_Id;
795 -- The actual aggregate subtype. This is not necessarily the same as Typ
796 -- which is the subtype of the context in which the aggregate was found.
797
798 Others_Box : Boolean := False;
799 -- Set to True if N represents a simple aggregate with only
800 -- (others => <>), not nested as part of another aggregate.
801
802 function Within_Aggregate (N : Node_Id) return Boolean;
803 -- Return True if N is part of an N_Aggregate
804
805 ----------------------
806 -- Within_Aggregate --
807 ----------------------
808
809 function Within_Aggregate (N : Node_Id) return Boolean is
810 P : Node_Id := Parent (N);
811 begin
812 while Present (P) loop
813 if Nkind (P) = N_Aggregate then
814 return True;
815 end if;
816
817 P := Parent (P);
818 end loop;
819
820 return False;
821 end Within_Aggregate;
822
823 -- Start of processing for Resolve_Aggregate
824
825 begin
826 -- Ignore junk empty aggregate resulting from parser error
827
828 if No (Expressions (N))
829 and then No (Component_Associations (N))
830 and then not Null_Record_Present (N)
831 then
832 return;
833 end if;
834
835 -- If the aggregate has box-initialized components, its type must be
836 -- frozen so that initialization procedures can properly be called
837 -- in the resolution that follows. The replacement of boxes with
838 -- initialization calls is properly an expansion activity but it must
839 -- be done during resolution.
840
841 if Expander_Active
842 and then Present (Component_Associations (N))
843 then
844 declare
845 Comp : Node_Id;
846 First_Comp : Boolean := True;
847
848 begin
849 Comp := First (Component_Associations (N));
850 while Present (Comp) loop
851 if Box_Present (Comp) then
852 if First_Comp
853 and then No (Expressions (N))
854 and then Nkind (First (Choices (Comp))) = N_Others_Choice
855 and then not Within_Aggregate (N)
856 then
857 Others_Box := True;
858 end if;
859
860 Insert_Actions (N, Freeze_Entity (Typ, N));
861 exit;
862 end if;
863
864 First_Comp := False;
865 Next (Comp);
866 end loop;
867 end;
868 end if;
869
870 -- Check for aggregates not allowed in configurable run-time mode.
871 -- We allow all cases of aggregates that do not come from source, since
872 -- these are all assumed to be small (e.g. bounds of a string literal).
873 -- We also allow aggregates of types we know to be small.
874
875 if not Support_Aggregates_On_Target
876 and then Comes_From_Source (N)
877 and then (not Known_Static_Esize (Typ)
878 or else Esize (Typ) > System_Max_Integer_Size)
879 then
880 Error_Msg_CRT ("aggregate", N);
881 end if;
882
883 -- Ada 2005 (AI-287): Limited aggregates allowed
884
885 -- In an instance, ignore aggregate subcomponents tnat may be limited,
886 -- because they originate in view conflicts. If the original aggregate
887 -- is legal and the actuals are legal, the aggregate itself is legal.
888
889 if Is_Limited_Type (Typ)
890 and then Ada_Version < Ada_2005
891 and then not In_Instance
892 then
893 Error_Msg_N ("aggregate type cannot be limited", N);
894 Explain_Limited_Type (Typ, N);
895
896 elsif Is_Class_Wide_Type (Typ) then
897 Error_Msg_N ("type of aggregate cannot be class-wide", N);
898
899 elsif Typ = Any_String
900 or else Typ = Any_Composite
901 then
902 Error_Msg_N ("no unique type for aggregate", N);
903 Set_Etype (N, Any_Composite);
904
905 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
906 Error_Msg_N ("null record forbidden in array aggregate", N);
907
908 elsif Present (Find_Aspect (Typ, Aspect_Aggregate))
909 and then Ekind (Typ) /= E_Record_Type
910 and then Ada_Version >= Ada_2020
911 then
912 Resolve_Container_Aggregate (N, Typ);
913
914 elsif Is_Record_Type (Typ) then
915 Resolve_Record_Aggregate (N, Typ);
916
917 elsif Is_Array_Type (Typ) then
918
919 -- First a special test, for the case of a positional aggregate of
920 -- characters which can be replaced by a string literal.
921
922 -- Do not perform this transformation if this was a string literal
923 -- to start with, whose components needed constraint checks, or if
924 -- the component type is non-static, because it will require those
925 -- checks and be transformed back into an aggregate. If the index
926 -- type is not Integer the aggregate may represent a user-defined
927 -- string type but the context might need the original type so we
928 -- do not perform the transformation at this point.
929
930 if Number_Dimensions (Typ) = 1
931 and then Is_Standard_Character_Type (Component_Type (Typ))
932 and then No (Component_Associations (N))
933 and then not Is_Limited_Composite (Typ)
934 and then not Is_Private_Composite (Typ)
935 and then not Is_Bit_Packed_Array (Typ)
936 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
937 and then Is_OK_Static_Subtype (Component_Type (Typ))
938 and then Base_Type (Etype (First_Index (Typ))) =
939 Base_Type (Standard_Integer)
940 then
941 declare
942 Expr : Node_Id;
943
944 begin
945 Expr := First (Expressions (N));
946 while Present (Expr) loop
947 exit when Nkind (Expr) /= N_Character_Literal;
948 Next (Expr);
949 end loop;
950
951 if No (Expr) then
952 Start_String;
953
954 Expr := First (Expressions (N));
955 while Present (Expr) loop
956 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
957 Next (Expr);
958 end loop;
959
960 Rewrite (N, Make_String_Literal (Loc, End_String));
961
962 Analyze_And_Resolve (N, Typ);
963 return;
964 end if;
965 end;
966 end if;
967
968 -- Here if we have a real aggregate to deal with
969
970 Array_Aggregate : declare
971 Aggr_Resolved : Boolean;
972
973 Aggr_Typ : constant Entity_Id := Etype (Typ);
974 -- This is the unconstrained array type, which is the type against
975 -- which the aggregate is to be resolved. Typ itself is the array
976 -- type of the context which may not be the same subtype as the
977 -- subtype for the final aggregate.
978
979 begin
980 -- In the following we determine whether an OTHERS choice is
981 -- allowed inside the array aggregate. The test checks the context
982 -- in which the array aggregate occurs. If the context does not
983 -- permit it, or the aggregate type is unconstrained, an OTHERS
984 -- choice is not allowed (except that it is always allowed on the
985 -- right-hand side of an assignment statement; in this case the
986 -- constrainedness of the type doesn't matter, because an array
987 -- object is always constrained).
988
989 -- If expansion is disabled (generic context, or semantics-only
990 -- mode) actual subtypes cannot be constructed, and the type of an
991 -- object may be its unconstrained nominal type. However, if the
992 -- context is an assignment statement, OTHERS is allowed, because
993 -- the target of the assignment will have a constrained subtype
994 -- when fully compiled. Ditto if the context is an initialization
995 -- procedure where a component may have a predicate function that
996 -- carries the base type.
997
998 -- Note that there is no node for Explicit_Actual_Parameter.
999 -- To test for this context we therefore have to test for node
1000 -- N_Parameter_Association which itself appears only if there is a
1001 -- formal parameter. Consequently we also need to test for
1002 -- N_Procedure_Call_Statement or N_Function_Call.
1003
1004 -- The context may be an N_Reference node, created by expansion.
1005 -- Legality of the others clause was established in the source,
1006 -- so the context is legal.
1007
1008 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1009
1010 if Nkind (Parent (N)) = N_Assignment_Statement
1011 or else Inside_Init_Proc
1012 or else (Is_Constrained (Typ)
1013 and then Nkind (Parent (N)) in
1014 N_Parameter_Association
1015 | N_Function_Call
1016 | N_Procedure_Call_Statement
1017 | N_Generic_Association
1018 | N_Formal_Object_Declaration
1019 | N_Simple_Return_Statement
1020 | N_Object_Declaration
1021 | N_Component_Declaration
1022 | N_Parameter_Specification
1023 | N_Qualified_Expression
1024 | N_Reference
1025 | N_Aggregate
1026 | N_Extension_Aggregate
1027 | N_Component_Association
1028 | N_Case_Expression_Alternative
1029 | N_If_Expression
1030 | N_Expression_With_Actions)
1031 then
1032 Aggr_Resolved :=
1033 Resolve_Array_Aggregate
1034 (N,
1035 Index => First_Index (Aggr_Typ),
1036 Index_Constr => First_Index (Typ),
1037 Component_Typ => Component_Type (Typ),
1038 Others_Allowed => True);
1039 else
1040 Aggr_Resolved :=
1041 Resolve_Array_Aggregate
1042 (N,
1043 Index => First_Index (Aggr_Typ),
1044 Index_Constr => First_Index (Aggr_Typ),
1045 Component_Typ => Component_Type (Typ),
1046 Others_Allowed => False);
1047 end if;
1048
1049 if not Aggr_Resolved then
1050
1051 -- A parenthesized expression may have been intended as an
1052 -- aggregate, leading to a type error when analyzing the
1053 -- component. This can also happen for a nested component
1054 -- (see Analyze_Aggr_Expr).
1055
1056 if Paren_Count (N) > 0 then
1057 Error_Msg_N
1058 ("positional aggregate cannot have one component", N);
1059 end if;
1060
1061 Aggr_Subtyp := Any_Composite;
1062
1063 else
1064 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1065 end if;
1066
1067 Set_Etype (N, Aggr_Subtyp);
1068 end Array_Aggregate;
1069
1070 elsif Is_Private_Type (Typ)
1071 and then Present (Full_View (Typ))
1072 and then (In_Inlined_Body or In_Instance_Body)
1073 and then Is_Composite_Type (Full_View (Typ))
1074 then
1075 Resolve (N, Full_View (Typ));
1076
1077 else
1078 Error_Msg_N ("illegal context for aggregate", N);
1079 end if;
1080
1081 -- If we can determine statically that the evaluation of the aggregate
1082 -- raises Constraint_Error, then replace the aggregate with an
1083 -- N_Raise_Constraint_Error node, but set the Etype to the right
1084 -- aggregate subtype. Gigi needs this.
1085
1086 if Raises_Constraint_Error (N) then
1087 Aggr_Subtyp := Etype (N);
1088 Rewrite (N,
1089 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1090 Set_Raises_Constraint_Error (N);
1091 Set_Etype (N, Aggr_Subtyp);
1092 Set_Analyzed (N);
1093 end if;
1094
1095 if Warn_On_No_Value_Assigned
1096 and then Others_Box
1097 and then not Is_Fully_Initialized_Type (Etype (N))
1098 then
1099 Error_Msg_N ("?v?aggregate not fully initialized", N);
1100 end if;
1101
1102 Check_Function_Writable_Actuals (N);
1103 end Resolve_Aggregate;
1104
1105 -----------------------------
1106 -- Resolve_Array_Aggregate --
1107 -----------------------------
1108
1109 function Resolve_Array_Aggregate
1110 (N : Node_Id;
1111 Index : Node_Id;
1112 Index_Constr : Node_Id;
1113 Component_Typ : Entity_Id;
1114 Others_Allowed : Boolean) return Boolean
1115 is
1116 Loc : constant Source_Ptr := Sloc (N);
1117
1118 Failure : constant Boolean := False;
1119 Success : constant Boolean := True;
1120
1121 Index_Typ : constant Entity_Id := Etype (Index);
1122 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1123 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1124 -- The type of the index corresponding to the array sub-aggregate along
1125 -- with its low and upper bounds.
1126
1127 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1128 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1129 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1130 -- Ditto for the base type
1131
1132 Others_Present : Boolean := False;
1133
1134 Nb_Choices : Nat := 0;
1135 -- Contains the overall number of named choices in this sub-aggregate
1136
1137 function Add (Val : Uint; To : Node_Id) return Node_Id;
1138 -- Creates a new expression node where Val is added to expression To.
1139 -- Tries to constant fold whenever possible. To must be an already
1140 -- analyzed expression.
1141
1142 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1143 -- Checks that AH (the upper bound of an array aggregate) is less than
1144 -- or equal to BH (the upper bound of the index base type). If the check
1145 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1146 -- set, and AH is replaced with a duplicate of BH.
1147
1148 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1149 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1150 -- warning if not and sets the Raises_Constraint_Error flag in N.
1151
1152 procedure Check_Length (L, H : Node_Id; Len : Uint);
1153 -- Checks that range L .. H contains at least Len elements. Emits a
1154 -- warning if not and sets the Raises_Constraint_Error flag in N.
1155
1156 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1157 -- Returns True if range L .. H is dynamic or null
1158
1159 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1160 -- Given expression node From, this routine sets OK to False if it
1161 -- cannot statically evaluate From. Otherwise it stores this static
1162 -- value into Value.
1163
1164 function Resolve_Aggr_Expr
1165 (Expr : Node_Id;
1166 Single_Elmt : Boolean) return Boolean;
1167 -- Resolves aggregate expression Expr. Returns False if resolution
1168 -- fails. If Single_Elmt is set to False, the expression Expr may be
1169 -- used to initialize several array aggregate elements (this can happen
1170 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1171 -- In this event we do not resolve Expr unless expansion is disabled.
1172 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1173 --
1174 -- NOTE: In the case of "... => <>", we pass the in the
1175 -- N_Component_Association node as Expr, since there is no Expression in
1176 -- that case, and we need a Sloc for the error message.
1177
1178 procedure Resolve_Iterated_Component_Association
1179 (N : Node_Id;
1180 Index_Typ : Entity_Id);
1181 -- For AI12-061
1182
1183 ---------
1184 -- Add --
1185 ---------
1186
1187 function Add (Val : Uint; To : Node_Id) return Node_Id is
1188 Expr_Pos : Node_Id;
1189 Expr : Node_Id;
1190 To_Pos : Node_Id;
1191
1192 begin
1193 if Raises_Constraint_Error (To) then
1194 return To;
1195 end if;
1196
1197 -- First test if we can do constant folding
1198
1199 if Compile_Time_Known_Value (To)
1200 or else Nkind (To) = N_Integer_Literal
1201 then
1202 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1203 Set_Is_Static_Expression (Expr_Pos);
1204 Set_Etype (Expr_Pos, Etype (To));
1205 Set_Analyzed (Expr_Pos, Analyzed (To));
1206
1207 if not Is_Enumeration_Type (Index_Typ) then
1208 Expr := Expr_Pos;
1209
1210 -- If we are dealing with enumeration return
1211 -- Index_Typ'Val (Expr_Pos)
1212
1213 else
1214 Expr :=
1215 Make_Attribute_Reference
1216 (Loc,
1217 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1218 Attribute_Name => Name_Val,
1219 Expressions => New_List (Expr_Pos));
1220 end if;
1221
1222 return Expr;
1223 end if;
1224
1225 -- If we are here no constant folding possible
1226
1227 if not Is_Enumeration_Type (Index_Base) then
1228 Expr :=
1229 Make_Op_Add (Loc,
1230 Left_Opnd => Duplicate_Subexpr (To),
1231 Right_Opnd => Make_Integer_Literal (Loc, Val));
1232
1233 -- If we are dealing with enumeration return
1234 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1235
1236 else
1237 To_Pos :=
1238 Make_Attribute_Reference
1239 (Loc,
1240 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1241 Attribute_Name => Name_Pos,
1242 Expressions => New_List (Duplicate_Subexpr (To)));
1243
1244 Expr_Pos :=
1245 Make_Op_Add (Loc,
1246 Left_Opnd => To_Pos,
1247 Right_Opnd => Make_Integer_Literal (Loc, Val));
1248
1249 Expr :=
1250 Make_Attribute_Reference
1251 (Loc,
1252 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1253 Attribute_Name => Name_Val,
1254 Expressions => New_List (Expr_Pos));
1255
1256 -- If the index type has a non standard representation, the
1257 -- attributes 'Val and 'Pos expand into function calls and the
1258 -- resulting expression is considered non-safe for reevaluation
1259 -- by the backend. Relocate it into a constant temporary in order
1260 -- to make it safe for reevaluation.
1261
1262 if Has_Non_Standard_Rep (Etype (N)) then
1263 declare
1264 Def_Id : Entity_Id;
1265
1266 begin
1267 Def_Id := Make_Temporary (Loc, 'R', Expr);
1268 Set_Etype (Def_Id, Index_Typ);
1269 Insert_Action (N,
1270 Make_Object_Declaration (Loc,
1271 Defining_Identifier => Def_Id,
1272 Object_Definition =>
1273 New_Occurrence_Of (Index_Typ, Loc),
1274 Constant_Present => True,
1275 Expression => Relocate_Node (Expr)));
1276
1277 Expr := New_Occurrence_Of (Def_Id, Loc);
1278 end;
1279 end if;
1280 end if;
1281
1282 return Expr;
1283 end Add;
1284
1285 -----------------
1286 -- Check_Bound --
1287 -----------------
1288
1289 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1290 Val_BH : Uint;
1291 Val_AH : Uint;
1292
1293 OK_BH : Boolean;
1294 OK_AH : Boolean;
1295
1296 begin
1297 Get (Value => Val_BH, From => BH, OK => OK_BH);
1298 Get (Value => Val_AH, From => AH, OK => OK_AH);
1299
1300 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1301 Set_Raises_Constraint_Error (N);
1302 Error_Msg_Warn := SPARK_Mode /= On;
1303 Error_Msg_N ("upper bound out of range<<", AH);
1304 Error_Msg_N ("\Constraint_Error [<<", AH);
1305
1306 -- You need to set AH to BH or else in the case of enumerations
1307 -- indexes we will not be able to resolve the aggregate bounds.
1308
1309 AH := Duplicate_Subexpr (BH);
1310 end if;
1311 end Check_Bound;
1312
1313 ------------------
1314 -- Check_Bounds --
1315 ------------------
1316
1317 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1318 Val_L : Uint;
1319 Val_H : Uint;
1320 Val_AL : Uint;
1321 Val_AH : Uint;
1322
1323 OK_L : Boolean;
1324 OK_H : Boolean;
1325
1326 OK_AL : Boolean;
1327 OK_AH : Boolean;
1328 pragma Warnings (Off, OK_AL);
1329 pragma Warnings (Off, OK_AH);
1330
1331 begin
1332 if Raises_Constraint_Error (N)
1333 or else Dynamic_Or_Null_Range (AL, AH)
1334 then
1335 return;
1336 end if;
1337
1338 Get (Value => Val_L, From => L, OK => OK_L);
1339 Get (Value => Val_H, From => H, OK => OK_H);
1340
1341 Get (Value => Val_AL, From => AL, OK => OK_AL);
1342 Get (Value => Val_AH, From => AH, OK => OK_AH);
1343
1344 if OK_L and then Val_L > Val_AL then
1345 Set_Raises_Constraint_Error (N);
1346 Error_Msg_Warn := SPARK_Mode /= On;
1347 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1348 Error_Msg_N ("\Constraint_Error [<<", N);
1349 end if;
1350
1351 if OK_H and then Val_H < Val_AH then
1352 Set_Raises_Constraint_Error (N);
1353 Error_Msg_Warn := SPARK_Mode /= On;
1354 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1355 Error_Msg_N ("\Constraint_Error [<<", N);
1356 end if;
1357 end Check_Bounds;
1358
1359 ------------------
1360 -- Check_Length --
1361 ------------------
1362
1363 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1364 Val_L : Uint;
1365 Val_H : Uint;
1366
1367 OK_L : Boolean;
1368 OK_H : Boolean;
1369
1370 Range_Len : Uint;
1371
1372 begin
1373 if Raises_Constraint_Error (N) then
1374 return;
1375 end if;
1376
1377 Get (Value => Val_L, From => L, OK => OK_L);
1378 Get (Value => Val_H, From => H, OK => OK_H);
1379
1380 if not OK_L or else not OK_H then
1381 return;
1382 end if;
1383
1384 -- If null range length is zero
1385
1386 if Val_L > Val_H then
1387 Range_Len := Uint_0;
1388 else
1389 Range_Len := Val_H - Val_L + 1;
1390 end if;
1391
1392 if Range_Len < Len then
1393 Set_Raises_Constraint_Error (N);
1394 Error_Msg_Warn := SPARK_Mode /= On;
1395 Error_Msg_N ("too many elements<<", N);
1396 Error_Msg_N ("\Constraint_Error [<<", N);
1397 end if;
1398 end Check_Length;
1399
1400 ---------------------------
1401 -- Dynamic_Or_Null_Range --
1402 ---------------------------
1403
1404 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1405 Val_L : Uint;
1406 Val_H : Uint;
1407
1408 OK_L : Boolean;
1409 OK_H : Boolean;
1410
1411 begin
1412 Get (Value => Val_L, From => L, OK => OK_L);
1413 Get (Value => Val_H, From => H, OK => OK_H);
1414
1415 return not OK_L or else not OK_H
1416 or else not Is_OK_Static_Expression (L)
1417 or else not Is_OK_Static_Expression (H)
1418 or else Val_L > Val_H;
1419 end Dynamic_Or_Null_Range;
1420
1421 ---------
1422 -- Get --
1423 ---------
1424
1425 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1426 begin
1427 OK := True;
1428
1429 if Compile_Time_Known_Value (From) then
1430 Value := Expr_Value (From);
1431
1432 -- If expression From is something like Some_Type'Val (10) then
1433 -- Value = 10.
1434
1435 elsif Nkind (From) = N_Attribute_Reference
1436 and then Attribute_Name (From) = Name_Val
1437 and then Compile_Time_Known_Value (First (Expressions (From)))
1438 then
1439 Value := Expr_Value (First (Expressions (From)));
1440 else
1441 Value := Uint_0;
1442 OK := False;
1443 end if;
1444 end Get;
1445
1446 -----------------------
1447 -- Resolve_Aggr_Expr --
1448 -----------------------
1449
1450 function Resolve_Aggr_Expr
1451 (Expr : Node_Id;
1452 Single_Elmt : Boolean) return Boolean
1453 is
1454 Nxt_Ind : constant Node_Id := Next_Index (Index);
1455 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1456 -- Index is the current index corresponding to the expression
1457
1458 Resolution_OK : Boolean := True;
1459 -- Set to False if resolution of the expression failed
1460
1461 begin
1462 -- Defend against previous errors
1463
1464 if Nkind (Expr) = N_Error
1465 or else Error_Posted (Expr)
1466 then
1467 return True;
1468 end if;
1469
1470 -- If the array type against which we are resolving the aggregate
1471 -- has several dimensions, the expressions nested inside the
1472 -- aggregate must be further aggregates (or strings).
1473
1474 if Present (Nxt_Ind) then
1475 if Nkind (Expr) /= N_Aggregate then
1476
1477 -- A string literal can appear where a one-dimensional array
1478 -- of characters is expected. If the literal looks like an
1479 -- operator, it is still an operator symbol, which will be
1480 -- transformed into a string when analyzed.
1481
1482 if Is_Character_Type (Component_Typ)
1483 and then No (Next_Index (Nxt_Ind))
1484 and then Nkind (Expr) in N_String_Literal | N_Operator_Symbol
1485 then
1486 -- A string literal used in a multidimensional array
1487 -- aggregate in place of the final one-dimensional
1488 -- aggregate must not be enclosed in parentheses.
1489
1490 if Paren_Count (Expr) /= 0 then
1491 Error_Msg_N ("no parenthesis allowed here", Expr);
1492 end if;
1493
1494 Make_String_Into_Aggregate (Expr);
1495
1496 else
1497 Error_Msg_N ("nested array aggregate expected", Expr);
1498
1499 -- If the expression is parenthesized, this may be
1500 -- a missing component association for a 1-aggregate.
1501
1502 if Paren_Count (Expr) > 0 then
1503 Error_Msg_N
1504 ("\if single-component aggregate is intended, "
1505 & "write e.g. (1 ='> ...)", Expr);
1506 end if;
1507
1508 return Failure;
1509 end if;
1510 end if;
1511
1512 -- If it's "... => <>", nothing to resolve
1513
1514 if Nkind (Expr) = N_Component_Association then
1515 pragma Assert (Box_Present (Expr));
1516 return Success;
1517 end if;
1518
1519 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1520 -- Required to check the null-exclusion attribute (if present).
1521 -- This value may be overridden later on.
1522
1523 Set_Etype (Expr, Etype (N));
1524
1525 Resolution_OK := Resolve_Array_Aggregate
1526 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1527
1528 else
1529 -- If it's "... => <>", nothing to resolve
1530
1531 if Nkind (Expr) = N_Component_Association then
1532 pragma Assert (Box_Present (Expr));
1533 return Success;
1534 end if;
1535
1536 -- Do not resolve the expressions of discrete or others choices
1537 -- unless the expression covers a single component, or the
1538 -- expander is inactive.
1539
1540 -- In SPARK mode, expressions that can perform side effects will
1541 -- be recognized by the gnat2why back-end, and the whole
1542 -- subprogram will be ignored. So semantic analysis can be
1543 -- performed safely.
1544
1545 if Single_Elmt
1546 or else not Expander_Active
1547 or else In_Spec_Expression
1548 then
1549 Analyze_And_Resolve (Expr, Component_Typ);
1550 Check_Expr_OK_In_Limited_Aggregate (Expr);
1551 Check_Non_Static_Context (Expr);
1552 Aggregate_Constraint_Checks (Expr, Component_Typ);
1553 Check_Unset_Reference (Expr);
1554 end if;
1555 end if;
1556
1557 -- If an aggregate component has a type with predicates, an explicit
1558 -- predicate check must be applied, as for an assignment statement,
1559 -- because the aggregate might not be expanded into individual
1560 -- component assignments. If the expression covers several components
1561 -- the analysis and the predicate check take place later.
1562
1563 if Has_Predicates (Component_Typ)
1564 and then Analyzed (Expr)
1565 then
1566 Apply_Predicate_Check (Expr, Component_Typ);
1567 end if;
1568
1569 if Raises_Constraint_Error (Expr)
1570 and then Nkind (Parent (Expr)) /= N_Component_Association
1571 then
1572 Set_Raises_Constraint_Error (N);
1573 end if;
1574
1575 -- If the expression has been marked as requiring a range check,
1576 -- then generate it here. It's a bit odd to be generating such
1577 -- checks in the analyzer, but harmless since Generate_Range_Check
1578 -- does nothing (other than making sure Do_Range_Check is set) if
1579 -- the expander is not active.
1580
1581 if Do_Range_Check (Expr) then
1582 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1583 end if;
1584
1585 return Resolution_OK;
1586 end Resolve_Aggr_Expr;
1587
1588 --------------------------------------------
1589 -- Resolve_Iterated_Component_Association --
1590 --------------------------------------------
1591
1592 procedure Resolve_Iterated_Component_Association
1593 (N : Node_Id;
1594 Index_Typ : Entity_Id)
1595 is
1596 Loc : constant Source_Ptr := Sloc (N);
1597 Id : constant Entity_Id := Defining_Identifier (N);
1598
1599 -----------------------
1600 -- Remove_References --
1601 -----------------------
1602
1603 function Remove_Ref (N : Node_Id) return Traverse_Result;
1604 -- Remove references to the entity Id after analysis, so it can be
1605 -- properly reanalyzed after construct is expanded into a loop.
1606
1607 function Remove_Ref (N : Node_Id) return Traverse_Result is
1608 begin
1609 if Nkind (N) = N_Identifier
1610 and then Present (Entity (N))
1611 and then Entity (N) = Id
1612 then
1613 Set_Entity (N, Empty);
1614 Set_Etype (N, Empty);
1615 end if;
1616 Set_Analyzed (N, False);
1617 return OK;
1618 end Remove_Ref;
1619
1620 procedure Remove_References is new Traverse_Proc (Remove_Ref);
1621
1622 -- Local variables
1623
1624 Choice : Node_Id;
1625 Dummy : Boolean;
1626 Ent : Entity_Id;
1627 Expr : Node_Id;
1628
1629 -- Start of processing for Resolve_Iterated_Component_Association
1630
1631 begin
1632 -- An element iterator specification cannot appear in
1633 -- an array aggregate because it does not provide index
1634 -- values for the association. This must be a semantic
1635 -- check because the parser cannot tell whether this is
1636 -- an array aggregate or a container aggregate.
1637
1638 if Present (Iterator_Specification (N)) then
1639 Error_Msg_N ("container element Iterator cannot appear "
1640 & "in an array aggregate", N);
1641 return;
1642 end if;
1643
1644 Choice := First (Discrete_Choices (N));
1645
1646 while Present (Choice) loop
1647 if Nkind (Choice) = N_Others_Choice then
1648 Others_Present := True;
1649
1650 else
1651 Analyze (Choice);
1652
1653 -- Choice can be a subtype name, a range, or an expression
1654
1655 if Is_Entity_Name (Choice)
1656 and then Is_Type (Entity (Choice))
1657 and then Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1658 then
1659 null;
1660
1661 else
1662 Analyze_And_Resolve (Choice, Index_Typ);
1663 end if;
1664 end if;
1665
1666 Next (Choice);
1667 end loop;
1668
1669 -- Create a scope in which to introduce an index, which is usually
1670 -- visible in the expression for the component, and needed for its
1671 -- analysis.
1672
1673 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1674 Set_Etype (Ent, Standard_Void_Type);
1675 Set_Parent (Ent, Parent (N));
1676 Push_Scope (Ent);
1677
1678 -- Insert and decorate the index variable in the current scope.
1679 -- The expression has to be analyzed once the index variable is
1680 -- directly visible.
1681
1682 Enter_Name (Id);
1683 Set_Etype (Id, Index_Typ);
1684 Set_Ekind (Id, E_Variable);
1685 Set_Scope (Id, Ent);
1686
1687 -- Analyze expression without expansion, to verify legality.
1688 -- When generating code, we then remove references to the index
1689 -- variable, because the expression will be analyzed anew after
1690 -- rewritting as a loop with a new index variable; when not
1691 -- generating code we leave the analyzed expression as it is.
1692
1693 Expr := Expression (N);
1694
1695 Expander_Mode_Save_And_Set (False);
1696 Dummy := Resolve_Aggr_Expr (Expr, Single_Elmt => False);
1697 Expander_Mode_Restore;
1698
1699 if Operating_Mode /= Check_Semantics then
1700 Remove_References (Expr);
1701 end if;
1702
1703 -- An iterated_component_association may appear in a nested
1704 -- aggregate for a multidimensional structure: preserve the bounds
1705 -- computed for the expression, as well as the anonymous array
1706 -- type generated for it; both are needed during array expansion.
1707
1708 if Nkind (Expr) = N_Aggregate then
1709 Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1710 Set_Etype (Expression (N), Etype (Expr));
1711 end if;
1712
1713 End_Scope;
1714 end Resolve_Iterated_Component_Association;
1715
1716 -- Local variables
1717
1718 Assoc : Node_Id;
1719 Choice : Node_Id;
1720 Expr : Node_Id;
1721 Discard : Node_Id;
1722
1723 Aggr_Low : Node_Id := Empty;
1724 Aggr_High : Node_Id := Empty;
1725 -- The actual low and high bounds of this sub-aggregate
1726
1727 Case_Table_Size : Nat;
1728 -- Contains the size of the case table needed to sort aggregate choices
1729
1730 Choices_Low : Node_Id := Empty;
1731 Choices_High : Node_Id := Empty;
1732 -- The lowest and highest discrete choices values for a named aggregate
1733
1734 Delete_Choice : Boolean;
1735 -- Used when replacing a subtype choice with predicate by a list
1736
1737 Nb_Elements : Uint := Uint_0;
1738 -- The number of elements in a positional aggregate
1739
1740 Nb_Discrete_Choices : Nat := 0;
1741 -- The overall number of discrete choices (not counting others choice)
1742
1743 -- Start of processing for Resolve_Array_Aggregate
1744
1745 begin
1746 -- Ignore junk empty aggregate resulting from parser error
1747
1748 if No (Expressions (N))
1749 and then No (Component_Associations (N))
1750 and then not Null_Record_Present (N)
1751 then
1752 return False;
1753 end if;
1754
1755 -- STEP 1: make sure the aggregate is correctly formatted
1756
1757 if Present (Component_Associations (N)) then
1758 Assoc := First (Component_Associations (N));
1759 while Present (Assoc) loop
1760 if Nkind (Assoc) = N_Iterated_Component_Association then
1761 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1762 end if;
1763
1764 Choice := First (Choice_List (Assoc));
1765 Delete_Choice := False;
1766 while Present (Choice) loop
1767 if Nkind (Choice) = N_Others_Choice then
1768 Others_Present := True;
1769
1770 if Choice /= First (Choice_List (Assoc))
1771 or else Present (Next (Choice))
1772 then
1773 Error_Msg_N
1774 ("OTHERS must appear alone in a choice list", Choice);
1775 return Failure;
1776 end if;
1777
1778 if Present (Next (Assoc)) then
1779 Error_Msg_N
1780 ("OTHERS must appear last in an aggregate", Choice);
1781 return Failure;
1782 end if;
1783
1784 if Ada_Version = Ada_83
1785 and then Assoc /= First (Component_Associations (N))
1786 and then Nkind (Parent (N)) in
1787 N_Assignment_Statement | N_Object_Declaration
1788 then
1789 Error_Msg_N
1790 ("(Ada 83) illegal context for OTHERS choice", N);
1791 end if;
1792
1793 elsif Is_Entity_Name (Choice) then
1794 Analyze (Choice);
1795
1796 declare
1797 E : constant Entity_Id := Entity (Choice);
1798 New_Cs : List_Id;
1799 P : Node_Id;
1800 C : Node_Id;
1801
1802 begin
1803 if Is_Type (E) and then Has_Predicates (E) then
1804 Freeze_Before (N, E);
1805
1806 if Has_Dynamic_Predicate_Aspect (E) then
1807 Error_Msg_NE
1808 ("subtype& has dynamic predicate, not allowed "
1809 & "in aggregate choice", Choice, E);
1810
1811 elsif not Is_OK_Static_Subtype (E) then
1812 Error_Msg_NE
1813 ("non-static subtype& has predicate, not allowed "
1814 & "in aggregate choice", Choice, E);
1815 end if;
1816
1817 -- If the subtype has a static predicate, replace the
1818 -- original choice with the list of individual values
1819 -- covered by the predicate.
1820 -- This should be deferred to expansion time ???
1821
1822 if Present (Static_Discrete_Predicate (E)) then
1823 Delete_Choice := True;
1824
1825 New_Cs := New_List;
1826 P := First (Static_Discrete_Predicate (E));
1827 while Present (P) loop
1828 C := New_Copy (P);
1829 Set_Sloc (C, Sloc (Choice));
1830 Append_To (New_Cs, C);
1831 Next (P);
1832 end loop;
1833
1834 Insert_List_After (Choice, New_Cs);
1835 end if;
1836 end if;
1837 end;
1838 end if;
1839
1840 Nb_Choices := Nb_Choices + 1;
1841
1842 declare
1843 C : constant Node_Id := Choice;
1844
1845 begin
1846 Next (Choice);
1847
1848 if Delete_Choice then
1849 Remove (C);
1850 Nb_Choices := Nb_Choices - 1;
1851 Delete_Choice := False;
1852 end if;
1853 end;
1854 end loop;
1855
1856 Next (Assoc);
1857 end loop;
1858 end if;
1859
1860 -- At this point we know that the others choice, if present, is by
1861 -- itself and appears last in the aggregate. Check if we have mixed
1862 -- positional and discrete associations (other than the others choice).
1863
1864 if Present (Expressions (N))
1865 and then (Nb_Choices > 1
1866 or else (Nb_Choices = 1 and then not Others_Present))
1867 then
1868 Error_Msg_N
1869 ("named association cannot follow positional association",
1870 First (Choice_List (First (Component_Associations (N)))));
1871 return Failure;
1872 end if;
1873
1874 -- Test for the validity of an others choice if present
1875
1876 if Others_Present and then not Others_Allowed then
1877 declare
1878 Others_N : constant Node_Id :=
1879 First (Choice_List (First (Component_Associations (N))));
1880 begin
1881 Error_Msg_N ("OTHERS choice not allowed here", Others_N);
1882 Error_Msg_N ("\qualify the aggregate with a constrained subtype "
1883 & "to provide bounds for it", Others_N);
1884 return Failure;
1885 end;
1886 end if;
1887
1888 -- Protect against cascaded errors
1889
1890 if Etype (Index_Typ) = Any_Type then
1891 return Failure;
1892 end if;
1893
1894 -- STEP 2: Process named components
1895
1896 if No (Expressions (N)) then
1897 if Others_Present then
1898 Case_Table_Size := Nb_Choices - 1;
1899 else
1900 Case_Table_Size := Nb_Choices;
1901 end if;
1902
1903 Step_2 : declare
1904 function Empty_Range (A : Node_Id) return Boolean;
1905 -- If an association covers an empty range, some warnings on the
1906 -- expression of the association can be disabled.
1907
1908 -----------------
1909 -- Empty_Range --
1910 -----------------
1911
1912 function Empty_Range (A : Node_Id) return Boolean is
1913 R : constant Node_Id := First (Choices (A));
1914 begin
1915 return No (Next (R))
1916 and then Nkind (R) = N_Range
1917 and then Compile_Time_Compare
1918 (Low_Bound (R), High_Bound (R), False) = GT;
1919 end Empty_Range;
1920
1921 -- Local variables
1922
1923 Low : Node_Id;
1924 High : Node_Id;
1925 -- Denote the lowest and highest values in an aggregate choice
1926
1927 S_Low : Node_Id := Empty;
1928 S_High : Node_Id := Empty;
1929 -- if a choice in an aggregate is a subtype indication these
1930 -- denote the lowest and highest values of the subtype
1931
1932 Table : Case_Table_Type (1 .. Case_Table_Size);
1933 -- Used to sort all the different choice values
1934
1935 Single_Choice : Boolean;
1936 -- Set to true every time there is a single discrete choice in a
1937 -- discrete association
1938
1939 Prev_Nb_Discrete_Choices : Nat;
1940 -- Used to keep track of the number of discrete choices in the
1941 -- current association.
1942
1943 Errors_Posted_On_Choices : Boolean := False;
1944 -- Keeps track of whether any choices have semantic errors
1945
1946 -- Start of processing for Step_2
1947
1948 begin
1949 -- STEP 2 (A): Check discrete choices validity
1950
1951 Assoc := First (Component_Associations (N));
1952 while Present (Assoc) loop
1953 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1954 Choice := First (Choice_List (Assoc));
1955
1956 loop
1957 Analyze (Choice);
1958
1959 if Nkind (Choice) = N_Others_Choice then
1960 Single_Choice := False;
1961 exit;
1962
1963 -- Test for subtype mark without constraint
1964
1965 elsif Is_Entity_Name (Choice) and then
1966 Is_Type (Entity (Choice))
1967 then
1968 if Base_Type (Entity (Choice)) /= Index_Base then
1969 Error_Msg_N
1970 ("invalid subtype mark in aggregate choice",
1971 Choice);
1972 return Failure;
1973 end if;
1974
1975 -- Case of subtype indication
1976
1977 elsif Nkind (Choice) = N_Subtype_Indication then
1978 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1979
1980 if Has_Dynamic_Predicate_Aspect
1981 (Entity (Subtype_Mark (Choice)))
1982 then
1983 Error_Msg_NE
1984 ("subtype& has dynamic predicate, "
1985 & "not allowed in aggregate choice",
1986 Choice, Entity (Subtype_Mark (Choice)));
1987 end if;
1988
1989 -- Does the subtype indication evaluation raise CE?
1990
1991 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1992 Get_Index_Bounds (Choice, Low, High);
1993 Check_Bounds (S_Low, S_High, Low, High);
1994
1995 -- Case of range or expression
1996
1997 else
1998 Resolve (Choice, Index_Base);
1999 Check_Unset_Reference (Choice);
2000 Check_Non_Static_Context (Choice);
2001
2002 -- If semantic errors were posted on the choice, then
2003 -- record that for possible early return from later
2004 -- processing (see handling of enumeration choices).
2005
2006 if Error_Posted (Choice) then
2007 Errors_Posted_On_Choices := True;
2008 end if;
2009
2010 -- Do not range check a choice. This check is redundant
2011 -- since this test is already done when we check that the
2012 -- bounds of the array aggregate are within range.
2013
2014 Set_Do_Range_Check (Choice, False);
2015 end if;
2016
2017 -- If we could not resolve the discrete choice stop here
2018
2019 if Etype (Choice) = Any_Type then
2020 return Failure;
2021
2022 -- If the discrete choice raises CE get its original bounds
2023
2024 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2025 Set_Raises_Constraint_Error (N);
2026 Get_Index_Bounds (Original_Node (Choice), Low, High);
2027
2028 -- Otherwise get its bounds as usual
2029
2030 else
2031 Get_Index_Bounds (Choice, Low, High);
2032 end if;
2033
2034 if (Dynamic_Or_Null_Range (Low, High)
2035 or else (Nkind (Choice) = N_Subtype_Indication
2036 and then
2037 Dynamic_Or_Null_Range (S_Low, S_High)))
2038 and then Nb_Choices /= 1
2039 then
2040 Error_Msg_N
2041 ("dynamic or empty choice in aggregate "
2042 & "must be the only choice", Choice);
2043 return Failure;
2044 end if;
2045
2046 if not (All_Composite_Constraints_Static (Low)
2047 and then All_Composite_Constraints_Static (High)
2048 and then All_Composite_Constraints_Static (S_Low)
2049 and then All_Composite_Constraints_Static (S_High))
2050 then
2051 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2052 end if;
2053
2054 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2055 Table (Nb_Discrete_Choices).Lo := Low;
2056 Table (Nb_Discrete_Choices).Hi := High;
2057 Table (Nb_Discrete_Choices).Choice := Choice;
2058
2059 Next (Choice);
2060
2061 if No (Choice) then
2062
2063 -- Check if we have a single discrete choice and whether
2064 -- this discrete choice specifies a single value.
2065
2066 Single_Choice :=
2067 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2068 and then (Low = High);
2069
2070 exit;
2071 end if;
2072 end loop;
2073
2074 -- Ada 2005 (AI-231)
2075
2076 if Ada_Version >= Ada_2005
2077 and then Known_Null (Expression (Assoc))
2078 and then not Empty_Range (Assoc)
2079 then
2080 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2081 end if;
2082
2083 -- Ada 2005 (AI-287): In case of default initialized component
2084 -- we delay the resolution to the expansion phase.
2085
2086 if Box_Present (Assoc) then
2087
2088 -- Ada 2005 (AI-287): In case of default initialization of a
2089 -- component the expander will generate calls to the
2090 -- corresponding initialization subprogram. We need to call
2091 -- Resolve_Aggr_Expr to check the rules about
2092 -- dimensionality.
2093
2094 if not Resolve_Aggr_Expr
2095 (Assoc, Single_Elmt => Single_Choice)
2096 then
2097 return Failure;
2098 end if;
2099
2100 -- ??? Checks for dynamically tagged expressions below will
2101 -- be only applied to iterated_component_association after
2102 -- expansion; in particular, errors might not be reported when
2103 -- -gnatc switch is used.
2104
2105 elsif Nkind (Assoc) = N_Iterated_Component_Association then
2106 null; -- handled above, in a loop context
2107
2108 elsif not Resolve_Aggr_Expr
2109 (Expression (Assoc), Single_Elmt => Single_Choice)
2110 then
2111 return Failure;
2112
2113 -- Check incorrect use of dynamically tagged expression
2114
2115 -- We differentiate here two cases because the expression may
2116 -- not be decorated. For example, the analysis and resolution
2117 -- of the expression associated with the others choice will be
2118 -- done later with the full aggregate. In such case we
2119 -- duplicate the expression tree to analyze the copy and
2120 -- perform the required check.
2121
2122 elsif not Present (Etype (Expression (Assoc))) then
2123 declare
2124 Save_Analysis : constant Boolean := Full_Analysis;
2125 Expr : constant Node_Id :=
2126 New_Copy_Tree (Expression (Assoc));
2127
2128 begin
2129 Expander_Mode_Save_And_Set (False);
2130 Full_Analysis := False;
2131
2132 -- Analyze the expression, making sure it is properly
2133 -- attached to the tree before we do the analysis.
2134
2135 Set_Parent (Expr, Parent (Expression (Assoc)));
2136 Analyze (Expr);
2137
2138 -- Compute its dimensions now, rather than at the end of
2139 -- resolution, because in the case of multidimensional
2140 -- aggregates subsequent expansion may lead to spurious
2141 -- errors.
2142
2143 Check_Expression_Dimensions (Expr, Component_Typ);
2144
2145 -- If the expression is a literal, propagate this info
2146 -- to the expression in the association, to enable some
2147 -- optimizations downstream.
2148
2149 if Is_Entity_Name (Expr)
2150 and then Present (Entity (Expr))
2151 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2152 then
2153 Analyze_And_Resolve
2154 (Expression (Assoc), Component_Typ);
2155 end if;
2156
2157 Full_Analysis := Save_Analysis;
2158 Expander_Mode_Restore;
2159
2160 if Is_Tagged_Type (Etype (Expr)) then
2161 Check_Dynamically_Tagged_Expression
2162 (Expr => Expr,
2163 Typ => Component_Type (Etype (N)),
2164 Related_Nod => N);
2165 end if;
2166 end;
2167
2168 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2169 Check_Dynamically_Tagged_Expression
2170 (Expr => Expression (Assoc),
2171 Typ => Component_Type (Etype (N)),
2172 Related_Nod => N);
2173 end if;
2174
2175 Next (Assoc);
2176 end loop;
2177
2178 -- If aggregate contains more than one choice then these must be
2179 -- static. Check for duplicate and missing values.
2180
2181 -- Note: there is duplicated code here wrt Check_Choice_Set in
2182 -- the body of Sem_Case, and it is possible we could just reuse
2183 -- that procedure. To be checked ???
2184
2185 if Nb_Discrete_Choices > 1 then
2186 Check_Choices : declare
2187 Choice : Node_Id;
2188 -- Location of choice for messages
2189
2190 Hi_Val : Uint;
2191 Lo_Val : Uint;
2192 -- High end of one range and Low end of the next. Should be
2193 -- contiguous if there is no hole in the list of values.
2194
2195 Lo_Dup : Uint;
2196 Hi_Dup : Uint;
2197 -- End points of duplicated range
2198
2199 Missing_Or_Duplicates : Boolean := False;
2200 -- Set True if missing or duplicate choices found
2201
2202 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2203 -- Output continuation message with a representation of the
2204 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2205 -- choice node where the message is to be posted.
2206
2207 ------------------------
2208 -- Output_Bad_Choices --
2209 ------------------------
2210
2211 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2212 begin
2213 -- Enumeration type case
2214
2215 if Is_Enumeration_Type (Index_Typ) then
2216 Error_Msg_Name_1 :=
2217 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2218 Error_Msg_Name_2 :=
2219 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2220
2221 if Lo = Hi then
2222 Error_Msg_N ("\\ %!", C);
2223 else
2224 Error_Msg_N ("\\ % .. %!", C);
2225 end if;
2226
2227 -- Integer types case
2228
2229 else
2230 Error_Msg_Uint_1 := Lo;
2231 Error_Msg_Uint_2 := Hi;
2232
2233 if Lo = Hi then
2234 Error_Msg_N ("\\ ^!", C);
2235 else
2236 Error_Msg_N ("\\ ^ .. ^!", C);
2237 end if;
2238 end if;
2239 end Output_Bad_Choices;
2240
2241 -- Start of processing for Check_Choices
2242
2243 begin
2244 Sort_Case_Table (Table);
2245
2246 -- First we do a quick linear loop to find out if we have
2247 -- any duplicates or missing entries (usually we have a
2248 -- legal aggregate, so this will get us out quickly).
2249
2250 for J in 1 .. Nb_Discrete_Choices - 1 loop
2251 Hi_Val := Expr_Value (Table (J).Hi);
2252 Lo_Val := Expr_Value (Table (J + 1).Lo);
2253
2254 if Lo_Val <= Hi_Val
2255 or else (Lo_Val > Hi_Val + 1
2256 and then not Others_Present)
2257 then
2258 Missing_Or_Duplicates := True;
2259 exit;
2260 end if;
2261 end loop;
2262
2263 -- If we have missing or duplicate entries, first fill in
2264 -- the Highest entries to make life easier in the following
2265 -- loops to detect bad entries.
2266
2267 if Missing_Or_Duplicates then
2268 Table (1).Highest := Expr_Value (Table (1).Hi);
2269
2270 for J in 2 .. Nb_Discrete_Choices loop
2271 Table (J).Highest :=
2272 UI_Max
2273 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2274 end loop;
2275
2276 -- Loop through table entries to find duplicate indexes
2277
2278 for J in 2 .. Nb_Discrete_Choices loop
2279 Lo_Val := Expr_Value (Table (J).Lo);
2280 Hi_Val := Expr_Value (Table (J).Hi);
2281
2282 -- Case where we have duplicates (the lower bound of
2283 -- this choice is less than or equal to the highest
2284 -- high bound found so far).
2285
2286 if Lo_Val <= Table (J - 1).Highest then
2287
2288 -- We move backwards looking for duplicates. We can
2289 -- abandon this loop as soon as we reach a choice
2290 -- highest value that is less than Lo_Val.
2291
2292 for K in reverse 1 .. J - 1 loop
2293 exit when Table (K).Highest < Lo_Val;
2294
2295 -- Here we may have duplicates between entries
2296 -- for K and J. Get range of duplicates.
2297
2298 Lo_Dup :=
2299 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2300 Hi_Dup :=
2301 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2302
2303 -- Nothing to do if duplicate range is null
2304
2305 if Lo_Dup > Hi_Dup then
2306 null;
2307
2308 -- Otherwise place proper message
2309
2310 else
2311 -- We place message on later choice, with a
2312 -- line reference to the earlier choice.
2313
2314 if Sloc (Table (J).Choice) <
2315 Sloc (Table (K).Choice)
2316 then
2317 Choice := Table (K).Choice;
2318 Error_Msg_Sloc := Sloc (Table (J).Choice);
2319 else
2320 Choice := Table (J).Choice;
2321 Error_Msg_Sloc := Sloc (Table (K).Choice);
2322 end if;
2323
2324 if Lo_Dup = Hi_Dup then
2325 Error_Msg_N
2326 ("index value in array aggregate "
2327 & "duplicates the one given#!", Choice);
2328 else
2329 Error_Msg_N
2330 ("index values in array aggregate "
2331 & "duplicate those given#!", Choice);
2332 end if;
2333
2334 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2335 end if;
2336 end loop;
2337 end if;
2338 end loop;
2339
2340 -- Loop through entries in table to find missing indexes.
2341 -- Not needed if others, since missing impossible.
2342
2343 if not Others_Present then
2344 for J in 2 .. Nb_Discrete_Choices loop
2345 Lo_Val := Expr_Value (Table (J).Lo);
2346 Hi_Val := Table (J - 1).Highest;
2347
2348 if Lo_Val > Hi_Val + 1 then
2349
2350 declare
2351 Error_Node : Node_Id;
2352
2353 begin
2354 -- If the choice is the bound of a range in
2355 -- a subtype indication, it is not in the
2356 -- source lists for the aggregate itself, so
2357 -- post the error on the aggregate. Otherwise
2358 -- post it on choice itself.
2359
2360 Choice := Table (J).Choice;
2361
2362 if Is_List_Member (Choice) then
2363 Error_Node := Choice;
2364 else
2365 Error_Node := N;
2366 end if;
2367
2368 if Hi_Val + 1 = Lo_Val - 1 then
2369 Error_Msg_N
2370 ("missing index value "
2371 & "in array aggregate!", Error_Node);
2372 else
2373 Error_Msg_N
2374 ("missing index values "
2375 & "in array aggregate!", Error_Node);
2376 end if;
2377
2378 Output_Bad_Choices
2379 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2380 end;
2381 end if;
2382 end loop;
2383 end if;
2384
2385 -- If either missing or duplicate values, return failure
2386
2387 Set_Etype (N, Any_Composite);
2388 return Failure;
2389 end if;
2390 end Check_Choices;
2391 end if;
2392
2393 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2394
2395 if Nb_Discrete_Choices > 0 then
2396 Choices_Low := Table (1).Lo;
2397 Choices_High := Table (Nb_Discrete_Choices).Hi;
2398 end if;
2399
2400 -- If Others is present, then bounds of aggregate come from the
2401 -- index constraint (not the choices in the aggregate itself).
2402
2403 if Others_Present then
2404 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2405
2406 -- Abandon processing if either bound is already signalled as
2407 -- an error (prevents junk cascaded messages and blow ups).
2408
2409 if Nkind (Aggr_Low) = N_Error
2410 or else
2411 Nkind (Aggr_High) = N_Error
2412 then
2413 return False;
2414 end if;
2415
2416 -- No others clause present
2417
2418 else
2419 -- Special processing if others allowed and not present. This
2420 -- means that the bounds of the aggregate come from the index
2421 -- constraint (and the length must match).
2422
2423 if Others_Allowed then
2424 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2425
2426 -- Abandon processing if either bound is already signalled
2427 -- as an error (stop junk cascaded messages and blow ups).
2428
2429 if Nkind (Aggr_Low) = N_Error
2430 or else
2431 Nkind (Aggr_High) = N_Error
2432 then
2433 return False;
2434 end if;
2435
2436 -- If others allowed, and no others present, then the array
2437 -- should cover all index values. If it does not, we will
2438 -- get a length check warning, but there is two cases where
2439 -- an additional warning is useful:
2440
2441 -- If we have no positional components, and the length is
2442 -- wrong (which we can tell by others being allowed with
2443 -- missing components), and the index type is an enumeration
2444 -- type, then issue appropriate warnings about these missing
2445 -- components. They are only warnings, since the aggregate
2446 -- is fine, it's just the wrong length. We skip this check
2447 -- for standard character types (since there are no literals
2448 -- and it is too much trouble to concoct them), and also if
2449 -- any of the bounds have values that are not known at
2450 -- compile time.
2451
2452 -- Another case warranting a warning is when the length
2453 -- is right, but as above we have an index type that is
2454 -- an enumeration, and the bounds do not match. This is a
2455 -- case where dubious sliding is allowed and we generate a
2456 -- warning that the bounds do not match.
2457
2458 if No (Expressions (N))
2459 and then Nkind (Index) = N_Range
2460 and then Is_Enumeration_Type (Etype (Index))
2461 and then not Is_Standard_Character_Type (Etype (Index))
2462 and then Compile_Time_Known_Value (Aggr_Low)
2463 and then Compile_Time_Known_Value (Aggr_High)
2464 and then Compile_Time_Known_Value (Choices_Low)
2465 and then Compile_Time_Known_Value (Choices_High)
2466 then
2467 -- If any of the expressions or range bounds in choices
2468 -- have semantic errors, then do not attempt further
2469 -- resolution, to prevent cascaded errors.
2470
2471 if Errors_Posted_On_Choices then
2472 return Failure;
2473 end if;
2474
2475 declare
2476 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2477 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2478 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2479 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2480
2481 Ent : Entity_Id;
2482
2483 begin
2484 -- Warning case 1, missing values at start/end. Only
2485 -- do the check if the number of entries is too small.
2486
2487 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2488 <
2489 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2490 then
2491 Error_Msg_N
2492 ("missing index value(s) in array aggregate??",
2493 N);
2494
2495 -- Output missing value(s) at start
2496
2497 if Chars (ALo) /= Chars (CLo) then
2498 Ent := Prev (CLo);
2499
2500 if Chars (ALo) = Chars (Ent) then
2501 Error_Msg_Name_1 := Chars (ALo);
2502 Error_Msg_N ("\ %??", N);
2503 else
2504 Error_Msg_Name_1 := Chars (ALo);
2505 Error_Msg_Name_2 := Chars (Ent);
2506 Error_Msg_N ("\ % .. %??", N);
2507 end if;
2508 end if;
2509
2510 -- Output missing value(s) at end
2511
2512 if Chars (AHi) /= Chars (CHi) then
2513 Ent := Next (CHi);
2514
2515 if Chars (AHi) = Chars (Ent) then
2516 Error_Msg_Name_1 := Chars (Ent);
2517 Error_Msg_N ("\ %??", N);
2518 else
2519 Error_Msg_Name_1 := Chars (Ent);
2520 Error_Msg_Name_2 := Chars (AHi);
2521 Error_Msg_N ("\ % .. %??", N);
2522 end if;
2523 end if;
2524
2525 -- Warning case 2, dubious sliding. The First_Subtype
2526 -- test distinguishes between a constrained type where
2527 -- sliding is not allowed (so we will get a warning
2528 -- later that Constraint_Error will be raised), and
2529 -- the unconstrained case where sliding is permitted.
2530
2531 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2532 =
2533 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2534 and then Chars (ALo) /= Chars (CLo)
2535 and then
2536 not Is_Constrained (First_Subtype (Etype (N)))
2537 then
2538 Error_Msg_N
2539 ("bounds of aggregate do not match target??", N);
2540 end if;
2541 end;
2542 end if;
2543 end if;
2544
2545 -- If no others, aggregate bounds come from aggregate
2546
2547 Aggr_Low := Choices_Low;
2548 Aggr_High := Choices_High;
2549 end if;
2550 end Step_2;
2551
2552 -- STEP 3: Process positional components
2553
2554 else
2555 -- STEP 3 (A): Process positional elements
2556
2557 Expr := First (Expressions (N));
2558 Nb_Elements := Uint_0;
2559 while Present (Expr) loop
2560 Nb_Elements := Nb_Elements + 1;
2561
2562 -- Ada 2005 (AI-231)
2563
2564 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2565 Check_Can_Never_Be_Null (Etype (N), Expr);
2566 end if;
2567
2568 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2569 return Failure;
2570 end if;
2571
2572 -- Check incorrect use of dynamically tagged expression
2573
2574 if Is_Tagged_Type (Etype (Expr)) then
2575 Check_Dynamically_Tagged_Expression
2576 (Expr => Expr,
2577 Typ => Component_Type (Etype (N)),
2578 Related_Nod => N);
2579 end if;
2580
2581 Next (Expr);
2582 end loop;
2583
2584 if Others_Present then
2585 Assoc := Last (Component_Associations (N));
2586
2587 -- Ada 2005 (AI-231)
2588
2589 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2590 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2591 end if;
2592
2593 -- Ada 2005 (AI-287): In case of default initialized component,
2594 -- we delay the resolution to the expansion phase.
2595
2596 if Box_Present (Assoc) then
2597
2598 -- Ada 2005 (AI-287): In case of default initialization of a
2599 -- component the expander will generate calls to the
2600 -- corresponding initialization subprogram. We need to call
2601 -- Resolve_Aggr_Expr to check the rules about
2602 -- dimensionality.
2603
2604 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2605 return Failure;
2606 end if;
2607
2608 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2609 Single_Elmt => False)
2610 then
2611 return Failure;
2612
2613 -- Check incorrect use of dynamically tagged expression. The
2614 -- expression of the others choice has not been resolved yet.
2615 -- In order to diagnose the semantic error we create a duplicate
2616 -- tree to analyze it and perform the check.
2617
2618 elsif Nkind (Assoc) /= N_Iterated_Component_Association then
2619 declare
2620 Save_Analysis : constant Boolean := Full_Analysis;
2621 Expr : constant Node_Id :=
2622 New_Copy_Tree (Expression (Assoc));
2623
2624 begin
2625 Expander_Mode_Save_And_Set (False);
2626 Full_Analysis := False;
2627 Analyze (Expr);
2628 Full_Analysis := Save_Analysis;
2629 Expander_Mode_Restore;
2630
2631 if Is_Tagged_Type (Etype (Expr)) then
2632 Check_Dynamically_Tagged_Expression
2633 (Expr => Expr,
2634 Typ => Component_Type (Etype (N)),
2635 Related_Nod => N);
2636 end if;
2637 end;
2638 end if;
2639 end if;
2640
2641 -- STEP 3 (B): Compute the aggregate bounds
2642
2643 if Others_Present then
2644 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2645
2646 else
2647 if Others_Allowed then
2648 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2649 else
2650 Aggr_Low := Index_Typ_Low;
2651 end if;
2652
2653 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2654 Check_Bound (Index_Base_High, Aggr_High);
2655 end if;
2656 end if;
2657
2658 -- STEP 4: Perform static aggregate checks and save the bounds
2659
2660 -- Check (A)
2661
2662 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2663 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2664
2665 -- Check (B)
2666
2667 if Others_Present and then Nb_Discrete_Choices > 0 then
2668 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2669 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2670 Choices_Low, Choices_High);
2671 Check_Bounds (Index_Base_Low, Index_Base_High,
2672 Choices_Low, Choices_High);
2673
2674 -- Check (C)
2675
2676 elsif Others_Present and then Nb_Elements > 0 then
2677 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2678 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2679 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2680 end if;
2681
2682 if Raises_Constraint_Error (Aggr_Low)
2683 or else Raises_Constraint_Error (Aggr_High)
2684 then
2685 Set_Raises_Constraint_Error (N);
2686 end if;
2687
2688 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2689
2690 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2691 -- since the addition node returned by Add is not yet analyzed. Attach
2692 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2693 -- analyzed when it is a literal bound whose type must be properly set.
2694
2695 if Others_Present or else Nb_Discrete_Choices > 0 then
2696 Aggr_High := Duplicate_Subexpr (Aggr_High);
2697
2698 if Etype (Aggr_High) = Universal_Integer then
2699 Set_Analyzed (Aggr_High, False);
2700 end if;
2701 end if;
2702
2703 -- If the aggregate already has bounds attached to it, it means this is
2704 -- a positional aggregate created as an optimization by
2705 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2706 -- bounds.
2707
2708 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2709 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2710 Aggr_High := High_Bound (Aggregate_Bounds (N));
2711 end if;
2712
2713 Set_Aggregate_Bounds
2714 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2715
2716 -- The bounds may contain expressions that must be inserted upwards.
2717 -- Attach them fully to the tree. After analysis, remove side effects
2718 -- from upper bound, if still needed.
2719
2720 Set_Parent (Aggregate_Bounds (N), N);
2721 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2722 Check_Unset_Reference (Aggregate_Bounds (N));
2723
2724 if not Others_Present and then Nb_Discrete_Choices = 0 then
2725 Set_High_Bound
2726 (Aggregate_Bounds (N),
2727 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2728 end if;
2729
2730 -- Check the dimensions of each component in the array aggregate
2731
2732 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2733
2734 return Success;
2735 end Resolve_Array_Aggregate;
2736
2737 ---------------------------------
2738 -- Resolve_Container_Aggregate --
2739 ---------------------------------
2740
2741 procedure Resolve_Container_Aggregate (N : Node_Id; Typ : Entity_Id) is
2742 procedure Resolve_Iterated_Association
2743 (Comp : Node_Id;
2744 Key_Type : Entity_Id;
2745 Elmt_Type : Entity_Id);
2746 -- Resolve choices and expression in an iterated component association
2747 -- or an iterated element association, which has a key_expression.
2748 -- This is similar but not identical to the handling of this construct
2749 -- in an array aggregate.
2750 -- For a named container, the type of each choice must be compatible
2751 -- with the key type. For a positional container, the choice must be
2752 -- a subtype indication or an iterator specification that determines
2753 -- an element type.
2754
2755 Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
2756
2757 Empty_Subp : Node_Id := Empty;
2758 Add_Named_Subp : Node_Id := Empty;
2759 Add_Unnamed_Subp : Node_Id := Empty;
2760 New_Indexed_Subp : Node_Id := Empty;
2761 Assign_Indexed_Subp : Node_Id := Empty;
2762
2763 ----------------------------------
2764 -- Resolve_Iterated_Association --
2765 ----------------------------------
2766
2767 procedure Resolve_Iterated_Association
2768 (Comp : Node_Id;
2769 Key_Type : Entity_Id;
2770 Elmt_Type : Entity_Id)
2771 is
2772 Choice : Node_Id;
2773 Ent : Entity_Id;
2774 Expr : Node_Id;
2775 Key_Expr : Node_Id;
2776 Id : Entity_Id;
2777 Id_Name : Name_Id;
2778 Iter : Node_Id;
2779 Typ : Entity_Id := Empty;
2780
2781 begin
2782 -- If this is an Iterated_Element_Association then either a
2783 -- an Iterator_Specification or a Loop_Parameter specification
2784 -- is present. In both cases a Key_Expression is present.
2785
2786 if Nkind (Comp) = N_Iterated_Element_Association then
2787 if Present (Loop_Parameter_Specification (Comp)) then
2788 Analyze_Loop_Parameter_Specification
2789 (Loop_Parameter_Specification (Comp));
2790 Id_Name := Chars (Defining_Identifier
2791 (Loop_Parameter_Specification (Comp)));
2792 else
2793 Iter := Copy_Separate_Tree (Iterator_Specification (Comp));
2794 Analyze (Iter);
2795 Typ := Etype (Defining_Identifier (Iter));
2796 Id_Name := Chars (Defining_Identifier
2797 (Iterator_Specification (Comp)));
2798 end if;
2799
2800 -- Key expression must have the type of the key. We analyze
2801 -- a copy of the original expression, because it will be
2802 -- reanalyzed and copied as needed during expansion of the
2803 -- corresponding loop.
2804
2805 Key_Expr := Key_Expression (Comp);
2806 Analyze_And_Resolve (New_Copy_Tree (Key_Expr), Key_Type);
2807
2808 elsif Present (Iterator_Specification (Comp)) then
2809 Iter := Copy_Separate_Tree (Iterator_Specification (Comp));
2810 Id_Name := Chars (Defining_Identifier (Comp));
2811 Analyze (Iter);
2812 Typ := Etype (Defining_Identifier (Iter));
2813
2814 else
2815 Choice := First (Discrete_Choices (Comp));
2816
2817 while Present (Choice) loop
2818 Analyze (Choice);
2819
2820 -- Choice can be a subtype name, a range, or an expression
2821
2822 if Is_Entity_Name (Choice)
2823 and then Is_Type (Entity (Choice))
2824 and then Base_Type (Entity (Choice)) = Base_Type (Key_Type)
2825 then
2826 null;
2827
2828 elsif Present (Key_Type) then
2829 Analyze_And_Resolve (Choice, Key_Type);
2830
2831 else
2832 Typ := Etype (Choice); -- assume unique for now
2833 end if;
2834
2835 Next (Choice);
2836 end loop;
2837
2838 Id_Name := Chars (Defining_Identifier (Comp));
2839 end if;
2840
2841 -- Create a scope in which to introduce an index, which is usually
2842 -- visible in the expression for the component, and needed for its
2843 -- analysis.
2844
2845 Id := Make_Defining_Identifier (Sloc (Comp), Id_Name);
2846 Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (Comp), 'L');
2847 Set_Etype (Ent, Standard_Void_Type);
2848 Set_Parent (Ent, Parent (Comp));
2849 Push_Scope (Ent);
2850
2851 -- Insert and decorate the loop variable in the current scope.
2852 -- The expression has to be analyzed once the loop variable is
2853 -- directly visible. Mark the variable as referenced to prevent
2854 -- spurious warnings, given that subsequent uses of its name in the
2855 -- expression will reference the internal (synonym) loop variable.
2856
2857 Enter_Name (Id);
2858
2859 if No (Key_Type) then
2860 pragma Assert (Present (Typ));
2861 Set_Etype (Id, Typ);
2862 else
2863 Set_Etype (Id, Key_Type);
2864 end if;
2865
2866 Set_Ekind (Id, E_Variable);
2867 Set_Scope (Id, Ent);
2868 Set_Referenced (Id);
2869
2870 -- Analyze a copy of the expression, to verify legality. We use
2871 -- a copy because the expression will be analyzed anew when the
2872 -- enclosing aggregate is expanded, and the construct is rewritten
2873 -- as a loop with a new index variable.
2874
2875 Expr := New_Copy_Tree (Expression (Comp));
2876 Preanalyze_And_Resolve (Expr, Elmt_Type);
2877 End_Scope;
2878
2879 end Resolve_Iterated_Association;
2880
2881 begin
2882 pragma Assert (Nkind (Asp) = N_Aggregate);
2883
2884 Set_Etype (N, Typ);
2885 Parse_Aspect_Aggregate (Asp,
2886 Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
2887 New_Indexed_Subp, Assign_Indexed_Subp);
2888
2889 if Present (Add_Unnamed_Subp)
2890 and then No (New_Indexed_Subp)
2891 then
2892 declare
2893 Elmt_Type : constant Entity_Id :=
2894 Etype (Next_Formal
2895 (First_Formal (Entity (Add_Unnamed_Subp))));
2896 Comp : Node_Id;
2897
2898 begin
2899 if Present (Expressions (N)) then
2900 -- positional aggregate
2901
2902 Comp := First (Expressions (N));
2903 while Present (Comp) loop
2904 Analyze_And_Resolve (Comp, Elmt_Type);
2905 Next (Comp);
2906 end loop;
2907 end if;
2908
2909 -- Empty aggregate, to be replaced by Empty during
2910 -- expansion, or iterated component association.
2911
2912 if Present (Component_Associations (N)) then
2913 declare
2914 Comp : Node_Id := First (Component_Associations (N));
2915 begin
2916 while Present (Comp) loop
2917 if Nkind (Comp) /=
2918 N_Iterated_Component_Association
2919 then
2920 Error_Msg_N ("illegal component association "
2921 & "for unnamed container aggregate", Comp);
2922 return;
2923 else
2924 Resolve_Iterated_Association
2925 (Comp, Empty, Elmt_Type);
2926 end if;
2927
2928 Next (Comp);
2929 end loop;
2930 end;
2931 end if;
2932 end;
2933
2934 elsif Present (Add_Named_Subp) then
2935 declare
2936 -- Retrieves types of container, key, and element from the
2937 -- specified insertion procedure.
2938
2939 Container : constant Entity_Id :=
2940 First_Formal (Entity (Add_Named_Subp));
2941 Key_Type : constant Entity_Id := Etype (Next_Formal (Container));
2942 Elmt_Type : constant Entity_Id :=
2943 Etype (Next_Formal (Next_Formal (Container)));
2944 Comp : Node_Id;
2945 Choice : Node_Id;
2946
2947 begin
2948 Comp := First (Component_Associations (N));
2949 while Present (Comp) loop
2950 if Nkind (Comp) = N_Component_Association then
2951 Choice := First (Choices (Comp));
2952
2953 while Present (Choice) loop
2954 Analyze_And_Resolve (Choice, Key_Type);
2955 if not Is_Static_Expression (Choice) then
2956 Error_Msg_N ("choice must be static", Choice);
2957 end if;
2958
2959 Next (Choice);
2960 end loop;
2961
2962 Analyze_And_Resolve (Expression (Comp), Elmt_Type);
2963
2964 elsif Nkind (Comp) in
2965 N_Iterated_Component_Association |
2966 N_Iterated_Element_Association
2967 then
2968 Resolve_Iterated_Association
2969 (Comp, Key_Type, Elmt_Type);
2970 end if;
2971
2972 Next (Comp);
2973 end loop;
2974 end;
2975
2976 else
2977 -- Indexed Aggregate. Positional or indexed component
2978 -- can be present, but not both. Choices must be static
2979 -- values or ranges with static bounds.
2980
2981 declare
2982 Container : constant Entity_Id :=
2983 First_Formal (Entity (Assign_Indexed_Subp));
2984 Index_Type : constant Entity_Id := Etype (Next_Formal (Container));
2985 Comp_Type : constant Entity_Id :=
2986 Etype (Next_Formal (Next_Formal (Container)));
2987 Comp : Node_Id;
2988 Choice : Node_Id;
2989 Num_Choices : Nat := 0;
2990
2991 Hi_Val : Uint;
2992 Lo_Val : Uint;
2993 begin
2994 if Present (Expressions (N)) then
2995 Comp := First (Expressions (N));
2996 while Present (Comp) loop
2997 Analyze_And_Resolve (Comp, Comp_Type);
2998 Next (Comp);
2999 end loop;
3000 end if;
3001
3002 if Present (Component_Associations (N)) then
3003 if Present (Expressions (N)) then
3004 Error_Msg_N ("container aggregate cannot be "
3005 & "both positional and named", N);
3006 return;
3007 end if;
3008
3009 Comp := First (Component_Associations (N));
3010
3011 while Present (Comp) loop
3012 if Nkind (Comp) = N_Component_Association then
3013 Choice := First (Choices (Comp));
3014
3015 while Present (Choice) loop
3016 Analyze_And_Resolve (Choice, Index_Type);
3017 Num_Choices := Num_Choices + 1;
3018 Next (Choice);
3019 end loop;
3020
3021 Analyze_And_Resolve (Expression (Comp), Comp_Type);
3022
3023 elsif Nkind (Comp) in
3024 N_Iterated_Component_Association |
3025 N_Iterated_Element_Association
3026 then
3027 Resolve_Iterated_Association
3028 (Comp, Index_Type, Comp_Type);
3029 Num_Choices := Num_Choices + 1;
3030 end if;
3031
3032 Next (Comp);
3033 end loop;
3034
3035 -- The component associations in an indexed aggregate
3036 -- must denote a contiguous set of static values. We
3037 -- build a table of values/ranges and sort it, as is done
3038 -- elsewhere for case statements and array aggregates.
3039 -- If the aggregate has a single iterated association it
3040 -- is allowed to be nonstatic and there is nothing to check.
3041
3042 if Num_Choices > 1 then
3043 declare
3044 Table : Case_Table_Type (1 .. Num_Choices);
3045 No_Choice : Pos := 1;
3046 Lo, Hi : Node_Id;
3047
3048 -- Traverse aggregate to determine size of needed table.
3049 -- Verify that bounds are static and that loops have no
3050 -- filters or key expressions.
3051
3052 begin
3053 Comp := First (Component_Associations (N));
3054 while Present (Comp) loop
3055 if Nkind (Comp) = N_Iterated_Element_Association then
3056 if Present
3057 (Loop_Parameter_Specification (Comp))
3058 then
3059 if Present (Iterator_Filter
3060 (Loop_Parameter_Specification (Comp)))
3061 then
3062 Error_Msg_N
3063 ("iterator filter not allowed " &
3064 "in indexed aggregate", Comp);
3065 return;
3066
3067 elsif Present (Key_Expression
3068 (Loop_Parameter_Specification (Comp)))
3069 then
3070 Error_Msg_N
3071 ("key expression not allowed " &
3072 "in indexed aggregate", Comp);
3073 return;
3074 end if;
3075 end if;
3076 else
3077 Choice := First (Choices (Comp));
3078
3079 while Present (Choice) loop
3080 Get_Index_Bounds (Choice, Lo, Hi);
3081 Table (No_Choice).Choice := Choice;
3082 Table (No_Choice).Lo := Lo;
3083 Table (No_Choice).Hi := Hi;
3084
3085 -- Verify staticness of value or range
3086
3087 if not Is_Static_Expression (Lo)
3088 or else not Is_Static_Expression (Hi)
3089 then
3090 Error_Msg_N
3091 ("nonstatic expression for index " &
3092 "for indexed aggregate", Choice);
3093 return;
3094 end if;
3095
3096 No_Choice := No_Choice + 1;
3097 Next (Choice);
3098 end loop;
3099 end if;
3100
3101 Next (Comp);
3102 end loop;
3103
3104 Sort_Case_Table (Table);
3105
3106 for J in 1 .. Num_Choices - 1 loop
3107 Hi_Val := Expr_Value (Table (J).Hi);
3108 Lo_Val := Expr_Value (Table (J + 1).Lo);
3109
3110 if Lo_Val = Hi_Val then
3111 Error_Msg_N
3112 ("duplicate index in indexed aggregate",
3113 Table (J + 1).Choice);
3114 exit;
3115
3116 elsif Lo_Val < Hi_Val then
3117 Error_Msg_N
3118 ("overlapping indices in indexed aggregate",
3119 Table (J + 1).Choice);
3120 exit;
3121
3122 elsif Lo_Val > Hi_Val + 1 then
3123 Error_Msg_N
3124 ("missing index values", Table (J + 1).Choice);
3125 exit;
3126 end if;
3127 end loop;
3128 end;
3129 end if;
3130 end if;
3131 end;
3132 end if;
3133 end Resolve_Container_Aggregate;
3134
3135 -----------------------------
3136 -- Resolve_Delta_Aggregate --
3137 -----------------------------
3138
3139 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
3140 Base : constant Node_Id := Expression (N);
3141
3142 begin
3143 Error_Msg_Ada_2020_Feature ("delta aggregate", Sloc (N));
3144
3145 if not Is_Composite_Type (Typ) then
3146 Error_Msg_N ("not a composite type", N);
3147 end if;
3148
3149 Analyze_And_Resolve (Base, Typ);
3150
3151 if Is_Array_Type (Typ) then
3152 Resolve_Delta_Array_Aggregate (N, Typ);
3153 else
3154 Resolve_Delta_Record_Aggregate (N, Typ);
3155 end if;
3156
3157 Set_Etype (N, Typ);
3158 end Resolve_Delta_Aggregate;
3159
3160 -----------------------------------
3161 -- Resolve_Delta_Array_Aggregate --
3162 -----------------------------------
3163
3164 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
3165 Deltas : constant List_Id := Component_Associations (N);
3166 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
3167
3168 Assoc : Node_Id;
3169 Choice : Node_Id;
3170 Expr : Node_Id;
3171
3172 begin
3173 Assoc := First (Deltas);
3174 while Present (Assoc) loop
3175 if Nkind (Assoc) = N_Iterated_Component_Association then
3176 Choice := First (Choice_List (Assoc));
3177 while Present (Choice) loop
3178 if Nkind (Choice) = N_Others_Choice then
3179 Error_Msg_N
3180 ("OTHERS not allowed in delta aggregate", Choice);
3181
3182 elsif Nkind (Choice) = N_Subtype_Indication then
3183 Resolve_Discrete_Subtype_Indication
3184 (Choice, Base_Type (Index_Type));
3185
3186 else
3187 Analyze_And_Resolve (Choice, Index_Type);
3188 end if;
3189
3190 Next (Choice);
3191 end loop;
3192
3193 declare
3194 Id : constant Entity_Id := Defining_Identifier (Assoc);
3195 Ent : constant Entity_Id :=
3196 New_Internal_Entity
3197 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
3198
3199 begin
3200 Set_Etype (Ent, Standard_Void_Type);
3201 Set_Parent (Ent, Assoc);
3202 Push_Scope (Ent);
3203
3204 if No (Scope (Id)) then
3205 Set_Etype (Id, Index_Type);
3206 Set_Ekind (Id, E_Variable);
3207 Set_Scope (Id, Ent);
3208 end if;
3209 Enter_Name (Id);
3210
3211 -- Resolve a copy of the expression, after setting
3212 -- its parent properly to preserve its context.
3213
3214 Expr := New_Copy_Tree (Expression (Assoc));
3215 Set_Parent (Expr, Assoc);
3216 Analyze_And_Resolve (Expr, Component_Type (Typ));
3217 End_Scope;
3218 end;
3219
3220 else
3221 Choice := First (Choice_List (Assoc));
3222 while Present (Choice) loop
3223 Analyze (Choice);
3224
3225 if Nkind (Choice) = N_Others_Choice then
3226 Error_Msg_N
3227 ("OTHERS not allowed in delta aggregate", Choice);
3228
3229 elsif Is_Entity_Name (Choice)
3230 and then Is_Type (Entity (Choice))
3231 then
3232 -- Choice covers a range of values
3233
3234 if Base_Type (Entity (Choice)) /=
3235 Base_Type (Index_Type)
3236 then
3237 Error_Msg_NE
3238 ("choice does not match index type of &",
3239 Choice, Typ);
3240 end if;
3241
3242 elsif Nkind (Choice) = N_Subtype_Indication then
3243 Resolve_Discrete_Subtype_Indication
3244 (Choice, Base_Type (Index_Type));
3245
3246 else
3247 Resolve (Choice, Index_Type);
3248 end if;
3249
3250 Next (Choice);
3251 end loop;
3252
3253 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
3254 end if;
3255
3256 Next (Assoc);
3257 end loop;
3258 end Resolve_Delta_Array_Aggregate;
3259
3260 ------------------------------------
3261 -- Resolve_Delta_Record_Aggregate --
3262 ------------------------------------
3263
3264 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3265
3266 -- Variables used to verify that discriminant-dependent components
3267 -- appear in the same variant.
3268
3269 Comp_Ref : Entity_Id := Empty; -- init to avoid warning
3270 Variant : Node_Id;
3271
3272 procedure Check_Variant (Id : Entity_Id);
3273 -- If a given component of the delta aggregate appears in a variant
3274 -- part, verify that it is within the same variant as that of previous
3275 -- specified variant components of the delta.
3276
3277 function Get_Component (Nam : Node_Id) return Entity_Id;
3278 -- Locate component with a given name and return it. If none found then
3279 -- report error and return Empty.
3280
3281 function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
3282 -- Determine whether variant V1 is within variant V2
3283
3284 function Variant_Depth (N : Node_Id) return Integer;
3285 -- Determine the distance of a variant to the enclosing type
3286 -- declaration.
3287
3288 --------------------
3289 -- Check_Variant --
3290 --------------------
3291
3292 procedure Check_Variant (Id : Entity_Id) is
3293 Comp : Entity_Id;
3294 Comp_Variant : Node_Id;
3295
3296 begin
3297 if not Has_Discriminants (Typ) then
3298 return;
3299 end if;
3300
3301 Comp := First_Entity (Typ);
3302 while Present (Comp) loop
3303 exit when Chars (Comp) = Chars (Id);
3304 Next_Component (Comp);
3305 end loop;
3306
3307 -- Find the variant, if any, whose component list includes the
3308 -- component declaration.
3309
3310 Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
3311 if Nkind (Comp_Variant) = N_Variant then
3312 if No (Variant) then
3313 Variant := Comp_Variant;
3314 Comp_Ref := Comp;
3315
3316 elsif Variant /= Comp_Variant then
3317 declare
3318 D1 : constant Integer := Variant_Depth (Variant);
3319 D2 : constant Integer := Variant_Depth (Comp_Variant);
3320
3321 begin
3322 if D1 = D2
3323 or else
3324 (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
3325 or else
3326 (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
3327 then
3328 pragma Assert (Present (Comp_Ref));
3329 Error_Msg_Node_2 := Comp_Ref;
3330 Error_Msg_NE
3331 ("& and & appear in different variants", Id, Comp);
3332
3333 -- Otherwise retain the deeper variant for subsequent tests
3334
3335 elsif D2 > D1 then
3336 Variant := Comp_Variant;
3337 end if;
3338 end;
3339 end if;
3340 end if;
3341 end Check_Variant;
3342
3343 -------------------
3344 -- Get_Component --
3345 -------------------
3346
3347 function Get_Component (Nam : Node_Id) return Entity_Id is
3348 Comp : Entity_Id;
3349
3350 begin
3351 Comp := First_Entity (Typ);
3352 while Present (Comp) loop
3353 if Chars (Comp) = Chars (Nam) then
3354 if Ekind (Comp) = E_Discriminant then
3355 Error_Msg_N ("delta cannot apply to discriminant", Nam);
3356 end if;
3357
3358 return Comp;
3359 end if;
3360
3361 Next_Entity (Comp);
3362 end loop;
3363
3364 Error_Msg_NE ("type& has no component with this name", Nam, Typ);
3365 return Empty;
3366 end Get_Component;
3367
3368 ---------------
3369 -- Nested_In --
3370 ---------------
3371
3372 function Nested_In (V1, V2 : Node_Id) return Boolean is
3373 Par : Node_Id;
3374
3375 begin
3376 Par := Parent (V1);
3377 while Nkind (Par) /= N_Full_Type_Declaration loop
3378 if Par = V2 then
3379 return True;
3380 end if;
3381
3382 Par := Parent (Par);
3383 end loop;
3384
3385 return False;
3386 end Nested_In;
3387
3388 -------------------
3389 -- Variant_Depth --
3390 -------------------
3391
3392 function Variant_Depth (N : Node_Id) return Integer is
3393 Depth : Integer;
3394 Par : Node_Id;
3395
3396 begin
3397 Depth := 0;
3398 Par := Parent (N);
3399 while Nkind (Par) /= N_Full_Type_Declaration loop
3400 Depth := Depth + 1;
3401 Par := Parent (Par);
3402 end loop;
3403
3404 return Depth;
3405 end Variant_Depth;
3406
3407 -- Local variables
3408
3409 Deltas : constant List_Id := Component_Associations (N);
3410
3411 Assoc : Node_Id;
3412 Choice : Node_Id;
3413 Comp : Entity_Id;
3414 Comp_Type : Entity_Id := Empty; -- init to avoid warning
3415
3416 -- Start of processing for Resolve_Delta_Record_Aggregate
3417
3418 begin
3419 Variant := Empty;
3420
3421 Assoc := First (Deltas);
3422 while Present (Assoc) loop
3423 Choice := First (Choice_List (Assoc));
3424 while Present (Choice) loop
3425 Comp := Get_Component (Choice);
3426
3427 if Present (Comp) then
3428 Check_Variant (Choice);
3429
3430 Comp_Type := Etype (Comp);
3431
3432 -- Decorate the component reference by setting its entity and
3433 -- type, as otherwise backends like GNATprove would have to
3434 -- rediscover this information by themselves.
3435
3436 Set_Entity (Choice, Comp);
3437 Set_Etype (Choice, Comp_Type);
3438 else
3439 Comp_Type := Any_Type;
3440 end if;
3441
3442 Next (Choice);
3443 end loop;
3444
3445 pragma Assert (Present (Comp_Type));
3446 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
3447 Next (Assoc);
3448 end loop;
3449 end Resolve_Delta_Record_Aggregate;
3450
3451 ---------------------------------
3452 -- Resolve_Extension_Aggregate --
3453 ---------------------------------
3454
3455 -- There are two cases to consider:
3456
3457 -- a) If the ancestor part is a type mark, the components needed are the
3458 -- difference between the components of the expected type and the
3459 -- components of the given type mark.
3460
3461 -- b) If the ancestor part is an expression, it must be unambiguous, and
3462 -- once we have its type we can also compute the needed components as in
3463 -- the previous case. In both cases, if the ancestor type is not the
3464 -- immediate ancestor, we have to build this ancestor recursively.
3465
3466 -- In both cases, discriminants of the ancestor type do not play a role in
3467 -- the resolution of the needed components, because inherited discriminants
3468 -- cannot be used in a type extension. As a result we can compute
3469 -- independently the list of components of the ancestor type and of the
3470 -- expected type.
3471
3472 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
3473 A : constant Node_Id := Ancestor_Part (N);
3474 A_Type : Entity_Id;
3475 I : Interp_Index;
3476 It : Interp;
3477
3478 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
3479 -- If the type is limited, verify that the ancestor part is a legal
3480 -- expression (aggregate or function call, including 'Input)) that does
3481 -- not require a copy, as specified in 7.5(2).
3482
3483 function Valid_Ancestor_Type return Boolean;
3484 -- Verify that the type of the ancestor part is a non-private ancestor
3485 -- of the expected type, which must be a type extension.
3486
3487 procedure Transform_BIP_Assignment (Typ : Entity_Id);
3488 -- For an extension aggregate whose ancestor part is a build-in-place
3489 -- call returning a nonlimited type, this is used to transform the
3490 -- assignment to the ancestor part to use a temp.
3491
3492 ----------------------------
3493 -- Valid_Limited_Ancestor --
3494 ----------------------------
3495
3496 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
3497 begin
3498 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
3499 return True;
3500
3501 -- The ancestor must be a call or an aggregate, but a call may
3502 -- have been expanded into a temporary, so check original node.
3503
3504 elsif Nkind (Anc) in N_Aggregate
3505 | N_Extension_Aggregate
3506 | N_Function_Call
3507 then
3508 return True;
3509
3510 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
3511 return True;
3512
3513 elsif Nkind (Anc) = N_Attribute_Reference
3514 and then Attribute_Name (Anc) = Name_Input
3515 then
3516 return True;
3517
3518 elsif Nkind (Anc) = N_Qualified_Expression then
3519 return Valid_Limited_Ancestor (Expression (Anc));
3520
3521 elsif Nkind (Anc) = N_Raise_Expression then
3522 return True;
3523
3524 else
3525 return False;
3526 end if;
3527 end Valid_Limited_Ancestor;
3528
3529 -------------------------
3530 -- Valid_Ancestor_Type --
3531 -------------------------
3532
3533 function Valid_Ancestor_Type return Boolean is
3534 Imm_Type : Entity_Id;
3535
3536 begin
3537 Imm_Type := Base_Type (Typ);
3538 while Is_Derived_Type (Imm_Type) loop
3539 if Etype (Imm_Type) = Base_Type (A_Type) then
3540 return True;
3541
3542 -- The base type of the parent type may appear as a private
3543 -- extension if it is declared as such in a parent unit of the
3544 -- current one. For consistency of the subsequent analysis use
3545 -- the partial view for the ancestor part.
3546
3547 elsif Is_Private_Type (Etype (Imm_Type))
3548 and then Present (Full_View (Etype (Imm_Type)))
3549 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3550 then
3551 A_Type := Etype (Imm_Type);
3552 return True;
3553
3554 -- The parent type may be a private extension. The aggregate is
3555 -- legal if the type of the aggregate is an extension of it that
3556 -- is not a private extension.
3557
3558 elsif Is_Private_Type (A_Type)
3559 and then not Is_Private_Type (Imm_Type)
3560 and then Present (Full_View (A_Type))
3561 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3562 then
3563 return True;
3564
3565 -- The parent type may be a raise expression (which is legal in
3566 -- any expression context).
3567
3568 elsif A_Type = Raise_Type then
3569 A_Type := Etype (Imm_Type);
3570 return True;
3571
3572 else
3573 Imm_Type := Etype (Base_Type (Imm_Type));
3574 end if;
3575 end loop;
3576
3577 -- If previous loop did not find a proper ancestor, report error
3578
3579 Error_Msg_NE ("expect ancestor type of &", A, Typ);
3580 return False;
3581 end Valid_Ancestor_Type;
3582
3583 ------------------------------
3584 -- Transform_BIP_Assignment --
3585 ------------------------------
3586
3587 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3588 Loc : constant Source_Ptr := Sloc (N);
3589 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', A);
3590 Obj_Decl : constant Node_Id :=
3591 Make_Object_Declaration (Loc,
3592 Defining_Identifier => Def_Id,
3593 Constant_Present => True,
3594 Object_Definition => New_Occurrence_Of (Typ, Loc),
3595 Expression => A,
3596 Has_Init_Expression => True);
3597 begin
3598 Set_Etype (Def_Id, Typ);
3599 Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3600 Insert_Action (N, Obj_Decl);
3601 end Transform_BIP_Assignment;
3602
3603 -- Start of processing for Resolve_Extension_Aggregate
3604
3605 begin
3606 -- Analyze the ancestor part and account for the case where it is a
3607 -- parameterless function call.
3608
3609 Analyze (A);
3610 Check_Parameterless_Call (A);
3611
3612 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3613
3614 -- AI05-0115: If the ancestor part is a subtype mark, the ancestor
3615 -- must not have unknown discriminants. To catch cases where the
3616 -- aggregate occurs at a place where the full view of the ancestor
3617 -- type is visible and doesn't have unknown discriminants, but the
3618 -- aggregate type was derived from a partial view that has unknown
3619 -- discriminants, we check whether the aggregate type has unknown
3620 -- discriminants (unknown discriminants were inherited), along
3621 -- with checking that the partial view of the ancestor has unknown
3622 -- discriminants. (It might be sufficient to replace the entire
3623 -- condition with Has_Unknown_Discriminants (Typ), but that might
3624 -- miss some cases, not clear, and causes error changes in some tests
3625 -- such as class-wide cases, that aren't clearly improvements. ???)
3626
3627 if Has_Unknown_Discriminants (Entity (A))
3628 or else (Has_Unknown_Discriminants (Typ)
3629 and then Partial_View_Has_Unknown_Discr (Entity (A)))
3630 then
3631 Error_Msg_NE
3632 ("aggregate not available for type& whose ancestor "
3633 & "has unknown discriminants", N, Typ);
3634 end if;
3635 end if;
3636
3637 if not Is_Tagged_Type (Typ) then
3638 Error_Msg_N ("type of extension aggregate must be tagged", N);
3639 return;
3640
3641 elsif Is_Limited_Type (Typ) then
3642
3643 -- Ada 2005 (AI-287): Limited aggregates are allowed
3644
3645 if Ada_Version < Ada_2005 then
3646 Error_Msg_N ("aggregate type cannot be limited", N);
3647 Explain_Limited_Type (Typ, N);
3648 return;
3649
3650 elsif Valid_Limited_Ancestor (A) then
3651 null;
3652
3653 else
3654 Error_Msg_N
3655 ("limited ancestor part must be aggregate or function call", A);
3656 end if;
3657
3658 elsif Is_Class_Wide_Type (Typ) then
3659 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3660 return;
3661 end if;
3662
3663 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3664 A_Type := Get_Full_View (Entity (A));
3665
3666 if Valid_Ancestor_Type then
3667 Set_Entity (A, A_Type);
3668 Set_Etype (A, A_Type);
3669
3670 Validate_Ancestor_Part (N);
3671 Resolve_Record_Aggregate (N, Typ);
3672 end if;
3673
3674 elsif Nkind (A) /= N_Aggregate then
3675 if Is_Overloaded (A) then
3676 A_Type := Any_Type;
3677
3678 Get_First_Interp (A, I, It);
3679 while Present (It.Typ) loop
3680
3681 -- Consider limited interpretations if Ada 2005 or higher
3682
3683 if Is_Tagged_Type (It.Typ)
3684 and then (Ada_Version >= Ada_2005
3685 or else not Is_Limited_Type (It.Typ))
3686 then
3687 if A_Type /= Any_Type then
3688 Error_Msg_N ("cannot resolve expression", A);
3689 return;
3690 else
3691 A_Type := It.Typ;
3692 end if;
3693 end if;
3694
3695 Get_Next_Interp (I, It);
3696 end loop;
3697
3698 if A_Type = Any_Type then
3699 if Ada_Version >= Ada_2005 then
3700 Error_Msg_N
3701 ("ancestor part must be of a tagged type", A);
3702 else
3703 Error_Msg_N
3704 ("ancestor part must be of a nonlimited tagged type", A);
3705 end if;
3706
3707 return;
3708 end if;
3709
3710 else
3711 A_Type := Etype (A);
3712 end if;
3713
3714 if Valid_Ancestor_Type then
3715 Resolve (A, A_Type);
3716 Check_Unset_Reference (A);
3717 Check_Non_Static_Context (A);
3718
3719 -- The aggregate is illegal if the ancestor expression is a call
3720 -- to a function with a limited unconstrained result, unless the
3721 -- type of the aggregate is a null extension. This restriction
3722 -- was added in AI05-67 to simplify implementation.
3723
3724 if Nkind (A) = N_Function_Call
3725 and then Is_Limited_Type (A_Type)
3726 and then not Is_Null_Extension (Typ)
3727 and then not Is_Constrained (A_Type)
3728 then
3729 Error_Msg_N
3730 ("type of limited ancestor part must be constrained", A);
3731
3732 -- Reject the use of CPP constructors that leave objects partially
3733 -- initialized. For example:
3734
3735 -- type CPP_Root is tagged limited record ...
3736 -- pragma Import (CPP, CPP_Root);
3737
3738 -- type CPP_DT is new CPP_Root and Iface ...
3739 -- pragma Import (CPP, CPP_DT);
3740
3741 -- type Ada_DT is new CPP_DT with ...
3742
3743 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3744
3745 -- Using the constructor of CPP_Root the slots of the dispatch
3746 -- table of CPP_DT cannot be set, and the secondary tag of
3747 -- CPP_DT is unknown.
3748
3749 elsif Nkind (A) = N_Function_Call
3750 and then Is_CPP_Constructor_Call (A)
3751 and then Enclosing_CPP_Parent (Typ) /= A_Type
3752 then
3753 Error_Msg_NE
3754 ("??must use 'C'P'P constructor for type &", A,
3755 Enclosing_CPP_Parent (Typ));
3756
3757 -- The following call is not needed if the previous warning
3758 -- is promoted to an error.
3759
3760 Resolve_Record_Aggregate (N, Typ);
3761
3762 elsif Is_Class_Wide_Type (Etype (A))
3763 and then Nkind (Original_Node (A)) = N_Function_Call
3764 then
3765 -- If the ancestor part is a dispatching call, it appears
3766 -- statically to be a legal ancestor, but it yields any member
3767 -- of the class, and it is not possible to determine whether
3768 -- it is an ancestor of the extension aggregate (much less
3769 -- which ancestor). It is not possible to determine the
3770 -- components of the extension part.
3771
3772 -- This check implements AI-306, which in fact was motivated by
3773 -- an AdaCore query to the ARG after this test was added.
3774
3775 Error_Msg_N ("ancestor part must be statically tagged", A);
3776 else
3777 -- We are using the build-in-place protocol, but we can't build
3778 -- in place, because we need to call the function before
3779 -- allocating the aggregate. Could do better for null
3780 -- extensions, and maybe for nondiscriminated types.
3781 -- This is wrong for limited, but those were wrong already.
3782
3783 if not Is_Limited_View (A_Type)
3784 and then Is_Build_In_Place_Function_Call (A)
3785 then
3786 Transform_BIP_Assignment (A_Type);
3787 end if;
3788
3789 Resolve_Record_Aggregate (N, Typ);
3790 end if;
3791 end if;
3792
3793 else
3794 Error_Msg_N ("no unique type for this aggregate", A);
3795 end if;
3796
3797 Check_Function_Writable_Actuals (N);
3798 end Resolve_Extension_Aggregate;
3799
3800 ------------------------------
3801 -- Resolve_Record_Aggregate --
3802 ------------------------------
3803
3804 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3805 New_Assoc_List : constant List_Id := New_List;
3806 -- New_Assoc_List is the newly built list of N_Component_Association
3807 -- nodes.
3808
3809 Others_Etype : Entity_Id := Empty;
3810 -- This variable is used to save the Etype of the last record component
3811 -- that takes its value from the others choice. Its purpose is:
3812 --
3813 -- (a) make sure the others choice is useful
3814 --
3815 -- (b) make sure the type of all the components whose value is
3816 -- subsumed by the others choice are the same.
3817 --
3818 -- This variable is updated as a side effect of function Get_Value.
3819
3820 Box_Node : Node_Id := Empty;
3821 Is_Box_Present : Boolean := False;
3822 Is_Box_Init_By_Default : Boolean := False;
3823 Others_Box : Natural := 0;
3824 -- Ada 2005 (AI-287): Variables used in case of default initialization
3825 -- to provide a functionality similar to Others_Etype. Box_Present
3826 -- indicates that the component takes its default initialization;
3827 -- Others_Box counts the number of components of the current aggregate
3828 -- (which may be a sub-aggregate of a larger one) that are default-
3829 -- initialized. A value of One indicates that an others_box is present.
3830 -- Any larger value indicates that the others_box is not redundant.
3831 -- These variables, similar to Others_Etype, are also updated as a side
3832 -- effect of function Get_Value. Box_Node is used to place a warning on
3833 -- a redundant others_box.
3834
3835 procedure Add_Association
3836 (Component : Entity_Id;
3837 Expr : Node_Id;
3838 Assoc_List : List_Id;
3839 Is_Box_Present : Boolean := False);
3840 -- Builds a new N_Component_Association node which associates Component
3841 -- to expression Expr and adds it to the association list being built,
3842 -- either New_Assoc_List, or the association being built for an inner
3843 -- aggregate.
3844
3845 procedure Add_Discriminant_Values
3846 (New_Aggr : Node_Id;
3847 Assoc_List : List_Id);
3848 -- The constraint to a component may be given by a discriminant of the
3849 -- enclosing type, in which case we have to retrieve its value, which is
3850 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3851 -- associations of the current type or of some enclosing record.
3852
3853 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3854 -- If aggregate N is a regular aggregate this routine will return True.
3855 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3856 -- a discriminant whose value may already have been specified by N's
3857 -- ancestor part. This routine checks whether this is indeed the case
3858 -- and if so returns False, signaling that no value for Input_Discr
3859 -- should appear in N's aggregate part. Also, in this case, the routine
3860 -- appends to New_Assoc_List the discriminant value specified in the
3861 -- ancestor part.
3862 --
3863 -- If the aggregate is in a context with expansion delayed, it will be
3864 -- reanalyzed. The inherited discriminant values must not be reinserted
3865 -- in the component list to prevent spurious errors, but they must be
3866 -- present on first analysis to build the proper subtype indications.
3867 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3868
3869 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3870 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3871 -- derived from private view Typ. Whether the aggregate is legal depends
3872 -- on the current visibility of the type as well as that of the parent
3873 -- of the ancestor.
3874
3875 function Get_Value
3876 (Compon : Entity_Id;
3877 From : List_Id;
3878 Consider_Others_Choice : Boolean := False) return Node_Id;
3879 -- Given a record component stored in parameter Compon, this function
3880 -- returns its value as it appears in the list From, which is a list
3881 -- of N_Component_Association nodes.
3882 --
3883 -- If no component association has a choice for the searched component,
3884 -- the value provided by the others choice is returned, if there is one,
3885 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3886 -- returned. If there is more than one component association giving a
3887 -- value for the searched record component, an error message is emitted
3888 -- and the first found value is returned.
3889 --
3890 -- If Consider_Others_Choice is set and the returned expression comes
3891 -- from the others choice, then Others_Etype is set as a side effect.
3892 -- An error message is emitted if the components taking their value from
3893 -- the others choice do not have same type.
3894
3895 procedure Propagate_Discriminants
3896 (Aggr : Node_Id;
3897 Assoc_List : List_Id);
3898 -- Nested components may themselves be discriminated types constrained
3899 -- by outer discriminants, whose values must be captured before the
3900 -- aggregate is expanded into assignments.
3901
3902 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3903 -- Analyzes and resolves expression Expr against the Etype of the
3904 -- Component. This routine also applies all appropriate checks to Expr.
3905 -- It finally saves a Expr in the newly created association list that
3906 -- will be attached to the final record aggregate. Note that if the
3907 -- Parent pointer of Expr is not set then Expr was produced with a
3908 -- New_Copy_Tree or some such.
3909
3910 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
3911 -- Rewrite a range node Rge when its bounds refer to non-stored
3912 -- discriminants from Root_Type, to replace them with the stored
3913 -- discriminant values. This is required in GNATprove mode, and is
3914 -- adopted in all modes to avoid special-casing GNATprove mode.
3915
3916 ---------------------
3917 -- Add_Association --
3918 ---------------------
3919
3920 procedure Add_Association
3921 (Component : Entity_Id;
3922 Expr : Node_Id;
3923 Assoc_List : List_Id;
3924 Is_Box_Present : Boolean := False)
3925 is
3926 Choice_List : constant List_Id := New_List;
3927 Loc : Source_Ptr;
3928
3929 begin
3930 -- If this is a box association the expression is missing, so use the
3931 -- Sloc of the aggregate itself for the new association.
3932
3933 pragma Assert (Present (Expr) xor Is_Box_Present);
3934
3935 if Present (Expr) then
3936 Loc := Sloc (Expr);
3937 else
3938 Loc := Sloc (N);
3939 end if;
3940
3941 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3942
3943 Append_To (Assoc_List,
3944 Make_Component_Association (Loc,
3945 Choices => Choice_List,
3946 Expression => Expr,
3947 Box_Present => Is_Box_Present));
3948
3949 -- If this association has a box for a component that is initialized
3950 -- by default, then set flag on the new association to indicate that
3951 -- the original association was for such a box-initialized component.
3952
3953 if Is_Box_Init_By_Default then
3954 Set_Was_Default_Init_Box_Association (Last (Assoc_List));
3955 end if;
3956 end Add_Association;
3957
3958 -----------------------------
3959 -- Add_Discriminant_Values --
3960 -----------------------------
3961
3962 procedure Add_Discriminant_Values
3963 (New_Aggr : Node_Id;
3964 Assoc_List : List_Id)
3965 is
3966 Assoc : Node_Id;
3967 Discr : Entity_Id;
3968 Discr_Elmt : Elmt_Id;
3969 Discr_Val : Node_Id;
3970 Val : Entity_Id;
3971
3972 begin
3973 Discr := First_Discriminant (Etype (New_Aggr));
3974 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3975 while Present (Discr_Elmt) loop
3976 Discr_Val := Node (Discr_Elmt);
3977
3978 -- If the constraint is given by a discriminant then it is a
3979 -- discriminant of an enclosing record, and its value has already
3980 -- been placed in the association list.
3981
3982 if Is_Entity_Name (Discr_Val)
3983 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3984 then
3985 Val := Entity (Discr_Val);
3986
3987 Assoc := First (Assoc_List);
3988 while Present (Assoc) loop
3989 if Present (Entity (First (Choices (Assoc))))
3990 and then Entity (First (Choices (Assoc))) = Val
3991 then
3992 Discr_Val := Expression (Assoc);
3993 exit;
3994 end if;
3995
3996 Next (Assoc);
3997 end loop;
3998 end if;
3999
4000 Add_Association
4001 (Discr, New_Copy_Tree (Discr_Val),
4002 Component_Associations (New_Aggr));
4003
4004 -- If the discriminant constraint is a current instance, mark the
4005 -- current aggregate so that the self-reference can be expanded
4006 -- later. The constraint may refer to the subtype of aggregate, so
4007 -- use base type for comparison.
4008
4009 if Nkind (Discr_Val) = N_Attribute_Reference
4010 and then Is_Entity_Name (Prefix (Discr_Val))
4011 and then Is_Type (Entity (Prefix (Discr_Val)))
4012 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
4013 then
4014 Set_Has_Self_Reference (N);
4015 end if;
4016
4017 Next_Elmt (Discr_Elmt);
4018 Next_Discriminant (Discr);
4019 end loop;
4020 end Add_Discriminant_Values;
4021
4022 --------------------------
4023 -- Discriminant_Present --
4024 --------------------------
4025
4026 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
4027 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
4028
4029 Ancestor_Is_Subtyp : Boolean;
4030
4031 Loc : Source_Ptr;
4032
4033 Ancestor : Node_Id;
4034 Ancestor_Typ : Entity_Id;
4035 Comp_Assoc : Node_Id;
4036 Discr : Entity_Id;
4037 Discr_Expr : Node_Id;
4038 Discr_Val : Elmt_Id := No_Elmt;
4039 Orig_Discr : Entity_Id;
4040
4041 begin
4042 if Regular_Aggr then
4043 return True;
4044 end if;
4045
4046 -- Check whether inherited discriminant values have already been
4047 -- inserted in the aggregate. This will be the case if we are
4048 -- re-analyzing an aggregate whose expansion was delayed.
4049
4050 if Present (Component_Associations (N)) then
4051 Comp_Assoc := First (Component_Associations (N));
4052 while Present (Comp_Assoc) loop
4053 if Inherited_Discriminant (Comp_Assoc) then
4054 return True;
4055 end if;
4056
4057 Next (Comp_Assoc);
4058 end loop;
4059 end if;
4060
4061 Ancestor := Ancestor_Part (N);
4062 Ancestor_Typ := Etype (Ancestor);
4063 Loc := Sloc (Ancestor);
4064
4065 -- For a private type with unknown discriminants, use the underlying
4066 -- record view if it is available.
4067
4068 if Has_Unknown_Discriminants (Ancestor_Typ)
4069 and then Present (Full_View (Ancestor_Typ))
4070 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
4071 then
4072 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
4073 end if;
4074
4075 Ancestor_Is_Subtyp :=
4076 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
4077
4078 -- If the ancestor part has no discriminants clearly N's aggregate
4079 -- part must provide a value for Discr.
4080
4081 if not Has_Discriminants (Ancestor_Typ) then
4082 return True;
4083
4084 -- If the ancestor part is an unconstrained subtype mark then the
4085 -- Discr must be present in N's aggregate part.
4086
4087 elsif Ancestor_Is_Subtyp
4088 and then not Is_Constrained (Entity (Ancestor))
4089 then
4090 return True;
4091 end if;
4092
4093 -- Now look to see if Discr was specified in the ancestor part
4094
4095 if Ancestor_Is_Subtyp then
4096 Discr_Val :=
4097 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
4098 end if;
4099
4100 Orig_Discr := Original_Record_Component (Input_Discr);
4101
4102 Discr := First_Discriminant (Ancestor_Typ);
4103 while Present (Discr) loop
4104
4105 -- If Ancestor has already specified Disc value then insert its
4106 -- value in the final aggregate.
4107
4108 if Original_Record_Component (Discr) = Orig_Discr then
4109 if Ancestor_Is_Subtyp then
4110 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
4111 else
4112 Discr_Expr :=
4113 Make_Selected_Component (Loc,
4114 Prefix => Duplicate_Subexpr (Ancestor),
4115 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
4116 end if;
4117
4118 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
4119 Set_Inherited_Discriminant (Last (New_Assoc_List));
4120 return False;
4121 end if;
4122
4123 Next_Discriminant (Discr);
4124
4125 if Ancestor_Is_Subtyp then
4126 Next_Elmt (Discr_Val);
4127 end if;
4128 end loop;
4129
4130 return True;
4131 end Discriminant_Present;
4132
4133 ---------------------------
4134 -- Find_Private_Ancestor --
4135 ---------------------------
4136
4137 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
4138 Par : Entity_Id;
4139
4140 begin
4141 Par := Typ;
4142 loop
4143 if Has_Private_Ancestor (Par)
4144 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
4145 then
4146 return Par;
4147
4148 elsif not Is_Derived_Type (Par) then
4149 return Empty;
4150
4151 else
4152 Par := Etype (Base_Type (Par));
4153 end if;
4154 end loop;
4155 end Find_Private_Ancestor;
4156
4157 ---------------
4158 -- Get_Value --
4159 ---------------
4160
4161 function Get_Value
4162 (Compon : Entity_Id;
4163 From : List_Id;
4164 Consider_Others_Choice : Boolean := False) return Node_Id
4165 is
4166 Typ : constant Entity_Id := Etype (Compon);
4167 Assoc : Node_Id;
4168 Expr : Node_Id := Empty;
4169 Selector_Name : Node_Id;
4170
4171 begin
4172 Is_Box_Present := False;
4173 Is_Box_Init_By_Default := False;
4174
4175 if No (From) then
4176 return Empty;
4177 end if;
4178
4179 Assoc := First (From);
4180 while Present (Assoc) loop
4181 Selector_Name := First (Choices (Assoc));
4182 while Present (Selector_Name) loop
4183 if Nkind (Selector_Name) = N_Others_Choice then
4184 if Consider_Others_Choice and then No (Expr) then
4185
4186 -- We need to duplicate the expression for each
4187 -- successive component covered by the others choice.
4188 -- This is redundant if the others_choice covers only
4189 -- one component (small optimization possible???), but
4190 -- indispensable otherwise, because each one must be
4191 -- expanded individually to preserve side effects.
4192
4193 -- Ada 2005 (AI-287): In case of default initialization
4194 -- of components, we duplicate the corresponding default
4195 -- expression (from the record type declaration). The
4196 -- copy must carry the sloc of the association (not the
4197 -- original expression) to prevent spurious elaboration
4198 -- checks when the default includes function calls.
4199
4200 if Box_Present (Assoc) then
4201 Others_Box := Others_Box + 1;
4202 Is_Box_Present := True;
4203
4204 if Expander_Active then
4205 return
4206 New_Copy_Tree_And_Copy_Dimensions
4207 (Expression (Parent (Compon)),
4208 New_Sloc => Sloc (Assoc));
4209 else
4210 return Expression (Parent (Compon));
4211 end if;
4212
4213 else
4214 if Present (Others_Etype)
4215 and then Base_Type (Others_Etype) /= Base_Type (Typ)
4216 then
4217 -- If the components are of an anonymous access
4218 -- type they are distinct, but this is legal in
4219 -- Ada 2012 as long as designated types match.
4220
4221 if (Ekind (Typ) = E_Anonymous_Access_Type
4222 or else Ekind (Typ) =
4223 E_Anonymous_Access_Subprogram_Type)
4224 and then Designated_Type (Typ) =
4225 Designated_Type (Others_Etype)
4226 then
4227 null;
4228 else
4229 Error_Msg_N
4230 ("components in OTHERS choice must have same "
4231 & "type", Selector_Name);
4232 end if;
4233 end if;
4234
4235 Others_Etype := Typ;
4236
4237 -- Copy the expression so that it is resolved
4238 -- independently for each component, This is needed
4239 -- for accessibility checks on components of anonymous
4240 -- access types, even in compile_only mode.
4241
4242 if not Inside_A_Generic then
4243 return
4244 New_Copy_Tree_And_Copy_Dimensions
4245 (Expression (Assoc));
4246 else
4247 return Expression (Assoc);
4248 end if;
4249 end if;
4250 end if;
4251
4252 elsif Chars (Compon) = Chars (Selector_Name) then
4253 if No (Expr) then
4254
4255 -- Ada 2005 (AI-231)
4256
4257 if Ada_Version >= Ada_2005
4258 and then Known_Null (Expression (Assoc))
4259 then
4260 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
4261 end if;
4262
4263 -- We need to duplicate the expression when several
4264 -- components are grouped together with a "|" choice.
4265 -- For instance "filed1 | filed2 => Expr"
4266
4267 -- Ada 2005 (AI-287)
4268
4269 if Box_Present (Assoc) then
4270 Is_Box_Present := True;
4271
4272 -- Duplicate the default expression of the component
4273 -- from the record type declaration, so a new copy
4274 -- can be attached to the association.
4275
4276 -- Note that we always copy the default expression,
4277 -- even when the association has a single choice, in
4278 -- order to create a proper association for the
4279 -- expanded aggregate.
4280
4281 -- Component may have no default, in which case the
4282 -- expression is empty and the component is default-
4283 -- initialized, but an association for the component
4284 -- exists, and it is not covered by an others clause.
4285
4286 -- Scalar and private types have no initialization
4287 -- procedure, so they remain uninitialized. If the
4288 -- target of the aggregate is a constant this
4289 -- deserves a warning.
4290
4291 if No (Expression (Parent (Compon)))
4292 and then not Has_Non_Null_Base_Init_Proc (Typ)
4293 and then not Has_Aspect (Typ, Aspect_Default_Value)
4294 and then not Is_Concurrent_Type (Typ)
4295 and then Nkind (Parent (N)) = N_Object_Declaration
4296 and then Constant_Present (Parent (N))
4297 then
4298 Error_Msg_Node_2 := Typ;
4299 Error_Msg_NE
4300 ("component&? of type& is uninitialized",
4301 Assoc, Selector_Name);
4302
4303 -- An additional reminder if the component type
4304 -- is a generic formal.
4305
4306 if Is_Generic_Type (Base_Type (Typ)) then
4307 Error_Msg_NE
4308 ("\instance should provide actual type with "
4309 & "initialization for&", Assoc, Typ);
4310 end if;
4311 end if;
4312
4313 return
4314 New_Copy_Tree_And_Copy_Dimensions
4315 (Expression (Parent (Compon)));
4316
4317 else
4318 if Present (Next (Selector_Name)) then
4319 Expr := New_Copy_Tree_And_Copy_Dimensions
4320 (Expression (Assoc));
4321 else
4322 Expr := Expression (Assoc);
4323 end if;
4324 end if;
4325
4326 Generate_Reference (Compon, Selector_Name, 'm');
4327
4328 else
4329 Error_Msg_NE
4330 ("more than one value supplied for &",
4331 Selector_Name, Compon);
4332
4333 end if;
4334 end if;
4335
4336 Next (Selector_Name);
4337 end loop;
4338
4339 Next (Assoc);
4340 end loop;
4341
4342 return Expr;
4343 end Get_Value;
4344
4345 -----------------------------
4346 -- Propagate_Discriminants --
4347 -----------------------------
4348
4349 procedure Propagate_Discriminants
4350 (Aggr : Node_Id;
4351 Assoc_List : List_Id)
4352 is
4353 Loc : constant Source_Ptr := Sloc (N);
4354
4355 procedure Process_Component (Comp : Entity_Id);
4356 -- Add one component with a box association to the inner aggregate,
4357 -- and recurse if component is itself composite.
4358
4359 -----------------------
4360 -- Process_Component --
4361 -----------------------
4362
4363 procedure Process_Component (Comp : Entity_Id) is
4364 T : constant Entity_Id := Etype (Comp);
4365 New_Aggr : Node_Id;
4366
4367 begin
4368 if Is_Record_Type (T) and then Has_Discriminants (T) then
4369 New_Aggr := Make_Aggregate (Loc, No_List, New_List);
4370 Set_Etype (New_Aggr, T);
4371
4372 Add_Association
4373 (Comp, New_Aggr, Component_Associations (Aggr));
4374
4375 -- Collect discriminant values and recurse
4376
4377 Add_Discriminant_Values (New_Aggr, Assoc_List);
4378 Propagate_Discriminants (New_Aggr, Assoc_List);
4379
4380 Build_Constrained_Itype
4381 (New_Aggr, T, Component_Associations (New_Aggr));
4382 else
4383 Add_Association
4384 (Comp, Empty, Component_Associations (Aggr),
4385 Is_Box_Present => True);
4386 end if;
4387 end Process_Component;
4388
4389 -- Local variables
4390
4391 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
4392 Components : constant Elist_Id := New_Elmt_List;
4393 Def_Node : constant Node_Id :=
4394 Type_Definition (Declaration_Node (Aggr_Type));
4395
4396 Comp : Node_Id;
4397 Comp_Elmt : Elmt_Id;
4398 Errors : Boolean;
4399
4400 -- Start of processing for Propagate_Discriminants
4401
4402 begin
4403 -- The component type may be a variant type. Collect the components
4404 -- that are ruled by the known values of the discriminants. Their
4405 -- values have already been inserted into the component list of the
4406 -- current aggregate.
4407
4408 if Nkind (Def_Node) = N_Record_Definition
4409 and then Present (Component_List (Def_Node))
4410 and then Present (Variant_Part (Component_List (Def_Node)))
4411 then
4412 Gather_Components (Aggr_Type,
4413 Component_List (Def_Node),
4414 Governed_By => Component_Associations (Aggr),
4415 Into => Components,
4416 Report_Errors => Errors);
4417
4418 Comp_Elmt := First_Elmt (Components);
4419 while Present (Comp_Elmt) loop
4420 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
4421 Process_Component (Node (Comp_Elmt));
4422 end if;
4423
4424 Next_Elmt (Comp_Elmt);
4425 end loop;
4426
4427 -- No variant part, iterate over all components
4428
4429 else
4430 Comp := First_Component (Etype (Aggr));
4431 while Present (Comp) loop
4432 Process_Component (Comp);
4433 Next_Component (Comp);
4434 end loop;
4435 end if;
4436 end Propagate_Discriminants;
4437
4438 -----------------------
4439 -- Resolve_Aggr_Expr --
4440 -----------------------
4441
4442 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
4443 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
4444 -- If the expression is an aggregate (possibly qualified) then its
4445 -- expansion is delayed until the enclosing aggregate is expanded
4446 -- into assignments. In that case, do not generate checks on the
4447 -- expression, because they will be generated later, and will other-
4448 -- wise force a copy (to remove side effects) that would leave a
4449 -- dynamic-sized aggregate in the code, something that gigi cannot
4450 -- handle.
4451
4452 ---------------------------
4453 -- Has_Expansion_Delayed --
4454 ---------------------------
4455
4456 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
4457 begin
4458 return
4459 (Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
4460 and then Present (Etype (Expr))
4461 and then Is_Record_Type (Etype (Expr))
4462 and then Expansion_Delayed (Expr))
4463 or else
4464 (Nkind (Expr) = N_Qualified_Expression
4465 and then Has_Expansion_Delayed (Expression (Expr)));
4466 end Has_Expansion_Delayed;
4467
4468 -- Local variables
4469
4470 Expr_Type : Entity_Id := Empty;
4471 New_C : Entity_Id := Component;
4472 New_Expr : Node_Id;
4473
4474 Relocate : Boolean;
4475 -- Set to True if the resolved Expr node needs to be relocated when
4476 -- attached to the newly created association list. This node need not
4477 -- be relocated if its parent pointer is not set. In fact in this
4478 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
4479 -- True then we have analyzed the expression node in the original
4480 -- aggregate and hence it needs to be relocated when moved over to
4481 -- the new association list.
4482
4483 -- Start of processing for Resolve_Aggr_Expr
4484
4485 begin
4486 -- If the type of the component is elementary or the type of the
4487 -- aggregate does not contain discriminants, use the type of the
4488 -- component to resolve Expr.
4489
4490 if Is_Elementary_Type (Etype (Component))
4491 or else not Has_Discriminants (Etype (N))
4492 then
4493 Expr_Type := Etype (Component);
4494
4495 -- Otherwise we have to pick up the new type of the component from
4496 -- the new constrained subtype of the aggregate. In fact components
4497 -- which are of a composite type might be constrained by a
4498 -- discriminant, and we want to resolve Expr against the subtype were
4499 -- all discriminant occurrences are replaced with their actual value.
4500
4501 else
4502 New_C := First_Component (Etype (N));
4503 while Present (New_C) loop
4504 if Chars (New_C) = Chars (Component) then
4505 Expr_Type := Etype (New_C);
4506 exit;
4507 end if;
4508
4509 Next_Component (New_C);
4510 end loop;
4511
4512 pragma Assert (Present (Expr_Type));
4513
4514 -- For each range in an array type where a discriminant has been
4515 -- replaced with the constraint, check that this range is within
4516 -- the range of the base type. This checks is done in the init
4517 -- proc for regular objects, but has to be done here for
4518 -- aggregates since no init proc is called for them.
4519
4520 if Is_Array_Type (Expr_Type) then
4521 declare
4522 Index : Node_Id;
4523 -- Range of the current constrained index in the array
4524
4525 Orig_Index : Node_Id := First_Index (Etype (Component));
4526 -- Range corresponding to the range Index above in the
4527 -- original unconstrained record type. The bounds of this
4528 -- range may be governed by discriminants.
4529
4530 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
4531 -- Range corresponding to the range Index above for the
4532 -- unconstrained array type. This range is needed to apply
4533 -- range checks.
4534
4535 begin
4536 Index := First_Index (Expr_Type);
4537 while Present (Index) loop
4538 if Depends_On_Discriminant (Orig_Index) then
4539 Apply_Range_Check (Index, Etype (Unconstr_Index));
4540 end if;
4541
4542 Next_Index (Index);
4543 Next_Index (Orig_Index);
4544 Next_Index (Unconstr_Index);
4545 end loop;
4546 end;
4547 end if;
4548 end if;
4549
4550 -- If the Parent pointer of Expr is not set, Expr is an expression
4551 -- duplicated by New_Tree_Copy (this happens for record aggregates
4552 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4553 -- Such a duplicated expression must be attached to the tree
4554 -- before analysis and resolution to enforce the rule that a tree
4555 -- fragment should never be analyzed or resolved unless it is
4556 -- attached to the current compilation unit.
4557
4558 if No (Parent (Expr)) then
4559 Set_Parent (Expr, N);
4560 Relocate := False;
4561 else
4562 Relocate := True;
4563 end if;
4564
4565 Analyze_And_Resolve (Expr, Expr_Type);
4566 Check_Expr_OK_In_Limited_Aggregate (Expr);
4567 Check_Non_Static_Context (Expr);
4568 Check_Unset_Reference (Expr);
4569
4570 -- Check wrong use of class-wide types
4571
4572 if Is_Class_Wide_Type (Etype (Expr)) then
4573 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4574 end if;
4575
4576 if not Has_Expansion_Delayed (Expr) then
4577 Aggregate_Constraint_Checks (Expr, Expr_Type);
4578 end if;
4579
4580 -- If an aggregate component has a type with predicates, an explicit
4581 -- predicate check must be applied, as for an assignment statement,
4582 -- because the aggregate might not be expanded into individual
4583 -- component assignments.
4584
4585 if Has_Predicates (Expr_Type)
4586 and then Analyzed (Expr)
4587 then
4588 Apply_Predicate_Check (Expr, Expr_Type);
4589 end if;
4590
4591 if Raises_Constraint_Error (Expr) then
4592 Set_Raises_Constraint_Error (N);
4593 end if;
4594
4595 -- If the expression has been marked as requiring a range check, then
4596 -- generate it here. It's a bit odd to be generating such checks in
4597 -- the analyzer, but harmless since Generate_Range_Check does nothing
4598 -- (other than making sure Do_Range_Check is set) if the expander is
4599 -- not active.
4600
4601 if Do_Range_Check (Expr) then
4602 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4603 end if;
4604
4605 -- Add association Component => Expr if the caller requests it
4606
4607 if Relocate then
4608 New_Expr := Relocate_Node (Expr);
4609
4610 -- Since New_Expr is not gonna be analyzed later on, we need to
4611 -- propagate here the dimensions form Expr to New_Expr.
4612
4613 Copy_Dimensions (Expr, New_Expr);
4614
4615 else
4616 New_Expr := Expr;
4617 end if;
4618
4619 Add_Association (New_C, New_Expr, New_Assoc_List);
4620 end Resolve_Aggr_Expr;
4621
4622 -------------------
4623 -- Rewrite_Range --
4624 -------------------
4625
4626 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4627 procedure Rewrite_Bound
4628 (Bound : Node_Id;
4629 Disc : Entity_Id;
4630 Expr_Disc : Node_Id);
4631 -- Rewrite a bound of the range Bound, when it is equal to the
4632 -- non-stored discriminant Disc, into the stored discriminant
4633 -- value Expr_Disc.
4634
4635 -------------------
4636 -- Rewrite_Bound --
4637 -------------------
4638
4639 procedure Rewrite_Bound
4640 (Bound : Node_Id;
4641 Disc : Entity_Id;
4642 Expr_Disc : Node_Id)
4643 is
4644 begin
4645 if Nkind (Bound) /= N_Identifier then
4646 return;
4647 end if;
4648
4649 -- We expect either the discriminant or the discriminal
4650
4651 if Entity (Bound) = Disc
4652 or else (Ekind (Entity (Bound)) = E_In_Parameter
4653 and then Discriminal_Link (Entity (Bound)) = Disc)
4654 then
4655 Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4656 end if;
4657 end Rewrite_Bound;
4658
4659 -- Local variables
4660
4661 Low, High : Node_Id;
4662 Disc : Entity_Id;
4663 Expr_Disc : Elmt_Id;
4664
4665 -- Start of processing for Rewrite_Range
4666
4667 begin
4668 if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
4669 Low := Low_Bound (Rge);
4670 High := High_Bound (Rge);
4671
4672 Disc := First_Discriminant (Root_Type);
4673 Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4674 while Present (Disc) loop
4675 Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4676 Rewrite_Bound (High, Disc, Node (Expr_Disc));
4677 Next_Discriminant (Disc);
4678 Next_Elmt (Expr_Disc);
4679 end loop;
4680 end if;
4681 end Rewrite_Range;
4682
4683 -- Local variables
4684
4685 Components : constant Elist_Id := New_Elmt_List;
4686 -- Components is the list of the record components whose value must be
4687 -- provided in the aggregate. This list does include discriminants.
4688
4689 Component : Entity_Id;
4690 Component_Elmt : Elmt_Id;
4691 Expr : Node_Id;
4692 Positional_Expr : Node_Id;
4693
4694 -- Start of processing for Resolve_Record_Aggregate
4695
4696 begin
4697 -- A record aggregate is restricted in SPARK:
4698
4699 -- Each named association can have only a single choice.
4700 -- OTHERS cannot be used.
4701 -- Positional and named associations cannot be mixed.
4702
4703 if Present (Component_Associations (N))
4704 and then Present (First (Component_Associations (N)))
4705 then
4706 declare
4707 Assoc : Node_Id;
4708
4709 begin
4710 Assoc := First (Component_Associations (N));
4711 while Present (Assoc) loop
4712 if Nkind (Assoc) = N_Iterated_Component_Association then
4713 Error_Msg_N
4714 ("iterated component association can only appear in an "
4715 & "array aggregate", N);
4716 raise Unrecoverable_Error;
4717 end if;
4718
4719 Next (Assoc);
4720 end loop;
4721 end;
4722 end if;
4723
4724 -- We may end up calling Duplicate_Subexpr on expressions that are
4725 -- attached to New_Assoc_List. For this reason we need to attach it
4726 -- to the tree by setting its parent pointer to N. This parent point
4727 -- will change in STEP 8 below.
4728
4729 Set_Parent (New_Assoc_List, N);
4730
4731 -- STEP 1: abstract type and null record verification
4732
4733 if Is_Abstract_Type (Typ) then
4734 Error_Msg_N ("type of aggregate cannot be abstract", N);
4735 end if;
4736
4737 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4738 Set_Etype (N, Typ);
4739 return;
4740
4741 elsif Present (First_Entity (Typ))
4742 and then Null_Record_Present (N)
4743 and then not Is_Tagged_Type (Typ)
4744 then
4745 Error_Msg_N ("record aggregate cannot be null", N);
4746 return;
4747
4748 -- If the type has no components, then the aggregate should either
4749 -- have "null record", or in Ada 2005 it could instead have a single
4750 -- component association given by "others => <>". For Ada 95 we flag an
4751 -- error at this point, but for Ada 2005 we proceed with checking the
4752 -- associations below, which will catch the case where it's not an
4753 -- aggregate with "others => <>". Note that the legality of a <>
4754 -- aggregate for a null record type was established by AI05-016.
4755
4756 elsif No (First_Entity (Typ))
4757 and then Ada_Version < Ada_2005
4758 then
4759 Error_Msg_N ("record aggregate must be null", N);
4760 return;
4761 end if;
4762
4763 -- STEP 2: Verify aggregate structure
4764
4765 Step_2 : declare
4766 Assoc : Node_Id;
4767 Bad_Aggregate : Boolean := False;
4768 Selector_Name : Node_Id;
4769
4770 begin
4771 if Present (Component_Associations (N)) then
4772 Assoc := First (Component_Associations (N));
4773 else
4774 Assoc := Empty;
4775 end if;
4776
4777 while Present (Assoc) loop
4778 Selector_Name := First (Choices (Assoc));
4779 while Present (Selector_Name) loop
4780 if Nkind (Selector_Name) = N_Identifier then
4781 null;
4782
4783 elsif Nkind (Selector_Name) = N_Others_Choice then
4784 if Selector_Name /= First (Choices (Assoc))
4785 or else Present (Next (Selector_Name))
4786 then
4787 Error_Msg_N
4788 ("OTHERS must appear alone in a choice list",
4789 Selector_Name);
4790 return;
4791
4792 elsif Present (Next (Assoc)) then
4793 Error_Msg_N
4794 ("OTHERS must appear last in an aggregate",
4795 Selector_Name);
4796 return;
4797
4798 -- (Ada 2005): If this is an association with a box,
4799 -- indicate that the association need not represent
4800 -- any component.
4801
4802 elsif Box_Present (Assoc) then
4803 Others_Box := 1;
4804 Box_Node := Assoc;
4805 end if;
4806
4807 else
4808 Error_Msg_N
4809 ("selector name should be identifier or OTHERS",
4810 Selector_Name);
4811 Bad_Aggregate := True;
4812 end if;
4813
4814 Next (Selector_Name);
4815 end loop;
4816
4817 Next (Assoc);
4818 end loop;
4819
4820 if Bad_Aggregate then
4821 return;
4822 end if;
4823 end Step_2;
4824
4825 -- STEP 3: Find discriminant Values
4826
4827 Step_3 : declare
4828 Discrim : Entity_Id;
4829 Missing_Discriminants : Boolean := False;
4830
4831 begin
4832 if Present (Expressions (N)) then
4833 Positional_Expr := First (Expressions (N));
4834 else
4835 Positional_Expr := Empty;
4836 end if;
4837
4838 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4839 -- must not have unknown discriminants.
4840 -- ??? We are not checking any subtype mark here and this code is not
4841 -- exercised by any test, so it's likely wrong (in particular
4842 -- we should not use Root_Type here but the subtype mark, if any),
4843 -- and possibly not needed.
4844
4845 if Is_Derived_Type (Typ)
4846 and then Has_Unknown_Discriminants (Root_Type (Typ))
4847 and then Nkind (N) /= N_Extension_Aggregate
4848 then
4849 Error_Msg_NE
4850 ("aggregate not available for type& whose ancestor "
4851 & "has unknown discriminants", N, Typ);
4852 end if;
4853
4854 if Has_Unknown_Discriminants (Typ)
4855 and then Present (Underlying_Record_View (Typ))
4856 then
4857 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4858 elsif Has_Discriminants (Typ) then
4859 Discrim := First_Discriminant (Typ);
4860 else
4861 Discrim := Empty;
4862 end if;
4863
4864 -- First find the discriminant values in the positional components
4865
4866 while Present (Discrim) and then Present (Positional_Expr) loop
4867 if Discriminant_Present (Discrim) then
4868 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4869
4870 -- Ada 2005 (AI-231)
4871
4872 if Ada_Version >= Ada_2005
4873 and then Known_Null (Positional_Expr)
4874 then
4875 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4876 end if;
4877
4878 Next (Positional_Expr);
4879 end if;
4880
4881 if Present (Get_Value (Discrim, Component_Associations (N))) then
4882 Error_Msg_NE
4883 ("more than one value supplied for discriminant&",
4884 N, Discrim);
4885 end if;
4886
4887 Next_Discriminant (Discrim);
4888 end loop;
4889
4890 -- Find remaining discriminant values if any among named components
4891
4892 while Present (Discrim) loop
4893 Expr := Get_Value (Discrim, Component_Associations (N), True);
4894
4895 if not Discriminant_Present (Discrim) then
4896 if Present (Expr) then
4897 Error_Msg_NE
4898 ("more than one value supplied for discriminant &",
4899 N, Discrim);
4900 end if;
4901
4902 elsif No (Expr) then
4903 Error_Msg_NE
4904 ("no value supplied for discriminant &", N, Discrim);
4905 Missing_Discriminants := True;
4906
4907 else
4908 Resolve_Aggr_Expr (Expr, Discrim);
4909 end if;
4910
4911 Next_Discriminant (Discrim);
4912 end loop;
4913
4914 if Missing_Discriminants then
4915 return;
4916 end if;
4917
4918 -- At this point and until the beginning of STEP 6, New_Assoc_List
4919 -- contains only the discriminants and their values.
4920
4921 end Step_3;
4922
4923 -- STEP 4: Set the Etype of the record aggregate
4924
4925 if Has_Discriminants (Typ)
4926 or else (Has_Unknown_Discriminants (Typ)
4927 and then Present (Underlying_Record_View (Typ)))
4928 then
4929 Build_Constrained_Itype (N, Typ, New_Assoc_List);
4930 else
4931 Set_Etype (N, Typ);
4932 end if;
4933
4934 -- STEP 5: Get remaining components according to discriminant values
4935
4936 Step_5 : declare
4937 Dnode : Node_Id;
4938 Errors_Found : Boolean := False;
4939 Record_Def : Node_Id;
4940 Parent_Typ : Entity_Id;
4941 Parent_Typ_List : Elist_Id;
4942 Parent_Elmt : Elmt_Id;
4943 Root_Typ : Entity_Id;
4944
4945 begin
4946 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4947 Parent_Typ_List := New_Elmt_List;
4948
4949 -- If this is an extension aggregate, the component list must
4950 -- include all components that are not in the given ancestor type.
4951 -- Otherwise, the component list must include components of all
4952 -- ancestors, starting with the root.
4953
4954 if Nkind (N) = N_Extension_Aggregate then
4955 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4956
4957 else
4958 -- AI05-0115: check legality of aggregate for type with a
4959 -- private ancestor.
4960
4961 Root_Typ := Root_Type (Typ);
4962 if Has_Private_Ancestor (Typ) then
4963 declare
4964 Ancestor : constant Entity_Id :=
4965 Find_Private_Ancestor (Typ);
4966 Ancestor_Unit : constant Entity_Id :=
4967 Cunit_Entity
4968 (Get_Source_Unit (Ancestor));
4969 Parent_Unit : constant Entity_Id :=
4970 Cunit_Entity (Get_Source_Unit
4971 (Base_Type (Etype (Ancestor))));
4972 begin
4973 -- Check whether we are in a scope that has full view
4974 -- over the private ancestor and its parent. This can
4975 -- only happen if the derivation takes place in a child
4976 -- unit of the unit that declares the parent, and we are
4977 -- in the private part or body of that child unit, else
4978 -- the aggregate is illegal.
4979
4980 if Is_Child_Unit (Ancestor_Unit)
4981 and then Scope (Ancestor_Unit) = Parent_Unit
4982 and then In_Open_Scopes (Scope (Ancestor))
4983 and then
4984 (In_Private_Part (Scope (Ancestor))
4985 or else In_Package_Body (Scope (Ancestor)))
4986 then
4987 null;
4988
4989 else
4990 Error_Msg_NE
4991 ("type of aggregate has private ancestor&!",
4992 N, Root_Typ);
4993 Error_Msg_N ("must use extension aggregate!", N);
4994 return;
4995 end if;
4996 end;
4997 end if;
4998
4999 Dnode := Declaration_Node (Base_Type (Root_Typ));
5000
5001 -- If we don't get a full declaration, then we have some error
5002 -- which will get signalled later so skip this part. Otherwise
5003 -- gather components of root that apply to the aggregate type.
5004 -- We use the base type in case there is an applicable stored
5005 -- constraint that renames the discriminants of the root.
5006
5007 if Nkind (Dnode) = N_Full_Type_Declaration then
5008 Record_Def := Type_Definition (Dnode);
5009 Gather_Components
5010 (Base_Type (Typ),
5011 Component_List (Record_Def),
5012 Governed_By => New_Assoc_List,
5013 Into => Components,
5014 Report_Errors => Errors_Found);
5015
5016 if Errors_Found then
5017 Error_Msg_N
5018 ("discriminant controlling variant part is not static",
5019 N);
5020 return;
5021 end if;
5022 end if;
5023 end if;
5024
5025 Parent_Typ := Base_Type (Typ);
5026 while Parent_Typ /= Root_Typ loop
5027 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
5028 Parent_Typ := Etype (Parent_Typ);
5029
5030 if Nkind (Parent (Base_Type (Parent_Typ))) =
5031 N_Private_Type_Declaration
5032 or else Nkind (Parent (Base_Type (Parent_Typ))) =
5033 N_Private_Extension_Declaration
5034 then
5035 if Nkind (N) /= N_Extension_Aggregate then
5036 Error_Msg_NE
5037 ("type of aggregate has private ancestor&!",
5038 N, Parent_Typ);
5039 Error_Msg_N ("must use extension aggregate!", N);
5040 return;
5041
5042 elsif Parent_Typ /= Root_Typ then
5043 Error_Msg_NE
5044 ("ancestor part of aggregate must be private type&",
5045 Ancestor_Part (N), Parent_Typ);
5046 return;
5047 end if;
5048
5049 -- The current view of ancestor part may be a private type,
5050 -- while the context type is always non-private.
5051
5052 elsif Is_Private_Type (Root_Typ)
5053 and then Present (Full_View (Root_Typ))
5054 and then Nkind (N) = N_Extension_Aggregate
5055 then
5056 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
5057 end if;
5058 end loop;
5059
5060 -- Now collect components from all other ancestors, beginning
5061 -- with the current type. If the type has unknown discriminants
5062 -- use the component list of the Underlying_Record_View, which
5063 -- needs to be used for the subsequent expansion of the aggregate
5064 -- into assignments.
5065
5066 Parent_Elmt := First_Elmt (Parent_Typ_List);
5067 while Present (Parent_Elmt) loop
5068 Parent_Typ := Node (Parent_Elmt);
5069
5070 if Has_Unknown_Discriminants (Parent_Typ)
5071 and then Present (Underlying_Record_View (Typ))
5072 then
5073 Parent_Typ := Underlying_Record_View (Parent_Typ);
5074 end if;
5075
5076 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
5077 Gather_Components (Empty,
5078 Component_List (Record_Extension_Part (Record_Def)),
5079 Governed_By => New_Assoc_List,
5080 Into => Components,
5081 Report_Errors => Errors_Found);
5082
5083 Next_Elmt (Parent_Elmt);
5084 end loop;
5085
5086 -- Typ is not a derived tagged type
5087
5088 else
5089 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
5090
5091 if Null_Present (Record_Def) then
5092 null;
5093
5094 elsif not Has_Unknown_Discriminants (Typ) then
5095 Gather_Components
5096 (Base_Type (Typ),
5097 Component_List (Record_Def),
5098 Governed_By => New_Assoc_List,
5099 Into => Components,
5100 Report_Errors => Errors_Found);
5101
5102 else
5103 Gather_Components
5104 (Base_Type (Underlying_Record_View (Typ)),
5105 Component_List (Record_Def),
5106 Governed_By => New_Assoc_List,
5107 Into => Components,
5108 Report_Errors => Errors_Found);
5109 end if;
5110 end if;
5111
5112 if Errors_Found then
5113 return;
5114 end if;
5115 end Step_5;
5116
5117 -- STEP 6: Find component Values
5118
5119 Component := Empty;
5120 Component_Elmt := First_Elmt (Components);
5121
5122 -- First scan the remaining positional associations in the aggregate.
5123 -- Remember that at this point Positional_Expr contains the current
5124 -- positional association if any is left after looking for discriminant
5125 -- values in step 3.
5126
5127 while Present (Positional_Expr) and then Present (Component_Elmt) loop
5128 Component := Node (Component_Elmt);
5129 Resolve_Aggr_Expr (Positional_Expr, Component);
5130
5131 -- Ada 2005 (AI-231)
5132
5133 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
5134 Check_Can_Never_Be_Null (Component, Positional_Expr);
5135 end if;
5136
5137 if Present (Get_Value (Component, Component_Associations (N))) then
5138 Error_Msg_NE
5139 ("more than one value supplied for component &", N, Component);
5140 end if;
5141
5142 Next (Positional_Expr);
5143 Next_Elmt (Component_Elmt);
5144 end loop;
5145
5146 if Present (Positional_Expr) then
5147 Error_Msg_N
5148 ("too many components for record aggregate", Positional_Expr);
5149 end if;
5150
5151 -- Now scan for the named arguments of the aggregate
5152
5153 while Present (Component_Elmt) loop
5154 Component := Node (Component_Elmt);
5155 Expr := Get_Value (Component, Component_Associations (N), True);
5156
5157 -- Note: The previous call to Get_Value sets the value of the
5158 -- variable Is_Box_Present.
5159
5160 -- Ada 2005 (AI-287): Handle components with default initialization.
5161 -- Note: This feature was originally added to Ada 2005 for limited
5162 -- but it was finally allowed with any type.
5163
5164 if Is_Box_Present then
5165 Check_Box_Component : declare
5166 Ctyp : constant Entity_Id := Etype (Component);
5167
5168 begin
5169 -- Initially assume that the box is for a default-initialized
5170 -- component and reset to False in cases where that's not true.
5171
5172 Is_Box_Init_By_Default := True;
5173
5174 -- If there is a default expression for the aggregate, copy
5175 -- it into a new association. This copy must modify the scopes
5176 -- of internal types that may be attached to the expression
5177 -- (e.g. index subtypes of arrays) because in general the type
5178 -- declaration and the aggregate appear in different scopes,
5179 -- and the backend requires the scope of the type to match the
5180 -- point at which it is elaborated.
5181
5182 -- If the component has an initialization procedure (IP) we
5183 -- pass the component to the expander, which will generate
5184 -- the call to such IP.
5185
5186 -- If the component has discriminants, their values must
5187 -- be taken from their subtype. This is indispensable for
5188 -- constraints that are given by the current instance of an
5189 -- enclosing type, to allow the expansion of the aggregate to
5190 -- replace the reference to the current instance by the target
5191 -- object of the aggregate.
5192
5193 if Present (Parent (Component))
5194 and then Nkind (Parent (Component)) = N_Component_Declaration
5195 and then Present (Expression (Parent (Component)))
5196 then
5197 -- If component declaration has an initialization expression
5198 -- then this is not a case of default initialization.
5199
5200 Is_Box_Init_By_Default := False;
5201
5202 Expr :=
5203 New_Copy_Tree_And_Copy_Dimensions
5204 (Expression (Parent (Component)),
5205 New_Scope => Current_Scope,
5206 New_Sloc => Sloc (N));
5207
5208 -- As the type of the copied default expression may refer
5209 -- to discriminants of the record type declaration, these
5210 -- non-stored discriminants need to be rewritten into stored
5211 -- discriminant values for the aggregate. This is required
5212 -- in GNATprove mode, and is adopted in all modes to avoid
5213 -- special-casing GNATprove mode.
5214
5215 if Is_Array_Type (Etype (Expr)) then
5216 declare
5217 Rec_Typ : constant Entity_Id := Scope (Component);
5218 -- Root record type whose discriminants may be used as
5219 -- bounds in range nodes.
5220
5221 Assoc : Node_Id;
5222 Choice : Node_Id;
5223 Index : Node_Id;
5224
5225 begin
5226 -- Rewrite the range nodes occurring in the indexes
5227 -- and their types.
5228
5229 Index := First_Index (Etype (Expr));
5230 while Present (Index) loop
5231 Rewrite_Range (Rec_Typ, Index);
5232 Rewrite_Range
5233 (Rec_Typ, Scalar_Range (Etype (Index)));
5234
5235 Next_Index (Index);
5236 end loop;
5237
5238 -- Rewrite the range nodes occurring as aggregate
5239 -- bounds and component associations.
5240
5241 if Nkind (Expr) = N_Aggregate then
5242 if Present (Aggregate_Bounds (Expr)) then
5243 Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
5244 end if;
5245
5246 if Present (Component_Associations (Expr)) then
5247 Assoc := First (Component_Associations (Expr));
5248 while Present (Assoc) loop
5249 Choice := First (Choices (Assoc));
5250 while Present (Choice) loop
5251 Rewrite_Range (Rec_Typ, Choice);
5252
5253 Next (Choice);
5254 end loop;
5255
5256 Next (Assoc);
5257 end loop;
5258 end if;
5259 end if;
5260 end;
5261 end if;
5262
5263 Add_Association
5264 (Component => Component,
5265 Expr => Expr,
5266 Assoc_List => New_Assoc_List);
5267 Set_Has_Self_Reference (N);
5268
5269 -- A box-defaulted access component gets the value null. Also
5270 -- included are components of private types whose underlying
5271 -- type is an access type. In either case set the type of the
5272 -- literal, for subsequent use in semantic checks.
5273
5274 elsif Present (Underlying_Type (Ctyp))
5275 and then Is_Access_Type (Underlying_Type (Ctyp))
5276 then
5277 -- If the component's type is private with an access type as
5278 -- its underlying type then we have to create an unchecked
5279 -- conversion to satisfy type checking.
5280
5281 if Is_Private_Type (Ctyp) then
5282 declare
5283 Qual_Null : constant Node_Id :=
5284 Make_Qualified_Expression (Sloc (N),
5285 Subtype_Mark =>
5286 New_Occurrence_Of
5287 (Underlying_Type (Ctyp), Sloc (N)),
5288 Expression => Make_Null (Sloc (N)));
5289
5290 Convert_Null : constant Node_Id :=
5291 Unchecked_Convert_To
5292 (Ctyp, Qual_Null);
5293
5294 begin
5295 Analyze_And_Resolve (Convert_Null, Ctyp);
5296 Add_Association
5297 (Component => Component,
5298 Expr => Convert_Null,
5299 Assoc_List => New_Assoc_List);
5300 end;
5301
5302 -- Otherwise the component type is non-private
5303
5304 else
5305 Expr := Make_Null (Sloc (N));
5306 Set_Etype (Expr, Ctyp);
5307
5308 Add_Association
5309 (Component => Component,
5310 Expr => Expr,
5311 Assoc_List => New_Assoc_List);
5312 end if;
5313
5314 -- Ada 2012: If component is scalar with default value, use it
5315 -- by converting it to Ctyp, so that subtype constraints are
5316 -- checked.
5317
5318 elsif Is_Scalar_Type (Ctyp)
5319 and then Has_Default_Aspect (Ctyp)
5320 then
5321 declare
5322 Conv : constant Node_Id :=
5323 Convert_To
5324 (Typ => Ctyp,
5325 Expr =>
5326 New_Copy_Tree
5327 (Default_Aspect_Value
5328 (First_Subtype (Underlying_Type (Ctyp)))));
5329
5330 begin
5331 Analyze_And_Resolve (Conv, Ctyp);
5332 Add_Association
5333 (Component => Component,
5334 Expr => Conv,
5335 Assoc_List => New_Assoc_List);
5336 end;
5337
5338 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
5339 or else not Expander_Active
5340 then
5341 if Is_Record_Type (Ctyp)
5342 and then Has_Discriminants (Ctyp)
5343 and then not Is_Private_Type (Ctyp)
5344 then
5345 -- We build a partially initialized aggregate with the
5346 -- values of the discriminants and box initialization
5347 -- for the rest, if other components are present.
5348
5349 -- The type of the aggregate is the known subtype of
5350 -- the component. The capture of discriminants must be
5351 -- recursive because subcomponents may be constrained
5352 -- (transitively) by discriminants of enclosing types.
5353 -- For a private type with discriminants, a call to the
5354 -- initialization procedure will be generated, and no
5355 -- subaggregate is needed.
5356
5357 Capture_Discriminants : declare
5358 Loc : constant Source_Ptr := Sloc (N);
5359 Expr : Node_Id;
5360
5361 begin
5362 Expr := Make_Aggregate (Loc, No_List, New_List);
5363 Set_Etype (Expr, Ctyp);
5364
5365 -- If the enclosing type has discriminants, they have
5366 -- been collected in the aggregate earlier, and they
5367 -- may appear as constraints of subcomponents.
5368
5369 -- Similarly if this component has discriminants, they
5370 -- might in turn be propagated to their components.
5371
5372 if Has_Discriminants (Typ) then
5373 Add_Discriminant_Values (Expr, New_Assoc_List);
5374 Propagate_Discriminants (Expr, New_Assoc_List);
5375
5376 elsif Has_Discriminants (Ctyp) then
5377 Add_Discriminant_Values
5378 (Expr, Component_Associations (Expr));
5379 Propagate_Discriminants
5380 (Expr, Component_Associations (Expr));
5381
5382 Build_Constrained_Itype
5383 (Expr, Ctyp, Component_Associations (Expr));
5384
5385 else
5386 declare
5387 Comp : Entity_Id;
5388
5389 begin
5390 -- If the type has additional components, create
5391 -- an OTHERS box association for them.
5392
5393 Comp := First_Component (Ctyp);
5394 while Present (Comp) loop
5395 if Ekind (Comp) = E_Component then
5396 if not Is_Record_Type (Etype (Comp)) then
5397 Append_To
5398 (Component_Associations (Expr),
5399 Make_Component_Association (Loc,
5400 Choices =>
5401 New_List (
5402 Make_Others_Choice (Loc)),
5403 Expression => Empty,
5404 Box_Present => True));
5405 end if;
5406
5407 exit;
5408 end if;
5409
5410 Next_Component (Comp);
5411 end loop;
5412 end;
5413 end if;
5414
5415 Add_Association
5416 (Component => Component,
5417 Expr => Expr,
5418 Assoc_List => New_Assoc_List);
5419 end Capture_Discriminants;
5420
5421 -- Otherwise the component type is not a record, or it has
5422 -- not discriminants, or it is private.
5423
5424 else
5425 Add_Association
5426 (Component => Component,
5427 Expr => Empty,
5428 Assoc_List => New_Assoc_List,
5429 Is_Box_Present => True);
5430 end if;
5431
5432 -- Otherwise we only need to resolve the expression if the
5433 -- component has partially initialized values (required to
5434 -- expand the corresponding assignments and run-time checks).
5435
5436 elsif Present (Expr)
5437 and then Is_Partially_Initialized_Type (Ctyp)
5438 then
5439 Resolve_Aggr_Expr (Expr, Component);
5440 end if;
5441 end Check_Box_Component;
5442
5443 elsif No (Expr) then
5444
5445 -- Ignore hidden components associated with the position of the
5446 -- interface tags: these are initialized dynamically.
5447
5448 if not Present (Related_Type (Component)) then
5449 Error_Msg_NE
5450 ("no value supplied for component &!", N, Component);
5451 end if;
5452
5453 else
5454 Resolve_Aggr_Expr (Expr, Component);
5455 end if;
5456
5457 Next_Elmt (Component_Elmt);
5458 end loop;
5459
5460 -- STEP 7: check for invalid components + check type in choice list
5461
5462 Step_7 : declare
5463 Assoc : Node_Id;
5464 New_Assoc : Node_Id;
5465
5466 Selectr : Node_Id;
5467 -- Selector name
5468
5469 Typech : Entity_Id;
5470 -- Type of first component in choice list
5471
5472 begin
5473 if Present (Component_Associations (N)) then
5474 Assoc := First (Component_Associations (N));
5475 else
5476 Assoc := Empty;
5477 end if;
5478
5479 Verification : while Present (Assoc) loop
5480 Selectr := First (Choices (Assoc));
5481 Typech := Empty;
5482
5483 if Nkind (Selectr) = N_Others_Choice then
5484
5485 -- Ada 2005 (AI-287): others choice may have expression or box
5486
5487 if No (Others_Etype) and then Others_Box = 0 then
5488 Error_Msg_N
5489 ("OTHERS must represent at least one component", Selectr);
5490
5491 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
5492 Error_Msg_N ("OTHERS choice is redundant?", Box_Node);
5493 Error_Msg_N
5494 ("\previous choices cover all components?", Box_Node);
5495 end if;
5496
5497 exit Verification;
5498 end if;
5499
5500 while Present (Selectr) loop
5501 New_Assoc := First (New_Assoc_List);
5502 while Present (New_Assoc) loop
5503 Component := First (Choices (New_Assoc));
5504
5505 if Chars (Selectr) = Chars (Component) then
5506 if Style_Check then
5507 Check_Identifier (Selectr, Entity (Component));
5508 end if;
5509
5510 exit;
5511 end if;
5512
5513 Next (New_Assoc);
5514 end loop;
5515
5516 -- If no association, this is not a legal component of the type
5517 -- in question, unless its association is provided with a box.
5518
5519 if No (New_Assoc) then
5520 if Box_Present (Parent (Selectr)) then
5521
5522 -- This may still be a bogus component with a box. Scan
5523 -- list of components to verify that a component with
5524 -- that name exists.
5525
5526 declare
5527 C : Entity_Id;
5528
5529 begin
5530 C := First_Component (Typ);
5531 while Present (C) loop
5532 if Chars (C) = Chars (Selectr) then
5533
5534 -- If the context is an extension aggregate,
5535 -- the component must not be inherited from
5536 -- the ancestor part of the aggregate.
5537
5538 if Nkind (N) /= N_Extension_Aggregate
5539 or else
5540 Scope (Original_Record_Component (C)) /=
5541 Etype (Ancestor_Part (N))
5542 then
5543 exit;
5544 end if;
5545 end if;
5546
5547 Next_Component (C);
5548 end loop;
5549
5550 if No (C) then
5551 Error_Msg_Node_2 := Typ;
5552 Error_Msg_N ("& is not a component of}", Selectr);
5553 end if;
5554 end;
5555
5556 elsif Chars (Selectr) /= Name_uTag
5557 and then Chars (Selectr) /= Name_uParent
5558 then
5559 if not Has_Discriminants (Typ) then
5560 Error_Msg_Node_2 := Typ;
5561 Error_Msg_N ("& is not a component of}", Selectr);
5562 else
5563 Error_Msg_N
5564 ("& is not a component of the aggregate subtype",
5565 Selectr);
5566 end if;
5567
5568 Check_Misspelled_Component (Components, Selectr);
5569 end if;
5570
5571 elsif No (Typech) then
5572 Typech := Base_Type (Etype (Component));
5573
5574 -- AI05-0199: In Ada 2012, several components of anonymous
5575 -- access types can appear in a choice list, as long as the
5576 -- designated types match.
5577
5578 elsif Typech /= Base_Type (Etype (Component)) then
5579 if Ada_Version >= Ada_2012
5580 and then Ekind (Typech) = E_Anonymous_Access_Type
5581 and then
5582 Ekind (Etype (Component)) = E_Anonymous_Access_Type
5583 and then Base_Type (Designated_Type (Typech)) =
5584 Base_Type (Designated_Type (Etype (Component)))
5585 and then
5586 Subtypes_Statically_Match (Typech, (Etype (Component)))
5587 then
5588 null;
5589
5590 elsif not Box_Present (Parent (Selectr)) then
5591 Error_Msg_N
5592 ("components in choice list must have same type",
5593 Selectr);
5594 end if;
5595 end if;
5596
5597 Next (Selectr);
5598 end loop;
5599
5600 Next (Assoc);
5601 end loop Verification;
5602 end Step_7;
5603
5604 -- STEP 8: replace the original aggregate
5605
5606 Step_8 : declare
5607 New_Aggregate : constant Node_Id := New_Copy (N);
5608
5609 begin
5610 Set_Expressions (New_Aggregate, No_List);
5611 Set_Etype (New_Aggregate, Etype (N));
5612 Set_Component_Associations (New_Aggregate, New_Assoc_List);
5613 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
5614
5615 Rewrite (N, New_Aggregate);
5616 end Step_8;
5617
5618 -- Check the dimensions of the components in the record aggregate
5619
5620 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5621 end Resolve_Record_Aggregate;
5622
5623 -----------------------------
5624 -- Check_Can_Never_Be_Null --
5625 -----------------------------
5626
5627 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5628 Comp_Typ : Entity_Id;
5629
5630 begin
5631 pragma Assert
5632 (Ada_Version >= Ada_2005
5633 and then Present (Expr)
5634 and then Known_Null (Expr));
5635
5636 case Ekind (Typ) is
5637 when E_Array_Type =>
5638 Comp_Typ := Component_Type (Typ);
5639
5640 when E_Component
5641 | E_Discriminant
5642 =>
5643 Comp_Typ := Etype (Typ);
5644
5645 when others =>
5646 return;
5647 end case;
5648
5649 if Can_Never_Be_Null (Comp_Typ) then
5650
5651 -- Here we know we have a constraint error. Note that we do not use
5652 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
5653 -- seem the more natural approach. That's because in some cases the
5654 -- components are rewritten, and the replacement would be missed.
5655 -- We do not mark the whole aggregate as raising a constraint error,
5656 -- because the association may be a null array range.
5657
5658 Error_Msg_N
5659 ("(Ada 2005) NULL not allowed in null-excluding component??", Expr);
5660 Error_Msg_N
5661 ("\Constraint_Error will be raised at run time??", Expr);
5662
5663 Rewrite (Expr,
5664 Make_Raise_Constraint_Error
5665 (Sloc (Expr), Reason => CE_Access_Check_Failed));
5666 Set_Etype (Expr, Comp_Typ);
5667 Set_Analyzed (Expr);
5668 end if;
5669 end Check_Can_Never_Be_Null;
5670
5671 ---------------------
5672 -- Sort_Case_Table --
5673 ---------------------
5674
5675 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5676 U : constant Int := Case_Table'Last;
5677 K : Int;
5678 J : Int;
5679 T : Case_Bounds;
5680
5681 begin
5682 K := 1;
5683 while K < U loop
5684 T := Case_Table (K + 1);
5685
5686 J := K + 1;
5687 while J > 1
5688 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5689 loop
5690 Case_Table (J) := Case_Table (J - 1);
5691 J := J - 1;
5692 end loop;
5693
5694 Case_Table (J) := T;
5695 K := K + 1;
5696 end loop;
5697 end Sort_Case_Table;
5698
5699 end Sem_Aggr;