]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_ch3.adb
[Ada] Refine logic to set Needs_Activation_Record on subprogram types
[thirdparty/gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
115 --
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
118
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
126
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
134
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
142
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
150
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
157
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
167
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
182
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
190
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
204
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
213 --
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
216 --
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 --
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
227
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
236
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
248
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
255
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
269
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
273
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
277
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
281
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
294
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
298
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
306
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
324
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
328
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
332
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
346
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
360
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
368
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
385
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
394 --
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
397 --
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
403 --
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
406 --
407 -- The last two arguments are used to create its external name if needed.
408
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
415
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
431
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
452
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
455
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
464
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
470
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
479
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
490
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
497
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
507
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
514
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
521
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
527
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
530
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
536
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
548 --
549 -- N is the original derived type declaration
550 --
551 -- Is_Tagged is set if we are dealing with tagged types
552 --
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
555 --
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
559 --
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
562 --
563 -- which gets treated as
564 --
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 --
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
570 --
571 -- (Old_Component => New_Component),
572 --
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
578
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
582
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
588
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
594
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
597
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
601
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
607
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
615
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
624
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
627 --
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
629 --
630 -- Full_T is N's defining identifier.
631 --
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
638 --
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
642
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
648
649 procedure Record_Type_Declaration
650 (T : Entity_Id;
651 N : Node_Id;
652 Prev : Entity_Id);
653 -- Process a record type declaration (for both untagged and tagged
654 -- records). Parameters T and N are exactly like in procedure
655 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
656 -- for this routine. If this is the completion of an incomplete type
657 -- declaration, Prev is the entity of the incomplete declaration, used for
658 -- cross-referencing. Otherwise Prev = T.
659
660 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
661 -- This routine is used to process the actual record type definition (both
662 -- for untagged and tagged records). Def is a record type definition node.
663 -- This procedure analyzes the components in this record type definition.
664 -- Prev_T is the entity for the enclosing record type. It is provided so
665 -- that its Has_Task flag can be set if any of the component have Has_Task
666 -- set. If the declaration is the completion of an incomplete type
667 -- declaration, Prev_T is the original incomplete type, whose full view is
668 -- the record type.
669
670 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
671 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
672 -- build a copy of the declaration tree of the parent, and we create
673 -- independently the list of components for the derived type. Semantic
674 -- information uses the component entities, but record representation
675 -- clauses are validated on the declaration tree. This procedure replaces
676 -- discriminants and components in the declaration with those that have
677 -- been created by Inherit_Components.
678
679 procedure Set_Fixed_Range
680 (E : Entity_Id;
681 Loc : Source_Ptr;
682 Lo : Ureal;
683 Hi : Ureal);
684 -- Build a range node with the given bounds and set it as the Scalar_Range
685 -- of the given fixed-point type entity. Loc is the source location used
686 -- for the constructed range. See body for further details.
687
688 procedure Set_Scalar_Range_For_Subtype
689 (Def_Id : Entity_Id;
690 R : Node_Id;
691 Subt : Entity_Id);
692 -- This routine is used to set the scalar range field for a subtype given
693 -- Def_Id, the entity for the subtype, and R, the range expression for the
694 -- scalar range. Subt provides the parent subtype to be used to analyze,
695 -- resolve, and check the given range.
696
697 procedure Set_Default_SSO (T : Entity_Id);
698 -- T is the entity for an array or record being declared. This procedure
699 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
700 -- to the setting of Opt.Default_SSO.
701
702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
705
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 (E : Entity_Id);
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
710
711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
714
715 -----------------------
716 -- Access_Definition --
717 -----------------------
718
719 function Access_Definition
720 (Related_Nod : Node_Id;
721 N : Node_Id) return Entity_Id
722 is
723 Anon_Type : Entity_Id;
724 Anon_Scope : Entity_Id;
725 Desig_Type : Entity_Id;
726 Enclosing_Prot_Type : Entity_Id := Empty;
727
728 begin
729 Check_SPARK_05_Restriction ("access type is not allowed", N);
730
731 if Is_Entry (Current_Scope)
732 and then Is_Task_Type (Etype (Scope (Current_Scope)))
733 then
734 Error_Msg_N ("task entries cannot have access parameters", N);
735 return Empty;
736 end if;
737
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
740
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
744
745 if Nkind_In (Related_Nod, N_Object_Declaration,
746 N_Access_Function_Definition)
747 then
748 Anon_Scope := Current_Scope;
749
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
753
754 declare
755 Par : Node_Id;
756
757 begin
758 Par := Related_Nod;
759 while Nkind_In (Par, N_Access_Function_Definition,
760 N_Access_Definition)
761 loop
762 Par := Parent (Par);
763 end loop;
764
765 if Nkind (Par) = N_Function_Specification then
766 Anon_Scope := Scope (Defining_Entity (Par));
767 end if;
768 end;
769
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
777
778 elsif Nkind (Related_Nod) = N_Function_Specification
779 and then Nkind (Parent (N)) /= N_Parameter_Specification
780 then
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
785
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
790
791 if Ekind (Current_Scope) = E_Protected_Type then
792 Enclosing_Prot_Type := Current_Scope;
793
794 elsif Ekind (Current_Scope) = E_Function
795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796 then
797 Enclosing_Prot_Type := Scope (Current_Scope);
798 end if;
799
800 if Present (Enclosing_Prot_Type) then
801 Anon_Scope := Scope (Enclosing_Prot_Type);
802
803 else
804 Anon_Scope := Scope (Defining_Entity (Related_Nod));
805 end if;
806
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
809
810 elsif Is_Compilation_Unit (Current_Scope) then
811 Anon_Scope := Current_Scope;
812
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
815
816 else
817 Anon_Scope := Scope (Current_Scope);
818 end if;
819
820 Anon_Type :=
821 Create_Itype
822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823
824 if All_Present (N)
825 and then Ada_Version >= Ada_2005
826 then
827 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828 end if;
829
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
832
833 if Present (Access_To_Subprogram_Definition (N)) then
834
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
838
839 Check_Compiler_Unit ("anonymous access to subprogram", N);
840
841 Access_Subprogram_Declaration
842 (T_Name => Anon_Type,
843 T_Def => Access_To_Subprogram_Definition (N));
844
845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846 Set_Ekind
847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848 else
849 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850 end if;
851
852 Set_Can_Use_Internal_Rep
853 (Anon_Type, not Always_Compatible_Rep_On_Target);
854
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
858
859 -- If the anonymous access itself is protected, a full type
860 -- declaratiton will be created for it, so that the equivalent
861 -- record type can be constructed. For further details, see
862 -- Replace_Anonymous_Access_To_Protected-Subprogram.
863
864 if Ekind (Current_Scope) = E_Protected_Type
865 and then not Protected_Present (Access_To_Subprogram_Definition (N))
866 then
867 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
868 end if;
869
870 return Anon_Type;
871 end if;
872
873 Find_Type (Subtype_Mark (N));
874 Desig_Type := Entity (Subtype_Mark (N));
875
876 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
877 Set_Etype (Anon_Type, Anon_Type);
878
879 -- Make sure the anonymous access type has size and alignment fields
880 -- set, as required by gigi. This is necessary in the case of the
881 -- Task_Body_Procedure.
882
883 if not Has_Private_Component (Desig_Type) then
884 Layout_Type (Anon_Type);
885 end if;
886
887 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
888 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
889 -- the null value is allowed. In Ada 95 the null value is never allowed.
890
891 if Ada_Version >= Ada_2005 then
892 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
893 else
894 Set_Can_Never_Be_Null (Anon_Type, True);
895 end if;
896
897 -- The anonymous access type is as public as the discriminated type or
898 -- subprogram that defines it. It is imported (for back-end purposes)
899 -- if the designated type is.
900
901 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
902
903 -- Ada 2005 (AI-231): Propagate the access-constant attribute
904
905 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
906
907 -- The context is either a subprogram declaration, object declaration,
908 -- or an access discriminant, in a private or a full type declaration.
909 -- In the case of a subprogram, if the designated type is incomplete,
910 -- the operation will be a primitive operation of the full type, to be
911 -- updated subsequently. If the type is imported through a limited_with
912 -- clause, the subprogram is not a primitive operation of the type
913 -- (which is declared elsewhere in some other scope).
914
915 if Ekind (Desig_Type) = E_Incomplete_Type
916 and then not From_Limited_With (Desig_Type)
917 and then Is_Overloadable (Current_Scope)
918 then
919 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
920 Set_Has_Delayed_Freeze (Current_Scope);
921 end if;
922
923 -- Ada 2005: If the designated type is an interface that may contain
924 -- tasks, create a Master entity for the declaration. This must be done
925 -- before expansion of the full declaration, because the declaration may
926 -- include an expression that is an allocator, whose expansion needs the
927 -- proper Master for the created tasks.
928
929 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
930 then
931 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
932 then
933 Build_Class_Wide_Master (Anon_Type);
934
935 -- Similarly, if the type is an anonymous access that designates
936 -- tasks, create a master entity for it in the current context.
937
938 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
939 then
940 Build_Master_Entity (Defining_Identifier (Related_Nod));
941 Build_Master_Renaming (Anon_Type);
942 end if;
943 end if;
944
945 -- For a private component of a protected type, it is imperative that
946 -- the back-end elaborate the type immediately after the protected
947 -- declaration, because this type will be used in the declarations
948 -- created for the component within each protected body, so we must
949 -- create an itype reference for it now.
950
951 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
952 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
953
954 -- Similarly, if the access definition is the return result of a
955 -- function, create an itype reference for it because it will be used
956 -- within the function body. For a regular function that is not a
957 -- compilation unit, insert reference after the declaration. For a
958 -- protected operation, insert it after the enclosing protected type
959 -- declaration. In either case, do not create a reference for a type
960 -- obtained through a limited_with clause, because this would introduce
961 -- semantic dependencies.
962
963 -- Similarly, do not create a reference if the designated type is a
964 -- generic formal, because no use of it will reach the backend.
965
966 elsif Nkind (Related_Nod) = N_Function_Specification
967 and then not From_Limited_With (Desig_Type)
968 and then not Is_Generic_Type (Desig_Type)
969 then
970 if Present (Enclosing_Prot_Type) then
971 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
972
973 elsif Is_List_Member (Parent (Related_Nod))
974 and then Nkind (Parent (N)) /= N_Parameter_Specification
975 then
976 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
977 end if;
978
979 -- Finally, create an itype reference for an object declaration of an
980 -- anonymous access type. This is strictly necessary only for deferred
981 -- constants, but in any case will avoid out-of-scope problems in the
982 -- back-end.
983
984 elsif Nkind (Related_Nod) = N_Object_Declaration then
985 Build_Itype_Reference (Anon_Type, Related_Nod);
986 end if;
987
988 return Anon_Type;
989 end Access_Definition;
990
991 -----------------------------------
992 -- Access_Subprogram_Declaration --
993 -----------------------------------
994
995 procedure Access_Subprogram_Declaration
996 (T_Name : Entity_Id;
997 T_Def : Node_Id)
998 is
999 procedure Check_For_Premature_Usage (Def : Node_Id);
1000 -- Check that type T_Name is not used, directly or recursively, as a
1001 -- parameter or a return type in Def. Def is either a subtype, an
1002 -- access_definition, or an access_to_subprogram_definition.
1003
1004 -------------------------------
1005 -- Check_For_Premature_Usage --
1006 -------------------------------
1007
1008 procedure Check_For_Premature_Usage (Def : Node_Id) is
1009 Param : Node_Id;
1010
1011 begin
1012 -- Check for a subtype mark
1013
1014 if Nkind (Def) in N_Has_Etype then
1015 if Etype (Def) = T_Name then
1016 Error_Msg_N
1017 ("type& cannot be used before end of its declaration", Def);
1018 end if;
1019
1020 -- If this is not a subtype, then this is an access_definition
1021
1022 elsif Nkind (Def) = N_Access_Definition then
1023 if Present (Access_To_Subprogram_Definition (Def)) then
1024 Check_For_Premature_Usage
1025 (Access_To_Subprogram_Definition (Def));
1026 else
1027 Check_For_Premature_Usage (Subtype_Mark (Def));
1028 end if;
1029
1030 -- The only cases left are N_Access_Function_Definition and
1031 -- N_Access_Procedure_Definition.
1032
1033 else
1034 if Present (Parameter_Specifications (Def)) then
1035 Param := First (Parameter_Specifications (Def));
1036 while Present (Param) loop
1037 Check_For_Premature_Usage (Parameter_Type (Param));
1038 Param := Next (Param);
1039 end loop;
1040 end if;
1041
1042 if Nkind (Def) = N_Access_Function_Definition then
1043 Check_For_Premature_Usage (Result_Definition (Def));
1044 end if;
1045 end if;
1046 end Check_For_Premature_Usage;
1047
1048 -- Local variables
1049
1050 Formals : constant List_Id := Parameter_Specifications (T_Def);
1051 Formal : Entity_Id;
1052 D_Ityp : Node_Id;
1053 Desig_Type : constant Entity_Id :=
1054 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1055
1056 -- Start of processing for Access_Subprogram_Declaration
1057
1058 begin
1059 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1060
1061 -- Associate the Itype node with the inner full-type declaration or
1062 -- subprogram spec or entry body. This is required to handle nested
1063 -- anonymous declarations. For example:
1064
1065 -- procedure P
1066 -- (X : access procedure
1067 -- (Y : access procedure
1068 -- (Z : access T)))
1069
1070 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1071 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1072 N_Private_Type_Declaration,
1073 N_Private_Extension_Declaration,
1074 N_Procedure_Specification,
1075 N_Function_Specification,
1076 N_Entry_Body)
1077
1078 or else
1079 Nkind_In (D_Ityp, N_Object_Declaration,
1080 N_Object_Renaming_Declaration,
1081 N_Formal_Object_Declaration,
1082 N_Formal_Type_Declaration,
1083 N_Task_Type_Declaration,
1084 N_Protected_Type_Declaration))
1085 loop
1086 D_Ityp := Parent (D_Ityp);
1087 pragma Assert (D_Ityp /= Empty);
1088 end loop;
1089
1090 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1091
1092 if Nkind_In (D_Ityp, N_Procedure_Specification,
1093 N_Function_Specification)
1094 then
1095 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1096
1097 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1098 N_Object_Declaration,
1099 N_Object_Renaming_Declaration,
1100 N_Formal_Type_Declaration)
1101 then
1102 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1103 end if;
1104
1105 if Nkind (T_Def) = N_Access_Function_Definition then
1106 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1107 declare
1108 Acc : constant Node_Id := Result_Definition (T_Def);
1109
1110 begin
1111 if Present (Access_To_Subprogram_Definition (Acc))
1112 and then
1113 Protected_Present (Access_To_Subprogram_Definition (Acc))
1114 then
1115 Set_Etype
1116 (Desig_Type,
1117 Replace_Anonymous_Access_To_Protected_Subprogram
1118 (T_Def));
1119
1120 else
1121 Set_Etype
1122 (Desig_Type,
1123 Access_Definition (T_Def, Result_Definition (T_Def)));
1124 end if;
1125 end;
1126
1127 else
1128 Analyze (Result_Definition (T_Def));
1129
1130 declare
1131 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1132
1133 begin
1134 -- If a null exclusion is imposed on the result type, then
1135 -- create a null-excluding itype (an access subtype) and use
1136 -- it as the function's Etype.
1137
1138 if Is_Access_Type (Typ)
1139 and then Null_Exclusion_In_Return_Present (T_Def)
1140 then
1141 Set_Etype (Desig_Type,
1142 Create_Null_Excluding_Itype
1143 (T => Typ,
1144 Related_Nod => T_Def,
1145 Scope_Id => Current_Scope));
1146
1147 else
1148 if From_Limited_With (Typ) then
1149
1150 -- AI05-151: Incomplete types are allowed in all basic
1151 -- declarations, including access to subprograms.
1152
1153 if Ada_Version >= Ada_2012 then
1154 null;
1155
1156 else
1157 Error_Msg_NE
1158 ("illegal use of incomplete type&",
1159 Result_Definition (T_Def), Typ);
1160 end if;
1161
1162 elsif Ekind (Current_Scope) = E_Package
1163 and then In_Private_Part (Current_Scope)
1164 then
1165 if Ekind (Typ) = E_Incomplete_Type then
1166 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1167
1168 elsif Is_Class_Wide_Type (Typ)
1169 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1170 then
1171 Append_Elmt
1172 (Desig_Type, Private_Dependents (Etype (Typ)));
1173 end if;
1174 end if;
1175
1176 Set_Etype (Desig_Type, Typ);
1177 end if;
1178 end;
1179 end if;
1180
1181 if not (Is_Type (Etype (Desig_Type))) then
1182 Error_Msg_N
1183 ("expect type in function specification",
1184 Result_Definition (T_Def));
1185 end if;
1186
1187 else
1188 Set_Etype (Desig_Type, Standard_Void_Type);
1189 end if;
1190
1191 if Present (Formals) then
1192 Push_Scope (Desig_Type);
1193
1194 -- Some special tests here. These special tests can be removed
1195 -- if and when Itypes always have proper parent pointers to their
1196 -- declarations???
1197
1198 -- Special test 1) Link defining_identifier of formals. Required by
1199 -- First_Formal to provide its functionality.
1200
1201 declare
1202 F : Node_Id;
1203
1204 begin
1205 F := First (Formals);
1206
1207 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1208 -- when it is part of an unconstrained type and subtype expansion
1209 -- is disabled. To avoid back-end problems with shared profiles,
1210 -- use previous subprogram type as the designated type, and then
1211 -- remove scope added above.
1212
1213 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1214 then
1215 Set_Etype (T_Name, T_Name);
1216 Init_Size_Align (T_Name);
1217 Set_Directly_Designated_Type (T_Name,
1218 Scope (Defining_Identifier (F)));
1219 End_Scope;
1220 return;
1221 end if;
1222
1223 while Present (F) loop
1224 if No (Parent (Defining_Identifier (F))) then
1225 Set_Parent (Defining_Identifier (F), F);
1226 end if;
1227
1228 Next (F);
1229 end loop;
1230 end;
1231
1232 Process_Formals (Formals, Parent (T_Def));
1233
1234 -- Special test 2) End_Scope requires that the parent pointer be set
1235 -- to something reasonable, but Itypes don't have parent pointers. So
1236 -- we set it and then unset it ???
1237
1238 Set_Parent (Desig_Type, T_Name);
1239 End_Scope;
1240 Set_Parent (Desig_Type, Empty);
1241 end if;
1242
1243 -- Check for premature usage of the type being defined
1244
1245 Check_For_Premature_Usage (T_Def);
1246
1247 -- The return type and/or any parameter type may be incomplete. Mark the
1248 -- subprogram_type as depending on the incomplete type, so that it can
1249 -- be updated when the full type declaration is seen. This only applies
1250 -- to incomplete types declared in some enclosing scope, not to limited
1251 -- views from other packages.
1252
1253 -- Prior to Ada 2012, access to functions can only have in_parameters.
1254
1255 if Present (Formals) then
1256 Formal := First_Formal (Desig_Type);
1257 while Present (Formal) loop
1258 if Ekind (Formal) /= E_In_Parameter
1259 and then Nkind (T_Def) = N_Access_Function_Definition
1260 and then Ada_Version < Ada_2012
1261 then
1262 Error_Msg_N ("functions can only have IN parameters", Formal);
1263 end if;
1264
1265 if Ekind (Etype (Formal)) = E_Incomplete_Type
1266 and then In_Open_Scopes (Scope (Etype (Formal)))
1267 then
1268 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1269 Set_Has_Delayed_Freeze (Desig_Type);
1270 end if;
1271
1272 Next_Formal (Formal);
1273 end loop;
1274 end if;
1275
1276 -- Check whether an indirect call without actuals may be possible. This
1277 -- is used when resolving calls whose result is then indexed.
1278
1279 May_Need_Actuals (Desig_Type);
1280
1281 -- If the return type is incomplete, this is legal as long as the type
1282 -- is declared in the current scope and will be completed in it (rather
1283 -- than being part of limited view).
1284
1285 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1286 and then not Has_Delayed_Freeze (Desig_Type)
1287 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1288 then
1289 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1290 Set_Has_Delayed_Freeze (Desig_Type);
1291 end if;
1292
1293 Check_Delayed_Subprogram (Desig_Type);
1294
1295 if Protected_Present (T_Def) then
1296 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1297 Set_Convention (Desig_Type, Convention_Protected);
1298 else
1299 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1300 end if;
1301
1302 Set_Can_Use_Internal_Rep (T_Name,
1303 not Always_Compatible_Rep_On_Target);
1304 Set_Etype (T_Name, T_Name);
1305 Init_Size_Align (T_Name);
1306 Set_Directly_Designated_Type (T_Name, Desig_Type);
1307
1308 -- If the access_to_subprogram is not declared at the library level,
1309 -- it can only point to subprograms that are at the same or deeper
1310 -- accessibility level. The corresponding subprogram type might
1311 -- require an activation record when compiling for C.
1312
1313 Set_Needs_Activation_Record (Desig_Type,
1314 not Is_Library_Level_Entity (T_Name));
1315
1316 Generate_Reference_To_Formals (T_Name);
1317
1318 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1319
1320 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1321
1322 Check_Restriction (No_Access_Subprograms, T_Def);
1323 end Access_Subprogram_Declaration;
1324
1325 ----------------------------
1326 -- Access_Type_Declaration --
1327 ----------------------------
1328
1329 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1330 P : constant Node_Id := Parent (Def);
1331 S : constant Node_Id := Subtype_Indication (Def);
1332
1333 Full_Desig : Entity_Id;
1334
1335 begin
1336 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1337
1338 -- Check for permissible use of incomplete type
1339
1340 if Nkind (S) /= N_Subtype_Indication then
1341 Analyze (S);
1342
1343 if Present (Entity (S))
1344 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1345 then
1346 Set_Directly_Designated_Type (T, Entity (S));
1347
1348 -- If the designated type is a limited view, we cannot tell if
1349 -- the full view contains tasks, and there is no way to handle
1350 -- that full view in a client. We create a master entity for the
1351 -- scope, which will be used when a client determines that one
1352 -- is needed.
1353
1354 if From_Limited_With (Entity (S))
1355 and then not Is_Class_Wide_Type (Entity (S))
1356 then
1357 Set_Ekind (T, E_Access_Type);
1358 Build_Master_Entity (T);
1359 Build_Master_Renaming (T);
1360 end if;
1361
1362 else
1363 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1364 end if;
1365
1366 -- If the access definition is of the form: ACCESS NOT NULL ..
1367 -- the subtype indication must be of an access type. Create
1368 -- a null-excluding subtype of it.
1369
1370 if Null_Excluding_Subtype (Def) then
1371 if not Is_Access_Type (Entity (S)) then
1372 Error_Msg_N ("null exclusion must apply to access type", Def);
1373
1374 else
1375 declare
1376 Loc : constant Source_Ptr := Sloc (S);
1377 Decl : Node_Id;
1378 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1379
1380 begin
1381 Decl :=
1382 Make_Subtype_Declaration (Loc,
1383 Defining_Identifier => Nam,
1384 Subtype_Indication =>
1385 New_Occurrence_Of (Entity (S), Loc));
1386 Set_Null_Exclusion_Present (Decl);
1387 Insert_Before (Parent (Def), Decl);
1388 Analyze (Decl);
1389 Set_Entity (S, Nam);
1390 end;
1391 end if;
1392 end if;
1393
1394 else
1395 Set_Directly_Designated_Type (T,
1396 Process_Subtype (S, P, T, 'P'));
1397 end if;
1398
1399 if All_Present (Def) or Constant_Present (Def) then
1400 Set_Ekind (T, E_General_Access_Type);
1401 else
1402 Set_Ekind (T, E_Access_Type);
1403 end if;
1404
1405 Full_Desig := Designated_Type (T);
1406
1407 if Base_Type (Full_Desig) = T then
1408 Error_Msg_N ("access type cannot designate itself", S);
1409
1410 -- In Ada 2005, the type may have a limited view through some unit in
1411 -- its own context, allowing the following circularity that cannot be
1412 -- detected earlier.
1413
1414 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1415 then
1416 Error_Msg_N
1417 ("access type cannot designate its own class-wide type", S);
1418
1419 -- Clean up indication of tagged status to prevent cascaded errors
1420
1421 Set_Is_Tagged_Type (T, False);
1422 end if;
1423
1424 Set_Etype (T, T);
1425
1426 -- If the type has appeared already in a with_type clause, it is frozen
1427 -- and the pointer size is already set. Else, initialize.
1428
1429 if not From_Limited_With (T) then
1430 Init_Size_Align (T);
1431 end if;
1432
1433 -- Note that Has_Task is always false, since the access type itself
1434 -- is not a task type. See Einfo for more description on this point.
1435 -- Exactly the same consideration applies to Has_Controlled_Component
1436 -- and to Has_Protected.
1437
1438 Set_Has_Task (T, False);
1439 Set_Has_Protected (T, False);
1440 Set_Has_Timing_Event (T, False);
1441 Set_Has_Controlled_Component (T, False);
1442
1443 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1444 -- problems where an incomplete view of this entity has been previously
1445 -- established by a limited with and an overlaid version of this field
1446 -- (Stored_Constraint) was initialized for the incomplete view.
1447
1448 -- This reset is performed in most cases except where the access type
1449 -- has been created for the purposes of allocating or deallocating a
1450 -- build-in-place object. Such access types have explicitly set pools
1451 -- and finalization masters.
1452
1453 if No (Associated_Storage_Pool (T)) then
1454 Set_Finalization_Master (T, Empty);
1455 end if;
1456
1457 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1458 -- attributes
1459
1460 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1461 Set_Is_Access_Constant (T, Constant_Present (Def));
1462 end Access_Type_Declaration;
1463
1464 ----------------------------------
1465 -- Add_Interface_Tag_Components --
1466 ----------------------------------
1467
1468 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1469 Loc : constant Source_Ptr := Sloc (N);
1470 L : List_Id;
1471 Last_Tag : Node_Id;
1472
1473 procedure Add_Tag (Iface : Entity_Id);
1474 -- Add tag for one of the progenitor interfaces
1475
1476 -------------
1477 -- Add_Tag --
1478 -------------
1479
1480 procedure Add_Tag (Iface : Entity_Id) is
1481 Decl : Node_Id;
1482 Def : Node_Id;
1483 Tag : Entity_Id;
1484 Offset : Entity_Id;
1485
1486 begin
1487 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1488
1489 -- This is a reasonable place to propagate predicates
1490
1491 if Has_Predicates (Iface) then
1492 Set_Has_Predicates (Typ);
1493 end if;
1494
1495 Def :=
1496 Make_Component_Definition (Loc,
1497 Aliased_Present => True,
1498 Subtype_Indication =>
1499 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1500
1501 Tag := Make_Temporary (Loc, 'V');
1502
1503 Decl :=
1504 Make_Component_Declaration (Loc,
1505 Defining_Identifier => Tag,
1506 Component_Definition => Def);
1507
1508 Analyze_Component_Declaration (Decl);
1509
1510 Set_Analyzed (Decl);
1511 Set_Ekind (Tag, E_Component);
1512 Set_Is_Tag (Tag);
1513 Set_Is_Aliased (Tag);
1514 Set_Related_Type (Tag, Iface);
1515 Init_Component_Location (Tag);
1516
1517 pragma Assert (Is_Frozen (Iface));
1518
1519 Set_DT_Entry_Count (Tag,
1520 DT_Entry_Count (First_Entity (Iface)));
1521
1522 if No (Last_Tag) then
1523 Prepend (Decl, L);
1524 else
1525 Insert_After (Last_Tag, Decl);
1526 end if;
1527
1528 Last_Tag := Decl;
1529
1530 -- If the ancestor has discriminants we need to give special support
1531 -- to store the offset_to_top value of the secondary dispatch tables.
1532 -- For this purpose we add a supplementary component just after the
1533 -- field that contains the tag associated with each secondary DT.
1534
1535 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1536 Def :=
1537 Make_Component_Definition (Loc,
1538 Subtype_Indication =>
1539 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1540
1541 Offset := Make_Temporary (Loc, 'V');
1542
1543 Decl :=
1544 Make_Component_Declaration (Loc,
1545 Defining_Identifier => Offset,
1546 Component_Definition => Def);
1547
1548 Analyze_Component_Declaration (Decl);
1549
1550 Set_Analyzed (Decl);
1551 Set_Ekind (Offset, E_Component);
1552 Set_Is_Aliased (Offset);
1553 Set_Related_Type (Offset, Iface);
1554 Init_Component_Location (Offset);
1555 Insert_After (Last_Tag, Decl);
1556 Last_Tag := Decl;
1557 end if;
1558 end Add_Tag;
1559
1560 -- Local variables
1561
1562 Elmt : Elmt_Id;
1563 Ext : Node_Id;
1564 Comp : Node_Id;
1565
1566 -- Start of processing for Add_Interface_Tag_Components
1567
1568 begin
1569 if not RTE_Available (RE_Interface_Tag) then
1570 Error_Msg
1571 ("(Ada 2005) interface types not supported by this run-time!",
1572 Sloc (N));
1573 return;
1574 end if;
1575
1576 if Ekind (Typ) /= E_Record_Type
1577 or else (Is_Concurrent_Record_Type (Typ)
1578 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1579 or else (not Is_Concurrent_Record_Type (Typ)
1580 and then No (Interfaces (Typ))
1581 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1582 then
1583 return;
1584 end if;
1585
1586 -- Find the current last tag
1587
1588 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1589 Ext := Record_Extension_Part (Type_Definition (N));
1590 else
1591 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1592 Ext := Type_Definition (N);
1593 end if;
1594
1595 Last_Tag := Empty;
1596
1597 if not (Present (Component_List (Ext))) then
1598 Set_Null_Present (Ext, False);
1599 L := New_List;
1600 Set_Component_List (Ext,
1601 Make_Component_List (Loc,
1602 Component_Items => L,
1603 Null_Present => False));
1604 else
1605 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1606 L := Component_Items
1607 (Component_List
1608 (Record_Extension_Part
1609 (Type_Definition (N))));
1610 else
1611 L := Component_Items
1612 (Component_List
1613 (Type_Definition (N)));
1614 end if;
1615
1616 -- Find the last tag component
1617
1618 Comp := First (L);
1619 while Present (Comp) loop
1620 if Nkind (Comp) = N_Component_Declaration
1621 and then Is_Tag (Defining_Identifier (Comp))
1622 then
1623 Last_Tag := Comp;
1624 end if;
1625
1626 Next (Comp);
1627 end loop;
1628 end if;
1629
1630 -- At this point L references the list of components and Last_Tag
1631 -- references the current last tag (if any). Now we add the tag
1632 -- corresponding with all the interfaces that are not implemented
1633 -- by the parent.
1634
1635 if Present (Interfaces (Typ)) then
1636 Elmt := First_Elmt (Interfaces (Typ));
1637 while Present (Elmt) loop
1638 Add_Tag (Node (Elmt));
1639 Next_Elmt (Elmt);
1640 end loop;
1641 end if;
1642 end Add_Interface_Tag_Components;
1643
1644 -------------------------------------
1645 -- Add_Internal_Interface_Entities --
1646 -------------------------------------
1647
1648 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1649 Elmt : Elmt_Id;
1650 Iface : Entity_Id;
1651 Iface_Elmt : Elmt_Id;
1652 Iface_Prim : Entity_Id;
1653 Ifaces_List : Elist_Id;
1654 New_Subp : Entity_Id := Empty;
1655 Prim : Entity_Id;
1656 Restore_Scope : Boolean := False;
1657
1658 begin
1659 pragma Assert (Ada_Version >= Ada_2005
1660 and then Is_Record_Type (Tagged_Type)
1661 and then Is_Tagged_Type (Tagged_Type)
1662 and then Has_Interfaces (Tagged_Type)
1663 and then not Is_Interface (Tagged_Type));
1664
1665 -- Ensure that the internal entities are added to the scope of the type
1666
1667 if Scope (Tagged_Type) /= Current_Scope then
1668 Push_Scope (Scope (Tagged_Type));
1669 Restore_Scope := True;
1670 end if;
1671
1672 Collect_Interfaces (Tagged_Type, Ifaces_List);
1673
1674 Iface_Elmt := First_Elmt (Ifaces_List);
1675 while Present (Iface_Elmt) loop
1676 Iface := Node (Iface_Elmt);
1677
1678 -- Originally we excluded here from this processing interfaces that
1679 -- are parents of Tagged_Type because their primitives are located
1680 -- in the primary dispatch table (and hence no auxiliary internal
1681 -- entities are required to handle secondary dispatch tables in such
1682 -- case). However, these auxiliary entities are also required to
1683 -- handle derivations of interfaces in formals of generics (see
1684 -- Derive_Subprograms).
1685
1686 Elmt := First_Elmt (Primitive_Operations (Iface));
1687 while Present (Elmt) loop
1688 Iface_Prim := Node (Elmt);
1689
1690 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1691 Prim :=
1692 Find_Primitive_Covering_Interface
1693 (Tagged_Type => Tagged_Type,
1694 Iface_Prim => Iface_Prim);
1695
1696 if No (Prim) and then Serious_Errors_Detected > 0 then
1697 goto Continue;
1698 end if;
1699
1700 pragma Assert (Present (Prim));
1701
1702 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1703 -- differs from the name of the interface primitive then it is
1704 -- a private primitive inherited from a parent type. In such
1705 -- case, given that Tagged_Type covers the interface, the
1706 -- inherited private primitive becomes visible. For such
1707 -- purpose we add a new entity that renames the inherited
1708 -- private primitive.
1709
1710 if Chars (Prim) /= Chars (Iface_Prim) then
1711 pragma Assert (Has_Suffix (Prim, 'P'));
1712 Derive_Subprogram
1713 (New_Subp => New_Subp,
1714 Parent_Subp => Iface_Prim,
1715 Derived_Type => Tagged_Type,
1716 Parent_Type => Iface);
1717 Set_Alias (New_Subp, Prim);
1718 Set_Is_Abstract_Subprogram
1719 (New_Subp, Is_Abstract_Subprogram (Prim));
1720 end if;
1721
1722 Derive_Subprogram
1723 (New_Subp => New_Subp,
1724 Parent_Subp => Iface_Prim,
1725 Derived_Type => Tagged_Type,
1726 Parent_Type => Iface);
1727
1728 declare
1729 Anc : Entity_Id;
1730 begin
1731 if Is_Inherited_Operation (Prim)
1732 and then Present (Alias (Prim))
1733 then
1734 Anc := Alias (Prim);
1735 else
1736 Anc := Overridden_Operation (Prim);
1737 end if;
1738
1739 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1740 -- nonconforming preconditions in both an ancestor and
1741 -- a progenitor operation.
1742
1743 -- If the operation is a primitive wrapper it is an explicit
1744 -- (overriding) operqtion and all is fine.
1745
1746 if Present (Anc)
1747 and then Has_Non_Trivial_Precondition (Anc)
1748 and then Has_Non_Trivial_Precondition (Iface_Prim)
1749 then
1750 if Is_Abstract_Subprogram (Prim)
1751 or else
1752 (Ekind (Prim) = E_Procedure
1753 and then Nkind (Parent (Prim)) =
1754 N_Procedure_Specification
1755 and then Null_Present (Parent (Prim)))
1756 or else Is_Primitive_Wrapper (Prim)
1757 then
1758 null;
1759
1760 -- The operation is inherited and must be overridden
1761
1762 elsif not Comes_From_Source (Prim) then
1763 Error_Msg_NE
1764 ("&inherits non-conforming preconditions and must "
1765 & "be overridden (RM 6.1.1 (10-16)",
1766 Parent (Tagged_Type), Prim);
1767 end if;
1768 end if;
1769 end;
1770
1771 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1772 -- associated with interface types. These entities are
1773 -- only registered in the list of primitives of its
1774 -- corresponding tagged type because they are only used
1775 -- to fill the contents of the secondary dispatch tables.
1776 -- Therefore they are removed from the homonym chains.
1777
1778 Set_Is_Hidden (New_Subp);
1779 Set_Is_Internal (New_Subp);
1780 Set_Alias (New_Subp, Prim);
1781 Set_Is_Abstract_Subprogram
1782 (New_Subp, Is_Abstract_Subprogram (Prim));
1783 Set_Interface_Alias (New_Subp, Iface_Prim);
1784
1785 -- If the returned type is an interface then propagate it to
1786 -- the returned type. Needed by the thunk to generate the code
1787 -- which displaces "this" to reference the corresponding
1788 -- secondary dispatch table in the returned object.
1789
1790 if Is_Interface (Etype (Iface_Prim)) then
1791 Set_Etype (New_Subp, Etype (Iface_Prim));
1792 end if;
1793
1794 -- Internal entities associated with interface types are only
1795 -- registered in the list of primitives of the tagged type.
1796 -- They are only used to fill the contents of the secondary
1797 -- dispatch tables. Therefore they are not needed in the
1798 -- homonym chains.
1799
1800 Remove_Homonym (New_Subp);
1801
1802 -- Hidden entities associated with interfaces must have set
1803 -- the Has_Delay_Freeze attribute to ensure that, in case
1804 -- of locally defined tagged types (or compiling with static
1805 -- dispatch tables generation disabled) the corresponding
1806 -- entry of the secondary dispatch table is filled when such
1807 -- an entity is frozen. This is an expansion activity that must
1808 -- be suppressed for ASIS because it leads to gigi elaboration
1809 -- issues in annotate mode.
1810
1811 if not ASIS_Mode then
1812 Set_Has_Delayed_Freeze (New_Subp);
1813 end if;
1814 end if;
1815
1816 <<Continue>>
1817 Next_Elmt (Elmt);
1818 end loop;
1819
1820 Next_Elmt (Iface_Elmt);
1821 end loop;
1822
1823 if Restore_Scope then
1824 Pop_Scope;
1825 end if;
1826 end Add_Internal_Interface_Entities;
1827
1828 -----------------------------------
1829 -- Analyze_Component_Declaration --
1830 -----------------------------------
1831
1832 procedure Analyze_Component_Declaration (N : Node_Id) is
1833 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1834 Id : constant Entity_Id := Defining_Identifier (N);
1835 E : constant Node_Id := Expression (N);
1836 Typ : constant Node_Id :=
1837 Subtype_Indication (Component_Definition (N));
1838 T : Entity_Id;
1839 P : Entity_Id;
1840
1841 function Contains_POC (Constr : Node_Id) return Boolean;
1842 -- Determines whether a constraint uses the discriminant of a record
1843 -- type thus becoming a per-object constraint (POC).
1844
1845 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1846 -- Typ is the type of the current component, check whether this type is
1847 -- a limited type. Used to validate declaration against that of
1848 -- enclosing record.
1849
1850 ------------------
1851 -- Contains_POC --
1852 ------------------
1853
1854 function Contains_POC (Constr : Node_Id) return Boolean is
1855 begin
1856 -- Prevent cascaded errors
1857
1858 if Error_Posted (Constr) then
1859 return False;
1860 end if;
1861
1862 case Nkind (Constr) is
1863 when N_Attribute_Reference =>
1864 return Attribute_Name (Constr) = Name_Access
1865 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1866
1867 when N_Discriminant_Association =>
1868 return Denotes_Discriminant (Expression (Constr));
1869
1870 when N_Identifier =>
1871 return Denotes_Discriminant (Constr);
1872
1873 when N_Index_Or_Discriminant_Constraint =>
1874 declare
1875 IDC : Node_Id;
1876
1877 begin
1878 IDC := First (Constraints (Constr));
1879 while Present (IDC) loop
1880
1881 -- One per-object constraint is sufficient
1882
1883 if Contains_POC (IDC) then
1884 return True;
1885 end if;
1886
1887 Next (IDC);
1888 end loop;
1889
1890 return False;
1891 end;
1892
1893 when N_Range =>
1894 return Denotes_Discriminant (Low_Bound (Constr))
1895 or else
1896 Denotes_Discriminant (High_Bound (Constr));
1897
1898 when N_Range_Constraint =>
1899 return Denotes_Discriminant (Range_Expression (Constr));
1900
1901 when others =>
1902 return False;
1903 end case;
1904 end Contains_POC;
1905
1906 ----------------------
1907 -- Is_Known_Limited --
1908 ----------------------
1909
1910 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1911 P : constant Entity_Id := Etype (Typ);
1912 R : constant Entity_Id := Root_Type (Typ);
1913
1914 begin
1915 if Is_Limited_Record (Typ) then
1916 return True;
1917
1918 -- If the root type is limited (and not a limited interface)
1919 -- so is the current type
1920
1921 elsif Is_Limited_Record (R)
1922 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1923 then
1924 return True;
1925
1926 -- Else the type may have a limited interface progenitor, but a
1927 -- limited record parent.
1928
1929 elsif R /= P and then Is_Limited_Record (P) then
1930 return True;
1931
1932 else
1933 return False;
1934 end if;
1935 end Is_Known_Limited;
1936
1937 -- Start of processing for Analyze_Component_Declaration
1938
1939 begin
1940 Generate_Definition (Id);
1941 Enter_Name (Id);
1942
1943 if Present (Typ) then
1944 T := Find_Type_Of_Object
1945 (Subtype_Indication (Component_Definition (N)), N);
1946
1947 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1948 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1949 end if;
1950
1951 -- Ada 2005 (AI-230): Access Definition case
1952
1953 else
1954 pragma Assert (Present
1955 (Access_Definition (Component_Definition (N))));
1956
1957 T := Access_Definition
1958 (Related_Nod => N,
1959 N => Access_Definition (Component_Definition (N)));
1960 Set_Is_Local_Anonymous_Access (T);
1961
1962 -- Ada 2005 (AI-254)
1963
1964 if Present (Access_To_Subprogram_Definition
1965 (Access_Definition (Component_Definition (N))))
1966 and then Protected_Present (Access_To_Subprogram_Definition
1967 (Access_Definition
1968 (Component_Definition (N))))
1969 then
1970 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1971 end if;
1972 end if;
1973
1974 -- If the subtype is a constrained subtype of the enclosing record,
1975 -- (which must have a partial view) the back-end does not properly
1976 -- handle the recursion. Rewrite the component declaration with an
1977 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1978 -- the tree directly because side effects have already been removed from
1979 -- discriminant constraints.
1980
1981 if Ekind (T) = E_Access_Subtype
1982 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1983 and then Comes_From_Source (T)
1984 and then Nkind (Parent (T)) = N_Subtype_Declaration
1985 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1986 then
1987 Rewrite
1988 (Subtype_Indication (Component_Definition (N)),
1989 New_Copy_Tree (Subtype_Indication (Parent (T))));
1990 T := Find_Type_Of_Object
1991 (Subtype_Indication (Component_Definition (N)), N);
1992 end if;
1993
1994 -- If the component declaration includes a default expression, then we
1995 -- check that the component is not of a limited type (RM 3.7(5)),
1996 -- and do the special preanalysis of the expression (see section on
1997 -- "Handling of Default and Per-Object Expressions" in the spec of
1998 -- package Sem).
1999
2000 if Present (E) then
2001 Check_SPARK_05_Restriction ("default expression is not allowed", E);
2002 Preanalyze_Default_Expression (E, T);
2003 Check_Initialization (T, E);
2004
2005 if Ada_Version >= Ada_2005
2006 and then Ekind (T) = E_Anonymous_Access_Type
2007 and then Etype (E) /= Any_Type
2008 then
2009 -- Check RM 3.9.2(9): "if the expected type for an expression is
2010 -- an anonymous access-to-specific tagged type, then the object
2011 -- designated by the expression shall not be dynamically tagged
2012 -- unless it is a controlling operand in a call on a dispatching
2013 -- operation"
2014
2015 if Is_Tagged_Type (Directly_Designated_Type (T))
2016 and then
2017 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2018 and then
2019 Ekind (Directly_Designated_Type (Etype (E))) =
2020 E_Class_Wide_Type
2021 then
2022 Error_Msg_N
2023 ("access to specific tagged type required (RM 3.9.2(9))", E);
2024 end if;
2025
2026 -- (Ada 2005: AI-230): Accessibility check for anonymous
2027 -- components
2028
2029 if Type_Access_Level (Etype (E)) >
2030 Deepest_Type_Access_Level (T)
2031 then
2032 Error_Msg_N
2033 ("expression has deeper access level than component " &
2034 "(RM 3.10.2 (12.2))", E);
2035 end if;
2036
2037 -- The initialization expression is a reference to an access
2038 -- discriminant. The type of the discriminant is always deeper
2039 -- than any access type.
2040
2041 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2042 and then Is_Entity_Name (E)
2043 and then Ekind (Entity (E)) = E_In_Parameter
2044 and then Present (Discriminal_Link (Entity (E)))
2045 then
2046 Error_Msg_N
2047 ("discriminant has deeper accessibility level than target",
2048 E);
2049 end if;
2050 end if;
2051 end if;
2052
2053 -- The parent type may be a private view with unknown discriminants,
2054 -- and thus unconstrained. Regular components must be constrained.
2055
2056 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2057 if Is_Class_Wide_Type (T) then
2058 Error_Msg_N
2059 ("class-wide subtype with unknown discriminants" &
2060 " in component declaration",
2061 Subtype_Indication (Component_Definition (N)));
2062 else
2063 Error_Msg_N
2064 ("unconstrained subtype in component declaration",
2065 Subtype_Indication (Component_Definition (N)));
2066 end if;
2067
2068 -- Components cannot be abstract, except for the special case of
2069 -- the _Parent field (case of extending an abstract tagged type)
2070
2071 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2072 Error_Msg_N ("type of a component cannot be abstract", N);
2073 end if;
2074
2075 Set_Etype (Id, T);
2076 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2077
2078 -- The component declaration may have a per-object constraint, set
2079 -- the appropriate flag in the defining identifier of the subtype.
2080
2081 if Present (Subtype_Indication (Component_Definition (N))) then
2082 declare
2083 Sindic : constant Node_Id :=
2084 Subtype_Indication (Component_Definition (N));
2085 begin
2086 if Nkind (Sindic) = N_Subtype_Indication
2087 and then Present (Constraint (Sindic))
2088 and then Contains_POC (Constraint (Sindic))
2089 then
2090 Set_Has_Per_Object_Constraint (Id);
2091 end if;
2092 end;
2093 end if;
2094
2095 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2096 -- out some static checks.
2097
2098 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2099 Null_Exclusion_Static_Checks (N);
2100 end if;
2101
2102 -- If this component is private (or depends on a private type), flag the
2103 -- record type to indicate that some operations are not available.
2104
2105 P := Private_Component (T);
2106
2107 if Present (P) then
2108
2109 -- Check for circular definitions
2110
2111 if P = Any_Type then
2112 Set_Etype (Id, Any_Type);
2113
2114 -- There is a gap in the visibility of operations only if the
2115 -- component type is not defined in the scope of the record type.
2116
2117 elsif Scope (P) = Scope (Current_Scope) then
2118 null;
2119
2120 elsif Is_Limited_Type (P) then
2121 Set_Is_Limited_Composite (Current_Scope);
2122
2123 else
2124 Set_Is_Private_Composite (Current_Scope);
2125 end if;
2126 end if;
2127
2128 if P /= Any_Type
2129 and then Is_Limited_Type (T)
2130 and then Chars (Id) /= Name_uParent
2131 and then Is_Tagged_Type (Current_Scope)
2132 then
2133 if Is_Derived_Type (Current_Scope)
2134 and then not Is_Known_Limited (Current_Scope)
2135 then
2136 Error_Msg_N
2137 ("extension of nonlimited type cannot have limited components",
2138 N);
2139
2140 if Is_Interface (Root_Type (Current_Scope)) then
2141 Error_Msg_N
2142 ("\limitedness is not inherited from limited interface", N);
2143 Error_Msg_N ("\add LIMITED to type indication", N);
2144 end if;
2145
2146 Explain_Limited_Type (T, N);
2147 Set_Etype (Id, Any_Type);
2148 Set_Is_Limited_Composite (Current_Scope, False);
2149
2150 elsif not Is_Derived_Type (Current_Scope)
2151 and then not Is_Limited_Record (Current_Scope)
2152 and then not Is_Concurrent_Type (Current_Scope)
2153 then
2154 Error_Msg_N
2155 ("nonlimited tagged type cannot have limited components", N);
2156 Explain_Limited_Type (T, N);
2157 Set_Etype (Id, Any_Type);
2158 Set_Is_Limited_Composite (Current_Scope, False);
2159 end if;
2160 end if;
2161
2162 -- If the component is an unconstrained task or protected type with
2163 -- discriminants, the component and the enclosing record are limited
2164 -- and the component is constrained by its default values. Compute
2165 -- its actual subtype, else it may be allocated the maximum size by
2166 -- the backend, and possibly overflow.
2167
2168 if Is_Concurrent_Type (T)
2169 and then not Is_Constrained (T)
2170 and then Has_Discriminants (T)
2171 and then not Has_Discriminants (Current_Scope)
2172 then
2173 declare
2174 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2175
2176 begin
2177 Set_Etype (Id, Act_T);
2178
2179 -- Rewrite component definition to use the constrained subtype
2180
2181 Rewrite (Component_Definition (N),
2182 Make_Component_Definition (Loc,
2183 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2184 end;
2185 end if;
2186
2187 Set_Original_Record_Component (Id, Id);
2188
2189 if Has_Aspects (N) then
2190 Analyze_Aspect_Specifications (N, Id);
2191 end if;
2192
2193 Analyze_Dimension (N);
2194 end Analyze_Component_Declaration;
2195
2196 --------------------------
2197 -- Analyze_Declarations --
2198 --------------------------
2199
2200 procedure Analyze_Declarations (L : List_Id) is
2201 Decl : Node_Id;
2202
2203 procedure Adjust_Decl;
2204 -- Adjust Decl not to include implicit label declarations, since these
2205 -- have strange Sloc values that result in elaboration check problems.
2206 -- (They have the sloc of the label as found in the source, and that
2207 -- is ahead of the current declarative part).
2208
2209 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2210 -- Create the subprogram bodies which verify the run-time semantics of
2211 -- the pragmas listed below for each elibigle type found in declarative
2212 -- list Decls. The pragmas are:
2213 --
2214 -- Default_Initial_Condition
2215 -- Invariant
2216 -- Type_Invariant
2217 --
2218 -- Context denotes the owner of the declarative list.
2219
2220 procedure Check_Entry_Contracts;
2221 -- Perform a pre-analysis of the pre- and postconditions of an entry
2222 -- declaration. This must be done before full resolution and creation
2223 -- of the parameter block, etc. to catch illegal uses within the
2224 -- contract expression. Full analysis of the expression is done when
2225 -- the contract is processed.
2226
2227 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2228 -- Check if a nested package has entities within it that rely on library
2229 -- level private types where the full view has not been completed for
2230 -- the purposes of checking if it is acceptable to freeze an expression
2231 -- function at the point of declaration.
2232
2233 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2234 -- Determine whether Body_Decl denotes the body of a late controlled
2235 -- primitive (either Initialize, Adjust or Finalize). If this is the
2236 -- case, add a proper spec if the body lacks one. The spec is inserted
2237 -- before Body_Decl and immediately analyzed.
2238
2239 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2240 -- Spec_Id is the entity of a package that may define abstract states,
2241 -- and in the case of a child unit, whose ancestors may define abstract
2242 -- states. If the states have partial visible refinement, remove the
2243 -- partial visibility of each constituent at the end of the package
2244 -- spec and body declarations.
2245
2246 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2247 -- Spec_Id is the entity of a package that may define abstract states.
2248 -- If the states have visible refinement, remove the visibility of each
2249 -- constituent at the end of the package body declaration.
2250
2251 procedure Resolve_Aspects;
2252 -- Utility to resolve the expressions of aspects at the end of a list of
2253 -- declarations, or before a declaration that freezes previous entities,
2254 -- such as in a subprogram body.
2255
2256 -----------------
2257 -- Adjust_Decl --
2258 -----------------
2259
2260 procedure Adjust_Decl is
2261 begin
2262 while Present (Prev (Decl))
2263 and then Nkind (Decl) = N_Implicit_Label_Declaration
2264 loop
2265 Prev (Decl);
2266 end loop;
2267 end Adjust_Decl;
2268
2269 ----------------------------
2270 -- Build_Assertion_Bodies --
2271 ----------------------------
2272
2273 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2274 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2275 -- Create the subprogram bodies which verify the run-time semantics
2276 -- of the pragmas listed below for type Typ. The pragmas are:
2277 --
2278 -- Default_Initial_Condition
2279 -- Invariant
2280 -- Type_Invariant
2281
2282 -------------------------------------
2283 -- Build_Assertion_Bodies_For_Type --
2284 -------------------------------------
2285
2286 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2287 begin
2288 -- Preanalyze and resolve the Default_Initial_Condition assertion
2289 -- expression at the end of the declarations to catch any errors.
2290
2291 if Has_DIC (Typ) then
2292 Build_DIC_Procedure_Body (Typ);
2293 end if;
2294
2295 if Nkind (Context) = N_Package_Specification then
2296
2297 -- Preanalyze and resolve the class-wide invariants of an
2298 -- interface at the end of whichever declarative part has the
2299 -- interface type. Note that an interface may be declared in
2300 -- any non-package declarative part, but reaching the end of
2301 -- such a declarative part will always freeze the type and
2302 -- generate the invariant procedure (see Freeze_Type).
2303
2304 if Is_Interface (Typ) then
2305
2306 -- Interfaces are treated as the partial view of a private
2307 -- type, in order to achieve uniformity with the general
2308 -- case. As a result, an interface receives only a "partial"
2309 -- invariant procedure, which is never called.
2310
2311 if Has_Own_Invariants (Typ) then
2312 Build_Invariant_Procedure_Body
2313 (Typ => Typ,
2314 Partial_Invariant => True);
2315 end if;
2316
2317 -- Preanalyze and resolve the invariants of a private type
2318 -- at the end of the visible declarations to catch potential
2319 -- errors. Inherited class-wide invariants are not included
2320 -- because they have already been resolved.
2321
2322 elsif Decls = Visible_Declarations (Context)
2323 and then Ekind_In (Typ, E_Limited_Private_Type,
2324 E_Private_Type,
2325 E_Record_Type_With_Private)
2326 and then Has_Own_Invariants (Typ)
2327 then
2328 Build_Invariant_Procedure_Body
2329 (Typ => Typ,
2330 Partial_Invariant => True);
2331
2332 -- Preanalyze and resolve the invariants of a private type's
2333 -- full view at the end of the private declarations to catch
2334 -- potential errors.
2335
2336 elsif Decls = Private_Declarations (Context)
2337 and then not Is_Private_Type (Typ)
2338 and then Has_Private_Declaration (Typ)
2339 and then Has_Invariants (Typ)
2340 then
2341 Build_Invariant_Procedure_Body (Typ);
2342 end if;
2343 end if;
2344 end Build_Assertion_Bodies_For_Type;
2345
2346 -- Local variables
2347
2348 Decl : Node_Id;
2349 Decl_Id : Entity_Id;
2350
2351 -- Start of processing for Build_Assertion_Bodies
2352
2353 begin
2354 Decl := First (Decls);
2355 while Present (Decl) loop
2356 if Is_Declaration (Decl) then
2357 Decl_Id := Defining_Entity (Decl);
2358
2359 if Is_Type (Decl_Id) then
2360 Build_Assertion_Bodies_For_Type (Decl_Id);
2361 end if;
2362 end if;
2363
2364 Next (Decl);
2365 end loop;
2366 end Build_Assertion_Bodies;
2367
2368 ---------------------------
2369 -- Check_Entry_Contracts --
2370 ---------------------------
2371
2372 procedure Check_Entry_Contracts is
2373 ASN : Node_Id;
2374 Ent : Entity_Id;
2375 Exp : Node_Id;
2376
2377 begin
2378 Ent := First_Entity (Current_Scope);
2379 while Present (Ent) loop
2380
2381 -- This only concerns entries with pre/postconditions
2382
2383 if Ekind (Ent) = E_Entry
2384 and then Present (Contract (Ent))
2385 and then Present (Pre_Post_Conditions (Contract (Ent)))
2386 then
2387 ASN := Pre_Post_Conditions (Contract (Ent));
2388 Push_Scope (Ent);
2389 Install_Formals (Ent);
2390
2391 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2392 -- is performed on a copy of the pragma expression, to prevent
2393 -- modifying the original expression.
2394
2395 while Present (ASN) loop
2396 if Nkind (ASN) = N_Pragma then
2397 Exp :=
2398 New_Copy_Tree
2399 (Expression
2400 (First (Pragma_Argument_Associations (ASN))));
2401 Set_Parent (Exp, ASN);
2402
2403 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2404 end if;
2405
2406 ASN := Next_Pragma (ASN);
2407 end loop;
2408
2409 End_Scope;
2410 end if;
2411
2412 Next_Entity (Ent);
2413 end loop;
2414 end Check_Entry_Contracts;
2415
2416 ----------------------------------
2417 -- Contains_Lib_Incomplete_Type --
2418 ----------------------------------
2419
2420 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2421 Curr : Entity_Id;
2422
2423 begin
2424 -- Avoid looking through scopes that do not meet the precondition of
2425 -- Pkg not being within a library unit spec.
2426
2427 if not Is_Compilation_Unit (Pkg)
2428 and then not Is_Generic_Instance (Pkg)
2429 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2430 then
2431 -- Loop through all entities in the current scope to identify
2432 -- an entity that depends on a private type.
2433
2434 Curr := First_Entity (Pkg);
2435 loop
2436 if Nkind (Curr) in N_Entity
2437 and then Depends_On_Private (Curr)
2438 then
2439 return True;
2440 end if;
2441
2442 exit when Last_Entity (Current_Scope) = Curr;
2443 Curr := Next_Entity (Curr);
2444 end loop;
2445 end if;
2446
2447 return False;
2448 end Contains_Lib_Incomplete_Type;
2449
2450 --------------------------------------
2451 -- Handle_Late_Controlled_Primitive --
2452 --------------------------------------
2453
2454 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2455 Body_Spec : constant Node_Id := Specification (Body_Decl);
2456 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2457 Loc : constant Source_Ptr := Sloc (Body_Id);
2458 Params : constant List_Id :=
2459 Parameter_Specifications (Body_Spec);
2460 Spec : Node_Id;
2461 Spec_Id : Entity_Id;
2462 Typ : Node_Id;
2463
2464 begin
2465 -- Consider only procedure bodies whose name matches one of the three
2466 -- controlled primitives.
2467
2468 if Nkind (Body_Spec) /= N_Procedure_Specification
2469 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2470 Name_Finalize,
2471 Name_Initialize)
2472 then
2473 return;
2474
2475 -- A controlled primitive must have exactly one formal which is not
2476 -- an anonymous access type.
2477
2478 elsif List_Length (Params) /= 1 then
2479 return;
2480 end if;
2481
2482 Typ := Parameter_Type (First (Params));
2483
2484 if Nkind (Typ) = N_Access_Definition then
2485 return;
2486 end if;
2487
2488 Find_Type (Typ);
2489
2490 -- The type of the formal must be derived from [Limited_]Controlled
2491
2492 if not Is_Controlled (Entity (Typ)) then
2493 return;
2494 end if;
2495
2496 -- Check whether a specification exists for this body. We do not
2497 -- analyze the spec of the body in full, because it will be analyzed
2498 -- again when the body is properly analyzed, and we cannot create
2499 -- duplicate entries in the formals chain. We look for an explicit
2500 -- specification because the body may be an overriding operation and
2501 -- an inherited spec may be present.
2502
2503 Spec_Id := Current_Entity (Body_Id);
2504
2505 while Present (Spec_Id) loop
2506 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2507 and then Scope (Spec_Id) = Current_Scope
2508 and then Present (First_Formal (Spec_Id))
2509 and then No (Next_Formal (First_Formal (Spec_Id)))
2510 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2511 and then Comes_From_Source (Spec_Id)
2512 then
2513 return;
2514 end if;
2515
2516 Spec_Id := Homonym (Spec_Id);
2517 end loop;
2518
2519 -- At this point the body is known to be a late controlled primitive.
2520 -- Generate a matching spec and insert it before the body. Note the
2521 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2522 -- tree in this case.
2523
2524 Spec := Copy_Separate_Tree (Body_Spec);
2525
2526 -- Ensure that the subprogram declaration does not inherit the null
2527 -- indicator from the body as we now have a proper spec/body pair.
2528
2529 Set_Null_Present (Spec, False);
2530
2531 -- Ensure that the freeze node is inserted after the declaration of
2532 -- the primitive since its expansion will freeze the primitive.
2533
2534 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2535
2536 Insert_Before_And_Analyze (Body_Decl, Decl);
2537 end Handle_Late_Controlled_Primitive;
2538
2539 ----------------------------------------
2540 -- Remove_Partial_Visible_Refinements --
2541 ----------------------------------------
2542
2543 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2544 State_Elmt : Elmt_Id;
2545 begin
2546 if Present (Abstract_States (Spec_Id)) then
2547 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2548 while Present (State_Elmt) loop
2549 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2550 Next_Elmt (State_Elmt);
2551 end loop;
2552 end if;
2553
2554 -- For a child unit, also hide the partial state refinement from
2555 -- ancestor packages.
2556
2557 if Is_Child_Unit (Spec_Id) then
2558 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2559 end if;
2560 end Remove_Partial_Visible_Refinements;
2561
2562 --------------------------------
2563 -- Remove_Visible_Refinements --
2564 --------------------------------
2565
2566 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2567 State_Elmt : Elmt_Id;
2568 begin
2569 if Present (Abstract_States (Spec_Id)) then
2570 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2571 while Present (State_Elmt) loop
2572 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2573 Next_Elmt (State_Elmt);
2574 end loop;
2575 end if;
2576 end Remove_Visible_Refinements;
2577
2578 ---------------------
2579 -- Resolve_Aspects --
2580 ---------------------
2581
2582 procedure Resolve_Aspects is
2583 E : Entity_Id;
2584
2585 begin
2586 E := First_Entity (Current_Scope);
2587 while Present (E) loop
2588 Resolve_Aspect_Expressions (E);
2589 Next_Entity (E);
2590 end loop;
2591 end Resolve_Aspects;
2592
2593 -- Local variables
2594
2595 Context : Node_Id := Empty;
2596 Freeze_From : Entity_Id := Empty;
2597 Next_Decl : Node_Id;
2598
2599 Body_Seen : Boolean := False;
2600 -- Flag set when the first body [stub] is encountered
2601
2602 -- Start of processing for Analyze_Declarations
2603
2604 begin
2605 if Restriction_Check_Required (SPARK_05) then
2606 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2607 end if;
2608
2609 Decl := First (L);
2610 while Present (Decl) loop
2611
2612 -- Package spec cannot contain a package declaration in SPARK
2613
2614 if Nkind (Decl) = N_Package_Declaration
2615 and then Nkind (Parent (L)) = N_Package_Specification
2616 then
2617 Check_SPARK_05_Restriction
2618 ("package specification cannot contain a package declaration",
2619 Decl);
2620 end if;
2621
2622 -- Complete analysis of declaration
2623
2624 Analyze (Decl);
2625 Next_Decl := Next (Decl);
2626
2627 if No (Freeze_From) then
2628 Freeze_From := First_Entity (Current_Scope);
2629 end if;
2630
2631 -- At the end of a declarative part, freeze remaining entities
2632 -- declared in it. The end of the visible declarations of package
2633 -- specification is not the end of a declarative part if private
2634 -- declarations are present. The end of a package declaration is a
2635 -- freezing point only if it a library package. A task definition or
2636 -- protected type definition is not a freeze point either. Finally,
2637 -- we do not freeze entities in generic scopes, because there is no
2638 -- code generated for them and freeze nodes will be generated for
2639 -- the instance.
2640
2641 -- The end of a package instantiation is not a freeze point, but
2642 -- for now we make it one, because the generic body is inserted
2643 -- (currently) immediately after. Generic instantiations will not
2644 -- be a freeze point once delayed freezing of bodies is implemented.
2645 -- (This is needed in any case for early instantiations ???).
2646
2647 if No (Next_Decl) then
2648 if Nkind (Parent (L)) = N_Component_List then
2649 null;
2650
2651 elsif Nkind_In (Parent (L), N_Protected_Definition,
2652 N_Task_Definition)
2653 then
2654 Check_Entry_Contracts;
2655
2656 elsif Nkind (Parent (L)) /= N_Package_Specification then
2657 if Nkind (Parent (L)) = N_Package_Body then
2658 Freeze_From := First_Entity (Current_Scope);
2659 end if;
2660
2661 -- There may have been several freezing points previously,
2662 -- for example object declarations or subprogram bodies, but
2663 -- at the end of a declarative part we check freezing from
2664 -- the beginning, even though entities may already be frozen,
2665 -- in order to perform visibility checks on delayed aspects.
2666
2667 Adjust_Decl;
2668
2669 -- If the current scope is a generic subprogram body. Skip the
2670 -- generic formal parameters that are not frozen here.
2671
2672 if Is_Subprogram (Current_Scope)
2673 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2674 N_Generic_Subprogram_Declaration
2675 and then Present (First_Entity (Current_Scope))
2676 then
2677 while Is_Generic_Formal (Freeze_From) loop
2678 Freeze_From := Next_Entity (Freeze_From);
2679 end loop;
2680
2681 Freeze_All (Freeze_From, Decl);
2682 Freeze_From := Last_Entity (Current_Scope);
2683
2684 else
2685 -- For declarations in a subprogram body there is no issue
2686 -- with name resolution in aspect specifications, but in
2687 -- ASIS mode we need to preanalyze aspect specifications
2688 -- that may otherwise only be analyzed during expansion
2689 -- (e.g. during generation of a related subprogram).
2690
2691 if ASIS_Mode then
2692 Resolve_Aspects;
2693 end if;
2694
2695 Freeze_All (First_Entity (Current_Scope), Decl);
2696 Freeze_From := Last_Entity (Current_Scope);
2697 end if;
2698
2699 -- Current scope is a package specification
2700
2701 elsif Scope (Current_Scope) /= Standard_Standard
2702 and then not Is_Child_Unit (Current_Scope)
2703 and then No (Generic_Parent (Parent (L)))
2704 then
2705 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2706 -- resolved at the end of the immediately enclosing declaration
2707 -- list (AI05-0183-1).
2708
2709 Resolve_Aspects;
2710
2711 elsif L /= Visible_Declarations (Parent (L))
2712 or else No (Private_Declarations (Parent (L)))
2713 or else Is_Empty_List (Private_Declarations (Parent (L)))
2714 then
2715 Adjust_Decl;
2716
2717 -- End of a package declaration
2718
2719 -- In compilation mode the expansion of freeze node takes care
2720 -- of resolving expressions of all aspects in the list. In ASIS
2721 -- mode this must be done explicitly.
2722
2723 if ASIS_Mode
2724 and then Scope (Current_Scope) = Standard_Standard
2725 then
2726 Resolve_Aspects;
2727 end if;
2728
2729 -- This is a freeze point because it is the end of a
2730 -- compilation unit.
2731
2732 Freeze_All (First_Entity (Current_Scope), Decl);
2733 Freeze_From := Last_Entity (Current_Scope);
2734
2735 -- At the end of the visible declarations the expressions in
2736 -- aspects of all entities declared so far must be resolved.
2737 -- The entities themselves might be frozen later, and the
2738 -- generated pragmas and attribute definition clauses analyzed
2739 -- in full at that point, but name resolution must take place
2740 -- now.
2741 -- In addition to being the proper semantics, this is mandatory
2742 -- within generic units, because global name capture requires
2743 -- those expressions to be analyzed, given that the generated
2744 -- pragmas do not appear in the original generic tree.
2745
2746 elsif Serious_Errors_Detected = 0 then
2747 Resolve_Aspects;
2748 end if;
2749
2750 -- If next node is a body then freeze all types before the body.
2751 -- An exception occurs for some expander-generated bodies. If these
2752 -- are generated at places where in general language rules would not
2753 -- allow a freeze point, then we assume that the expander has
2754 -- explicitly checked that all required types are properly frozen,
2755 -- and we do not cause general freezing here. This special circuit
2756 -- is used when the encountered body is marked as having already
2757 -- been analyzed.
2758
2759 -- In all other cases (bodies that come from source, and expander
2760 -- generated bodies that have not been analyzed yet), freeze all
2761 -- types now. Note that in the latter case, the expander must take
2762 -- care to attach the bodies at a proper place in the tree so as to
2763 -- not cause unwanted freezing at that point.
2764
2765 -- It is also necessary to check for a case where both an expression
2766 -- function is used and the current scope depends on an incomplete
2767 -- private type from a library unit, otherwise premature freezing of
2768 -- the private type will occur.
2769
2770 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2771 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2772 or else not Was_Expression_Function (Next_Decl))
2773 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2774 and then not Contains_Lib_Incomplete_Type
2775 (Current_Scope)))
2776 then
2777 -- When a controlled type is frozen, the expander generates stream
2778 -- and controlled-type support routines. If the freeze is caused
2779 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2780 -- expander will end up using the wrong version of these routines,
2781 -- as the body has not been processed yet. To remedy this, detect
2782 -- a late controlled primitive and create a proper spec for it.
2783 -- This ensures that the primitive will override its inherited
2784 -- counterpart before the freeze takes place.
2785
2786 -- If the declaration we just processed is a body, do not attempt
2787 -- to examine Next_Decl as the late primitive idiom can only apply
2788 -- to the first encountered body.
2789
2790 -- The spec of the late primitive is not generated in ASIS mode to
2791 -- ensure a consistent list of primitives that indicates the true
2792 -- semantic structure of the program (which is not relevant when
2793 -- generating executable code).
2794
2795 -- ??? A cleaner approach may be possible and/or this solution
2796 -- could be extended to general-purpose late primitives, TBD.
2797
2798 if not ASIS_Mode
2799 and then not Body_Seen
2800 and then not Is_Body (Decl)
2801 then
2802 Body_Seen := True;
2803
2804 if Nkind (Next_Decl) = N_Subprogram_Body then
2805 Handle_Late_Controlled_Primitive (Next_Decl);
2806 end if;
2807
2808 else
2809 -- In ASIS mode, if the next declaration is a body, complete
2810 -- the analysis of declarations so far.
2811
2812 Resolve_Aspects;
2813 end if;
2814
2815 Adjust_Decl;
2816
2817 -- The generated body of an expression function does not freeze,
2818 -- unless it is a completion, in which case only the expression
2819 -- itself freezes. This is handled when the body itself is
2820 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2821
2822 Freeze_All (Freeze_From, Decl);
2823 Freeze_From := Last_Entity (Current_Scope);
2824 end if;
2825
2826 Decl := Next_Decl;
2827 end loop;
2828
2829 -- Post-freezing actions
2830
2831 if Present (L) then
2832 Context := Parent (L);
2833
2834 -- Certain contract annocations have forward visibility semantics and
2835 -- must be analyzed after all declarative items have been processed.
2836 -- This timing ensures that entities referenced by such contracts are
2837 -- visible.
2838
2839 -- Analyze the contract of an immediately enclosing package spec or
2840 -- body first because other contracts may depend on its information.
2841
2842 if Nkind (Context) = N_Package_Body then
2843 Analyze_Package_Body_Contract (Defining_Entity (Context));
2844
2845 elsif Nkind (Context) = N_Package_Specification then
2846 Analyze_Package_Contract (Defining_Entity (Context));
2847 end if;
2848
2849 -- Analyze the contracts of various constructs in the declarative
2850 -- list.
2851
2852 Analyze_Contracts (L);
2853
2854 if Nkind (Context) = N_Package_Body then
2855
2856 -- Ensure that all abstract states and objects declared in the
2857 -- state space of a package body are utilized as constituents.
2858
2859 Check_Unused_Body_States (Defining_Entity (Context));
2860
2861 -- State refinements are visible up to the end of the package body
2862 -- declarations. Hide the state refinements from visibility to
2863 -- restore the original state conditions.
2864
2865 Remove_Visible_Refinements (Corresponding_Spec (Context));
2866 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2867
2868 elsif Nkind (Context) = N_Package_Specification then
2869
2870 -- Partial state refinements are visible up to the end of the
2871 -- package spec declarations. Hide the partial state refinements
2872 -- from visibility to restore the original state conditions.
2873
2874 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2875 end if;
2876
2877 -- Verify that all abstract states found in any package declared in
2878 -- the input declarative list have proper refinements. The check is
2879 -- performed only when the context denotes a block, entry, package,
2880 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2881
2882 Check_State_Refinements (Context);
2883
2884 -- Create the subprogram bodies which verify the run-time semantics
2885 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2886 -- types within the current declarative list. This ensures that all
2887 -- assertion expressions are preanalyzed and resolved at the end of
2888 -- the declarative part. Note that the resolution happens even when
2889 -- freezing does not take place.
2890
2891 Build_Assertion_Bodies (L, Context);
2892 end if;
2893 end Analyze_Declarations;
2894
2895 -----------------------------------
2896 -- Analyze_Full_Type_Declaration --
2897 -----------------------------------
2898
2899 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2900 Def : constant Node_Id := Type_Definition (N);
2901 Def_Id : constant Entity_Id := Defining_Identifier (N);
2902 T : Entity_Id;
2903 Prev : Entity_Id;
2904
2905 Is_Remote : constant Boolean :=
2906 (Is_Remote_Types (Current_Scope)
2907 or else Is_Remote_Call_Interface (Current_Scope))
2908 and then not (In_Private_Part (Current_Scope)
2909 or else In_Package_Body (Current_Scope));
2910
2911 procedure Check_Nonoverridable_Aspects;
2912 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2913 -- be overridden, and can only be confirmed on derivation.
2914
2915 procedure Check_Ops_From_Incomplete_Type;
2916 -- If there is a tagged incomplete partial view of the type, traverse
2917 -- the primitives of the incomplete view and change the type of any
2918 -- controlling formals and result to indicate the full view. The
2919 -- primitives will be added to the full type's primitive operations
2920 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2921 -- is called from Process_Incomplete_Dependents).
2922
2923 ----------------------------------
2924 -- Check_Nonoverridable_Aspects --
2925 ----------------------------------
2926
2927 procedure Check_Nonoverridable_Aspects is
2928 function Get_Aspect_Spec
2929 (Specs : List_Id;
2930 Aspect_Name : Name_Id) return Node_Id;
2931 -- Check whether a list of aspect specifications includes an entry
2932 -- for a specific aspect. The list is either that of a partial or
2933 -- a full view.
2934
2935 ---------------------
2936 -- Get_Aspect_Spec --
2937 ---------------------
2938
2939 function Get_Aspect_Spec
2940 (Specs : List_Id;
2941 Aspect_Name : Name_Id) return Node_Id
2942 is
2943 Spec : Node_Id;
2944
2945 begin
2946 Spec := First (Specs);
2947 while Present (Spec) loop
2948 if Chars (Identifier (Spec)) = Aspect_Name then
2949 return Spec;
2950 end if;
2951 Next (Spec);
2952 end loop;
2953
2954 return Empty;
2955 end Get_Aspect_Spec;
2956
2957 -- Local variables
2958
2959 Prev_Aspects : constant List_Id :=
2960 Aspect_Specifications (Parent (Def_Id));
2961 Par_Type : Entity_Id;
2962 Prev_Aspect : Node_Id;
2963
2964 -- Start of processing for Check_Nonoverridable_Aspects
2965
2966 begin
2967 -- Get parent type of derived type. Note that Prev is the entity in
2968 -- the partial declaration, but its contents are now those of full
2969 -- view, while Def_Id reflects the partial view.
2970
2971 if Is_Private_Type (Def_Id) then
2972 Par_Type := Etype (Full_View (Def_Id));
2973 else
2974 Par_Type := Etype (Def_Id);
2975 end if;
2976
2977 -- If there is an inherited Implicit_Dereference, verify that it is
2978 -- made explicit in the partial view.
2979
2980 if Has_Discriminants (Base_Type (Par_Type))
2981 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2982 and then Present (Discriminant_Specifications (Parent (Prev)))
2983 and then Present (Get_Reference_Discriminant (Par_Type))
2984 then
2985 Prev_Aspect :=
2986 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2987
2988 if No (Prev_Aspect)
2989 and then Present
2990 (Discriminant_Specifications
2991 (Original_Node (Parent (Prev))))
2992 then
2993 Error_Msg_N
2994 ("type does not inherit implicit dereference", Prev);
2995
2996 else
2997 -- If one of the views has the aspect specified, verify that it
2998 -- is consistent with that of the parent.
2999
3000 declare
3001 Par_Discr : constant Entity_Id :=
3002 Get_Reference_Discriminant (Par_Type);
3003 Cur_Discr : constant Entity_Id :=
3004 Get_Reference_Discriminant (Prev);
3005
3006 begin
3007 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3008 Error_Msg_N ("aspect incosistent with that of parent", N);
3009 end if;
3010
3011 -- Check that specification in partial view matches the
3012 -- inherited aspect. Compare names directly because aspect
3013 -- expression may not be analyzed.
3014
3015 if Present (Prev_Aspect)
3016 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3017 and then Chars (Expression (Prev_Aspect)) /=
3018 Chars (Cur_Discr)
3019 then
3020 Error_Msg_N
3021 ("aspect incosistent with that of parent", N);
3022 end if;
3023 end;
3024 end if;
3025 end if;
3026
3027 -- TBD : other nonoverridable aspects.
3028 end Check_Nonoverridable_Aspects;
3029
3030 ------------------------------------
3031 -- Check_Ops_From_Incomplete_Type --
3032 ------------------------------------
3033
3034 procedure Check_Ops_From_Incomplete_Type is
3035 Elmt : Elmt_Id;
3036 Formal : Entity_Id;
3037 Op : Entity_Id;
3038
3039 begin
3040 if Prev /= T
3041 and then Ekind (Prev) = E_Incomplete_Type
3042 and then Is_Tagged_Type (Prev)
3043 and then Is_Tagged_Type (T)
3044 then
3045 Elmt := First_Elmt (Primitive_Operations (Prev));
3046 while Present (Elmt) loop
3047 Op := Node (Elmt);
3048
3049 Formal := First_Formal (Op);
3050 while Present (Formal) loop
3051 if Etype (Formal) = Prev then
3052 Set_Etype (Formal, T);
3053 end if;
3054
3055 Next_Formal (Formal);
3056 end loop;
3057
3058 if Etype (Op) = Prev then
3059 Set_Etype (Op, T);
3060 end if;
3061
3062 Next_Elmt (Elmt);
3063 end loop;
3064 end if;
3065 end Check_Ops_From_Incomplete_Type;
3066
3067 -- Start of processing for Analyze_Full_Type_Declaration
3068
3069 begin
3070 Prev := Find_Type_Name (N);
3071
3072 -- The full view, if present, now points to the current type. If there
3073 -- is an incomplete partial view, set a link to it, to simplify the
3074 -- retrieval of primitive operations of the type.
3075
3076 -- Ada 2005 (AI-50217): If the type was previously decorated when
3077 -- imported through a LIMITED WITH clause, it appears as incomplete
3078 -- but has no full view.
3079
3080 if Ekind (Prev) = E_Incomplete_Type
3081 and then Present (Full_View (Prev))
3082 then
3083 T := Full_View (Prev);
3084 Set_Incomplete_View (N, Parent (Prev));
3085 else
3086 T := Prev;
3087 end if;
3088
3089 Set_Is_Pure (T, Is_Pure (Current_Scope));
3090
3091 -- We set the flag Is_First_Subtype here. It is needed to set the
3092 -- corresponding flag for the Implicit class-wide-type created
3093 -- during tagged types processing.
3094
3095 Set_Is_First_Subtype (T, True);
3096
3097 -- Only composite types other than array types are allowed to have
3098 -- discriminants.
3099
3100 case Nkind (Def) is
3101
3102 -- For derived types, the rule will be checked once we've figured
3103 -- out the parent type.
3104
3105 when N_Derived_Type_Definition =>
3106 null;
3107
3108 -- For record types, discriminants are allowed, unless we are in
3109 -- SPARK.
3110
3111 when N_Record_Definition =>
3112 if Present (Discriminant_Specifications (N)) then
3113 Check_SPARK_05_Restriction
3114 ("discriminant type is not allowed",
3115 Defining_Identifier
3116 (First (Discriminant_Specifications (N))));
3117 end if;
3118
3119 when others =>
3120 if Present (Discriminant_Specifications (N)) then
3121 Error_Msg_N
3122 ("elementary or array type cannot have discriminants",
3123 Defining_Identifier
3124 (First (Discriminant_Specifications (N))));
3125 end if;
3126 end case;
3127
3128 -- Elaborate the type definition according to kind, and generate
3129 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3130 -- already done (this happens during the reanalysis that follows a call
3131 -- to the high level optimizer).
3132
3133 if not Analyzed (T) then
3134 Set_Analyzed (T);
3135
3136 -- Set the SPARK mode from the current context
3137
3138 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3139 Set_SPARK_Pragma_Inherited (T);
3140
3141 case Nkind (Def) is
3142 when N_Access_To_Subprogram_Definition =>
3143 Access_Subprogram_Declaration (T, Def);
3144
3145 -- If this is a remote access to subprogram, we must create the
3146 -- equivalent fat pointer type, and related subprograms.
3147
3148 if Is_Remote then
3149 Process_Remote_AST_Declaration (N);
3150 end if;
3151
3152 -- Validate categorization rule against access type declaration
3153 -- usually a violation in Pure unit, Shared_Passive unit.
3154
3155 Validate_Access_Type_Declaration (T, N);
3156
3157 when N_Access_To_Object_Definition =>
3158 Access_Type_Declaration (T, Def);
3159
3160 -- Validate categorization rule against access type declaration
3161 -- usually a violation in Pure unit, Shared_Passive unit.
3162
3163 Validate_Access_Type_Declaration (T, N);
3164
3165 -- If we are in a Remote_Call_Interface package and define a
3166 -- RACW, then calling stubs and specific stream attributes
3167 -- must be added.
3168
3169 if Is_Remote
3170 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3171 then
3172 Add_RACW_Features (Def_Id);
3173 end if;
3174
3175 when N_Array_Type_Definition =>
3176 Array_Type_Declaration (T, Def);
3177
3178 when N_Derived_Type_Definition =>
3179 Derived_Type_Declaration (T, N, T /= Def_Id);
3180
3181 -- Inherit predicates from parent, and protect against illegal
3182 -- derivations.
3183
3184 if Is_Type (T) and then Has_Predicates (T) then
3185 Set_Has_Predicates (Def_Id);
3186 end if;
3187
3188 -- Save the scenario for examination by the ABE Processing
3189 -- phase.
3190
3191 Record_Elaboration_Scenario (N);
3192
3193 when N_Enumeration_Type_Definition =>
3194 Enumeration_Type_Declaration (T, Def);
3195
3196 when N_Floating_Point_Definition =>
3197 Floating_Point_Type_Declaration (T, Def);
3198
3199 when N_Decimal_Fixed_Point_Definition =>
3200 Decimal_Fixed_Point_Type_Declaration (T, Def);
3201
3202 when N_Ordinary_Fixed_Point_Definition =>
3203 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3204
3205 when N_Signed_Integer_Type_Definition =>
3206 Signed_Integer_Type_Declaration (T, Def);
3207
3208 when N_Modular_Type_Definition =>
3209 Modular_Type_Declaration (T, Def);
3210
3211 when N_Record_Definition =>
3212 Record_Type_Declaration (T, N, Prev);
3213
3214 -- If declaration has a parse error, nothing to elaborate.
3215
3216 when N_Error =>
3217 null;
3218
3219 when others =>
3220 raise Program_Error;
3221 end case;
3222 end if;
3223
3224 if Etype (T) = Any_Type then
3225 return;
3226 end if;
3227
3228 -- Controlled type is not allowed in SPARK
3229
3230 if Is_Visibly_Controlled (T) then
3231 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3232 end if;
3233
3234 -- Some common processing for all types
3235
3236 Set_Depends_On_Private (T, Has_Private_Component (T));
3237 Check_Ops_From_Incomplete_Type;
3238
3239 -- Both the declared entity, and its anonymous base type if one was
3240 -- created, need freeze nodes allocated.
3241
3242 declare
3243 B : constant Entity_Id := Base_Type (T);
3244
3245 begin
3246 -- In the case where the base type differs from the first subtype, we
3247 -- pre-allocate a freeze node, and set the proper link to the first
3248 -- subtype. Freeze_Entity will use this preallocated freeze node when
3249 -- it freezes the entity.
3250
3251 -- This does not apply if the base type is a generic type, whose
3252 -- declaration is independent of the current derived definition.
3253
3254 if B /= T and then not Is_Generic_Type (B) then
3255 Ensure_Freeze_Node (B);
3256 Set_First_Subtype_Link (Freeze_Node (B), T);
3257 end if;
3258
3259 -- A type that is imported through a limited_with clause cannot
3260 -- generate any code, and thus need not be frozen. However, an access
3261 -- type with an imported designated type needs a finalization list,
3262 -- which may be referenced in some other package that has non-limited
3263 -- visibility on the designated type. Thus we must create the
3264 -- finalization list at the point the access type is frozen, to
3265 -- prevent unsatisfied references at link time.
3266
3267 if not From_Limited_With (T) or else Is_Access_Type (T) then
3268 Set_Has_Delayed_Freeze (T);
3269 end if;
3270 end;
3271
3272 -- Case where T is the full declaration of some private type which has
3273 -- been swapped in Defining_Identifier (N).
3274
3275 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3276 Process_Full_View (N, T, Def_Id);
3277
3278 -- Record the reference. The form of this is a little strange, since
3279 -- the full declaration has been swapped in. So the first parameter
3280 -- here represents the entity to which a reference is made which is
3281 -- the "real" entity, i.e. the one swapped in, and the second
3282 -- parameter provides the reference location.
3283
3284 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3285 -- since we don't want a complaint about the full type being an
3286 -- unwanted reference to the private type
3287
3288 declare
3289 B : constant Boolean := Has_Pragma_Unreferenced (T);
3290 begin
3291 Set_Has_Pragma_Unreferenced (T, False);
3292 Generate_Reference (T, T, 'c');
3293 Set_Has_Pragma_Unreferenced (T, B);
3294 end;
3295
3296 Set_Completion_Referenced (Def_Id);
3297
3298 -- For completion of incomplete type, process incomplete dependents
3299 -- and always mark the full type as referenced (it is the incomplete
3300 -- type that we get for any real reference).
3301
3302 elsif Ekind (Prev) = E_Incomplete_Type then
3303 Process_Incomplete_Dependents (N, T, Prev);
3304 Generate_Reference (Prev, Def_Id, 'c');
3305 Set_Completion_Referenced (Def_Id);
3306
3307 -- If not private type or incomplete type completion, this is a real
3308 -- definition of a new entity, so record it.
3309
3310 else
3311 Generate_Definition (Def_Id);
3312 end if;
3313
3314 -- Propagate any pending access types whose finalization masters need to
3315 -- be fully initialized from the partial to the full view. Guard against
3316 -- an illegal full view that remains unanalyzed.
3317
3318 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3319 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3320 end if;
3321
3322 if Chars (Scope (Def_Id)) = Name_System
3323 and then Chars (Def_Id) = Name_Address
3324 and then In_Predefined_Unit (N)
3325 then
3326 Set_Is_Descendant_Of_Address (Def_Id);
3327 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3328 Set_Is_Descendant_Of_Address (Prev);
3329 end if;
3330
3331 Set_Optimize_Alignment_Flags (Def_Id);
3332 Check_Eliminated (Def_Id);
3333
3334 -- If the declaration is a completion and aspects are present, apply
3335 -- them to the entity for the type which is currently the partial
3336 -- view, but which is the one that will be frozen.
3337
3338 if Has_Aspects (N) then
3339
3340 -- In most cases the partial view is a private type, and both views
3341 -- appear in different declarative parts. In the unusual case where
3342 -- the partial view is incomplete, perform the analysis on the
3343 -- full view, to prevent freezing anomalies with the corresponding
3344 -- class-wide type, which otherwise might be frozen before the
3345 -- dispatch table is built.
3346
3347 if Prev /= Def_Id
3348 and then Ekind (Prev) /= E_Incomplete_Type
3349 then
3350 Analyze_Aspect_Specifications (N, Prev);
3351
3352 -- Normal case
3353
3354 else
3355 Analyze_Aspect_Specifications (N, Def_Id);
3356 end if;
3357 end if;
3358
3359 if Is_Derived_Type (Prev)
3360 and then Def_Id /= Prev
3361 then
3362 Check_Nonoverridable_Aspects;
3363 end if;
3364 end Analyze_Full_Type_Declaration;
3365
3366 ----------------------------------
3367 -- Analyze_Incomplete_Type_Decl --
3368 ----------------------------------
3369
3370 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3371 F : constant Boolean := Is_Pure (Current_Scope);
3372 T : Entity_Id;
3373
3374 begin
3375 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3376
3377 Generate_Definition (Defining_Identifier (N));
3378
3379 -- Process an incomplete declaration. The identifier must not have been
3380 -- declared already in the scope. However, an incomplete declaration may
3381 -- appear in the private part of a package, for a private type that has
3382 -- already been declared.
3383
3384 -- In this case, the discriminants (if any) must match
3385
3386 T := Find_Type_Name (N);
3387
3388 Set_Ekind (T, E_Incomplete_Type);
3389 Set_Etype (T, T);
3390 Set_Is_First_Subtype (T);
3391 Init_Size_Align (T);
3392
3393 -- Set the SPARK mode from the current context
3394
3395 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3396 Set_SPARK_Pragma_Inherited (T);
3397
3398 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3399 -- incomplete types.
3400
3401 if Tagged_Present (N) then
3402 Set_Is_Tagged_Type (T, True);
3403 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3404 Make_Class_Wide_Type (T);
3405 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3406 end if;
3407
3408 Set_Stored_Constraint (T, No_Elist);
3409
3410 if Present (Discriminant_Specifications (N)) then
3411 Push_Scope (T);
3412 Process_Discriminants (N);
3413 End_Scope;
3414 end if;
3415
3416 -- If the type has discriminants, nontrivial subtypes may be declared
3417 -- before the full view of the type. The full views of those subtypes
3418 -- will be built after the full view of the type.
3419
3420 Set_Private_Dependents (T, New_Elmt_List);
3421 Set_Is_Pure (T, F);
3422 end Analyze_Incomplete_Type_Decl;
3423
3424 -----------------------------------
3425 -- Analyze_Interface_Declaration --
3426 -----------------------------------
3427
3428 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3429 CW : constant Entity_Id := Class_Wide_Type (T);
3430
3431 begin
3432 Set_Is_Tagged_Type (T);
3433 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3434
3435 Set_Is_Limited_Record (T, Limited_Present (Def)
3436 or else Task_Present (Def)
3437 or else Protected_Present (Def)
3438 or else Synchronized_Present (Def));
3439
3440 -- Type is abstract if full declaration carries keyword, or if previous
3441 -- partial view did.
3442
3443 Set_Is_Abstract_Type (T);
3444 Set_Is_Interface (T);
3445
3446 -- Type is a limited interface if it includes the keyword limited, task,
3447 -- protected, or synchronized.
3448
3449 Set_Is_Limited_Interface
3450 (T, Limited_Present (Def)
3451 or else Protected_Present (Def)
3452 or else Synchronized_Present (Def)
3453 or else Task_Present (Def));
3454
3455 Set_Interfaces (T, New_Elmt_List);
3456 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3457
3458 -- Complete the decoration of the class-wide entity if it was already
3459 -- built (i.e. during the creation of the limited view)
3460
3461 if Present (CW) then
3462 Set_Is_Interface (CW);
3463 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3464 end if;
3465
3466 -- Check runtime support for synchronized interfaces
3467
3468 if (Is_Task_Interface (T)
3469 or else Is_Protected_Interface (T)
3470 or else Is_Synchronized_Interface (T))
3471 and then not RTE_Available (RE_Select_Specific_Data)
3472 then
3473 Error_Msg_CRT ("synchronized interfaces", T);
3474 end if;
3475 end Analyze_Interface_Declaration;
3476
3477 -----------------------------
3478 -- Analyze_Itype_Reference --
3479 -----------------------------
3480
3481 -- Nothing to do. This node is placed in the tree only for the benefit of
3482 -- back end processing, and has no effect on the semantic processing.
3483
3484 procedure Analyze_Itype_Reference (N : Node_Id) is
3485 begin
3486 pragma Assert (Is_Itype (Itype (N)));
3487 null;
3488 end Analyze_Itype_Reference;
3489
3490 --------------------------------
3491 -- Analyze_Number_Declaration --
3492 --------------------------------
3493
3494 procedure Analyze_Number_Declaration (N : Node_Id) is
3495 E : constant Node_Id := Expression (N);
3496 Id : constant Entity_Id := Defining_Identifier (N);
3497 Index : Interp_Index;
3498 It : Interp;
3499 T : Entity_Id;
3500
3501 begin
3502 Generate_Definition (Id);
3503 Enter_Name (Id);
3504
3505 -- This is an optimization of a common case of an integer literal
3506
3507 if Nkind (E) = N_Integer_Literal then
3508 Set_Is_Static_Expression (E, True);
3509 Set_Etype (E, Universal_Integer);
3510
3511 Set_Etype (Id, Universal_Integer);
3512 Set_Ekind (Id, E_Named_Integer);
3513 Set_Is_Frozen (Id, True);
3514 return;
3515 end if;
3516
3517 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3518
3519 -- Process expression, replacing error by integer zero, to avoid
3520 -- cascaded errors or aborts further along in the processing
3521
3522 -- Replace Error by integer zero, which seems least likely to cause
3523 -- cascaded errors.
3524
3525 if E = Error then
3526 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3527 Set_Error_Posted (E);
3528 end if;
3529
3530 Analyze (E);
3531
3532 -- Verify that the expression is static and numeric. If
3533 -- the expression is overloaded, we apply the preference
3534 -- rule that favors root numeric types.
3535
3536 if not Is_Overloaded (E) then
3537 T := Etype (E);
3538 if Has_Dynamic_Predicate_Aspect (T) then
3539 Error_Msg_N
3540 ("subtype has dynamic predicate, "
3541 & "not allowed in number declaration", N);
3542 end if;
3543
3544 else
3545 T := Any_Type;
3546
3547 Get_First_Interp (E, Index, It);
3548 while Present (It.Typ) loop
3549 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3550 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3551 then
3552 if T = Any_Type then
3553 T := It.Typ;
3554
3555 elsif It.Typ = Universal_Real
3556 or else
3557 It.Typ = Universal_Integer
3558 then
3559 -- Choose universal interpretation over any other
3560
3561 T := It.Typ;
3562 exit;
3563 end if;
3564 end if;
3565
3566 Get_Next_Interp (Index, It);
3567 end loop;
3568 end if;
3569
3570 if Is_Integer_Type (T) then
3571 Resolve (E, T);
3572 Set_Etype (Id, Universal_Integer);
3573 Set_Ekind (Id, E_Named_Integer);
3574
3575 elsif Is_Real_Type (T) then
3576
3577 -- Because the real value is converted to universal_real, this is a
3578 -- legal context for a universal fixed expression.
3579
3580 if T = Universal_Fixed then
3581 declare
3582 Loc : constant Source_Ptr := Sloc (N);
3583 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3584 Subtype_Mark =>
3585 New_Occurrence_Of (Universal_Real, Loc),
3586 Expression => Relocate_Node (E));
3587
3588 begin
3589 Rewrite (E, Conv);
3590 Analyze (E);
3591 end;
3592
3593 elsif T = Any_Fixed then
3594 Error_Msg_N ("illegal context for mixed mode operation", E);
3595
3596 -- Expression is of the form : universal_fixed * integer. Try to
3597 -- resolve as universal_real.
3598
3599 T := Universal_Real;
3600 Set_Etype (E, T);
3601 end if;
3602
3603 Resolve (E, T);
3604 Set_Etype (Id, Universal_Real);
3605 Set_Ekind (Id, E_Named_Real);
3606
3607 else
3608 Wrong_Type (E, Any_Numeric);
3609 Resolve (E, T);
3610
3611 Set_Etype (Id, T);
3612 Set_Ekind (Id, E_Constant);
3613 Set_Never_Set_In_Source (Id, True);
3614 Set_Is_True_Constant (Id, True);
3615 return;
3616 end if;
3617
3618 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3619 Set_Etype (E, Etype (Id));
3620 end if;
3621
3622 if not Is_OK_Static_Expression (E) then
3623 Flag_Non_Static_Expr
3624 ("non-static expression used in number declaration!", E);
3625 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3626 Set_Etype (E, Any_Type);
3627 end if;
3628
3629 Analyze_Dimension (N);
3630 end Analyze_Number_Declaration;
3631
3632 --------------------------------
3633 -- Analyze_Object_Declaration --
3634 --------------------------------
3635
3636 -- WARNING: This routine manages Ghost regions. Return statements must be
3637 -- replaced by gotos which jump to the end of the routine and restore the
3638 -- Ghost mode.
3639
3640 procedure Analyze_Object_Declaration (N : Node_Id) is
3641 Loc : constant Source_Ptr := Sloc (N);
3642 Id : constant Entity_Id := Defining_Identifier (N);
3643 Act_T : Entity_Id;
3644 T : Entity_Id;
3645
3646 E : Node_Id := Expression (N);
3647 -- E is set to Expression (N) throughout this routine. When Expression
3648 -- (N) is modified, E is changed accordingly.
3649
3650 Prev_Entity : Entity_Id := Empty;
3651
3652 procedure Check_Dynamic_Object (Typ : Entity_Id);
3653 -- A library-level object with non-static discriminant constraints may
3654 -- require dynamic allocation. The declaration is illegal if the
3655 -- profile includes the restriction No_Implicit_Heap_Allocations.
3656
3657 procedure Check_For_Null_Excluding_Components
3658 (Obj_Typ : Entity_Id;
3659 Obj_Decl : Node_Id);
3660 -- Verify that each null-excluding component of object declaration
3661 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3662 -- a compile-time warning if this is not the case.
3663
3664 function Count_Tasks (T : Entity_Id) return Uint;
3665 -- This function is called when a non-generic library level object of a
3666 -- task type is declared. Its function is to count the static number of
3667 -- tasks declared within the type (it is only called if Has_Task is set
3668 -- for T). As a side effect, if an array of tasks with non-static bounds
3669 -- or a variant record type is encountered, Check_Restriction is called
3670 -- indicating the count is unknown.
3671
3672 function Delayed_Aspect_Present return Boolean;
3673 -- If the declaration has an expression that is an aggregate, and it
3674 -- has aspects that require delayed analysis, the resolution of the
3675 -- aggregate must be deferred to the freeze point of the object. This
3676 -- special processing was created for address clauses, but it must
3677 -- also apply to Alignment. This must be done before the aspect
3678 -- specifications are analyzed because we must handle the aggregate
3679 -- before the analysis of the object declaration is complete.
3680
3681 -- Any other relevant delayed aspects on object declarations ???
3682
3683 --------------------------
3684 -- Check_Dynamic_Object --
3685 --------------------------
3686
3687 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3688 Comp : Entity_Id;
3689 Obj_Type : Entity_Id;
3690
3691 begin
3692 Obj_Type := Typ;
3693
3694 if Is_Private_Type (Obj_Type)
3695 and then Present (Full_View (Obj_Type))
3696 then
3697 Obj_Type := Full_View (Obj_Type);
3698 end if;
3699
3700 if Known_Static_Esize (Obj_Type) then
3701 return;
3702 end if;
3703
3704 if Restriction_Active (No_Implicit_Heap_Allocations)
3705 and then Expander_Active
3706 and then Has_Discriminants (Obj_Type)
3707 then
3708 Comp := First_Component (Obj_Type);
3709 while Present (Comp) loop
3710 if Known_Static_Esize (Etype (Comp))
3711 or else Size_Known_At_Compile_Time (Etype (Comp))
3712 then
3713 null;
3714
3715 elsif not Discriminated_Size (Comp)
3716 and then Comes_From_Source (Comp)
3717 then
3718 Error_Msg_NE
3719 ("component& of non-static size will violate restriction "
3720 & "No_Implicit_Heap_Allocation?", N, Comp);
3721
3722 elsif Is_Record_Type (Etype (Comp)) then
3723 Check_Dynamic_Object (Etype (Comp));
3724 end if;
3725
3726 Next_Component (Comp);
3727 end loop;
3728 end if;
3729 end Check_Dynamic_Object;
3730
3731 -----------------------------------------
3732 -- Check_For_Null_Excluding_Components --
3733 -----------------------------------------
3734
3735 procedure Check_For_Null_Excluding_Components
3736 (Obj_Typ : Entity_Id;
3737 Obj_Decl : Node_Id)
3738 is
3739 procedure Check_Component
3740 (Comp_Typ : Entity_Id;
3741 Comp_Decl : Node_Id := Empty;
3742 Array_Comp : Boolean := False);
3743 -- Apply a compile-time null-exclusion check on a component denoted
3744 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3745 -- subcomponents (if any).
3746
3747 ---------------------
3748 -- Check_Component --
3749 ---------------------
3750
3751 procedure Check_Component
3752 (Comp_Typ : Entity_Id;
3753 Comp_Decl : Node_Id := Empty;
3754 Array_Comp : Boolean := False)
3755 is
3756 Comp : Entity_Id;
3757 T : Entity_Id;
3758
3759 begin
3760 -- Do not consider internally-generated components or those that
3761 -- are already initialized.
3762
3763 if Present (Comp_Decl)
3764 and then (not Comes_From_Source (Comp_Decl)
3765 or else Present (Expression (Comp_Decl)))
3766 then
3767 return;
3768 end if;
3769
3770 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3771 and then Present (Full_View (Comp_Typ))
3772 then
3773 T := Full_View (Comp_Typ);
3774 else
3775 T := Comp_Typ;
3776 end if;
3777
3778 -- Verify a component of a null-excluding access type
3779
3780 if Is_Access_Type (T)
3781 and then Can_Never_Be_Null (T)
3782 then
3783 if Comp_Decl = Obj_Decl then
3784 Null_Exclusion_Static_Checks
3785 (N => Obj_Decl,
3786 Comp => Empty,
3787 Array_Comp => Array_Comp);
3788
3789 else
3790 Null_Exclusion_Static_Checks
3791 (N => Obj_Decl,
3792 Comp => Comp_Decl,
3793 Array_Comp => Array_Comp);
3794 end if;
3795
3796 -- Check array components
3797
3798 elsif Is_Array_Type (T) then
3799
3800 -- There is no suitable component when the object is of an
3801 -- array type. However, a namable component may appear at some
3802 -- point during the recursive inspection, but not at the top
3803 -- level. At the top level just indicate array component case.
3804
3805 if Comp_Decl = Obj_Decl then
3806 Check_Component (Component_Type (T), Array_Comp => True);
3807 else
3808 Check_Component (Component_Type (T), Comp_Decl);
3809 end if;
3810
3811 -- Verify all components of type T
3812
3813 -- Note: No checks are performed on types with discriminants due
3814 -- to complexities involving variants. ???
3815
3816 elsif (Is_Concurrent_Type (T)
3817 or else Is_Incomplete_Or_Private_Type (T)
3818 or else Is_Record_Type (T))
3819 and then not Has_Discriminants (T)
3820 then
3821 Comp := First_Component (T);
3822 while Present (Comp) loop
3823 Check_Component (Etype (Comp), Parent (Comp));
3824
3825 Comp := Next_Component (Comp);
3826 end loop;
3827 end if;
3828 end Check_Component;
3829
3830 -- Start processing for Check_For_Null_Excluding_Components
3831
3832 begin
3833 Check_Component (Obj_Typ, Obj_Decl);
3834 end Check_For_Null_Excluding_Components;
3835
3836 -----------------
3837 -- Count_Tasks --
3838 -----------------
3839
3840 function Count_Tasks (T : Entity_Id) return Uint is
3841 C : Entity_Id;
3842 X : Node_Id;
3843 V : Uint;
3844
3845 begin
3846 if Is_Task_Type (T) then
3847 return Uint_1;
3848
3849 elsif Is_Record_Type (T) then
3850 if Has_Discriminants (T) then
3851 Check_Restriction (Max_Tasks, N);
3852 return Uint_0;
3853
3854 else
3855 V := Uint_0;
3856 C := First_Component (T);
3857 while Present (C) loop
3858 V := V + Count_Tasks (Etype (C));
3859 Next_Component (C);
3860 end loop;
3861
3862 return V;
3863 end if;
3864
3865 elsif Is_Array_Type (T) then
3866 X := First_Index (T);
3867 V := Count_Tasks (Component_Type (T));
3868 while Present (X) loop
3869 C := Etype (X);
3870
3871 if not Is_OK_Static_Subtype (C) then
3872 Check_Restriction (Max_Tasks, N);
3873 return Uint_0;
3874 else
3875 V := V * (UI_Max (Uint_0,
3876 Expr_Value (Type_High_Bound (C)) -
3877 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3878 end if;
3879
3880 Next_Index (X);
3881 end loop;
3882
3883 return V;
3884
3885 else
3886 return Uint_0;
3887 end if;
3888 end Count_Tasks;
3889
3890 ----------------------------
3891 -- Delayed_Aspect_Present --
3892 ----------------------------
3893
3894 function Delayed_Aspect_Present return Boolean is
3895 A : Node_Id;
3896 A_Id : Aspect_Id;
3897
3898 begin
3899 if Present (Aspect_Specifications (N)) then
3900 A := First (Aspect_Specifications (N));
3901 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3902 while Present (A) loop
3903 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3904 return True;
3905 end if;
3906
3907 Next (A);
3908 end loop;
3909 end if;
3910
3911 return False;
3912 end Delayed_Aspect_Present;
3913
3914 -- Local variables
3915
3916 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3917 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3918 -- Save the Ghost-related attributes to restore on exit
3919
3920 Related_Id : Entity_Id;
3921
3922 -- Start of processing for Analyze_Object_Declaration
3923
3924 begin
3925 -- There are three kinds of implicit types generated by an
3926 -- object declaration:
3927
3928 -- 1. Those generated by the original Object Definition
3929
3930 -- 2. Those generated by the Expression
3931
3932 -- 3. Those used to constrain the Object Definition with the
3933 -- expression constraints when the definition is unconstrained.
3934
3935 -- They must be generated in this order to avoid order of elaboration
3936 -- issues. Thus the first step (after entering the name) is to analyze
3937 -- the object definition.
3938
3939 if Constant_Present (N) then
3940 Prev_Entity := Current_Entity_In_Scope (Id);
3941
3942 if Present (Prev_Entity)
3943 and then
3944 -- If the homograph is an implicit subprogram, it is overridden
3945 -- by the current declaration.
3946
3947 ((Is_Overloadable (Prev_Entity)
3948 and then Is_Inherited_Operation (Prev_Entity))
3949
3950 -- The current object is a discriminal generated for an entry
3951 -- family index. Even though the index is a constant, in this
3952 -- particular context there is no true constant redeclaration.
3953 -- Enter_Name will handle the visibility.
3954
3955 or else
3956 (Is_Discriminal (Id)
3957 and then Ekind (Discriminal_Link (Id)) =
3958 E_Entry_Index_Parameter)
3959
3960 -- The current object is the renaming for a generic declared
3961 -- within the instance.
3962
3963 or else
3964 (Ekind (Prev_Entity) = E_Package
3965 and then Nkind (Parent (Prev_Entity)) =
3966 N_Package_Renaming_Declaration
3967 and then not Comes_From_Source (Prev_Entity)
3968 and then
3969 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3970
3971 -- The entity may be a homonym of a private component of the
3972 -- enclosing protected object, for which we create a local
3973 -- renaming declaration. The declaration is legal, even if
3974 -- useless when it just captures that component.
3975
3976 or else
3977 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3978 and then Nkind (Parent (Prev_Entity)) =
3979 N_Object_Renaming_Declaration))
3980 then
3981 Prev_Entity := Empty;
3982 end if;
3983 end if;
3984
3985 if Present (Prev_Entity) then
3986
3987 -- The object declaration is Ghost when it completes a deferred Ghost
3988 -- constant.
3989
3990 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3991
3992 Constant_Redeclaration (Id, N, T);
3993
3994 Generate_Reference (Prev_Entity, Id, 'c');
3995 Set_Completion_Referenced (Id);
3996
3997 if Error_Posted (N) then
3998
3999 -- Type mismatch or illegal redeclaration; do not analyze
4000 -- expression to avoid cascaded errors.
4001
4002 T := Find_Type_Of_Object (Object_Definition (N), N);
4003 Set_Etype (Id, T);
4004 Set_Ekind (Id, E_Variable);
4005 goto Leave;
4006 end if;
4007
4008 -- In the normal case, enter identifier at the start to catch premature
4009 -- usage in the initialization expression.
4010
4011 else
4012 Generate_Definition (Id);
4013 Enter_Name (Id);
4014
4015 Mark_Coextensions (N, Object_Definition (N));
4016
4017 T := Find_Type_Of_Object (Object_Definition (N), N);
4018
4019 if Nkind (Object_Definition (N)) = N_Access_Definition
4020 and then Present
4021 (Access_To_Subprogram_Definition (Object_Definition (N)))
4022 and then Protected_Present
4023 (Access_To_Subprogram_Definition (Object_Definition (N)))
4024 then
4025 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4026 end if;
4027
4028 if Error_Posted (Id) then
4029 Set_Etype (Id, T);
4030 Set_Ekind (Id, E_Variable);
4031 goto Leave;
4032 end if;
4033 end if;
4034
4035 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4036 -- out some static checks.
4037
4038 if Ada_Version >= Ada_2005 then
4039
4040 -- In case of aggregates we must also take care of the correct
4041 -- initialization of nested aggregates bug this is done at the
4042 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4043
4044 if Can_Never_Be_Null (T) then
4045 if Present (Expression (N))
4046 and then Nkind (Expression (N)) = N_Aggregate
4047 then
4048 null;
4049
4050 else
4051 declare
4052 Save_Typ : constant Entity_Id := Etype (Id);
4053 begin
4054 Set_Etype (Id, T); -- Temp. decoration for static checks
4055 Null_Exclusion_Static_Checks (N);
4056 Set_Etype (Id, Save_Typ);
4057 end;
4058 end if;
4059
4060 -- We might be dealing with an object of a composite type containing
4061 -- null-excluding components without an aggregate, so we must verify
4062 -- that such components have default initialization.
4063
4064 else
4065 Check_For_Null_Excluding_Components (T, N);
4066 end if;
4067 end if;
4068
4069 -- Object is marked pure if it is in a pure scope
4070
4071 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4072
4073 -- If deferred constant, make sure context is appropriate. We detect
4074 -- a deferred constant as a constant declaration with no expression.
4075 -- A deferred constant can appear in a package body if its completion
4076 -- is by means of an interface pragma.
4077
4078 if Constant_Present (N) and then No (E) then
4079
4080 -- A deferred constant may appear in the declarative part of the
4081 -- following constructs:
4082
4083 -- blocks
4084 -- entry bodies
4085 -- extended return statements
4086 -- package specs
4087 -- package bodies
4088 -- subprogram bodies
4089 -- task bodies
4090
4091 -- When declared inside a package spec, a deferred constant must be
4092 -- completed by a full constant declaration or pragma Import. In all
4093 -- other cases, the only proper completion is pragma Import. Extended
4094 -- return statements are flagged as invalid contexts because they do
4095 -- not have a declarative part and so cannot accommodate the pragma.
4096
4097 if Ekind (Current_Scope) = E_Return_Statement then
4098 Error_Msg_N
4099 ("invalid context for deferred constant declaration (RM 7.4)",
4100 N);
4101 Error_Msg_N
4102 ("\declaration requires an initialization expression",
4103 N);
4104 Set_Constant_Present (N, False);
4105
4106 -- In Ada 83, deferred constant must be of private type
4107
4108 elsif not Is_Private_Type (T) then
4109 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4110 Error_Msg_N
4111 ("(Ada 83) deferred constant must be private type", N);
4112 end if;
4113 end if;
4114
4115 -- If not a deferred constant, then the object declaration freezes
4116 -- its type, unless the object is of an anonymous type and has delayed
4117 -- aspects. In that case the type is frozen when the object itself is.
4118
4119 else
4120 Check_Fully_Declared (T, N);
4121
4122 if Has_Delayed_Aspects (Id)
4123 and then Is_Array_Type (T)
4124 and then Is_Itype (T)
4125 then
4126 Set_Has_Delayed_Freeze (T);
4127 else
4128 Freeze_Before (N, T);
4129 end if;
4130 end if;
4131
4132 -- If the object was created by a constrained array definition, then
4133 -- set the link in both the anonymous base type and anonymous subtype
4134 -- that are built to represent the array type to point to the object.
4135
4136 if Nkind (Object_Definition (Declaration_Node (Id))) =
4137 N_Constrained_Array_Definition
4138 then
4139 Set_Related_Array_Object (T, Id);
4140 Set_Related_Array_Object (Base_Type (T), Id);
4141 end if;
4142
4143 -- Special checks for protected objects not at library level
4144
4145 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4146 Check_Restriction (No_Local_Protected_Objects, Id);
4147
4148 -- Protected objects with interrupt handlers must be at library level
4149
4150 -- Ada 2005: This test is not needed (and the corresponding clause
4151 -- in the RM is removed) because accessibility checks are sufficient
4152 -- to make handlers not at the library level illegal.
4153
4154 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4155 -- applies to the '95 version of the language as well.
4156
4157 if Is_Protected_Type (T)
4158 and then Has_Interrupt_Handler (T)
4159 and then Ada_Version < Ada_95
4160 then
4161 Error_Msg_N
4162 ("interrupt object can only be declared at library level", Id);
4163 end if;
4164 end if;
4165
4166 -- Check for violation of No_Local_Timing_Events
4167
4168 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4169 Check_Restriction (No_Local_Timing_Events, Id);
4170 end if;
4171
4172 -- The actual subtype of the object is the nominal subtype, unless
4173 -- the nominal one is unconstrained and obtained from the expression.
4174
4175 Act_T := T;
4176
4177 -- These checks should be performed before the initialization expression
4178 -- is considered, so that the Object_Definition node is still the same
4179 -- as in source code.
4180
4181 -- In SPARK, the nominal subtype is always given by a subtype mark
4182 -- and must not be unconstrained. (The only exception to this is the
4183 -- acceptance of declarations of constants of type String.)
4184
4185 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4186 then
4187 Check_SPARK_05_Restriction
4188 ("subtype mark required", Object_Definition (N));
4189
4190 elsif Is_Array_Type (T)
4191 and then not Is_Constrained (T)
4192 and then T /= Standard_String
4193 then
4194 Check_SPARK_05_Restriction
4195 ("subtype mark of constrained type expected",
4196 Object_Definition (N));
4197 end if;
4198
4199 if Is_Library_Level_Entity (Id) then
4200 Check_Dynamic_Object (T);
4201 end if;
4202
4203 -- There are no aliased objects in SPARK
4204
4205 if Aliased_Present (N) then
4206 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4207 end if;
4208
4209 -- Process initialization expression if present and not in error
4210
4211 if Present (E) and then E /= Error then
4212
4213 -- Generate an error in case of CPP class-wide object initialization.
4214 -- Required because otherwise the expansion of the class-wide
4215 -- assignment would try to use 'size to initialize the object
4216 -- (primitive that is not available in CPP tagged types).
4217
4218 if Is_Class_Wide_Type (Act_T)
4219 and then
4220 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4221 or else
4222 (Present (Full_View (Root_Type (Etype (Act_T))))
4223 and then
4224 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4225 then
4226 Error_Msg_N
4227 ("predefined assignment not available for 'C'P'P tagged types",
4228 E);
4229 end if;
4230
4231 Mark_Coextensions (N, E);
4232 Analyze (E);
4233
4234 -- In case of errors detected in the analysis of the expression,
4235 -- decorate it with the expected type to avoid cascaded errors
4236
4237 if No (Etype (E)) then
4238 Set_Etype (E, T);
4239 end if;
4240
4241 -- If an initialization expression is present, then we set the
4242 -- Is_True_Constant flag. It will be reset if this is a variable
4243 -- and it is indeed modified.
4244
4245 Set_Is_True_Constant (Id, True);
4246
4247 -- If we are analyzing a constant declaration, set its completion
4248 -- flag after analyzing and resolving the expression.
4249
4250 if Constant_Present (N) then
4251 Set_Has_Completion (Id);
4252 end if;
4253
4254 -- Set type and resolve (type may be overridden later on). Note:
4255 -- Ekind (Id) must still be E_Void at this point so that incorrect
4256 -- early usage within E is properly diagnosed.
4257
4258 Set_Etype (Id, T);
4259
4260 -- If the expression is an aggregate we must look ahead to detect
4261 -- the possible presence of an address clause, and defer resolution
4262 -- and expansion of the aggregate to the freeze point of the entity.
4263
4264 -- This is not always legal because the aggregate may contain other
4265 -- references that need freezing, e.g. references to other entities
4266 -- with address clauses. In any case, when compiling with -gnatI the
4267 -- presence of the address clause must be ignored.
4268
4269 if Comes_From_Source (N)
4270 and then Expander_Active
4271 and then Nkind (E) = N_Aggregate
4272 and then
4273 ((Present (Following_Address_Clause (N))
4274 and then not Ignore_Rep_Clauses)
4275 or else Delayed_Aspect_Present)
4276 then
4277 Set_Etype (E, T);
4278
4279 else
4280
4281 -- If the expression is a formal that is a "subprogram pointer"
4282 -- this is illegal in accessibility terms. Add an explicit
4283 -- conversion to force the corresponding check, as is done for
4284 -- assignments.
4285
4286 if Comes_From_Source (N)
4287 and then Is_Entity_Name (E)
4288 and then Present (Entity (E))
4289 and then Is_Formal (Entity (E))
4290 and then
4291 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4292 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4293 then
4294 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4295 end if;
4296
4297 Resolve (E, T);
4298 end if;
4299
4300 -- No further action needed if E is a call to an inlined function
4301 -- which returns an unconstrained type and it has been expanded into
4302 -- a procedure call. In that case N has been replaced by an object
4303 -- declaration without initializing expression and it has been
4304 -- analyzed (see Expand_Inlined_Call).
4305
4306 if Back_End_Inlining
4307 and then Expander_Active
4308 and then Nkind (E) = N_Function_Call
4309 and then Nkind (Name (E)) in N_Has_Entity
4310 and then Is_Inlined (Entity (Name (E)))
4311 and then not Is_Constrained (Etype (E))
4312 and then Analyzed (N)
4313 and then No (Expression (N))
4314 then
4315 goto Leave;
4316 end if;
4317
4318 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4319 -- node (which was marked already-analyzed), we need to set the type
4320 -- to something other than Any_Access in order to keep gigi happy.
4321
4322 if Etype (E) = Any_Access then
4323 Set_Etype (E, T);
4324 end if;
4325
4326 -- If the object is an access to variable, the initialization
4327 -- expression cannot be an access to constant.
4328
4329 if Is_Access_Type (T)
4330 and then not Is_Access_Constant (T)
4331 and then Is_Access_Type (Etype (E))
4332 and then Is_Access_Constant (Etype (E))
4333 then
4334 Error_Msg_N
4335 ("access to variable cannot be initialized with an "
4336 & "access-to-constant expression", E);
4337 end if;
4338
4339 if not Assignment_OK (N) then
4340 Check_Initialization (T, E);
4341 end if;
4342
4343 Check_Unset_Reference (E);
4344
4345 -- If this is a variable, then set current value. If this is a
4346 -- declared constant of a scalar type with a static expression,
4347 -- indicate that it is always valid.
4348
4349 if not Constant_Present (N) then
4350 if Compile_Time_Known_Value (E) then
4351 Set_Current_Value (Id, E);
4352 end if;
4353
4354 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4355 Set_Is_Known_Valid (Id);
4356 end if;
4357
4358 -- Deal with setting of null flags
4359
4360 if Is_Access_Type (T) then
4361 if Known_Non_Null (E) then
4362 Set_Is_Known_Non_Null (Id, True);
4363 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4364 Set_Is_Known_Null (Id, True);
4365 end if;
4366 end if;
4367
4368 -- Check incorrect use of dynamically tagged expressions
4369
4370 if Is_Tagged_Type (T) then
4371 Check_Dynamically_Tagged_Expression
4372 (Expr => E,
4373 Typ => T,
4374 Related_Nod => N);
4375 end if;
4376
4377 Apply_Scalar_Range_Check (E, T);
4378 Apply_Static_Length_Check (E, T);
4379
4380 if Nkind (Original_Node (N)) = N_Object_Declaration
4381 and then Comes_From_Source (Original_Node (N))
4382
4383 -- Only call test if needed
4384
4385 and then Restriction_Check_Required (SPARK_05)
4386 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4387 then
4388 Check_SPARK_05_Restriction
4389 ("initialization expression is not appropriate", E);
4390 end if;
4391
4392 -- A formal parameter of a specific tagged type whose related
4393 -- subprogram is subject to pragma Extensions_Visible with value
4394 -- "False" cannot be implicitly converted to a class-wide type by
4395 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4396 -- not consider internally generated expressions.
4397
4398 if Is_Class_Wide_Type (T)
4399 and then Comes_From_Source (E)
4400 and then Is_EVF_Expression (E)
4401 then
4402 Error_Msg_N
4403 ("formal parameter cannot be implicitly converted to "
4404 & "class-wide type when Extensions_Visible is False", E);
4405 end if;
4406 end if;
4407
4408 -- If the No_Streams restriction is set, check that the type of the
4409 -- object is not, and does not contain, any subtype derived from
4410 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4411 -- Has_Stream just for efficiency reasons. There is no point in
4412 -- spending time on a Has_Stream check if the restriction is not set.
4413
4414 if Restriction_Check_Required (No_Streams) then
4415 if Has_Stream (T) then
4416 Check_Restriction (No_Streams, N);
4417 end if;
4418 end if;
4419
4420 -- Deal with predicate check before we start to do major rewriting. It
4421 -- is OK to initialize and then check the initialized value, since the
4422 -- object goes out of scope if we get a predicate failure. Note that we
4423 -- do this in the analyzer and not the expander because the analyzer
4424 -- does some substantial rewriting in some cases.
4425
4426 -- We need a predicate check if the type has predicates that are not
4427 -- ignored, and if either there is an initializing expression, or for
4428 -- default initialization when we have at least one case of an explicit
4429 -- default initial value and then this is not an internal declaration
4430 -- whose initialization comes later (as for an aggregate expansion).
4431
4432 if not Suppress_Assignment_Checks (N)
4433 and then Present (Predicate_Function (T))
4434 and then not Predicates_Ignored (T)
4435 and then not No_Initialization (N)
4436 and then
4437 (Present (E)
4438 or else
4439 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4440 then
4441 -- If the type has a static predicate and the expression is known at
4442 -- compile time, see if the expression satisfies the predicate.
4443
4444 if Present (E) then
4445 Check_Expression_Against_Static_Predicate (E, T);
4446 end if;
4447
4448 -- If the type is a null record and there is no explicit initial
4449 -- expression, no predicate check applies.
4450
4451 if No (E) and then Is_Null_Record_Type (T) then
4452 null;
4453
4454 -- Do not generate a predicate check if the initialization expression
4455 -- is a type conversion because the conversion has been subjected to
4456 -- the same check. This is a small optimization which avoid redundant
4457 -- checks.
4458
4459 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4460 null;
4461
4462 else
4463 Insert_After (N,
4464 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4465 end if;
4466 end if;
4467
4468 -- Case of unconstrained type
4469
4470 if not Is_Definite_Subtype (T) then
4471
4472 -- In SPARK, a declaration of unconstrained type is allowed
4473 -- only for constants of type string.
4474
4475 if Is_String_Type (T) and then not Constant_Present (N) then
4476 Check_SPARK_05_Restriction
4477 ("declaration of object of unconstrained type not allowed", N);
4478 end if;
4479
4480 -- Nothing to do in deferred constant case
4481
4482 if Constant_Present (N) and then No (E) then
4483 null;
4484
4485 -- Case of no initialization present
4486
4487 elsif No (E) then
4488 if No_Initialization (N) then
4489 null;
4490
4491 elsif Is_Class_Wide_Type (T) then
4492 Error_Msg_N
4493 ("initialization required in class-wide declaration ", N);
4494
4495 else
4496 Error_Msg_N
4497 ("unconstrained subtype not allowed (need initialization)",
4498 Object_Definition (N));
4499
4500 if Is_Record_Type (T) and then Has_Discriminants (T) then
4501 Error_Msg_N
4502 ("\provide initial value or explicit discriminant values",
4503 Object_Definition (N));
4504
4505 Error_Msg_NE
4506 ("\or give default discriminant values for type&",
4507 Object_Definition (N), T);
4508
4509 elsif Is_Array_Type (T) then
4510 Error_Msg_N
4511 ("\provide initial value or explicit array bounds",
4512 Object_Definition (N));
4513 end if;
4514 end if;
4515
4516 -- Case of initialization present but in error. Set initial
4517 -- expression as absent (but do not make above complaints)
4518
4519 elsif E = Error then
4520 Set_Expression (N, Empty);
4521 E := Empty;
4522
4523 -- Case of initialization present
4524
4525 else
4526 -- Check restrictions in Ada 83
4527
4528 if not Constant_Present (N) then
4529
4530 -- Unconstrained variables not allowed in Ada 83 mode
4531
4532 if Ada_Version = Ada_83
4533 and then Comes_From_Source (Object_Definition (N))
4534 then
4535 Error_Msg_N
4536 ("(Ada 83) unconstrained variable not allowed",
4537 Object_Definition (N));
4538 end if;
4539 end if;
4540
4541 -- Now we constrain the variable from the initializing expression
4542
4543 -- If the expression is an aggregate, it has been expanded into
4544 -- individual assignments. Retrieve the actual type from the
4545 -- expanded construct.
4546
4547 if Is_Array_Type (T)
4548 and then No_Initialization (N)
4549 and then Nkind (Original_Node (E)) = N_Aggregate
4550 then
4551 Act_T := Etype (E);
4552
4553 -- In case of class-wide interface object declarations we delay
4554 -- the generation of the equivalent record type declarations until
4555 -- its expansion because there are cases in they are not required.
4556
4557 elsif Is_Interface (T) then
4558 null;
4559
4560 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4561 -- we should prevent the generation of another Itype with the
4562 -- same name as the one already generated, or we end up with
4563 -- two identical types in GNATprove.
4564
4565 elsif GNATprove_Mode then
4566 null;
4567
4568 -- If the type is an unchecked union, no subtype can be built from
4569 -- the expression. Rewrite declaration as a renaming, which the
4570 -- back-end can handle properly. This is a rather unusual case,
4571 -- because most unchecked_union declarations have default values
4572 -- for discriminants and are thus not indefinite.
4573
4574 elsif Is_Unchecked_Union (T) then
4575 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4576 Set_Ekind (Id, E_Constant);
4577 else
4578 Set_Ekind (Id, E_Variable);
4579 end if;
4580
4581 Rewrite (N,
4582 Make_Object_Renaming_Declaration (Loc,
4583 Defining_Identifier => Id,
4584 Subtype_Mark => New_Occurrence_Of (T, Loc),
4585 Name => E));
4586
4587 Set_Renamed_Object (Id, E);
4588 Freeze_Before (N, T);
4589 Set_Is_Frozen (Id);
4590 goto Leave;
4591
4592 else
4593 -- Ensure that the generated subtype has a unique external name
4594 -- when the related object is public. This guarantees that the
4595 -- subtype and its bounds will not be affected by switches or
4596 -- pragmas that may offset the internal counter due to extra
4597 -- generated code.
4598
4599 if Is_Public (Id) then
4600 Related_Id := Id;
4601 else
4602 Related_Id := Empty;
4603 end if;
4604
4605 Expand_Subtype_From_Expr
4606 (N => N,
4607 Unc_Type => T,
4608 Subtype_Indic => Object_Definition (N),
4609 Exp => E,
4610 Related_Id => Related_Id);
4611
4612 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4613 end if;
4614
4615 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4616
4617 if Aliased_Present (N) then
4618 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4619 end if;
4620
4621 Freeze_Before (N, Act_T);
4622 Freeze_Before (N, T);
4623 end if;
4624
4625 elsif Is_Array_Type (T)
4626 and then No_Initialization (N)
4627 and then (Nkind (Original_Node (E)) = N_Aggregate
4628 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4629 and then Nkind (Original_Node (Expression
4630 (Original_Node (E)))) = N_Aggregate))
4631 then
4632 if not Is_Entity_Name (Object_Definition (N)) then
4633 Act_T := Etype (E);
4634 Check_Compile_Time_Size (Act_T);
4635
4636 if Aliased_Present (N) then
4637 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4638 end if;
4639 end if;
4640
4641 -- When the given object definition and the aggregate are specified
4642 -- independently, and their lengths might differ do a length check.
4643 -- This cannot happen if the aggregate is of the form (others =>...)
4644
4645 if not Is_Constrained (T) then
4646 null;
4647
4648 elsif Nkind (E) = N_Raise_Constraint_Error then
4649
4650 -- Aggregate is statically illegal. Place back in declaration
4651
4652 Set_Expression (N, E);
4653 Set_No_Initialization (N, False);
4654
4655 elsif T = Etype (E) then
4656 null;
4657
4658 elsif Nkind (E) = N_Aggregate
4659 and then Present (Component_Associations (E))
4660 and then Present (Choice_List (First (Component_Associations (E))))
4661 and then
4662 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4663 N_Others_Choice
4664 then
4665 null;
4666
4667 else
4668 Apply_Length_Check (E, T);
4669 end if;
4670
4671 -- If the type is limited unconstrained with defaulted discriminants and
4672 -- there is no expression, then the object is constrained by the
4673 -- defaults, so it is worthwhile building the corresponding subtype.
4674
4675 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4676 and then not Is_Constrained (T)
4677 and then Has_Discriminants (T)
4678 then
4679 if No (E) then
4680 Act_T := Build_Default_Subtype (T, N);
4681 else
4682 -- Ada 2005: A limited object may be initialized by means of an
4683 -- aggregate. If the type has default discriminants it has an
4684 -- unconstrained nominal type, Its actual subtype will be obtained
4685 -- from the aggregate, and not from the default discriminants.
4686
4687 Act_T := Etype (E);
4688 end if;
4689
4690 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4691
4692 elsif Nkind (E) = N_Function_Call
4693 and then Constant_Present (N)
4694 and then Has_Unconstrained_Elements (Etype (E))
4695 then
4696 -- The back-end has problems with constants of a discriminated type
4697 -- with defaults, if the initial value is a function call. We
4698 -- generate an intermediate temporary that will receive a reference
4699 -- to the result of the call. The initialization expression then
4700 -- becomes a dereference of that temporary.
4701
4702 Remove_Side_Effects (E);
4703
4704 -- If this is a constant declaration of an unconstrained type and
4705 -- the initialization is an aggregate, we can use the subtype of the
4706 -- aggregate for the declared entity because it is immutable.
4707
4708 elsif not Is_Constrained (T)
4709 and then Has_Discriminants (T)
4710 and then Constant_Present (N)
4711 and then not Has_Unchecked_Union (T)
4712 and then Nkind (E) = N_Aggregate
4713 then
4714 Act_T := Etype (E);
4715 end if;
4716
4717 -- Check No_Wide_Characters restriction
4718
4719 Check_Wide_Character_Restriction (T, Object_Definition (N));
4720
4721 -- Indicate this is not set in source. Certainly true for constants, and
4722 -- true for variables so far (will be reset for a variable if and when
4723 -- we encounter a modification in the source).
4724
4725 Set_Never_Set_In_Source (Id);
4726
4727 -- Now establish the proper kind and type of the object
4728
4729 if Constant_Present (N) then
4730 Set_Ekind (Id, E_Constant);
4731 Set_Is_True_Constant (Id);
4732
4733 else
4734 Set_Ekind (Id, E_Variable);
4735
4736 -- A variable is set as shared passive if it appears in a shared
4737 -- passive package, and is at the outer level. This is not done for
4738 -- entities generated during expansion, because those are always
4739 -- manipulated locally.
4740
4741 if Is_Shared_Passive (Current_Scope)
4742 and then Is_Library_Level_Entity (Id)
4743 and then Comes_From_Source (Id)
4744 then
4745 Set_Is_Shared_Passive (Id);
4746 Check_Shared_Var (Id, T, N);
4747 end if;
4748
4749 -- Set Has_Initial_Value if initializing expression present. Note
4750 -- that if there is no initializing expression, we leave the state
4751 -- of this flag unchanged (usually it will be False, but notably in
4752 -- the case of exception choice variables, it will already be true).
4753
4754 if Present (E) then
4755 Set_Has_Initial_Value (Id);
4756 end if;
4757 end if;
4758
4759 -- Set the SPARK mode from the current context (may be overwritten later
4760 -- with explicit pragma).
4761
4762 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4763 Set_SPARK_Pragma_Inherited (Id);
4764
4765 -- Preserve relevant elaboration-related attributes of the context which
4766 -- are no longer available or very expensive to recompute once analysis,
4767 -- resolution, and expansion are over.
4768
4769 Mark_Elaboration_Attributes
4770 (N_Id => Id,
4771 Checks => True,
4772 Warnings => True);
4773
4774 -- Initialize alignment and size and capture alignment setting
4775
4776 Init_Alignment (Id);
4777 Init_Esize (Id);
4778 Set_Optimize_Alignment_Flags (Id);
4779
4780 -- Deal with aliased case
4781
4782 if Aliased_Present (N) then
4783 Set_Is_Aliased (Id);
4784
4785 -- If the object is aliased and the type is unconstrained with
4786 -- defaulted discriminants and there is no expression, then the
4787 -- object is constrained by the defaults, so it is worthwhile
4788 -- building the corresponding subtype.
4789
4790 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4791 -- unconstrained, then only establish an actual subtype if the
4792 -- nominal subtype is indefinite. In definite cases the object is
4793 -- unconstrained in Ada 2005.
4794
4795 if No (E)
4796 and then Is_Record_Type (T)
4797 and then not Is_Constrained (T)
4798 and then Has_Discriminants (T)
4799 and then (Ada_Version < Ada_2005
4800 or else not Is_Definite_Subtype (T))
4801 then
4802 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4803 end if;
4804 end if;
4805
4806 -- Now we can set the type of the object
4807
4808 Set_Etype (Id, Act_T);
4809
4810 -- Non-constant object is marked to be treated as volatile if type is
4811 -- volatile and we clear the Current_Value setting that may have been
4812 -- set above. Doing so for constants isn't required and might interfere
4813 -- with possible uses of the object as a static expression in contexts
4814 -- incompatible with volatility (e.g. as a case-statement alternative).
4815
4816 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4817 Set_Treat_As_Volatile (Id);
4818 Set_Current_Value (Id, Empty);
4819 end if;
4820
4821 -- Deal with controlled types
4822
4823 if Has_Controlled_Component (Etype (Id))
4824 or else Is_Controlled (Etype (Id))
4825 then
4826 if not Is_Library_Level_Entity (Id) then
4827 Check_Restriction (No_Nested_Finalization, N);
4828 else
4829 Validate_Controlled_Object (Id);
4830 end if;
4831 end if;
4832
4833 if Has_Task (Etype (Id)) then
4834 Check_Restriction (No_Tasking, N);
4835
4836 -- Deal with counting max tasks
4837
4838 -- Nothing to do if inside a generic
4839
4840 if Inside_A_Generic then
4841 null;
4842
4843 -- If library level entity, then count tasks
4844
4845 elsif Is_Library_Level_Entity (Id) then
4846 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4847
4848 -- If not library level entity, then indicate we don't know max
4849 -- tasks and also check task hierarchy restriction and blocking
4850 -- operation (since starting a task is definitely blocking).
4851
4852 else
4853 Check_Restriction (Max_Tasks, N);
4854 Check_Restriction (No_Task_Hierarchy, N);
4855 Check_Potentially_Blocking_Operation (N);
4856 end if;
4857
4858 -- A rather specialized test. If we see two tasks being declared
4859 -- of the same type in the same object declaration, and the task
4860 -- has an entry with an address clause, we know that program error
4861 -- will be raised at run time since we can't have two tasks with
4862 -- entries at the same address.
4863
4864 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4865 declare
4866 E : Entity_Id;
4867
4868 begin
4869 E := First_Entity (Etype (Id));
4870 while Present (E) loop
4871 if Ekind (E) = E_Entry
4872 and then Present (Get_Attribute_Definition_Clause
4873 (E, Attribute_Address))
4874 then
4875 Error_Msg_Warn := SPARK_Mode /= On;
4876 Error_Msg_N
4877 ("more than one task with same entry address<<", N);
4878 Error_Msg_N ("\Program_Error [<<", N);
4879 Insert_Action (N,
4880 Make_Raise_Program_Error (Loc,
4881 Reason => PE_Duplicated_Entry_Address));
4882 exit;
4883 end if;
4884
4885 Next_Entity (E);
4886 end loop;
4887 end;
4888 end if;
4889 end if;
4890
4891 -- Some simple constant-propagation: if the expression is a constant
4892 -- string initialized with a literal, share the literal. This avoids
4893 -- a run-time copy.
4894
4895 if Present (E)
4896 and then Is_Entity_Name (E)
4897 and then Ekind (Entity (E)) = E_Constant
4898 and then Base_Type (Etype (E)) = Standard_String
4899 then
4900 declare
4901 Val : constant Node_Id := Constant_Value (Entity (E));
4902 begin
4903 if Present (Val) and then Nkind (Val) = N_String_Literal then
4904 Rewrite (E, New_Copy (Val));
4905 end if;
4906 end;
4907 end if;
4908
4909 -- Another optimization: if the nominal subtype is unconstrained and
4910 -- the expression is a function call that returns an unconstrained
4911 -- type, rewrite the declaration as a renaming of the result of the
4912 -- call. The exceptions below are cases where the copy is expected,
4913 -- either by the back end (Aliased case) or by the semantics, as for
4914 -- initializing controlled types or copying tags for class-wide types.
4915
4916 if Present (E)
4917 and then Nkind (E) = N_Explicit_Dereference
4918 and then Nkind (Original_Node (E)) = N_Function_Call
4919 and then not Is_Library_Level_Entity (Id)
4920 and then not Is_Constrained (Underlying_Type (T))
4921 and then not Is_Aliased (Id)
4922 and then not Is_Class_Wide_Type (T)
4923 and then not Is_Controlled (T)
4924 and then not Has_Controlled_Component (Base_Type (T))
4925 and then Expander_Active
4926 then
4927 Rewrite (N,
4928 Make_Object_Renaming_Declaration (Loc,
4929 Defining_Identifier => Id,
4930 Access_Definition => Empty,
4931 Subtype_Mark => New_Occurrence_Of
4932 (Base_Type (Etype (Id)), Loc),
4933 Name => E));
4934
4935 Set_Renamed_Object (Id, E);
4936
4937 -- Force generation of debugging information for the constant and for
4938 -- the renamed function call.
4939
4940 Set_Debug_Info_Needed (Id);
4941 Set_Debug_Info_Needed (Entity (Prefix (E)));
4942 end if;
4943
4944 if Present (Prev_Entity)
4945 and then Is_Frozen (Prev_Entity)
4946 and then not Error_Posted (Id)
4947 then
4948 Error_Msg_N ("full constant declaration appears too late", N);
4949 end if;
4950
4951 Check_Eliminated (Id);
4952
4953 -- Deal with setting In_Private_Part flag if in private part
4954
4955 if Ekind (Scope (Id)) = E_Package
4956 and then In_Private_Part (Scope (Id))
4957 then
4958 Set_In_Private_Part (Id);
4959 end if;
4960
4961 <<Leave>>
4962 -- Initialize the refined state of a variable here because this is a
4963 -- common destination for legal and illegal object declarations.
4964
4965 if Ekind (Id) = E_Variable then
4966 Set_Encapsulating_State (Id, Empty);
4967 end if;
4968
4969 if Has_Aspects (N) then
4970 Analyze_Aspect_Specifications (N, Id);
4971 end if;
4972
4973 Analyze_Dimension (N);
4974
4975 -- Verify whether the object declaration introduces an illegal hidden
4976 -- state within a package subject to a null abstract state.
4977
4978 if Ekind (Id) = E_Variable then
4979 Check_No_Hidden_State (Id);
4980 end if;
4981
4982 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4983 end Analyze_Object_Declaration;
4984
4985 ---------------------------
4986 -- Analyze_Others_Choice --
4987 ---------------------------
4988
4989 -- Nothing to do for the others choice node itself, the semantic analysis
4990 -- of the others choice will occur as part of the processing of the parent
4991
4992 procedure Analyze_Others_Choice (N : Node_Id) is
4993 pragma Warnings (Off, N);
4994 begin
4995 null;
4996 end Analyze_Others_Choice;
4997
4998 -------------------------------------------
4999 -- Analyze_Private_Extension_Declaration --
5000 -------------------------------------------
5001
5002 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
5003 Indic : constant Node_Id := Subtype_Indication (N);
5004 T : constant Entity_Id := Defining_Identifier (N);
5005 Iface : Entity_Id;
5006 Iface_Elmt : Elmt_Id;
5007 Parent_Base : Entity_Id;
5008 Parent_Type : Entity_Id;
5009
5010 begin
5011 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5012
5013 if Is_Non_Empty_List (Interface_List (N)) then
5014 declare
5015 Intf : Node_Id;
5016 T : Entity_Id;
5017
5018 begin
5019 Intf := First (Interface_List (N));
5020 while Present (Intf) loop
5021 T := Find_Type_Of_Subtype_Indic (Intf);
5022
5023 Diagnose_Interface (Intf, T);
5024 Next (Intf);
5025 end loop;
5026 end;
5027 end if;
5028
5029 Generate_Definition (T);
5030
5031 -- For other than Ada 2012, just enter the name in the current scope
5032
5033 if Ada_Version < Ada_2012 then
5034 Enter_Name (T);
5035
5036 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5037 -- case of private type that completes an incomplete type.
5038
5039 else
5040 declare
5041 Prev : Entity_Id;
5042
5043 begin
5044 Prev := Find_Type_Name (N);
5045
5046 pragma Assert (Prev = T
5047 or else (Ekind (Prev) = E_Incomplete_Type
5048 and then Present (Full_View (Prev))
5049 and then Full_View (Prev) = T));
5050 end;
5051 end if;
5052
5053 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5054 Parent_Base := Base_Type (Parent_Type);
5055
5056 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5057 Set_Ekind (T, Ekind (Parent_Type));
5058 Set_Etype (T, Any_Type);
5059 goto Leave;
5060
5061 elsif not Is_Tagged_Type (Parent_Type) then
5062 Error_Msg_N
5063 ("parent of type extension must be a tagged type ", Indic);
5064 goto Leave;
5065
5066 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5067 Error_Msg_N ("premature derivation of incomplete type", Indic);
5068 goto Leave;
5069
5070 elsif Is_Concurrent_Type (Parent_Type) then
5071 Error_Msg_N
5072 ("parent type of a private extension cannot be a synchronized "
5073 & "tagged type (RM 3.9.1 (3/1))", N);
5074
5075 Set_Etype (T, Any_Type);
5076 Set_Ekind (T, E_Limited_Private_Type);
5077 Set_Private_Dependents (T, New_Elmt_List);
5078 Set_Error_Posted (T);
5079 goto Leave;
5080 end if;
5081
5082 -- Perhaps the parent type should be changed to the class-wide type's
5083 -- specific type in this case to prevent cascading errors ???
5084
5085 if Is_Class_Wide_Type (Parent_Type) then
5086 Error_Msg_N
5087 ("parent of type extension must not be a class-wide type", Indic);
5088 goto Leave;
5089 end if;
5090
5091 if (not Is_Package_Or_Generic_Package (Current_Scope)
5092 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5093 or else In_Private_Part (Current_Scope)
5094 then
5095 Error_Msg_N ("invalid context for private extension", N);
5096 end if;
5097
5098 -- Set common attributes
5099
5100 Set_Is_Pure (T, Is_Pure (Current_Scope));
5101 Set_Scope (T, Current_Scope);
5102 Set_Ekind (T, E_Record_Type_With_Private);
5103 Init_Size_Align (T);
5104 Set_Default_SSO (T);
5105 Set_No_Reordering (T, No_Component_Reordering);
5106
5107 Set_Etype (T, Parent_Base);
5108 Propagate_Concurrent_Flags (T, Parent_Base);
5109
5110 Set_Convention (T, Convention (Parent_Type));
5111 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5112 Set_Is_First_Subtype (T);
5113 Make_Class_Wide_Type (T);
5114
5115 -- Set the SPARK mode from the current context
5116
5117 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5118 Set_SPARK_Pragma_Inherited (T);
5119
5120 if Unknown_Discriminants_Present (N) then
5121 Set_Discriminant_Constraint (T, No_Elist);
5122 end if;
5123
5124 Build_Derived_Record_Type (N, Parent_Type, T);
5125
5126 -- A private extension inherits the Default_Initial_Condition pragma
5127 -- coming from any parent type within the derivation chain.
5128
5129 if Has_DIC (Parent_Type) then
5130 Set_Has_Inherited_DIC (T);
5131 end if;
5132
5133 -- A private extension inherits any class-wide invariants coming from a
5134 -- parent type or an interface. Note that the invariant procedure of the
5135 -- parent type should not be inherited because the private extension may
5136 -- define invariants of its own.
5137
5138 if Has_Inherited_Invariants (Parent_Type)
5139 or else Has_Inheritable_Invariants (Parent_Type)
5140 then
5141 Set_Has_Inherited_Invariants (T);
5142
5143 elsif Present (Interfaces (T)) then
5144 Iface_Elmt := First_Elmt (Interfaces (T));
5145 while Present (Iface_Elmt) loop
5146 Iface := Node (Iface_Elmt);
5147
5148 if Has_Inheritable_Invariants (Iface) then
5149 Set_Has_Inherited_Invariants (T);
5150 exit;
5151 end if;
5152
5153 Next_Elmt (Iface_Elmt);
5154 end loop;
5155 end if;
5156
5157 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5158 -- synchronized formal derived type.
5159
5160 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5161 Set_Is_Limited_Record (T);
5162
5163 -- Formal derived type case
5164
5165 if Is_Generic_Type (T) then
5166
5167 -- The parent must be a tagged limited type or a synchronized
5168 -- interface.
5169
5170 if (not Is_Tagged_Type (Parent_Type)
5171 or else not Is_Limited_Type (Parent_Type))
5172 and then
5173 (not Is_Interface (Parent_Type)
5174 or else not Is_Synchronized_Interface (Parent_Type))
5175 then
5176 Error_Msg_NE
5177 ("parent type of & must be tagged limited or synchronized",
5178 N, T);
5179 end if;
5180
5181 -- The progenitors (if any) must be limited or synchronized
5182 -- interfaces.
5183
5184 if Present (Interfaces (T)) then
5185 Iface_Elmt := First_Elmt (Interfaces (T));
5186 while Present (Iface_Elmt) loop
5187 Iface := Node (Iface_Elmt);
5188
5189 if not Is_Limited_Interface (Iface)
5190 and then not Is_Synchronized_Interface (Iface)
5191 then
5192 Error_Msg_NE
5193 ("progenitor & must be limited or synchronized",
5194 N, Iface);
5195 end if;
5196
5197 Next_Elmt (Iface_Elmt);
5198 end loop;
5199 end if;
5200
5201 -- Regular derived extension, the parent must be a limited or
5202 -- synchronized interface.
5203
5204 else
5205 if not Is_Interface (Parent_Type)
5206 or else (not Is_Limited_Interface (Parent_Type)
5207 and then not Is_Synchronized_Interface (Parent_Type))
5208 then
5209 Error_Msg_NE
5210 ("parent type of & must be limited interface", N, T);
5211 end if;
5212 end if;
5213
5214 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5215 -- extension with a synchronized parent must be explicitly declared
5216 -- synchronized, because the full view will be a synchronized type.
5217 -- This must be checked before the check for limited types below,
5218 -- to ensure that types declared limited are not allowed to extend
5219 -- synchronized interfaces.
5220
5221 elsif Is_Interface (Parent_Type)
5222 and then Is_Synchronized_Interface (Parent_Type)
5223 and then not Synchronized_Present (N)
5224 then
5225 Error_Msg_NE
5226 ("private extension of& must be explicitly synchronized",
5227 N, Parent_Type);
5228
5229 elsif Limited_Present (N) then
5230 Set_Is_Limited_Record (T);
5231
5232 if not Is_Limited_Type (Parent_Type)
5233 and then
5234 (not Is_Interface (Parent_Type)
5235 or else not Is_Limited_Interface (Parent_Type))
5236 then
5237 Error_Msg_NE ("parent type& of limited extension must be limited",
5238 N, Parent_Type);
5239 end if;
5240 end if;
5241
5242 -- Remember that its parent type has a private extension. Used to warn
5243 -- on public primitives of the parent type defined after its private
5244 -- extensions (see Check_Dispatching_Operation).
5245
5246 Set_Has_Private_Extension (Parent_Type);
5247
5248 <<Leave>>
5249 if Has_Aspects (N) then
5250 Analyze_Aspect_Specifications (N, T);
5251 end if;
5252 end Analyze_Private_Extension_Declaration;
5253
5254 ---------------------------------
5255 -- Analyze_Subtype_Declaration --
5256 ---------------------------------
5257
5258 procedure Analyze_Subtype_Declaration
5259 (N : Node_Id;
5260 Skip : Boolean := False)
5261 is
5262 Id : constant Entity_Id := Defining_Identifier (N);
5263 R_Checks : Check_Result;
5264 T : Entity_Id;
5265
5266 begin
5267 Generate_Definition (Id);
5268 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5269 Init_Size_Align (Id);
5270
5271 -- The following guard condition on Enter_Name is to handle cases where
5272 -- the defining identifier has already been entered into the scope but
5273 -- the declaration as a whole needs to be analyzed.
5274
5275 -- This case in particular happens for derived enumeration types. The
5276 -- derived enumeration type is processed as an inserted enumeration type
5277 -- declaration followed by a rewritten subtype declaration. The defining
5278 -- identifier, however, is entered into the name scope very early in the
5279 -- processing of the original type declaration and therefore needs to be
5280 -- avoided here, when the created subtype declaration is analyzed. (See
5281 -- Build_Derived_Types)
5282
5283 -- This also happens when the full view of a private type is derived
5284 -- type with constraints. In this case the entity has been introduced
5285 -- in the private declaration.
5286
5287 -- Finally this happens in some complex cases when validity checks are
5288 -- enabled, where the same subtype declaration may be analyzed twice.
5289 -- This can happen if the subtype is created by the pre-analysis of
5290 -- an attribute tht gives the range of a loop statement, and the loop
5291 -- itself appears within an if_statement that will be rewritten during
5292 -- expansion.
5293
5294 if Skip
5295 or else (Present (Etype (Id))
5296 and then (Is_Private_Type (Etype (Id))
5297 or else Is_Task_Type (Etype (Id))
5298 or else Is_Rewrite_Substitution (N)))
5299 then
5300 null;
5301
5302 elsif Current_Entity (Id) = Id then
5303 null;
5304
5305 else
5306 Enter_Name (Id);
5307 end if;
5308
5309 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5310
5311 -- Class-wide equivalent types of records with unknown discriminants
5312 -- involve the generation of an itype which serves as the private view
5313 -- of a constrained record subtype. In such cases the base type of the
5314 -- current subtype we are processing is the private itype. Use the full
5315 -- of the private itype when decorating various attributes.
5316
5317 if Is_Itype (T)
5318 and then Is_Private_Type (T)
5319 and then Present (Full_View (T))
5320 then
5321 T := Full_View (T);
5322 end if;
5323
5324 -- Inherit common attributes
5325
5326 Set_Is_Volatile (Id, Is_Volatile (T));
5327 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5328 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5329 Set_Convention (Id, Convention (T));
5330
5331 -- If ancestor has predicates then so does the subtype, and in addition
5332 -- we must delay the freeze to properly arrange predicate inheritance.
5333
5334 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5335 -- in which T = ID, so the above tests and assignments do nothing???
5336
5337 if Has_Predicates (T)
5338 or else (Present (Ancestor_Subtype (T))
5339 and then Has_Predicates (Ancestor_Subtype (T)))
5340 then
5341 Set_Has_Predicates (Id);
5342 Set_Has_Delayed_Freeze (Id);
5343
5344 -- Generated subtypes inherit the predicate function from the parent
5345 -- (no aspects to examine on the generated declaration).
5346
5347 if not Comes_From_Source (N) then
5348 Set_Ekind (Id, Ekind (T));
5349
5350 if Present (Predicate_Function (Id)) then
5351 null;
5352
5353 elsif Present (Predicate_Function (T)) then
5354 Set_Predicate_Function (Id, Predicate_Function (T));
5355
5356 elsif Present (Ancestor_Subtype (T))
5357 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5358 then
5359 Set_Predicate_Function (Id,
5360 Predicate_Function (Ancestor_Subtype (T)));
5361 end if;
5362 end if;
5363 end if;
5364
5365 -- Subtype of Boolean cannot have a constraint in SPARK
5366
5367 if Is_Boolean_Type (T)
5368 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5369 then
5370 Check_SPARK_05_Restriction
5371 ("subtype of Boolean cannot have constraint", N);
5372 end if;
5373
5374 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5375 declare
5376 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5377 One_Cstr : Node_Id;
5378 Low : Node_Id;
5379 High : Node_Id;
5380
5381 begin
5382 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5383 One_Cstr := First (Constraints (Cstr));
5384 while Present (One_Cstr) loop
5385
5386 -- Index or discriminant constraint in SPARK must be a
5387 -- subtype mark.
5388
5389 if not
5390 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5391 then
5392 Check_SPARK_05_Restriction
5393 ("subtype mark required", One_Cstr);
5394
5395 -- String subtype must have a lower bound of 1 in SPARK.
5396 -- Note that we do not need to test for the non-static case
5397 -- here, since that was already taken care of in
5398 -- Process_Range_Expr_In_Decl.
5399
5400 elsif Base_Type (T) = Standard_String then
5401 Get_Index_Bounds (One_Cstr, Low, High);
5402
5403 if Is_OK_Static_Expression (Low)
5404 and then Expr_Value (Low) /= 1
5405 then
5406 Check_SPARK_05_Restriction
5407 ("String subtype must have lower bound of 1", N);
5408 end if;
5409 end if;
5410
5411 Next (One_Cstr);
5412 end loop;
5413 end if;
5414 end;
5415 end if;
5416
5417 -- In the case where there is no constraint given in the subtype
5418 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5419 -- semantic attributes must be established here.
5420
5421 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5422 Set_Etype (Id, Base_Type (T));
5423
5424 -- Subtype of unconstrained array without constraint is not allowed
5425 -- in SPARK.
5426
5427 if Is_Array_Type (T) and then not Is_Constrained (T) then
5428 Check_SPARK_05_Restriction
5429 ("subtype of unconstrained array must have constraint", N);
5430 end if;
5431
5432 case Ekind (T) is
5433 when Array_Kind =>
5434 Set_Ekind (Id, E_Array_Subtype);
5435 Copy_Array_Subtype_Attributes (Id, T);
5436
5437 when Decimal_Fixed_Point_Kind =>
5438 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5439 Set_Digits_Value (Id, Digits_Value (T));
5440 Set_Delta_Value (Id, Delta_Value (T));
5441 Set_Scale_Value (Id, Scale_Value (T));
5442 Set_Small_Value (Id, Small_Value (T));
5443 Set_Scalar_Range (Id, Scalar_Range (T));
5444 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5445 Set_Is_Constrained (Id, Is_Constrained (T));
5446 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5447 Set_RM_Size (Id, RM_Size (T));
5448
5449 when Enumeration_Kind =>
5450 Set_Ekind (Id, E_Enumeration_Subtype);
5451 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5452 Set_Scalar_Range (Id, Scalar_Range (T));
5453 Set_Is_Character_Type (Id, Is_Character_Type (T));
5454 Set_Is_Constrained (Id, Is_Constrained (T));
5455 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5456 Set_RM_Size (Id, RM_Size (T));
5457
5458 when Ordinary_Fixed_Point_Kind =>
5459 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5460 Set_Scalar_Range (Id, Scalar_Range (T));
5461 Set_Small_Value (Id, Small_Value (T));
5462 Set_Delta_Value (Id, Delta_Value (T));
5463 Set_Is_Constrained (Id, Is_Constrained (T));
5464 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5465 Set_RM_Size (Id, RM_Size (T));
5466
5467 when Float_Kind =>
5468 Set_Ekind (Id, E_Floating_Point_Subtype);
5469 Set_Scalar_Range (Id, Scalar_Range (T));
5470 Set_Digits_Value (Id, Digits_Value (T));
5471 Set_Is_Constrained (Id, Is_Constrained (T));
5472
5473 -- If the floating point type has dimensions, these will be
5474 -- inherited subsequently when Analyze_Dimensions is called.
5475
5476 when Signed_Integer_Kind =>
5477 Set_Ekind (Id, E_Signed_Integer_Subtype);
5478 Set_Scalar_Range (Id, Scalar_Range (T));
5479 Set_Is_Constrained (Id, Is_Constrained (T));
5480 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5481 Set_RM_Size (Id, RM_Size (T));
5482
5483 when Modular_Integer_Kind =>
5484 Set_Ekind (Id, E_Modular_Integer_Subtype);
5485 Set_Scalar_Range (Id, Scalar_Range (T));
5486 Set_Is_Constrained (Id, Is_Constrained (T));
5487 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5488 Set_RM_Size (Id, RM_Size (T));
5489
5490 when Class_Wide_Kind =>
5491 Set_Ekind (Id, E_Class_Wide_Subtype);
5492 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5493 Set_Cloned_Subtype (Id, T);
5494 Set_Is_Tagged_Type (Id, True);
5495 Set_Has_Unknown_Discriminants
5496 (Id, True);
5497 Set_No_Tagged_Streams_Pragma
5498 (Id, No_Tagged_Streams_Pragma (T));
5499
5500 if Ekind (T) = E_Class_Wide_Subtype then
5501 Set_Equivalent_Type (Id, Equivalent_Type (T));
5502 end if;
5503
5504 when E_Record_Subtype
5505 | E_Record_Type
5506 =>
5507 Set_Ekind (Id, E_Record_Subtype);
5508
5509 if Ekind (T) = E_Record_Subtype
5510 and then Present (Cloned_Subtype (T))
5511 then
5512 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5513 else
5514 Set_Cloned_Subtype (Id, T);
5515 end if;
5516
5517 Set_First_Entity (Id, First_Entity (T));
5518 Set_Last_Entity (Id, Last_Entity (T));
5519 Set_Has_Discriminants (Id, Has_Discriminants (T));
5520 Set_Is_Constrained (Id, Is_Constrained (T));
5521 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5522 Set_Has_Implicit_Dereference
5523 (Id, Has_Implicit_Dereference (T));
5524 Set_Has_Unknown_Discriminants
5525 (Id, Has_Unknown_Discriminants (T));
5526
5527 if Has_Discriminants (T) then
5528 Set_Discriminant_Constraint
5529 (Id, Discriminant_Constraint (T));
5530 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5531
5532 elsif Has_Unknown_Discriminants (Id) then
5533 Set_Discriminant_Constraint (Id, No_Elist);
5534 end if;
5535
5536 if Is_Tagged_Type (T) then
5537 Set_Is_Tagged_Type (Id, True);
5538 Set_No_Tagged_Streams_Pragma
5539 (Id, No_Tagged_Streams_Pragma (T));
5540 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5541 Set_Direct_Primitive_Operations
5542 (Id, Direct_Primitive_Operations (T));
5543 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5544
5545 if Is_Interface (T) then
5546 Set_Is_Interface (Id);
5547 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5548 end if;
5549 end if;
5550
5551 when Private_Kind =>
5552 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5553 Set_Has_Discriminants (Id, Has_Discriminants (T));
5554 Set_Is_Constrained (Id, Is_Constrained (T));
5555 Set_First_Entity (Id, First_Entity (T));
5556 Set_Last_Entity (Id, Last_Entity (T));
5557 Set_Private_Dependents (Id, New_Elmt_List);
5558 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5559 Set_Has_Implicit_Dereference
5560 (Id, Has_Implicit_Dereference (T));
5561 Set_Has_Unknown_Discriminants
5562 (Id, Has_Unknown_Discriminants (T));
5563 Set_Known_To_Have_Preelab_Init
5564 (Id, Known_To_Have_Preelab_Init (T));
5565
5566 if Is_Tagged_Type (T) then
5567 Set_Is_Tagged_Type (Id);
5568 Set_No_Tagged_Streams_Pragma (Id,
5569 No_Tagged_Streams_Pragma (T));
5570 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5571 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5572 Set_Direct_Primitive_Operations (Id,
5573 Direct_Primitive_Operations (T));
5574 end if;
5575
5576 -- In general the attributes of the subtype of a private type
5577 -- are the attributes of the partial view of parent. However,
5578 -- the full view may be a discriminated type, and the subtype
5579 -- must share the discriminant constraint to generate correct
5580 -- calls to initialization procedures.
5581
5582 if Has_Discriminants (T) then
5583 Set_Discriminant_Constraint
5584 (Id, Discriminant_Constraint (T));
5585 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5586
5587 elsif Present (Full_View (T))
5588 and then Has_Discriminants (Full_View (T))
5589 then
5590 Set_Discriminant_Constraint
5591 (Id, Discriminant_Constraint (Full_View (T)));
5592 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5593
5594 -- This would seem semantically correct, but apparently
5595 -- generates spurious errors about missing components ???
5596
5597 -- Set_Has_Discriminants (Id);
5598 end if;
5599
5600 Prepare_Private_Subtype_Completion (Id, N);
5601
5602 -- If this is the subtype of a constrained private type with
5603 -- discriminants that has got a full view and we also have
5604 -- built a completion just above, show that the completion
5605 -- is a clone of the full view to the back-end.
5606
5607 if Has_Discriminants (T)
5608 and then not Has_Unknown_Discriminants (T)
5609 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5610 and then Present (Full_View (T))
5611 and then Present (Full_View (Id))
5612 then
5613 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5614 end if;
5615
5616 when Access_Kind =>
5617 Set_Ekind (Id, E_Access_Subtype);
5618 Set_Is_Constrained (Id, Is_Constrained (T));
5619 Set_Is_Access_Constant
5620 (Id, Is_Access_Constant (T));
5621 Set_Directly_Designated_Type
5622 (Id, Designated_Type (T));
5623 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5624
5625 -- A Pure library_item must not contain the declaration of a
5626 -- named access type, except within a subprogram, generic
5627 -- subprogram, task unit, or protected unit, or if it has
5628 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5629
5630 if Comes_From_Source (Id)
5631 and then In_Pure_Unit
5632 and then not In_Subprogram_Task_Protected_Unit
5633 and then not No_Pool_Assigned (Id)
5634 then
5635 Error_Msg_N
5636 ("named access types not allowed in pure unit", N);
5637 end if;
5638
5639 when Concurrent_Kind =>
5640 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5641 Set_Corresponding_Record_Type (Id,
5642 Corresponding_Record_Type (T));
5643 Set_First_Entity (Id, First_Entity (T));
5644 Set_First_Private_Entity (Id, First_Private_Entity (T));
5645 Set_Has_Discriminants (Id, Has_Discriminants (T));
5646 Set_Is_Constrained (Id, Is_Constrained (T));
5647 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5648 Set_Last_Entity (Id, Last_Entity (T));
5649
5650 if Is_Tagged_Type (T) then
5651 Set_No_Tagged_Streams_Pragma
5652 (Id, No_Tagged_Streams_Pragma (T));
5653 end if;
5654
5655 if Has_Discriminants (T) then
5656 Set_Discriminant_Constraint
5657 (Id, Discriminant_Constraint (T));
5658 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5659 end if;
5660
5661 when Incomplete_Kind =>
5662 if Ada_Version >= Ada_2005 then
5663
5664 -- In Ada 2005 an incomplete type can be explicitly tagged:
5665 -- propagate indication. Note that we also have to include
5666 -- subtypes for Ada 2012 extended use of incomplete types.
5667
5668 Set_Ekind (Id, E_Incomplete_Subtype);
5669 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5670 Set_Private_Dependents (Id, New_Elmt_List);
5671
5672 if Is_Tagged_Type (Id) then
5673 Set_No_Tagged_Streams_Pragma
5674 (Id, No_Tagged_Streams_Pragma (T));
5675 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5676 end if;
5677
5678 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5679 -- incomplete type visible through a limited with clause.
5680
5681 if From_Limited_With (T)
5682 and then Present (Non_Limited_View (T))
5683 then
5684 Set_From_Limited_With (Id);
5685 Set_Non_Limited_View (Id, Non_Limited_View (T));
5686
5687 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5688 -- to the private dependents of the original incomplete
5689 -- type for future transformation.
5690
5691 else
5692 Append_Elmt (Id, Private_Dependents (T));
5693 end if;
5694
5695 -- If the subtype name denotes an incomplete type an error
5696 -- was already reported by Process_Subtype.
5697
5698 else
5699 Set_Etype (Id, Any_Type);
5700 end if;
5701
5702 when others =>
5703 raise Program_Error;
5704 end case;
5705
5706 -- If there is no constraint in the subtype indication, the
5707 -- declared entity inherits predicates from the parent.
5708
5709 Inherit_Predicate_Flags (Id, T);
5710 end if;
5711
5712 if Etype (Id) = Any_Type then
5713 goto Leave;
5714 end if;
5715
5716 -- Some common processing on all types
5717
5718 Set_Size_Info (Id, T);
5719 Set_First_Rep_Item (Id, First_Rep_Item (T));
5720
5721 -- If the parent type is a generic actual, so is the subtype. This may
5722 -- happen in a nested instance. Why Comes_From_Source test???
5723
5724 if not Comes_From_Source (N) then
5725 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5726 end if;
5727
5728 -- If this is a subtype declaration for an actual in an instance,
5729 -- inherit static and dynamic predicates if any.
5730
5731 -- If declaration has no aspect specifications, inherit predicate
5732 -- info as well. Unclear how to handle the case of both specified
5733 -- and inherited predicates ??? Other inherited aspects, such as
5734 -- invariants, should be OK, but the combination with later pragmas
5735 -- may also require special merging.
5736
5737 if Has_Predicates (T)
5738 and then Present (Predicate_Function (T))
5739 and then
5740 ((In_Instance and then not Comes_From_Source (N))
5741 or else No (Aspect_Specifications (N)))
5742 then
5743 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5744
5745 if Has_Static_Predicate (T) then
5746 Set_Has_Static_Predicate (Id);
5747 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5748 end if;
5749 end if;
5750
5751 -- Remaining processing depends on characteristics of base type
5752
5753 T := Etype (Id);
5754
5755 Set_Is_Immediately_Visible (Id, True);
5756 Set_Depends_On_Private (Id, Has_Private_Component (T));
5757 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5758
5759 if Is_Interface (T) then
5760 Set_Is_Interface (Id);
5761 end if;
5762
5763 if Present (Generic_Parent_Type (N))
5764 and then
5765 (Nkind (Parent (Generic_Parent_Type (N))) /=
5766 N_Formal_Type_Declaration
5767 or else Nkind (Formal_Type_Definition
5768 (Parent (Generic_Parent_Type (N)))) /=
5769 N_Formal_Private_Type_Definition)
5770 then
5771 if Is_Tagged_Type (Id) then
5772
5773 -- If this is a generic actual subtype for a synchronized type,
5774 -- the primitive operations are those of the corresponding record
5775 -- for which there is a separate subtype declaration.
5776
5777 if Is_Concurrent_Type (Id) then
5778 null;
5779 elsif Is_Class_Wide_Type (Id) then
5780 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5781 else
5782 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5783 end if;
5784
5785 elsif Scope (Etype (Id)) /= Standard_Standard then
5786 Derive_Subprograms (Generic_Parent_Type (N), Id);
5787 end if;
5788 end if;
5789
5790 if Is_Private_Type (T) and then Present (Full_View (T)) then
5791 Conditional_Delay (Id, Full_View (T));
5792
5793 -- The subtypes of components or subcomponents of protected types
5794 -- do not need freeze nodes, which would otherwise appear in the
5795 -- wrong scope (before the freeze node for the protected type). The
5796 -- proper subtypes are those of the subcomponents of the corresponding
5797 -- record.
5798
5799 elsif Ekind (Scope (Id)) /= E_Protected_Type
5800 and then Present (Scope (Scope (Id))) -- error defense
5801 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5802 then
5803 Conditional_Delay (Id, T);
5804 end if;
5805
5806 -- If we have a subtype of an incomplete type whose full type is a
5807 -- derived numeric type, we need to have a freeze node for the subtype.
5808 -- Otherwise gigi will complain while computing the (static) bounds of
5809 -- the subtype.
5810
5811 if Is_Itype (T)
5812 and then Is_Elementary_Type (Id)
5813 and then Etype (Id) /= Id
5814 then
5815 declare
5816 Partial : constant Entity_Id :=
5817 Incomplete_Or_Partial_View (First_Subtype (Id));
5818 begin
5819 if Present (Partial)
5820 and then Ekind (Partial) = E_Incomplete_Type
5821 then
5822 Set_Has_Delayed_Freeze (Id);
5823 end if;
5824 end;
5825 end if;
5826
5827 -- Check that Constraint_Error is raised for a scalar subtype indication
5828 -- when the lower or upper bound of a non-null range lies outside the
5829 -- range of the type mark.
5830
5831 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5832 if Is_Scalar_Type (Etype (Id))
5833 and then Scalar_Range (Id) /=
5834 Scalar_Range
5835 (Etype (Subtype_Mark (Subtype_Indication (N))))
5836 then
5837 Apply_Range_Check
5838 (Scalar_Range (Id),
5839 Etype (Subtype_Mark (Subtype_Indication (N))));
5840
5841 -- In the array case, check compatibility for each index
5842
5843 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5844 then
5845 -- This really should be a subprogram that finds the indications
5846 -- to check???
5847
5848 declare
5849 Subt_Index : Node_Id := First_Index (Id);
5850 Target_Index : Node_Id :=
5851 First_Index (Etype
5852 (Subtype_Mark (Subtype_Indication (N))));
5853 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5854
5855 begin
5856 while Present (Subt_Index) loop
5857 if ((Nkind (Subt_Index) = N_Identifier
5858 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5859 or else Nkind (Subt_Index) = N_Subtype_Indication)
5860 and then
5861 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5862 then
5863 declare
5864 Target_Typ : constant Entity_Id :=
5865 Etype (Target_Index);
5866 begin
5867 R_Checks :=
5868 Get_Range_Checks
5869 (Scalar_Range (Etype (Subt_Index)),
5870 Target_Typ,
5871 Etype (Subt_Index),
5872 Defining_Identifier (N));
5873
5874 -- Reset Has_Dynamic_Range_Check on the subtype to
5875 -- prevent elision of the index check due to a dynamic
5876 -- check generated for a preceding index (needed since
5877 -- Insert_Range_Checks tries to avoid generating
5878 -- redundant checks on a given declaration).
5879
5880 Set_Has_Dynamic_Range_Check (N, False);
5881
5882 Insert_Range_Checks
5883 (R_Checks,
5884 N,
5885 Target_Typ,
5886 Sloc (Defining_Identifier (N)));
5887
5888 -- Record whether this index involved a dynamic check
5889
5890 Has_Dyn_Chk :=
5891 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5892 end;
5893 end if;
5894
5895 Next_Index (Subt_Index);
5896 Next_Index (Target_Index);
5897 end loop;
5898
5899 -- Finally, mark whether the subtype involves dynamic checks
5900
5901 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5902 end;
5903 end if;
5904 end if;
5905
5906 Set_Optimize_Alignment_Flags (Id);
5907 Check_Eliminated (Id);
5908
5909 <<Leave>>
5910 if Has_Aspects (N) then
5911 Analyze_Aspect_Specifications (N, Id);
5912 end if;
5913
5914 Analyze_Dimension (N);
5915
5916 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5917 -- indications on composite types where the constraints are dynamic.
5918 -- Note that object declarations and aggregates generate implicit
5919 -- subtype declarations, which this covers. One special case is that the
5920 -- implicitly generated "=" for discriminated types includes an
5921 -- offending subtype declaration, which is harmless, so we ignore it
5922 -- here.
5923
5924 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5925 declare
5926 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5927 begin
5928 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5929 and then not (Is_Internal (Id)
5930 and then Is_TSS (Scope (Id),
5931 TSS_Composite_Equality))
5932 and then not Within_Init_Proc
5933 and then not All_Composite_Constraints_Static (Cstr)
5934 then
5935 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5936 end if;
5937 end;
5938 end if;
5939 end Analyze_Subtype_Declaration;
5940
5941 --------------------------------
5942 -- Analyze_Subtype_Indication --
5943 --------------------------------
5944
5945 procedure Analyze_Subtype_Indication (N : Node_Id) is
5946 T : constant Entity_Id := Subtype_Mark (N);
5947 R : constant Node_Id := Range_Expression (Constraint (N));
5948
5949 begin
5950 Analyze (T);
5951
5952 if R /= Error then
5953 Analyze (R);
5954 Set_Etype (N, Etype (R));
5955 Resolve (R, Entity (T));
5956 else
5957 Set_Error_Posted (R);
5958 Set_Error_Posted (T);
5959 end if;
5960 end Analyze_Subtype_Indication;
5961
5962 --------------------------
5963 -- Analyze_Variant_Part --
5964 --------------------------
5965
5966 procedure Analyze_Variant_Part (N : Node_Id) is
5967 Discr_Name : Node_Id;
5968 Discr_Type : Entity_Id;
5969
5970 procedure Process_Variant (A : Node_Id);
5971 -- Analyze declarations for a single variant
5972
5973 package Analyze_Variant_Choices is
5974 new Generic_Analyze_Choices (Process_Variant);
5975 use Analyze_Variant_Choices;
5976
5977 ---------------------
5978 -- Process_Variant --
5979 ---------------------
5980
5981 procedure Process_Variant (A : Node_Id) is
5982 CL : constant Node_Id := Component_List (A);
5983 begin
5984 if not Null_Present (CL) then
5985 Analyze_Declarations (Component_Items (CL));
5986
5987 if Present (Variant_Part (CL)) then
5988 Analyze (Variant_Part (CL));
5989 end if;
5990 end if;
5991 end Process_Variant;
5992
5993 -- Start of processing for Analyze_Variant_Part
5994
5995 begin
5996 Discr_Name := Name (N);
5997 Analyze (Discr_Name);
5998
5999 -- If Discr_Name bad, get out (prevent cascaded errors)
6000
6001 if Etype (Discr_Name) = Any_Type then
6002 return;
6003 end if;
6004
6005 -- Check invalid discriminant in variant part
6006
6007 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6008 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6009 end if;
6010
6011 Discr_Type := Etype (Entity (Discr_Name));
6012
6013 if not Is_Discrete_Type (Discr_Type) then
6014 Error_Msg_N
6015 ("discriminant in a variant part must be of a discrete type",
6016 Name (N));
6017 return;
6018 end if;
6019
6020 -- Now analyze the choices, which also analyzes the declarations that
6021 -- are associated with each choice.
6022
6023 Analyze_Choices (Variants (N), Discr_Type);
6024
6025 -- Note: we used to instantiate and call Check_Choices here to check
6026 -- that the choices covered the discriminant, but it's too early to do
6027 -- that because of statically predicated subtypes, whose analysis may
6028 -- be deferred to their freeze point which may be as late as the freeze
6029 -- point of the containing record. So this call is now to be found in
6030 -- Freeze_Record_Declaration.
6031
6032 end Analyze_Variant_Part;
6033
6034 ----------------------------
6035 -- Array_Type_Declaration --
6036 ----------------------------
6037
6038 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6039 Component_Def : constant Node_Id := Component_Definition (Def);
6040 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6041 P : constant Node_Id := Parent (Def);
6042 Element_Type : Entity_Id;
6043 Implicit_Base : Entity_Id;
6044 Index : Node_Id;
6045 Nb_Index : Nat;
6046 Priv : Entity_Id;
6047 Related_Id : Entity_Id := Empty;
6048
6049 begin
6050 if Nkind (Def) = N_Constrained_Array_Definition then
6051 Index := First (Discrete_Subtype_Definitions (Def));
6052 else
6053 Index := First (Subtype_Marks (Def));
6054 end if;
6055
6056 -- Find proper names for the implicit types which may be public. In case
6057 -- of anonymous arrays we use the name of the first object of that type
6058 -- as prefix.
6059
6060 if No (T) then
6061 Related_Id := Defining_Identifier (P);
6062 else
6063 Related_Id := T;
6064 end if;
6065
6066 Nb_Index := 1;
6067 while Present (Index) loop
6068 Analyze (Index);
6069
6070 -- Test for odd case of trying to index a type by the type itself
6071
6072 if Is_Entity_Name (Index) and then Entity (Index) = T then
6073 Error_Msg_N ("type& cannot be indexed by itself", Index);
6074 Set_Entity (Index, Standard_Boolean);
6075 Set_Etype (Index, Standard_Boolean);
6076 end if;
6077
6078 -- Check SPARK restriction requiring a subtype mark
6079
6080 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6081 Check_SPARK_05_Restriction ("subtype mark required", Index);
6082 end if;
6083
6084 -- Add a subtype declaration for each index of private array type
6085 -- declaration whose etype is also private. For example:
6086
6087 -- package Pkg is
6088 -- type Index is private;
6089 -- private
6090 -- type Table is array (Index) of ...
6091 -- end;
6092
6093 -- This is currently required by the expander for the internally
6094 -- generated equality subprogram of records with variant parts in
6095 -- which the etype of some component is such private type.
6096
6097 if Ekind (Current_Scope) = E_Package
6098 and then In_Private_Part (Current_Scope)
6099 and then Has_Private_Declaration (Etype (Index))
6100 then
6101 declare
6102 Loc : constant Source_Ptr := Sloc (Def);
6103 Decl : Entity_Id;
6104 New_E : Entity_Id;
6105
6106 begin
6107 New_E := Make_Temporary (Loc, 'T');
6108 Set_Is_Internal (New_E);
6109
6110 Decl :=
6111 Make_Subtype_Declaration (Loc,
6112 Defining_Identifier => New_E,
6113 Subtype_Indication =>
6114 New_Occurrence_Of (Etype (Index), Loc));
6115
6116 Insert_Before (Parent (Def), Decl);
6117 Analyze (Decl);
6118 Set_Etype (Index, New_E);
6119
6120 -- If the index is a range or a subtype indication it carries
6121 -- no entity. Example:
6122
6123 -- package Pkg is
6124 -- type T is private;
6125 -- private
6126 -- type T is new Natural;
6127 -- Table : array (T(1) .. T(10)) of Boolean;
6128 -- end Pkg;
6129
6130 -- Otherwise the type of the reference is its entity.
6131
6132 if Is_Entity_Name (Index) then
6133 Set_Entity (Index, New_E);
6134 end if;
6135 end;
6136 end if;
6137
6138 Make_Index (Index, P, Related_Id, Nb_Index);
6139
6140 -- Check error of subtype with predicate for index type
6141
6142 Bad_Predicated_Subtype_Use
6143 ("subtype& has predicate, not allowed as index subtype",
6144 Index, Etype (Index));
6145
6146 -- Move to next index
6147
6148 Next_Index (Index);
6149 Nb_Index := Nb_Index + 1;
6150 end loop;
6151
6152 -- Process subtype indication if one is present
6153
6154 if Present (Component_Typ) then
6155 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6156
6157 Set_Etype (Component_Typ, Element_Type);
6158
6159 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6160 Check_SPARK_05_Restriction
6161 ("subtype mark required", Component_Typ);
6162 end if;
6163
6164 -- Ada 2005 (AI-230): Access Definition case
6165
6166 else pragma Assert (Present (Access_Definition (Component_Def)));
6167
6168 -- Indicate that the anonymous access type is created by the
6169 -- array type declaration.
6170
6171 Element_Type := Access_Definition
6172 (Related_Nod => P,
6173 N => Access_Definition (Component_Def));
6174 Set_Is_Local_Anonymous_Access (Element_Type);
6175
6176 -- Propagate the parent. This field is needed if we have to generate
6177 -- the master_id associated with an anonymous access to task type
6178 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6179
6180 Set_Parent (Element_Type, Parent (T));
6181
6182 -- Ada 2005 (AI-230): In case of components that are anonymous access
6183 -- types the level of accessibility depends on the enclosing type
6184 -- declaration
6185
6186 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6187
6188 -- Ada 2005 (AI-254)
6189
6190 declare
6191 CD : constant Node_Id :=
6192 Access_To_Subprogram_Definition
6193 (Access_Definition (Component_Def));
6194 begin
6195 if Present (CD) and then Protected_Present (CD) then
6196 Element_Type :=
6197 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6198 end if;
6199 end;
6200 end if;
6201
6202 -- Constrained array case
6203
6204 if No (T) then
6205 T := Create_Itype (E_Void, P, Related_Id, 'T');
6206 end if;
6207
6208 if Nkind (Def) = N_Constrained_Array_Definition then
6209
6210 -- Establish Implicit_Base as unconstrained base type
6211
6212 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6213
6214 Set_Etype (Implicit_Base, Implicit_Base);
6215 Set_Scope (Implicit_Base, Current_Scope);
6216 Set_Has_Delayed_Freeze (Implicit_Base);
6217 Set_Default_SSO (Implicit_Base);
6218
6219 -- The constrained array type is a subtype of the unconstrained one
6220
6221 Set_Ekind (T, E_Array_Subtype);
6222 Init_Size_Align (T);
6223 Set_Etype (T, Implicit_Base);
6224 Set_Scope (T, Current_Scope);
6225 Set_Is_Constrained (T);
6226 Set_First_Index (T,
6227 First (Discrete_Subtype_Definitions (Def)));
6228 Set_Has_Delayed_Freeze (T);
6229
6230 -- Complete setup of implicit base type
6231
6232 Set_Component_Size (Implicit_Base, Uint_0);
6233 Set_Component_Type (Implicit_Base, Element_Type);
6234 Set_Finalize_Storage_Only
6235 (Implicit_Base,
6236 Finalize_Storage_Only (Element_Type));
6237 Set_First_Index (Implicit_Base, First_Index (T));
6238 Set_Has_Controlled_Component
6239 (Implicit_Base,
6240 Has_Controlled_Component (Element_Type)
6241 or else Is_Controlled (Element_Type));
6242 Set_Packed_Array_Impl_Type
6243 (Implicit_Base, Empty);
6244
6245 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6246
6247 -- Unconstrained array case
6248
6249 else
6250 Set_Ekind (T, E_Array_Type);
6251 Init_Size_Align (T);
6252 Set_Etype (T, T);
6253 Set_Scope (T, Current_Scope);
6254 Set_Component_Size (T, Uint_0);
6255 Set_Is_Constrained (T, False);
6256 Set_First_Index (T, First (Subtype_Marks (Def)));
6257 Set_Has_Delayed_Freeze (T, True);
6258 Propagate_Concurrent_Flags (T, Element_Type);
6259 Set_Has_Controlled_Component (T, Has_Controlled_Component
6260 (Element_Type)
6261 or else
6262 Is_Controlled (Element_Type));
6263 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6264 (Element_Type));
6265 Set_Default_SSO (T);
6266 end if;
6267
6268 -- Common attributes for both cases
6269
6270 Set_Component_Type (Base_Type (T), Element_Type);
6271 Set_Packed_Array_Impl_Type (T, Empty);
6272
6273 if Aliased_Present (Component_Definition (Def)) then
6274 Check_SPARK_05_Restriction
6275 ("aliased is not allowed", Component_Definition (Def));
6276 Set_Has_Aliased_Components (Etype (T));
6277 end if;
6278
6279 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6280 -- array type to ensure that objects of this type are initialized.
6281
6282 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6283 Set_Can_Never_Be_Null (T);
6284
6285 if Null_Exclusion_Present (Component_Definition (Def))
6286
6287 -- No need to check itypes because in their case this check was
6288 -- done at their point of creation
6289
6290 and then not Is_Itype (Element_Type)
6291 then
6292 Error_Msg_N
6293 ("`NOT NULL` not allowed (null already excluded)",
6294 Subtype_Indication (Component_Definition (Def)));
6295 end if;
6296 end if;
6297
6298 Priv := Private_Component (Element_Type);
6299
6300 if Present (Priv) then
6301
6302 -- Check for circular definitions
6303
6304 if Priv = Any_Type then
6305 Set_Component_Type (Etype (T), Any_Type);
6306
6307 -- There is a gap in the visibility of operations on the composite
6308 -- type only if the component type is defined in a different scope.
6309
6310 elsif Scope (Priv) = Current_Scope then
6311 null;
6312
6313 elsif Is_Limited_Type (Priv) then
6314 Set_Is_Limited_Composite (Etype (T));
6315 Set_Is_Limited_Composite (T);
6316 else
6317 Set_Is_Private_Composite (Etype (T));
6318 Set_Is_Private_Composite (T);
6319 end if;
6320 end if;
6321
6322 -- A syntax error in the declaration itself may lead to an empty index
6323 -- list, in which case do a minimal patch.
6324
6325 if No (First_Index (T)) then
6326 Error_Msg_N ("missing index definition in array type declaration", T);
6327
6328 declare
6329 Indexes : constant List_Id :=
6330 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6331 begin
6332 Set_Discrete_Subtype_Definitions (Def, Indexes);
6333 Set_First_Index (T, First (Indexes));
6334 return;
6335 end;
6336 end if;
6337
6338 -- Create a concatenation operator for the new type. Internal array
6339 -- types created for packed entities do not need such, they are
6340 -- compatible with the user-defined type.
6341
6342 if Number_Dimensions (T) = 1
6343 and then not Is_Packed_Array_Impl_Type (T)
6344 then
6345 New_Concatenation_Op (T);
6346 end if;
6347
6348 -- In the case of an unconstrained array the parser has already verified
6349 -- that all the indexes are unconstrained but we still need to make sure
6350 -- that the element type is constrained.
6351
6352 if not Is_Definite_Subtype (Element_Type) then
6353 Error_Msg_N
6354 ("unconstrained element type in array declaration",
6355 Subtype_Indication (Component_Def));
6356
6357 elsif Is_Abstract_Type (Element_Type) then
6358 Error_Msg_N
6359 ("the type of a component cannot be abstract",
6360 Subtype_Indication (Component_Def));
6361 end if;
6362
6363 -- There may be an invariant declared for the component type, but
6364 -- the construction of the component invariant checking procedure
6365 -- takes place during expansion.
6366 end Array_Type_Declaration;
6367
6368 ------------------------------------------------------
6369 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6370 ------------------------------------------------------
6371
6372 function Replace_Anonymous_Access_To_Protected_Subprogram
6373 (N : Node_Id) return Entity_Id
6374 is
6375 Loc : constant Source_Ptr := Sloc (N);
6376
6377 Curr_Scope : constant Scope_Stack_Entry :=
6378 Scope_Stack.Table (Scope_Stack.Last);
6379
6380 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6381
6382 Acc : Node_Id;
6383 -- Access definition in declaration
6384
6385 Comp : Node_Id;
6386 -- Object definition or formal definition with an access definition
6387
6388 Decl : Node_Id;
6389 -- Declaration of anonymous access to subprogram type
6390
6391 Spec : Node_Id;
6392 -- Original specification in access to subprogram
6393
6394 P : Node_Id;
6395
6396 begin
6397 Set_Is_Internal (Anon);
6398
6399 case Nkind (N) is
6400 when N_Constrained_Array_Definition
6401 | N_Component_Declaration
6402 | N_Unconstrained_Array_Definition
6403 =>
6404 Comp := Component_Definition (N);
6405 Acc := Access_Definition (Comp);
6406
6407 when N_Discriminant_Specification =>
6408 Comp := Discriminant_Type (N);
6409 Acc := Comp;
6410
6411 when N_Parameter_Specification =>
6412 Comp := Parameter_Type (N);
6413 Acc := Comp;
6414
6415 when N_Access_Function_Definition =>
6416 Comp := Result_Definition (N);
6417 Acc := Comp;
6418
6419 when N_Object_Declaration =>
6420 Comp := Object_Definition (N);
6421 Acc := Comp;
6422
6423 when N_Function_Specification =>
6424 Comp := Result_Definition (N);
6425 Acc := Comp;
6426
6427 when others =>
6428 raise Program_Error;
6429 end case;
6430
6431 Spec := Access_To_Subprogram_Definition (Acc);
6432
6433 Decl :=
6434 Make_Full_Type_Declaration (Loc,
6435 Defining_Identifier => Anon,
6436 Type_Definition => Copy_Separate_Tree (Spec));
6437
6438 Mark_Rewrite_Insertion (Decl);
6439
6440 -- In ASIS mode, analyze the profile on the original node, because
6441 -- the separate copy does not provide enough links to recover the
6442 -- original tree. Analysis is limited to type annotations, within
6443 -- a temporary scope that serves as an anonymous subprogram to collect
6444 -- otherwise useless temporaries and itypes.
6445
6446 if ASIS_Mode then
6447 declare
6448 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6449
6450 begin
6451 if Nkind (Spec) = N_Access_Function_Definition then
6452 Set_Ekind (Typ, E_Function);
6453 else
6454 Set_Ekind (Typ, E_Procedure);
6455 end if;
6456
6457 Set_Parent (Typ, N);
6458 Set_Scope (Typ, Current_Scope);
6459 Push_Scope (Typ);
6460
6461 -- Nothing to do if procedure is parameterless
6462
6463 if Present (Parameter_Specifications (Spec)) then
6464 Process_Formals (Parameter_Specifications (Spec), Spec);
6465 end if;
6466
6467 if Nkind (Spec) = N_Access_Function_Definition then
6468 declare
6469 Def : constant Node_Id := Result_Definition (Spec);
6470
6471 begin
6472 -- The result might itself be an anonymous access type, so
6473 -- have to recurse.
6474
6475 if Nkind (Def) = N_Access_Definition then
6476 if Present (Access_To_Subprogram_Definition (Def)) then
6477 Set_Etype
6478 (Def,
6479 Replace_Anonymous_Access_To_Protected_Subprogram
6480 (Spec));
6481 else
6482 Find_Type (Subtype_Mark (Def));
6483 end if;
6484
6485 else
6486 Find_Type (Def);
6487 end if;
6488 end;
6489 end if;
6490
6491 End_Scope;
6492 end;
6493 end if;
6494
6495 -- Insert the new declaration in the nearest enclosing scope. If the
6496 -- parent is a body and N is its return type, the declaration belongs
6497 -- in the enclosing scope. Likewise if N is the type of a parameter.
6498
6499 P := Parent (N);
6500
6501 if Nkind (N) = N_Function_Specification
6502 and then Nkind (P) = N_Subprogram_Body
6503 then
6504 P := Parent (P);
6505 elsif Nkind (N) = N_Parameter_Specification
6506 and then Nkind (P) in N_Subprogram_Specification
6507 and then Nkind (Parent (P)) = N_Subprogram_Body
6508 then
6509 P := Parent (Parent (P));
6510 end if;
6511
6512 while Present (P) and then not Has_Declarations (P) loop
6513 P := Parent (P);
6514 end loop;
6515
6516 pragma Assert (Present (P));
6517
6518 if Nkind (P) = N_Package_Specification then
6519 Prepend (Decl, Visible_Declarations (P));
6520 else
6521 Prepend (Decl, Declarations (P));
6522 end if;
6523
6524 -- Replace the anonymous type with an occurrence of the new declaration.
6525 -- In all cases the rewritten node does not have the null-exclusion
6526 -- attribute because (if present) it was already inherited by the
6527 -- anonymous entity (Anon). Thus, in case of components we do not
6528 -- inherit this attribute.
6529
6530 if Nkind (N) = N_Parameter_Specification then
6531 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6532 Set_Etype (Defining_Identifier (N), Anon);
6533 Set_Null_Exclusion_Present (N, False);
6534
6535 elsif Nkind (N) = N_Object_Declaration then
6536 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6537 Set_Etype (Defining_Identifier (N), Anon);
6538
6539 elsif Nkind (N) = N_Access_Function_Definition then
6540 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6541
6542 elsif Nkind (N) = N_Function_Specification then
6543 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6544 Set_Etype (Defining_Unit_Name (N), Anon);
6545
6546 else
6547 Rewrite (Comp,
6548 Make_Component_Definition (Loc,
6549 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6550 end if;
6551
6552 Mark_Rewrite_Insertion (Comp);
6553
6554 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6555 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6556 and then not Is_Type (Current_Scope))
6557 then
6558
6559 -- Declaration can be analyzed in the current scope.
6560
6561 Analyze (Decl);
6562
6563 else
6564 -- Temporarily remove the current scope (record or subprogram) from
6565 -- the stack to add the new declarations to the enclosing scope.
6566 -- The anonymous entity is an Itype with the proper attributes.
6567
6568 Scope_Stack.Decrement_Last;
6569 Analyze (Decl);
6570 Set_Is_Itype (Anon);
6571 Set_Associated_Node_For_Itype (Anon, N);
6572 Scope_Stack.Append (Curr_Scope);
6573 end if;
6574
6575 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6576 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6577 return Anon;
6578 end Replace_Anonymous_Access_To_Protected_Subprogram;
6579
6580 -------------------------------
6581 -- Build_Derived_Access_Type --
6582 -------------------------------
6583
6584 procedure Build_Derived_Access_Type
6585 (N : Node_Id;
6586 Parent_Type : Entity_Id;
6587 Derived_Type : Entity_Id)
6588 is
6589 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6590
6591 Desig_Type : Entity_Id;
6592 Discr : Entity_Id;
6593 Discr_Con_Elist : Elist_Id;
6594 Discr_Con_El : Elmt_Id;
6595 Subt : Entity_Id;
6596
6597 begin
6598 -- Set the designated type so it is available in case this is an access
6599 -- to a self-referential type, e.g. a standard list type with a next
6600 -- pointer. Will be reset after subtype is built.
6601
6602 Set_Directly_Designated_Type
6603 (Derived_Type, Designated_Type (Parent_Type));
6604
6605 Subt := Process_Subtype (S, N);
6606
6607 if Nkind (S) /= N_Subtype_Indication
6608 and then Subt /= Base_Type (Subt)
6609 then
6610 Set_Ekind (Derived_Type, E_Access_Subtype);
6611 end if;
6612
6613 if Ekind (Derived_Type) = E_Access_Subtype then
6614 declare
6615 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6616 Ibase : constant Entity_Id :=
6617 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6618 Svg_Chars : constant Name_Id := Chars (Ibase);
6619 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6620 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6621
6622 begin
6623 Copy_Node (Pbase, Ibase);
6624
6625 -- Restore Itype status after Copy_Node
6626
6627 Set_Is_Itype (Ibase);
6628 Set_Associated_Node_For_Itype (Ibase, N);
6629
6630 Set_Chars (Ibase, Svg_Chars);
6631 Set_Prev_Entity (Ibase, Svg_Prev_E);
6632 Set_Next_Entity (Ibase, Svg_Next_E);
6633 Set_Sloc (Ibase, Sloc (Derived_Type));
6634 Set_Scope (Ibase, Scope (Derived_Type));
6635 Set_Freeze_Node (Ibase, Empty);
6636 Set_Is_Frozen (Ibase, False);
6637 Set_Comes_From_Source (Ibase, False);
6638 Set_Is_First_Subtype (Ibase, False);
6639
6640 Set_Etype (Ibase, Pbase);
6641 Set_Etype (Derived_Type, Ibase);
6642 end;
6643 end if;
6644
6645 Set_Directly_Designated_Type
6646 (Derived_Type, Designated_Type (Subt));
6647
6648 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6649 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6650 Set_Size_Info (Derived_Type, Parent_Type);
6651 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6652 Set_Depends_On_Private (Derived_Type,
6653 Has_Private_Component (Derived_Type));
6654 Conditional_Delay (Derived_Type, Subt);
6655
6656 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6657 -- that it is not redundant.
6658
6659 if Null_Exclusion_Present (Type_Definition (N)) then
6660 Set_Can_Never_Be_Null (Derived_Type);
6661
6662 elsif Can_Never_Be_Null (Parent_Type) then
6663 Set_Can_Never_Be_Null (Derived_Type);
6664 end if;
6665
6666 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6667 -- the root type for this information.
6668
6669 -- Apply range checks to discriminants for derived record case
6670 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6671
6672 Desig_Type := Designated_Type (Derived_Type);
6673
6674 if Is_Composite_Type (Desig_Type)
6675 and then (not Is_Array_Type (Desig_Type))
6676 and then Has_Discriminants (Desig_Type)
6677 and then Base_Type (Desig_Type) /= Desig_Type
6678 then
6679 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6680 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6681
6682 Discr := First_Discriminant (Base_Type (Desig_Type));
6683 while Present (Discr_Con_El) loop
6684 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6685 Next_Elmt (Discr_Con_El);
6686 Next_Discriminant (Discr);
6687 end loop;
6688 end if;
6689 end Build_Derived_Access_Type;
6690
6691 ------------------------------
6692 -- Build_Derived_Array_Type --
6693 ------------------------------
6694
6695 procedure Build_Derived_Array_Type
6696 (N : Node_Id;
6697 Parent_Type : Entity_Id;
6698 Derived_Type : Entity_Id)
6699 is
6700 Loc : constant Source_Ptr := Sloc (N);
6701 Tdef : constant Node_Id := Type_Definition (N);
6702 Indic : constant Node_Id := Subtype_Indication (Tdef);
6703 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6704 Implicit_Base : Entity_Id := Empty;
6705 New_Indic : Node_Id;
6706
6707 procedure Make_Implicit_Base;
6708 -- If the parent subtype is constrained, the derived type is a subtype
6709 -- of an implicit base type derived from the parent base.
6710
6711 ------------------------
6712 -- Make_Implicit_Base --
6713 ------------------------
6714
6715 procedure Make_Implicit_Base is
6716 begin
6717 Implicit_Base :=
6718 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6719
6720 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6721 Set_Etype (Implicit_Base, Parent_Base);
6722
6723 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6724 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6725
6726 Set_Has_Delayed_Freeze (Implicit_Base, True);
6727 end Make_Implicit_Base;
6728
6729 -- Start of processing for Build_Derived_Array_Type
6730
6731 begin
6732 if not Is_Constrained (Parent_Type) then
6733 if Nkind (Indic) /= N_Subtype_Indication then
6734 Set_Ekind (Derived_Type, E_Array_Type);
6735
6736 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6737 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6738
6739 Set_Has_Delayed_Freeze (Derived_Type, True);
6740
6741 else
6742 Make_Implicit_Base;
6743 Set_Etype (Derived_Type, Implicit_Base);
6744
6745 New_Indic :=
6746 Make_Subtype_Declaration (Loc,
6747 Defining_Identifier => Derived_Type,
6748 Subtype_Indication =>
6749 Make_Subtype_Indication (Loc,
6750 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6751 Constraint => Constraint (Indic)));
6752
6753 Rewrite (N, New_Indic);
6754 Analyze (N);
6755 end if;
6756
6757 else
6758 if Nkind (Indic) /= N_Subtype_Indication then
6759 Make_Implicit_Base;
6760
6761 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6762 Set_Etype (Derived_Type, Implicit_Base);
6763 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6764
6765 else
6766 Error_Msg_N ("illegal constraint on constrained type", Indic);
6767 end if;
6768 end if;
6769
6770 -- If parent type is not a derived type itself, and is declared in
6771 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6772 -- the new type's concatenation operator since Derive_Subprograms
6773 -- will not inherit the parent's operator. If the parent type is
6774 -- unconstrained, the operator is of the unconstrained base type.
6775
6776 if Number_Dimensions (Parent_Type) = 1
6777 and then not Is_Limited_Type (Parent_Type)
6778 and then not Is_Derived_Type (Parent_Type)
6779 and then not Is_Package_Or_Generic_Package
6780 (Scope (Base_Type (Parent_Type)))
6781 then
6782 if not Is_Constrained (Parent_Type)
6783 and then Is_Constrained (Derived_Type)
6784 then
6785 New_Concatenation_Op (Implicit_Base);
6786 else
6787 New_Concatenation_Op (Derived_Type);
6788 end if;
6789 end if;
6790 end Build_Derived_Array_Type;
6791
6792 -----------------------------------
6793 -- Build_Derived_Concurrent_Type --
6794 -----------------------------------
6795
6796 procedure Build_Derived_Concurrent_Type
6797 (N : Node_Id;
6798 Parent_Type : Entity_Id;
6799 Derived_Type : Entity_Id)
6800 is
6801 Loc : constant Source_Ptr := Sloc (N);
6802
6803 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6804 Corr_Decl : Node_Id;
6805 Corr_Decl_Needed : Boolean;
6806 -- If the derived type has fewer discriminants than its parent, the
6807 -- corresponding record is also a derived type, in order to account for
6808 -- the bound discriminants. We create a full type declaration for it in
6809 -- this case.
6810
6811 Constraint_Present : constant Boolean :=
6812 Nkind (Subtype_Indication (Type_Definition (N))) =
6813 N_Subtype_Indication;
6814
6815 D_Constraint : Node_Id;
6816 New_Constraint : Elist_Id := No_Elist;
6817 Old_Disc : Entity_Id;
6818 New_Disc : Entity_Id;
6819 New_N : Node_Id;
6820
6821 begin
6822 Set_Stored_Constraint (Derived_Type, No_Elist);
6823 Corr_Decl_Needed := False;
6824 Old_Disc := Empty;
6825
6826 if Present (Discriminant_Specifications (N))
6827 and then Constraint_Present
6828 then
6829 Old_Disc := First_Discriminant (Parent_Type);
6830 New_Disc := First (Discriminant_Specifications (N));
6831 while Present (New_Disc) and then Present (Old_Disc) loop
6832 Next_Discriminant (Old_Disc);
6833 Next (New_Disc);
6834 end loop;
6835 end if;
6836
6837 if Present (Old_Disc) and then Expander_Active then
6838
6839 -- The new type has fewer discriminants, so we need to create a new
6840 -- corresponding record, which is derived from the corresponding
6841 -- record of the parent, and has a stored constraint that captures
6842 -- the values of the discriminant constraints. The corresponding
6843 -- record is needed only if expander is active and code generation is
6844 -- enabled.
6845
6846 -- The type declaration for the derived corresponding record has the
6847 -- same discriminant part and constraints as the current declaration.
6848 -- Copy the unanalyzed tree to build declaration.
6849
6850 Corr_Decl_Needed := True;
6851 New_N := Copy_Separate_Tree (N);
6852
6853 Corr_Decl :=
6854 Make_Full_Type_Declaration (Loc,
6855 Defining_Identifier => Corr_Record,
6856 Discriminant_Specifications =>
6857 Discriminant_Specifications (New_N),
6858 Type_Definition =>
6859 Make_Derived_Type_Definition (Loc,
6860 Subtype_Indication =>
6861 Make_Subtype_Indication (Loc,
6862 Subtype_Mark =>
6863 New_Occurrence_Of
6864 (Corresponding_Record_Type (Parent_Type), Loc),
6865 Constraint =>
6866 Constraint
6867 (Subtype_Indication (Type_Definition (New_N))))));
6868 end if;
6869
6870 -- Copy Storage_Size and Relative_Deadline variables if task case
6871
6872 if Is_Task_Type (Parent_Type) then
6873 Set_Storage_Size_Variable (Derived_Type,
6874 Storage_Size_Variable (Parent_Type));
6875 Set_Relative_Deadline_Variable (Derived_Type,
6876 Relative_Deadline_Variable (Parent_Type));
6877 end if;
6878
6879 if Present (Discriminant_Specifications (N)) then
6880 Push_Scope (Derived_Type);
6881 Check_Or_Process_Discriminants (N, Derived_Type);
6882
6883 if Constraint_Present then
6884 New_Constraint :=
6885 Expand_To_Stored_Constraint
6886 (Parent_Type,
6887 Build_Discriminant_Constraints
6888 (Parent_Type,
6889 Subtype_Indication (Type_Definition (N)), True));
6890 end if;
6891
6892 End_Scope;
6893
6894 elsif Constraint_Present then
6895
6896 -- Build constrained subtype, copying the constraint, and derive
6897 -- from it to create a derived constrained type.
6898
6899 declare
6900 Loc : constant Source_Ptr := Sloc (N);
6901 Anon : constant Entity_Id :=
6902 Make_Defining_Identifier (Loc,
6903 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6904 Decl : Node_Id;
6905
6906 begin
6907 Decl :=
6908 Make_Subtype_Declaration (Loc,
6909 Defining_Identifier => Anon,
6910 Subtype_Indication =>
6911 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6912 Insert_Before (N, Decl);
6913 Analyze (Decl);
6914
6915 Rewrite (Subtype_Indication (Type_Definition (N)),
6916 New_Occurrence_Of (Anon, Loc));
6917 Set_Analyzed (Derived_Type, False);
6918 Analyze (N);
6919 return;
6920 end;
6921 end if;
6922
6923 -- By default, operations and private data are inherited from parent.
6924 -- However, in the presence of bound discriminants, a new corresponding
6925 -- record will be created, see below.
6926
6927 Set_Has_Discriminants
6928 (Derived_Type, Has_Discriminants (Parent_Type));
6929 Set_Corresponding_Record_Type
6930 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6931
6932 -- Is_Constrained is set according the parent subtype, but is set to
6933 -- False if the derived type is declared with new discriminants.
6934
6935 Set_Is_Constrained
6936 (Derived_Type,
6937 (Is_Constrained (Parent_Type) or else Constraint_Present)
6938 and then not Present (Discriminant_Specifications (N)));
6939
6940 if Constraint_Present then
6941 if not Has_Discriminants (Parent_Type) then
6942 Error_Msg_N ("untagged parent must have discriminants", N);
6943
6944 elsif Present (Discriminant_Specifications (N)) then
6945
6946 -- Verify that new discriminants are used to constrain old ones
6947
6948 D_Constraint :=
6949 First
6950 (Constraints
6951 (Constraint (Subtype_Indication (Type_Definition (N)))));
6952
6953 Old_Disc := First_Discriminant (Parent_Type);
6954
6955 while Present (D_Constraint) loop
6956 if Nkind (D_Constraint) /= N_Discriminant_Association then
6957
6958 -- Positional constraint. If it is a reference to a new
6959 -- discriminant, it constrains the corresponding old one.
6960
6961 if Nkind (D_Constraint) = N_Identifier then
6962 New_Disc := First_Discriminant (Derived_Type);
6963 while Present (New_Disc) loop
6964 exit when Chars (New_Disc) = Chars (D_Constraint);
6965 Next_Discriminant (New_Disc);
6966 end loop;
6967
6968 if Present (New_Disc) then
6969 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6970 end if;
6971 end if;
6972
6973 Next_Discriminant (Old_Disc);
6974
6975 -- if this is a named constraint, search by name for the old
6976 -- discriminants constrained by the new one.
6977
6978 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6979
6980 -- Find new discriminant with that name
6981
6982 New_Disc := First_Discriminant (Derived_Type);
6983 while Present (New_Disc) loop
6984 exit when
6985 Chars (New_Disc) = Chars (Expression (D_Constraint));
6986 Next_Discriminant (New_Disc);
6987 end loop;
6988
6989 if Present (New_Disc) then
6990
6991 -- Verify that new discriminant renames some discriminant
6992 -- of the parent type, and associate the new discriminant
6993 -- with one or more old ones that it renames.
6994
6995 declare
6996 Selector : Node_Id;
6997
6998 begin
6999 Selector := First (Selector_Names (D_Constraint));
7000 while Present (Selector) loop
7001 Old_Disc := First_Discriminant (Parent_Type);
7002 while Present (Old_Disc) loop
7003 exit when Chars (Old_Disc) = Chars (Selector);
7004 Next_Discriminant (Old_Disc);
7005 end loop;
7006
7007 if Present (Old_Disc) then
7008 Set_Corresponding_Discriminant
7009 (New_Disc, Old_Disc);
7010 end if;
7011
7012 Next (Selector);
7013 end loop;
7014 end;
7015 end if;
7016 end if;
7017
7018 Next (D_Constraint);
7019 end loop;
7020
7021 New_Disc := First_Discriminant (Derived_Type);
7022 while Present (New_Disc) loop
7023 if No (Corresponding_Discriminant (New_Disc)) then
7024 Error_Msg_NE
7025 ("new discriminant& must constrain old one", N, New_Disc);
7026
7027 elsif not
7028 Subtypes_Statically_Compatible
7029 (Etype (New_Disc),
7030 Etype (Corresponding_Discriminant (New_Disc)))
7031 then
7032 Error_Msg_NE
7033 ("& not statically compatible with parent discriminant",
7034 N, New_Disc);
7035 end if;
7036
7037 Next_Discriminant (New_Disc);
7038 end loop;
7039 end if;
7040
7041 elsif Present (Discriminant_Specifications (N)) then
7042 Error_Msg_N
7043 ("missing discriminant constraint in untagged derivation", N);
7044 end if;
7045
7046 -- The entity chain of the derived type includes the new discriminants
7047 -- but shares operations with the parent.
7048
7049 if Present (Discriminant_Specifications (N)) then
7050 Old_Disc := First_Discriminant (Parent_Type);
7051 while Present (Old_Disc) loop
7052 if No (Next_Entity (Old_Disc))
7053 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7054 then
7055 Link_Entities
7056 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7057 exit;
7058 end if;
7059
7060 Next_Discriminant (Old_Disc);
7061 end loop;
7062
7063 else
7064 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7065 if Has_Discriminants (Parent_Type) then
7066 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7067 Set_Discriminant_Constraint (
7068 Derived_Type, Discriminant_Constraint (Parent_Type));
7069 end if;
7070 end if;
7071
7072 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7073
7074 Set_Has_Completion (Derived_Type);
7075
7076 if Corr_Decl_Needed then
7077 Set_Stored_Constraint (Derived_Type, New_Constraint);
7078 Insert_After (N, Corr_Decl);
7079 Analyze (Corr_Decl);
7080 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7081 end if;
7082 end Build_Derived_Concurrent_Type;
7083
7084 ------------------------------------
7085 -- Build_Derived_Enumeration_Type --
7086 ------------------------------------
7087
7088 procedure Build_Derived_Enumeration_Type
7089 (N : Node_Id;
7090 Parent_Type : Entity_Id;
7091 Derived_Type : Entity_Id)
7092 is
7093 Loc : constant Source_Ptr := Sloc (N);
7094 Def : constant Node_Id := Type_Definition (N);
7095 Indic : constant Node_Id := Subtype_Indication (Def);
7096 Implicit_Base : Entity_Id;
7097 Literal : Entity_Id;
7098 New_Lit : Entity_Id;
7099 Literals_List : List_Id;
7100 Type_Decl : Node_Id;
7101 Hi, Lo : Node_Id;
7102 Rang_Expr : Node_Id;
7103
7104 begin
7105 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7106 -- not have explicit literals lists we need to process types derived
7107 -- from them specially. This is handled by Derived_Standard_Character.
7108 -- If the parent type is a generic type, there are no literals either,
7109 -- and we construct the same skeletal representation as for the generic
7110 -- parent type.
7111
7112 if Is_Standard_Character_Type (Parent_Type) then
7113 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7114
7115 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7116 declare
7117 Lo : Node_Id;
7118 Hi : Node_Id;
7119
7120 begin
7121 if Nkind (Indic) /= N_Subtype_Indication then
7122 Lo :=
7123 Make_Attribute_Reference (Loc,
7124 Attribute_Name => Name_First,
7125 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7126 Set_Etype (Lo, Derived_Type);
7127
7128 Hi :=
7129 Make_Attribute_Reference (Loc,
7130 Attribute_Name => Name_Last,
7131 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7132 Set_Etype (Hi, Derived_Type);
7133
7134 Set_Scalar_Range (Derived_Type,
7135 Make_Range (Loc,
7136 Low_Bound => Lo,
7137 High_Bound => Hi));
7138 else
7139
7140 -- Analyze subtype indication and verify compatibility
7141 -- with parent type.
7142
7143 if Base_Type (Process_Subtype (Indic, N)) /=
7144 Base_Type (Parent_Type)
7145 then
7146 Error_Msg_N
7147 ("illegal constraint for formal discrete type", N);
7148 end if;
7149 end if;
7150 end;
7151
7152 else
7153 -- If a constraint is present, analyze the bounds to catch
7154 -- premature usage of the derived literals.
7155
7156 if Nkind (Indic) = N_Subtype_Indication
7157 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7158 then
7159 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7160 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7161 end if;
7162
7163 -- Introduce an implicit base type for the derived type even if there
7164 -- is no constraint attached to it, since this seems closer to the
7165 -- Ada semantics. Build a full type declaration tree for the derived
7166 -- type using the implicit base type as the defining identifier. The
7167 -- build a subtype declaration tree which applies the constraint (if
7168 -- any) have it replace the derived type declaration.
7169
7170 Literal := First_Literal (Parent_Type);
7171 Literals_List := New_List;
7172 while Present (Literal)
7173 and then Ekind (Literal) = E_Enumeration_Literal
7174 loop
7175 -- Literals of the derived type have the same representation as
7176 -- those of the parent type, but this representation can be
7177 -- overridden by an explicit representation clause. Indicate
7178 -- that there is no explicit representation given yet. These
7179 -- derived literals are implicit operations of the new type,
7180 -- and can be overridden by explicit ones.
7181
7182 if Nkind (Literal) = N_Defining_Character_Literal then
7183 New_Lit :=
7184 Make_Defining_Character_Literal (Loc, Chars (Literal));
7185 else
7186 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7187 end if;
7188
7189 Set_Ekind (New_Lit, E_Enumeration_Literal);
7190 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7191 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7192 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7193 Set_Alias (New_Lit, Literal);
7194 Set_Is_Known_Valid (New_Lit, True);
7195
7196 Append (New_Lit, Literals_List);
7197 Next_Literal (Literal);
7198 end loop;
7199
7200 Implicit_Base :=
7201 Make_Defining_Identifier (Sloc (Derived_Type),
7202 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7203
7204 -- Indicate the proper nature of the derived type. This must be done
7205 -- before analysis of the literals, to recognize cases when a literal
7206 -- may be hidden by a previous explicit function definition (cf.
7207 -- c83031a).
7208
7209 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7210 Set_Etype (Derived_Type, Implicit_Base);
7211
7212 Type_Decl :=
7213 Make_Full_Type_Declaration (Loc,
7214 Defining_Identifier => Implicit_Base,
7215 Discriminant_Specifications => No_List,
7216 Type_Definition =>
7217 Make_Enumeration_Type_Definition (Loc, Literals_List));
7218
7219 Mark_Rewrite_Insertion (Type_Decl);
7220 Insert_Before (N, Type_Decl);
7221 Analyze (Type_Decl);
7222
7223 -- The anonymous base now has a full declaration, but this base
7224 -- is not a first subtype.
7225
7226 Set_Is_First_Subtype (Implicit_Base, False);
7227
7228 -- After the implicit base is analyzed its Etype needs to be changed
7229 -- to reflect the fact that it is derived from the parent type which
7230 -- was ignored during analysis. We also set the size at this point.
7231
7232 Set_Etype (Implicit_Base, Parent_Type);
7233
7234 Set_Size_Info (Implicit_Base, Parent_Type);
7235 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7236 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7237
7238 -- Copy other flags from parent type
7239
7240 Set_Has_Non_Standard_Rep
7241 (Implicit_Base, Has_Non_Standard_Rep
7242 (Parent_Type));
7243 Set_Has_Pragma_Ordered
7244 (Implicit_Base, Has_Pragma_Ordered
7245 (Parent_Type));
7246 Set_Has_Delayed_Freeze (Implicit_Base);
7247
7248 -- Process the subtype indication including a validation check on the
7249 -- constraint, if any. If a constraint is given, its bounds must be
7250 -- implicitly converted to the new type.
7251
7252 if Nkind (Indic) = N_Subtype_Indication then
7253 declare
7254 R : constant Node_Id :=
7255 Range_Expression (Constraint (Indic));
7256
7257 begin
7258 if Nkind (R) = N_Range then
7259 Hi := Build_Scalar_Bound
7260 (High_Bound (R), Parent_Type, Implicit_Base);
7261 Lo := Build_Scalar_Bound
7262 (Low_Bound (R), Parent_Type, Implicit_Base);
7263
7264 else
7265 -- Constraint is a Range attribute. Replace with explicit
7266 -- mention of the bounds of the prefix, which must be a
7267 -- subtype.
7268
7269 Analyze (Prefix (R));
7270 Hi :=
7271 Convert_To (Implicit_Base,
7272 Make_Attribute_Reference (Loc,
7273 Attribute_Name => Name_Last,
7274 Prefix =>
7275 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7276
7277 Lo :=
7278 Convert_To (Implicit_Base,
7279 Make_Attribute_Reference (Loc,
7280 Attribute_Name => Name_First,
7281 Prefix =>
7282 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7283 end if;
7284 end;
7285
7286 else
7287 Hi :=
7288 Build_Scalar_Bound
7289 (Type_High_Bound (Parent_Type),
7290 Parent_Type, Implicit_Base);
7291 Lo :=
7292 Build_Scalar_Bound
7293 (Type_Low_Bound (Parent_Type),
7294 Parent_Type, Implicit_Base);
7295 end if;
7296
7297 Rang_Expr :=
7298 Make_Range (Loc,
7299 Low_Bound => Lo,
7300 High_Bound => Hi);
7301
7302 -- If we constructed a default range for the case where no range
7303 -- was given, then the expressions in the range must not freeze
7304 -- since they do not correspond to expressions in the source.
7305 -- However, if the type inherits predicates the expressions will
7306 -- be elaborated earlier and must freeze.
7307
7308 if Nkind (Indic) /= N_Subtype_Indication
7309 and then not Has_Predicates (Derived_Type)
7310 then
7311 Set_Must_Not_Freeze (Lo);
7312 Set_Must_Not_Freeze (Hi);
7313 Set_Must_Not_Freeze (Rang_Expr);
7314 end if;
7315
7316 Rewrite (N,
7317 Make_Subtype_Declaration (Loc,
7318 Defining_Identifier => Derived_Type,
7319 Subtype_Indication =>
7320 Make_Subtype_Indication (Loc,
7321 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7322 Constraint =>
7323 Make_Range_Constraint (Loc,
7324 Range_Expression => Rang_Expr))));
7325
7326 Analyze (N);
7327
7328 -- Propagate the aspects from the original type declaration to the
7329 -- declaration of the implicit base.
7330
7331 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7332
7333 -- Apply a range check. Since this range expression doesn't have an
7334 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7335 -- this right???
7336
7337 if Nkind (Indic) = N_Subtype_Indication then
7338 Apply_Range_Check
7339 (Range_Expression (Constraint (Indic)), Parent_Type,
7340 Source_Typ => Entity (Subtype_Mark (Indic)));
7341 end if;
7342 end if;
7343 end Build_Derived_Enumeration_Type;
7344
7345 --------------------------------
7346 -- Build_Derived_Numeric_Type --
7347 --------------------------------
7348
7349 procedure Build_Derived_Numeric_Type
7350 (N : Node_Id;
7351 Parent_Type : Entity_Id;
7352 Derived_Type : Entity_Id)
7353 is
7354 Loc : constant Source_Ptr := Sloc (N);
7355 Tdef : constant Node_Id := Type_Definition (N);
7356 Indic : constant Node_Id := Subtype_Indication (Tdef);
7357 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7358 No_Constraint : constant Boolean := Nkind (Indic) /=
7359 N_Subtype_Indication;
7360 Implicit_Base : Entity_Id;
7361
7362 Lo : Node_Id;
7363 Hi : Node_Id;
7364
7365 begin
7366 -- Process the subtype indication including a validation check on
7367 -- the constraint if any.
7368
7369 Discard_Node (Process_Subtype (Indic, N));
7370
7371 -- Introduce an implicit base type for the derived type even if there
7372 -- is no constraint attached to it, since this seems closer to the Ada
7373 -- semantics.
7374
7375 Implicit_Base :=
7376 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7377
7378 Set_Etype (Implicit_Base, Parent_Base);
7379 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7380 Set_Size_Info (Implicit_Base, Parent_Base);
7381 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7382 Set_Parent (Implicit_Base, Parent (Derived_Type));
7383 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7384
7385 -- Set RM Size for discrete type or decimal fixed-point type
7386 -- Ordinary fixed-point is excluded, why???
7387
7388 if Is_Discrete_Type (Parent_Base)
7389 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7390 then
7391 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7392 end if;
7393
7394 Set_Has_Delayed_Freeze (Implicit_Base);
7395
7396 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7397 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7398
7399 Set_Scalar_Range (Implicit_Base,
7400 Make_Range (Loc,
7401 Low_Bound => Lo,
7402 High_Bound => Hi));
7403
7404 if Has_Infinities (Parent_Base) then
7405 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7406 end if;
7407
7408 -- The Derived_Type, which is the entity of the declaration, is a
7409 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7410 -- absence of an explicit constraint.
7411
7412 Set_Etype (Derived_Type, Implicit_Base);
7413
7414 -- If we did not have a constraint, then the Ekind is set from the
7415 -- parent type (otherwise Process_Subtype has set the bounds)
7416
7417 if No_Constraint then
7418 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7419 end if;
7420
7421 -- If we did not have a range constraint, then set the range from the
7422 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7423
7424 if No_Constraint or else not Has_Range_Constraint (Indic) then
7425 Set_Scalar_Range (Derived_Type,
7426 Make_Range (Loc,
7427 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7428 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7429 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7430
7431 if Has_Infinities (Parent_Type) then
7432 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7433 end if;
7434
7435 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7436 end if;
7437
7438 Set_Is_Descendant_Of_Address (Derived_Type,
7439 Is_Descendant_Of_Address (Parent_Type));
7440 Set_Is_Descendant_Of_Address (Implicit_Base,
7441 Is_Descendant_Of_Address (Parent_Type));
7442
7443 -- Set remaining type-specific fields, depending on numeric type
7444
7445 if Is_Modular_Integer_Type (Parent_Type) then
7446 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7447
7448 Set_Non_Binary_Modulus
7449 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7450
7451 Set_Is_Known_Valid
7452 (Implicit_Base, Is_Known_Valid (Parent_Base));
7453
7454 elsif Is_Floating_Point_Type (Parent_Type) then
7455
7456 -- Digits of base type is always copied from the digits value of
7457 -- the parent base type, but the digits of the derived type will
7458 -- already have been set if there was a constraint present.
7459
7460 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7461 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7462
7463 if No_Constraint then
7464 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7465 end if;
7466
7467 elsif Is_Fixed_Point_Type (Parent_Type) then
7468
7469 -- Small of base type and derived type are always copied from the
7470 -- parent base type, since smalls never change. The delta of the
7471 -- base type is also copied from the parent base type. However the
7472 -- delta of the derived type will have been set already if a
7473 -- constraint was present.
7474
7475 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7476 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7477 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7478
7479 if No_Constraint then
7480 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7481 end if;
7482
7483 -- The scale and machine radix in the decimal case are always
7484 -- copied from the parent base type.
7485
7486 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7487 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7488 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7489
7490 Set_Machine_Radix_10
7491 (Derived_Type, Machine_Radix_10 (Parent_Base));
7492 Set_Machine_Radix_10
7493 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7494
7495 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7496
7497 if No_Constraint then
7498 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7499
7500 else
7501 -- the analysis of the subtype_indication sets the
7502 -- digits value of the derived type.
7503
7504 null;
7505 end if;
7506 end if;
7507 end if;
7508
7509 if Is_Integer_Type (Parent_Type) then
7510 Set_Has_Shift_Operator
7511 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7512 end if;
7513
7514 -- The type of the bounds is that of the parent type, and they
7515 -- must be converted to the derived type.
7516
7517 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7518
7519 -- The implicit_base should be frozen when the derived type is frozen,
7520 -- but note that it is used in the conversions of the bounds. For fixed
7521 -- types we delay the determination of the bounds until the proper
7522 -- freezing point. For other numeric types this is rejected by GCC, for
7523 -- reasons that are currently unclear (???), so we choose to freeze the
7524 -- implicit base now. In the case of integers and floating point types
7525 -- this is harmless because subsequent representation clauses cannot
7526 -- affect anything, but it is still baffling that we cannot use the
7527 -- same mechanism for all derived numeric types.
7528
7529 -- There is a further complication: actually some representation
7530 -- clauses can affect the implicit base type. For example, attribute
7531 -- definition clauses for stream-oriented attributes need to set the
7532 -- corresponding TSS entries on the base type, and this normally
7533 -- cannot be done after the base type is frozen, so the circuitry in
7534 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7535 -- and not use Set_TSS in this case.
7536
7537 -- There are also consequences for the case of delayed representation
7538 -- aspects for some cases. For example, a Size aspect is delayed and
7539 -- should not be evaluated to the freeze point. This early freezing
7540 -- means that the size attribute evaluation happens too early???
7541
7542 if Is_Fixed_Point_Type (Parent_Type) then
7543 Conditional_Delay (Implicit_Base, Parent_Type);
7544 else
7545 Freeze_Before (N, Implicit_Base);
7546 end if;
7547 end Build_Derived_Numeric_Type;
7548
7549 --------------------------------
7550 -- Build_Derived_Private_Type --
7551 --------------------------------
7552
7553 procedure Build_Derived_Private_Type
7554 (N : Node_Id;
7555 Parent_Type : Entity_Id;
7556 Derived_Type : Entity_Id;
7557 Is_Completion : Boolean;
7558 Derive_Subps : Boolean := True)
7559 is
7560 Loc : constant Source_Ptr := Sloc (N);
7561 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7562 Par_Scope : constant Entity_Id := Scope (Par_Base);
7563 Full_N : constant Node_Id := New_Copy_Tree (N);
7564 Full_Der : Entity_Id := New_Copy (Derived_Type);
7565 Full_P : Entity_Id;
7566
7567 procedure Build_Full_Derivation;
7568 -- Build full derivation, i.e. derive from the full view
7569
7570 procedure Copy_And_Build;
7571 -- Copy derived type declaration, replace parent with its full view,
7572 -- and build derivation
7573
7574 ---------------------------
7575 -- Build_Full_Derivation --
7576 ---------------------------
7577
7578 procedure Build_Full_Derivation is
7579 begin
7580 -- If parent scope is not open, install the declarations
7581
7582 if not In_Open_Scopes (Par_Scope) then
7583 Install_Private_Declarations (Par_Scope);
7584 Install_Visible_Declarations (Par_Scope);
7585 Copy_And_Build;
7586 Uninstall_Declarations (Par_Scope);
7587
7588 -- If parent scope is open and in another unit, and parent has a
7589 -- completion, then the derivation is taking place in the visible
7590 -- part of a child unit. In that case retrieve the full view of
7591 -- the parent momentarily.
7592
7593 elsif not In_Same_Source_Unit (N, Parent_Type) then
7594 Full_P := Full_View (Parent_Type);
7595 Exchange_Declarations (Parent_Type);
7596 Copy_And_Build;
7597 Exchange_Declarations (Full_P);
7598
7599 -- Otherwise it is a local derivation
7600
7601 else
7602 Copy_And_Build;
7603 end if;
7604 end Build_Full_Derivation;
7605
7606 --------------------
7607 -- Copy_And_Build --
7608 --------------------
7609
7610 procedure Copy_And_Build is
7611 Full_Parent : Entity_Id := Parent_Type;
7612
7613 begin
7614 -- If the parent is itself derived from another private type,
7615 -- installing the private declarations has not affected its
7616 -- privacy status, so use its own full view explicitly.
7617
7618 if Is_Private_Type (Full_Parent)
7619 and then Present (Full_View (Full_Parent))
7620 then
7621 Full_Parent := Full_View (Full_Parent);
7622 end if;
7623
7624 -- And its underlying full view if necessary
7625
7626 if Is_Private_Type (Full_Parent)
7627 and then Present (Underlying_Full_View (Full_Parent))
7628 then
7629 Full_Parent := Underlying_Full_View (Full_Parent);
7630 end if;
7631
7632 -- For record, access and most enumeration types, derivation from
7633 -- the full view requires a fully-fledged declaration. In the other
7634 -- cases, just use an itype.
7635
7636 if Ekind (Full_Parent) in Record_Kind
7637 or else Ekind (Full_Parent) in Access_Kind
7638 or else
7639 (Ekind (Full_Parent) in Enumeration_Kind
7640 and then not Is_Standard_Character_Type (Full_Parent)
7641 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7642 then
7643 -- Copy and adjust declaration to provide a completion for what
7644 -- is originally a private declaration. Indicate that full view
7645 -- is internally generated.
7646
7647 Set_Comes_From_Source (Full_N, False);
7648 Set_Comes_From_Source (Full_Der, False);
7649 Set_Parent (Full_Der, Full_N);
7650 Set_Defining_Identifier (Full_N, Full_Der);
7651
7652 -- If there are no constraints, adjust the subtype mark
7653
7654 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7655 N_Subtype_Indication
7656 then
7657 Set_Subtype_Indication
7658 (Type_Definition (Full_N),
7659 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7660 end if;
7661
7662 Insert_After (N, Full_N);
7663
7664 -- Build full view of derived type from full view of parent which
7665 -- is now installed. Subprograms have been derived on the partial
7666 -- view, the completion does not derive them anew.
7667
7668 if Ekind (Full_Parent) in Record_Kind then
7669
7670 -- If parent type is tagged, the completion inherits the proper
7671 -- primitive operations.
7672
7673 if Is_Tagged_Type (Parent_Type) then
7674 Build_Derived_Record_Type
7675 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7676 else
7677 Build_Derived_Record_Type
7678 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7679 end if;
7680
7681 else
7682 Build_Derived_Type
7683 (Full_N, Full_Parent, Full_Der,
7684 Is_Completion => False, Derive_Subps => False);
7685 end if;
7686
7687 -- The full declaration has been introduced into the tree and
7688 -- processed in the step above. It should not be analyzed again
7689 -- (when encountered later in the current list of declarations)
7690 -- to prevent spurious name conflicts. The full entity remains
7691 -- invisible.
7692
7693 Set_Analyzed (Full_N);
7694
7695 else
7696 Full_Der :=
7697 Make_Defining_Identifier (Sloc (Derived_Type),
7698 Chars => Chars (Derived_Type));
7699 Set_Is_Itype (Full_Der);
7700 Set_Associated_Node_For_Itype (Full_Der, N);
7701 Set_Parent (Full_Der, N);
7702 Build_Derived_Type
7703 (N, Full_Parent, Full_Der,
7704 Is_Completion => False, Derive_Subps => False);
7705 end if;
7706
7707 Set_Has_Private_Declaration (Full_Der);
7708 Set_Has_Private_Declaration (Derived_Type);
7709
7710 Set_Scope (Full_Der, Scope (Derived_Type));
7711 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7712 Set_Has_Size_Clause (Full_Der, False);
7713 Set_Has_Alignment_Clause (Full_Der, False);
7714 Set_Has_Delayed_Freeze (Full_Der);
7715 Set_Is_Frozen (Full_Der, False);
7716 Set_Freeze_Node (Full_Der, Empty);
7717 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7718 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7719
7720 -- The convention on the base type may be set in the private part
7721 -- and not propagated to the subtype until later, so we obtain the
7722 -- convention from the base type of the parent.
7723
7724 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7725 end Copy_And_Build;
7726
7727 -- Start of processing for Build_Derived_Private_Type
7728
7729 begin
7730 if Is_Tagged_Type (Parent_Type) then
7731 Full_P := Full_View (Parent_Type);
7732
7733 -- A type extension of a type with unknown discriminants is an
7734 -- indefinite type that the back-end cannot handle directly.
7735 -- We treat it as a private type, and build a completion that is
7736 -- derived from the full view of the parent, and hopefully has
7737 -- known discriminants.
7738
7739 -- If the full view of the parent type has an underlying record view,
7740 -- use it to generate the underlying record view of this derived type
7741 -- (required for chains of derivations with unknown discriminants).
7742
7743 -- Minor optimization: we avoid the generation of useless underlying
7744 -- record view entities if the private type declaration has unknown
7745 -- discriminants but its corresponding full view has no
7746 -- discriminants.
7747
7748 if Has_Unknown_Discriminants (Parent_Type)
7749 and then Present (Full_P)
7750 and then (Has_Discriminants (Full_P)
7751 or else Present (Underlying_Record_View (Full_P)))
7752 and then not In_Open_Scopes (Par_Scope)
7753 and then Expander_Active
7754 then
7755 declare
7756 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7757 New_Ext : constant Node_Id :=
7758 Copy_Separate_Tree
7759 (Record_Extension_Part (Type_Definition (N)));
7760 Decl : Node_Id;
7761
7762 begin
7763 Build_Derived_Record_Type
7764 (N, Parent_Type, Derived_Type, Derive_Subps);
7765
7766 -- Build anonymous completion, as a derivation from the full
7767 -- view of the parent. This is not a completion in the usual
7768 -- sense, because the current type is not private.
7769
7770 Decl :=
7771 Make_Full_Type_Declaration (Loc,
7772 Defining_Identifier => Full_Der,
7773 Type_Definition =>
7774 Make_Derived_Type_Definition (Loc,
7775 Subtype_Indication =>
7776 New_Copy_Tree
7777 (Subtype_Indication (Type_Definition (N))),
7778 Record_Extension_Part => New_Ext));
7779
7780 -- If the parent type has an underlying record view, use it
7781 -- here to build the new underlying record view.
7782
7783 if Present (Underlying_Record_View (Full_P)) then
7784 pragma Assert
7785 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7786 = N_Identifier);
7787 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7788 Underlying_Record_View (Full_P));
7789 end if;
7790
7791 Install_Private_Declarations (Par_Scope);
7792 Install_Visible_Declarations (Par_Scope);
7793 Insert_Before (N, Decl);
7794
7795 -- Mark entity as an underlying record view before analysis,
7796 -- to avoid generating the list of its primitive operations
7797 -- (which is not really required for this entity) and thus
7798 -- prevent spurious errors associated with missing overriding
7799 -- of abstract primitives (overridden only for Derived_Type).
7800
7801 Set_Ekind (Full_Der, E_Record_Type);
7802 Set_Is_Underlying_Record_View (Full_Der);
7803 Set_Default_SSO (Full_Der);
7804 Set_No_Reordering (Full_Der, No_Component_Reordering);
7805
7806 Analyze (Decl);
7807
7808 pragma Assert (Has_Discriminants (Full_Der)
7809 and then not Has_Unknown_Discriminants (Full_Der));
7810
7811 Uninstall_Declarations (Par_Scope);
7812
7813 -- Freeze the underlying record view, to prevent generation of
7814 -- useless dispatching information, which is simply shared with
7815 -- the real derived type.
7816
7817 Set_Is_Frozen (Full_Der);
7818
7819 -- If the derived type has access discriminants, create
7820 -- references to their anonymous types now, to prevent
7821 -- back-end problems when their first use is in generated
7822 -- bodies of primitives.
7823
7824 declare
7825 E : Entity_Id;
7826
7827 begin
7828 E := First_Entity (Full_Der);
7829
7830 while Present (E) loop
7831 if Ekind (E) = E_Discriminant
7832 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7833 then
7834 Build_Itype_Reference (Etype (E), Decl);
7835 end if;
7836
7837 Next_Entity (E);
7838 end loop;
7839 end;
7840
7841 -- Set up links between real entity and underlying record view
7842
7843 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7844 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7845 end;
7846
7847 -- If discriminants are known, build derived record
7848
7849 else
7850 Build_Derived_Record_Type
7851 (N, Parent_Type, Derived_Type, Derive_Subps);
7852 end if;
7853
7854 return;
7855
7856 elsif Has_Discriminants (Parent_Type) then
7857
7858 -- Build partial view of derived type from partial view of parent.
7859 -- This must be done before building the full derivation because the
7860 -- second derivation will modify the discriminants of the first and
7861 -- the discriminants are chained with the rest of the components in
7862 -- the full derivation.
7863
7864 Build_Derived_Record_Type
7865 (N, Parent_Type, Derived_Type, Derive_Subps);
7866
7867 -- Build the full derivation if this is not the anonymous derived
7868 -- base type created by Build_Derived_Record_Type in the constrained
7869 -- case (see point 5. of its head comment) since we build it for the
7870 -- derived subtype. And skip it for synchronized types altogether, as
7871 -- gigi does not use these types directly.
7872
7873 if Present (Full_View (Parent_Type))
7874 and then not Is_Itype (Derived_Type)
7875 and then not Is_Concurrent_Type (Full_View (Parent_Type))
7876 then
7877 declare
7878 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7879 Discr : Entity_Id;
7880 Last_Discr : Entity_Id;
7881
7882 begin
7883 -- If this is not a completion, construct the implicit full
7884 -- view by deriving from the full view of the parent type.
7885 -- But if this is a completion, the derived private type
7886 -- being built is a full view and the full derivation can
7887 -- only be its underlying full view.
7888
7889 Build_Full_Derivation;
7890
7891 if not Is_Completion then
7892 Set_Full_View (Derived_Type, Full_Der);
7893 else
7894 Set_Underlying_Full_View (Derived_Type, Full_Der);
7895 Set_Is_Underlying_Full_View (Full_Der);
7896 end if;
7897
7898 if not Is_Base_Type (Derived_Type) then
7899 Set_Full_View (Der_Base, Base_Type (Full_Der));
7900 end if;
7901
7902 -- Copy the discriminant list from full view to the partial
7903 -- view (base type and its subtype). Gigi requires that the
7904 -- partial and full views have the same discriminants.
7905
7906 -- Note that since the partial view points to discriminants
7907 -- in the full view, their scope will be that of the full
7908 -- view. This might cause some front end problems and need
7909 -- adjustment???
7910
7911 Discr := First_Discriminant (Base_Type (Full_Der));
7912 Set_First_Entity (Der_Base, Discr);
7913
7914 loop
7915 Last_Discr := Discr;
7916 Next_Discriminant (Discr);
7917 exit when No (Discr);
7918 end loop;
7919
7920 Set_Last_Entity (Der_Base, Last_Discr);
7921 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7922 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7923 end;
7924 end if;
7925
7926 elsif Present (Full_View (Parent_Type))
7927 and then Has_Discriminants (Full_View (Parent_Type))
7928 then
7929 if Has_Unknown_Discriminants (Parent_Type)
7930 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7931 N_Subtype_Indication
7932 then
7933 Error_Msg_N
7934 ("cannot constrain type with unknown discriminants",
7935 Subtype_Indication (Type_Definition (N)));
7936 return;
7937 end if;
7938
7939 -- If this is not a completion, construct the implicit full view by
7940 -- deriving from the full view of the parent type. But if this is a
7941 -- completion, the derived private type being built is a full view
7942 -- and the full derivation can only be its underlying full view.
7943
7944 Build_Full_Derivation;
7945
7946 if not Is_Completion then
7947 Set_Full_View (Derived_Type, Full_Der);
7948 else
7949 Set_Underlying_Full_View (Derived_Type, Full_Der);
7950 Set_Is_Underlying_Full_View (Full_Der);
7951 end if;
7952
7953 -- In any case, the primitive operations are inherited from the
7954 -- parent type, not from the internal full view.
7955
7956 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7957
7958 if Derive_Subps then
7959 Derive_Subprograms (Parent_Type, Derived_Type);
7960 end if;
7961
7962 Set_Stored_Constraint (Derived_Type, No_Elist);
7963 Set_Is_Constrained
7964 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7965
7966 else
7967 -- Untagged type, No discriminants on either view
7968
7969 if Nkind (Subtype_Indication (Type_Definition (N))) =
7970 N_Subtype_Indication
7971 then
7972 Error_Msg_N
7973 ("illegal constraint on type without discriminants", N);
7974 end if;
7975
7976 if Present (Discriminant_Specifications (N))
7977 and then Present (Full_View (Parent_Type))
7978 and then not Is_Tagged_Type (Full_View (Parent_Type))
7979 then
7980 Error_Msg_N ("cannot add discriminants to untagged type", N);
7981 end if;
7982
7983 Set_Stored_Constraint (Derived_Type, No_Elist);
7984 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7985
7986 Set_Is_Controlled_Active
7987 (Derived_Type, Is_Controlled_Active (Parent_Type));
7988
7989 Set_Disable_Controlled
7990 (Derived_Type, Disable_Controlled (Parent_Type));
7991
7992 Set_Has_Controlled_Component
7993 (Derived_Type, Has_Controlled_Component (Parent_Type));
7994
7995 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7996
7997 if not Is_Controlled (Parent_Type) then
7998 Set_Finalize_Storage_Only
7999 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
8000 end if;
8001
8002 -- If this is not a completion, construct the implicit full view by
8003 -- deriving from the full view of the parent type.
8004
8005 -- ??? If the parent is untagged private and its completion is
8006 -- tagged, this mechanism will not work because we cannot derive from
8007 -- the tagged full view unless we have an extension.
8008
8009 if Present (Full_View (Parent_Type))
8010 and then not Is_Tagged_Type (Full_View (Parent_Type))
8011 and then not Is_Completion
8012 then
8013 Build_Full_Derivation;
8014 Set_Full_View (Derived_Type, Full_Der);
8015 end if;
8016 end if;
8017
8018 Set_Has_Unknown_Discriminants (Derived_Type,
8019 Has_Unknown_Discriminants (Parent_Type));
8020
8021 if Is_Private_Type (Derived_Type) then
8022 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8023 end if;
8024
8025 -- If the parent base type is in scope, add the derived type to its
8026 -- list of private dependents, because its full view may become
8027 -- visible subsequently (in a nested private part, a body, or in a
8028 -- further child unit).
8029
8030 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8031 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8032
8033 -- Check for unusual case where a type completed by a private
8034 -- derivation occurs within a package nested in a child unit, and
8035 -- the parent is declared in an ancestor.
8036
8037 if Is_Child_Unit (Scope (Current_Scope))
8038 and then Is_Completion
8039 and then In_Private_Part (Current_Scope)
8040 and then Scope (Parent_Type) /= Current_Scope
8041
8042 -- Note that if the parent has a completion in the private part,
8043 -- (which is itself a derivation from some other private type)
8044 -- it is that completion that is visible, there is no full view
8045 -- available, and no special processing is needed.
8046
8047 and then Present (Full_View (Parent_Type))
8048 then
8049 -- In this case, the full view of the parent type will become
8050 -- visible in the body of the enclosing child, and only then will
8051 -- the current type be possibly non-private. Build an underlying
8052 -- full view that will be installed when the enclosing child body
8053 -- is compiled.
8054
8055 if Present (Underlying_Full_View (Derived_Type)) then
8056 Full_Der := Underlying_Full_View (Derived_Type);
8057 else
8058 Build_Full_Derivation;
8059 Set_Underlying_Full_View (Derived_Type, Full_Der);
8060 Set_Is_Underlying_Full_View (Full_Der);
8061 end if;
8062
8063 -- The full view will be used to swap entities on entry/exit to
8064 -- the body, and must appear in the entity list for the package.
8065
8066 Append_Entity (Full_Der, Scope (Derived_Type));
8067 end if;
8068 end if;
8069 end Build_Derived_Private_Type;
8070
8071 -------------------------------
8072 -- Build_Derived_Record_Type --
8073 -------------------------------
8074
8075 -- 1. INTRODUCTION
8076
8077 -- Ideally we would like to use the same model of type derivation for
8078 -- tagged and untagged record types. Unfortunately this is not quite
8079 -- possible because the semantics of representation clauses is different
8080 -- for tagged and untagged records under inheritance. Consider the
8081 -- following:
8082
8083 -- type R (...) is [tagged] record ... end record;
8084 -- type T (...) is new R (...) [with ...];
8085
8086 -- The representation clauses for T can specify a completely different
8087 -- record layout from R's. Hence the same component can be placed in two
8088 -- very different positions in objects of type T and R. If R and T are
8089 -- tagged types, representation clauses for T can only specify the layout
8090 -- of non inherited components, thus components that are common in R and T
8091 -- have the same position in objects of type R and T.
8092
8093 -- This has two implications. The first is that the entire tree for R's
8094 -- declaration needs to be copied for T in the untagged case, so that T
8095 -- can be viewed as a record type of its own with its own representation
8096 -- clauses. The second implication is the way we handle discriminants.
8097 -- Specifically, in the untagged case we need a way to communicate to Gigi
8098 -- what are the real discriminants in the record, while for the semantics
8099 -- we need to consider those introduced by the user to rename the
8100 -- discriminants in the parent type. This is handled by introducing the
8101 -- notion of stored discriminants. See below for more.
8102
8103 -- Fortunately the way regular components are inherited can be handled in
8104 -- the same way in tagged and untagged types.
8105
8106 -- To complicate things a bit more the private view of a private extension
8107 -- cannot be handled in the same way as the full view (for one thing the
8108 -- semantic rules are somewhat different). We will explain what differs
8109 -- below.
8110
8111 -- 2. DISCRIMINANTS UNDER INHERITANCE
8112
8113 -- The semantic rules governing the discriminants of derived types are
8114 -- quite subtle.
8115
8116 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8117 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8118
8119 -- If parent type has discriminants, then the discriminants that are
8120 -- declared in the derived type are [3.4 (11)]:
8121
8122 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8123 -- there is one;
8124
8125 -- o Otherwise, each discriminant of the parent type (implicitly declared
8126 -- in the same order with the same specifications). In this case, the
8127 -- discriminants are said to be "inherited", or if unknown in the parent
8128 -- are also unknown in the derived type.
8129
8130 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8131
8132 -- o The parent subtype must be constrained;
8133
8134 -- o If the parent type is not a tagged type, then each discriminant of
8135 -- the derived type must be used in the constraint defining a parent
8136 -- subtype. [Implementation note: This ensures that the new discriminant
8137 -- can share storage with an existing discriminant.]
8138
8139 -- For the derived type each discriminant of the parent type is either
8140 -- inherited, constrained to equal some new discriminant of the derived
8141 -- type, or constrained to the value of an expression.
8142
8143 -- When inherited or constrained to equal some new discriminant, the
8144 -- parent discriminant and the discriminant of the derived type are said
8145 -- to "correspond".
8146
8147 -- If a discriminant of the parent type is constrained to a specific value
8148 -- in the derived type definition, then the discriminant is said to be
8149 -- "specified" by that derived type definition.
8150
8151 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8152
8153 -- We have spoken about stored discriminants in point 1 (introduction)
8154 -- above. There are two sorts of stored discriminants: implicit and
8155 -- explicit. As long as the derived type inherits the same discriminants as
8156 -- the root record type, stored discriminants are the same as regular
8157 -- discriminants, and are said to be implicit. However, if any discriminant
8158 -- in the root type was renamed in the derived type, then the derived
8159 -- type will contain explicit stored discriminants. Explicit stored
8160 -- discriminants are discriminants in addition to the semantically visible
8161 -- discriminants defined for the derived type. Stored discriminants are
8162 -- used by Gigi to figure out what are the physical discriminants in
8163 -- objects of the derived type (see precise definition in einfo.ads).
8164 -- As an example, consider the following:
8165
8166 -- type R (D1, D2, D3 : Int) is record ... end record;
8167 -- type T1 is new R;
8168 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8169 -- type T3 is new T2;
8170 -- type T4 (Y : Int) is new T3 (Y, 99);
8171
8172 -- The following table summarizes the discriminants and stored
8173 -- discriminants in R and T1 through T4:
8174
8175 -- Type Discrim Stored Discrim Comment
8176 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8177 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8178 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8179 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8180 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8181
8182 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8183 -- find the corresponding discriminant in the parent type, while
8184 -- Original_Record_Component (abbreviated ORC below) the actual physical
8185 -- component that is renamed. Finally the field Is_Completely_Hidden
8186 -- (abbreviated ICH below) is set for all explicit stored discriminants
8187 -- (see einfo.ads for more info). For the above example this gives:
8188
8189 -- Discrim CD ORC ICH
8190 -- ^^^^^^^ ^^ ^^^ ^^^
8191 -- D1 in R empty itself no
8192 -- D2 in R empty itself no
8193 -- D3 in R empty itself no
8194
8195 -- D1 in T1 D1 in R itself no
8196 -- D2 in T1 D2 in R itself no
8197 -- D3 in T1 D3 in R itself no
8198
8199 -- X1 in T2 D3 in T1 D3 in T2 no
8200 -- X2 in T2 D1 in T1 D1 in T2 no
8201 -- D1 in T2 empty itself yes
8202 -- D2 in T2 empty itself yes
8203 -- D3 in T2 empty itself yes
8204
8205 -- X1 in T3 X1 in T2 D3 in T3 no
8206 -- X2 in T3 X2 in T2 D1 in T3 no
8207 -- D1 in T3 empty itself yes
8208 -- D2 in T3 empty itself yes
8209 -- D3 in T3 empty itself yes
8210
8211 -- Y in T4 X1 in T3 D3 in T4 no
8212 -- D1 in T4 empty itself yes
8213 -- D2 in T4 empty itself yes
8214 -- D3 in T4 empty itself yes
8215
8216 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8217
8218 -- Type derivation for tagged types is fairly straightforward. If no
8219 -- discriminants are specified by the derived type, these are inherited
8220 -- from the parent. No explicit stored discriminants are ever necessary.
8221 -- The only manipulation that is done to the tree is that of adding a
8222 -- _parent field with parent type and constrained to the same constraint
8223 -- specified for the parent in the derived type definition. For instance:
8224
8225 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8226 -- type T1 is new R with null record;
8227 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8228
8229 -- are changed into:
8230
8231 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8232 -- _parent : R (D1, D2, D3);
8233 -- end record;
8234
8235 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8236 -- _parent : T1 (X2, 88, X1);
8237 -- end record;
8238
8239 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8240 -- ORC and ICH fields are:
8241
8242 -- Discrim CD ORC ICH
8243 -- ^^^^^^^ ^^ ^^^ ^^^
8244 -- D1 in R empty itself no
8245 -- D2 in R empty itself no
8246 -- D3 in R empty itself no
8247
8248 -- D1 in T1 D1 in R D1 in R no
8249 -- D2 in T1 D2 in R D2 in R no
8250 -- D3 in T1 D3 in R D3 in R no
8251
8252 -- X1 in T2 D3 in T1 D3 in R no
8253 -- X2 in T2 D1 in T1 D1 in R no
8254
8255 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8256 --
8257 -- Regardless of whether we dealing with a tagged or untagged type
8258 -- we will transform all derived type declarations of the form
8259 --
8260 -- type T is new R (...) [with ...];
8261 -- or
8262 -- subtype S is R (...);
8263 -- type T is new S [with ...];
8264 -- into
8265 -- type BT is new R [with ...];
8266 -- subtype T is BT (...);
8267 --
8268 -- That is, the base derived type is constrained only if it has no
8269 -- discriminants. The reason for doing this is that GNAT's semantic model
8270 -- assumes that a base type with discriminants is unconstrained.
8271 --
8272 -- Note that, strictly speaking, the above transformation is not always
8273 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8274 --
8275 -- procedure B34011A is
8276 -- type REC (D : integer := 0) is record
8277 -- I : Integer;
8278 -- end record;
8279
8280 -- package P is
8281 -- type T6 is new Rec;
8282 -- function F return T6;
8283 -- end P;
8284
8285 -- use P;
8286 -- package Q6 is
8287 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8288 -- end Q6;
8289 --
8290 -- The definition of Q6.U is illegal. However transforming Q6.U into
8291
8292 -- type BaseU is new T6;
8293 -- subtype U is BaseU (Q6.F.I)
8294
8295 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8296 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8297 -- the transformation described above.
8298
8299 -- There is another instance where the above transformation is incorrect.
8300 -- Consider:
8301
8302 -- package Pack is
8303 -- type Base (D : Integer) is tagged null record;
8304 -- procedure P (X : Base);
8305
8306 -- type Der is new Base (2) with null record;
8307 -- procedure P (X : Der);
8308 -- end Pack;
8309
8310 -- Then the above transformation turns this into
8311
8312 -- type Der_Base is new Base with null record;
8313 -- -- procedure P (X : Base) is implicitly inherited here
8314 -- -- as procedure P (X : Der_Base).
8315
8316 -- subtype Der is Der_Base (2);
8317 -- procedure P (X : Der);
8318 -- -- The overriding of P (X : Der_Base) is illegal since we
8319 -- -- have a parameter conformance problem.
8320
8321 -- To get around this problem, after having semantically processed Der_Base
8322 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8323 -- Discriminant_Constraint from Der so that when parameter conformance is
8324 -- checked when P is overridden, no semantic errors are flagged.
8325
8326 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8327
8328 -- Regardless of whether we are dealing with a tagged or untagged type
8329 -- we will transform all derived type declarations of the form
8330
8331 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8332 -- type T is new R [with ...];
8333 -- into
8334 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8335
8336 -- The reason for such transformation is that it allows us to implement a
8337 -- very clean form of component inheritance as explained below.
8338
8339 -- Note that this transformation is not achieved by direct tree rewriting
8340 -- and manipulation, but rather by redoing the semantic actions that the
8341 -- above transformation will entail. This is done directly in routine
8342 -- Inherit_Components.
8343
8344 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8345
8346 -- In both tagged and untagged derived types, regular non discriminant
8347 -- components are inherited in the derived type from the parent type. In
8348 -- the absence of discriminants component, inheritance is straightforward
8349 -- as components can simply be copied from the parent.
8350
8351 -- If the parent has discriminants, inheriting components constrained with
8352 -- these discriminants requires caution. Consider the following example:
8353
8354 -- type R (D1, D2 : Positive) is [tagged] record
8355 -- S : String (D1 .. D2);
8356 -- end record;
8357
8358 -- type T1 is new R [with null record];
8359 -- type T2 (X : positive) is new R (1, X) [with null record];
8360
8361 -- As explained in 6. above, T1 is rewritten as
8362 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8363 -- which makes the treatment for T1 and T2 identical.
8364
8365 -- What we want when inheriting S, is that references to D1 and D2 in R are
8366 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8367 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8368 -- with either discriminant references in the derived type or expressions.
8369 -- This replacement is achieved as follows: before inheriting R's
8370 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8371 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8372 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8373 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8374 -- by String (1 .. X).
8375
8376 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8377
8378 -- We explain here the rules governing private type extensions relevant to
8379 -- type derivation. These rules are explained on the following example:
8380
8381 -- type D [(...)] is new A [(...)] with private; <-- partial view
8382 -- type D [(...)] is new P [(...)] with null record; <-- full view
8383
8384 -- Type A is called the ancestor subtype of the private extension.
8385 -- Type P is the parent type of the full view of the private extension. It
8386 -- must be A or a type derived from A.
8387
8388 -- The rules concerning the discriminants of private type extensions are
8389 -- [7.3(10-13)]:
8390
8391 -- o If a private extension inherits known discriminants from the ancestor
8392 -- subtype, then the full view must also inherit its discriminants from
8393 -- the ancestor subtype and the parent subtype of the full view must be
8394 -- constrained if and only if the ancestor subtype is constrained.
8395
8396 -- o If a partial view has unknown discriminants, then the full view may
8397 -- define a definite or an indefinite subtype, with or without
8398 -- discriminants.
8399
8400 -- o If a partial view has neither known nor unknown discriminants, then
8401 -- the full view must define a definite subtype.
8402
8403 -- o If the ancestor subtype of a private extension has constrained
8404 -- discriminants, then the parent subtype of the full view must impose a
8405 -- statically matching constraint on those discriminants.
8406
8407 -- This means that only the following forms of private extensions are
8408 -- allowed:
8409
8410 -- type D is new A with private; <-- partial view
8411 -- type D is new P with null record; <-- full view
8412
8413 -- If A has no discriminants than P has no discriminants, otherwise P must
8414 -- inherit A's discriminants.
8415
8416 -- type D is new A (...) with private; <-- partial view
8417 -- type D is new P (:::) with null record; <-- full view
8418
8419 -- P must inherit A's discriminants and (...) and (:::) must statically
8420 -- match.
8421
8422 -- subtype A is R (...);
8423 -- type D is new A with private; <-- partial view
8424 -- type D is new P with null record; <-- full view
8425
8426 -- P must have inherited R's discriminants and must be derived from A or
8427 -- any of its subtypes.
8428
8429 -- type D (..) is new A with private; <-- partial view
8430 -- type D (..) is new P [(:::)] with null record; <-- full view
8431
8432 -- No specific constraints on P's discriminants or constraint (:::).
8433 -- Note that A can be unconstrained, but the parent subtype P must either
8434 -- be constrained or (:::) must be present.
8435
8436 -- type D (..) is new A [(...)] with private; <-- partial view
8437 -- type D (..) is new P [(:::)] with null record; <-- full view
8438
8439 -- P's constraints on A's discriminants must statically match those
8440 -- imposed by (...).
8441
8442 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8443
8444 -- The full view of a private extension is handled exactly as described
8445 -- above. The model chose for the private view of a private extension is
8446 -- the same for what concerns discriminants (i.e. they receive the same
8447 -- treatment as in the tagged case). However, the private view of the
8448 -- private extension always inherits the components of the parent base,
8449 -- without replacing any discriminant reference. Strictly speaking this is
8450 -- incorrect. However, Gigi never uses this view to generate code so this
8451 -- is a purely semantic issue. In theory, a set of transformations similar
8452 -- to those given in 5. and 6. above could be applied to private views of
8453 -- private extensions to have the same model of component inheritance as
8454 -- for non private extensions. However, this is not done because it would
8455 -- further complicate private type processing. Semantically speaking, this
8456 -- leaves us in an uncomfortable situation. As an example consider:
8457
8458 -- package Pack is
8459 -- type R (D : integer) is tagged record
8460 -- S : String (1 .. D);
8461 -- end record;
8462 -- procedure P (X : R);
8463 -- type T is new R (1) with private;
8464 -- private
8465 -- type T is new R (1) with null record;
8466 -- end;
8467
8468 -- This is transformed into:
8469
8470 -- package Pack is
8471 -- type R (D : integer) is tagged record
8472 -- S : String (1 .. D);
8473 -- end record;
8474 -- procedure P (X : R);
8475 -- type T is new R (1) with private;
8476 -- private
8477 -- type BaseT is new R with null record;
8478 -- subtype T is BaseT (1);
8479 -- end;
8480
8481 -- (strictly speaking the above is incorrect Ada)
8482
8483 -- From the semantic standpoint the private view of private extension T
8484 -- should be flagged as constrained since one can clearly have
8485 --
8486 -- Obj : T;
8487 --
8488 -- in a unit withing Pack. However, when deriving subprograms for the
8489 -- private view of private extension T, T must be seen as unconstrained
8490 -- since T has discriminants (this is a constraint of the current
8491 -- subprogram derivation model). Thus, when processing the private view of
8492 -- a private extension such as T, we first mark T as unconstrained, we
8493 -- process it, we perform program derivation and just before returning from
8494 -- Build_Derived_Record_Type we mark T as constrained.
8495
8496 -- ??? Are there are other uncomfortable cases that we will have to
8497 -- deal with.
8498
8499 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8500
8501 -- Types that are derived from a visible record type and have a private
8502 -- extension present other peculiarities. They behave mostly like private
8503 -- types, but if they have primitive operations defined, these will not
8504 -- have the proper signatures for further inheritance, because other
8505 -- primitive operations will use the implicit base that we define for
8506 -- private derivations below. This affect subprogram inheritance (see
8507 -- Derive_Subprograms for details). We also derive the implicit base from
8508 -- the base type of the full view, so that the implicit base is a record
8509 -- type and not another private type, This avoids infinite loops.
8510
8511 procedure Build_Derived_Record_Type
8512 (N : Node_Id;
8513 Parent_Type : Entity_Id;
8514 Derived_Type : Entity_Id;
8515 Derive_Subps : Boolean := True)
8516 is
8517 Discriminant_Specs : constant Boolean :=
8518 Present (Discriminant_Specifications (N));
8519 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8520 Loc : constant Source_Ptr := Sloc (N);
8521 Private_Extension : constant Boolean :=
8522 Nkind (N) = N_Private_Extension_Declaration;
8523 Assoc_List : Elist_Id;
8524 Constraint_Present : Boolean;
8525 Constrs : Elist_Id;
8526 Discrim : Entity_Id;
8527 Indic : Node_Id;
8528 Inherit_Discrims : Boolean := False;
8529 Last_Discrim : Entity_Id;
8530 New_Base : Entity_Id;
8531 New_Decl : Node_Id;
8532 New_Discrs : Elist_Id;
8533 New_Indic : Node_Id;
8534 Parent_Base : Entity_Id;
8535 Save_Etype : Entity_Id;
8536 Save_Discr_Constr : Elist_Id;
8537 Save_Next_Entity : Entity_Id;
8538 Type_Def : Node_Id;
8539
8540 Discs : Elist_Id := New_Elmt_List;
8541 -- An empty Discs list means that there were no constraints in the
8542 -- subtype indication or that there was an error processing it.
8543
8544 begin
8545 if Ekind (Parent_Type) = E_Record_Type_With_Private
8546 and then Present (Full_View (Parent_Type))
8547 and then Has_Discriminants (Parent_Type)
8548 then
8549 Parent_Base := Base_Type (Full_View (Parent_Type));
8550 else
8551 Parent_Base := Base_Type (Parent_Type);
8552 end if;
8553
8554 -- AI05-0115: if this is a derivation from a private type in some
8555 -- other scope that may lead to invisible components for the derived
8556 -- type, mark it accordingly.
8557
8558 if Is_Private_Type (Parent_Type) then
8559 if Scope (Parent_Base) = Scope (Derived_Type) then
8560 null;
8561
8562 elsif In_Open_Scopes (Scope (Parent_Base))
8563 and then In_Private_Part (Scope (Parent_Base))
8564 then
8565 null;
8566
8567 else
8568 Set_Has_Private_Ancestor (Derived_Type);
8569 end if;
8570
8571 else
8572 Set_Has_Private_Ancestor
8573 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8574 end if;
8575
8576 -- Before we start the previously documented transformations, here is
8577 -- little fix for size and alignment of tagged types. Normally when we
8578 -- derive type D from type P, we copy the size and alignment of P as the
8579 -- default for D, and in the absence of explicit representation clauses
8580 -- for D, the size and alignment are indeed the same as the parent.
8581
8582 -- But this is wrong for tagged types, since fields may be added, and
8583 -- the default size may need to be larger, and the default alignment may
8584 -- need to be larger.
8585
8586 -- We therefore reset the size and alignment fields in the tagged case.
8587 -- Note that the size and alignment will in any case be at least as
8588 -- large as the parent type (since the derived type has a copy of the
8589 -- parent type in the _parent field)
8590
8591 -- The type is also marked as being tagged here, which is needed when
8592 -- processing components with a self-referential anonymous access type
8593 -- in the call to Check_Anonymous_Access_Components below. Note that
8594 -- this flag is also set later on for completeness.
8595
8596 if Is_Tagged then
8597 Set_Is_Tagged_Type (Derived_Type);
8598 Init_Size_Align (Derived_Type);
8599 end if;
8600
8601 -- STEP 0a: figure out what kind of derived type declaration we have
8602
8603 if Private_Extension then
8604 Type_Def := N;
8605 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8606 Set_Default_SSO (Derived_Type);
8607 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8608
8609 else
8610 Type_Def := Type_Definition (N);
8611
8612 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8613 -- Parent_Base can be a private type or private extension. However,
8614 -- for tagged types with an extension the newly added fields are
8615 -- visible and hence the Derived_Type is always an E_Record_Type.
8616 -- (except that the parent may have its own private fields).
8617 -- For untagged types we preserve the Ekind of the Parent_Base.
8618
8619 if Present (Record_Extension_Part (Type_Def)) then
8620 Set_Ekind (Derived_Type, E_Record_Type);
8621 Set_Default_SSO (Derived_Type);
8622 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8623
8624 -- Create internal access types for components with anonymous
8625 -- access types.
8626
8627 if Ada_Version >= Ada_2005 then
8628 Check_Anonymous_Access_Components
8629 (N, Derived_Type, Derived_Type,
8630 Component_List (Record_Extension_Part (Type_Def)));
8631 end if;
8632
8633 else
8634 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8635 end if;
8636 end if;
8637
8638 -- Indic can either be an N_Identifier if the subtype indication
8639 -- contains no constraint or an N_Subtype_Indication if the subtype
8640 -- indication has a constraint.
8641
8642 Indic := Subtype_Indication (Type_Def);
8643 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8644
8645 -- Check that the type has visible discriminants. The type may be
8646 -- a private type with unknown discriminants whose full view has
8647 -- discriminants which are invisible.
8648
8649 if Constraint_Present then
8650 if not Has_Discriminants (Parent_Base)
8651 or else
8652 (Has_Unknown_Discriminants (Parent_Base)
8653 and then Is_Private_Type (Parent_Base))
8654 then
8655 Error_Msg_N
8656 ("invalid constraint: type has no discriminant",
8657 Constraint (Indic));
8658
8659 Constraint_Present := False;
8660 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8661
8662 elsif Is_Constrained (Parent_Type) then
8663 Error_Msg_N
8664 ("invalid constraint: parent type is already constrained",
8665 Constraint (Indic));
8666
8667 Constraint_Present := False;
8668 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8669 end if;
8670 end if;
8671
8672 -- STEP 0b: If needed, apply transformation given in point 5. above
8673
8674 if not Private_Extension
8675 and then Has_Discriminants (Parent_Type)
8676 and then not Discriminant_Specs
8677 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8678 then
8679 -- First, we must analyze the constraint (see comment in point 5.)
8680 -- The constraint may come from the subtype indication of the full
8681 -- declaration.
8682
8683 if Constraint_Present then
8684 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8685
8686 -- If there is no explicit constraint, there might be one that is
8687 -- inherited from a constrained parent type. In that case verify that
8688 -- it conforms to the constraint in the partial view. In perverse
8689 -- cases the parent subtypes of the partial and full view can have
8690 -- different constraints.
8691
8692 elsif Present (Stored_Constraint (Parent_Type)) then
8693 New_Discrs := Stored_Constraint (Parent_Type);
8694
8695 else
8696 New_Discrs := No_Elist;
8697 end if;
8698
8699 if Has_Discriminants (Derived_Type)
8700 and then Has_Private_Declaration (Derived_Type)
8701 and then Present (Discriminant_Constraint (Derived_Type))
8702 and then Present (New_Discrs)
8703 then
8704 -- Verify that constraints of the full view statically match
8705 -- those given in the partial view.
8706
8707 declare
8708 C1, C2 : Elmt_Id;
8709
8710 begin
8711 C1 := First_Elmt (New_Discrs);
8712 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8713 while Present (C1) and then Present (C2) loop
8714 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8715 or else
8716 (Is_OK_Static_Expression (Node (C1))
8717 and then Is_OK_Static_Expression (Node (C2))
8718 and then
8719 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8720 then
8721 null;
8722
8723 else
8724 if Constraint_Present then
8725 Error_Msg_N
8726 ("constraint not conformant to previous declaration",
8727 Node (C1));
8728 else
8729 Error_Msg_N
8730 ("constraint of full view is incompatible "
8731 & "with partial view", N);
8732 end if;
8733 end if;
8734
8735 Next_Elmt (C1);
8736 Next_Elmt (C2);
8737 end loop;
8738 end;
8739 end if;
8740
8741 -- Insert and analyze the declaration for the unconstrained base type
8742
8743 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8744
8745 New_Decl :=
8746 Make_Full_Type_Declaration (Loc,
8747 Defining_Identifier => New_Base,
8748 Type_Definition =>
8749 Make_Derived_Type_Definition (Loc,
8750 Abstract_Present => Abstract_Present (Type_Def),
8751 Limited_Present => Limited_Present (Type_Def),
8752 Subtype_Indication =>
8753 New_Occurrence_Of (Parent_Base, Loc),
8754 Record_Extension_Part =>
8755 Relocate_Node (Record_Extension_Part (Type_Def)),
8756 Interface_List => Interface_List (Type_Def)));
8757
8758 Set_Parent (New_Decl, Parent (N));
8759 Mark_Rewrite_Insertion (New_Decl);
8760 Insert_Before (N, New_Decl);
8761
8762 -- In the extension case, make sure ancestor is frozen appropriately
8763 -- (see also non-discriminated case below).
8764
8765 if Present (Record_Extension_Part (Type_Def))
8766 or else Is_Interface (Parent_Base)
8767 then
8768 Freeze_Before (New_Decl, Parent_Type);
8769 end if;
8770
8771 -- Note that this call passes False for the Derive_Subps parameter
8772 -- because subprogram derivation is deferred until after creating
8773 -- the subtype (see below).
8774
8775 Build_Derived_Type
8776 (New_Decl, Parent_Base, New_Base,
8777 Is_Completion => False, Derive_Subps => False);
8778
8779 -- ??? This needs re-examination to determine whether the
8780 -- above call can simply be replaced by a call to Analyze.
8781
8782 Set_Analyzed (New_Decl);
8783
8784 -- Insert and analyze the declaration for the constrained subtype
8785
8786 if Constraint_Present then
8787 New_Indic :=
8788 Make_Subtype_Indication (Loc,
8789 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8790 Constraint => Relocate_Node (Constraint (Indic)));
8791
8792 else
8793 declare
8794 Constr_List : constant List_Id := New_List;
8795 C : Elmt_Id;
8796 Expr : Node_Id;
8797
8798 begin
8799 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8800 while Present (C) loop
8801 Expr := Node (C);
8802
8803 -- It is safe here to call New_Copy_Tree since we called
8804 -- Force_Evaluation on each constraint previously
8805 -- in Build_Discriminant_Constraints.
8806
8807 Append (New_Copy_Tree (Expr), To => Constr_List);
8808
8809 Next_Elmt (C);
8810 end loop;
8811
8812 New_Indic :=
8813 Make_Subtype_Indication (Loc,
8814 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8815 Constraint =>
8816 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8817 end;
8818 end if;
8819
8820 Rewrite (N,
8821 Make_Subtype_Declaration (Loc,
8822 Defining_Identifier => Derived_Type,
8823 Subtype_Indication => New_Indic));
8824
8825 Analyze (N);
8826
8827 -- Derivation of subprograms must be delayed until the full subtype
8828 -- has been established, to ensure proper overriding of subprograms
8829 -- inherited by full types. If the derivations occurred as part of
8830 -- the call to Build_Derived_Type above, then the check for type
8831 -- conformance would fail because earlier primitive subprograms
8832 -- could still refer to the full type prior the change to the new
8833 -- subtype and hence would not match the new base type created here.
8834 -- Subprograms are not derived, however, when Derive_Subps is False
8835 -- (since otherwise there could be redundant derivations).
8836
8837 if Derive_Subps then
8838 Derive_Subprograms (Parent_Type, Derived_Type);
8839 end if;
8840
8841 -- For tagged types the Discriminant_Constraint of the new base itype
8842 -- is inherited from the first subtype so that no subtype conformance
8843 -- problem arise when the first subtype overrides primitive
8844 -- operations inherited by the implicit base type.
8845
8846 if Is_Tagged then
8847 Set_Discriminant_Constraint
8848 (New_Base, Discriminant_Constraint (Derived_Type));
8849 end if;
8850
8851 return;
8852 end if;
8853
8854 -- If we get here Derived_Type will have no discriminants or it will be
8855 -- a discriminated unconstrained base type.
8856
8857 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8858
8859 if Is_Tagged then
8860
8861 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8862 -- The declaration of a specific descendant of an interface type
8863 -- freezes the interface type (RM 13.14).
8864
8865 if not Private_Extension or else Is_Interface (Parent_Base) then
8866 Freeze_Before (N, Parent_Type);
8867 end if;
8868
8869 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8870 -- cannot be declared at a deeper level than its parent type is
8871 -- removed. The check on derivation within a generic body is also
8872 -- relaxed, but there's a restriction that a derived tagged type
8873 -- cannot be declared in a generic body if it's derived directly
8874 -- or indirectly from a formal type of that generic.
8875
8876 if Ada_Version >= Ada_2005 then
8877 if Present (Enclosing_Generic_Body (Derived_Type)) then
8878 declare
8879 Ancestor_Type : Entity_Id;
8880
8881 begin
8882 -- Check to see if any ancestor of the derived type is a
8883 -- formal type.
8884
8885 Ancestor_Type := Parent_Type;
8886 while not Is_Generic_Type (Ancestor_Type)
8887 and then Etype (Ancestor_Type) /= Ancestor_Type
8888 loop
8889 Ancestor_Type := Etype (Ancestor_Type);
8890 end loop;
8891
8892 -- If the derived type does have a formal type as an
8893 -- ancestor, then it's an error if the derived type is
8894 -- declared within the body of the generic unit that
8895 -- declares the formal type in its generic formal part. It's
8896 -- sufficient to check whether the ancestor type is declared
8897 -- inside the same generic body as the derived type (such as
8898 -- within a nested generic spec), in which case the
8899 -- derivation is legal. If the formal type is declared
8900 -- outside of that generic body, then it's guaranteed that
8901 -- the derived type is declared within the generic body of
8902 -- the generic unit declaring the formal type.
8903
8904 if Is_Generic_Type (Ancestor_Type)
8905 and then Enclosing_Generic_Body (Ancestor_Type) /=
8906 Enclosing_Generic_Body (Derived_Type)
8907 then
8908 Error_Msg_NE
8909 ("parent type of& must not be descendant of formal type"
8910 & " of an enclosing generic body",
8911 Indic, Derived_Type);
8912 end if;
8913 end;
8914 end if;
8915
8916 elsif Type_Access_Level (Derived_Type) /=
8917 Type_Access_Level (Parent_Type)
8918 and then not Is_Generic_Type (Derived_Type)
8919 then
8920 if Is_Controlled (Parent_Type) then
8921 Error_Msg_N
8922 ("controlled type must be declared at the library level",
8923 Indic);
8924 else
8925 Error_Msg_N
8926 ("type extension at deeper accessibility level than parent",
8927 Indic);
8928 end if;
8929
8930 else
8931 declare
8932 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8933 begin
8934 if Present (GB)
8935 and then GB /= Enclosing_Generic_Body (Parent_Base)
8936 then
8937 Error_Msg_NE
8938 ("parent type of& must not be outside generic body"
8939 & " (RM 3.9.1(4))",
8940 Indic, Derived_Type);
8941 end if;
8942 end;
8943 end if;
8944 end if;
8945
8946 -- Ada 2005 (AI-251)
8947
8948 if Ada_Version >= Ada_2005 and then Is_Tagged then
8949
8950 -- "The declaration of a specific descendant of an interface type
8951 -- freezes the interface type" (RM 13.14).
8952
8953 declare
8954 Iface : Node_Id;
8955 begin
8956 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8957 Iface := First (Interface_List (Type_Def));
8958 while Present (Iface) loop
8959 Freeze_Before (N, Etype (Iface));
8960 Next (Iface);
8961 end loop;
8962 end if;
8963 end;
8964 end if;
8965
8966 -- STEP 1b : preliminary cleanup of the full view of private types
8967
8968 -- If the type is already marked as having discriminants, then it's the
8969 -- completion of a private type or private extension and we need to
8970 -- retain the discriminants from the partial view if the current
8971 -- declaration has Discriminant_Specifications so that we can verify
8972 -- conformance. However, we must remove any existing components that
8973 -- were inherited from the parent (and attached in Copy_And_Swap)
8974 -- because the full type inherits all appropriate components anyway, and
8975 -- we do not want the partial view's components interfering.
8976
8977 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8978 Discrim := First_Discriminant (Derived_Type);
8979 loop
8980 Last_Discrim := Discrim;
8981 Next_Discriminant (Discrim);
8982 exit when No (Discrim);
8983 end loop;
8984
8985 Set_Last_Entity (Derived_Type, Last_Discrim);
8986
8987 -- In all other cases wipe out the list of inherited components (even
8988 -- inherited discriminants), it will be properly rebuilt here.
8989
8990 else
8991 Set_First_Entity (Derived_Type, Empty);
8992 Set_Last_Entity (Derived_Type, Empty);
8993 end if;
8994
8995 -- STEP 1c: Initialize some flags for the Derived_Type
8996
8997 -- The following flags must be initialized here so that
8998 -- Process_Discriminants can check that discriminants of tagged types do
8999 -- not have a default initial value and that access discriminants are
9000 -- only specified for limited records. For completeness, these flags are
9001 -- also initialized along with all the other flags below.
9002
9003 -- AI-419: Limitedness is not inherited from an interface parent, so to
9004 -- be limited in that case the type must be explicitly declared as
9005 -- limited. However, task and protected interfaces are always limited.
9006
9007 if Limited_Present (Type_Def) then
9008 Set_Is_Limited_Record (Derived_Type);
9009
9010 elsif Is_Limited_Record (Parent_Type)
9011 or else (Present (Full_View (Parent_Type))
9012 and then Is_Limited_Record (Full_View (Parent_Type)))
9013 then
9014 if not Is_Interface (Parent_Type)
9015 or else Is_Synchronized_Interface (Parent_Type)
9016 or else Is_Protected_Interface (Parent_Type)
9017 or else Is_Task_Interface (Parent_Type)
9018 then
9019 Set_Is_Limited_Record (Derived_Type);
9020 end if;
9021 end if;
9022
9023 -- STEP 2a: process discriminants of derived type if any
9024
9025 Push_Scope (Derived_Type);
9026
9027 if Discriminant_Specs then
9028 Set_Has_Unknown_Discriminants (Derived_Type, False);
9029
9030 -- The following call initializes fields Has_Discriminants and
9031 -- Discriminant_Constraint, unless we are processing the completion
9032 -- of a private type declaration.
9033
9034 Check_Or_Process_Discriminants (N, Derived_Type);
9035
9036 -- For untagged types, the constraint on the Parent_Type must be
9037 -- present and is used to rename the discriminants.
9038
9039 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9040 Error_Msg_N ("untagged parent must have discriminants", Indic);
9041
9042 elsif not Is_Tagged and then not Constraint_Present then
9043 Error_Msg_N
9044 ("discriminant constraint needed for derived untagged records",
9045 Indic);
9046
9047 -- Otherwise the parent subtype must be constrained unless we have a
9048 -- private extension.
9049
9050 elsif not Constraint_Present
9051 and then not Private_Extension
9052 and then not Is_Constrained (Parent_Type)
9053 then
9054 Error_Msg_N
9055 ("unconstrained type not allowed in this context", Indic);
9056
9057 elsif Constraint_Present then
9058 -- The following call sets the field Corresponding_Discriminant
9059 -- for the discriminants in the Derived_Type.
9060
9061 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9062
9063 -- For untagged types all new discriminants must rename
9064 -- discriminants in the parent. For private extensions new
9065 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9066
9067 Discrim := First_Discriminant (Derived_Type);
9068 while Present (Discrim) loop
9069 if not Is_Tagged
9070 and then No (Corresponding_Discriminant (Discrim))
9071 then
9072 Error_Msg_N
9073 ("new discriminants must constrain old ones", Discrim);
9074
9075 elsif Private_Extension
9076 and then Present (Corresponding_Discriminant (Discrim))
9077 then
9078 Error_Msg_N
9079 ("only static constraints allowed for parent"
9080 & " discriminants in the partial view", Indic);
9081 exit;
9082 end if;
9083
9084 -- If a new discriminant is used in the constraint, then its
9085 -- subtype must be statically compatible with the parent
9086 -- discriminant's subtype (3.7(15)).
9087
9088 -- However, if the record contains an array constrained by
9089 -- the discriminant but with some different bound, the compiler
9090 -- tries to create a smaller range for the discriminant type.
9091 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9092 -- the discriminant type is a scalar type, the check must use
9093 -- the original discriminant type in the parent declaration.
9094
9095 declare
9096 Corr_Disc : constant Entity_Id :=
9097 Corresponding_Discriminant (Discrim);
9098 Disc_Type : constant Entity_Id := Etype (Discrim);
9099 Corr_Type : Entity_Id;
9100
9101 begin
9102 if Present (Corr_Disc) then
9103 if Is_Scalar_Type (Disc_Type) then
9104 Corr_Type :=
9105 Entity (Discriminant_Type (Parent (Corr_Disc)));
9106 else
9107 Corr_Type := Etype (Corr_Disc);
9108 end if;
9109
9110 if not
9111 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9112 then
9113 Error_Msg_N
9114 ("subtype must be compatible "
9115 & "with parent discriminant",
9116 Discrim);
9117 end if;
9118 end if;
9119 end;
9120
9121 Next_Discriminant (Discrim);
9122 end loop;
9123
9124 -- Check whether the constraints of the full view statically
9125 -- match those imposed by the parent subtype [7.3(13)].
9126
9127 if Present (Stored_Constraint (Derived_Type)) then
9128 declare
9129 C1, C2 : Elmt_Id;
9130
9131 begin
9132 C1 := First_Elmt (Discs);
9133 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9134 while Present (C1) and then Present (C2) loop
9135 if not
9136 Fully_Conformant_Expressions (Node (C1), Node (C2))
9137 then
9138 Error_Msg_N
9139 ("not conformant with previous declaration",
9140 Node (C1));
9141 end if;
9142
9143 Next_Elmt (C1);
9144 Next_Elmt (C2);
9145 end loop;
9146 end;
9147 end if;
9148 end if;
9149
9150 -- STEP 2b: No new discriminants, inherit discriminants if any
9151
9152 else
9153 if Private_Extension then
9154 Set_Has_Unknown_Discriminants
9155 (Derived_Type,
9156 Has_Unknown_Discriminants (Parent_Type)
9157 or else Unknown_Discriminants_Present (N));
9158
9159 -- The partial view of the parent may have unknown discriminants,
9160 -- but if the full view has discriminants and the parent type is
9161 -- in scope they must be inherited.
9162
9163 elsif Has_Unknown_Discriminants (Parent_Type)
9164 and then
9165 (not Has_Discriminants (Parent_Type)
9166 or else not In_Open_Scopes (Scope (Parent_Base)))
9167 then
9168 Set_Has_Unknown_Discriminants (Derived_Type);
9169 end if;
9170
9171 if not Has_Unknown_Discriminants (Derived_Type)
9172 and then not Has_Unknown_Discriminants (Parent_Base)
9173 and then Has_Discriminants (Parent_Type)
9174 then
9175 Inherit_Discrims := True;
9176 Set_Has_Discriminants
9177 (Derived_Type, True);
9178 Set_Discriminant_Constraint
9179 (Derived_Type, Discriminant_Constraint (Parent_Base));
9180 end if;
9181
9182 -- The following test is true for private types (remember
9183 -- transformation 5. is not applied to those) and in an error
9184 -- situation.
9185
9186 if Constraint_Present then
9187 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9188 end if;
9189
9190 -- For now mark a new derived type as constrained only if it has no
9191 -- discriminants. At the end of Build_Derived_Record_Type we properly
9192 -- set this flag in the case of private extensions. See comments in
9193 -- point 9. just before body of Build_Derived_Record_Type.
9194
9195 Set_Is_Constrained
9196 (Derived_Type,
9197 not (Inherit_Discrims
9198 or else Has_Unknown_Discriminants (Derived_Type)));
9199 end if;
9200
9201 -- STEP 3: initialize fields of derived type
9202
9203 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9204 Set_Stored_Constraint (Derived_Type, No_Elist);
9205
9206 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9207 -- but cannot be interfaces
9208
9209 if not Private_Extension
9210 and then Ekind (Derived_Type) /= E_Private_Type
9211 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9212 then
9213 if Interface_Present (Type_Def) then
9214 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9215 end if;
9216
9217 Set_Interfaces (Derived_Type, No_Elist);
9218 end if;
9219
9220 -- Fields inherited from the Parent_Type
9221
9222 Set_Has_Specified_Layout
9223 (Derived_Type, Has_Specified_Layout (Parent_Type));
9224 Set_Is_Limited_Composite
9225 (Derived_Type, Is_Limited_Composite (Parent_Type));
9226 Set_Is_Private_Composite
9227 (Derived_Type, Is_Private_Composite (Parent_Type));
9228
9229 if Is_Tagged_Type (Parent_Type) then
9230 Set_No_Tagged_Streams_Pragma
9231 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9232 end if;
9233
9234 -- Fields inherited from the Parent_Base
9235
9236 Set_Has_Controlled_Component
9237 (Derived_Type, Has_Controlled_Component (Parent_Base));
9238 Set_Has_Non_Standard_Rep
9239 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9240 Set_Has_Primitive_Operations
9241 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9242
9243 -- Set fields for private derived types
9244
9245 if Is_Private_Type (Derived_Type) then
9246 Set_Depends_On_Private (Derived_Type, True);
9247 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9248 end if;
9249
9250 -- Inherit fields for non-private types. If this is the completion of a
9251 -- derivation from a private type, the parent itself is private and the
9252 -- attributes come from its full view, which must be present.
9253
9254 if Is_Record_Type (Derived_Type) then
9255 declare
9256 Parent_Full : Entity_Id;
9257
9258 begin
9259 if Is_Private_Type (Parent_Base)
9260 and then not Is_Record_Type (Parent_Base)
9261 then
9262 Parent_Full := Full_View (Parent_Base);
9263 else
9264 Parent_Full := Parent_Base;
9265 end if;
9266
9267 Set_Component_Alignment
9268 (Derived_Type, Component_Alignment (Parent_Full));
9269 Set_C_Pass_By_Copy
9270 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9271 Set_Has_Complex_Representation
9272 (Derived_Type, Has_Complex_Representation (Parent_Full));
9273
9274 -- For untagged types, inherit the layout by default to avoid
9275 -- costly changes of representation for type conversions.
9276
9277 if not Is_Tagged then
9278 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9279 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9280 end if;
9281 end;
9282 end if;
9283
9284 -- Set fields for tagged types
9285
9286 if Is_Tagged then
9287 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9288
9289 -- All tagged types defined in Ada.Finalization are controlled
9290
9291 if Chars (Scope (Derived_Type)) = Name_Finalization
9292 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9293 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9294 then
9295 Set_Is_Controlled_Active (Derived_Type);
9296 else
9297 Set_Is_Controlled_Active
9298 (Derived_Type, Is_Controlled_Active (Parent_Base));
9299 end if;
9300
9301 -- Minor optimization: there is no need to generate the class-wide
9302 -- entity associated with an underlying record view.
9303
9304 if not Is_Underlying_Record_View (Derived_Type) then
9305 Make_Class_Wide_Type (Derived_Type);
9306 end if;
9307
9308 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9309
9310 if Has_Discriminants (Derived_Type)
9311 and then Constraint_Present
9312 then
9313 Set_Stored_Constraint
9314 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9315 end if;
9316
9317 if Ada_Version >= Ada_2005 then
9318 declare
9319 Ifaces_List : Elist_Id;
9320
9321 begin
9322 -- Checks rules 3.9.4 (13/2 and 14/2)
9323
9324 if Comes_From_Source (Derived_Type)
9325 and then not Is_Private_Type (Derived_Type)
9326 and then Is_Interface (Parent_Type)
9327 and then not Is_Interface (Derived_Type)
9328 then
9329 if Is_Task_Interface (Parent_Type) then
9330 Error_Msg_N
9331 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9332 Derived_Type);
9333
9334 elsif Is_Protected_Interface (Parent_Type) then
9335 Error_Msg_N
9336 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9337 Derived_Type);
9338 end if;
9339 end if;
9340
9341 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9342
9343 Check_Interfaces (N, Type_Def);
9344
9345 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9346 -- not already in the parents.
9347
9348 Collect_Interfaces
9349 (T => Derived_Type,
9350 Ifaces_List => Ifaces_List,
9351 Exclude_Parents => True);
9352
9353 Set_Interfaces (Derived_Type, Ifaces_List);
9354
9355 -- If the derived type is the anonymous type created for
9356 -- a declaration whose parent has a constraint, propagate
9357 -- the interface list to the source type. This must be done
9358 -- prior to the completion of the analysis of the source type
9359 -- because the components in the extension may contain current
9360 -- instances whose legality depends on some ancestor.
9361
9362 if Is_Itype (Derived_Type) then
9363 declare
9364 Def : constant Node_Id :=
9365 Associated_Node_For_Itype (Derived_Type);
9366 begin
9367 if Present (Def)
9368 and then Nkind (Def) = N_Full_Type_Declaration
9369 then
9370 Set_Interfaces
9371 (Defining_Identifier (Def), Ifaces_List);
9372 end if;
9373 end;
9374 end if;
9375
9376 -- A type extension is automatically Ghost when one of its
9377 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9378 -- also inherited when the parent type is Ghost, but this is
9379 -- done in Build_Derived_Type as the mechanism also handles
9380 -- untagged derivations.
9381
9382 if Implements_Ghost_Interface (Derived_Type) then
9383 Set_Is_Ghost_Entity (Derived_Type);
9384 end if;
9385 end;
9386 end if;
9387 end if;
9388
9389 -- STEP 4: Inherit components from the parent base and constrain them.
9390 -- Apply the second transformation described in point 6. above.
9391
9392 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9393 or else not Has_Discriminants (Parent_Type)
9394 or else not Is_Constrained (Parent_Type)
9395 then
9396 Constrs := Discs;
9397 else
9398 Constrs := Discriminant_Constraint (Parent_Type);
9399 end if;
9400
9401 Assoc_List :=
9402 Inherit_Components
9403 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9404
9405 -- STEP 5a: Copy the parent record declaration for untagged types
9406
9407 Set_Has_Implicit_Dereference
9408 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9409
9410 if not Is_Tagged then
9411
9412 -- Discriminant_Constraint (Derived_Type) has been properly
9413 -- constructed. Save it and temporarily set it to Empty because we
9414 -- do not want the call to New_Copy_Tree below to mess this list.
9415
9416 if Has_Discriminants (Derived_Type) then
9417 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9418 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9419 else
9420 Save_Discr_Constr := No_Elist;
9421 end if;
9422
9423 -- Save the Etype field of Derived_Type. It is correctly set now,
9424 -- but the call to New_Copy tree may remap it to point to itself,
9425 -- which is not what we want. Ditto for the Next_Entity field.
9426
9427 Save_Etype := Etype (Derived_Type);
9428 Save_Next_Entity := Next_Entity (Derived_Type);
9429
9430 -- Assoc_List maps all stored discriminants in the Parent_Base to
9431 -- stored discriminants in the Derived_Type. It is fundamental that
9432 -- no types or itypes with discriminants other than the stored
9433 -- discriminants appear in the entities declared inside
9434 -- Derived_Type, since the back end cannot deal with it.
9435
9436 New_Decl :=
9437 New_Copy_Tree
9438 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9439 Copy_Dimensions_Of_Components (Derived_Type);
9440
9441 -- Restore the fields saved prior to the New_Copy_Tree call
9442 -- and compute the stored constraint.
9443
9444 Set_Etype (Derived_Type, Save_Etype);
9445 Link_Entities (Derived_Type, Save_Next_Entity);
9446
9447 if Has_Discriminants (Derived_Type) then
9448 Set_Discriminant_Constraint
9449 (Derived_Type, Save_Discr_Constr);
9450 Set_Stored_Constraint
9451 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9452 Replace_Components (Derived_Type, New_Decl);
9453 end if;
9454
9455 -- Insert the new derived type declaration
9456
9457 Rewrite (N, New_Decl);
9458
9459 -- STEP 5b: Complete the processing for record extensions in generics
9460
9461 -- There is no completion for record extensions declared in the
9462 -- parameter part of a generic, so we need to complete processing for
9463 -- these generic record extensions here. The Record_Type_Definition call
9464 -- will change the Ekind of the components from E_Void to E_Component.
9465
9466 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9467 Record_Type_Definition (Empty, Derived_Type);
9468
9469 -- STEP 5c: Process the record extension for non private tagged types
9470
9471 elsif not Private_Extension then
9472 Expand_Record_Extension (Derived_Type, Type_Def);
9473
9474 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9475 -- derived type to propagate some semantic information. This led
9476 -- to other ASIS failures and has been removed.
9477
9478 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9479 -- implemented interfaces if we are in expansion mode
9480
9481 if Expander_Active
9482 and then Has_Interfaces (Derived_Type)
9483 then
9484 Add_Interface_Tag_Components (N, Derived_Type);
9485 end if;
9486
9487 -- Analyze the record extension
9488
9489 Record_Type_Definition
9490 (Record_Extension_Part (Type_Def), Derived_Type);
9491 end if;
9492
9493 End_Scope;
9494
9495 -- Nothing else to do if there is an error in the derivation.
9496 -- An unusual case: the full view may be derived from a type in an
9497 -- instance, when the partial view was used illegally as an actual
9498 -- in that instance, leading to a circular definition.
9499
9500 if Etype (Derived_Type) = Any_Type
9501 or else Etype (Parent_Type) = Derived_Type
9502 then
9503 return;
9504 end if;
9505
9506 -- Set delayed freeze and then derive subprograms, we need to do
9507 -- this in this order so that derived subprograms inherit the
9508 -- derived freeze if necessary.
9509
9510 Set_Has_Delayed_Freeze (Derived_Type);
9511
9512 if Derive_Subps then
9513 Derive_Subprograms (Parent_Type, Derived_Type);
9514 end if;
9515
9516 -- If we have a private extension which defines a constrained derived
9517 -- type mark as constrained here after we have derived subprograms. See
9518 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9519
9520 if Private_Extension and then Inherit_Discrims then
9521 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9522 Set_Is_Constrained (Derived_Type, True);
9523 Set_Discriminant_Constraint (Derived_Type, Discs);
9524
9525 elsif Is_Constrained (Parent_Type) then
9526 Set_Is_Constrained
9527 (Derived_Type, True);
9528 Set_Discriminant_Constraint
9529 (Derived_Type, Discriminant_Constraint (Parent_Type));
9530 end if;
9531 end if;
9532
9533 -- Update the class-wide type, which shares the now-completed entity
9534 -- list with its specific type. In case of underlying record views,
9535 -- we do not generate the corresponding class wide entity.
9536
9537 if Is_Tagged
9538 and then not Is_Underlying_Record_View (Derived_Type)
9539 then
9540 Set_First_Entity
9541 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9542 Set_Last_Entity
9543 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9544 end if;
9545
9546 Check_Function_Writable_Actuals (N);
9547 end Build_Derived_Record_Type;
9548
9549 ------------------------
9550 -- Build_Derived_Type --
9551 ------------------------
9552
9553 procedure Build_Derived_Type
9554 (N : Node_Id;
9555 Parent_Type : Entity_Id;
9556 Derived_Type : Entity_Id;
9557 Is_Completion : Boolean;
9558 Derive_Subps : Boolean := True)
9559 is
9560 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9561
9562 begin
9563 -- Set common attributes
9564
9565 Set_Scope (Derived_Type, Current_Scope);
9566 Set_Etype (Derived_Type, Parent_Base);
9567 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9568 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9569
9570 Set_Size_Info (Derived_Type, Parent_Type);
9571 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9572
9573 Set_Is_Controlled_Active
9574 (Derived_Type, Is_Controlled_Active (Parent_Type));
9575
9576 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9577 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9578 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9579
9580 if Is_Tagged_Type (Derived_Type) then
9581 Set_No_Tagged_Streams_Pragma
9582 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9583 end if;
9584
9585 -- If the parent has primitive routines, set the derived type link
9586
9587 if Has_Primitive_Operations (Parent_Type) then
9588 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9589 end if;
9590
9591 -- If the parent type is a private subtype, the convention on the base
9592 -- type may be set in the private part, and not propagated to the
9593 -- subtype until later, so we obtain the convention from the base type.
9594
9595 Set_Convention (Derived_Type, Convention (Parent_Base));
9596
9597 -- Set SSO default for record or array type
9598
9599 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9600 and then Is_Base_Type (Derived_Type)
9601 then
9602 Set_Default_SSO (Derived_Type);
9603 end if;
9604
9605 -- A derived type inherits the Default_Initial_Condition pragma coming
9606 -- from any parent type within the derivation chain.
9607
9608 if Has_DIC (Parent_Type) then
9609 Set_Has_Inherited_DIC (Derived_Type);
9610 end if;
9611
9612 -- A derived type inherits any class-wide invariants coming from a
9613 -- parent type or an interface. Note that the invariant procedure of
9614 -- the parent type should not be inherited because the derived type may
9615 -- define invariants of its own.
9616
9617 if not Is_Interface (Derived_Type) then
9618 if Has_Inherited_Invariants (Parent_Type)
9619 or else Has_Inheritable_Invariants (Parent_Type)
9620 then
9621 Set_Has_Inherited_Invariants (Derived_Type);
9622
9623 elsif Is_Concurrent_Type (Derived_Type)
9624 or else Is_Tagged_Type (Derived_Type)
9625 then
9626 declare
9627 Iface : Entity_Id;
9628 Ifaces : Elist_Id;
9629 Iface_Elmt : Elmt_Id;
9630
9631 begin
9632 Collect_Interfaces
9633 (T => Derived_Type,
9634 Ifaces_List => Ifaces,
9635 Exclude_Parents => True);
9636
9637 if Present (Ifaces) then
9638 Iface_Elmt := First_Elmt (Ifaces);
9639 while Present (Iface_Elmt) loop
9640 Iface := Node (Iface_Elmt);
9641
9642 if Has_Inheritable_Invariants (Iface) then
9643 Set_Has_Inherited_Invariants (Derived_Type);
9644 exit;
9645 end if;
9646
9647 Next_Elmt (Iface_Elmt);
9648 end loop;
9649 end if;
9650 end;
9651 end if;
9652 end if;
9653
9654 -- We similarly inherit predicates. Note that for scalar derived types
9655 -- the predicate is inherited from the first subtype, and not from its
9656 -- (anonymous) base type.
9657
9658 if Has_Predicates (Parent_Type)
9659 or else Has_Predicates (First_Subtype (Parent_Type))
9660 then
9661 Set_Has_Predicates (Derived_Type);
9662 end if;
9663
9664 -- The derived type inherits representation clauses from the parent
9665 -- type, and from any interfaces.
9666
9667 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9668
9669 declare
9670 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9671 begin
9672 while Present (Iface) loop
9673 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9674 Next (Iface);
9675 end loop;
9676 end;
9677
9678 -- If the parent type has delayed rep aspects, then mark the derived
9679 -- type as possibly inheriting a delayed rep aspect.
9680
9681 if Has_Delayed_Rep_Aspects (Parent_Type) then
9682 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9683 end if;
9684
9685 -- A derived type becomes Ghost when its parent type is also Ghost
9686 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9687 -- directly inherited because the Ghost policy in effect may differ.
9688
9689 if Is_Ghost_Entity (Parent_Type) then
9690 Set_Is_Ghost_Entity (Derived_Type);
9691 end if;
9692
9693 -- Type dependent processing
9694
9695 case Ekind (Parent_Type) is
9696 when Numeric_Kind =>
9697 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9698
9699 when Array_Kind =>
9700 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9701
9702 when Class_Wide_Kind
9703 | E_Record_Subtype
9704 | E_Record_Type
9705 =>
9706 Build_Derived_Record_Type
9707 (N, Parent_Type, Derived_Type, Derive_Subps);
9708 return;
9709
9710 when Enumeration_Kind =>
9711 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9712
9713 when Access_Kind =>
9714 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9715
9716 when Incomplete_Or_Private_Kind =>
9717 Build_Derived_Private_Type
9718 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9719
9720 -- For discriminated types, the derivation includes deriving
9721 -- primitive operations. For others it is done below.
9722
9723 if Is_Tagged_Type (Parent_Type)
9724 or else Has_Discriminants (Parent_Type)
9725 or else (Present (Full_View (Parent_Type))
9726 and then Has_Discriminants (Full_View (Parent_Type)))
9727 then
9728 return;
9729 end if;
9730
9731 when Concurrent_Kind =>
9732 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9733
9734 when others =>
9735 raise Program_Error;
9736 end case;
9737
9738 -- Nothing more to do if some error occurred
9739
9740 if Etype (Derived_Type) = Any_Type then
9741 return;
9742 end if;
9743
9744 -- Set delayed freeze and then derive subprograms, we need to do this
9745 -- in this order so that derived subprograms inherit the derived freeze
9746 -- if necessary.
9747
9748 Set_Has_Delayed_Freeze (Derived_Type);
9749
9750 if Derive_Subps then
9751 Derive_Subprograms (Parent_Type, Derived_Type);
9752 end if;
9753
9754 Set_Has_Primitive_Operations
9755 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9756 end Build_Derived_Type;
9757
9758 -----------------------
9759 -- Build_Discriminal --
9760 -----------------------
9761
9762 procedure Build_Discriminal (Discrim : Entity_Id) is
9763 D_Minal : Entity_Id;
9764 CR_Disc : Entity_Id;
9765
9766 begin
9767 -- A discriminal has the same name as the discriminant
9768
9769 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9770
9771 Set_Ekind (D_Minal, E_In_Parameter);
9772 Set_Mechanism (D_Minal, Default_Mechanism);
9773 Set_Etype (D_Minal, Etype (Discrim));
9774 Set_Scope (D_Minal, Current_Scope);
9775 Set_Parent (D_Minal, Parent (Discrim));
9776
9777 Set_Discriminal (Discrim, D_Minal);
9778 Set_Discriminal_Link (D_Minal, Discrim);
9779
9780 -- For task types, build at once the discriminants of the corresponding
9781 -- record, which are needed if discriminants are used in entry defaults
9782 -- and in family bounds.
9783
9784 if Is_Concurrent_Type (Current_Scope)
9785 or else
9786 Is_Limited_Type (Current_Scope)
9787 then
9788 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9789
9790 Set_Ekind (CR_Disc, E_In_Parameter);
9791 Set_Mechanism (CR_Disc, Default_Mechanism);
9792 Set_Etype (CR_Disc, Etype (Discrim));
9793 Set_Scope (CR_Disc, Current_Scope);
9794 Set_Discriminal_Link (CR_Disc, Discrim);
9795 Set_CR_Discriminant (Discrim, CR_Disc);
9796 end if;
9797 end Build_Discriminal;
9798
9799 ------------------------------------
9800 -- Build_Discriminant_Constraints --
9801 ------------------------------------
9802
9803 function Build_Discriminant_Constraints
9804 (T : Entity_Id;
9805 Def : Node_Id;
9806 Derived_Def : Boolean := False) return Elist_Id
9807 is
9808 C : constant Node_Id := Constraint (Def);
9809 Nb_Discr : constant Nat := Number_Discriminants (T);
9810
9811 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9812 -- Saves the expression corresponding to a given discriminant in T
9813
9814 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9815 -- Return the Position number within array Discr_Expr of a discriminant
9816 -- D within the discriminant list of the discriminated type T.
9817
9818 procedure Process_Discriminant_Expression
9819 (Expr : Node_Id;
9820 D : Entity_Id);
9821 -- If this is a discriminant constraint on a partial view, do not
9822 -- generate an overflow check on the discriminant expression. The check
9823 -- will be generated when constraining the full view. Otherwise the
9824 -- backend creates duplicate symbols for the temporaries corresponding
9825 -- to the expressions to be checked, causing spurious assembler errors.
9826
9827 ------------------
9828 -- Pos_Of_Discr --
9829 ------------------
9830
9831 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9832 Disc : Entity_Id;
9833
9834 begin
9835 Disc := First_Discriminant (T);
9836 for J in Discr_Expr'Range loop
9837 if Disc = D then
9838 return J;
9839 end if;
9840
9841 Next_Discriminant (Disc);
9842 end loop;
9843
9844 -- Note: Since this function is called on discriminants that are
9845 -- known to belong to the discriminated type, falling through the
9846 -- loop with no match signals an internal compiler error.
9847
9848 raise Program_Error;
9849 end Pos_Of_Discr;
9850
9851 -------------------------------------
9852 -- Process_Discriminant_Expression --
9853 -------------------------------------
9854
9855 procedure Process_Discriminant_Expression
9856 (Expr : Node_Id;
9857 D : Entity_Id)
9858 is
9859 BDT : constant Entity_Id := Base_Type (Etype (D));
9860
9861 begin
9862 -- If this is a discriminant constraint on a partial view, do
9863 -- not generate an overflow on the discriminant expression. The
9864 -- check will be generated when constraining the full view.
9865
9866 if Is_Private_Type (T)
9867 and then Present (Full_View (T))
9868 then
9869 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9870 else
9871 Analyze_And_Resolve (Expr, BDT);
9872 end if;
9873 end Process_Discriminant_Expression;
9874
9875 -- Declarations local to Build_Discriminant_Constraints
9876
9877 Discr : Entity_Id;
9878 E : Entity_Id;
9879 Elist : constant Elist_Id := New_Elmt_List;
9880
9881 Constr : Node_Id;
9882 Expr : Node_Id;
9883 Id : Node_Id;
9884 Position : Nat;
9885 Found : Boolean;
9886
9887 Discrim_Present : Boolean := False;
9888
9889 -- Start of processing for Build_Discriminant_Constraints
9890
9891 begin
9892 -- The following loop will process positional associations only.
9893 -- For a positional association, the (single) discriminant is
9894 -- implicitly specified by position, in textual order (RM 3.7.2).
9895
9896 Discr := First_Discriminant (T);
9897 Constr := First (Constraints (C));
9898 for D in Discr_Expr'Range loop
9899 exit when Nkind (Constr) = N_Discriminant_Association;
9900
9901 if No (Constr) then
9902 Error_Msg_N ("too few discriminants given in constraint", C);
9903 return New_Elmt_List;
9904
9905 elsif Nkind (Constr) = N_Range
9906 or else (Nkind (Constr) = N_Attribute_Reference
9907 and then Attribute_Name (Constr) = Name_Range)
9908 then
9909 Error_Msg_N
9910 ("a range is not a valid discriminant constraint", Constr);
9911 Discr_Expr (D) := Error;
9912
9913 elsif Nkind (Constr) = N_Subtype_Indication then
9914 Error_Msg_N
9915 ("a subtype indication is not a valid discriminant constraint",
9916 Constr);
9917 Discr_Expr (D) := Error;
9918
9919 else
9920 Process_Discriminant_Expression (Constr, Discr);
9921 Discr_Expr (D) := Constr;
9922 end if;
9923
9924 Next_Discriminant (Discr);
9925 Next (Constr);
9926 end loop;
9927
9928 if No (Discr) and then Present (Constr) then
9929 Error_Msg_N ("too many discriminants given in constraint", Constr);
9930 return New_Elmt_List;
9931 end if;
9932
9933 -- Named associations can be given in any order, but if both positional
9934 -- and named associations are used in the same discriminant constraint,
9935 -- then positional associations must occur first, at their normal
9936 -- position. Hence once a named association is used, the rest of the
9937 -- discriminant constraint must use only named associations.
9938
9939 while Present (Constr) loop
9940
9941 -- Positional association forbidden after a named association
9942
9943 if Nkind (Constr) /= N_Discriminant_Association then
9944 Error_Msg_N ("positional association follows named one", Constr);
9945 return New_Elmt_List;
9946
9947 -- Otherwise it is a named association
9948
9949 else
9950 -- E records the type of the discriminants in the named
9951 -- association. All the discriminants specified in the same name
9952 -- association must have the same type.
9953
9954 E := Empty;
9955
9956 -- Search the list of discriminants in T to see if the simple name
9957 -- given in the constraint matches any of them.
9958
9959 Id := First (Selector_Names (Constr));
9960 while Present (Id) loop
9961 Found := False;
9962
9963 -- If Original_Discriminant is present, we are processing a
9964 -- generic instantiation and this is an instance node. We need
9965 -- to find the name of the corresponding discriminant in the
9966 -- actual record type T and not the name of the discriminant in
9967 -- the generic formal. Example:
9968
9969 -- generic
9970 -- type G (D : int) is private;
9971 -- package P is
9972 -- subtype W is G (D => 1);
9973 -- end package;
9974 -- type Rec (X : int) is record ... end record;
9975 -- package Q is new P (G => Rec);
9976
9977 -- At the point of the instantiation, formal type G is Rec
9978 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9979 -- which really looks like "subtype W is Rec (D => 1);" at
9980 -- the point of instantiation, we want to find the discriminant
9981 -- that corresponds to D in Rec, i.e. X.
9982
9983 if Present (Original_Discriminant (Id))
9984 and then In_Instance
9985 then
9986 Discr := Find_Corresponding_Discriminant (Id, T);
9987 Found := True;
9988
9989 else
9990 Discr := First_Discriminant (T);
9991 while Present (Discr) loop
9992 if Chars (Discr) = Chars (Id) then
9993 Found := True;
9994 exit;
9995 end if;
9996
9997 Next_Discriminant (Discr);
9998 end loop;
9999
10000 if not Found then
10001 Error_Msg_N ("& does not match any discriminant", Id);
10002 return New_Elmt_List;
10003
10004 -- If the parent type is a generic formal, preserve the
10005 -- name of the discriminant for subsequent instances.
10006 -- see comment at the beginning of this if statement.
10007
10008 elsif Is_Generic_Type (Root_Type (T)) then
10009 Set_Original_Discriminant (Id, Discr);
10010 end if;
10011 end if;
10012
10013 Position := Pos_Of_Discr (T, Discr);
10014
10015 if Present (Discr_Expr (Position)) then
10016 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10017
10018 else
10019 -- Each discriminant specified in the same named association
10020 -- must be associated with a separate copy of the
10021 -- corresponding expression.
10022
10023 if Present (Next (Id)) then
10024 Expr := New_Copy_Tree (Expression (Constr));
10025 Set_Parent (Expr, Parent (Expression (Constr)));
10026 else
10027 Expr := Expression (Constr);
10028 end if;
10029
10030 Discr_Expr (Position) := Expr;
10031 Process_Discriminant_Expression (Expr, Discr);
10032 end if;
10033
10034 -- A discriminant association with more than one discriminant
10035 -- name is only allowed if the named discriminants are all of
10036 -- the same type (RM 3.7.1(8)).
10037
10038 if E = Empty then
10039 E := Base_Type (Etype (Discr));
10040
10041 elsif Base_Type (Etype (Discr)) /= E then
10042 Error_Msg_N
10043 ("all discriminants in an association " &
10044 "must have the same type", Id);
10045 end if;
10046
10047 Next (Id);
10048 end loop;
10049 end if;
10050
10051 Next (Constr);
10052 end loop;
10053
10054 -- A discriminant constraint must provide exactly one value for each
10055 -- discriminant of the type (RM 3.7.1(8)).
10056
10057 for J in Discr_Expr'Range loop
10058 if No (Discr_Expr (J)) then
10059 Error_Msg_N ("too few discriminants given in constraint", C);
10060 return New_Elmt_List;
10061 end if;
10062 end loop;
10063
10064 -- Determine if there are discriminant expressions in the constraint
10065
10066 for J in Discr_Expr'Range loop
10067 if Denotes_Discriminant
10068 (Discr_Expr (J), Check_Concurrent => True)
10069 then
10070 Discrim_Present := True;
10071 end if;
10072 end loop;
10073
10074 -- Build an element list consisting of the expressions given in the
10075 -- discriminant constraint and apply the appropriate checks. The list
10076 -- is constructed after resolving any named discriminant associations
10077 -- and therefore the expressions appear in the textual order of the
10078 -- discriminants.
10079
10080 Discr := First_Discriminant (T);
10081 for J in Discr_Expr'Range loop
10082 if Discr_Expr (J) /= Error then
10083 Append_Elmt (Discr_Expr (J), Elist);
10084
10085 -- If any of the discriminant constraints is given by a
10086 -- discriminant and we are in a derived type declaration we
10087 -- have a discriminant renaming. Establish link between new
10088 -- and old discriminant. The new discriminant has an implicit
10089 -- dereference if the old one does.
10090
10091 if Denotes_Discriminant (Discr_Expr (J)) then
10092 if Derived_Def then
10093 declare
10094 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10095
10096 begin
10097 Set_Corresponding_Discriminant (New_Discr, Discr);
10098 Set_Has_Implicit_Dereference (New_Discr,
10099 Has_Implicit_Dereference (Discr));
10100 end;
10101 end if;
10102
10103 -- Force the evaluation of non-discriminant expressions.
10104 -- If we have found a discriminant in the constraint 3.4(26)
10105 -- and 3.8(18) demand that no range checks are performed are
10106 -- after evaluation. If the constraint is for a component
10107 -- definition that has a per-object constraint, expressions are
10108 -- evaluated but not checked either. In all other cases perform
10109 -- a range check.
10110
10111 else
10112 if Discrim_Present then
10113 null;
10114
10115 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10116 and then Has_Per_Object_Constraint
10117 (Defining_Identifier (Parent (Parent (Def))))
10118 then
10119 null;
10120
10121 elsif Is_Access_Type (Etype (Discr)) then
10122 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10123
10124 else
10125 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10126 end if;
10127
10128 Force_Evaluation (Discr_Expr (J));
10129 end if;
10130
10131 -- Check that the designated type of an access discriminant's
10132 -- expression is not a class-wide type unless the discriminant's
10133 -- designated type is also class-wide.
10134
10135 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10136 and then not Is_Class_Wide_Type
10137 (Designated_Type (Etype (Discr)))
10138 and then Etype (Discr_Expr (J)) /= Any_Type
10139 and then Is_Class_Wide_Type
10140 (Designated_Type (Etype (Discr_Expr (J))))
10141 then
10142 Wrong_Type (Discr_Expr (J), Etype (Discr));
10143
10144 elsif Is_Access_Type (Etype (Discr))
10145 and then not Is_Access_Constant (Etype (Discr))
10146 and then Is_Access_Type (Etype (Discr_Expr (J)))
10147 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10148 then
10149 Error_Msg_NE
10150 ("constraint for discriminant& must be access to variable",
10151 Def, Discr);
10152 end if;
10153 end if;
10154
10155 Next_Discriminant (Discr);
10156 end loop;
10157
10158 return Elist;
10159 end Build_Discriminant_Constraints;
10160
10161 ---------------------------------
10162 -- Build_Discriminated_Subtype --
10163 ---------------------------------
10164
10165 procedure Build_Discriminated_Subtype
10166 (T : Entity_Id;
10167 Def_Id : Entity_Id;
10168 Elist : Elist_Id;
10169 Related_Nod : Node_Id;
10170 For_Access : Boolean := False)
10171 is
10172 Has_Discrs : constant Boolean := Has_Discriminants (T);
10173 Constrained : constant Boolean :=
10174 (Has_Discrs
10175 and then not Is_Empty_Elmt_List (Elist)
10176 and then not Is_Class_Wide_Type (T))
10177 or else Is_Constrained (T);
10178
10179 begin
10180 if Ekind (T) = E_Record_Type then
10181 if For_Access then
10182 Set_Ekind (Def_Id, E_Private_Subtype);
10183 Set_Is_For_Access_Subtype (Def_Id, True);
10184 else
10185 Set_Ekind (Def_Id, E_Record_Subtype);
10186 end if;
10187
10188 -- Inherit preelaboration flag from base, for types for which it
10189 -- may have been set: records, private types, protected types.
10190
10191 Set_Known_To_Have_Preelab_Init
10192 (Def_Id, Known_To_Have_Preelab_Init (T));
10193
10194 elsif Ekind (T) = E_Task_Type then
10195 Set_Ekind (Def_Id, E_Task_Subtype);
10196
10197 elsif Ekind (T) = E_Protected_Type then
10198 Set_Ekind (Def_Id, E_Protected_Subtype);
10199 Set_Known_To_Have_Preelab_Init
10200 (Def_Id, Known_To_Have_Preelab_Init (T));
10201
10202 elsif Is_Private_Type (T) then
10203 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10204 Set_Known_To_Have_Preelab_Init
10205 (Def_Id, Known_To_Have_Preelab_Init (T));
10206
10207 -- Private subtypes may have private dependents
10208
10209 Set_Private_Dependents (Def_Id, New_Elmt_List);
10210
10211 elsif Is_Class_Wide_Type (T) then
10212 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10213
10214 else
10215 -- Incomplete type. Attach subtype to list of dependents, to be
10216 -- completed with full view of parent type, unless is it the
10217 -- designated subtype of a record component within an init_proc.
10218 -- This last case arises for a component of an access type whose
10219 -- designated type is incomplete (e.g. a Taft Amendment type).
10220 -- The designated subtype is within an inner scope, and needs no
10221 -- elaboration, because only the access type is needed in the
10222 -- initialization procedure.
10223
10224 if Ekind (T) = E_Incomplete_Type then
10225 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10226 else
10227 Set_Ekind (Def_Id, Ekind (T));
10228 end if;
10229
10230 if For_Access and then Within_Init_Proc then
10231 null;
10232 else
10233 Append_Elmt (Def_Id, Private_Dependents (T));
10234 end if;
10235 end if;
10236
10237 Set_Etype (Def_Id, T);
10238 Init_Size_Align (Def_Id);
10239 Set_Has_Discriminants (Def_Id, Has_Discrs);
10240 Set_Is_Constrained (Def_Id, Constrained);
10241
10242 Set_First_Entity (Def_Id, First_Entity (T));
10243 Set_Last_Entity (Def_Id, Last_Entity (T));
10244 Set_Has_Implicit_Dereference
10245 (Def_Id, Has_Implicit_Dereference (T));
10246 Set_Has_Pragma_Unreferenced_Objects
10247 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10248
10249 -- If the subtype is the completion of a private declaration, there may
10250 -- have been representation clauses for the partial view, and they must
10251 -- be preserved. Build_Derived_Type chains the inherited clauses with
10252 -- the ones appearing on the extension. If this comes from a subtype
10253 -- declaration, all clauses are inherited.
10254
10255 if No (First_Rep_Item (Def_Id)) then
10256 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10257 end if;
10258
10259 if Is_Tagged_Type (T) then
10260 Set_Is_Tagged_Type (Def_Id);
10261 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10262 Make_Class_Wide_Type (Def_Id);
10263 end if;
10264
10265 Set_Stored_Constraint (Def_Id, No_Elist);
10266
10267 if Has_Discrs then
10268 Set_Discriminant_Constraint (Def_Id, Elist);
10269 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10270 end if;
10271
10272 if Is_Tagged_Type (T) then
10273
10274 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10275 -- concurrent record type (which has the list of primitive
10276 -- operations).
10277
10278 if Ada_Version >= Ada_2005
10279 and then Is_Concurrent_Type (T)
10280 then
10281 Set_Corresponding_Record_Type (Def_Id,
10282 Corresponding_Record_Type (T));
10283 else
10284 Set_Direct_Primitive_Operations (Def_Id,
10285 Direct_Primitive_Operations (T));
10286 end if;
10287
10288 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10289 end if;
10290
10291 -- Subtypes introduced by component declarations do not need to be
10292 -- marked as delayed, and do not get freeze nodes, because the semantics
10293 -- verifies that the parents of the subtypes are frozen before the
10294 -- enclosing record is frozen.
10295
10296 if not Is_Type (Scope (Def_Id)) then
10297 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10298
10299 if Is_Private_Type (T)
10300 and then Present (Full_View (T))
10301 then
10302 Conditional_Delay (Def_Id, Full_View (T));
10303 else
10304 Conditional_Delay (Def_Id, T);
10305 end if;
10306 end if;
10307
10308 if Is_Record_Type (T) then
10309 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10310
10311 if Has_Discrs
10312 and then not Is_Empty_Elmt_List (Elist)
10313 and then not For_Access
10314 then
10315 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10316
10317 elsif not For_Access then
10318 Set_Cloned_Subtype (Def_Id, T);
10319 end if;
10320 end if;
10321 end Build_Discriminated_Subtype;
10322
10323 ---------------------------
10324 -- Build_Itype_Reference --
10325 ---------------------------
10326
10327 procedure Build_Itype_Reference
10328 (Ityp : Entity_Id;
10329 Nod : Node_Id)
10330 is
10331 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10332 begin
10333
10334 -- Itype references are only created for use by the back-end
10335
10336 if Inside_A_Generic then
10337 return;
10338 else
10339 Set_Itype (IR, Ityp);
10340
10341 -- If Nod is a library unit entity, then Insert_After won't work,
10342 -- because Nod is not a member of any list. Therefore, we use
10343 -- Add_Global_Declaration in this case. This can happen if we have a
10344 -- build-in-place library function.
10345
10346 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10347 or else
10348 (Nkind (Nod) = N_Defining_Program_Unit_Name
10349 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10350 then
10351 Add_Global_Declaration (IR);
10352 else
10353 Insert_After (Nod, IR);
10354 end if;
10355 end if;
10356 end Build_Itype_Reference;
10357
10358 ------------------------
10359 -- Build_Scalar_Bound --
10360 ------------------------
10361
10362 function Build_Scalar_Bound
10363 (Bound : Node_Id;
10364 Par_T : Entity_Id;
10365 Der_T : Entity_Id) return Node_Id
10366 is
10367 New_Bound : Entity_Id;
10368
10369 begin
10370 -- Note: not clear why this is needed, how can the original bound
10371 -- be unanalyzed at this point? and if it is, what business do we
10372 -- have messing around with it? and why is the base type of the
10373 -- parent type the right type for the resolution. It probably is
10374 -- not. It is OK for the new bound we are creating, but not for
10375 -- the old one??? Still if it never happens, no problem.
10376
10377 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10378
10379 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10380 New_Bound := New_Copy (Bound);
10381 Set_Etype (New_Bound, Der_T);
10382 Set_Analyzed (New_Bound);
10383
10384 elsif Is_Entity_Name (Bound) then
10385 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10386
10387 -- The following is almost certainly wrong. What business do we have
10388 -- relocating a node (Bound) that is presumably still attached to
10389 -- the tree elsewhere???
10390
10391 else
10392 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10393 end if;
10394
10395 Set_Etype (New_Bound, Der_T);
10396 return New_Bound;
10397 end Build_Scalar_Bound;
10398
10399 --------------------------------
10400 -- Build_Underlying_Full_View --
10401 --------------------------------
10402
10403 procedure Build_Underlying_Full_View
10404 (N : Node_Id;
10405 Typ : Entity_Id;
10406 Par : Entity_Id)
10407 is
10408 Loc : constant Source_Ptr := Sloc (N);
10409 Subt : constant Entity_Id :=
10410 Make_Defining_Identifier
10411 (Loc, New_External_Name (Chars (Typ), 'S'));
10412
10413 Constr : Node_Id;
10414 Indic : Node_Id;
10415 C : Node_Id;
10416 Id : Node_Id;
10417
10418 procedure Set_Discriminant_Name (Id : Node_Id);
10419 -- If the derived type has discriminants, they may rename discriminants
10420 -- of the parent. When building the full view of the parent, we need to
10421 -- recover the names of the original discriminants if the constraint is
10422 -- given by named associations.
10423
10424 ---------------------------
10425 -- Set_Discriminant_Name --
10426 ---------------------------
10427
10428 procedure Set_Discriminant_Name (Id : Node_Id) is
10429 Disc : Entity_Id;
10430
10431 begin
10432 Set_Original_Discriminant (Id, Empty);
10433
10434 if Has_Discriminants (Typ) then
10435 Disc := First_Discriminant (Typ);
10436 while Present (Disc) loop
10437 if Chars (Disc) = Chars (Id)
10438 and then Present (Corresponding_Discriminant (Disc))
10439 then
10440 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10441 end if;
10442 Next_Discriminant (Disc);
10443 end loop;
10444 end if;
10445 end Set_Discriminant_Name;
10446
10447 -- Start of processing for Build_Underlying_Full_View
10448
10449 begin
10450 if Nkind (N) = N_Full_Type_Declaration then
10451 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10452
10453 elsif Nkind (N) = N_Subtype_Declaration then
10454 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10455
10456 elsif Nkind (N) = N_Component_Declaration then
10457 Constr :=
10458 New_Copy_Tree
10459 (Constraint (Subtype_Indication (Component_Definition (N))));
10460
10461 else
10462 raise Program_Error;
10463 end if;
10464
10465 C := First (Constraints (Constr));
10466 while Present (C) loop
10467 if Nkind (C) = N_Discriminant_Association then
10468 Id := First (Selector_Names (C));
10469 while Present (Id) loop
10470 Set_Discriminant_Name (Id);
10471 Next (Id);
10472 end loop;
10473 end if;
10474
10475 Next (C);
10476 end loop;
10477
10478 Indic :=
10479 Make_Subtype_Declaration (Loc,
10480 Defining_Identifier => Subt,
10481 Subtype_Indication =>
10482 Make_Subtype_Indication (Loc,
10483 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10484 Constraint => New_Copy_Tree (Constr)));
10485
10486 -- If this is a component subtype for an outer itype, it is not
10487 -- a list member, so simply set the parent link for analysis: if
10488 -- the enclosing type does not need to be in a declarative list,
10489 -- neither do the components.
10490
10491 if Is_List_Member (N)
10492 and then Nkind (N) /= N_Component_Declaration
10493 then
10494 Insert_Before (N, Indic);
10495 else
10496 Set_Parent (Indic, Parent (N));
10497 end if;
10498
10499 Analyze (Indic);
10500 Set_Underlying_Full_View (Typ, Full_View (Subt));
10501 Set_Is_Underlying_Full_View (Full_View (Subt));
10502 end Build_Underlying_Full_View;
10503
10504 -------------------------------
10505 -- Check_Abstract_Overriding --
10506 -------------------------------
10507
10508 procedure Check_Abstract_Overriding (T : Entity_Id) is
10509 Alias_Subp : Entity_Id;
10510 Elmt : Elmt_Id;
10511 Op_List : Elist_Id;
10512 Subp : Entity_Id;
10513 Type_Def : Node_Id;
10514
10515 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10516 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10517 -- which has pragma Implemented already set. Check whether Subp's entity
10518 -- kind conforms to the implementation kind of the overridden routine.
10519
10520 procedure Check_Pragma_Implemented
10521 (Subp : Entity_Id;
10522 Iface_Subp : Entity_Id);
10523 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10524 -- Iface_Subp and both entities have pragma Implemented already set on
10525 -- them. Check whether the two implementation kinds are conforming.
10526
10527 procedure Inherit_Pragma_Implemented
10528 (Subp : Entity_Id;
10529 Iface_Subp : Entity_Id);
10530 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10531 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10532 -- Propagate the implementation kind of Iface_Subp to Subp.
10533
10534 ------------------------------
10535 -- Check_Pragma_Implemented --
10536 ------------------------------
10537
10538 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10539 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10540 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10541 Subp_Alias : constant Entity_Id := Alias (Subp);
10542 Contr_Typ : Entity_Id;
10543 Impl_Subp : Entity_Id;
10544
10545 begin
10546 -- Subp must have an alias since it is a hidden entity used to link
10547 -- an interface subprogram to its overriding counterpart.
10548
10549 pragma Assert (Present (Subp_Alias));
10550
10551 -- Handle aliases to synchronized wrappers
10552
10553 Impl_Subp := Subp_Alias;
10554
10555 if Is_Primitive_Wrapper (Impl_Subp) then
10556 Impl_Subp := Wrapped_Entity (Impl_Subp);
10557 end if;
10558
10559 -- Extract the type of the controlling formal
10560
10561 Contr_Typ := Etype (First_Formal (Subp_Alias));
10562
10563 if Is_Concurrent_Record_Type (Contr_Typ) then
10564 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10565 end if;
10566
10567 -- An interface subprogram whose implementation kind is By_Entry must
10568 -- be implemented by an entry.
10569
10570 if Impl_Kind = Name_By_Entry
10571 and then Ekind (Impl_Subp) /= E_Entry
10572 then
10573 Error_Msg_Node_2 := Iface_Alias;
10574 Error_Msg_NE
10575 ("type & must implement abstract subprogram & with an entry",
10576 Subp_Alias, Contr_Typ);
10577
10578 elsif Impl_Kind = Name_By_Protected_Procedure then
10579
10580 -- An interface subprogram whose implementation kind is By_
10581 -- Protected_Procedure cannot be implemented by a primitive
10582 -- procedure of a task type.
10583
10584 if Ekind (Contr_Typ) /= E_Protected_Type then
10585 Error_Msg_Node_2 := Contr_Typ;
10586 Error_Msg_NE
10587 ("interface subprogram & cannot be implemented by a " &
10588 "primitive procedure of task type &", Subp_Alias,
10589 Iface_Alias);
10590
10591 -- An interface subprogram whose implementation kind is By_
10592 -- Protected_Procedure must be implemented by a procedure.
10593
10594 elsif Ekind (Impl_Subp) /= E_Procedure then
10595 Error_Msg_Node_2 := Iface_Alias;
10596 Error_Msg_NE
10597 ("type & must implement abstract subprogram & with a " &
10598 "procedure", Subp_Alias, Contr_Typ);
10599
10600 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10601 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10602 then
10603 Error_Msg_Name_1 := Impl_Kind;
10604 Error_Msg_N
10605 ("overriding operation& must have synchronization%",
10606 Subp_Alias);
10607 end if;
10608
10609 -- If primitive has Optional synchronization, overriding operation
10610 -- must match if it has an explicit synchronization..
10611
10612 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10613 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10614 then
10615 Error_Msg_Name_1 := Impl_Kind;
10616 Error_Msg_N
10617 ("overriding operation& must have syncrhonization%",
10618 Subp_Alias);
10619 end if;
10620 end Check_Pragma_Implemented;
10621
10622 ------------------------------
10623 -- Check_Pragma_Implemented --
10624 ------------------------------
10625
10626 procedure Check_Pragma_Implemented
10627 (Subp : Entity_Id;
10628 Iface_Subp : Entity_Id)
10629 is
10630 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10631 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10632
10633 begin
10634 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10635 -- and overriding subprogram are different. In general this is an
10636 -- error except when the implementation kind of the overridden
10637 -- subprograms is By_Any or Optional.
10638
10639 if Iface_Kind /= Subp_Kind
10640 and then Iface_Kind /= Name_By_Any
10641 and then Iface_Kind /= Name_Optional
10642 then
10643 if Iface_Kind = Name_By_Entry then
10644 Error_Msg_N
10645 ("incompatible implementation kind, overridden subprogram " &
10646 "is marked By_Entry", Subp);
10647 else
10648 Error_Msg_N
10649 ("incompatible implementation kind, overridden subprogram " &
10650 "is marked By_Protected_Procedure", Subp);
10651 end if;
10652 end if;
10653 end Check_Pragma_Implemented;
10654
10655 --------------------------------
10656 -- Inherit_Pragma_Implemented --
10657 --------------------------------
10658
10659 procedure Inherit_Pragma_Implemented
10660 (Subp : Entity_Id;
10661 Iface_Subp : Entity_Id)
10662 is
10663 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10664 Loc : constant Source_Ptr := Sloc (Subp);
10665 Impl_Prag : Node_Id;
10666
10667 begin
10668 -- Since the implementation kind is stored as a representation item
10669 -- rather than a flag, create a pragma node.
10670
10671 Impl_Prag :=
10672 Make_Pragma (Loc,
10673 Chars => Name_Implemented,
10674 Pragma_Argument_Associations => New_List (
10675 Make_Pragma_Argument_Association (Loc,
10676 Expression => New_Occurrence_Of (Subp, Loc)),
10677
10678 Make_Pragma_Argument_Association (Loc,
10679 Expression => Make_Identifier (Loc, Iface_Kind))));
10680
10681 -- The pragma doesn't need to be analyzed because it is internally
10682 -- built. It is safe to directly register it as a rep item since we
10683 -- are only interested in the characters of the implementation kind.
10684
10685 Record_Rep_Item (Subp, Impl_Prag);
10686 end Inherit_Pragma_Implemented;
10687
10688 -- Start of processing for Check_Abstract_Overriding
10689
10690 begin
10691 Op_List := Primitive_Operations (T);
10692
10693 -- Loop to check primitive operations
10694
10695 Elmt := First_Elmt (Op_List);
10696 while Present (Elmt) loop
10697 Subp := Node (Elmt);
10698 Alias_Subp := Alias (Subp);
10699
10700 -- Inherited subprograms are identified by the fact that they do not
10701 -- come from source, and the associated source location is the
10702 -- location of the first subtype of the derived type.
10703
10704 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10705 -- subprograms that "require overriding".
10706
10707 -- Special exception, do not complain about failure to override the
10708 -- stream routines _Input and _Output, as well as the primitive
10709 -- operations used in dispatching selects since we always provide
10710 -- automatic overridings for these subprograms.
10711
10712 -- The partial view of T may have been a private extension, for
10713 -- which inherited functions dispatching on result are abstract.
10714 -- If the full view is a null extension, there is no need for
10715 -- overriding in Ada 2005, but wrappers need to be built for them
10716 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10717
10718 if Is_Null_Extension (T)
10719 and then Has_Controlling_Result (Subp)
10720 and then Ada_Version >= Ada_2005
10721 and then Present (Alias_Subp)
10722 and then not Comes_From_Source (Subp)
10723 and then not Is_Abstract_Subprogram (Alias_Subp)
10724 and then not Is_Access_Type (Etype (Subp))
10725 then
10726 null;
10727
10728 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10729 -- processing because this check is done with the aliased
10730 -- entity
10731
10732 elsif Present (Interface_Alias (Subp)) then
10733 null;
10734
10735 elsif (Is_Abstract_Subprogram (Subp)
10736 or else Requires_Overriding (Subp)
10737 or else
10738 (Has_Controlling_Result (Subp)
10739 and then Present (Alias_Subp)
10740 and then not Comes_From_Source (Subp)
10741 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10742 and then not Is_TSS (Subp, TSS_Stream_Input)
10743 and then not Is_TSS (Subp, TSS_Stream_Output)
10744 and then not Is_Abstract_Type (T)
10745 and then not Is_Predefined_Interface_Primitive (Subp)
10746
10747 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10748 -- with abstract interface types because the check will be done
10749 -- with the aliased entity (otherwise we generate a duplicated
10750 -- error message).
10751
10752 and then not Present (Interface_Alias (Subp))
10753 then
10754 if Present (Alias_Subp) then
10755
10756 -- Only perform the check for a derived subprogram when the
10757 -- type has an explicit record extension. This avoids incorrect
10758 -- flagging of abstract subprograms for the case of a type
10759 -- without an extension that is derived from a formal type
10760 -- with a tagged actual (can occur within a private part).
10761
10762 -- Ada 2005 (AI-391): In the case of an inherited function with
10763 -- a controlling result of the type, the rule does not apply if
10764 -- the type is a null extension (unless the parent function
10765 -- itself is abstract, in which case the function must still be
10766 -- be overridden). The expander will generate an overriding
10767 -- wrapper function calling the parent subprogram (see
10768 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10769
10770 Type_Def := Type_Definition (Parent (T));
10771
10772 if Nkind (Type_Def) = N_Derived_Type_Definition
10773 and then Present (Record_Extension_Part (Type_Def))
10774 and then
10775 (Ada_Version < Ada_2005
10776 or else not Is_Null_Extension (T)
10777 or else Ekind (Subp) = E_Procedure
10778 or else not Has_Controlling_Result (Subp)
10779 or else Is_Abstract_Subprogram (Alias_Subp)
10780 or else Requires_Overriding (Subp)
10781 or else Is_Access_Type (Etype (Subp)))
10782 then
10783 -- Avoid reporting error in case of abstract predefined
10784 -- primitive inherited from interface type because the
10785 -- body of internally generated predefined primitives
10786 -- of tagged types are generated later by Freeze_Type
10787
10788 if Is_Interface (Root_Type (T))
10789 and then Is_Abstract_Subprogram (Subp)
10790 and then Is_Predefined_Dispatching_Operation (Subp)
10791 and then not Comes_From_Source (Ultimate_Alias (Subp))
10792 then
10793 null;
10794
10795 -- A null extension is not obliged to override an inherited
10796 -- procedure subject to pragma Extensions_Visible with value
10797 -- False and at least one controlling OUT parameter
10798 -- (SPARK RM 6.1.7(6)).
10799
10800 elsif Is_Null_Extension (T)
10801 and then Is_EVF_Procedure (Subp)
10802 then
10803 null;
10804
10805 else
10806 Error_Msg_NE
10807 ("type must be declared abstract or & overridden",
10808 T, Subp);
10809
10810 -- Traverse the whole chain of aliased subprograms to
10811 -- complete the error notification. This is especially
10812 -- useful for traceability of the chain of entities when
10813 -- the subprogram corresponds with an interface
10814 -- subprogram (which may be defined in another package).
10815
10816 if Present (Alias_Subp) then
10817 declare
10818 E : Entity_Id;
10819
10820 begin
10821 E := Subp;
10822 while Present (Alias (E)) loop
10823
10824 -- Avoid reporting redundant errors on entities
10825 -- inherited from interfaces
10826
10827 if Sloc (E) /= Sloc (T) then
10828 Error_Msg_Sloc := Sloc (E);
10829 Error_Msg_NE
10830 ("\& has been inherited #", T, Subp);
10831 end if;
10832
10833 E := Alias (E);
10834 end loop;
10835
10836 Error_Msg_Sloc := Sloc (E);
10837
10838 -- AI05-0068: report if there is an overriding
10839 -- non-abstract subprogram that is invisible.
10840
10841 if Is_Hidden (E)
10842 and then not Is_Abstract_Subprogram (E)
10843 then
10844 Error_Msg_NE
10845 ("\& subprogram# is not visible",
10846 T, Subp);
10847
10848 -- Clarify the case where a non-null extension must
10849 -- override inherited procedure subject to pragma
10850 -- Extensions_Visible with value False and at least
10851 -- one controlling OUT param.
10852
10853 elsif Is_EVF_Procedure (E) then
10854 Error_Msg_NE
10855 ("\& # is subject to Extensions_Visible False",
10856 T, Subp);
10857
10858 else
10859 Error_Msg_NE
10860 ("\& has been inherited from subprogram #",
10861 T, Subp);
10862 end if;
10863 end;
10864 end if;
10865 end if;
10866
10867 -- Ada 2005 (AI-345): Protected or task type implementing
10868 -- abstract interfaces.
10869
10870 elsif Is_Concurrent_Record_Type (T)
10871 and then Present (Interfaces (T))
10872 then
10873 -- There is no need to check here RM 9.4(11.9/3) since we
10874 -- are processing the corresponding record type and the
10875 -- mode of the overriding subprograms was verified by
10876 -- Check_Conformance when the corresponding concurrent
10877 -- type declaration was analyzed.
10878
10879 Error_Msg_NE
10880 ("interface subprogram & must be overridden", T, Subp);
10881
10882 -- Examine primitive operations of synchronized type to find
10883 -- homonyms that have the wrong profile.
10884
10885 declare
10886 Prim : Entity_Id;
10887
10888 begin
10889 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10890 while Present (Prim) loop
10891 if Chars (Prim) = Chars (Subp) then
10892 Error_Msg_NE
10893 ("profile is not type conformant with prefixed "
10894 & "view profile of inherited operation&",
10895 Prim, Subp);
10896 end if;
10897
10898 Next_Entity (Prim);
10899 end loop;
10900 end;
10901 end if;
10902
10903 else
10904 Error_Msg_Node_2 := T;
10905 Error_Msg_N
10906 ("abstract subprogram& not allowed for type&", Subp);
10907
10908 -- Also post unconditional warning on the type (unconditional
10909 -- so that if there are more than one of these cases, we get
10910 -- them all, and not just the first one).
10911
10912 Error_Msg_Node_2 := Subp;
10913 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10914 end if;
10915
10916 -- A subprogram subject to pragma Extensions_Visible with value
10917 -- "True" cannot override a subprogram subject to the same pragma
10918 -- with value "False" (SPARK RM 6.1.7(5)).
10919
10920 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10921 and then Present (Overridden_Operation (Subp))
10922 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10923 Extensions_Visible_False
10924 then
10925 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10926 Error_Msg_N
10927 ("subprogram & with Extensions_Visible True cannot override "
10928 & "subprogram # with Extensions_Visible False", Subp);
10929 end if;
10930
10931 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10932
10933 -- Subp is an expander-generated procedure which maps an interface
10934 -- alias to a protected wrapper. The interface alias is flagged by
10935 -- pragma Implemented. Ensure that Subp is a procedure when the
10936 -- implementation kind is By_Protected_Procedure or an entry when
10937 -- By_Entry.
10938
10939 if Ada_Version >= Ada_2012
10940 and then Is_Hidden (Subp)
10941 and then Present (Interface_Alias (Subp))
10942 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10943 then
10944 Check_Pragma_Implemented (Subp);
10945 end if;
10946
10947 -- Subp is an interface primitive which overrides another interface
10948 -- primitive marked with pragma Implemented.
10949
10950 if Ada_Version >= Ada_2012
10951 and then Present (Overridden_Operation (Subp))
10952 and then Has_Rep_Pragma
10953 (Overridden_Operation (Subp), Name_Implemented)
10954 then
10955 -- If the overriding routine is also marked by Implemented, check
10956 -- that the two implementation kinds are conforming.
10957
10958 if Has_Rep_Pragma (Subp, Name_Implemented) then
10959 Check_Pragma_Implemented
10960 (Subp => Subp,
10961 Iface_Subp => Overridden_Operation (Subp));
10962
10963 -- Otherwise the overriding routine inherits the implementation
10964 -- kind from the overridden subprogram.
10965
10966 else
10967 Inherit_Pragma_Implemented
10968 (Subp => Subp,
10969 Iface_Subp => Overridden_Operation (Subp));
10970 end if;
10971 end if;
10972
10973 -- If the operation is a wrapper for a synchronized primitive, it
10974 -- may be called indirectly through a dispatching select. We assume
10975 -- that it will be referenced elsewhere indirectly, and suppress
10976 -- warnings about an unused entity.
10977
10978 if Is_Primitive_Wrapper (Subp)
10979 and then Present (Wrapped_Entity (Subp))
10980 then
10981 Set_Referenced (Wrapped_Entity (Subp));
10982 end if;
10983
10984 Next_Elmt (Elmt);
10985 end loop;
10986 end Check_Abstract_Overriding;
10987
10988 ------------------------------------------------
10989 -- Check_Access_Discriminant_Requires_Limited --
10990 ------------------------------------------------
10991
10992 procedure Check_Access_Discriminant_Requires_Limited
10993 (D : Node_Id;
10994 Loc : Node_Id)
10995 is
10996 begin
10997 -- A discriminant_specification for an access discriminant shall appear
10998 -- only in the declaration for a task or protected type, or for a type
10999 -- with the reserved word 'limited' in its definition or in one of its
11000 -- ancestors (RM 3.7(10)).
11001
11002 -- AI-0063: The proper condition is that type must be immutably limited,
11003 -- or else be a partial view.
11004
11005 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
11006 if Is_Limited_View (Current_Scope)
11007 or else
11008 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11009 and then Limited_Present (Parent (Current_Scope)))
11010 then
11011 null;
11012
11013 else
11014 Error_Msg_N
11015 ("access discriminants allowed only for limited types", Loc);
11016 end if;
11017 end if;
11018 end Check_Access_Discriminant_Requires_Limited;
11019
11020 -----------------------------------
11021 -- Check_Aliased_Component_Types --
11022 -----------------------------------
11023
11024 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11025 C : Entity_Id;
11026
11027 begin
11028 -- ??? Also need to check components of record extensions, but not
11029 -- components of protected types (which are always limited).
11030
11031 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11032 -- types to be unconstrained. This is safe because it is illegal to
11033 -- create access subtypes to such types with explicit discriminant
11034 -- constraints.
11035
11036 if not Is_Limited_Type (T) then
11037 if Ekind (T) = E_Record_Type then
11038 C := First_Component (T);
11039 while Present (C) loop
11040 if Is_Aliased (C)
11041 and then Has_Discriminants (Etype (C))
11042 and then not Is_Constrained (Etype (C))
11043 and then not In_Instance_Body
11044 and then Ada_Version < Ada_2005
11045 then
11046 Error_Msg_N
11047 ("aliased component must be constrained (RM 3.6(11))",
11048 C);
11049 end if;
11050
11051 Next_Component (C);
11052 end loop;
11053
11054 elsif Ekind (T) = E_Array_Type then
11055 if Has_Aliased_Components (T)
11056 and then Has_Discriminants (Component_Type (T))
11057 and then not Is_Constrained (Component_Type (T))
11058 and then not In_Instance_Body
11059 and then Ada_Version < Ada_2005
11060 then
11061 Error_Msg_N
11062 ("aliased component type must be constrained (RM 3.6(11))",
11063 T);
11064 end if;
11065 end if;
11066 end if;
11067 end Check_Aliased_Component_Types;
11068
11069 ---------------------------------------
11070 -- Check_Anonymous_Access_Components --
11071 ---------------------------------------
11072
11073 procedure Check_Anonymous_Access_Components
11074 (Typ_Decl : Node_Id;
11075 Typ : Entity_Id;
11076 Prev : Entity_Id;
11077 Comp_List : Node_Id)
11078 is
11079 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11080 Anon_Access : Entity_Id;
11081 Acc_Def : Node_Id;
11082 Comp : Node_Id;
11083 Comp_Def : Node_Id;
11084 Decl : Node_Id;
11085 Type_Def : Node_Id;
11086
11087 procedure Build_Incomplete_Type_Declaration;
11088 -- If the record type contains components that include an access to the
11089 -- current record, then create an incomplete type declaration for the
11090 -- record, to be used as the designated type of the anonymous access.
11091 -- This is done only once, and only if there is no previous partial
11092 -- view of the type.
11093
11094 function Designates_T (Subt : Node_Id) return Boolean;
11095 -- Check whether a node designates the enclosing record type, or 'Class
11096 -- of that type
11097
11098 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11099 -- Check whether an access definition includes a reference to
11100 -- the enclosing record type. The reference can be a subtype mark
11101 -- in the access definition itself, a 'Class attribute reference, or
11102 -- recursively a reference appearing in a parameter specification
11103 -- or result definition of an access_to_subprogram definition.
11104
11105 --------------------------------------
11106 -- Build_Incomplete_Type_Declaration --
11107 --------------------------------------
11108
11109 procedure Build_Incomplete_Type_Declaration is
11110 Decl : Node_Id;
11111 Inc_T : Entity_Id;
11112 H : Entity_Id;
11113
11114 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11115 -- it's "is new ... with record" or else "is tagged record ...".
11116
11117 Is_Tagged : constant Boolean :=
11118 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11119 and then
11120 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11121 or else
11122 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11123 and then Tagged_Present (Type_Definition (Typ_Decl)));
11124
11125 begin
11126 -- If there is a previous partial view, no need to create a new one
11127 -- If the partial view, given by Prev, is incomplete, If Prev is
11128 -- a private declaration, full declaration is flagged accordingly.
11129
11130 if Prev /= Typ then
11131 if Is_Tagged then
11132 Make_Class_Wide_Type (Prev);
11133 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11134 Set_Etype (Class_Wide_Type (Typ), Typ);
11135 end if;
11136
11137 return;
11138
11139 elsif Has_Private_Declaration (Typ) then
11140
11141 -- If we refer to T'Class inside T, and T is the completion of a
11142 -- private type, then make sure the class-wide type exists.
11143
11144 if Is_Tagged then
11145 Make_Class_Wide_Type (Typ);
11146 end if;
11147
11148 return;
11149
11150 -- If there was a previous anonymous access type, the incomplete
11151 -- type declaration will have been created already.
11152
11153 elsif Present (Current_Entity (Typ))
11154 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11155 and then Full_View (Current_Entity (Typ)) = Typ
11156 then
11157 if Is_Tagged
11158 and then Comes_From_Source (Current_Entity (Typ))
11159 and then not Is_Tagged_Type (Current_Entity (Typ))
11160 then
11161 Make_Class_Wide_Type (Typ);
11162 Error_Msg_N
11163 ("incomplete view of tagged type should be declared tagged??",
11164 Parent (Current_Entity (Typ)));
11165 end if;
11166 return;
11167
11168 else
11169 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11170 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11171
11172 -- Type has already been inserted into the current scope. Remove
11173 -- it, and add incomplete declaration for type, so that subsequent
11174 -- anonymous access types can use it. The entity is unchained from
11175 -- the homonym list and from immediate visibility. After analysis,
11176 -- the entity in the incomplete declaration becomes immediately
11177 -- visible in the record declaration that follows.
11178
11179 H := Current_Entity (Typ);
11180
11181 if H = Typ then
11182 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11183 else
11184 while Present (H)
11185 and then Homonym (H) /= Typ
11186 loop
11187 H := Homonym (Typ);
11188 end loop;
11189
11190 Set_Homonym (H, Homonym (Typ));
11191 end if;
11192
11193 Insert_Before (Typ_Decl, Decl);
11194 Analyze (Decl);
11195 Set_Full_View (Inc_T, Typ);
11196
11197 if Is_Tagged then
11198
11199 -- Create a common class-wide type for both views, and set the
11200 -- Etype of the class-wide type to the full view.
11201
11202 Make_Class_Wide_Type (Inc_T);
11203 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11204 Set_Etype (Class_Wide_Type (Typ), Typ);
11205 end if;
11206 end if;
11207 end Build_Incomplete_Type_Declaration;
11208
11209 ------------------
11210 -- Designates_T --
11211 ------------------
11212
11213 function Designates_T (Subt : Node_Id) return Boolean is
11214 Type_Id : constant Name_Id := Chars (Typ);
11215
11216 function Names_T (Nam : Node_Id) return Boolean;
11217 -- The record type has not been introduced in the current scope
11218 -- yet, so we must examine the name of the type itself, either
11219 -- an identifier T, or an expanded name of the form P.T, where
11220 -- P denotes the current scope.
11221
11222 -------------
11223 -- Names_T --
11224 -------------
11225
11226 function Names_T (Nam : Node_Id) return Boolean is
11227 begin
11228 if Nkind (Nam) = N_Identifier then
11229 return Chars (Nam) = Type_Id;
11230
11231 elsif Nkind (Nam) = N_Selected_Component then
11232 if Chars (Selector_Name (Nam)) = Type_Id then
11233 if Nkind (Prefix (Nam)) = N_Identifier then
11234 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11235
11236 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11237 return Chars (Selector_Name (Prefix (Nam))) =
11238 Chars (Current_Scope);
11239 else
11240 return False;
11241 end if;
11242
11243 else
11244 return False;
11245 end if;
11246
11247 else
11248 return False;
11249 end if;
11250 end Names_T;
11251
11252 -- Start of processing for Designates_T
11253
11254 begin
11255 if Nkind (Subt) = N_Identifier then
11256 return Chars (Subt) = Type_Id;
11257
11258 -- Reference can be through an expanded name which has not been
11259 -- analyzed yet, and which designates enclosing scopes.
11260
11261 elsif Nkind (Subt) = N_Selected_Component then
11262 if Names_T (Subt) then
11263 return True;
11264
11265 -- Otherwise it must denote an entity that is already visible.
11266 -- The access definition may name a subtype of the enclosing
11267 -- type, if there is a previous incomplete declaration for it.
11268
11269 else
11270 Find_Selected_Component (Subt);
11271 return
11272 Is_Entity_Name (Subt)
11273 and then Scope (Entity (Subt)) = Current_Scope
11274 and then
11275 (Chars (Base_Type (Entity (Subt))) = Type_Id
11276 or else
11277 (Is_Class_Wide_Type (Entity (Subt))
11278 and then
11279 Chars (Etype (Base_Type (Entity (Subt)))) =
11280 Type_Id));
11281 end if;
11282
11283 -- A reference to the current type may appear as the prefix of
11284 -- a 'Class attribute.
11285
11286 elsif Nkind (Subt) = N_Attribute_Reference
11287 and then Attribute_Name (Subt) = Name_Class
11288 then
11289 return Names_T (Prefix (Subt));
11290
11291 else
11292 return False;
11293 end if;
11294 end Designates_T;
11295
11296 ----------------
11297 -- Mentions_T --
11298 ----------------
11299
11300 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11301 Param_Spec : Node_Id;
11302
11303 Acc_Subprg : constant Node_Id :=
11304 Access_To_Subprogram_Definition (Acc_Def);
11305
11306 begin
11307 if No (Acc_Subprg) then
11308 return Designates_T (Subtype_Mark (Acc_Def));
11309 end if;
11310
11311 -- Component is an access_to_subprogram: examine its formals,
11312 -- and result definition in the case of an access_to_function.
11313
11314 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11315 while Present (Param_Spec) loop
11316 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11317 and then Mentions_T (Parameter_Type (Param_Spec))
11318 then
11319 return True;
11320
11321 elsif Designates_T (Parameter_Type (Param_Spec)) then
11322 return True;
11323 end if;
11324
11325 Next (Param_Spec);
11326 end loop;
11327
11328 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11329 if Nkind (Result_Definition (Acc_Subprg)) =
11330 N_Access_Definition
11331 then
11332 return Mentions_T (Result_Definition (Acc_Subprg));
11333 else
11334 return Designates_T (Result_Definition (Acc_Subprg));
11335 end if;
11336 end if;
11337
11338 return False;
11339 end Mentions_T;
11340
11341 -- Start of processing for Check_Anonymous_Access_Components
11342
11343 begin
11344 if No (Comp_List) then
11345 return;
11346 end if;
11347
11348 Comp := First (Component_Items (Comp_List));
11349 while Present (Comp) loop
11350 if Nkind (Comp) = N_Component_Declaration
11351 and then Present
11352 (Access_Definition (Component_Definition (Comp)))
11353 and then
11354 Mentions_T (Access_Definition (Component_Definition (Comp)))
11355 then
11356 Comp_Def := Component_Definition (Comp);
11357 Acc_Def :=
11358 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11359
11360 Build_Incomplete_Type_Declaration;
11361 Anon_Access := Make_Temporary (Loc, 'S');
11362
11363 -- Create a declaration for the anonymous access type: either
11364 -- an access_to_object or an access_to_subprogram.
11365
11366 if Present (Acc_Def) then
11367 if Nkind (Acc_Def) = N_Access_Function_Definition then
11368 Type_Def :=
11369 Make_Access_Function_Definition (Loc,
11370 Parameter_Specifications =>
11371 Parameter_Specifications (Acc_Def),
11372 Result_Definition => Result_Definition (Acc_Def));
11373 else
11374 Type_Def :=
11375 Make_Access_Procedure_Definition (Loc,
11376 Parameter_Specifications =>
11377 Parameter_Specifications (Acc_Def));
11378 end if;
11379
11380 else
11381 Type_Def :=
11382 Make_Access_To_Object_Definition (Loc,
11383 Subtype_Indication =>
11384 Relocate_Node
11385 (Subtype_Mark (Access_Definition (Comp_Def))));
11386
11387 Set_Constant_Present
11388 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11389 Set_All_Present
11390 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11391 end if;
11392
11393 Set_Null_Exclusion_Present
11394 (Type_Def,
11395 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11396
11397 Decl :=
11398 Make_Full_Type_Declaration (Loc,
11399 Defining_Identifier => Anon_Access,
11400 Type_Definition => Type_Def);
11401
11402 Insert_Before (Typ_Decl, Decl);
11403 Analyze (Decl);
11404
11405 -- If an access to subprogram, create the extra formals
11406
11407 if Present (Acc_Def) then
11408 Create_Extra_Formals (Designated_Type (Anon_Access));
11409
11410 -- If an access to object, preserve entity of designated type,
11411 -- for ASIS use, before rewriting the component definition.
11412
11413 else
11414 declare
11415 Desig : Entity_Id;
11416
11417 begin
11418 Desig := Entity (Subtype_Indication (Type_Def));
11419
11420 -- If the access definition is to the current record,
11421 -- the visible entity at this point is an incomplete
11422 -- type. Retrieve the full view to simplify ASIS queries
11423
11424 if Ekind (Desig) = E_Incomplete_Type then
11425 Desig := Full_View (Desig);
11426 end if;
11427
11428 Set_Entity
11429 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11430 end;
11431 end if;
11432
11433 Rewrite (Comp_Def,
11434 Make_Component_Definition (Loc,
11435 Subtype_Indication =>
11436 New_Occurrence_Of (Anon_Access, Loc)));
11437
11438 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11439 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11440 else
11441 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11442 end if;
11443
11444 Set_Is_Local_Anonymous_Access (Anon_Access);
11445 end if;
11446
11447 Next (Comp);
11448 end loop;
11449
11450 if Present (Variant_Part (Comp_List)) then
11451 declare
11452 V : Node_Id;
11453 begin
11454 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11455 while Present (V) loop
11456 Check_Anonymous_Access_Components
11457 (Typ_Decl, Typ, Prev, Component_List (V));
11458 Next_Non_Pragma (V);
11459 end loop;
11460 end;
11461 end if;
11462 end Check_Anonymous_Access_Components;
11463
11464 ----------------------
11465 -- Check_Completion --
11466 ----------------------
11467
11468 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11469 E : Entity_Id;
11470
11471 procedure Post_Error;
11472 -- Post error message for lack of completion for entity E
11473
11474 ----------------
11475 -- Post_Error --
11476 ----------------
11477
11478 procedure Post_Error is
11479 procedure Missing_Body;
11480 -- Output missing body message
11481
11482 ------------------
11483 -- Missing_Body --
11484 ------------------
11485
11486 procedure Missing_Body is
11487 begin
11488 -- Spec is in same unit, so we can post on spec
11489
11490 if In_Same_Source_Unit (Body_Id, E) then
11491 Error_Msg_N ("missing body for &", E);
11492
11493 -- Spec is in a separate unit, so we have to post on the body
11494
11495 else
11496 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11497 end if;
11498 end Missing_Body;
11499
11500 -- Start of processing for Post_Error
11501
11502 begin
11503 if not Comes_From_Source (E) then
11504 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11505
11506 -- It may be an anonymous protected type created for a
11507 -- single variable. Post error on variable, if present.
11508
11509 declare
11510 Var : Entity_Id;
11511
11512 begin
11513 Var := First_Entity (Current_Scope);
11514 while Present (Var) loop
11515 exit when Etype (Var) = E
11516 and then Comes_From_Source (Var);
11517
11518 Next_Entity (Var);
11519 end loop;
11520
11521 if Present (Var) then
11522 E := Var;
11523 end if;
11524 end;
11525 end if;
11526 end if;
11527
11528 -- If a generated entity has no completion, then either previous
11529 -- semantic errors have disabled the expansion phase, or else we had
11530 -- missing subunits, or else we are compiling without expansion,
11531 -- or else something is very wrong.
11532
11533 if not Comes_From_Source (E) then
11534 pragma Assert
11535 (Serious_Errors_Detected > 0
11536 or else Configurable_Run_Time_Violations > 0
11537 or else Subunits_Missing
11538 or else not Expander_Active);
11539 return;
11540
11541 -- Here for source entity
11542
11543 else
11544 -- Here if no body to post the error message, so we post the error
11545 -- on the declaration that has no completion. This is not really
11546 -- the right place to post it, think about this later ???
11547
11548 if No (Body_Id) then
11549 if Is_Type (E) then
11550 Error_Msg_NE
11551 ("missing full declaration for }", Parent (E), E);
11552 else
11553 Error_Msg_NE ("missing body for &", Parent (E), E);
11554 end if;
11555
11556 -- Package body has no completion for a declaration that appears
11557 -- in the corresponding spec. Post error on the body, with a
11558 -- reference to the non-completed declaration.
11559
11560 else
11561 Error_Msg_Sloc := Sloc (E);
11562
11563 if Is_Type (E) then
11564 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11565
11566 elsif Is_Overloadable (E)
11567 and then Current_Entity_In_Scope (E) /= E
11568 then
11569 -- It may be that the completion is mistyped and appears as
11570 -- a distinct overloading of the entity.
11571
11572 declare
11573 Candidate : constant Entity_Id :=
11574 Current_Entity_In_Scope (E);
11575 Decl : constant Node_Id :=
11576 Unit_Declaration_Node (Candidate);
11577
11578 begin
11579 if Is_Overloadable (Candidate)
11580 and then Ekind (Candidate) = Ekind (E)
11581 and then Nkind (Decl) = N_Subprogram_Body
11582 and then Acts_As_Spec (Decl)
11583 then
11584 Check_Type_Conformant (Candidate, E);
11585
11586 else
11587 Missing_Body;
11588 end if;
11589 end;
11590
11591 else
11592 Missing_Body;
11593 end if;
11594 end if;
11595 end if;
11596 end Post_Error;
11597
11598 -- Local variables
11599
11600 Pack_Id : constant Entity_Id := Current_Scope;
11601
11602 -- Start of processing for Check_Completion
11603
11604 begin
11605 E := First_Entity (Pack_Id);
11606 while Present (E) loop
11607 if Is_Intrinsic_Subprogram (E) then
11608 null;
11609
11610 -- The following situation requires special handling: a child unit
11611 -- that appears in the context clause of the body of its parent:
11612
11613 -- procedure Parent.Child (...);
11614
11615 -- with Parent.Child;
11616 -- package body Parent is
11617
11618 -- Here Parent.Child appears as a local entity, but should not be
11619 -- flagged as requiring completion, because it is a compilation
11620 -- unit.
11621
11622 -- Ignore missing completion for a subprogram that does not come from
11623 -- source (including the _Call primitive operation of RAS types,
11624 -- which has to have the flag Comes_From_Source for other purposes):
11625 -- we assume that the expander will provide the missing completion.
11626 -- In case of previous errors, other expansion actions that provide
11627 -- bodies for null procedures with not be invoked, so inhibit message
11628 -- in those cases.
11629
11630 -- Note that E_Operator is not in the list that follows, because
11631 -- this kind is reserved for predefined operators, that are
11632 -- intrinsic and do not need completion.
11633
11634 elsif Ekind_In (E, E_Function,
11635 E_Procedure,
11636 E_Generic_Function,
11637 E_Generic_Procedure)
11638 then
11639 if Has_Completion (E) then
11640 null;
11641
11642 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11643 null;
11644
11645 elsif Is_Subprogram (E)
11646 and then (not Comes_From_Source (E)
11647 or else Chars (E) = Name_uCall)
11648 then
11649 null;
11650
11651 elsif
11652 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11653 then
11654 null;
11655
11656 elsif Nkind (Parent (E)) = N_Procedure_Specification
11657 and then Null_Present (Parent (E))
11658 and then Serious_Errors_Detected > 0
11659 then
11660 null;
11661
11662 else
11663 Post_Error;
11664 end if;
11665
11666 elsif Is_Entry (E) then
11667 if not Has_Completion (E) and then
11668 (Ekind (Scope (E)) = E_Protected_Object
11669 or else Ekind (Scope (E)) = E_Protected_Type)
11670 then
11671 Post_Error;
11672 end if;
11673
11674 elsif Is_Package_Or_Generic_Package (E) then
11675 if Unit_Requires_Body (E) then
11676 if not Has_Completion (E)
11677 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11678 N_Compilation_Unit
11679 then
11680 Post_Error;
11681 end if;
11682
11683 elsif not Is_Child_Unit (E) then
11684 May_Need_Implicit_Body (E);
11685 end if;
11686
11687 -- A formal incomplete type (Ada 2012) does not require a completion;
11688 -- other incomplete type declarations do.
11689
11690 elsif Ekind (E) = E_Incomplete_Type
11691 and then No (Underlying_Type (E))
11692 and then not Is_Generic_Type (E)
11693 then
11694 Post_Error;
11695
11696 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11697 and then not Has_Completion (E)
11698 then
11699 Post_Error;
11700
11701 -- A single task declared in the current scope is a constant, verify
11702 -- that the body of its anonymous type is in the same scope. If the
11703 -- task is defined elsewhere, this may be a renaming declaration for
11704 -- which no completion is needed.
11705
11706 elsif Ekind (E) = E_Constant
11707 and then Ekind (Etype (E)) = E_Task_Type
11708 and then not Has_Completion (Etype (E))
11709 and then Scope (Etype (E)) = Current_Scope
11710 then
11711 Post_Error;
11712
11713 elsif Ekind (E) = E_Protected_Object
11714 and then not Has_Completion (Etype (E))
11715 then
11716 Post_Error;
11717
11718 elsif Ekind (E) = E_Record_Type then
11719 if Is_Tagged_Type (E) then
11720 Check_Abstract_Overriding (E);
11721 Check_Conventions (E);
11722 end if;
11723
11724 Check_Aliased_Component_Types (E);
11725
11726 elsif Ekind (E) = E_Array_Type then
11727 Check_Aliased_Component_Types (E);
11728
11729 end if;
11730
11731 Next_Entity (E);
11732 end loop;
11733 end Check_Completion;
11734
11735 ------------------------------------
11736 -- Check_CPP_Type_Has_No_Defaults --
11737 ------------------------------------
11738
11739 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11740 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11741 Clist : Node_Id;
11742 Comp : Node_Id;
11743
11744 begin
11745 -- Obtain the component list
11746
11747 if Nkind (Tdef) = N_Record_Definition then
11748 Clist := Component_List (Tdef);
11749 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11750 Clist := Component_List (Record_Extension_Part (Tdef));
11751 end if;
11752
11753 -- Check all components to ensure no default expressions
11754
11755 if Present (Clist) then
11756 Comp := First (Component_Items (Clist));
11757 while Present (Comp) loop
11758 if Present (Expression (Comp)) then
11759 Error_Msg_N
11760 ("component of imported 'C'P'P type cannot have "
11761 & "default expression", Expression (Comp));
11762 end if;
11763
11764 Next (Comp);
11765 end loop;
11766 end if;
11767 end Check_CPP_Type_Has_No_Defaults;
11768
11769 ----------------------------
11770 -- Check_Delta_Expression --
11771 ----------------------------
11772
11773 procedure Check_Delta_Expression (E : Node_Id) is
11774 begin
11775 if not (Is_Real_Type (Etype (E))) then
11776 Wrong_Type (E, Any_Real);
11777
11778 elsif not Is_OK_Static_Expression (E) then
11779 Flag_Non_Static_Expr
11780 ("non-static expression used for delta value!", E);
11781
11782 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11783 Error_Msg_N ("delta expression must be positive", E);
11784
11785 else
11786 return;
11787 end if;
11788
11789 -- If any of above errors occurred, then replace the incorrect
11790 -- expression by the real 0.1, which should prevent further errors.
11791
11792 Rewrite (E,
11793 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11794 Analyze_And_Resolve (E, Standard_Float);
11795 end Check_Delta_Expression;
11796
11797 -----------------------------
11798 -- Check_Digits_Expression --
11799 -----------------------------
11800
11801 procedure Check_Digits_Expression (E : Node_Id) is
11802 begin
11803 if not (Is_Integer_Type (Etype (E))) then
11804 Wrong_Type (E, Any_Integer);
11805
11806 elsif not Is_OK_Static_Expression (E) then
11807 Flag_Non_Static_Expr
11808 ("non-static expression used for digits value!", E);
11809
11810 elsif Expr_Value (E) <= 0 then
11811 Error_Msg_N ("digits value must be greater than zero", E);
11812
11813 else
11814 return;
11815 end if;
11816
11817 -- If any of above errors occurred, then replace the incorrect
11818 -- expression by the integer 1, which should prevent further errors.
11819
11820 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11821 Analyze_And_Resolve (E, Standard_Integer);
11822
11823 end Check_Digits_Expression;
11824
11825 --------------------------
11826 -- Check_Initialization --
11827 --------------------------
11828
11829 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11830 begin
11831 -- Special processing for limited types
11832
11833 if Is_Limited_Type (T)
11834 and then not In_Instance
11835 and then not In_Inlined_Body
11836 then
11837 if not OK_For_Limited_Init (T, Exp) then
11838
11839 -- In GNAT mode, this is just a warning, to allow it to be evilly
11840 -- turned off. Otherwise it is a real error.
11841
11842 if GNAT_Mode then
11843 Error_Msg_N
11844 ("??cannot initialize entities of limited type!", Exp);
11845
11846 elsif Ada_Version < Ada_2005 then
11847
11848 -- The side effect removal machinery may generate illegal Ada
11849 -- code to avoid the usage of access types and 'reference in
11850 -- SPARK mode. Since this is legal code with respect to theorem
11851 -- proving, do not emit the error.
11852
11853 if GNATprove_Mode
11854 and then Nkind (Exp) = N_Function_Call
11855 and then Nkind (Parent (Exp)) = N_Object_Declaration
11856 and then not Comes_From_Source
11857 (Defining_Identifier (Parent (Exp)))
11858 then
11859 null;
11860
11861 else
11862 Error_Msg_N
11863 ("cannot initialize entities of limited type", Exp);
11864 Explain_Limited_Type (T, Exp);
11865 end if;
11866
11867 else
11868 -- Specialize error message according to kind of illegal
11869 -- initial expression.
11870
11871 if Nkind (Exp) = N_Type_Conversion
11872 and then Nkind (Expression (Exp)) = N_Function_Call
11873 then
11874 -- No error for internally-generated object declarations,
11875 -- which can come from build-in-place assignment statements.
11876
11877 if Nkind (Parent (Exp)) = N_Object_Declaration
11878 and then not Comes_From_Source
11879 (Defining_Identifier (Parent (Exp)))
11880 then
11881 null;
11882
11883 else
11884 Error_Msg_N
11885 ("illegal context for call to function with limited "
11886 & "result", Exp);
11887 end if;
11888
11889 else
11890 Error_Msg_N
11891 ("initialization of limited object requires aggregate or "
11892 & "function call", Exp);
11893 end if;
11894 end if;
11895 end if;
11896 end if;
11897
11898 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11899 -- set unless we can be sure that no range check is required.
11900
11901 if (GNATprove_Mode or not Expander_Active)
11902 and then Is_Scalar_Type (T)
11903 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11904 then
11905 Set_Do_Range_Check (Exp);
11906 end if;
11907 end Check_Initialization;
11908
11909 ----------------------
11910 -- Check_Interfaces --
11911 ----------------------
11912
11913 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11914 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11915
11916 Iface : Node_Id;
11917 Iface_Def : Node_Id;
11918 Iface_Typ : Entity_Id;
11919 Parent_Node : Node_Id;
11920
11921 Is_Task : Boolean := False;
11922 -- Set True if parent type or any progenitor is a task interface
11923
11924 Is_Protected : Boolean := False;
11925 -- Set True if parent type or any progenitor is a protected interface
11926
11927 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11928 -- Check that a progenitor is compatible with declaration. If an error
11929 -- message is output, it is posted on Error_Node.
11930
11931 ------------------
11932 -- Check_Ifaces --
11933 ------------------
11934
11935 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11936 Iface_Id : constant Entity_Id :=
11937 Defining_Identifier (Parent (Iface_Def));
11938 Type_Def : Node_Id;
11939
11940 begin
11941 if Nkind (N) = N_Private_Extension_Declaration then
11942 Type_Def := N;
11943 else
11944 Type_Def := Type_Definition (N);
11945 end if;
11946
11947 if Is_Task_Interface (Iface_Id) then
11948 Is_Task := True;
11949
11950 elsif Is_Protected_Interface (Iface_Id) then
11951 Is_Protected := True;
11952 end if;
11953
11954 if Is_Synchronized_Interface (Iface_Id) then
11955
11956 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11957 -- extension derived from a synchronized interface must explicitly
11958 -- be declared synchronized, because the full view will be a
11959 -- synchronized type.
11960
11961 if Nkind (N) = N_Private_Extension_Declaration then
11962 if not Synchronized_Present (N) then
11963 Error_Msg_NE
11964 ("private extension of& must be explicitly synchronized",
11965 N, Iface_Id);
11966 end if;
11967
11968 -- However, by 3.9.4(16/2), a full type that is a record extension
11969 -- is never allowed to derive from a synchronized interface (note
11970 -- that interfaces must be excluded from this check, because those
11971 -- are represented by derived type definitions in some cases).
11972
11973 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11974 and then not Interface_Present (Type_Definition (N))
11975 then
11976 Error_Msg_N ("record extension cannot derive from synchronized "
11977 & "interface", Error_Node);
11978 end if;
11979 end if;
11980
11981 -- Check that the characteristics of the progenitor are compatible
11982 -- with the explicit qualifier in the declaration.
11983 -- The check only applies to qualifiers that come from source.
11984 -- Limited_Present also appears in the declaration of corresponding
11985 -- records, and the check does not apply to them.
11986
11987 if Limited_Present (Type_Def)
11988 and then not
11989 Is_Concurrent_Record_Type (Defining_Identifier (N))
11990 then
11991 if Is_Limited_Interface (Parent_Type)
11992 and then not Is_Limited_Interface (Iface_Id)
11993 then
11994 Error_Msg_NE
11995 ("progenitor & must be limited interface",
11996 Error_Node, Iface_Id);
11997
11998 elsif
11999 (Task_Present (Iface_Def)
12000 or else Protected_Present (Iface_Def)
12001 or else Synchronized_Present (Iface_Def))
12002 and then Nkind (N) /= N_Private_Extension_Declaration
12003 and then not Error_Posted (N)
12004 then
12005 Error_Msg_NE
12006 ("progenitor & must be limited interface",
12007 Error_Node, Iface_Id);
12008 end if;
12009
12010 -- Protected interfaces can only inherit from limited, synchronized
12011 -- or protected interfaces.
12012
12013 elsif Nkind (N) = N_Full_Type_Declaration
12014 and then Protected_Present (Type_Def)
12015 then
12016 if Limited_Present (Iface_Def)
12017 or else Synchronized_Present (Iface_Def)
12018 or else Protected_Present (Iface_Def)
12019 then
12020 null;
12021
12022 elsif Task_Present (Iface_Def) then
12023 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12024 & "from task interface", Error_Node);
12025
12026 else
12027 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12028 & "from non-limited interface", Error_Node);
12029 end if;
12030
12031 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12032 -- limited and synchronized.
12033
12034 elsif Synchronized_Present (Type_Def) then
12035 if Limited_Present (Iface_Def)
12036 or else Synchronized_Present (Iface_Def)
12037 then
12038 null;
12039
12040 elsif Protected_Present (Iface_Def)
12041 and then Nkind (N) /= N_Private_Extension_Declaration
12042 then
12043 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12044 & "from protected interface", Error_Node);
12045
12046 elsif Task_Present (Iface_Def)
12047 and then Nkind (N) /= N_Private_Extension_Declaration
12048 then
12049 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12050 & "from task interface", Error_Node);
12051
12052 elsif not Is_Limited_Interface (Iface_Id) then
12053 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12054 & "from non-limited interface", Error_Node);
12055 end if;
12056
12057 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12058 -- synchronized or task interfaces.
12059
12060 elsif Nkind (N) = N_Full_Type_Declaration
12061 and then Task_Present (Type_Def)
12062 then
12063 if Limited_Present (Iface_Def)
12064 or else Synchronized_Present (Iface_Def)
12065 or else Task_Present (Iface_Def)
12066 then
12067 null;
12068
12069 elsif Protected_Present (Iface_Def) then
12070 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12071 & "protected interface", Error_Node);
12072
12073 else
12074 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12075 & "non-limited interface", Error_Node);
12076 end if;
12077 end if;
12078 end Check_Ifaces;
12079
12080 -- Start of processing for Check_Interfaces
12081
12082 begin
12083 if Is_Interface (Parent_Type) then
12084 if Is_Task_Interface (Parent_Type) then
12085 Is_Task := True;
12086
12087 elsif Is_Protected_Interface (Parent_Type) then
12088 Is_Protected := True;
12089 end if;
12090 end if;
12091
12092 if Nkind (N) = N_Private_Extension_Declaration then
12093
12094 -- Check that progenitors are compatible with declaration
12095
12096 Iface := First (Interface_List (Def));
12097 while Present (Iface) loop
12098 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12099
12100 Parent_Node := Parent (Base_Type (Iface_Typ));
12101 Iface_Def := Type_Definition (Parent_Node);
12102
12103 if not Is_Interface (Iface_Typ) then
12104 Diagnose_Interface (Iface, Iface_Typ);
12105 else
12106 Check_Ifaces (Iface_Def, Iface);
12107 end if;
12108
12109 Next (Iface);
12110 end loop;
12111
12112 if Is_Task and Is_Protected then
12113 Error_Msg_N
12114 ("type cannot derive from task and protected interface", N);
12115 end if;
12116
12117 return;
12118 end if;
12119
12120 -- Full type declaration of derived type.
12121 -- Check compatibility with parent if it is interface type
12122
12123 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12124 and then Is_Interface (Parent_Type)
12125 then
12126 Parent_Node := Parent (Parent_Type);
12127
12128 -- More detailed checks for interface varieties
12129
12130 Check_Ifaces
12131 (Iface_Def => Type_Definition (Parent_Node),
12132 Error_Node => Subtype_Indication (Type_Definition (N)));
12133 end if;
12134
12135 Iface := First (Interface_List (Def));
12136 while Present (Iface) loop
12137 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12138
12139 Parent_Node := Parent (Base_Type (Iface_Typ));
12140 Iface_Def := Type_Definition (Parent_Node);
12141
12142 if not Is_Interface (Iface_Typ) then
12143 Diagnose_Interface (Iface, Iface_Typ);
12144
12145 else
12146 -- "The declaration of a specific descendant of an interface
12147 -- type freezes the interface type" RM 13.14
12148
12149 Freeze_Before (N, Iface_Typ);
12150 Check_Ifaces (Iface_Def, Error_Node => Iface);
12151 end if;
12152
12153 Next (Iface);
12154 end loop;
12155
12156 if Is_Task and Is_Protected then
12157 Error_Msg_N
12158 ("type cannot derive from task and protected interface", N);
12159 end if;
12160 end Check_Interfaces;
12161
12162 ------------------------------------
12163 -- Check_Or_Process_Discriminants --
12164 ------------------------------------
12165
12166 -- If an incomplete or private type declaration was already given for the
12167 -- type, the discriminants may have already been processed if they were
12168 -- present on the incomplete declaration. In this case a full conformance
12169 -- check has been performed in Find_Type_Name, and we then recheck here
12170 -- some properties that can't be checked on the partial view alone.
12171 -- Otherwise we call Process_Discriminants.
12172
12173 procedure Check_Or_Process_Discriminants
12174 (N : Node_Id;
12175 T : Entity_Id;
12176 Prev : Entity_Id := Empty)
12177 is
12178 begin
12179 if Has_Discriminants (T) then
12180
12181 -- Discriminants are already set on T if they were already present
12182 -- on the partial view. Make them visible to component declarations.
12183
12184 declare
12185 D : Entity_Id;
12186 -- Discriminant on T (full view) referencing expr on partial view
12187
12188 Prev_D : Entity_Id;
12189 -- Entity of corresponding discriminant on partial view
12190
12191 New_D : Node_Id;
12192 -- Discriminant specification for full view, expression is
12193 -- the syntactic copy on full view (which has been checked for
12194 -- conformance with partial view), only used here to post error
12195 -- message.
12196
12197 begin
12198 D := First_Discriminant (T);
12199 New_D := First (Discriminant_Specifications (N));
12200 while Present (D) loop
12201 Prev_D := Current_Entity (D);
12202 Set_Current_Entity (D);
12203 Set_Is_Immediately_Visible (D);
12204 Set_Homonym (D, Prev_D);
12205
12206 -- Handle the case where there is an untagged partial view and
12207 -- the full view is tagged: must disallow discriminants with
12208 -- defaults, unless compiling for Ada 2012, which allows a
12209 -- limited tagged type to have defaulted discriminants (see
12210 -- AI05-0214). However, suppress error here if it was already
12211 -- reported on the default expression of the partial view.
12212
12213 if Is_Tagged_Type (T)
12214 and then Present (Expression (Parent (D)))
12215 and then (not Is_Limited_Type (Current_Scope)
12216 or else Ada_Version < Ada_2012)
12217 and then not Error_Posted (Expression (Parent (D)))
12218 then
12219 if Ada_Version >= Ada_2012 then
12220 Error_Msg_N
12221 ("discriminants of nonlimited tagged type cannot have "
12222 & "defaults",
12223 Expression (New_D));
12224 else
12225 Error_Msg_N
12226 ("discriminants of tagged type cannot have defaults",
12227 Expression (New_D));
12228 end if;
12229 end if;
12230
12231 -- Ada 2005 (AI-230): Access discriminant allowed in
12232 -- non-limited record types.
12233
12234 if Ada_Version < Ada_2005 then
12235
12236 -- This restriction gets applied to the full type here. It
12237 -- has already been applied earlier to the partial view.
12238
12239 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12240 end if;
12241
12242 Next_Discriminant (D);
12243 Next (New_D);
12244 end loop;
12245 end;
12246
12247 elsif Present (Discriminant_Specifications (N)) then
12248 Process_Discriminants (N, Prev);
12249 end if;
12250 end Check_Or_Process_Discriminants;
12251
12252 ----------------------
12253 -- Check_Real_Bound --
12254 ----------------------
12255
12256 procedure Check_Real_Bound (Bound : Node_Id) is
12257 begin
12258 if not Is_Real_Type (Etype (Bound)) then
12259 Error_Msg_N
12260 ("bound in real type definition must be of real type", Bound);
12261
12262 elsif not Is_OK_Static_Expression (Bound) then
12263 Flag_Non_Static_Expr
12264 ("non-static expression used for real type bound!", Bound);
12265
12266 else
12267 return;
12268 end if;
12269
12270 Rewrite
12271 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12272 Analyze (Bound);
12273 Resolve (Bound, Standard_Float);
12274 end Check_Real_Bound;
12275
12276 ------------------------------
12277 -- Complete_Private_Subtype --
12278 ------------------------------
12279
12280 procedure Complete_Private_Subtype
12281 (Priv : Entity_Id;
12282 Full : Entity_Id;
12283 Full_Base : Entity_Id;
12284 Related_Nod : Node_Id)
12285 is
12286 Save_Next_Entity : Entity_Id;
12287 Save_Homonym : Entity_Id;
12288
12289 begin
12290 -- Set semantic attributes for (implicit) private subtype completion.
12291 -- If the full type has no discriminants, then it is a copy of the
12292 -- full view of the base. Otherwise, it is a subtype of the base with
12293 -- a possible discriminant constraint. Save and restore the original
12294 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12295 -- not corrupt the entity chain.
12296
12297 -- Note that the type of the full view is the same entity as the type
12298 -- of the partial view. In this fashion, the subtype has access to the
12299 -- correct view of the parent.
12300
12301 Save_Next_Entity := Next_Entity (Full);
12302 Save_Homonym := Homonym (Priv);
12303
12304 case Ekind (Full_Base) is
12305 when Class_Wide_Kind
12306 | Private_Kind
12307 | Protected_Kind
12308 | Task_Kind
12309 | E_Record_Subtype
12310 | E_Record_Type
12311 =>
12312 Copy_Node (Priv, Full);
12313
12314 Set_Has_Discriminants
12315 (Full, Has_Discriminants (Full_Base));
12316 Set_Has_Unknown_Discriminants
12317 (Full, Has_Unknown_Discriminants (Full_Base));
12318 Set_First_Entity (Full, First_Entity (Full_Base));
12319 Set_Last_Entity (Full, Last_Entity (Full_Base));
12320
12321 -- If the underlying base type is constrained, we know that the
12322 -- full view of the subtype is constrained as well (the converse
12323 -- is not necessarily true).
12324
12325 if Is_Constrained (Full_Base) then
12326 Set_Is_Constrained (Full);
12327 end if;
12328
12329 when others =>
12330 Copy_Node (Full_Base, Full);
12331
12332 Set_Chars (Full, Chars (Priv));
12333 Conditional_Delay (Full, Priv);
12334 Set_Sloc (Full, Sloc (Priv));
12335 end case;
12336
12337 Link_Entities (Full, Save_Next_Entity);
12338 Set_Homonym (Full, Save_Homonym);
12339 Set_Associated_Node_For_Itype (Full, Related_Nod);
12340
12341 -- Set common attributes for all subtypes: kind, convention, etc.
12342
12343 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12344 Set_Convention (Full, Convention (Full_Base));
12345
12346 -- The Etype of the full view is inconsistent. Gigi needs to see the
12347 -- structural full view, which is what the current scheme gives: the
12348 -- Etype of the full view is the etype of the full base. However, if the
12349 -- full base is a derived type, the full view then looks like a subtype
12350 -- of the parent, not a subtype of the full base. If instead we write:
12351
12352 -- Set_Etype (Full, Full_Base);
12353
12354 -- then we get inconsistencies in the front-end (confusion between
12355 -- views). Several outstanding bugs are related to this ???
12356
12357 Set_Is_First_Subtype (Full, False);
12358 Set_Scope (Full, Scope (Priv));
12359 Set_Size_Info (Full, Full_Base);
12360 Set_RM_Size (Full, RM_Size (Full_Base));
12361 Set_Is_Itype (Full);
12362
12363 -- For the unusual case of a type with unknown discriminants whose
12364 -- completion is an array, use the proper full base.
12365
12366 if Is_Array_Type (Full_Base)
12367 and then Has_Unknown_Discriminants (Priv)
12368 then
12369 Set_Etype (Full, Full_Base);
12370 end if;
12371
12372 -- A subtype of a private-type-without-discriminants, whose full-view
12373 -- has discriminants with default expressions, is not constrained.
12374
12375 if not Has_Discriminants (Priv) then
12376 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12377
12378 if Has_Discriminants (Full_Base) then
12379 Set_Discriminant_Constraint
12380 (Full, Discriminant_Constraint (Full_Base));
12381
12382 -- The partial view may have been indefinite, the full view
12383 -- might not be.
12384
12385 Set_Has_Unknown_Discriminants
12386 (Full, Has_Unknown_Discriminants (Full_Base));
12387 end if;
12388 end if;
12389
12390 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12391 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12392
12393 -- Freeze the private subtype entity if its parent is delayed, and not
12394 -- already frozen. We skip this processing if the type is an anonymous
12395 -- subtype of a record component, or is the corresponding record of a
12396 -- protected type, since these are processed when the enclosing type
12397 -- is frozen. If the parent type is declared in a nested package then
12398 -- the freezing of the private and full views also happens later.
12399
12400 if not Is_Type (Scope (Full)) then
12401 if Is_Itype (Priv)
12402 and then In_Same_Source_Unit (Full, Full_Base)
12403 and then Scope (Full_Base) /= Scope (Full)
12404 then
12405 Set_Has_Delayed_Freeze (Full);
12406 Set_Has_Delayed_Freeze (Priv);
12407
12408 else
12409 Set_Has_Delayed_Freeze (Full,
12410 Has_Delayed_Freeze (Full_Base)
12411 and then not Is_Frozen (Full_Base));
12412 end if;
12413 end if;
12414
12415 Set_Freeze_Node (Full, Empty);
12416 Set_Is_Frozen (Full, False);
12417 Set_Full_View (Priv, Full);
12418
12419 if Has_Discriminants (Full) then
12420 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12421 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12422
12423 if Has_Unknown_Discriminants (Full) then
12424 Set_Discriminant_Constraint (Full, No_Elist);
12425 end if;
12426 end if;
12427
12428 if Ekind (Full_Base) = E_Record_Type
12429 and then Has_Discriminants (Full_Base)
12430 and then Has_Discriminants (Priv) -- might not, if errors
12431 and then not Has_Unknown_Discriminants (Priv)
12432 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12433 then
12434 Create_Constrained_Components
12435 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12436
12437 -- If the full base is itself derived from private, build a congruent
12438 -- subtype of its underlying type, for use by the back end. For a
12439 -- constrained record component, the declaration cannot be placed on
12440 -- the component list, but it must nevertheless be built an analyzed, to
12441 -- supply enough information for Gigi to compute the size of component.
12442
12443 elsif Ekind (Full_Base) in Private_Kind
12444 and then Is_Derived_Type (Full_Base)
12445 and then Has_Discriminants (Full_Base)
12446 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12447 then
12448 if not Is_Itype (Priv)
12449 and then
12450 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12451 then
12452 Build_Underlying_Full_View
12453 (Parent (Priv), Full, Etype (Full_Base));
12454
12455 elsif Nkind (Related_Nod) = N_Component_Declaration then
12456 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12457 end if;
12458
12459 elsif Is_Record_Type (Full_Base) then
12460
12461 -- Show Full is simply a renaming of Full_Base
12462
12463 Set_Cloned_Subtype (Full, Full_Base);
12464 end if;
12465
12466 -- It is unsafe to share the bounds of a scalar type, because the Itype
12467 -- is elaborated on demand, and if a bound is non-static then different
12468 -- orders of elaboration in different units will lead to different
12469 -- external symbols.
12470
12471 if Is_Scalar_Type (Full_Base) then
12472 Set_Scalar_Range (Full,
12473 Make_Range (Sloc (Related_Nod),
12474 Low_Bound =>
12475 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12476 High_Bound =>
12477 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12478
12479 -- This completion inherits the bounds of the full parent, but if
12480 -- the parent is an unconstrained floating point type, so is the
12481 -- completion.
12482
12483 if Is_Floating_Point_Type (Full_Base) then
12484 Set_Includes_Infinities
12485 (Scalar_Range (Full), Has_Infinities (Full_Base));
12486 end if;
12487 end if;
12488
12489 -- ??? It seems that a lot of fields are missing that should be copied
12490 -- from Full_Base to Full. Here are some that are introduced in a
12491 -- non-disruptive way but a cleanup is necessary.
12492
12493 if Is_Tagged_Type (Full_Base) then
12494 Set_Is_Tagged_Type (Full);
12495 Set_Direct_Primitive_Operations
12496 (Full, Direct_Primitive_Operations (Full_Base));
12497 Set_No_Tagged_Streams_Pragma
12498 (Full, No_Tagged_Streams_Pragma (Full_Base));
12499
12500 -- Inherit class_wide type of full_base in case the partial view was
12501 -- not tagged. Otherwise it has already been created when the private
12502 -- subtype was analyzed.
12503
12504 if No (Class_Wide_Type (Full)) then
12505 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12506 end if;
12507
12508 -- If this is a subtype of a protected or task type, constrain its
12509 -- corresponding record, unless this is a subtype without constraints,
12510 -- i.e. a simple renaming as with an actual subtype in an instance.
12511
12512 elsif Is_Concurrent_Type (Full_Base) then
12513 if Has_Discriminants (Full)
12514 and then Present (Corresponding_Record_Type (Full_Base))
12515 and then
12516 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12517 then
12518 Set_Corresponding_Record_Type (Full,
12519 Constrain_Corresponding_Record
12520 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12521
12522 else
12523 Set_Corresponding_Record_Type (Full,
12524 Corresponding_Record_Type (Full_Base));
12525 end if;
12526 end if;
12527
12528 -- Link rep item chain, and also setting of Has_Predicates from private
12529 -- subtype to full subtype, since we will need these on the full subtype
12530 -- to create the predicate function. Note that the full subtype may
12531 -- already have rep items, inherited from the full view of the base
12532 -- type, so we must be sure not to overwrite these entries.
12533
12534 declare
12535 Append : Boolean;
12536 Item : Node_Id;
12537 Next_Item : Node_Id;
12538 Priv_Item : Node_Id;
12539
12540 begin
12541 Item := First_Rep_Item (Full);
12542 Priv_Item := First_Rep_Item (Priv);
12543
12544 -- If no existing rep items on full type, we can just link directly
12545 -- to the list of items on the private type, if any exist.. Same if
12546 -- the rep items are only those inherited from the base
12547
12548 if (No (Item)
12549 or else Nkind (Item) /= N_Aspect_Specification
12550 or else Entity (Item) = Full_Base)
12551 and then Present (First_Rep_Item (Priv))
12552 then
12553 Set_First_Rep_Item (Full, Priv_Item);
12554
12555 -- Otherwise, search to the end of items currently linked to the full
12556 -- subtype and append the private items to the end. However, if Priv
12557 -- and Full already have the same list of rep items, then the append
12558 -- is not done, as that would create a circularity.
12559 --
12560 -- The partial view may have a predicate and the rep item lists of
12561 -- both views agree when inherited from the same ancestor. In that
12562 -- case, simply propagate the list from one view to the other.
12563 -- A more complex analysis needed here ???
12564
12565 elsif Present (Priv_Item)
12566 and then Item = Next_Rep_Item (Priv_Item)
12567 then
12568 Set_First_Rep_Item (Full, Priv_Item);
12569
12570 elsif Item /= Priv_Item then
12571 Append := True;
12572 loop
12573 Next_Item := Next_Rep_Item (Item);
12574 exit when No (Next_Item);
12575 Item := Next_Item;
12576
12577 -- If the private view has aspect specifications, the full view
12578 -- inherits them. Since these aspects may already have been
12579 -- attached to the full view during derivation, do not append
12580 -- them if already present.
12581
12582 if Item = First_Rep_Item (Priv) then
12583 Append := False;
12584 exit;
12585 end if;
12586 end loop;
12587
12588 -- And link the private type items at the end of the chain
12589
12590 if Append then
12591 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12592 end if;
12593 end if;
12594 end;
12595
12596 -- Make sure Has_Predicates is set on full type if it is set on the
12597 -- private type. Note that it may already be set on the full type and
12598 -- if so, we don't want to unset it. Similarly, propagate information
12599 -- about delayed aspects, because the corresponding pragmas must be
12600 -- analyzed when one of the views is frozen. This last step is needed
12601 -- in particular when the full type is a scalar type for which an
12602 -- anonymous base type is constructed.
12603
12604 -- The predicate functions are generated either at the freeze point
12605 -- of the type or at the end of the visible part, and we must avoid
12606 -- generating them twice.
12607
12608 if Has_Predicates (Priv) then
12609 Set_Has_Predicates (Full);
12610
12611 if Present (Predicate_Function (Priv))
12612 and then No (Predicate_Function (Full))
12613 then
12614 Set_Predicate_Function (Full, Predicate_Function (Priv));
12615 end if;
12616 end if;
12617
12618 if Has_Delayed_Aspects (Priv) then
12619 Set_Has_Delayed_Aspects (Full);
12620 end if;
12621 end Complete_Private_Subtype;
12622
12623 ----------------------------
12624 -- Constant_Redeclaration --
12625 ----------------------------
12626
12627 procedure Constant_Redeclaration
12628 (Id : Entity_Id;
12629 N : Node_Id;
12630 T : out Entity_Id)
12631 is
12632 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12633 Obj_Def : constant Node_Id := Object_Definition (N);
12634 New_T : Entity_Id;
12635
12636 procedure Check_Possible_Deferred_Completion
12637 (Prev_Id : Entity_Id;
12638 Prev_Obj_Def : Node_Id;
12639 Curr_Obj_Def : Node_Id);
12640 -- Determine whether the two object definitions describe the partial
12641 -- and the full view of a constrained deferred constant. Generate
12642 -- a subtype for the full view and verify that it statically matches
12643 -- the subtype of the partial view.
12644
12645 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12646 -- If deferred constant is an access type initialized with an allocator,
12647 -- check whether there is an illegal recursion in the definition,
12648 -- through a default value of some record subcomponent. This is normally
12649 -- detected when generating init procs, but requires this additional
12650 -- mechanism when expansion is disabled.
12651
12652 ----------------------------------------
12653 -- Check_Possible_Deferred_Completion --
12654 ----------------------------------------
12655
12656 procedure Check_Possible_Deferred_Completion
12657 (Prev_Id : Entity_Id;
12658 Prev_Obj_Def : Node_Id;
12659 Curr_Obj_Def : Node_Id)
12660 is
12661 begin
12662 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12663 and then Present (Constraint (Prev_Obj_Def))
12664 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12665 and then Present (Constraint (Curr_Obj_Def))
12666 then
12667 declare
12668 Loc : constant Source_Ptr := Sloc (N);
12669 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12670 Decl : constant Node_Id :=
12671 Make_Subtype_Declaration (Loc,
12672 Defining_Identifier => Def_Id,
12673 Subtype_Indication =>
12674 Relocate_Node (Curr_Obj_Def));
12675
12676 begin
12677 Insert_Before_And_Analyze (N, Decl);
12678 Set_Etype (Id, Def_Id);
12679
12680 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12681 Error_Msg_Sloc := Sloc (Prev_Id);
12682 Error_Msg_N ("subtype does not statically match deferred "
12683 & "declaration #", N);
12684 end if;
12685 end;
12686 end if;
12687 end Check_Possible_Deferred_Completion;
12688
12689 ---------------------------------
12690 -- Check_Recursive_Declaration --
12691 ---------------------------------
12692
12693 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12694 Comp : Entity_Id;
12695
12696 begin
12697 if Is_Record_Type (Typ) then
12698 Comp := First_Component (Typ);
12699 while Present (Comp) loop
12700 if Comes_From_Source (Comp) then
12701 if Present (Expression (Parent (Comp)))
12702 and then Is_Entity_Name (Expression (Parent (Comp)))
12703 and then Entity (Expression (Parent (Comp))) = Prev
12704 then
12705 Error_Msg_Sloc := Sloc (Parent (Comp));
12706 Error_Msg_NE
12707 ("illegal circularity with declaration for & #",
12708 N, Comp);
12709 return;
12710
12711 elsif Is_Record_Type (Etype (Comp)) then
12712 Check_Recursive_Declaration (Etype (Comp));
12713 end if;
12714 end if;
12715
12716 Next_Component (Comp);
12717 end loop;
12718 end if;
12719 end Check_Recursive_Declaration;
12720
12721 -- Start of processing for Constant_Redeclaration
12722
12723 begin
12724 if Nkind (Parent (Prev)) = N_Object_Declaration then
12725 if Nkind (Object_Definition
12726 (Parent (Prev))) = N_Subtype_Indication
12727 then
12728 -- Find type of new declaration. The constraints of the two
12729 -- views must match statically, but there is no point in
12730 -- creating an itype for the full view.
12731
12732 if Nkind (Obj_Def) = N_Subtype_Indication then
12733 Find_Type (Subtype_Mark (Obj_Def));
12734 New_T := Entity (Subtype_Mark (Obj_Def));
12735
12736 else
12737 Find_Type (Obj_Def);
12738 New_T := Entity (Obj_Def);
12739 end if;
12740
12741 T := Etype (Prev);
12742
12743 else
12744 -- The full view may impose a constraint, even if the partial
12745 -- view does not, so construct the subtype.
12746
12747 New_T := Find_Type_Of_Object (Obj_Def, N);
12748 T := New_T;
12749 end if;
12750
12751 else
12752 -- Current declaration is illegal, diagnosed below in Enter_Name
12753
12754 T := Empty;
12755 New_T := Any_Type;
12756 end if;
12757
12758 -- If previous full declaration or a renaming declaration exists, or if
12759 -- a homograph is present, let Enter_Name handle it, either with an
12760 -- error or with the removal of an overridden implicit subprogram.
12761 -- The previous one is a full declaration if it has an expression
12762 -- (which in the case of an aggregate is indicated by the Init flag).
12763
12764 if Ekind (Prev) /= E_Constant
12765 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12766 or else Present (Expression (Parent (Prev)))
12767 or else Has_Init_Expression (Parent (Prev))
12768 or else Present (Full_View (Prev))
12769 then
12770 Enter_Name (Id);
12771
12772 -- Verify that types of both declarations match, or else that both types
12773 -- are anonymous access types whose designated subtypes statically match
12774 -- (as allowed in Ada 2005 by AI-385).
12775
12776 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12777 and then
12778 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12779 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12780 or else Is_Access_Constant (Etype (New_T)) /=
12781 Is_Access_Constant (Etype (Prev))
12782 or else Can_Never_Be_Null (Etype (New_T)) /=
12783 Can_Never_Be_Null (Etype (Prev))
12784 or else Null_Exclusion_Present (Parent (Prev)) /=
12785 Null_Exclusion_Present (Parent (Id))
12786 or else not Subtypes_Statically_Match
12787 (Designated_Type (Etype (Prev)),
12788 Designated_Type (Etype (New_T))))
12789 then
12790 Error_Msg_Sloc := Sloc (Prev);
12791 Error_Msg_N ("type does not match declaration#", N);
12792 Set_Full_View (Prev, Id);
12793 Set_Etype (Id, Any_Type);
12794
12795 -- A deferred constant whose type is an anonymous array is always
12796 -- illegal (unless imported). A detailed error message might be
12797 -- helpful for Ada beginners.
12798
12799 if Nkind (Object_Definition (Parent (Prev)))
12800 = N_Constrained_Array_Definition
12801 and then Nkind (Object_Definition (N))
12802 = N_Constrained_Array_Definition
12803 then
12804 Error_Msg_N ("\each anonymous array is a distinct type", N);
12805 Error_Msg_N ("a deferred constant must have a named type",
12806 Object_Definition (Parent (Prev)));
12807 end if;
12808
12809 elsif
12810 Null_Exclusion_Present (Parent (Prev))
12811 and then not Null_Exclusion_Present (N)
12812 then
12813 Error_Msg_Sloc := Sloc (Prev);
12814 Error_Msg_N ("null-exclusion does not match declaration#", N);
12815 Set_Full_View (Prev, Id);
12816 Set_Etype (Id, Any_Type);
12817
12818 -- If so, process the full constant declaration
12819
12820 else
12821 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12822 -- the deferred declaration is constrained, then the subtype defined
12823 -- by the subtype_indication in the full declaration shall match it
12824 -- statically.
12825
12826 Check_Possible_Deferred_Completion
12827 (Prev_Id => Prev,
12828 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12829 Curr_Obj_Def => Obj_Def);
12830
12831 Set_Full_View (Prev, Id);
12832 Set_Is_Public (Id, Is_Public (Prev));
12833 Set_Is_Internal (Id);
12834 Append_Entity (Id, Current_Scope);
12835
12836 -- Check ALIASED present if present before (RM 7.4(7))
12837
12838 if Is_Aliased (Prev)
12839 and then not Aliased_Present (N)
12840 then
12841 Error_Msg_Sloc := Sloc (Prev);
12842 Error_Msg_N ("ALIASED required (see declaration #)", N);
12843 end if;
12844
12845 -- Check that placement is in private part and that the incomplete
12846 -- declaration appeared in the visible part.
12847
12848 if Ekind (Current_Scope) = E_Package
12849 and then not In_Private_Part (Current_Scope)
12850 then
12851 Error_Msg_Sloc := Sloc (Prev);
12852 Error_Msg_N
12853 ("full constant for declaration # must be in private part", N);
12854
12855 elsif Ekind (Current_Scope) = E_Package
12856 and then
12857 List_Containing (Parent (Prev)) /=
12858 Visible_Declarations (Package_Specification (Current_Scope))
12859 then
12860 Error_Msg_N
12861 ("deferred constant must be declared in visible part",
12862 Parent (Prev));
12863 end if;
12864
12865 if Is_Access_Type (T)
12866 and then Nkind (Expression (N)) = N_Allocator
12867 then
12868 Check_Recursive_Declaration (Designated_Type (T));
12869 end if;
12870
12871 -- A deferred constant is a visible entity. If type has invariants,
12872 -- verify that the initial value satisfies them. This is not done in
12873 -- GNATprove mode, as GNATprove handles invariant checks itself.
12874
12875 if Has_Invariants (T)
12876 and then Present (Invariant_Procedure (T))
12877 and then not GNATprove_Mode
12878 then
12879 Insert_After (N,
12880 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12881 end if;
12882 end if;
12883 end Constant_Redeclaration;
12884
12885 ----------------------
12886 -- Constrain_Access --
12887 ----------------------
12888
12889 procedure Constrain_Access
12890 (Def_Id : in out Entity_Id;
12891 S : Node_Id;
12892 Related_Nod : Node_Id)
12893 is
12894 T : constant Entity_Id := Entity (Subtype_Mark (S));
12895 Desig_Type : constant Entity_Id := Designated_Type (T);
12896 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12897 Constraint_OK : Boolean := True;
12898
12899 begin
12900 if Is_Array_Type (Desig_Type) then
12901 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12902
12903 elsif (Is_Record_Type (Desig_Type)
12904 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12905 and then not Is_Constrained (Desig_Type)
12906 then
12907 -- ??? The following code is a temporary bypass to ignore a
12908 -- discriminant constraint on access type if it is constraining
12909 -- the current record. Avoid creating the implicit subtype of the
12910 -- record we are currently compiling since right now, we cannot
12911 -- handle these. For now, just return the access type itself.
12912
12913 if Desig_Type = Current_Scope
12914 and then No (Def_Id)
12915 then
12916 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12917 Def_Id := Entity (Subtype_Mark (S));
12918
12919 -- This call added to ensure that the constraint is analyzed
12920 -- (needed for a B test). Note that we still return early from
12921 -- this procedure to avoid recursive processing. ???
12922
12923 Constrain_Discriminated_Type
12924 (Desig_Subtype, S, Related_Nod, For_Access => True);
12925 return;
12926 end if;
12927
12928 -- Enforce rule that the constraint is illegal if there is an
12929 -- unconstrained view of the designated type. This means that the
12930 -- partial view (either a private type declaration or a derivation
12931 -- from a private type) has no discriminants. (Defect Report
12932 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12933
12934 -- Rule updated for Ada 2005: The private type is said to have
12935 -- a constrained partial view, given that objects of the type
12936 -- can be declared. Furthermore, the rule applies to all access
12937 -- types, unlike the rule concerning default discriminants (see
12938 -- RM 3.7.1(7/3))
12939
12940 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12941 and then Has_Private_Declaration (Desig_Type)
12942 and then In_Open_Scopes (Scope (Desig_Type))
12943 and then Has_Discriminants (Desig_Type)
12944 then
12945 declare
12946 Pack : constant Node_Id :=
12947 Unit_Declaration_Node (Scope (Desig_Type));
12948 Decls : List_Id;
12949 Decl : Node_Id;
12950
12951 begin
12952 if Nkind (Pack) = N_Package_Declaration then
12953 Decls := Visible_Declarations (Specification (Pack));
12954 Decl := First (Decls);
12955 while Present (Decl) loop
12956 if (Nkind (Decl) = N_Private_Type_Declaration
12957 and then Chars (Defining_Identifier (Decl)) =
12958 Chars (Desig_Type))
12959
12960 or else
12961 (Nkind (Decl) = N_Full_Type_Declaration
12962 and then
12963 Chars (Defining_Identifier (Decl)) =
12964 Chars (Desig_Type)
12965 and then Is_Derived_Type (Desig_Type)
12966 and then
12967 Has_Private_Declaration (Etype (Desig_Type)))
12968 then
12969 if No (Discriminant_Specifications (Decl)) then
12970 Error_Msg_N
12971 ("cannot constrain access type if designated "
12972 & "type has constrained partial view", S);
12973 end if;
12974
12975 exit;
12976 end if;
12977
12978 Next (Decl);
12979 end loop;
12980 end if;
12981 end;
12982 end if;
12983
12984 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12985 For_Access => True);
12986
12987 elsif Is_Concurrent_Type (Desig_Type)
12988 and then not Is_Constrained (Desig_Type)
12989 then
12990 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12991
12992 else
12993 Error_Msg_N ("invalid constraint on access type", S);
12994
12995 -- We simply ignore an invalid constraint
12996
12997 Desig_Subtype := Desig_Type;
12998 Constraint_OK := False;
12999 end if;
13000
13001 if No (Def_Id) then
13002 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
13003 else
13004 Set_Ekind (Def_Id, E_Access_Subtype);
13005 end if;
13006
13007 if Constraint_OK then
13008 Set_Etype (Def_Id, Base_Type (T));
13009
13010 if Is_Private_Type (Desig_Type) then
13011 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13012 end if;
13013 else
13014 Set_Etype (Def_Id, Any_Type);
13015 end if;
13016
13017 Set_Size_Info (Def_Id, T);
13018 Set_Is_Constrained (Def_Id, Constraint_OK);
13019 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13020 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13021 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13022
13023 Conditional_Delay (Def_Id, T);
13024
13025 -- AI-363 : Subtypes of general access types whose designated types have
13026 -- default discriminants are disallowed. In instances, the rule has to
13027 -- be checked against the actual, of which T is the subtype. In a
13028 -- generic body, the rule is checked assuming that the actual type has
13029 -- defaulted discriminants.
13030
13031 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13032 if Ekind (Base_Type (T)) = E_General_Access_Type
13033 and then Has_Defaulted_Discriminants (Desig_Type)
13034 then
13035 if Ada_Version < Ada_2005 then
13036 Error_Msg_N
13037 ("access subtype of general access type would not " &
13038 "be allowed in Ada 2005?y?", S);
13039 else
13040 Error_Msg_N
13041 ("access subtype of general access type not allowed", S);
13042 end if;
13043
13044 Error_Msg_N ("\discriminants have defaults", S);
13045
13046 elsif Is_Access_Type (T)
13047 and then Is_Generic_Type (Desig_Type)
13048 and then Has_Discriminants (Desig_Type)
13049 and then In_Package_Body (Current_Scope)
13050 then
13051 if Ada_Version < Ada_2005 then
13052 Error_Msg_N
13053 ("access subtype would not be allowed in generic body "
13054 & "in Ada 2005?y?", S);
13055 else
13056 Error_Msg_N
13057 ("access subtype not allowed in generic body", S);
13058 end if;
13059
13060 Error_Msg_N
13061 ("\designated type is a discriminated formal", S);
13062 end if;
13063 end if;
13064 end Constrain_Access;
13065
13066 ---------------------
13067 -- Constrain_Array --
13068 ---------------------
13069
13070 procedure Constrain_Array
13071 (Def_Id : in out Entity_Id;
13072 SI : Node_Id;
13073 Related_Nod : Node_Id;
13074 Related_Id : Entity_Id;
13075 Suffix : Character)
13076 is
13077 C : constant Node_Id := Constraint (SI);
13078 Number_Of_Constraints : Nat := 0;
13079 Index : Node_Id;
13080 S, T : Entity_Id;
13081 Constraint_OK : Boolean := True;
13082
13083 begin
13084 T := Entity (Subtype_Mark (SI));
13085
13086 if Is_Access_Type (T) then
13087 T := Designated_Type (T);
13088 end if;
13089
13090 -- If an index constraint follows a subtype mark in a subtype indication
13091 -- then the type or subtype denoted by the subtype mark must not already
13092 -- impose an index constraint. The subtype mark must denote either an
13093 -- unconstrained array type or an access type whose designated type
13094 -- is such an array type... (RM 3.6.1)
13095
13096 if Is_Constrained (T) then
13097 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13098 Constraint_OK := False;
13099
13100 else
13101 S := First (Constraints (C));
13102 while Present (S) loop
13103 Number_Of_Constraints := Number_Of_Constraints + 1;
13104 Next (S);
13105 end loop;
13106
13107 -- In either case, the index constraint must provide a discrete
13108 -- range for each index of the array type and the type of each
13109 -- discrete range must be the same as that of the corresponding
13110 -- index. (RM 3.6.1)
13111
13112 if Number_Of_Constraints /= Number_Dimensions (T) then
13113 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13114 Constraint_OK := False;
13115
13116 else
13117 S := First (Constraints (C));
13118 Index := First_Index (T);
13119 Analyze (Index);
13120
13121 -- Apply constraints to each index type
13122
13123 for J in 1 .. Number_Of_Constraints loop
13124 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13125 Next (Index);
13126 Next (S);
13127 end loop;
13128
13129 end if;
13130 end if;
13131
13132 if No (Def_Id) then
13133 Def_Id :=
13134 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13135 Set_Parent (Def_Id, Related_Nod);
13136
13137 else
13138 Set_Ekind (Def_Id, E_Array_Subtype);
13139 end if;
13140
13141 Set_Size_Info (Def_Id, (T));
13142 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13143 Set_Etype (Def_Id, Base_Type (T));
13144
13145 if Constraint_OK then
13146 Set_First_Index (Def_Id, First (Constraints (C)));
13147 else
13148 Set_First_Index (Def_Id, First_Index (T));
13149 end if;
13150
13151 Set_Is_Constrained (Def_Id, True);
13152 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13153 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13154
13155 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13156 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13157
13158 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13159 -- We need to initialize the attribute because if Def_Id is previously
13160 -- analyzed through a limited_with clause, it will have the attributes
13161 -- of an incomplete type, one of which is an Elist that overlaps the
13162 -- Packed_Array_Impl_Type field.
13163
13164 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13165
13166 -- Build a freeze node if parent still needs one. Also make sure that
13167 -- the Depends_On_Private status is set because the subtype will need
13168 -- reprocessing at the time the base type does, and also we must set a
13169 -- conditional delay.
13170
13171 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13172 Conditional_Delay (Def_Id, T);
13173 end Constrain_Array;
13174
13175 ------------------------------
13176 -- Constrain_Component_Type --
13177 ------------------------------
13178
13179 function Constrain_Component_Type
13180 (Comp : Entity_Id;
13181 Constrained_Typ : Entity_Id;
13182 Related_Node : Node_Id;
13183 Typ : Entity_Id;
13184 Constraints : Elist_Id) return Entity_Id
13185 is
13186 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13187 Compon_Type : constant Entity_Id := Etype (Comp);
13188
13189 function Build_Constrained_Array_Type
13190 (Old_Type : Entity_Id) return Entity_Id;
13191 -- If Old_Type is an array type, one of whose indexes is constrained
13192 -- by a discriminant, build an Itype whose constraint replaces the
13193 -- discriminant with its value in the constraint.
13194
13195 function Build_Constrained_Discriminated_Type
13196 (Old_Type : Entity_Id) return Entity_Id;
13197 -- Ditto for record components
13198
13199 function Build_Constrained_Access_Type
13200 (Old_Type : Entity_Id) return Entity_Id;
13201 -- Ditto for access types. Makes use of previous two functions, to
13202 -- constrain designated type.
13203
13204 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13205 -- T is an array or discriminated type, C is a list of constraints
13206 -- that apply to T. This routine builds the constrained subtype.
13207
13208 function Is_Discriminant (Expr : Node_Id) return Boolean;
13209 -- Returns True if Expr is a discriminant
13210
13211 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13212 -- Find the value of discriminant Discrim in Constraint
13213
13214 -----------------------------------
13215 -- Build_Constrained_Access_Type --
13216 -----------------------------------
13217
13218 function Build_Constrained_Access_Type
13219 (Old_Type : Entity_Id) return Entity_Id
13220 is
13221 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13222 Itype : Entity_Id;
13223 Desig_Subtype : Entity_Id;
13224 Scop : Entity_Id;
13225
13226 begin
13227 -- if the original access type was not embedded in the enclosing
13228 -- type definition, there is no need to produce a new access
13229 -- subtype. In fact every access type with an explicit constraint
13230 -- generates an itype whose scope is the enclosing record.
13231
13232 if not Is_Type (Scope (Old_Type)) then
13233 return Old_Type;
13234
13235 elsif Is_Array_Type (Desig_Type) then
13236 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13237
13238 elsif Has_Discriminants (Desig_Type) then
13239
13240 -- This may be an access type to an enclosing record type for
13241 -- which we are constructing the constrained components. Return
13242 -- the enclosing record subtype. This is not always correct,
13243 -- but avoids infinite recursion. ???
13244
13245 Desig_Subtype := Any_Type;
13246
13247 for J in reverse 0 .. Scope_Stack.Last loop
13248 Scop := Scope_Stack.Table (J).Entity;
13249
13250 if Is_Type (Scop)
13251 and then Base_Type (Scop) = Base_Type (Desig_Type)
13252 then
13253 Desig_Subtype := Scop;
13254 end if;
13255
13256 exit when not Is_Type (Scop);
13257 end loop;
13258
13259 if Desig_Subtype = Any_Type then
13260 Desig_Subtype :=
13261 Build_Constrained_Discriminated_Type (Desig_Type);
13262 end if;
13263
13264 else
13265 return Old_Type;
13266 end if;
13267
13268 if Desig_Subtype /= Desig_Type then
13269
13270 -- The Related_Node better be here or else we won't be able
13271 -- to attach new itypes to a node in the tree.
13272
13273 pragma Assert (Present (Related_Node));
13274
13275 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13276
13277 Set_Etype (Itype, Base_Type (Old_Type));
13278 Set_Size_Info (Itype, (Old_Type));
13279 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13280 Set_Depends_On_Private (Itype, Has_Private_Component
13281 (Old_Type));
13282 Set_Is_Access_Constant (Itype, Is_Access_Constant
13283 (Old_Type));
13284
13285 -- The new itype needs freezing when it depends on a not frozen
13286 -- type and the enclosing subtype needs freezing.
13287
13288 if Has_Delayed_Freeze (Constrained_Typ)
13289 and then not Is_Frozen (Constrained_Typ)
13290 then
13291 Conditional_Delay (Itype, Base_Type (Old_Type));
13292 end if;
13293
13294 return Itype;
13295
13296 else
13297 return Old_Type;
13298 end if;
13299 end Build_Constrained_Access_Type;
13300
13301 ----------------------------------
13302 -- Build_Constrained_Array_Type --
13303 ----------------------------------
13304
13305 function Build_Constrained_Array_Type
13306 (Old_Type : Entity_Id) return Entity_Id
13307 is
13308 Lo_Expr : Node_Id;
13309 Hi_Expr : Node_Id;
13310 Old_Index : Node_Id;
13311 Range_Node : Node_Id;
13312 Constr_List : List_Id;
13313
13314 Need_To_Create_Itype : Boolean := False;
13315
13316 begin
13317 Old_Index := First_Index (Old_Type);
13318 while Present (Old_Index) loop
13319 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13320
13321 if Is_Discriminant (Lo_Expr)
13322 or else
13323 Is_Discriminant (Hi_Expr)
13324 then
13325 Need_To_Create_Itype := True;
13326 end if;
13327
13328 Next_Index (Old_Index);
13329 end loop;
13330
13331 if Need_To_Create_Itype then
13332 Constr_List := New_List;
13333
13334 Old_Index := First_Index (Old_Type);
13335 while Present (Old_Index) loop
13336 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13337
13338 if Is_Discriminant (Lo_Expr) then
13339 Lo_Expr := Get_Discr_Value (Lo_Expr);
13340 end if;
13341
13342 if Is_Discriminant (Hi_Expr) then
13343 Hi_Expr := Get_Discr_Value (Hi_Expr);
13344 end if;
13345
13346 Range_Node :=
13347 Make_Range
13348 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13349
13350 Append (Range_Node, To => Constr_List);
13351
13352 Next_Index (Old_Index);
13353 end loop;
13354
13355 return Build_Subtype (Old_Type, Constr_List);
13356
13357 else
13358 return Old_Type;
13359 end if;
13360 end Build_Constrained_Array_Type;
13361
13362 ------------------------------------------
13363 -- Build_Constrained_Discriminated_Type --
13364 ------------------------------------------
13365
13366 function Build_Constrained_Discriminated_Type
13367 (Old_Type : Entity_Id) return Entity_Id
13368 is
13369 Expr : Node_Id;
13370 Constr_List : List_Id;
13371 Old_Constraint : Elmt_Id;
13372
13373 Need_To_Create_Itype : Boolean := False;
13374
13375 begin
13376 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13377 while Present (Old_Constraint) loop
13378 Expr := Node (Old_Constraint);
13379
13380 if Is_Discriminant (Expr) then
13381 Need_To_Create_Itype := True;
13382 end if;
13383
13384 Next_Elmt (Old_Constraint);
13385 end loop;
13386
13387 if Need_To_Create_Itype then
13388 Constr_List := New_List;
13389
13390 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13391 while Present (Old_Constraint) loop
13392 Expr := Node (Old_Constraint);
13393
13394 if Is_Discriminant (Expr) then
13395 Expr := Get_Discr_Value (Expr);
13396 end if;
13397
13398 Append (New_Copy_Tree (Expr), To => Constr_List);
13399
13400 Next_Elmt (Old_Constraint);
13401 end loop;
13402
13403 return Build_Subtype (Old_Type, Constr_List);
13404
13405 else
13406 return Old_Type;
13407 end if;
13408 end Build_Constrained_Discriminated_Type;
13409
13410 -------------------
13411 -- Build_Subtype --
13412 -------------------
13413
13414 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13415 Indic : Node_Id;
13416 Subtyp_Decl : Node_Id;
13417 Def_Id : Entity_Id;
13418 Btyp : Entity_Id := Base_Type (T);
13419
13420 begin
13421 -- The Related_Node better be here or else we won't be able to
13422 -- attach new itypes to a node in the tree.
13423
13424 pragma Assert (Present (Related_Node));
13425
13426 -- If the view of the component's type is incomplete or private
13427 -- with unknown discriminants, then the constraint must be applied
13428 -- to the full type.
13429
13430 if Has_Unknown_Discriminants (Btyp)
13431 and then Present (Underlying_Type (Btyp))
13432 then
13433 Btyp := Underlying_Type (Btyp);
13434 end if;
13435
13436 Indic :=
13437 Make_Subtype_Indication (Loc,
13438 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13439 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13440
13441 Def_Id := Create_Itype (Ekind (T), Related_Node);
13442
13443 Subtyp_Decl :=
13444 Make_Subtype_Declaration (Loc,
13445 Defining_Identifier => Def_Id,
13446 Subtype_Indication => Indic);
13447
13448 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13449
13450 -- Itypes must be analyzed with checks off (see package Itypes)
13451
13452 Analyze (Subtyp_Decl, Suppress => All_Checks);
13453
13454 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13455 Inherit_Predicate_Flags (Def_Id, T);
13456
13457 -- Indicate where the predicate function may be found
13458
13459 if Is_Itype (T) then
13460 if Present (Predicate_Function (Def_Id)) then
13461 null;
13462
13463 elsif Present (Predicate_Function (T)) then
13464 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13465
13466 else
13467 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13468 end if;
13469
13470 elsif No (Predicate_Function (Def_Id)) then
13471 Set_Predicated_Parent (Def_Id, T);
13472 end if;
13473 end if;
13474
13475 return Def_Id;
13476 end Build_Subtype;
13477
13478 ---------------------
13479 -- Get_Discr_Value --
13480 ---------------------
13481
13482 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13483 D : Entity_Id;
13484 E : Elmt_Id;
13485
13486 begin
13487 -- The discriminant may be declared for the type, in which case we
13488 -- find it by iterating over the list of discriminants. If the
13489 -- discriminant is inherited from a parent type, it appears as the
13490 -- corresponding discriminant of the current type. This will be the
13491 -- case when constraining an inherited component whose constraint is
13492 -- given by a discriminant of the parent.
13493
13494 D := First_Discriminant (Typ);
13495 E := First_Elmt (Constraints);
13496
13497 while Present (D) loop
13498 if D = Entity (Discrim)
13499 or else D = CR_Discriminant (Entity (Discrim))
13500 or else Corresponding_Discriminant (D) = Entity (Discrim)
13501 then
13502 return Node (E);
13503 end if;
13504
13505 Next_Discriminant (D);
13506 Next_Elmt (E);
13507 end loop;
13508
13509 -- The Corresponding_Discriminant mechanism is incomplete, because
13510 -- the correspondence between new and old discriminants is not one
13511 -- to one: one new discriminant can constrain several old ones. In
13512 -- that case, scan sequentially the stored_constraint, the list of
13513 -- discriminants of the parents, and the constraints.
13514
13515 -- Previous code checked for the present of the Stored_Constraint
13516 -- list for the derived type, but did not use it at all. Should it
13517 -- be present when the component is a discriminated task type?
13518
13519 if Is_Derived_Type (Typ)
13520 and then Scope (Entity (Discrim)) = Etype (Typ)
13521 then
13522 D := First_Discriminant (Etype (Typ));
13523 E := First_Elmt (Constraints);
13524 while Present (D) loop
13525 if D = Entity (Discrim) then
13526 return Node (E);
13527 end if;
13528
13529 Next_Discriminant (D);
13530 Next_Elmt (E);
13531 end loop;
13532 end if;
13533
13534 -- Something is wrong if we did not find the value
13535
13536 raise Program_Error;
13537 end Get_Discr_Value;
13538
13539 ---------------------
13540 -- Is_Discriminant --
13541 ---------------------
13542
13543 function Is_Discriminant (Expr : Node_Id) return Boolean is
13544 Discrim_Scope : Entity_Id;
13545
13546 begin
13547 if Denotes_Discriminant (Expr) then
13548 Discrim_Scope := Scope (Entity (Expr));
13549
13550 -- Either we have a reference to one of Typ's discriminants,
13551
13552 pragma Assert (Discrim_Scope = Typ
13553
13554 -- or to the discriminants of the parent type, in the case
13555 -- of a derivation of a tagged type with variants.
13556
13557 or else Discrim_Scope = Etype (Typ)
13558 or else Full_View (Discrim_Scope) = Etype (Typ)
13559
13560 -- or same as above for the case where the discriminants
13561 -- were declared in Typ's private view.
13562
13563 or else (Is_Private_Type (Discrim_Scope)
13564 and then Chars (Discrim_Scope) = Chars (Typ))
13565
13566 -- or else we are deriving from the full view and the
13567 -- discriminant is declared in the private entity.
13568
13569 or else (Is_Private_Type (Typ)
13570 and then Chars (Discrim_Scope) = Chars (Typ))
13571
13572 -- Or we are constrained the corresponding record of a
13573 -- synchronized type that completes a private declaration.
13574
13575 or else (Is_Concurrent_Record_Type (Typ)
13576 and then
13577 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13578
13579 -- or we have a class-wide type, in which case make sure the
13580 -- discriminant found belongs to the root type.
13581
13582 or else (Is_Class_Wide_Type (Typ)
13583 and then Etype (Typ) = Discrim_Scope));
13584
13585 return True;
13586 end if;
13587
13588 -- In all other cases we have something wrong
13589
13590 return False;
13591 end Is_Discriminant;
13592
13593 -- Start of processing for Constrain_Component_Type
13594
13595 begin
13596 if Nkind (Parent (Comp)) = N_Component_Declaration
13597 and then Comes_From_Source (Parent (Comp))
13598 and then Comes_From_Source
13599 (Subtype_Indication (Component_Definition (Parent (Comp))))
13600 and then
13601 Is_Entity_Name
13602 (Subtype_Indication (Component_Definition (Parent (Comp))))
13603 then
13604 return Compon_Type;
13605
13606 elsif Is_Array_Type (Compon_Type) then
13607 return Build_Constrained_Array_Type (Compon_Type);
13608
13609 elsif Has_Discriminants (Compon_Type) then
13610 return Build_Constrained_Discriminated_Type (Compon_Type);
13611
13612 elsif Is_Access_Type (Compon_Type) then
13613 return Build_Constrained_Access_Type (Compon_Type);
13614
13615 else
13616 return Compon_Type;
13617 end if;
13618 end Constrain_Component_Type;
13619
13620 --------------------------
13621 -- Constrain_Concurrent --
13622 --------------------------
13623
13624 -- For concurrent types, the associated record value type carries the same
13625 -- discriminants, so when we constrain a concurrent type, we must constrain
13626 -- the corresponding record type as well.
13627
13628 procedure Constrain_Concurrent
13629 (Def_Id : in out Entity_Id;
13630 SI : Node_Id;
13631 Related_Nod : Node_Id;
13632 Related_Id : Entity_Id;
13633 Suffix : Character)
13634 is
13635 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13636 -- case of a private subtype (needed when only doing semantic analysis).
13637
13638 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13639 T_Val : Entity_Id;
13640
13641 begin
13642 if Is_Access_Type (T_Ent) then
13643 T_Ent := Designated_Type (T_Ent);
13644 end if;
13645
13646 T_Val := Corresponding_Record_Type (T_Ent);
13647
13648 if Present (T_Val) then
13649
13650 if No (Def_Id) then
13651 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13652
13653 -- Elaborate itype now, as it may be used in a subsequent
13654 -- synchronized operation in another scope.
13655
13656 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13657 Build_Itype_Reference (Def_Id, Related_Nod);
13658 end if;
13659 end if;
13660
13661 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13662 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13663
13664 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13665 Set_Corresponding_Record_Type (Def_Id,
13666 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13667
13668 else
13669 -- If there is no associated record, expansion is disabled and this
13670 -- is a generic context. Create a subtype in any case, so that
13671 -- semantic analysis can proceed.
13672
13673 if No (Def_Id) then
13674 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13675 end if;
13676
13677 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13678 end if;
13679 end Constrain_Concurrent;
13680
13681 ------------------------------------
13682 -- Constrain_Corresponding_Record --
13683 ------------------------------------
13684
13685 function Constrain_Corresponding_Record
13686 (Prot_Subt : Entity_Id;
13687 Corr_Rec : Entity_Id;
13688 Related_Nod : Node_Id) return Entity_Id
13689 is
13690 T_Sub : constant Entity_Id :=
13691 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13692
13693 begin
13694 Set_Etype (T_Sub, Corr_Rec);
13695 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13696 Set_Is_Constrained (T_Sub, True);
13697 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13698 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13699
13700 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13701 Set_Discriminant_Constraint
13702 (T_Sub, Discriminant_Constraint (Prot_Subt));
13703 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13704 Create_Constrained_Components
13705 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13706 end if;
13707
13708 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13709
13710 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13711 Conditional_Delay (T_Sub, Corr_Rec);
13712
13713 else
13714 -- This is a component subtype: it will be frozen in the context of
13715 -- the enclosing record's init_proc, so that discriminant references
13716 -- are resolved to discriminals. (Note: we used to skip freezing
13717 -- altogether in that case, which caused errors downstream for
13718 -- components of a bit packed array type).
13719
13720 Set_Has_Delayed_Freeze (T_Sub);
13721 end if;
13722
13723 return T_Sub;
13724 end Constrain_Corresponding_Record;
13725
13726 -----------------------
13727 -- Constrain_Decimal --
13728 -----------------------
13729
13730 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13731 T : constant Entity_Id := Entity (Subtype_Mark (S));
13732 C : constant Node_Id := Constraint (S);
13733 Loc : constant Source_Ptr := Sloc (C);
13734 Range_Expr : Node_Id;
13735 Digits_Expr : Node_Id;
13736 Digits_Val : Uint;
13737 Bound_Val : Ureal;
13738
13739 begin
13740 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13741
13742 if Nkind (C) = N_Range_Constraint then
13743 Range_Expr := Range_Expression (C);
13744 Digits_Val := Digits_Value (T);
13745
13746 else
13747 pragma Assert (Nkind (C) = N_Digits_Constraint);
13748
13749 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13750
13751 Digits_Expr := Digits_Expression (C);
13752 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13753
13754 Check_Digits_Expression (Digits_Expr);
13755 Digits_Val := Expr_Value (Digits_Expr);
13756
13757 if Digits_Val > Digits_Value (T) then
13758 Error_Msg_N
13759 ("digits expression is incompatible with subtype", C);
13760 Digits_Val := Digits_Value (T);
13761 end if;
13762
13763 if Present (Range_Constraint (C)) then
13764 Range_Expr := Range_Expression (Range_Constraint (C));
13765 else
13766 Range_Expr := Empty;
13767 end if;
13768 end if;
13769
13770 Set_Etype (Def_Id, Base_Type (T));
13771 Set_Size_Info (Def_Id, (T));
13772 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13773 Set_Delta_Value (Def_Id, Delta_Value (T));
13774 Set_Scale_Value (Def_Id, Scale_Value (T));
13775 Set_Small_Value (Def_Id, Small_Value (T));
13776 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13777 Set_Digits_Value (Def_Id, Digits_Val);
13778
13779 -- Manufacture range from given digits value if no range present
13780
13781 if No (Range_Expr) then
13782 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13783 Range_Expr :=
13784 Make_Range (Loc,
13785 Low_Bound =>
13786 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13787 High_Bound =>
13788 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13789 end if;
13790
13791 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13792 Set_Discrete_RM_Size (Def_Id);
13793
13794 -- Unconditionally delay the freeze, since we cannot set size
13795 -- information in all cases correctly until the freeze point.
13796
13797 Set_Has_Delayed_Freeze (Def_Id);
13798 end Constrain_Decimal;
13799
13800 ----------------------------------
13801 -- Constrain_Discriminated_Type --
13802 ----------------------------------
13803
13804 procedure Constrain_Discriminated_Type
13805 (Def_Id : Entity_Id;
13806 S : Node_Id;
13807 Related_Nod : Node_Id;
13808 For_Access : Boolean := False)
13809 is
13810 E : Entity_Id := Entity (Subtype_Mark (S));
13811 T : Entity_Id;
13812
13813 procedure Fixup_Bad_Constraint;
13814 -- Called after finding a bad constraint, and after having posted an
13815 -- appropriate error message. The goal is to leave type Def_Id in as
13816 -- reasonable state as possible.
13817
13818 --------------------------
13819 -- Fixup_Bad_Constraint --
13820 --------------------------
13821
13822 procedure Fixup_Bad_Constraint is
13823 begin
13824 -- Set a reasonable Ekind for the entity, including incomplete types.
13825
13826 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13827
13828 -- Set Etype to the known type, to reduce chances of cascaded errors
13829
13830 Set_Etype (Def_Id, E);
13831 Set_Error_Posted (Def_Id);
13832 end Fixup_Bad_Constraint;
13833
13834 -- Local variables
13835
13836 C : Node_Id;
13837 Constr : Elist_Id := New_Elmt_List;
13838
13839 -- Start of processing for Constrain_Discriminated_Type
13840
13841 begin
13842 C := Constraint (S);
13843
13844 -- A discriminant constraint is only allowed in a subtype indication,
13845 -- after a subtype mark. This subtype mark must denote either a type
13846 -- with discriminants, or an access type whose designated type is a
13847 -- type with discriminants. A discriminant constraint specifies the
13848 -- values of these discriminants (RM 3.7.2(5)).
13849
13850 T := Base_Type (Entity (Subtype_Mark (S)));
13851
13852 if Is_Access_Type (T) then
13853 T := Designated_Type (T);
13854 end if;
13855
13856 -- In an instance it may be necessary to retrieve the full view of a
13857 -- type with unknown discriminants, or a full view with defaulted
13858 -- discriminants. In other contexts the constraint is illegal.
13859
13860 if In_Instance
13861 and then Is_Private_Type (T)
13862 and then Present (Full_View (T))
13863 and then
13864 (Has_Unknown_Discriminants (T)
13865 or else
13866 (not Has_Discriminants (T)
13867 and then Has_Discriminants (Full_View (T))
13868 and then Present (Discriminant_Default_Value
13869 (First_Discriminant (Full_View (T))))))
13870 then
13871 T := Full_View (T);
13872 E := Full_View (E);
13873 end if;
13874
13875 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13876 -- generating an error for access-to-incomplete subtypes.
13877
13878 if Ada_Version >= Ada_2005
13879 and then Ekind (T) = E_Incomplete_Type
13880 and then Nkind (Parent (S)) = N_Subtype_Declaration
13881 and then not Is_Itype (Def_Id)
13882 then
13883 -- A little sanity check: emit an error message if the type has
13884 -- discriminants to begin with. Type T may be a regular incomplete
13885 -- type or imported via a limited with clause.
13886
13887 if Has_Discriminants (T)
13888 or else (From_Limited_With (T)
13889 and then Present (Non_Limited_View (T))
13890 and then Nkind (Parent (Non_Limited_View (T))) =
13891 N_Full_Type_Declaration
13892 and then Present (Discriminant_Specifications
13893 (Parent (Non_Limited_View (T)))))
13894 then
13895 Error_Msg_N
13896 ("(Ada 2005) incomplete subtype may not be constrained", C);
13897 else
13898 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13899 end if;
13900
13901 Fixup_Bad_Constraint;
13902 return;
13903
13904 -- Check that the type has visible discriminants. The type may be
13905 -- a private type with unknown discriminants whose full view has
13906 -- discriminants which are invisible.
13907
13908 elsif not Has_Discriminants (T)
13909 or else
13910 (Has_Unknown_Discriminants (T)
13911 and then Is_Private_Type (T))
13912 then
13913 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13914 Fixup_Bad_Constraint;
13915 return;
13916
13917 elsif Is_Constrained (E)
13918 or else (Ekind (E) = E_Class_Wide_Subtype
13919 and then Present (Discriminant_Constraint (E)))
13920 then
13921 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13922 Fixup_Bad_Constraint;
13923 return;
13924 end if;
13925
13926 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13927 -- applies to the base type.
13928
13929 T := Base_Type (T);
13930
13931 Constr := Build_Discriminant_Constraints (T, S);
13932
13933 -- If the list returned was empty we had an error in building the
13934 -- discriminant constraint. We have also already signalled an error
13935 -- in the incomplete type case
13936
13937 if Is_Empty_Elmt_List (Constr) then
13938 Fixup_Bad_Constraint;
13939 return;
13940 end if;
13941
13942 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13943 end Constrain_Discriminated_Type;
13944
13945 ---------------------------
13946 -- Constrain_Enumeration --
13947 ---------------------------
13948
13949 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13950 T : constant Entity_Id := Entity (Subtype_Mark (S));
13951 C : constant Node_Id := Constraint (S);
13952
13953 begin
13954 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13955
13956 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13957
13958 Set_Etype (Def_Id, Base_Type (T));
13959 Set_Size_Info (Def_Id, (T));
13960 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13961 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13962
13963 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13964
13965 Set_Discrete_RM_Size (Def_Id);
13966 end Constrain_Enumeration;
13967
13968 ----------------------
13969 -- Constrain_Float --
13970 ----------------------
13971
13972 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13973 T : constant Entity_Id := Entity (Subtype_Mark (S));
13974 C : Node_Id;
13975 D : Node_Id;
13976 Rais : Node_Id;
13977
13978 begin
13979 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13980
13981 Set_Etype (Def_Id, Base_Type (T));
13982 Set_Size_Info (Def_Id, (T));
13983 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13984
13985 -- Process the constraint
13986
13987 C := Constraint (S);
13988
13989 -- Digits constraint present
13990
13991 if Nkind (C) = N_Digits_Constraint then
13992
13993 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13994 Check_Restriction (No_Obsolescent_Features, C);
13995
13996 if Warn_On_Obsolescent_Feature then
13997 Error_Msg_N
13998 ("subtype digits constraint is an " &
13999 "obsolescent feature (RM J.3(8))?j?", C);
14000 end if;
14001
14002 D := Digits_Expression (C);
14003 Analyze_And_Resolve (D, Any_Integer);
14004 Check_Digits_Expression (D);
14005 Set_Digits_Value (Def_Id, Expr_Value (D));
14006
14007 -- Check that digits value is in range. Obviously we can do this
14008 -- at compile time, but it is strictly a runtime check, and of
14009 -- course there is an ACVC test that checks this.
14010
14011 if Digits_Value (Def_Id) > Digits_Value (T) then
14012 Error_Msg_Uint_1 := Digits_Value (T);
14013 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14014 Rais :=
14015 Make_Raise_Constraint_Error (Sloc (D),
14016 Reason => CE_Range_Check_Failed);
14017 Insert_Action (Declaration_Node (Def_Id), Rais);
14018 end if;
14019
14020 C := Range_Constraint (C);
14021
14022 -- No digits constraint present
14023
14024 else
14025 Set_Digits_Value (Def_Id, Digits_Value (T));
14026 end if;
14027
14028 -- Range constraint present
14029
14030 if Nkind (C) = N_Range_Constraint then
14031 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14032
14033 -- No range constraint present
14034
14035 else
14036 pragma Assert (No (C));
14037 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14038 end if;
14039
14040 Set_Is_Constrained (Def_Id);
14041 end Constrain_Float;
14042
14043 ---------------------
14044 -- Constrain_Index --
14045 ---------------------
14046
14047 procedure Constrain_Index
14048 (Index : Node_Id;
14049 S : Node_Id;
14050 Related_Nod : Node_Id;
14051 Related_Id : Entity_Id;
14052 Suffix : Character;
14053 Suffix_Index : Nat)
14054 is
14055 Def_Id : Entity_Id;
14056 R : Node_Id := Empty;
14057 T : constant Entity_Id := Etype (Index);
14058
14059 begin
14060 Def_Id :=
14061 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14062 Set_Etype (Def_Id, Base_Type (T));
14063
14064 if Nkind (S) = N_Range
14065 or else
14066 (Nkind (S) = N_Attribute_Reference
14067 and then Attribute_Name (S) = Name_Range)
14068 then
14069 -- A Range attribute will be transformed into N_Range by Resolve
14070
14071 Analyze (S);
14072 Set_Etype (S, T);
14073 R := S;
14074
14075 Process_Range_Expr_In_Decl (R, T);
14076
14077 if not Error_Posted (S)
14078 and then
14079 (Nkind (S) /= N_Range
14080 or else not Covers (T, (Etype (Low_Bound (S))))
14081 or else not Covers (T, (Etype (High_Bound (S)))))
14082 then
14083 if Base_Type (T) /= Any_Type
14084 and then Etype (Low_Bound (S)) /= Any_Type
14085 and then Etype (High_Bound (S)) /= Any_Type
14086 then
14087 Error_Msg_N ("range expected", S);
14088 end if;
14089 end if;
14090
14091 elsif Nkind (S) = N_Subtype_Indication then
14092
14093 -- The parser has verified that this is a discrete indication
14094
14095 Resolve_Discrete_Subtype_Indication (S, T);
14096 Bad_Predicated_Subtype_Use
14097 ("subtype& has predicate, not allowed in index constraint",
14098 S, Entity (Subtype_Mark (S)));
14099
14100 R := Range_Expression (Constraint (S));
14101
14102 -- Capture values of bounds and generate temporaries for them if
14103 -- needed, since checks may cause duplication of the expressions
14104 -- which must not be reevaluated.
14105
14106 -- The forced evaluation removes side effects from expressions, which
14107 -- should occur also in GNATprove mode. Otherwise, we end up with
14108 -- unexpected insertions of actions at places where this is not
14109 -- supposed to occur, e.g. on default parameters of a call.
14110
14111 if Expander_Active or GNATprove_Mode then
14112 Force_Evaluation
14113 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14114 Force_Evaluation
14115 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14116 end if;
14117
14118 elsif Nkind (S) = N_Discriminant_Association then
14119
14120 -- Syntactically valid in subtype indication
14121
14122 Error_Msg_N ("invalid index constraint", S);
14123 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14124 return;
14125
14126 -- Subtype_Mark case, no anonymous subtypes to construct
14127
14128 else
14129 Analyze (S);
14130
14131 if Is_Entity_Name (S) then
14132 if not Is_Type (Entity (S)) then
14133 Error_Msg_N ("expect subtype mark for index constraint", S);
14134
14135 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14136 Wrong_Type (S, Base_Type (T));
14137
14138 -- Check error of subtype with predicate in index constraint
14139
14140 else
14141 Bad_Predicated_Subtype_Use
14142 ("subtype& has predicate, not allowed in index constraint",
14143 S, Entity (S));
14144 end if;
14145
14146 return;
14147
14148 else
14149 Error_Msg_N ("invalid index constraint", S);
14150 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14151 return;
14152 end if;
14153 end if;
14154
14155 -- Complete construction of the Itype
14156
14157 if Is_Modular_Integer_Type (T) then
14158 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14159
14160 elsif Is_Integer_Type (T) then
14161 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14162
14163 else
14164 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14165 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14166 Set_First_Literal (Def_Id, First_Literal (T));
14167 end if;
14168
14169 Set_Size_Info (Def_Id, (T));
14170 Set_RM_Size (Def_Id, RM_Size (T));
14171 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14172
14173 Set_Scalar_Range (Def_Id, R);
14174
14175 Set_Etype (S, Def_Id);
14176 Set_Discrete_RM_Size (Def_Id);
14177 end Constrain_Index;
14178
14179 -----------------------
14180 -- Constrain_Integer --
14181 -----------------------
14182
14183 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14184 T : constant Entity_Id := Entity (Subtype_Mark (S));
14185 C : constant Node_Id := Constraint (S);
14186
14187 begin
14188 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14189
14190 if Is_Modular_Integer_Type (T) then
14191 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14192 else
14193 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14194 end if;
14195
14196 Set_Etype (Def_Id, Base_Type (T));
14197 Set_Size_Info (Def_Id, (T));
14198 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14199 Set_Discrete_RM_Size (Def_Id);
14200 end Constrain_Integer;
14201
14202 ------------------------------
14203 -- Constrain_Ordinary_Fixed --
14204 ------------------------------
14205
14206 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14207 T : constant Entity_Id := Entity (Subtype_Mark (S));
14208 C : Node_Id;
14209 D : Node_Id;
14210 Rais : Node_Id;
14211
14212 begin
14213 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14214 Set_Etype (Def_Id, Base_Type (T));
14215 Set_Size_Info (Def_Id, (T));
14216 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14217 Set_Small_Value (Def_Id, Small_Value (T));
14218
14219 -- Process the constraint
14220
14221 C := Constraint (S);
14222
14223 -- Delta constraint present
14224
14225 if Nkind (C) = N_Delta_Constraint then
14226
14227 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14228 Check_Restriction (No_Obsolescent_Features, C);
14229
14230 if Warn_On_Obsolescent_Feature then
14231 Error_Msg_S
14232 ("subtype delta constraint is an " &
14233 "obsolescent feature (RM J.3(7))?j?");
14234 end if;
14235
14236 D := Delta_Expression (C);
14237 Analyze_And_Resolve (D, Any_Real);
14238 Check_Delta_Expression (D);
14239 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14240
14241 -- Check that delta value is in range. Obviously we can do this
14242 -- at compile time, but it is strictly a runtime check, and of
14243 -- course there is an ACVC test that checks this.
14244
14245 if Delta_Value (Def_Id) < Delta_Value (T) then
14246 Error_Msg_N ("??delta value is too small", D);
14247 Rais :=
14248 Make_Raise_Constraint_Error (Sloc (D),
14249 Reason => CE_Range_Check_Failed);
14250 Insert_Action (Declaration_Node (Def_Id), Rais);
14251 end if;
14252
14253 C := Range_Constraint (C);
14254
14255 -- No delta constraint present
14256
14257 else
14258 Set_Delta_Value (Def_Id, Delta_Value (T));
14259 end if;
14260
14261 -- Range constraint present
14262
14263 if Nkind (C) = N_Range_Constraint then
14264 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14265
14266 -- No range constraint present
14267
14268 else
14269 pragma Assert (No (C));
14270 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14271 end if;
14272
14273 Set_Discrete_RM_Size (Def_Id);
14274
14275 -- Unconditionally delay the freeze, since we cannot set size
14276 -- information in all cases correctly until the freeze point.
14277
14278 Set_Has_Delayed_Freeze (Def_Id);
14279 end Constrain_Ordinary_Fixed;
14280
14281 -----------------------
14282 -- Contain_Interface --
14283 -----------------------
14284
14285 function Contain_Interface
14286 (Iface : Entity_Id;
14287 Ifaces : Elist_Id) return Boolean
14288 is
14289 Iface_Elmt : Elmt_Id;
14290
14291 begin
14292 if Present (Ifaces) then
14293 Iface_Elmt := First_Elmt (Ifaces);
14294 while Present (Iface_Elmt) loop
14295 if Node (Iface_Elmt) = Iface then
14296 return True;
14297 end if;
14298
14299 Next_Elmt (Iface_Elmt);
14300 end loop;
14301 end if;
14302
14303 return False;
14304 end Contain_Interface;
14305
14306 ---------------------------
14307 -- Convert_Scalar_Bounds --
14308 ---------------------------
14309
14310 procedure Convert_Scalar_Bounds
14311 (N : Node_Id;
14312 Parent_Type : Entity_Id;
14313 Derived_Type : Entity_Id;
14314 Loc : Source_Ptr)
14315 is
14316 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14317
14318 Lo : Node_Id;
14319 Hi : Node_Id;
14320 Rng : Node_Id;
14321
14322 begin
14323 -- Defend against previous errors
14324
14325 if No (Scalar_Range (Derived_Type)) then
14326 Check_Error_Detected;
14327 return;
14328 end if;
14329
14330 Lo := Build_Scalar_Bound
14331 (Type_Low_Bound (Derived_Type),
14332 Parent_Type, Implicit_Base);
14333
14334 Hi := Build_Scalar_Bound
14335 (Type_High_Bound (Derived_Type),
14336 Parent_Type, Implicit_Base);
14337
14338 Rng :=
14339 Make_Range (Loc,
14340 Low_Bound => Lo,
14341 High_Bound => Hi);
14342
14343 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14344
14345 Set_Parent (Rng, N);
14346 Set_Scalar_Range (Derived_Type, Rng);
14347
14348 -- Analyze the bounds
14349
14350 Analyze_And_Resolve (Lo, Implicit_Base);
14351 Analyze_And_Resolve (Hi, Implicit_Base);
14352
14353 -- Analyze the range itself, except that we do not analyze it if
14354 -- the bounds are real literals, and we have a fixed-point type.
14355 -- The reason for this is that we delay setting the bounds in this
14356 -- case till we know the final Small and Size values (see circuit
14357 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14358
14359 if Is_Fixed_Point_Type (Parent_Type)
14360 and then Nkind (Lo) = N_Real_Literal
14361 and then Nkind (Hi) = N_Real_Literal
14362 then
14363 return;
14364
14365 -- Here we do the analysis of the range
14366
14367 -- Note: we do this manually, since if we do a normal Analyze and
14368 -- Resolve call, there are problems with the conversions used for
14369 -- the derived type range.
14370
14371 else
14372 Set_Etype (Rng, Implicit_Base);
14373 Set_Analyzed (Rng, True);
14374 end if;
14375 end Convert_Scalar_Bounds;
14376
14377 -------------------
14378 -- Copy_And_Swap --
14379 -------------------
14380
14381 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14382 begin
14383 -- Initialize new full declaration entity by copying the pertinent
14384 -- fields of the corresponding private declaration entity.
14385
14386 -- We temporarily set Ekind to a value appropriate for a type to
14387 -- avoid assert failures in Einfo from checking for setting type
14388 -- attributes on something that is not a type. Ekind (Priv) is an
14389 -- appropriate choice, since it allowed the attributes to be set
14390 -- in the first place. This Ekind value will be modified later.
14391
14392 Set_Ekind (Full, Ekind (Priv));
14393
14394 -- Also set Etype temporarily to Any_Type, again, in the absence
14395 -- of errors, it will be properly reset, and if there are errors,
14396 -- then we want a value of Any_Type to remain.
14397
14398 Set_Etype (Full, Any_Type);
14399
14400 -- Now start copying attributes
14401
14402 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14403
14404 if Has_Discriminants (Full) then
14405 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14406 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14407 end if;
14408
14409 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14410 Set_Homonym (Full, Homonym (Priv));
14411 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14412 Set_Is_Public (Full, Is_Public (Priv));
14413 Set_Is_Pure (Full, Is_Pure (Priv));
14414 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14415 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14416 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14417 Set_Has_Pragma_Unreferenced_Objects
14418 (Full, Has_Pragma_Unreferenced_Objects
14419 (Priv));
14420
14421 Conditional_Delay (Full, Priv);
14422
14423 if Is_Tagged_Type (Full) then
14424 Set_Direct_Primitive_Operations
14425 (Full, Direct_Primitive_Operations (Priv));
14426 Set_No_Tagged_Streams_Pragma
14427 (Full, No_Tagged_Streams_Pragma (Priv));
14428
14429 if Is_Base_Type (Priv) then
14430 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14431 end if;
14432 end if;
14433
14434 Set_Is_Volatile (Full, Is_Volatile (Priv));
14435 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14436 Set_Scope (Full, Scope (Priv));
14437 Set_Prev_Entity (Full, Prev_Entity (Priv));
14438 Set_Next_Entity (Full, Next_Entity (Priv));
14439 Set_First_Entity (Full, First_Entity (Priv));
14440 Set_Last_Entity (Full, Last_Entity (Priv));
14441
14442 -- If access types have been recorded for later handling, keep them in
14443 -- the full view so that they get handled when the full view freeze
14444 -- node is expanded.
14445
14446 if Present (Freeze_Node (Priv))
14447 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14448 then
14449 Ensure_Freeze_Node (Full);
14450 Set_Access_Types_To_Process
14451 (Freeze_Node (Full),
14452 Access_Types_To_Process (Freeze_Node (Priv)));
14453 end if;
14454
14455 -- Swap the two entities. Now Private is the full type entity and Full
14456 -- is the private one. They will be swapped back at the end of the
14457 -- private part. This swapping ensures that the entity that is visible
14458 -- in the private part is the full declaration.
14459
14460 Exchange_Entities (Priv, Full);
14461 Append_Entity (Full, Scope (Full));
14462 end Copy_And_Swap;
14463
14464 -------------------------------------
14465 -- Copy_Array_Base_Type_Attributes --
14466 -------------------------------------
14467
14468 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14469 begin
14470 Set_Component_Alignment (T1, Component_Alignment (T2));
14471 Set_Component_Type (T1, Component_Type (T2));
14472 Set_Component_Size (T1, Component_Size (T2));
14473 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14474 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14475 Propagate_Concurrent_Flags (T1, T2);
14476 Set_Is_Packed (T1, Is_Packed (T2));
14477 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14478 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14479 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14480 end Copy_Array_Base_Type_Attributes;
14481
14482 -----------------------------------
14483 -- Copy_Array_Subtype_Attributes --
14484 -----------------------------------
14485
14486 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14487 begin
14488 Set_Size_Info (T1, T2);
14489
14490 Set_First_Index (T1, First_Index (T2));
14491 Set_Is_Aliased (T1, Is_Aliased (T2));
14492 Set_Is_Volatile (T1, Is_Volatile (T2));
14493 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14494 Set_Is_Constrained (T1, Is_Constrained (T2));
14495 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14496 Inherit_Rep_Item_Chain (T1, T2);
14497 Set_Convention (T1, Convention (T2));
14498 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14499 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14500 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14501 end Copy_Array_Subtype_Attributes;
14502
14503 -----------------------------------
14504 -- Create_Constrained_Components --
14505 -----------------------------------
14506
14507 procedure Create_Constrained_Components
14508 (Subt : Entity_Id;
14509 Decl_Node : Node_Id;
14510 Typ : Entity_Id;
14511 Constraints : Elist_Id)
14512 is
14513 Loc : constant Source_Ptr := Sloc (Subt);
14514 Comp_List : constant Elist_Id := New_Elmt_List;
14515 Parent_Type : constant Entity_Id := Etype (Typ);
14516 Assoc_List : constant List_Id := New_List;
14517 Discr_Val : Elmt_Id;
14518 Errors : Boolean;
14519 New_C : Entity_Id;
14520 Old_C : Entity_Id;
14521 Is_Static : Boolean := True;
14522
14523 procedure Collect_Fixed_Components (Typ : Entity_Id);
14524 -- Collect parent type components that do not appear in a variant part
14525
14526 procedure Create_All_Components;
14527 -- Iterate over Comp_List to create the components of the subtype
14528
14529 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14530 -- Creates a new component from Old_Compon, copying all the fields from
14531 -- it, including its Etype, inserts the new component in the Subt entity
14532 -- chain and returns the new component.
14533
14534 function Is_Variant_Record (T : Entity_Id) return Boolean;
14535 -- If true, and discriminants are static, collect only components from
14536 -- variants selected by discriminant values.
14537
14538 ------------------------------
14539 -- Collect_Fixed_Components --
14540 ------------------------------
14541
14542 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14543 begin
14544 -- Build association list for discriminants, and find components of the
14545 -- variant part selected by the values of the discriminants.
14546
14547 Old_C := First_Discriminant (Typ);
14548 Discr_Val := First_Elmt (Constraints);
14549 while Present (Old_C) loop
14550 Append_To (Assoc_List,
14551 Make_Component_Association (Loc,
14552 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14553 Expression => New_Copy (Node (Discr_Val))));
14554
14555 Next_Elmt (Discr_Val);
14556 Next_Discriminant (Old_C);
14557 end loop;
14558
14559 -- The tag and the possible parent component are unconditionally in
14560 -- the subtype.
14561
14562 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14563 Old_C := First_Component (Typ);
14564 while Present (Old_C) loop
14565 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14566 Append_Elmt (Old_C, Comp_List);
14567 end if;
14568
14569 Next_Component (Old_C);
14570 end loop;
14571 end if;
14572 end Collect_Fixed_Components;
14573
14574 ---------------------------
14575 -- Create_All_Components --
14576 ---------------------------
14577
14578 procedure Create_All_Components is
14579 Comp : Elmt_Id;
14580
14581 begin
14582 Comp := First_Elmt (Comp_List);
14583 while Present (Comp) loop
14584 Old_C := Node (Comp);
14585 New_C := Create_Component (Old_C);
14586
14587 Set_Etype
14588 (New_C,
14589 Constrain_Component_Type
14590 (Old_C, Subt, Decl_Node, Typ, Constraints));
14591 Set_Is_Public (New_C, Is_Public (Subt));
14592
14593 Next_Elmt (Comp);
14594 end loop;
14595 end Create_All_Components;
14596
14597 ----------------------
14598 -- Create_Component --
14599 ----------------------
14600
14601 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14602 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14603
14604 begin
14605 if Ekind (Old_Compon) = E_Discriminant
14606 and then Is_Completely_Hidden (Old_Compon)
14607 then
14608 -- This is a shadow discriminant created for a discriminant of
14609 -- the parent type, which needs to be present in the subtype.
14610 -- Give the shadow discriminant an internal name that cannot
14611 -- conflict with that of visible components.
14612
14613 Set_Chars (New_Compon, New_Internal_Name ('C'));
14614 end if;
14615
14616 -- Set the parent so we have a proper link for freezing etc. This is
14617 -- not a real parent pointer, since of course our parent does not own
14618 -- up to us and reference us, we are an illegitimate child of the
14619 -- original parent.
14620
14621 Set_Parent (New_Compon, Parent (Old_Compon));
14622
14623 -- We do not want this node marked as Comes_From_Source, since
14624 -- otherwise it would get first class status and a separate cross-
14625 -- reference line would be generated. Illegitimate children do not
14626 -- rate such recognition.
14627
14628 Set_Comes_From_Source (New_Compon, False);
14629
14630 -- But it is a real entity, and a birth certificate must be properly
14631 -- registered by entering it into the entity list, and setting its
14632 -- scope to the given subtype. This turns out to be useful for the
14633 -- LLVM code generator, but that scope is not used otherwise.
14634
14635 Enter_Name (New_Compon);
14636 Set_Scope (New_Compon, Subt);
14637
14638 return New_Compon;
14639 end Create_Component;
14640
14641 -----------------------
14642 -- Is_Variant_Record --
14643 -----------------------
14644
14645 function Is_Variant_Record (T : Entity_Id) return Boolean is
14646 begin
14647 return Nkind (Parent (T)) = N_Full_Type_Declaration
14648 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14649 and then Present (Component_List (Type_Definition (Parent (T))))
14650 and then
14651 Present
14652 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14653 end Is_Variant_Record;
14654
14655 -- Start of processing for Create_Constrained_Components
14656
14657 begin
14658 pragma Assert (Subt /= Base_Type (Subt));
14659 pragma Assert (Typ = Base_Type (Typ));
14660
14661 Set_First_Entity (Subt, Empty);
14662 Set_Last_Entity (Subt, Empty);
14663
14664 -- Check whether constraint is fully static, in which case we can
14665 -- optimize the list of components.
14666
14667 Discr_Val := First_Elmt (Constraints);
14668 while Present (Discr_Val) loop
14669 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14670 Is_Static := False;
14671 exit;
14672 end if;
14673
14674 Next_Elmt (Discr_Val);
14675 end loop;
14676
14677 Set_Has_Static_Discriminants (Subt, Is_Static);
14678
14679 Push_Scope (Subt);
14680
14681 -- Inherit the discriminants of the parent type
14682
14683 Add_Discriminants : declare
14684 Num_Disc : Nat;
14685 Num_Gird : Nat;
14686
14687 begin
14688 Num_Disc := 0;
14689 Old_C := First_Discriminant (Typ);
14690
14691 while Present (Old_C) loop
14692 Num_Disc := Num_Disc + 1;
14693 New_C := Create_Component (Old_C);
14694 Set_Is_Public (New_C, Is_Public (Subt));
14695 Next_Discriminant (Old_C);
14696 end loop;
14697
14698 -- For an untagged derived subtype, the number of discriminants may
14699 -- be smaller than the number of inherited discriminants, because
14700 -- several of them may be renamed by a single new discriminant or
14701 -- constrained. In this case, add the hidden discriminants back into
14702 -- the subtype, because they need to be present if the optimizer of
14703 -- the GCC 4.x back-end decides to break apart assignments between
14704 -- objects using the parent view into member-wise assignments.
14705
14706 Num_Gird := 0;
14707
14708 if Is_Derived_Type (Typ)
14709 and then not Is_Tagged_Type (Typ)
14710 then
14711 Old_C := First_Stored_Discriminant (Typ);
14712
14713 while Present (Old_C) loop
14714 Num_Gird := Num_Gird + 1;
14715 Next_Stored_Discriminant (Old_C);
14716 end loop;
14717 end if;
14718
14719 if Num_Gird > Num_Disc then
14720
14721 -- Find out multiple uses of new discriminants, and add hidden
14722 -- components for the extra renamed discriminants. We recognize
14723 -- multiple uses through the Corresponding_Discriminant of a
14724 -- new discriminant: if it constrains several old discriminants,
14725 -- this field points to the last one in the parent type. The
14726 -- stored discriminants of the derived type have the same name
14727 -- as those of the parent.
14728
14729 declare
14730 Constr : Elmt_Id;
14731 New_Discr : Entity_Id;
14732 Old_Discr : Entity_Id;
14733
14734 begin
14735 Constr := First_Elmt (Stored_Constraint (Typ));
14736 Old_Discr := First_Stored_Discriminant (Typ);
14737 while Present (Constr) loop
14738 if Is_Entity_Name (Node (Constr))
14739 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14740 then
14741 New_Discr := Entity (Node (Constr));
14742
14743 if Chars (Corresponding_Discriminant (New_Discr)) /=
14744 Chars (Old_Discr)
14745 then
14746 -- The new discriminant has been used to rename a
14747 -- subsequent old discriminant. Introduce a shadow
14748 -- component for the current old discriminant.
14749
14750 New_C := Create_Component (Old_Discr);
14751 Set_Original_Record_Component (New_C, Old_Discr);
14752 end if;
14753
14754 else
14755 -- The constraint has eliminated the old discriminant.
14756 -- Introduce a shadow component.
14757
14758 New_C := Create_Component (Old_Discr);
14759 Set_Original_Record_Component (New_C, Old_Discr);
14760 end if;
14761
14762 Next_Elmt (Constr);
14763 Next_Stored_Discriminant (Old_Discr);
14764 end loop;
14765 end;
14766 end if;
14767 end Add_Discriminants;
14768
14769 if Is_Static
14770 and then Is_Variant_Record (Typ)
14771 then
14772 Collect_Fixed_Components (Typ);
14773
14774 Gather_Components (
14775 Typ,
14776 Component_List (Type_Definition (Parent (Typ))),
14777 Governed_By => Assoc_List,
14778 Into => Comp_List,
14779 Report_Errors => Errors);
14780 pragma Assert (not Errors
14781 or else Serious_Errors_Detected > 0);
14782
14783 Create_All_Components;
14784
14785 -- If the subtype declaration is created for a tagged type derivation
14786 -- with constraints, we retrieve the record definition of the parent
14787 -- type to select the components of the proper variant.
14788
14789 elsif Is_Static
14790 and then Is_Tagged_Type (Typ)
14791 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14792 and then
14793 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14794 and then Is_Variant_Record (Parent_Type)
14795 then
14796 Collect_Fixed_Components (Typ);
14797
14798 Gather_Components
14799 (Typ,
14800 Component_List (Type_Definition (Parent (Parent_Type))),
14801 Governed_By => Assoc_List,
14802 Into => Comp_List,
14803 Report_Errors => Errors);
14804
14805 -- Note: previously there was a check at this point that no errors
14806 -- were detected. As a consequence of AI05-220 there may be an error
14807 -- if an inherited discriminant that controls a variant has a non-
14808 -- static constraint.
14809
14810 -- If the tagged derivation has a type extension, collect all the
14811 -- new components therein.
14812
14813 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14814 then
14815 Old_C := First_Component (Typ);
14816 while Present (Old_C) loop
14817 if Original_Record_Component (Old_C) = Old_C
14818 and then Chars (Old_C) /= Name_uTag
14819 and then Chars (Old_C) /= Name_uParent
14820 then
14821 Append_Elmt (Old_C, Comp_List);
14822 end if;
14823
14824 Next_Component (Old_C);
14825 end loop;
14826 end if;
14827
14828 Create_All_Components;
14829
14830 else
14831 -- If discriminants are not static, or if this is a multi-level type
14832 -- extension, we have to include all components of the parent type.
14833
14834 Old_C := First_Component (Typ);
14835 while Present (Old_C) loop
14836 New_C := Create_Component (Old_C);
14837
14838 Set_Etype
14839 (New_C,
14840 Constrain_Component_Type
14841 (Old_C, Subt, Decl_Node, Typ, Constraints));
14842 Set_Is_Public (New_C, Is_Public (Subt));
14843
14844 Next_Component (Old_C);
14845 end loop;
14846 end if;
14847
14848 End_Scope;
14849 end Create_Constrained_Components;
14850
14851 ------------------------------------------
14852 -- Decimal_Fixed_Point_Type_Declaration --
14853 ------------------------------------------
14854
14855 procedure Decimal_Fixed_Point_Type_Declaration
14856 (T : Entity_Id;
14857 Def : Node_Id)
14858 is
14859 Loc : constant Source_Ptr := Sloc (Def);
14860 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14861 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14862 Implicit_Base : Entity_Id;
14863 Digs_Val : Uint;
14864 Delta_Val : Ureal;
14865 Scale_Val : Uint;
14866 Bound_Val : Ureal;
14867
14868 begin
14869 Check_SPARK_05_Restriction
14870 ("decimal fixed point type is not allowed", Def);
14871 Check_Restriction (No_Fixed_Point, Def);
14872
14873 -- Create implicit base type
14874
14875 Implicit_Base :=
14876 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14877 Set_Etype (Implicit_Base, Implicit_Base);
14878
14879 -- Analyze and process delta expression
14880
14881 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14882
14883 Check_Delta_Expression (Delta_Expr);
14884 Delta_Val := Expr_Value_R (Delta_Expr);
14885
14886 -- Check delta is power of 10, and determine scale value from it
14887
14888 declare
14889 Val : Ureal;
14890
14891 begin
14892 Scale_Val := Uint_0;
14893 Val := Delta_Val;
14894
14895 if Val < Ureal_1 then
14896 while Val < Ureal_1 loop
14897 Val := Val * Ureal_10;
14898 Scale_Val := Scale_Val + 1;
14899 end loop;
14900
14901 if Scale_Val > 18 then
14902 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14903 Scale_Val := UI_From_Int (+18);
14904 end if;
14905
14906 else
14907 while Val > Ureal_1 loop
14908 Val := Val / Ureal_10;
14909 Scale_Val := Scale_Val - 1;
14910 end loop;
14911
14912 if Scale_Val < -18 then
14913 Error_Msg_N ("scale is less than minimum value of -18", Def);
14914 Scale_Val := UI_From_Int (-18);
14915 end if;
14916 end if;
14917
14918 if Val /= Ureal_1 then
14919 Error_Msg_N ("delta expression must be a power of 10", Def);
14920 Delta_Val := Ureal_10 ** (-Scale_Val);
14921 end if;
14922 end;
14923
14924 -- Set delta, scale and small (small = delta for decimal type)
14925
14926 Set_Delta_Value (Implicit_Base, Delta_Val);
14927 Set_Scale_Value (Implicit_Base, Scale_Val);
14928 Set_Small_Value (Implicit_Base, Delta_Val);
14929
14930 -- Analyze and process digits expression
14931
14932 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14933 Check_Digits_Expression (Digs_Expr);
14934 Digs_Val := Expr_Value (Digs_Expr);
14935
14936 if Digs_Val > 18 then
14937 Digs_Val := UI_From_Int (+18);
14938 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14939 end if;
14940
14941 Set_Digits_Value (Implicit_Base, Digs_Val);
14942 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14943
14944 -- Set range of base type from digits value for now. This will be
14945 -- expanded to represent the true underlying base range by Freeze.
14946
14947 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14948
14949 -- Note: We leave size as zero for now, size will be set at freeze
14950 -- time. We have to do this for ordinary fixed-point, because the size
14951 -- depends on the specified small, and we might as well do the same for
14952 -- decimal fixed-point.
14953
14954 pragma Assert (Esize (Implicit_Base) = Uint_0);
14955
14956 -- If there are bounds given in the declaration use them as the
14957 -- bounds of the first named subtype.
14958
14959 if Present (Real_Range_Specification (Def)) then
14960 declare
14961 RRS : constant Node_Id := Real_Range_Specification (Def);
14962 Low : constant Node_Id := Low_Bound (RRS);
14963 High : constant Node_Id := High_Bound (RRS);
14964 Low_Val : Ureal;
14965 High_Val : Ureal;
14966
14967 begin
14968 Analyze_And_Resolve (Low, Any_Real);
14969 Analyze_And_Resolve (High, Any_Real);
14970 Check_Real_Bound (Low);
14971 Check_Real_Bound (High);
14972 Low_Val := Expr_Value_R (Low);
14973 High_Val := Expr_Value_R (High);
14974
14975 if Low_Val < (-Bound_Val) then
14976 Error_Msg_N
14977 ("range low bound too small for digits value", Low);
14978 Low_Val := -Bound_Val;
14979 end if;
14980
14981 if High_Val > Bound_Val then
14982 Error_Msg_N
14983 ("range high bound too large for digits value", High);
14984 High_Val := Bound_Val;
14985 end if;
14986
14987 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14988 end;
14989
14990 -- If no explicit range, use range that corresponds to given
14991 -- digits value. This will end up as the final range for the
14992 -- first subtype.
14993
14994 else
14995 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14996 end if;
14997
14998 -- Complete entity for first subtype. The inheritance of the rep item
14999 -- chain ensures that SPARK-related pragmas are not clobbered when the
15000 -- decimal fixed point type acts as a full view of a private type.
15001
15002 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
15003 Set_Etype (T, Implicit_Base);
15004 Set_Size_Info (T, Implicit_Base);
15005 Inherit_Rep_Item_Chain (T, Implicit_Base);
15006 Set_Digits_Value (T, Digs_Val);
15007 Set_Delta_Value (T, Delta_Val);
15008 Set_Small_Value (T, Delta_Val);
15009 Set_Scale_Value (T, Scale_Val);
15010 Set_Is_Constrained (T);
15011 end Decimal_Fixed_Point_Type_Declaration;
15012
15013 -----------------------------------
15014 -- Derive_Progenitor_Subprograms --
15015 -----------------------------------
15016
15017 procedure Derive_Progenitor_Subprograms
15018 (Parent_Type : Entity_Id;
15019 Tagged_Type : Entity_Id)
15020 is
15021 E : Entity_Id;
15022 Elmt : Elmt_Id;
15023 Iface : Entity_Id;
15024 Iface_Alias : Entity_Id;
15025 Iface_Elmt : Elmt_Id;
15026 Iface_Subp : Entity_Id;
15027 New_Subp : Entity_Id := Empty;
15028 Prim_Elmt : Elmt_Id;
15029 Subp : Entity_Id;
15030 Typ : Entity_Id;
15031
15032 begin
15033 pragma Assert (Ada_Version >= Ada_2005
15034 and then Is_Record_Type (Tagged_Type)
15035 and then Is_Tagged_Type (Tagged_Type)
15036 and then Has_Interfaces (Tagged_Type));
15037
15038 -- Step 1: Transfer to the full-view primitives associated with the
15039 -- partial-view that cover interface primitives. Conceptually this
15040 -- work should be done later by Process_Full_View; done here to
15041 -- simplify its implementation at later stages. It can be safely
15042 -- done here because interfaces must be visible in the partial and
15043 -- private view (RM 7.3(7.3/2)).
15044
15045 -- Small optimization: This work is only required if the parent may
15046 -- have entities whose Alias attribute reference an interface primitive.
15047 -- Such a situation may occur if the parent is an abstract type and the
15048 -- primitive has not been yet overridden or if the parent is a generic
15049 -- formal type covering interfaces.
15050
15051 -- If the tagged type is not abstract, it cannot have abstract
15052 -- primitives (the only entities in the list of primitives of
15053 -- non-abstract tagged types that can reference abstract primitives
15054 -- through its Alias attribute are the internal entities that have
15055 -- attribute Interface_Alias, and these entities are generated later
15056 -- by Add_Internal_Interface_Entities).
15057
15058 if In_Private_Part (Current_Scope)
15059 and then (Is_Abstract_Type (Parent_Type)
15060 or else
15061 Is_Generic_Type (Parent_Type))
15062 then
15063 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15064 while Present (Elmt) loop
15065 Subp := Node (Elmt);
15066
15067 -- At this stage it is not possible to have entities in the list
15068 -- of primitives that have attribute Interface_Alias.
15069
15070 pragma Assert (No (Interface_Alias (Subp)));
15071
15072 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15073
15074 if Is_Interface (Typ) then
15075 E := Find_Primitive_Covering_Interface
15076 (Tagged_Type => Tagged_Type,
15077 Iface_Prim => Subp);
15078
15079 if Present (E)
15080 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15081 then
15082 Replace_Elmt (Elmt, E);
15083 Remove_Homonym (Subp);
15084 end if;
15085 end if;
15086
15087 Next_Elmt (Elmt);
15088 end loop;
15089 end if;
15090
15091 -- Step 2: Add primitives of progenitors that are not implemented by
15092 -- parents of Tagged_Type.
15093
15094 if Present (Interfaces (Base_Type (Tagged_Type))) then
15095 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15096 while Present (Iface_Elmt) loop
15097 Iface := Node (Iface_Elmt);
15098
15099 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15100 while Present (Prim_Elmt) loop
15101 Iface_Subp := Node (Prim_Elmt);
15102 Iface_Alias := Ultimate_Alias (Iface_Subp);
15103
15104 -- Exclude derivation of predefined primitives except those
15105 -- that come from source, or are inherited from one that comes
15106 -- from source. Required to catch declarations of equality
15107 -- operators of interfaces. For example:
15108
15109 -- type Iface is interface;
15110 -- function "=" (Left, Right : Iface) return Boolean;
15111
15112 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15113 or else Comes_From_Source (Iface_Alias)
15114 then
15115 E :=
15116 Find_Primitive_Covering_Interface
15117 (Tagged_Type => Tagged_Type,
15118 Iface_Prim => Iface_Subp);
15119
15120 -- If not found we derive a new primitive leaving its alias
15121 -- attribute referencing the interface primitive.
15122
15123 if No (E) then
15124 Derive_Subprogram
15125 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15126
15127 -- Ada 2012 (AI05-0197): If the covering primitive's name
15128 -- differs from the name of the interface primitive then it
15129 -- is a private primitive inherited from a parent type. In
15130 -- such case, given that Tagged_Type covers the interface,
15131 -- the inherited private primitive becomes visible. For such
15132 -- purpose we add a new entity that renames the inherited
15133 -- private primitive.
15134
15135 elsif Chars (E) /= Chars (Iface_Subp) then
15136 pragma Assert (Has_Suffix (E, 'P'));
15137 Derive_Subprogram
15138 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15139 Set_Alias (New_Subp, E);
15140 Set_Is_Abstract_Subprogram (New_Subp,
15141 Is_Abstract_Subprogram (E));
15142
15143 -- Propagate to the full view interface entities associated
15144 -- with the partial view.
15145
15146 elsif In_Private_Part (Current_Scope)
15147 and then Present (Alias (E))
15148 and then Alias (E) = Iface_Subp
15149 and then
15150 List_Containing (Parent (E)) /=
15151 Private_Declarations
15152 (Specification
15153 (Unit_Declaration_Node (Current_Scope)))
15154 then
15155 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15156 end if;
15157 end if;
15158
15159 Next_Elmt (Prim_Elmt);
15160 end loop;
15161
15162 Next_Elmt (Iface_Elmt);
15163 end loop;
15164 end if;
15165 end Derive_Progenitor_Subprograms;
15166
15167 -----------------------
15168 -- Derive_Subprogram --
15169 -----------------------
15170
15171 procedure Derive_Subprogram
15172 (New_Subp : out Entity_Id;
15173 Parent_Subp : Entity_Id;
15174 Derived_Type : Entity_Id;
15175 Parent_Type : Entity_Id;
15176 Actual_Subp : Entity_Id := Empty)
15177 is
15178 Formal : Entity_Id;
15179 -- Formal parameter of parent primitive operation
15180
15181 Formal_Of_Actual : Entity_Id;
15182 -- Formal parameter of actual operation, when the derivation is to
15183 -- create a renaming for a primitive operation of an actual in an
15184 -- instantiation.
15185
15186 New_Formal : Entity_Id;
15187 -- Formal of inherited operation
15188
15189 Visible_Subp : Entity_Id := Parent_Subp;
15190
15191 function Is_Private_Overriding return Boolean;
15192 -- If Subp is a private overriding of a visible operation, the inherited
15193 -- operation derives from the overridden op (even though its body is the
15194 -- overriding one) and the inherited operation is visible now. See
15195 -- sem_disp to see the full details of the handling of the overridden
15196 -- subprogram, which is removed from the list of primitive operations of
15197 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15198 -- and used to diagnose abstract operations that need overriding in the
15199 -- derived type.
15200
15201 procedure Replace_Type (Id, New_Id : Entity_Id);
15202 -- When the type is an anonymous access type, create a new access type
15203 -- designating the derived type.
15204
15205 procedure Set_Derived_Name;
15206 -- This procedure sets the appropriate Chars name for New_Subp. This
15207 -- is normally just a copy of the parent name. An exception arises for
15208 -- type support subprograms, where the name is changed to reflect the
15209 -- name of the derived type, e.g. if type foo is derived from type bar,
15210 -- then a procedure barDA is derived with a name fooDA.
15211
15212 ---------------------------
15213 -- Is_Private_Overriding --
15214 ---------------------------
15215
15216 function Is_Private_Overriding return Boolean is
15217 Prev : Entity_Id;
15218
15219 begin
15220 -- If the parent is not a dispatching operation there is no
15221 -- need to investigate overridings
15222
15223 if not Is_Dispatching_Operation (Parent_Subp) then
15224 return False;
15225 end if;
15226
15227 -- The visible operation that is overridden is a homonym of the
15228 -- parent subprogram. We scan the homonym chain to find the one
15229 -- whose alias is the subprogram we are deriving.
15230
15231 Prev := Current_Entity (Parent_Subp);
15232 while Present (Prev) loop
15233 if Ekind (Prev) = Ekind (Parent_Subp)
15234 and then Alias (Prev) = Parent_Subp
15235 and then Scope (Parent_Subp) = Scope (Prev)
15236 and then not Is_Hidden (Prev)
15237 then
15238 Visible_Subp := Prev;
15239 return True;
15240 end if;
15241
15242 Prev := Homonym (Prev);
15243 end loop;
15244
15245 return False;
15246 end Is_Private_Overriding;
15247
15248 ------------------
15249 -- Replace_Type --
15250 ------------------
15251
15252 procedure Replace_Type (Id, New_Id : Entity_Id) is
15253 Id_Type : constant Entity_Id := Etype (Id);
15254 Acc_Type : Entity_Id;
15255 Par : constant Node_Id := Parent (Derived_Type);
15256
15257 begin
15258 -- When the type is an anonymous access type, create a new access
15259 -- type designating the derived type. This itype must be elaborated
15260 -- at the point of the derivation, not on subsequent calls that may
15261 -- be out of the proper scope for Gigi, so we insert a reference to
15262 -- it after the derivation.
15263
15264 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15265 declare
15266 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15267
15268 begin
15269 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15270 and then Present (Full_View (Desig_Typ))
15271 and then not Is_Private_Type (Parent_Type)
15272 then
15273 Desig_Typ := Full_View (Desig_Typ);
15274 end if;
15275
15276 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15277
15278 -- Ada 2005 (AI-251): Handle also derivations of abstract
15279 -- interface primitives.
15280
15281 or else (Is_Interface (Desig_Typ)
15282 and then not Is_Class_Wide_Type (Desig_Typ))
15283 then
15284 Acc_Type := New_Copy (Id_Type);
15285 Set_Etype (Acc_Type, Acc_Type);
15286 Set_Scope (Acc_Type, New_Subp);
15287
15288 -- Set size of anonymous access type. If we have an access
15289 -- to an unconstrained array, this is a fat pointer, so it
15290 -- is sizes at twice addtress size.
15291
15292 if Is_Array_Type (Desig_Typ)
15293 and then not Is_Constrained (Desig_Typ)
15294 then
15295 Init_Size (Acc_Type, 2 * System_Address_Size);
15296
15297 -- Other cases use a thin pointer
15298
15299 else
15300 Init_Size (Acc_Type, System_Address_Size);
15301 end if;
15302
15303 -- Set remaining characterstics of anonymous access type
15304
15305 Init_Alignment (Acc_Type);
15306 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15307
15308 Set_Etype (New_Id, Acc_Type);
15309 Set_Scope (New_Id, New_Subp);
15310
15311 -- Create a reference to it
15312
15313 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15314
15315 else
15316 Set_Etype (New_Id, Id_Type);
15317 end if;
15318 end;
15319
15320 -- In Ada2012, a formal may have an incomplete type but the type
15321 -- derivation that inherits the primitive follows the full view.
15322
15323 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15324 or else
15325 (Ekind (Id_Type) = E_Record_Type_With_Private
15326 and then Present (Full_View (Id_Type))
15327 and then
15328 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15329 or else
15330 (Ada_Version >= Ada_2012
15331 and then Ekind (Id_Type) = E_Incomplete_Type
15332 and then Full_View (Id_Type) = Parent_Type)
15333 then
15334 -- Constraint checks on formals are generated during expansion,
15335 -- based on the signature of the original subprogram. The bounds
15336 -- of the derived type are not relevant, and thus we can use
15337 -- the base type for the formals. However, the return type may be
15338 -- used in a context that requires that the proper static bounds
15339 -- be used (a case statement, for example) and for those cases
15340 -- we must use the derived type (first subtype), not its base.
15341
15342 -- If the derived_type_definition has no constraints, we know that
15343 -- the derived type has the same constraints as the first subtype
15344 -- of the parent, and we can also use it rather than its base,
15345 -- which can lead to more efficient code.
15346
15347 if Etype (Id) = Parent_Type then
15348 if Is_Scalar_Type (Parent_Type)
15349 and then
15350 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15351 then
15352 Set_Etype (New_Id, Derived_Type);
15353
15354 elsif Nkind (Par) = N_Full_Type_Declaration
15355 and then
15356 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15357 and then
15358 Is_Entity_Name
15359 (Subtype_Indication (Type_Definition (Par)))
15360 then
15361 Set_Etype (New_Id, Derived_Type);
15362
15363 else
15364 Set_Etype (New_Id, Base_Type (Derived_Type));
15365 end if;
15366
15367 else
15368 Set_Etype (New_Id, Base_Type (Derived_Type));
15369 end if;
15370
15371 else
15372 Set_Etype (New_Id, Etype (Id));
15373 end if;
15374 end Replace_Type;
15375
15376 ----------------------
15377 -- Set_Derived_Name --
15378 ----------------------
15379
15380 procedure Set_Derived_Name is
15381 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15382 begin
15383 if Nm = TSS_Null then
15384 Set_Chars (New_Subp, Chars (Parent_Subp));
15385 else
15386 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15387 end if;
15388 end Set_Derived_Name;
15389
15390 -- Start of processing for Derive_Subprogram
15391
15392 begin
15393 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15394 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15395
15396 -- Check whether the inherited subprogram is a private operation that
15397 -- should be inherited but not yet made visible. Such subprograms can
15398 -- become visible at a later point (e.g., the private part of a public
15399 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15400 -- following predicate is true, then this is not such a private
15401 -- operation and the subprogram simply inherits the name of the parent
15402 -- subprogram. Note the special check for the names of controlled
15403 -- operations, which are currently exempted from being inherited with
15404 -- a hidden name because they must be findable for generation of
15405 -- implicit run-time calls.
15406
15407 if not Is_Hidden (Parent_Subp)
15408 or else Is_Internal (Parent_Subp)
15409 or else Is_Private_Overriding
15410 or else Is_Internal_Name (Chars (Parent_Subp))
15411 or else (Is_Controlled (Parent_Type)
15412 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15413 Name_Finalize,
15414 Name_Initialize))
15415 then
15416 Set_Derived_Name;
15417
15418 -- An inherited dispatching equality will be overridden by an internally
15419 -- generated one, or by an explicit one, so preserve its name and thus
15420 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15421 -- private operation it may become invisible if the full view has
15422 -- progenitors, and the dispatch table will be malformed.
15423 -- We check that the type is limited to handle the anomalous declaration
15424 -- of Limited_Controlled, which is derived from a non-limited type, and
15425 -- which is handled specially elsewhere as well.
15426
15427 elsif Chars (Parent_Subp) = Name_Op_Eq
15428 and then Is_Dispatching_Operation (Parent_Subp)
15429 and then Etype (Parent_Subp) = Standard_Boolean
15430 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15431 and then
15432 Etype (First_Formal (Parent_Subp)) =
15433 Etype (Next_Formal (First_Formal (Parent_Subp)))
15434 then
15435 Set_Derived_Name;
15436
15437 -- If parent is hidden, this can be a regular derivation if the
15438 -- parent is immediately visible in a non-instantiating context,
15439 -- or if we are in the private part of an instance. This test
15440 -- should still be refined ???
15441
15442 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15443 -- operation as a non-visible operation in cases where the parent
15444 -- subprogram might not be visible now, but was visible within the
15445 -- original generic, so it would be wrong to make the inherited
15446 -- subprogram non-visible now. (Not clear if this test is fully
15447 -- correct; are there any cases where we should declare the inherited
15448 -- operation as not visible to avoid it being overridden, e.g., when
15449 -- the parent type is a generic actual with private primitives ???)
15450
15451 -- (they should be treated the same as other private inherited
15452 -- subprograms, but it's not clear how to do this cleanly). ???
15453
15454 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15455 and then Is_Immediately_Visible (Parent_Subp)
15456 and then not In_Instance)
15457 or else In_Instance_Not_Visible
15458 then
15459 Set_Derived_Name;
15460
15461 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15462 -- overrides an interface primitive because interface primitives
15463 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15464
15465 elsif Ada_Version >= Ada_2005
15466 and then Is_Dispatching_Operation (Parent_Subp)
15467 and then Present (Covered_Interface_Op (Parent_Subp))
15468 then
15469 Set_Derived_Name;
15470
15471 -- Otherwise, the type is inheriting a private operation, so enter it
15472 -- with a special name so it can't be overridden.
15473
15474 else
15475 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15476 end if;
15477
15478 Set_Parent (New_Subp, Parent (Derived_Type));
15479
15480 if Present (Actual_Subp) then
15481 Replace_Type (Actual_Subp, New_Subp);
15482 else
15483 Replace_Type (Parent_Subp, New_Subp);
15484 end if;
15485
15486 Conditional_Delay (New_Subp, Parent_Subp);
15487
15488 -- If we are creating a renaming for a primitive operation of an
15489 -- actual of a generic derived type, we must examine the signature
15490 -- of the actual primitive, not that of the generic formal, which for
15491 -- example may be an interface. However the name and initial value
15492 -- of the inherited operation are those of the formal primitive.
15493
15494 Formal := First_Formal (Parent_Subp);
15495
15496 if Present (Actual_Subp) then
15497 Formal_Of_Actual := First_Formal (Actual_Subp);
15498 else
15499 Formal_Of_Actual := Empty;
15500 end if;
15501
15502 while Present (Formal) loop
15503 New_Formal := New_Copy (Formal);
15504
15505 -- Normally we do not go copying parents, but in the case of
15506 -- formals, we need to link up to the declaration (which is the
15507 -- parameter specification), and it is fine to link up to the
15508 -- original formal's parameter specification in this case.
15509
15510 Set_Parent (New_Formal, Parent (Formal));
15511 Append_Entity (New_Formal, New_Subp);
15512
15513 if Present (Formal_Of_Actual) then
15514 Replace_Type (Formal_Of_Actual, New_Formal);
15515 Next_Formal (Formal_Of_Actual);
15516 else
15517 Replace_Type (Formal, New_Formal);
15518 end if;
15519
15520 Next_Formal (Formal);
15521 end loop;
15522
15523 -- If this derivation corresponds to a tagged generic actual, then
15524 -- primitive operations rename those of the actual. Otherwise the
15525 -- primitive operations rename those of the parent type, If the parent
15526 -- renames an intrinsic operator, so does the new subprogram. We except
15527 -- concatenation, which is always properly typed, and does not get
15528 -- expanded as other intrinsic operations.
15529
15530 if No (Actual_Subp) then
15531 if Is_Intrinsic_Subprogram (Parent_Subp) then
15532 Set_Is_Intrinsic_Subprogram (New_Subp);
15533
15534 if Present (Alias (Parent_Subp))
15535 and then Chars (Parent_Subp) /= Name_Op_Concat
15536 then
15537 Set_Alias (New_Subp, Alias (Parent_Subp));
15538 else
15539 Set_Alias (New_Subp, Parent_Subp);
15540 end if;
15541
15542 else
15543 Set_Alias (New_Subp, Parent_Subp);
15544 end if;
15545
15546 else
15547 Set_Alias (New_Subp, Actual_Subp);
15548 end if;
15549
15550 -- Derived subprograms of a tagged type must inherit the convention
15551 -- of the parent subprogram (a requirement of AI-117). Derived
15552 -- subprograms of untagged types simply get convention Ada by default.
15553
15554 -- If the derived type is a tagged generic formal type with unknown
15555 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15556
15557 -- However, if the type is derived from a generic formal, the further
15558 -- inherited subprogram has the convention of the non-generic ancestor.
15559 -- Otherwise there would be no way to override the operation.
15560 -- (This is subject to forthcoming ARG discussions).
15561
15562 if Is_Tagged_Type (Derived_Type) then
15563 if Is_Generic_Type (Derived_Type)
15564 and then Has_Unknown_Discriminants (Derived_Type)
15565 then
15566 Set_Convention (New_Subp, Convention_Intrinsic);
15567
15568 else
15569 if Is_Generic_Type (Parent_Type)
15570 and then Has_Unknown_Discriminants (Parent_Type)
15571 then
15572 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15573 else
15574 Set_Convention (New_Subp, Convention (Parent_Subp));
15575 end if;
15576 end if;
15577 end if;
15578
15579 -- Predefined controlled operations retain their name even if the parent
15580 -- is hidden (see above), but they are not primitive operations if the
15581 -- ancestor is not visible, for example if the parent is a private
15582 -- extension completed with a controlled extension. Note that a full
15583 -- type that is controlled can break privacy: the flag Is_Controlled is
15584 -- set on both views of the type.
15585
15586 if Is_Controlled (Parent_Type)
15587 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15588 Name_Adjust,
15589 Name_Finalize)
15590 and then Is_Hidden (Parent_Subp)
15591 and then not Is_Visibly_Controlled (Parent_Type)
15592 then
15593 Set_Is_Hidden (New_Subp);
15594 end if;
15595
15596 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15597 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15598
15599 if Ekind (Parent_Subp) = E_Procedure then
15600 Set_Is_Valued_Procedure
15601 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15602 else
15603 Set_Has_Controlling_Result
15604 (New_Subp, Has_Controlling_Result (Parent_Subp));
15605 end if;
15606
15607 -- No_Return must be inherited properly. If this is overridden in the
15608 -- case of a dispatching operation, then a check is made in Sem_Disp
15609 -- that the overriding operation is also No_Return (no such check is
15610 -- required for the case of non-dispatching operation.
15611
15612 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15613
15614 -- A derived function with a controlling result is abstract. If the
15615 -- Derived_Type is a nonabstract formal generic derived type, then
15616 -- inherited operations are not abstract: the required check is done at
15617 -- instantiation time. If the derivation is for a generic actual, the
15618 -- function is not abstract unless the actual is.
15619
15620 if Is_Generic_Type (Derived_Type)
15621 and then not Is_Abstract_Type (Derived_Type)
15622 then
15623 null;
15624
15625 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15626 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15627
15628 -- A subprogram subject to pragma Extensions_Visible with value False
15629 -- requires overriding if the subprogram has at least one controlling
15630 -- OUT parameter (SPARK RM 6.1.7(6)).
15631
15632 elsif Ada_Version >= Ada_2005
15633 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15634 or else (Is_Tagged_Type (Derived_Type)
15635 and then Etype (New_Subp) = Derived_Type
15636 and then not Is_Null_Extension (Derived_Type))
15637 or else (Is_Tagged_Type (Derived_Type)
15638 and then Ekind (Etype (New_Subp)) =
15639 E_Anonymous_Access_Type
15640 and then Designated_Type (Etype (New_Subp)) =
15641 Derived_Type
15642 and then not Is_Null_Extension (Derived_Type))
15643 or else (Comes_From_Source (Alias (New_Subp))
15644 and then Is_EVF_Procedure (Alias (New_Subp))))
15645 and then No (Actual_Subp)
15646 then
15647 if not Is_Tagged_Type (Derived_Type)
15648 or else Is_Abstract_Type (Derived_Type)
15649 or else Is_Abstract_Subprogram (Alias (New_Subp))
15650 then
15651 Set_Is_Abstract_Subprogram (New_Subp);
15652 else
15653 Set_Requires_Overriding (New_Subp);
15654 end if;
15655
15656 elsif Ada_Version < Ada_2005
15657 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15658 or else (Is_Tagged_Type (Derived_Type)
15659 and then Etype (New_Subp) = Derived_Type
15660 and then No (Actual_Subp)))
15661 then
15662 Set_Is_Abstract_Subprogram (New_Subp);
15663
15664 -- AI05-0097 : an inherited operation that dispatches on result is
15665 -- abstract if the derived type is abstract, even if the parent type
15666 -- is concrete and the derived type is a null extension.
15667
15668 elsif Has_Controlling_Result (Alias (New_Subp))
15669 and then Is_Abstract_Type (Etype (New_Subp))
15670 then
15671 Set_Is_Abstract_Subprogram (New_Subp);
15672
15673 -- Finally, if the parent type is abstract we must verify that all
15674 -- inherited operations are either non-abstract or overridden, or that
15675 -- the derived type itself is abstract (this check is performed at the
15676 -- end of a package declaration, in Check_Abstract_Overriding). A
15677 -- private overriding in the parent type will not be visible in the
15678 -- derivation if we are not in an inner package or in a child unit of
15679 -- the parent type, in which case the abstractness of the inherited
15680 -- operation is carried to the new subprogram.
15681
15682 elsif Is_Abstract_Type (Parent_Type)
15683 and then not In_Open_Scopes (Scope (Parent_Type))
15684 and then Is_Private_Overriding
15685 and then Is_Abstract_Subprogram (Visible_Subp)
15686 then
15687 if No (Actual_Subp) then
15688 Set_Alias (New_Subp, Visible_Subp);
15689 Set_Is_Abstract_Subprogram (New_Subp, True);
15690
15691 else
15692 -- If this is a derivation for an instance of a formal derived
15693 -- type, abstractness comes from the primitive operation of the
15694 -- actual, not from the operation inherited from the ancestor.
15695
15696 Set_Is_Abstract_Subprogram
15697 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15698 end if;
15699 end if;
15700
15701 New_Overloaded_Entity (New_Subp, Derived_Type);
15702
15703 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15704 -- preconditions and the derived type is abstract, the derived operation
15705 -- is abstract as well if parent subprogram is not abstract or null.
15706
15707 if Is_Abstract_Type (Derived_Type)
15708 and then Has_Non_Trivial_Precondition (Parent_Subp)
15709 and then Present (Interfaces (Derived_Type))
15710 then
15711
15712 -- Add useful attributes of subprogram before the freeze point,
15713 -- in case freezing is delayed or there are previous errors.
15714
15715 Set_Is_Dispatching_Operation (New_Subp);
15716
15717 declare
15718 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15719
15720 begin
15721 if Present (Iface_Prim)
15722 and then Has_Non_Trivial_Precondition (Iface_Prim)
15723 then
15724 Set_Is_Abstract_Subprogram (New_Subp);
15725 end if;
15726 end;
15727 end if;
15728
15729 -- Check for case of a derived subprogram for the instantiation of a
15730 -- formal derived tagged type, if so mark the subprogram as dispatching
15731 -- and inherit the dispatching attributes of the actual subprogram. The
15732 -- derived subprogram is effectively renaming of the actual subprogram,
15733 -- so it needs to have the same attributes as the actual.
15734
15735 if Present (Actual_Subp)
15736 and then Is_Dispatching_Operation (Actual_Subp)
15737 then
15738 Set_Is_Dispatching_Operation (New_Subp);
15739
15740 if Present (DTC_Entity (Actual_Subp)) then
15741 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15742 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15743 end if;
15744 end if;
15745
15746 -- Indicate that a derived subprogram does not require a body and that
15747 -- it does not require processing of default expressions.
15748
15749 Set_Has_Completion (New_Subp);
15750 Set_Default_Expressions_Processed (New_Subp);
15751
15752 if Ekind (New_Subp) = E_Function then
15753 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15754 end if;
15755 end Derive_Subprogram;
15756
15757 ------------------------
15758 -- Derive_Subprograms --
15759 ------------------------
15760
15761 procedure Derive_Subprograms
15762 (Parent_Type : Entity_Id;
15763 Derived_Type : Entity_Id;
15764 Generic_Actual : Entity_Id := Empty)
15765 is
15766 Op_List : constant Elist_Id :=
15767 Collect_Primitive_Operations (Parent_Type);
15768
15769 function Check_Derived_Type return Boolean;
15770 -- Check that all the entities derived from Parent_Type are found in
15771 -- the list of primitives of Derived_Type exactly in the same order.
15772
15773 procedure Derive_Interface_Subprogram
15774 (New_Subp : out Entity_Id;
15775 Subp : Entity_Id;
15776 Actual_Subp : Entity_Id);
15777 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15778 -- (which is an interface primitive). If Generic_Actual is present then
15779 -- Actual_Subp is the actual subprogram corresponding with the generic
15780 -- subprogram Subp.
15781
15782 ------------------------
15783 -- Check_Derived_Type --
15784 ------------------------
15785
15786 function Check_Derived_Type return Boolean is
15787 E : Entity_Id;
15788 Elmt : Elmt_Id;
15789 List : Elist_Id;
15790 New_Subp : Entity_Id;
15791 Op_Elmt : Elmt_Id;
15792 Subp : Entity_Id;
15793
15794 begin
15795 -- Traverse list of entities in the current scope searching for
15796 -- an incomplete type whose full-view is derived type.
15797
15798 E := First_Entity (Scope (Derived_Type));
15799 while Present (E) and then E /= Derived_Type loop
15800 if Ekind (E) = E_Incomplete_Type
15801 and then Present (Full_View (E))
15802 and then Full_View (E) = Derived_Type
15803 then
15804 -- Disable this test if Derived_Type completes an incomplete
15805 -- type because in such case more primitives can be added
15806 -- later to the list of primitives of Derived_Type by routine
15807 -- Process_Incomplete_Dependents
15808
15809 return True;
15810 end if;
15811
15812 E := Next_Entity (E);
15813 end loop;
15814
15815 List := Collect_Primitive_Operations (Derived_Type);
15816 Elmt := First_Elmt (List);
15817
15818 Op_Elmt := First_Elmt (Op_List);
15819 while Present (Op_Elmt) loop
15820 Subp := Node (Op_Elmt);
15821 New_Subp := Node (Elmt);
15822
15823 -- At this early stage Derived_Type has no entities with attribute
15824 -- Interface_Alias. In addition, such primitives are always
15825 -- located at the end of the list of primitives of Parent_Type.
15826 -- Therefore, if found we can safely stop processing pending
15827 -- entities.
15828
15829 exit when Present (Interface_Alias (Subp));
15830
15831 -- Handle hidden entities
15832
15833 if not Is_Predefined_Dispatching_Operation (Subp)
15834 and then Is_Hidden (Subp)
15835 then
15836 if Present (New_Subp)
15837 and then Primitive_Names_Match (Subp, New_Subp)
15838 then
15839 Next_Elmt (Elmt);
15840 end if;
15841
15842 else
15843 if not Present (New_Subp)
15844 or else Ekind (Subp) /= Ekind (New_Subp)
15845 or else not Primitive_Names_Match (Subp, New_Subp)
15846 then
15847 return False;
15848 end if;
15849
15850 Next_Elmt (Elmt);
15851 end if;
15852
15853 Next_Elmt (Op_Elmt);
15854 end loop;
15855
15856 return True;
15857 end Check_Derived_Type;
15858
15859 ---------------------------------
15860 -- Derive_Interface_Subprogram --
15861 ---------------------------------
15862
15863 procedure Derive_Interface_Subprogram
15864 (New_Subp : out Entity_Id;
15865 Subp : Entity_Id;
15866 Actual_Subp : Entity_Id)
15867 is
15868 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15869 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15870
15871 begin
15872 pragma Assert (Is_Interface (Iface_Type));
15873
15874 Derive_Subprogram
15875 (New_Subp => New_Subp,
15876 Parent_Subp => Iface_Subp,
15877 Derived_Type => Derived_Type,
15878 Parent_Type => Iface_Type,
15879 Actual_Subp => Actual_Subp);
15880
15881 -- Given that this new interface entity corresponds with a primitive
15882 -- of the parent that was not overridden we must leave it associated
15883 -- with its parent primitive to ensure that it will share the same
15884 -- dispatch table slot when overridden. We must set the Alias to Subp
15885 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15886 -- (in case we inherited Subp from Iface_Type via a nonabstract
15887 -- generic formal type).
15888
15889 if No (Actual_Subp) then
15890 Set_Alias (New_Subp, Subp);
15891
15892 declare
15893 T : Entity_Id := Find_Dispatching_Type (Subp);
15894 begin
15895 while Etype (T) /= T loop
15896 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15897 Set_Is_Abstract_Subprogram (New_Subp, False);
15898 exit;
15899 end if;
15900
15901 T := Etype (T);
15902 end loop;
15903 end;
15904
15905 -- For instantiations this is not needed since the previous call to
15906 -- Derive_Subprogram leaves the entity well decorated.
15907
15908 else
15909 pragma Assert (Alias (New_Subp) = Actual_Subp);
15910 null;
15911 end if;
15912 end Derive_Interface_Subprogram;
15913
15914 -- Local variables
15915
15916 Alias_Subp : Entity_Id;
15917 Act_List : Elist_Id;
15918 Act_Elmt : Elmt_Id;
15919 Act_Subp : Entity_Id := Empty;
15920 Elmt : Elmt_Id;
15921 Need_Search : Boolean := False;
15922 New_Subp : Entity_Id := Empty;
15923 Parent_Base : Entity_Id;
15924 Subp : Entity_Id;
15925
15926 -- Start of processing for Derive_Subprograms
15927
15928 begin
15929 if Ekind (Parent_Type) = E_Record_Type_With_Private
15930 and then Has_Discriminants (Parent_Type)
15931 and then Present (Full_View (Parent_Type))
15932 then
15933 Parent_Base := Full_View (Parent_Type);
15934 else
15935 Parent_Base := Parent_Type;
15936 end if;
15937
15938 if Present (Generic_Actual) then
15939 Act_List := Collect_Primitive_Operations (Generic_Actual);
15940 Act_Elmt := First_Elmt (Act_List);
15941 else
15942 Act_List := No_Elist;
15943 Act_Elmt := No_Elmt;
15944 end if;
15945
15946 -- Derive primitives inherited from the parent. Note that if the generic
15947 -- actual is present, this is not really a type derivation, it is a
15948 -- completion within an instance.
15949
15950 -- Case 1: Derived_Type does not implement interfaces
15951
15952 if not Is_Tagged_Type (Derived_Type)
15953 or else (not Has_Interfaces (Derived_Type)
15954 and then not (Present (Generic_Actual)
15955 and then Has_Interfaces (Generic_Actual)))
15956 then
15957 Elmt := First_Elmt (Op_List);
15958 while Present (Elmt) loop
15959 Subp := Node (Elmt);
15960
15961 -- Literals are derived earlier in the process of building the
15962 -- derived type, and are skipped here.
15963
15964 if Ekind (Subp) = E_Enumeration_Literal then
15965 null;
15966
15967 -- The actual is a direct descendant and the common primitive
15968 -- operations appear in the same order.
15969
15970 -- If the generic parent type is present, the derived type is an
15971 -- instance of a formal derived type, and within the instance its
15972 -- operations are those of the actual. We derive from the formal
15973 -- type but make the inherited operations aliases of the
15974 -- corresponding operations of the actual.
15975
15976 else
15977 pragma Assert (No (Node (Act_Elmt))
15978 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15979 and then
15980 Type_Conformant
15981 (Subp, Node (Act_Elmt),
15982 Skip_Controlling_Formals => True)));
15983
15984 Derive_Subprogram
15985 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15986
15987 if Present (Act_Elmt) then
15988 Next_Elmt (Act_Elmt);
15989 end if;
15990 end if;
15991
15992 Next_Elmt (Elmt);
15993 end loop;
15994
15995 -- Case 2: Derived_Type implements interfaces
15996
15997 else
15998 -- If the parent type has no predefined primitives we remove
15999 -- predefined primitives from the list of primitives of generic
16000 -- actual to simplify the complexity of this algorithm.
16001
16002 if Present (Generic_Actual) then
16003 declare
16004 Has_Predefined_Primitives : Boolean := False;
16005
16006 begin
16007 -- Check if the parent type has predefined primitives
16008
16009 Elmt := First_Elmt (Op_List);
16010 while Present (Elmt) loop
16011 Subp := Node (Elmt);
16012
16013 if Is_Predefined_Dispatching_Operation (Subp)
16014 and then not Comes_From_Source (Ultimate_Alias (Subp))
16015 then
16016 Has_Predefined_Primitives := True;
16017 exit;
16018 end if;
16019
16020 Next_Elmt (Elmt);
16021 end loop;
16022
16023 -- Remove predefined primitives of Generic_Actual. We must use
16024 -- an auxiliary list because in case of tagged types the value
16025 -- returned by Collect_Primitive_Operations is the value stored
16026 -- in its Primitive_Operations attribute (and we don't want to
16027 -- modify its current contents).
16028
16029 if not Has_Predefined_Primitives then
16030 declare
16031 Aux_List : constant Elist_Id := New_Elmt_List;
16032
16033 begin
16034 Elmt := First_Elmt (Act_List);
16035 while Present (Elmt) loop
16036 Subp := Node (Elmt);
16037
16038 if not Is_Predefined_Dispatching_Operation (Subp)
16039 or else Comes_From_Source (Subp)
16040 then
16041 Append_Elmt (Subp, Aux_List);
16042 end if;
16043
16044 Next_Elmt (Elmt);
16045 end loop;
16046
16047 Act_List := Aux_List;
16048 end;
16049 end if;
16050
16051 Act_Elmt := First_Elmt (Act_List);
16052 Act_Subp := Node (Act_Elmt);
16053 end;
16054 end if;
16055
16056 -- Stage 1: If the generic actual is not present we derive the
16057 -- primitives inherited from the parent type. If the generic parent
16058 -- type is present, the derived type is an instance of a formal
16059 -- derived type, and within the instance its operations are those of
16060 -- the actual. We derive from the formal type but make the inherited
16061 -- operations aliases of the corresponding operations of the actual.
16062
16063 Elmt := First_Elmt (Op_List);
16064 while Present (Elmt) loop
16065 Subp := Node (Elmt);
16066 Alias_Subp := Ultimate_Alias (Subp);
16067
16068 -- Do not derive internal entities of the parent that link
16069 -- interface primitives with their covering primitive. These
16070 -- entities will be added to this type when frozen.
16071
16072 if Present (Interface_Alias (Subp)) then
16073 goto Continue;
16074 end if;
16075
16076 -- If the generic actual is present find the corresponding
16077 -- operation in the generic actual. If the parent type is a
16078 -- direct ancestor of the derived type then, even if it is an
16079 -- interface, the operations are inherited from the primary
16080 -- dispatch table and are in the proper order. If we detect here
16081 -- that primitives are not in the same order we traverse the list
16082 -- of primitive operations of the actual to find the one that
16083 -- implements the interface primitive.
16084
16085 if Need_Search
16086 or else
16087 (Present (Generic_Actual)
16088 and then Present (Act_Subp)
16089 and then not
16090 (Primitive_Names_Match (Subp, Act_Subp)
16091 and then
16092 Type_Conformant (Subp, Act_Subp,
16093 Skip_Controlling_Formals => True)))
16094 then
16095 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16096 Use_Full_View => True));
16097
16098 -- Remember that we need searching for all pending primitives
16099
16100 Need_Search := True;
16101
16102 -- Handle entities associated with interface primitives
16103
16104 if Present (Alias_Subp)
16105 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16106 and then not Is_Predefined_Dispatching_Operation (Subp)
16107 then
16108 -- Search for the primitive in the homonym chain
16109
16110 Act_Subp :=
16111 Find_Primitive_Covering_Interface
16112 (Tagged_Type => Generic_Actual,
16113 Iface_Prim => Alias_Subp);
16114
16115 -- Previous search may not locate primitives covering
16116 -- interfaces defined in generics units or instantiations.
16117 -- (it fails if the covering primitive has formals whose
16118 -- type is also defined in generics or instantiations).
16119 -- In such case we search in the list of primitives of the
16120 -- generic actual for the internal entity that links the
16121 -- interface primitive and the covering primitive.
16122
16123 if No (Act_Subp)
16124 and then Is_Generic_Type (Parent_Type)
16125 then
16126 -- This code has been designed to handle only generic
16127 -- formals that implement interfaces that are defined
16128 -- in a generic unit or instantiation. If this code is
16129 -- needed for other cases we must review it because
16130 -- (given that it relies on Original_Location to locate
16131 -- the primitive of Generic_Actual that covers the
16132 -- interface) it could leave linked through attribute
16133 -- Alias entities of unrelated instantiations).
16134
16135 pragma Assert
16136 (Is_Generic_Unit
16137 (Scope (Find_Dispatching_Type (Alias_Subp)))
16138 or else
16139 Instantiation_Depth
16140 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16141
16142 declare
16143 Iface_Prim_Loc : constant Source_Ptr :=
16144 Original_Location (Sloc (Alias_Subp));
16145
16146 Elmt : Elmt_Id;
16147 Prim : Entity_Id;
16148
16149 begin
16150 Elmt :=
16151 First_Elmt (Primitive_Operations (Generic_Actual));
16152
16153 Search : while Present (Elmt) loop
16154 Prim := Node (Elmt);
16155
16156 if Present (Interface_Alias (Prim))
16157 and then Original_Location
16158 (Sloc (Interface_Alias (Prim))) =
16159 Iface_Prim_Loc
16160 then
16161 Act_Subp := Alias (Prim);
16162 exit Search;
16163 end if;
16164
16165 Next_Elmt (Elmt);
16166 end loop Search;
16167 end;
16168 end if;
16169
16170 pragma Assert (Present (Act_Subp)
16171 or else Is_Abstract_Type (Generic_Actual)
16172 or else Serious_Errors_Detected > 0);
16173
16174 -- Handle predefined primitives plus the rest of user-defined
16175 -- primitives
16176
16177 else
16178 Act_Elmt := First_Elmt (Act_List);
16179 while Present (Act_Elmt) loop
16180 Act_Subp := Node (Act_Elmt);
16181
16182 exit when Primitive_Names_Match (Subp, Act_Subp)
16183 and then Type_Conformant
16184 (Subp, Act_Subp,
16185 Skip_Controlling_Formals => True)
16186 and then No (Interface_Alias (Act_Subp));
16187
16188 Next_Elmt (Act_Elmt);
16189 end loop;
16190
16191 if No (Act_Elmt) then
16192 Act_Subp := Empty;
16193 end if;
16194 end if;
16195 end if;
16196
16197 -- Case 1: If the parent is a limited interface then it has the
16198 -- predefined primitives of synchronized interfaces. However, the
16199 -- actual type may be a non-limited type and hence it does not
16200 -- have such primitives.
16201
16202 if Present (Generic_Actual)
16203 and then not Present (Act_Subp)
16204 and then Is_Limited_Interface (Parent_Base)
16205 and then Is_Predefined_Interface_Primitive (Subp)
16206 then
16207 null;
16208
16209 -- Case 2: Inherit entities associated with interfaces that were
16210 -- not covered by the parent type. We exclude here null interface
16211 -- primitives because they do not need special management.
16212
16213 -- We also exclude interface operations that are renamings. If the
16214 -- subprogram is an explicit renaming of an interface primitive,
16215 -- it is a regular primitive operation, and the presence of its
16216 -- alias is not relevant: it has to be derived like any other
16217 -- primitive.
16218
16219 elsif Present (Alias (Subp))
16220 and then Nkind (Unit_Declaration_Node (Subp)) /=
16221 N_Subprogram_Renaming_Declaration
16222 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16223 and then not
16224 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16225 and then Null_Present (Parent (Alias_Subp)))
16226 then
16227 -- If this is an abstract private type then we transfer the
16228 -- derivation of the interface primitive from the partial view
16229 -- to the full view. This is safe because all the interfaces
16230 -- must be visible in the partial view. Done to avoid adding
16231 -- a new interface derivation to the private part of the
16232 -- enclosing package; otherwise this new derivation would be
16233 -- decorated as hidden when the analysis of the enclosing
16234 -- package completes.
16235
16236 if Is_Abstract_Type (Derived_Type)
16237 and then In_Private_Part (Current_Scope)
16238 and then Has_Private_Declaration (Derived_Type)
16239 then
16240 declare
16241 Partial_View : Entity_Id;
16242 Elmt : Elmt_Id;
16243 Ent : Entity_Id;
16244
16245 begin
16246 Partial_View := First_Entity (Current_Scope);
16247 loop
16248 exit when No (Partial_View)
16249 or else (Has_Private_Declaration (Partial_View)
16250 and then
16251 Full_View (Partial_View) = Derived_Type);
16252
16253 Next_Entity (Partial_View);
16254 end loop;
16255
16256 -- If the partial view was not found then the source code
16257 -- has errors and the derivation is not needed.
16258
16259 if Present (Partial_View) then
16260 Elmt :=
16261 First_Elmt (Primitive_Operations (Partial_View));
16262 while Present (Elmt) loop
16263 Ent := Node (Elmt);
16264
16265 if Present (Alias (Ent))
16266 and then Ultimate_Alias (Ent) = Alias (Subp)
16267 then
16268 Append_Elmt
16269 (Ent, Primitive_Operations (Derived_Type));
16270 exit;
16271 end if;
16272
16273 Next_Elmt (Elmt);
16274 end loop;
16275
16276 -- If the interface primitive was not found in the
16277 -- partial view then this interface primitive was
16278 -- overridden. We add a derivation to activate in
16279 -- Derive_Progenitor_Subprograms the machinery to
16280 -- search for it.
16281
16282 if No (Elmt) then
16283 Derive_Interface_Subprogram
16284 (New_Subp => New_Subp,
16285 Subp => Subp,
16286 Actual_Subp => Act_Subp);
16287 end if;
16288 end if;
16289 end;
16290 else
16291 Derive_Interface_Subprogram
16292 (New_Subp => New_Subp,
16293 Subp => Subp,
16294 Actual_Subp => Act_Subp);
16295 end if;
16296
16297 -- Case 3: Common derivation
16298
16299 else
16300 Derive_Subprogram
16301 (New_Subp => New_Subp,
16302 Parent_Subp => Subp,
16303 Derived_Type => Derived_Type,
16304 Parent_Type => Parent_Base,
16305 Actual_Subp => Act_Subp);
16306 end if;
16307
16308 -- No need to update Act_Elm if we must search for the
16309 -- corresponding operation in the generic actual
16310
16311 if not Need_Search
16312 and then Present (Act_Elmt)
16313 then
16314 Next_Elmt (Act_Elmt);
16315 Act_Subp := Node (Act_Elmt);
16316 end if;
16317
16318 <<Continue>>
16319 Next_Elmt (Elmt);
16320 end loop;
16321
16322 -- Inherit additional operations from progenitors. If the derived
16323 -- type is a generic actual, there are not new primitive operations
16324 -- for the type because it has those of the actual, and therefore
16325 -- nothing needs to be done. The renamings generated above are not
16326 -- primitive operations, and their purpose is simply to make the
16327 -- proper operations visible within an instantiation.
16328
16329 if No (Generic_Actual) then
16330 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16331 end if;
16332 end if;
16333
16334 -- Final check: Direct descendants must have their primitives in the
16335 -- same order. We exclude from this test untagged types and instances
16336 -- of formal derived types. We skip this test if we have already
16337 -- reported serious errors in the sources.
16338
16339 pragma Assert (not Is_Tagged_Type (Derived_Type)
16340 or else Present (Generic_Actual)
16341 or else Serious_Errors_Detected > 0
16342 or else Check_Derived_Type);
16343 end Derive_Subprograms;
16344
16345 --------------------------------
16346 -- Derived_Standard_Character --
16347 --------------------------------
16348
16349 procedure Derived_Standard_Character
16350 (N : Node_Id;
16351 Parent_Type : Entity_Id;
16352 Derived_Type : Entity_Id)
16353 is
16354 Loc : constant Source_Ptr := Sloc (N);
16355 Def : constant Node_Id := Type_Definition (N);
16356 Indic : constant Node_Id := Subtype_Indication (Def);
16357 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16358 Implicit_Base : constant Entity_Id :=
16359 Create_Itype
16360 (E_Enumeration_Type, N, Derived_Type, 'B');
16361
16362 Lo : Node_Id;
16363 Hi : Node_Id;
16364
16365 begin
16366 Discard_Node (Process_Subtype (Indic, N));
16367
16368 Set_Etype (Implicit_Base, Parent_Base);
16369 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16370 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16371
16372 Set_Is_Character_Type (Implicit_Base, True);
16373 Set_Has_Delayed_Freeze (Implicit_Base);
16374
16375 -- The bounds of the implicit base are the bounds of the parent base.
16376 -- Note that their type is the parent base.
16377
16378 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16379 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16380
16381 Set_Scalar_Range (Implicit_Base,
16382 Make_Range (Loc,
16383 Low_Bound => Lo,
16384 High_Bound => Hi));
16385
16386 Conditional_Delay (Derived_Type, Parent_Type);
16387
16388 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16389 Set_Etype (Derived_Type, Implicit_Base);
16390 Set_Size_Info (Derived_Type, Parent_Type);
16391
16392 if Unknown_RM_Size (Derived_Type) then
16393 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16394 end if;
16395
16396 Set_Is_Character_Type (Derived_Type, True);
16397
16398 if Nkind (Indic) /= N_Subtype_Indication then
16399
16400 -- If no explicit constraint, the bounds are those
16401 -- of the parent type.
16402
16403 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16404 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16405 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16406 end if;
16407
16408 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16409
16410 -- Because the implicit base is used in the conversion of the bounds, we
16411 -- have to freeze it now. This is similar to what is done for numeric
16412 -- types, and it equally suspicious, but otherwise a non-static bound
16413 -- will have a reference to an unfrozen type, which is rejected by Gigi
16414 -- (???). This requires specific care for definition of stream
16415 -- attributes. For details, see comments at the end of
16416 -- Build_Derived_Numeric_Type.
16417
16418 Freeze_Before (N, Implicit_Base);
16419 end Derived_Standard_Character;
16420
16421 ------------------------------
16422 -- Derived_Type_Declaration --
16423 ------------------------------
16424
16425 procedure Derived_Type_Declaration
16426 (T : Entity_Id;
16427 N : Node_Id;
16428 Is_Completion : Boolean)
16429 is
16430 Parent_Type : Entity_Id;
16431
16432 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16433 -- Check whether the parent type is a generic formal, or derives
16434 -- directly or indirectly from one.
16435
16436 ------------------------
16437 -- Comes_From_Generic --
16438 ------------------------
16439
16440 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16441 begin
16442 if Is_Generic_Type (Typ) then
16443 return True;
16444
16445 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16446 return True;
16447
16448 elsif Is_Private_Type (Typ)
16449 and then Present (Full_View (Typ))
16450 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16451 then
16452 return True;
16453
16454 elsif Is_Generic_Actual_Type (Typ) then
16455 return True;
16456
16457 else
16458 return False;
16459 end if;
16460 end Comes_From_Generic;
16461
16462 -- Local variables
16463
16464 Def : constant Node_Id := Type_Definition (N);
16465 Iface_Def : Node_Id;
16466 Indic : constant Node_Id := Subtype_Indication (Def);
16467 Extension : constant Node_Id := Record_Extension_Part (Def);
16468 Parent_Node : Node_Id;
16469 Taggd : Boolean;
16470
16471 -- Start of processing for Derived_Type_Declaration
16472
16473 begin
16474 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16475
16476 if SPARK_Mode = On
16477 and then Is_Tagged_Type (Parent_Type)
16478 then
16479 declare
16480 Partial_View : constant Entity_Id :=
16481 Incomplete_Or_Partial_View (Parent_Type);
16482
16483 begin
16484 -- If the partial view was not found then the parent type is not
16485 -- a private type. Otherwise check if the partial view is a tagged
16486 -- private type.
16487
16488 if Present (Partial_View)
16489 and then Is_Private_Type (Partial_View)
16490 and then not Is_Tagged_Type (Partial_View)
16491 then
16492 Error_Msg_NE
16493 ("cannot derive from & declared as untagged private "
16494 & "(SPARK RM 3.4(1))", N, Partial_View);
16495 end if;
16496 end;
16497 end if;
16498
16499 -- Ada 2005 (AI-251): In case of interface derivation check that the
16500 -- parent is also an interface.
16501
16502 if Interface_Present (Def) then
16503 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16504
16505 if not Is_Interface (Parent_Type) then
16506 Diagnose_Interface (Indic, Parent_Type);
16507
16508 else
16509 Parent_Node := Parent (Base_Type (Parent_Type));
16510 Iface_Def := Type_Definition (Parent_Node);
16511
16512 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16513 -- other limited interfaces.
16514
16515 if Limited_Present (Def) then
16516 if Limited_Present (Iface_Def) then
16517 null;
16518
16519 elsif Protected_Present (Iface_Def) then
16520 Error_Msg_NE
16521 ("descendant of & must be declared as a protected "
16522 & "interface", N, Parent_Type);
16523
16524 elsif Synchronized_Present (Iface_Def) then
16525 Error_Msg_NE
16526 ("descendant of & must be declared as a synchronized "
16527 & "interface", N, Parent_Type);
16528
16529 elsif Task_Present (Iface_Def) then
16530 Error_Msg_NE
16531 ("descendant of & must be declared as a task interface",
16532 N, Parent_Type);
16533
16534 else
16535 Error_Msg_N
16536 ("(Ada 2005) limited interface cannot inherit from "
16537 & "non-limited interface", Indic);
16538 end if;
16539
16540 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16541 -- from non-limited or limited interfaces.
16542
16543 elsif not Protected_Present (Def)
16544 and then not Synchronized_Present (Def)
16545 and then not Task_Present (Def)
16546 then
16547 if Limited_Present (Iface_Def) then
16548 null;
16549
16550 elsif Protected_Present (Iface_Def) then
16551 Error_Msg_NE
16552 ("descendant of & must be declared as a protected "
16553 & "interface", N, Parent_Type);
16554
16555 elsif Synchronized_Present (Iface_Def) then
16556 Error_Msg_NE
16557 ("descendant of & must be declared as a synchronized "
16558 & "interface", N, Parent_Type);
16559
16560 elsif Task_Present (Iface_Def) then
16561 Error_Msg_NE
16562 ("descendant of & must be declared as a task interface",
16563 N, Parent_Type);
16564 else
16565 null;
16566 end if;
16567 end if;
16568 end if;
16569 end if;
16570
16571 if Is_Tagged_Type (Parent_Type)
16572 and then Is_Concurrent_Type (Parent_Type)
16573 and then not Is_Interface (Parent_Type)
16574 then
16575 Error_Msg_N
16576 ("parent type of a record extension cannot be a synchronized "
16577 & "tagged type (RM 3.9.1 (3/1))", N);
16578 Set_Etype (T, Any_Type);
16579 return;
16580 end if;
16581
16582 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16583 -- interfaces
16584
16585 if Is_Tagged_Type (Parent_Type)
16586 and then Is_Non_Empty_List (Interface_List (Def))
16587 then
16588 declare
16589 Intf : Node_Id;
16590 T : Entity_Id;
16591
16592 begin
16593 Intf := First (Interface_List (Def));
16594 while Present (Intf) loop
16595 T := Find_Type_Of_Subtype_Indic (Intf);
16596
16597 if not Is_Interface (T) then
16598 Diagnose_Interface (Intf, T);
16599
16600 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16601 -- a limited type from having a nonlimited progenitor.
16602
16603 elsif (Limited_Present (Def)
16604 or else (not Is_Interface (Parent_Type)
16605 and then Is_Limited_Type (Parent_Type)))
16606 and then not Is_Limited_Interface (T)
16607 then
16608 Error_Msg_NE
16609 ("progenitor interface& of limited type must be limited",
16610 N, T);
16611 end if;
16612
16613 Next (Intf);
16614 end loop;
16615 end;
16616 end if;
16617
16618 if Parent_Type = Any_Type
16619 or else Etype (Parent_Type) = Any_Type
16620 or else (Is_Class_Wide_Type (Parent_Type)
16621 and then Etype (Parent_Type) = T)
16622 then
16623 -- If Parent_Type is undefined or illegal, make new type into a
16624 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16625 -- errors. If this is a self-definition, emit error now.
16626
16627 if T = Parent_Type or else T = Etype (Parent_Type) then
16628 Error_Msg_N ("type cannot be used in its own definition", Indic);
16629 end if;
16630
16631 Set_Ekind (T, Ekind (Parent_Type));
16632 Set_Etype (T, Any_Type);
16633 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16634
16635 if Is_Tagged_Type (T)
16636 and then Is_Record_Type (T)
16637 then
16638 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16639 end if;
16640
16641 return;
16642 end if;
16643
16644 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16645 -- an interface is special because the list of interfaces in the full
16646 -- view can be given in any order. For example:
16647
16648 -- type A is interface;
16649 -- type B is interface and A;
16650 -- type D is new B with private;
16651 -- private
16652 -- type D is new A and B with null record; -- 1 --
16653
16654 -- In this case we perform the following transformation of -1-:
16655
16656 -- type D is new B and A with null record;
16657
16658 -- If the parent of the full-view covers the parent of the partial-view
16659 -- we have two possible cases:
16660
16661 -- 1) They have the same parent
16662 -- 2) The parent of the full-view implements some further interfaces
16663
16664 -- In both cases we do not need to perform the transformation. In the
16665 -- first case the source program is correct and the transformation is
16666 -- not needed; in the second case the source program does not fulfill
16667 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16668 -- later.
16669
16670 -- This transformation not only simplifies the rest of the analysis of
16671 -- this type declaration but also simplifies the correct generation of
16672 -- the object layout to the expander.
16673
16674 if In_Private_Part (Current_Scope)
16675 and then Is_Interface (Parent_Type)
16676 then
16677 declare
16678 Iface : Node_Id;
16679 Partial_View : Entity_Id;
16680 Partial_View_Parent : Entity_Id;
16681 New_Iface : Node_Id;
16682
16683 begin
16684 -- Look for the associated private type declaration
16685
16686 Partial_View := Incomplete_Or_Partial_View (T);
16687
16688 -- If the partial view was not found then the source code has
16689 -- errors and the transformation is not needed.
16690
16691 if Present (Partial_View) then
16692 Partial_View_Parent := Etype (Partial_View);
16693
16694 -- If the parent of the full-view covers the parent of the
16695 -- partial-view we have nothing else to do.
16696
16697 if Interface_Present_In_Ancestor
16698 (Parent_Type, Partial_View_Parent)
16699 then
16700 null;
16701
16702 -- Traverse the list of interfaces of the full-view to look
16703 -- for the parent of the partial-view and perform the tree
16704 -- transformation.
16705
16706 else
16707 Iface := First (Interface_List (Def));
16708 while Present (Iface) loop
16709 if Etype (Iface) = Etype (Partial_View) then
16710 Rewrite (Subtype_Indication (Def),
16711 New_Copy (Subtype_Indication
16712 (Parent (Partial_View))));
16713
16714 New_Iface :=
16715 Make_Identifier (Sloc (N), Chars (Parent_Type));
16716 Append (New_Iface, Interface_List (Def));
16717
16718 -- Analyze the transformed code
16719
16720 Derived_Type_Declaration (T, N, Is_Completion);
16721 return;
16722 end if;
16723
16724 Next (Iface);
16725 end loop;
16726 end if;
16727 end if;
16728 end;
16729 end if;
16730
16731 -- Only composite types other than array types are allowed to have
16732 -- discriminants.
16733
16734 if Present (Discriminant_Specifications (N)) then
16735 if (Is_Elementary_Type (Parent_Type)
16736 or else
16737 Is_Array_Type (Parent_Type))
16738 and then not Error_Posted (N)
16739 then
16740 Error_Msg_N
16741 ("elementary or array type cannot have discriminants",
16742 Defining_Identifier (First (Discriminant_Specifications (N))));
16743
16744 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16745 -- only if we are not already processing a malformed syntax tree.
16746
16747 if Is_Type (T) then
16748 Set_Has_Discriminants (T, False);
16749 end if;
16750
16751 -- The type is allowed to have discriminants
16752
16753 else
16754 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16755 end if;
16756 end if;
16757
16758 -- In Ada 83, a derived type defined in a package specification cannot
16759 -- be used for further derivation until the end of its visible part.
16760 -- Note that derivation in the private part of the package is allowed.
16761
16762 if Ada_Version = Ada_83
16763 and then Is_Derived_Type (Parent_Type)
16764 and then In_Visible_Part (Scope (Parent_Type))
16765 then
16766 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16767 Error_Msg_N
16768 ("(Ada 83): premature use of type for derivation", Indic);
16769 end if;
16770 end if;
16771
16772 -- Check for early use of incomplete or private type
16773
16774 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16775 Error_Msg_N ("premature derivation of incomplete type", Indic);
16776 return;
16777
16778 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16779 and then not Comes_From_Generic (Parent_Type))
16780 or else Has_Private_Component (Parent_Type)
16781 then
16782 -- The ancestor type of a formal type can be incomplete, in which
16783 -- case only the operations of the partial view are available in the
16784 -- generic. Subsequent checks may be required when the full view is
16785 -- analyzed to verify that a derivation from a tagged type has an
16786 -- extension.
16787
16788 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16789 null;
16790
16791 elsif No (Underlying_Type (Parent_Type))
16792 or else Has_Private_Component (Parent_Type)
16793 then
16794 Error_Msg_N
16795 ("premature derivation of derived or private type", Indic);
16796
16797 -- Flag the type itself as being in error, this prevents some
16798 -- nasty problems with subsequent uses of the malformed type.
16799
16800 Set_Error_Posted (T);
16801
16802 -- Check that within the immediate scope of an untagged partial
16803 -- view it's illegal to derive from the partial view if the
16804 -- full view is tagged. (7.3(7))
16805
16806 -- We verify that the Parent_Type is a partial view by checking
16807 -- that it is not a Full_Type_Declaration (i.e. a private type or
16808 -- private extension declaration), to distinguish a partial view
16809 -- from a derivation from a private type which also appears as
16810 -- E_Private_Type. If the parent base type is not declared in an
16811 -- enclosing scope there is no need to check.
16812
16813 elsif Present (Full_View (Parent_Type))
16814 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16815 and then not Is_Tagged_Type (Parent_Type)
16816 and then Is_Tagged_Type (Full_View (Parent_Type))
16817 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16818 then
16819 Error_Msg_N
16820 ("premature derivation from type with tagged full view",
16821 Indic);
16822 end if;
16823 end if;
16824
16825 -- Check that form of derivation is appropriate
16826
16827 Taggd := Is_Tagged_Type (Parent_Type);
16828
16829 -- Set the parent type to the class-wide type's specific type in this
16830 -- case to prevent cascading errors
16831
16832 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16833 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16834 Set_Etype (T, Etype (Parent_Type));
16835 return;
16836 end if;
16837
16838 if Present (Extension) and then not Taggd then
16839 Error_Msg_N
16840 ("type derived from untagged type cannot have extension", Indic);
16841
16842 elsif No (Extension) and then Taggd then
16843
16844 -- If this declaration is within a private part (or body) of a
16845 -- generic instantiation then the derivation is allowed (the parent
16846 -- type can only appear tagged in this case if it's a generic actual
16847 -- type, since it would otherwise have been rejected in the analysis
16848 -- of the generic template).
16849
16850 if not Is_Generic_Actual_Type (Parent_Type)
16851 or else In_Visible_Part (Scope (Parent_Type))
16852 then
16853 if Is_Class_Wide_Type (Parent_Type) then
16854 Error_Msg_N
16855 ("parent type must not be a class-wide type", Indic);
16856
16857 -- Use specific type to prevent cascaded errors.
16858
16859 Parent_Type := Etype (Parent_Type);
16860
16861 else
16862 Error_Msg_N
16863 ("type derived from tagged type must have extension", Indic);
16864 end if;
16865 end if;
16866 end if;
16867
16868 -- AI-443: Synchronized formal derived types require a private
16869 -- extension. There is no point in checking the ancestor type or
16870 -- the progenitors since the construct is wrong to begin with.
16871
16872 if Ada_Version >= Ada_2005
16873 and then Is_Generic_Type (T)
16874 and then Present (Original_Node (N))
16875 then
16876 declare
16877 Decl : constant Node_Id := Original_Node (N);
16878
16879 begin
16880 if Nkind (Decl) = N_Formal_Type_Declaration
16881 and then Nkind (Formal_Type_Definition (Decl)) =
16882 N_Formal_Derived_Type_Definition
16883 and then Synchronized_Present (Formal_Type_Definition (Decl))
16884 and then No (Extension)
16885
16886 -- Avoid emitting a duplicate error message
16887
16888 and then not Error_Posted (Indic)
16889 then
16890 Error_Msg_N
16891 ("synchronized derived type must have extension", N);
16892 end if;
16893 end;
16894 end if;
16895
16896 if Null_Exclusion_Present (Def)
16897 and then not Is_Access_Type (Parent_Type)
16898 then
16899 Error_Msg_N ("null exclusion can only apply to an access type", N);
16900 end if;
16901
16902 -- Avoid deriving parent primitives of underlying record views
16903
16904 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16905 Derive_Subps => not Is_Underlying_Record_View (T));
16906
16907 -- AI-419: The parent type of an explicitly limited derived type must
16908 -- be a limited type or a limited interface.
16909
16910 if Limited_Present (Def) then
16911 Set_Is_Limited_Record (T);
16912
16913 if Is_Interface (T) then
16914 Set_Is_Limited_Interface (T);
16915 end if;
16916
16917 if not Is_Limited_Type (Parent_Type)
16918 and then
16919 (not Is_Interface (Parent_Type)
16920 or else not Is_Limited_Interface (Parent_Type))
16921 then
16922 -- AI05-0096: a derivation in the private part of an instance is
16923 -- legal if the generic formal is untagged limited, and the actual
16924 -- is non-limited.
16925
16926 if Is_Generic_Actual_Type (Parent_Type)
16927 and then In_Private_Part (Current_Scope)
16928 and then
16929 not Is_Tagged_Type
16930 (Generic_Parent_Type (Parent (Parent_Type)))
16931 then
16932 null;
16933
16934 else
16935 Error_Msg_NE
16936 ("parent type& of limited type must be limited",
16937 N, Parent_Type);
16938 end if;
16939 end if;
16940 end if;
16941
16942 -- In SPARK, there are no derived type definitions other than type
16943 -- extensions of tagged record types.
16944
16945 if No (Extension) then
16946 Check_SPARK_05_Restriction
16947 ("derived type is not allowed", Original_Node (N));
16948 end if;
16949 end Derived_Type_Declaration;
16950
16951 ------------------------
16952 -- Diagnose_Interface --
16953 ------------------------
16954
16955 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16956 begin
16957 if not Is_Interface (E) and then E /= Any_Type then
16958 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16959 end if;
16960 end Diagnose_Interface;
16961
16962 ----------------------------------
16963 -- Enumeration_Type_Declaration --
16964 ----------------------------------
16965
16966 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16967 Ev : Uint;
16968 L : Node_Id;
16969 R_Node : Node_Id;
16970 B_Node : Node_Id;
16971
16972 begin
16973 -- Create identifier node representing lower bound
16974
16975 B_Node := New_Node (N_Identifier, Sloc (Def));
16976 L := First (Literals (Def));
16977 Set_Chars (B_Node, Chars (L));
16978 Set_Entity (B_Node, L);
16979 Set_Etype (B_Node, T);
16980 Set_Is_Static_Expression (B_Node, True);
16981
16982 R_Node := New_Node (N_Range, Sloc (Def));
16983 Set_Low_Bound (R_Node, B_Node);
16984
16985 Set_Ekind (T, E_Enumeration_Type);
16986 Set_First_Literal (T, L);
16987 Set_Etype (T, T);
16988 Set_Is_Constrained (T);
16989
16990 Ev := Uint_0;
16991
16992 -- Loop through literals of enumeration type setting pos and rep values
16993 -- except that if the Ekind is already set, then it means the literal
16994 -- was already constructed (case of a derived type declaration and we
16995 -- should not disturb the Pos and Rep values.
16996
16997 while Present (L) loop
16998 if Ekind (L) /= E_Enumeration_Literal then
16999 Set_Ekind (L, E_Enumeration_Literal);
17000 Set_Enumeration_Pos (L, Ev);
17001 Set_Enumeration_Rep (L, Ev);
17002 Set_Is_Known_Valid (L, True);
17003 end if;
17004
17005 Set_Etype (L, T);
17006 New_Overloaded_Entity (L);
17007 Generate_Definition (L);
17008 Set_Convention (L, Convention_Intrinsic);
17009
17010 -- Case of character literal
17011
17012 if Nkind (L) = N_Defining_Character_Literal then
17013 Set_Is_Character_Type (T, True);
17014
17015 -- Check violation of No_Wide_Characters
17016
17017 if Restriction_Check_Required (No_Wide_Characters) then
17018 Get_Name_String (Chars (L));
17019
17020 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17021 Check_Restriction (No_Wide_Characters, L);
17022 end if;
17023 end if;
17024 end if;
17025
17026 Ev := Ev + 1;
17027 Next (L);
17028 end loop;
17029
17030 -- Now create a node representing upper bound
17031
17032 B_Node := New_Node (N_Identifier, Sloc (Def));
17033 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17034 Set_Entity (B_Node, Last (Literals (Def)));
17035 Set_Etype (B_Node, T);
17036 Set_Is_Static_Expression (B_Node, True);
17037
17038 Set_High_Bound (R_Node, B_Node);
17039
17040 -- Initialize various fields of the type. Some of this information
17041 -- may be overwritten later through rep.clauses.
17042
17043 Set_Scalar_Range (T, R_Node);
17044 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17045 Set_Enum_Esize (T);
17046 Set_Enum_Pos_To_Rep (T, Empty);
17047
17048 -- Set Discard_Names if configuration pragma set, or if there is
17049 -- a parameterless pragma in the current declarative region
17050
17051 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17052 Set_Discard_Names (T);
17053 end if;
17054
17055 -- Process end label if there is one
17056
17057 if Present (Def) then
17058 Process_End_Label (Def, 'e', T);
17059 end if;
17060 end Enumeration_Type_Declaration;
17061
17062 ---------------------------------
17063 -- Expand_To_Stored_Constraint --
17064 ---------------------------------
17065
17066 function Expand_To_Stored_Constraint
17067 (Typ : Entity_Id;
17068 Constraint : Elist_Id) return Elist_Id
17069 is
17070 Explicitly_Discriminated_Type : Entity_Id;
17071 Expansion : Elist_Id;
17072 Discriminant : Entity_Id;
17073
17074 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17075 -- Find the nearest type that actually specifies discriminants
17076
17077 ---------------------------------
17078 -- Type_With_Explicit_Discrims --
17079 ---------------------------------
17080
17081 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17082 Typ : constant E := Base_Type (Id);
17083
17084 begin
17085 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17086 if Present (Full_View (Typ)) then
17087 return Type_With_Explicit_Discrims (Full_View (Typ));
17088 end if;
17089
17090 else
17091 if Has_Discriminants (Typ) then
17092 return Typ;
17093 end if;
17094 end if;
17095
17096 if Etype (Typ) = Typ then
17097 return Empty;
17098 elsif Has_Discriminants (Typ) then
17099 return Typ;
17100 else
17101 return Type_With_Explicit_Discrims (Etype (Typ));
17102 end if;
17103
17104 end Type_With_Explicit_Discrims;
17105
17106 -- Start of processing for Expand_To_Stored_Constraint
17107
17108 begin
17109 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17110 return No_Elist;
17111 end if;
17112
17113 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17114
17115 if No (Explicitly_Discriminated_Type) then
17116 return No_Elist;
17117 end if;
17118
17119 Expansion := New_Elmt_List;
17120
17121 Discriminant :=
17122 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17123 while Present (Discriminant) loop
17124 Append_Elmt
17125 (Get_Discriminant_Value
17126 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17127 To => Expansion);
17128 Next_Stored_Discriminant (Discriminant);
17129 end loop;
17130
17131 return Expansion;
17132 end Expand_To_Stored_Constraint;
17133
17134 ---------------------------
17135 -- Find_Hidden_Interface --
17136 ---------------------------
17137
17138 function Find_Hidden_Interface
17139 (Src : Elist_Id;
17140 Dest : Elist_Id) return Entity_Id
17141 is
17142 Iface : Entity_Id;
17143 Iface_Elmt : Elmt_Id;
17144
17145 begin
17146 if Present (Src) and then Present (Dest) then
17147 Iface_Elmt := First_Elmt (Src);
17148 while Present (Iface_Elmt) loop
17149 Iface := Node (Iface_Elmt);
17150
17151 if Is_Interface (Iface)
17152 and then not Contain_Interface (Iface, Dest)
17153 then
17154 return Iface;
17155 end if;
17156
17157 Next_Elmt (Iface_Elmt);
17158 end loop;
17159 end if;
17160
17161 return Empty;
17162 end Find_Hidden_Interface;
17163
17164 --------------------
17165 -- Find_Type_Name --
17166 --------------------
17167
17168 function Find_Type_Name (N : Node_Id) return Entity_Id is
17169 Id : constant Entity_Id := Defining_Identifier (N);
17170 New_Id : Entity_Id;
17171 Prev : Entity_Id;
17172 Prev_Par : Node_Id;
17173
17174 procedure Check_Duplicate_Aspects;
17175 -- Check that aspects specified in a completion have not been specified
17176 -- already in the partial view.
17177
17178 procedure Tag_Mismatch;
17179 -- Diagnose a tagged partial view whose full view is untagged. We post
17180 -- the message on the full view, with a reference to the previous
17181 -- partial view. The partial view can be private or incomplete, and
17182 -- these are handled in a different manner, so we determine the position
17183 -- of the error message from the respective slocs of both.
17184
17185 -----------------------------
17186 -- Check_Duplicate_Aspects --
17187 -----------------------------
17188
17189 procedure Check_Duplicate_Aspects is
17190 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17191 -- Return the corresponding aspect of the partial view which matches
17192 -- the aspect id of Asp. Return Empty is no such aspect exists.
17193
17194 -----------------------------
17195 -- Get_Partial_View_Aspect --
17196 -----------------------------
17197
17198 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17199 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17200 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17201 Prev_Asp : Node_Id;
17202
17203 begin
17204 if Present (Prev_Asps) then
17205 Prev_Asp := First (Prev_Asps);
17206 while Present (Prev_Asp) loop
17207 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17208 return Prev_Asp;
17209 end if;
17210
17211 Next (Prev_Asp);
17212 end loop;
17213 end if;
17214
17215 return Empty;
17216 end Get_Partial_View_Aspect;
17217
17218 -- Local variables
17219
17220 Full_Asps : constant List_Id := Aspect_Specifications (N);
17221 Full_Asp : Node_Id;
17222 Part_Asp : Node_Id;
17223
17224 -- Start of processing for Check_Duplicate_Aspects
17225
17226 begin
17227 if Present (Full_Asps) then
17228 Full_Asp := First (Full_Asps);
17229 while Present (Full_Asp) loop
17230 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17231
17232 -- An aspect and its class-wide counterpart are two distinct
17233 -- aspects and may apply to both views of an entity.
17234
17235 if Present (Part_Asp)
17236 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17237 then
17238 Error_Msg_N
17239 ("aspect already specified in private declaration",
17240 Full_Asp);
17241
17242 Remove (Full_Asp);
17243 return;
17244 end if;
17245
17246 if Has_Discriminants (Prev)
17247 and then not Has_Unknown_Discriminants (Prev)
17248 and then Get_Aspect_Id (Full_Asp) =
17249 Aspect_Implicit_Dereference
17250 then
17251 Error_Msg_N
17252 ("cannot specify aspect if partial view has known "
17253 & "discriminants", Full_Asp);
17254 end if;
17255
17256 Next (Full_Asp);
17257 end loop;
17258 end if;
17259 end Check_Duplicate_Aspects;
17260
17261 ------------------
17262 -- Tag_Mismatch --
17263 ------------------
17264
17265 procedure Tag_Mismatch is
17266 begin
17267 if Sloc (Prev) < Sloc (Id) then
17268 if Ada_Version >= Ada_2012
17269 and then Nkind (N) = N_Private_Type_Declaration
17270 then
17271 Error_Msg_NE
17272 ("declaration of private } must be a tagged type ", Id, Prev);
17273 else
17274 Error_Msg_NE
17275 ("full declaration of } must be a tagged type ", Id, Prev);
17276 end if;
17277
17278 else
17279 if Ada_Version >= Ada_2012
17280 and then Nkind (N) = N_Private_Type_Declaration
17281 then
17282 Error_Msg_NE
17283 ("declaration of private } must be a tagged type ", Prev, Id);
17284 else
17285 Error_Msg_NE
17286 ("full declaration of } must be a tagged type ", Prev, Id);
17287 end if;
17288 end if;
17289 end Tag_Mismatch;
17290
17291 -- Start of processing for Find_Type_Name
17292
17293 begin
17294 -- Find incomplete declaration, if one was given
17295
17296 Prev := Current_Entity_In_Scope (Id);
17297
17298 -- New type declaration
17299
17300 if No (Prev) then
17301 Enter_Name (Id);
17302 return Id;
17303
17304 -- Previous declaration exists
17305
17306 else
17307 Prev_Par := Parent (Prev);
17308
17309 -- Error if not incomplete/private case except if previous
17310 -- declaration is implicit, etc. Enter_Name will emit error if
17311 -- appropriate.
17312
17313 if not Is_Incomplete_Or_Private_Type (Prev) then
17314 Enter_Name (Id);
17315 New_Id := Id;
17316
17317 -- Check invalid completion of private or incomplete type
17318
17319 elsif not Nkind_In (N, N_Full_Type_Declaration,
17320 N_Task_Type_Declaration,
17321 N_Protected_Type_Declaration)
17322 and then
17323 (Ada_Version < Ada_2012
17324 or else not Is_Incomplete_Type (Prev)
17325 or else not Nkind_In (N, N_Private_Type_Declaration,
17326 N_Private_Extension_Declaration))
17327 then
17328 -- Completion must be a full type declarations (RM 7.3(4))
17329
17330 Error_Msg_Sloc := Sloc (Prev);
17331 Error_Msg_NE ("invalid completion of }", Id, Prev);
17332
17333 -- Set scope of Id to avoid cascaded errors. Entity is never
17334 -- examined again, except when saving globals in generics.
17335
17336 Set_Scope (Id, Current_Scope);
17337 New_Id := Id;
17338
17339 -- If this is a repeated incomplete declaration, no further
17340 -- checks are possible.
17341
17342 if Nkind (N) = N_Incomplete_Type_Declaration then
17343 return Prev;
17344 end if;
17345
17346 -- Case of full declaration of incomplete type
17347
17348 elsif Ekind (Prev) = E_Incomplete_Type
17349 and then (Ada_Version < Ada_2012
17350 or else No (Full_View (Prev))
17351 or else not Is_Private_Type (Full_View (Prev)))
17352 then
17353 -- Indicate that the incomplete declaration has a matching full
17354 -- declaration. The defining occurrence of the incomplete
17355 -- declaration remains the visible one, and the procedure
17356 -- Get_Full_View dereferences it whenever the type is used.
17357
17358 if Present (Full_View (Prev)) then
17359 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17360 end if;
17361
17362 Set_Full_View (Prev, Id);
17363 Append_Entity (Id, Current_Scope);
17364 Set_Is_Public (Id, Is_Public (Prev));
17365 Set_Is_Internal (Id);
17366 New_Id := Prev;
17367
17368 -- If the incomplete view is tagged, a class_wide type has been
17369 -- created already. Use it for the private type as well, in order
17370 -- to prevent multiple incompatible class-wide types that may be
17371 -- created for self-referential anonymous access components.
17372
17373 if Is_Tagged_Type (Prev)
17374 and then Present (Class_Wide_Type (Prev))
17375 then
17376 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17377 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17378
17379 -- Type of the class-wide type is the current Id. Previously
17380 -- this was not done for private declarations because of order-
17381 -- of-elaboration issues in the back end, but gigi now handles
17382 -- this properly.
17383
17384 Set_Etype (Class_Wide_Type (Id), Id);
17385 end if;
17386
17387 -- Case of full declaration of private type
17388
17389 else
17390 -- If the private type was a completion of an incomplete type then
17391 -- update Prev to reference the private type
17392
17393 if Ada_Version >= Ada_2012
17394 and then Ekind (Prev) = E_Incomplete_Type
17395 and then Present (Full_View (Prev))
17396 and then Is_Private_Type (Full_View (Prev))
17397 then
17398 Prev := Full_View (Prev);
17399 Prev_Par := Parent (Prev);
17400 end if;
17401
17402 if Nkind (N) = N_Full_Type_Declaration
17403 and then Nkind_In
17404 (Type_Definition (N), N_Record_Definition,
17405 N_Derived_Type_Definition)
17406 and then Interface_Present (Type_Definition (N))
17407 then
17408 Error_Msg_N
17409 ("completion of private type cannot be an interface", N);
17410 end if;
17411
17412 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17413 if Etype (Prev) /= Prev then
17414
17415 -- Prev is a private subtype or a derived type, and needs
17416 -- no completion.
17417
17418 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17419 New_Id := Id;
17420
17421 elsif Ekind (Prev) = E_Private_Type
17422 and then Nkind_In (N, N_Task_Type_Declaration,
17423 N_Protected_Type_Declaration)
17424 then
17425 Error_Msg_N
17426 ("completion of nonlimited type cannot be limited", N);
17427
17428 elsif Ekind (Prev) = E_Record_Type_With_Private
17429 and then Nkind_In (N, N_Task_Type_Declaration,
17430 N_Protected_Type_Declaration)
17431 then
17432 if not Is_Limited_Record (Prev) then
17433 Error_Msg_N
17434 ("completion of nonlimited type cannot be limited", N);
17435
17436 elsif No (Interface_List (N)) then
17437 Error_Msg_N
17438 ("completion of tagged private type must be tagged",
17439 N);
17440 end if;
17441 end if;
17442
17443 -- Ada 2005 (AI-251): Private extension declaration of a task
17444 -- type or a protected type. This case arises when covering
17445 -- interface types.
17446
17447 elsif Nkind_In (N, N_Task_Type_Declaration,
17448 N_Protected_Type_Declaration)
17449 then
17450 null;
17451
17452 elsif Nkind (N) /= N_Full_Type_Declaration
17453 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17454 then
17455 Error_Msg_N
17456 ("full view of private extension must be an extension", N);
17457
17458 elsif not (Abstract_Present (Parent (Prev)))
17459 and then Abstract_Present (Type_Definition (N))
17460 then
17461 Error_Msg_N
17462 ("full view of non-abstract extension cannot be abstract", N);
17463 end if;
17464
17465 if not In_Private_Part (Current_Scope) then
17466 Error_Msg_N
17467 ("declaration of full view must appear in private part", N);
17468 end if;
17469
17470 if Ada_Version >= Ada_2012 then
17471 Check_Duplicate_Aspects;
17472 end if;
17473
17474 Copy_And_Swap (Prev, Id);
17475 Set_Has_Private_Declaration (Prev);
17476 Set_Has_Private_Declaration (Id);
17477
17478 -- AI12-0133: Indicate whether we have a partial view with
17479 -- unknown discriminants, in which case initialization of objects
17480 -- of the type do not receive an invariant check.
17481
17482 Set_Partial_View_Has_Unknown_Discr
17483 (Prev, Has_Unknown_Discriminants (Id));
17484
17485 -- Preserve aspect and iterator flags that may have been set on
17486 -- the partial view.
17487
17488 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17489 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17490
17491 -- If no error, propagate freeze_node from private to full view.
17492 -- It may have been generated for an early operational item.
17493
17494 if Present (Freeze_Node (Id))
17495 and then Serious_Errors_Detected = 0
17496 and then No (Full_View (Id))
17497 then
17498 Set_Freeze_Node (Prev, Freeze_Node (Id));
17499 Set_Freeze_Node (Id, Empty);
17500 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17501 end if;
17502
17503 Set_Full_View (Id, Prev);
17504 New_Id := Prev;
17505 end if;
17506
17507 -- Verify that full declaration conforms to partial one
17508
17509 if Is_Incomplete_Or_Private_Type (Prev)
17510 and then Present (Discriminant_Specifications (Prev_Par))
17511 then
17512 if Present (Discriminant_Specifications (N)) then
17513 if Ekind (Prev) = E_Incomplete_Type then
17514 Check_Discriminant_Conformance (N, Prev, Prev);
17515 else
17516 Check_Discriminant_Conformance (N, Prev, Id);
17517 end if;
17518
17519 else
17520 Error_Msg_N
17521 ("missing discriminants in full type declaration", N);
17522
17523 -- To avoid cascaded errors on subsequent use, share the
17524 -- discriminants of the partial view.
17525
17526 Set_Discriminant_Specifications (N,
17527 Discriminant_Specifications (Prev_Par));
17528 end if;
17529 end if;
17530
17531 -- A prior untagged partial view can have an associated class-wide
17532 -- type due to use of the class attribute, and in this case the full
17533 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17534 -- of incomplete tagged declarations, but we check for it.
17535
17536 if Is_Type (Prev)
17537 and then (Is_Tagged_Type (Prev)
17538 or else Present (Class_Wide_Type (Prev)))
17539 then
17540 -- Ada 2012 (AI05-0162): A private type may be the completion of
17541 -- an incomplete type.
17542
17543 if Ada_Version >= Ada_2012
17544 and then Is_Incomplete_Type (Prev)
17545 and then Nkind_In (N, N_Private_Type_Declaration,
17546 N_Private_Extension_Declaration)
17547 then
17548 -- No need to check private extensions since they are tagged
17549
17550 if Nkind (N) = N_Private_Type_Declaration
17551 and then not Tagged_Present (N)
17552 then
17553 Tag_Mismatch;
17554 end if;
17555
17556 -- The full declaration is either a tagged type (including
17557 -- a synchronized type that implements interfaces) or a
17558 -- type extension, otherwise this is an error.
17559
17560 elsif Nkind_In (N, N_Task_Type_Declaration,
17561 N_Protected_Type_Declaration)
17562 then
17563 if No (Interface_List (N)) and then not Error_Posted (N) then
17564 Tag_Mismatch;
17565 end if;
17566
17567 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17568
17569 -- Indicate that the previous declaration (tagged incomplete
17570 -- or private declaration) requires the same on the full one.
17571
17572 if not Tagged_Present (Type_Definition (N)) then
17573 Tag_Mismatch;
17574 Set_Is_Tagged_Type (Id);
17575 end if;
17576
17577 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17578 if No (Record_Extension_Part (Type_Definition (N))) then
17579 Error_Msg_NE
17580 ("full declaration of } must be a record extension",
17581 Prev, Id);
17582
17583 -- Set some attributes to produce a usable full view
17584
17585 Set_Is_Tagged_Type (Id);
17586 end if;
17587
17588 else
17589 Tag_Mismatch;
17590 end if;
17591 end if;
17592
17593 if Present (Prev)
17594 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17595 and then Present (Premature_Use (Parent (Prev)))
17596 then
17597 Error_Msg_Sloc := Sloc (N);
17598 Error_Msg_N
17599 ("\full declaration #", Premature_Use (Parent (Prev)));
17600 end if;
17601
17602 return New_Id;
17603 end if;
17604 end Find_Type_Name;
17605
17606 -------------------------
17607 -- Find_Type_Of_Object --
17608 -------------------------
17609
17610 function Find_Type_Of_Object
17611 (Obj_Def : Node_Id;
17612 Related_Nod : Node_Id) return Entity_Id
17613 is
17614 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17615 P : Node_Id := Parent (Obj_Def);
17616 T : Entity_Id;
17617 Nam : Name_Id;
17618
17619 begin
17620 -- If the parent is a component_definition node we climb to the
17621 -- component_declaration node
17622
17623 if Nkind (P) = N_Component_Definition then
17624 P := Parent (P);
17625 end if;
17626
17627 -- Case of an anonymous array subtype
17628
17629 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17630 N_Unconstrained_Array_Definition)
17631 then
17632 T := Empty;
17633 Array_Type_Declaration (T, Obj_Def);
17634
17635 -- Create an explicit subtype whenever possible
17636
17637 elsif Nkind (P) /= N_Component_Declaration
17638 and then Def_Kind = N_Subtype_Indication
17639 then
17640 -- Base name of subtype on object name, which will be unique in
17641 -- the current scope.
17642
17643 -- If this is a duplicate declaration, return base type, to avoid
17644 -- generating duplicate anonymous types.
17645
17646 if Error_Posted (P) then
17647 Analyze (Subtype_Mark (Obj_Def));
17648 return Entity (Subtype_Mark (Obj_Def));
17649 end if;
17650
17651 Nam :=
17652 New_External_Name
17653 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17654
17655 T := Make_Defining_Identifier (Sloc (P), Nam);
17656
17657 Insert_Action (Obj_Def,
17658 Make_Subtype_Declaration (Sloc (P),
17659 Defining_Identifier => T,
17660 Subtype_Indication => Relocate_Node (Obj_Def)));
17661
17662 -- This subtype may need freezing, and this will not be done
17663 -- automatically if the object declaration is not in declarative
17664 -- part. Since this is an object declaration, the type cannot always
17665 -- be frozen here. Deferred constants do not freeze their type
17666 -- (which often enough will be private).
17667
17668 if Nkind (P) = N_Object_Declaration
17669 and then Constant_Present (P)
17670 and then No (Expression (P))
17671 then
17672 null;
17673
17674 -- Here we freeze the base type of object type to catch premature use
17675 -- of discriminated private type without a full view.
17676
17677 else
17678 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17679 end if;
17680
17681 -- Ada 2005 AI-406: the object definition in an object declaration
17682 -- can be an access definition.
17683
17684 elsif Def_Kind = N_Access_Definition then
17685 T := Access_Definition (Related_Nod, Obj_Def);
17686
17687 Set_Is_Local_Anonymous_Access
17688 (T,
17689 V => (Ada_Version < Ada_2012)
17690 or else (Nkind (P) /= N_Object_Declaration)
17691 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17692
17693 -- Otherwise, the object definition is just a subtype_mark
17694
17695 else
17696 T := Process_Subtype (Obj_Def, Related_Nod);
17697
17698 -- If expansion is disabled an object definition that is an aggregate
17699 -- will not get expanded and may lead to scoping problems in the back
17700 -- end, if the object is referenced in an inner scope. In that case
17701 -- create an itype reference for the object definition now. This
17702 -- may be redundant in some cases, but harmless.
17703
17704 if Is_Itype (T)
17705 and then Nkind (Related_Nod) = N_Object_Declaration
17706 and then ASIS_Mode
17707 then
17708 Build_Itype_Reference (T, Related_Nod);
17709 end if;
17710 end if;
17711
17712 return T;
17713 end Find_Type_Of_Object;
17714
17715 --------------------------------
17716 -- Find_Type_Of_Subtype_Indic --
17717 --------------------------------
17718
17719 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17720 Typ : Entity_Id;
17721
17722 begin
17723 -- Case of subtype mark with a constraint
17724
17725 if Nkind (S) = N_Subtype_Indication then
17726 Find_Type (Subtype_Mark (S));
17727 Typ := Entity (Subtype_Mark (S));
17728
17729 if not
17730 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17731 then
17732 Error_Msg_N
17733 ("incorrect constraint for this kind of type", Constraint (S));
17734 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17735 end if;
17736
17737 -- Otherwise we have a subtype mark without a constraint
17738
17739 elsif Error_Posted (S) then
17740 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17741 return Any_Type;
17742
17743 else
17744 Find_Type (S);
17745 Typ := Entity (S);
17746 end if;
17747
17748 -- Check No_Wide_Characters restriction
17749
17750 Check_Wide_Character_Restriction (Typ, S);
17751
17752 return Typ;
17753 end Find_Type_Of_Subtype_Indic;
17754
17755 -------------------------------------
17756 -- Floating_Point_Type_Declaration --
17757 -------------------------------------
17758
17759 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17760 Digs : constant Node_Id := Digits_Expression (Def);
17761 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17762 Digs_Val : Uint;
17763 Base_Typ : Entity_Id;
17764 Implicit_Base : Entity_Id;
17765 Bound : Node_Id;
17766
17767 function Can_Derive_From (E : Entity_Id) return Boolean;
17768 -- Find if given digits value, and possibly a specified range, allows
17769 -- derivation from specified type
17770
17771 function Find_Base_Type return Entity_Id;
17772 -- Find a predefined base type that Def can derive from, or generate
17773 -- an error and substitute Long_Long_Float if none exists.
17774
17775 ---------------------
17776 -- Can_Derive_From --
17777 ---------------------
17778
17779 function Can_Derive_From (E : Entity_Id) return Boolean is
17780 Spec : constant Entity_Id := Real_Range_Specification (Def);
17781
17782 begin
17783 -- Check specified "digits" constraint
17784
17785 if Digs_Val > Digits_Value (E) then
17786 return False;
17787 end if;
17788
17789 -- Check for matching range, if specified
17790
17791 if Present (Spec) then
17792 if Expr_Value_R (Type_Low_Bound (E)) >
17793 Expr_Value_R (Low_Bound (Spec))
17794 then
17795 return False;
17796 end if;
17797
17798 if Expr_Value_R (Type_High_Bound (E)) <
17799 Expr_Value_R (High_Bound (Spec))
17800 then
17801 return False;
17802 end if;
17803 end if;
17804
17805 return True;
17806 end Can_Derive_From;
17807
17808 --------------------
17809 -- Find_Base_Type --
17810 --------------------
17811
17812 function Find_Base_Type return Entity_Id is
17813 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17814
17815 begin
17816 -- Iterate over the predefined types in order, returning the first
17817 -- one that Def can derive from.
17818
17819 while Present (Choice) loop
17820 if Can_Derive_From (Node (Choice)) then
17821 return Node (Choice);
17822 end if;
17823
17824 Next_Elmt (Choice);
17825 end loop;
17826
17827 -- If we can't derive from any existing type, use Long_Long_Float
17828 -- and give appropriate message explaining the problem.
17829
17830 if Digs_Val > Max_Digs_Val then
17831 -- It might be the case that there is a type with the requested
17832 -- range, just not the combination of digits and range.
17833
17834 Error_Msg_N
17835 ("no predefined type has requested range and precision",
17836 Real_Range_Specification (Def));
17837
17838 else
17839 Error_Msg_N
17840 ("range too large for any predefined type",
17841 Real_Range_Specification (Def));
17842 end if;
17843
17844 return Standard_Long_Long_Float;
17845 end Find_Base_Type;
17846
17847 -- Start of processing for Floating_Point_Type_Declaration
17848
17849 begin
17850 Check_Restriction (No_Floating_Point, Def);
17851
17852 -- Create an implicit base type
17853
17854 Implicit_Base :=
17855 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17856
17857 -- Analyze and verify digits value
17858
17859 Analyze_And_Resolve (Digs, Any_Integer);
17860 Check_Digits_Expression (Digs);
17861 Digs_Val := Expr_Value (Digs);
17862
17863 -- Process possible range spec and find correct type to derive from
17864
17865 Process_Real_Range_Specification (Def);
17866
17867 -- Check that requested number of digits is not too high.
17868
17869 if Digs_Val > Max_Digs_Val then
17870
17871 -- The check for Max_Base_Digits may be somewhat expensive, as it
17872 -- requires reading System, so only do it when necessary.
17873
17874 declare
17875 Max_Base_Digits : constant Uint :=
17876 Expr_Value
17877 (Expression
17878 (Parent (RTE (RE_Max_Base_Digits))));
17879
17880 begin
17881 if Digs_Val > Max_Base_Digits then
17882 Error_Msg_Uint_1 := Max_Base_Digits;
17883 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17884
17885 elsif No (Real_Range_Specification (Def)) then
17886 Error_Msg_Uint_1 := Max_Digs_Val;
17887 Error_Msg_N ("types with more than ^ digits need range spec "
17888 & "(RM 3.5.7(6))", Digs);
17889 end if;
17890 end;
17891 end if;
17892
17893 -- Find a suitable type to derive from or complain and use a substitute
17894
17895 Base_Typ := Find_Base_Type;
17896
17897 -- If there are bounds given in the declaration use them as the bounds
17898 -- of the type, otherwise use the bounds of the predefined base type
17899 -- that was chosen based on the Digits value.
17900
17901 if Present (Real_Range_Specification (Def)) then
17902 Set_Scalar_Range (T, Real_Range_Specification (Def));
17903 Set_Is_Constrained (T);
17904
17905 -- The bounds of this range must be converted to machine numbers
17906 -- in accordance with RM 4.9(38).
17907
17908 Bound := Type_Low_Bound (T);
17909
17910 if Nkind (Bound) = N_Real_Literal then
17911 Set_Realval
17912 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17913 Set_Is_Machine_Number (Bound);
17914 end if;
17915
17916 Bound := Type_High_Bound (T);
17917
17918 if Nkind (Bound) = N_Real_Literal then
17919 Set_Realval
17920 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17921 Set_Is_Machine_Number (Bound);
17922 end if;
17923
17924 else
17925 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17926 end if;
17927
17928 -- Complete definition of implicit base and declared first subtype. The
17929 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17930 -- are not clobbered when the floating point type acts as a full view of
17931 -- a private type.
17932
17933 Set_Etype (Implicit_Base, Base_Typ);
17934 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17935 Set_Size_Info (Implicit_Base, Base_Typ);
17936 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17937 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17938 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17939 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17940
17941 Set_Ekind (T, E_Floating_Point_Subtype);
17942 Set_Etype (T, Implicit_Base);
17943 Set_Size_Info (T, Implicit_Base);
17944 Set_RM_Size (T, RM_Size (Implicit_Base));
17945 Inherit_Rep_Item_Chain (T, Implicit_Base);
17946 Set_Digits_Value (T, Digs_Val);
17947 end Floating_Point_Type_Declaration;
17948
17949 ----------------------------
17950 -- Get_Discriminant_Value --
17951 ----------------------------
17952
17953 -- This is the situation:
17954
17955 -- There is a non-derived type
17956
17957 -- type T0 (Dx, Dy, Dz...)
17958
17959 -- There are zero or more levels of derivation, with each derivation
17960 -- either purely inheriting the discriminants, or defining its own.
17961
17962 -- type Ti is new Ti-1
17963 -- or
17964 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17965 -- or
17966 -- subtype Ti is ...
17967
17968 -- The subtype issue is avoided by the use of Original_Record_Component,
17969 -- and the fact that derived subtypes also derive the constraints.
17970
17971 -- This chain leads back from
17972
17973 -- Typ_For_Constraint
17974
17975 -- Typ_For_Constraint has discriminants, and the value for each
17976 -- discriminant is given by its corresponding Elmt of Constraints.
17977
17978 -- Discriminant is some discriminant in this hierarchy
17979
17980 -- We need to return its value
17981
17982 -- We do this by recursively searching each level, and looking for
17983 -- Discriminant. Once we get to the bottom, we start backing up
17984 -- returning the value for it which may in turn be a discriminant
17985 -- further up, so on the backup we continue the substitution.
17986
17987 function Get_Discriminant_Value
17988 (Discriminant : Entity_Id;
17989 Typ_For_Constraint : Entity_Id;
17990 Constraint : Elist_Id) return Node_Id
17991 is
17992 function Root_Corresponding_Discriminant
17993 (Discr : Entity_Id) return Entity_Id;
17994 -- Given a discriminant, traverse the chain of inherited discriminants
17995 -- and return the topmost discriminant.
17996
17997 function Search_Derivation_Levels
17998 (Ti : Entity_Id;
17999 Discrim_Values : Elist_Id;
18000 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
18001 -- This is the routine that performs the recursive search of levels
18002 -- as described above.
18003
18004 -------------------------------------
18005 -- Root_Corresponding_Discriminant --
18006 -------------------------------------
18007
18008 function Root_Corresponding_Discriminant
18009 (Discr : Entity_Id) return Entity_Id
18010 is
18011 D : Entity_Id;
18012
18013 begin
18014 D := Discr;
18015 while Present (Corresponding_Discriminant (D)) loop
18016 D := Corresponding_Discriminant (D);
18017 end loop;
18018
18019 return D;
18020 end Root_Corresponding_Discriminant;
18021
18022 ------------------------------
18023 -- Search_Derivation_Levels --
18024 ------------------------------
18025
18026 function Search_Derivation_Levels
18027 (Ti : Entity_Id;
18028 Discrim_Values : Elist_Id;
18029 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18030 is
18031 Assoc : Elmt_Id;
18032 Disc : Entity_Id;
18033 Result : Node_Or_Entity_Id;
18034 Result_Entity : Node_Id;
18035
18036 begin
18037 -- If inappropriate type, return Error, this happens only in
18038 -- cascaded error situations, and we want to avoid a blow up.
18039
18040 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18041 return Error;
18042 end if;
18043
18044 -- Look deeper if possible. Use Stored_Constraints only for
18045 -- untagged types. For tagged types use the given constraint.
18046 -- This asymmetry needs explanation???
18047
18048 if not Stored_Discrim_Values
18049 and then Present (Stored_Constraint (Ti))
18050 and then not Is_Tagged_Type (Ti)
18051 then
18052 Result :=
18053 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18054
18055 else
18056 declare
18057 Td : Entity_Id := Etype (Ti);
18058
18059 begin
18060 -- If the parent type is private, the full view may include
18061 -- renamed discriminants, and it is those stored values that
18062 -- may be needed (the partial view never has more information
18063 -- than the full view).
18064
18065 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18066 Td := Full_View (Td);
18067 end if;
18068
18069 if Td = Ti then
18070 Result := Discriminant;
18071
18072 else
18073 if Present (Stored_Constraint (Ti)) then
18074 Result :=
18075 Search_Derivation_Levels
18076 (Td, Stored_Constraint (Ti), True);
18077 else
18078 Result :=
18079 Search_Derivation_Levels
18080 (Td, Discrim_Values, Stored_Discrim_Values);
18081 end if;
18082 end if;
18083 end;
18084 end if;
18085
18086 -- Extra underlying places to search, if not found above. For
18087 -- concurrent types, the relevant discriminant appears in the
18088 -- corresponding record. For a type derived from a private type
18089 -- without discriminant, the full view inherits the discriminants
18090 -- of the full view of the parent.
18091
18092 if Result = Discriminant then
18093 if Is_Concurrent_Type (Ti)
18094 and then Present (Corresponding_Record_Type (Ti))
18095 then
18096 Result :=
18097 Search_Derivation_Levels (
18098 Corresponding_Record_Type (Ti),
18099 Discrim_Values,
18100 Stored_Discrim_Values);
18101
18102 elsif Is_Private_Type (Ti)
18103 and then not Has_Discriminants (Ti)
18104 and then Present (Full_View (Ti))
18105 and then Etype (Full_View (Ti)) /= Ti
18106 then
18107 Result :=
18108 Search_Derivation_Levels (
18109 Full_View (Ti),
18110 Discrim_Values,
18111 Stored_Discrim_Values);
18112 end if;
18113 end if;
18114
18115 -- If Result is not a (reference to a) discriminant, return it,
18116 -- otherwise set Result_Entity to the discriminant.
18117
18118 if Nkind (Result) = N_Defining_Identifier then
18119 pragma Assert (Result = Discriminant);
18120 Result_Entity := Result;
18121
18122 else
18123 if not Denotes_Discriminant (Result) then
18124 return Result;
18125 end if;
18126
18127 Result_Entity := Entity (Result);
18128 end if;
18129
18130 -- See if this level of derivation actually has discriminants because
18131 -- tagged derivations can add them, hence the lower levels need not
18132 -- have any.
18133
18134 if not Has_Discriminants (Ti) then
18135 return Result;
18136 end if;
18137
18138 -- Scan Ti's discriminants for Result_Entity, and return its
18139 -- corresponding value, if any.
18140
18141 Result_Entity := Original_Record_Component (Result_Entity);
18142
18143 Assoc := First_Elmt (Discrim_Values);
18144
18145 if Stored_Discrim_Values then
18146 Disc := First_Stored_Discriminant (Ti);
18147 else
18148 Disc := First_Discriminant (Ti);
18149 end if;
18150
18151 while Present (Disc) loop
18152
18153 -- If no further associations return the discriminant, value will
18154 -- be found on the second pass.
18155
18156 if No (Assoc) then
18157 return Result;
18158 end if;
18159
18160 if Original_Record_Component (Disc) = Result_Entity then
18161 return Node (Assoc);
18162 end if;
18163
18164 Next_Elmt (Assoc);
18165
18166 if Stored_Discrim_Values then
18167 Next_Stored_Discriminant (Disc);
18168 else
18169 Next_Discriminant (Disc);
18170 end if;
18171 end loop;
18172
18173 -- Could not find it
18174
18175 return Result;
18176 end Search_Derivation_Levels;
18177
18178 -- Local Variables
18179
18180 Result : Node_Or_Entity_Id;
18181
18182 -- Start of processing for Get_Discriminant_Value
18183
18184 begin
18185 -- ??? This routine is a gigantic mess and will be deleted. For the
18186 -- time being just test for the trivial case before calling recurse.
18187
18188 -- We are now celebrating the 20th anniversary of this comment!
18189
18190 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18191 declare
18192 D : Entity_Id;
18193 E : Elmt_Id;
18194
18195 begin
18196 D := First_Discriminant (Typ_For_Constraint);
18197 E := First_Elmt (Constraint);
18198 while Present (D) loop
18199 if Chars (D) = Chars (Discriminant) then
18200 return Node (E);
18201 end if;
18202
18203 Next_Discriminant (D);
18204 Next_Elmt (E);
18205 end loop;
18206 end;
18207 end if;
18208
18209 Result := Search_Derivation_Levels
18210 (Typ_For_Constraint, Constraint, False);
18211
18212 -- ??? hack to disappear when this routine is gone
18213
18214 if Nkind (Result) = N_Defining_Identifier then
18215 declare
18216 D : Entity_Id;
18217 E : Elmt_Id;
18218
18219 begin
18220 D := First_Discriminant (Typ_For_Constraint);
18221 E := First_Elmt (Constraint);
18222 while Present (D) loop
18223 if Root_Corresponding_Discriminant (D) = Discriminant then
18224 return Node (E);
18225 end if;
18226
18227 Next_Discriminant (D);
18228 Next_Elmt (E);
18229 end loop;
18230 end;
18231 end if;
18232
18233 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18234 return Result;
18235 end Get_Discriminant_Value;
18236
18237 --------------------------
18238 -- Has_Range_Constraint --
18239 --------------------------
18240
18241 function Has_Range_Constraint (N : Node_Id) return Boolean is
18242 C : constant Node_Id := Constraint (N);
18243
18244 begin
18245 if Nkind (C) = N_Range_Constraint then
18246 return True;
18247
18248 elsif Nkind (C) = N_Digits_Constraint then
18249 return
18250 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18251 or else Present (Range_Constraint (C));
18252
18253 elsif Nkind (C) = N_Delta_Constraint then
18254 return Present (Range_Constraint (C));
18255
18256 else
18257 return False;
18258 end if;
18259 end Has_Range_Constraint;
18260
18261 ------------------------
18262 -- Inherit_Components --
18263 ------------------------
18264
18265 function Inherit_Components
18266 (N : Node_Id;
18267 Parent_Base : Entity_Id;
18268 Derived_Base : Entity_Id;
18269 Is_Tagged : Boolean;
18270 Inherit_Discr : Boolean;
18271 Discs : Elist_Id) return Elist_Id
18272 is
18273 Assoc_List : constant Elist_Id := New_Elmt_List;
18274
18275 procedure Inherit_Component
18276 (Old_C : Entity_Id;
18277 Plain_Discrim : Boolean := False;
18278 Stored_Discrim : Boolean := False);
18279 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18280 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18281 -- True, Old_C is a stored discriminant. If they are both false then
18282 -- Old_C is a regular component.
18283
18284 -----------------------
18285 -- Inherit_Component --
18286 -----------------------
18287
18288 procedure Inherit_Component
18289 (Old_C : Entity_Id;
18290 Plain_Discrim : Boolean := False;
18291 Stored_Discrim : Boolean := False)
18292 is
18293 procedure Set_Anonymous_Type (Id : Entity_Id);
18294 -- Id denotes the entity of an access discriminant or anonymous
18295 -- access component. Set the type of Id to either the same type of
18296 -- Old_C or create a new one depending on whether the parent and
18297 -- the child types are in the same scope.
18298
18299 ------------------------
18300 -- Set_Anonymous_Type --
18301 ------------------------
18302
18303 procedure Set_Anonymous_Type (Id : Entity_Id) is
18304 Old_Typ : constant Entity_Id := Etype (Old_C);
18305
18306 begin
18307 if Scope (Parent_Base) = Scope (Derived_Base) then
18308 Set_Etype (Id, Old_Typ);
18309
18310 -- The parent and the derived type are in two different scopes.
18311 -- Reuse the type of the original discriminant / component by
18312 -- copying it in order to preserve all attributes.
18313
18314 else
18315 declare
18316 Typ : constant Entity_Id := New_Copy (Old_Typ);
18317
18318 begin
18319 Set_Etype (Id, Typ);
18320
18321 -- Since we do not generate component declarations for
18322 -- inherited components, associate the itype with the
18323 -- derived type.
18324
18325 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18326 Set_Scope (Typ, Derived_Base);
18327 end;
18328 end if;
18329 end Set_Anonymous_Type;
18330
18331 -- Local variables and constants
18332
18333 New_C : constant Entity_Id := New_Copy (Old_C);
18334
18335 Corr_Discrim : Entity_Id;
18336 Discrim : Entity_Id;
18337
18338 -- Start of processing for Inherit_Component
18339
18340 begin
18341 pragma Assert (not Is_Tagged or not Stored_Discrim);
18342
18343 Set_Parent (New_C, Parent (Old_C));
18344
18345 -- Regular discriminants and components must be inserted in the scope
18346 -- of the Derived_Base. Do it here.
18347
18348 if not Stored_Discrim then
18349 Enter_Name (New_C);
18350 end if;
18351
18352 -- For tagged types the Original_Record_Component must point to
18353 -- whatever this field was pointing to in the parent type. This has
18354 -- already been achieved by the call to New_Copy above.
18355
18356 if not Is_Tagged then
18357 Set_Original_Record_Component (New_C, New_C);
18358 Set_Corresponding_Record_Component (New_C, Old_C);
18359 end if;
18360
18361 -- Set the proper type of an access discriminant
18362
18363 if Ekind (New_C) = E_Discriminant
18364 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18365 then
18366 Set_Anonymous_Type (New_C);
18367 end if;
18368
18369 -- If we have inherited a component then see if its Etype contains
18370 -- references to Parent_Base discriminants. In this case, replace
18371 -- these references with the constraints given in Discs. We do not
18372 -- do this for the partial view of private types because this is
18373 -- not needed (only the components of the full view will be used
18374 -- for code generation) and cause problem. We also avoid this
18375 -- transformation in some error situations.
18376
18377 if Ekind (New_C) = E_Component then
18378
18379 -- Set the proper type of an anonymous access component
18380
18381 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18382 Set_Anonymous_Type (New_C);
18383
18384 elsif (Is_Private_Type (Derived_Base)
18385 and then not Is_Generic_Type (Derived_Base))
18386 or else (Is_Empty_Elmt_List (Discs)
18387 and then not Expander_Active)
18388 then
18389 Set_Etype (New_C, Etype (Old_C));
18390
18391 else
18392 -- The current component introduces a circularity of the
18393 -- following kind:
18394
18395 -- limited with Pack_2;
18396 -- package Pack_1 is
18397 -- type T_1 is tagged record
18398 -- Comp : access Pack_2.T_2;
18399 -- ...
18400 -- end record;
18401 -- end Pack_1;
18402
18403 -- with Pack_1;
18404 -- package Pack_2 is
18405 -- type T_2 is new Pack_1.T_1 with ...;
18406 -- end Pack_2;
18407
18408 Set_Etype
18409 (New_C,
18410 Constrain_Component_Type
18411 (Old_C, Derived_Base, N, Parent_Base, Discs));
18412 end if;
18413 end if;
18414
18415 -- In derived tagged types it is illegal to reference a non
18416 -- discriminant component in the parent type. To catch this, mark
18417 -- these components with an Ekind of E_Void. This will be reset in
18418 -- Record_Type_Definition after processing the record extension of
18419 -- the derived type.
18420
18421 -- If the declaration is a private extension, there is no further
18422 -- record extension to process, and the components retain their
18423 -- current kind, because they are visible at this point.
18424
18425 if Is_Tagged and then Ekind (New_C) = E_Component
18426 and then Nkind (N) /= N_Private_Extension_Declaration
18427 then
18428 Set_Ekind (New_C, E_Void);
18429 end if;
18430
18431 if Plain_Discrim then
18432 Set_Corresponding_Discriminant (New_C, Old_C);
18433 Build_Discriminal (New_C);
18434
18435 -- If we are explicitly inheriting a stored discriminant it will be
18436 -- completely hidden.
18437
18438 elsif Stored_Discrim then
18439 Set_Corresponding_Discriminant (New_C, Empty);
18440 Set_Discriminal (New_C, Empty);
18441 Set_Is_Completely_Hidden (New_C);
18442
18443 -- Set the Original_Record_Component of each discriminant in the
18444 -- derived base to point to the corresponding stored that we just
18445 -- created.
18446
18447 Discrim := First_Discriminant (Derived_Base);
18448 while Present (Discrim) loop
18449 Corr_Discrim := Corresponding_Discriminant (Discrim);
18450
18451 -- Corr_Discrim could be missing in an error situation
18452
18453 if Present (Corr_Discrim)
18454 and then Original_Record_Component (Corr_Discrim) = Old_C
18455 then
18456 Set_Original_Record_Component (Discrim, New_C);
18457 Set_Corresponding_Record_Component (Discrim, Empty);
18458 end if;
18459
18460 Next_Discriminant (Discrim);
18461 end loop;
18462
18463 Append_Entity (New_C, Derived_Base);
18464 end if;
18465
18466 if not Is_Tagged then
18467 Append_Elmt (Old_C, Assoc_List);
18468 Append_Elmt (New_C, Assoc_List);
18469 end if;
18470 end Inherit_Component;
18471
18472 -- Variables local to Inherit_Component
18473
18474 Loc : constant Source_Ptr := Sloc (N);
18475
18476 Parent_Discrim : Entity_Id;
18477 Stored_Discrim : Entity_Id;
18478 D : Entity_Id;
18479 Component : Entity_Id;
18480
18481 -- Start of processing for Inherit_Components
18482
18483 begin
18484 if not Is_Tagged then
18485 Append_Elmt (Parent_Base, Assoc_List);
18486 Append_Elmt (Derived_Base, Assoc_List);
18487 end if;
18488
18489 -- Inherit parent discriminants if needed
18490
18491 if Inherit_Discr then
18492 Parent_Discrim := First_Discriminant (Parent_Base);
18493 while Present (Parent_Discrim) loop
18494 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18495 Next_Discriminant (Parent_Discrim);
18496 end loop;
18497 end if;
18498
18499 -- Create explicit stored discrims for untagged types when necessary
18500
18501 if not Has_Unknown_Discriminants (Derived_Base)
18502 and then Has_Discriminants (Parent_Base)
18503 and then not Is_Tagged
18504 and then
18505 (not Inherit_Discr
18506 or else First_Discriminant (Parent_Base) /=
18507 First_Stored_Discriminant (Parent_Base))
18508 then
18509 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18510 while Present (Stored_Discrim) loop
18511 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18512 Next_Stored_Discriminant (Stored_Discrim);
18513 end loop;
18514 end if;
18515
18516 -- See if we can apply the second transformation for derived types, as
18517 -- explained in point 6. in the comments above Build_Derived_Record_Type
18518 -- This is achieved by appending Derived_Base discriminants into Discs,
18519 -- which has the side effect of returning a non empty Discs list to the
18520 -- caller of Inherit_Components, which is what we want. This must be
18521 -- done for private derived types if there are explicit stored
18522 -- discriminants, to ensure that we can retrieve the values of the
18523 -- constraints provided in the ancestors.
18524
18525 if Inherit_Discr
18526 and then Is_Empty_Elmt_List (Discs)
18527 and then Present (First_Discriminant (Derived_Base))
18528 and then
18529 (not Is_Private_Type (Derived_Base)
18530 or else Is_Completely_Hidden
18531 (First_Stored_Discriminant (Derived_Base))
18532 or else Is_Generic_Type (Derived_Base))
18533 then
18534 D := First_Discriminant (Derived_Base);
18535 while Present (D) loop
18536 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18537 Next_Discriminant (D);
18538 end loop;
18539 end if;
18540
18541 -- Finally, inherit non-discriminant components unless they are not
18542 -- visible because defined or inherited from the full view of the
18543 -- parent. Don't inherit the _parent field of the parent type.
18544
18545 Component := First_Entity (Parent_Base);
18546 while Present (Component) loop
18547
18548 -- Ada 2005 (AI-251): Do not inherit components associated with
18549 -- secondary tags of the parent.
18550
18551 if Ekind (Component) = E_Component
18552 and then Present (Related_Type (Component))
18553 then
18554 null;
18555
18556 elsif Ekind (Component) /= E_Component
18557 or else Chars (Component) = Name_uParent
18558 then
18559 null;
18560
18561 -- If the derived type is within the parent type's declarative
18562 -- region, then the components can still be inherited even though
18563 -- they aren't visible at this point. This can occur for cases
18564 -- such as within public child units where the components must
18565 -- become visible upon entering the child unit's private part.
18566
18567 elsif not Is_Visible_Component (Component)
18568 and then not In_Open_Scopes (Scope (Parent_Base))
18569 then
18570 null;
18571
18572 elsif Ekind_In (Derived_Base, E_Private_Type,
18573 E_Limited_Private_Type)
18574 then
18575 null;
18576
18577 else
18578 Inherit_Component (Component);
18579 end if;
18580
18581 Next_Entity (Component);
18582 end loop;
18583
18584 -- For tagged derived types, inherited discriminants cannot be used in
18585 -- component declarations of the record extension part. To achieve this
18586 -- we mark the inherited discriminants as not visible.
18587
18588 if Is_Tagged and then Inherit_Discr then
18589 D := First_Discriminant (Derived_Base);
18590 while Present (D) loop
18591 Set_Is_Immediately_Visible (D, False);
18592 Next_Discriminant (D);
18593 end loop;
18594 end if;
18595
18596 return Assoc_List;
18597 end Inherit_Components;
18598
18599 -----------------------------
18600 -- Inherit_Predicate_Flags --
18601 -----------------------------
18602
18603 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18604 begin
18605 if Present (Predicate_Function (Subt)) then
18606 return;
18607 end if;
18608
18609 Set_Has_Predicates (Subt, Has_Predicates (Par));
18610 Set_Has_Static_Predicate_Aspect
18611 (Subt, Has_Static_Predicate_Aspect (Par));
18612 Set_Has_Dynamic_Predicate_Aspect
18613 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18614
18615 -- A named subtype does not inherit the predicate function of its
18616 -- parent but an itype declared for a loop index needs the discrete
18617 -- predicate information of its parent to execute the loop properly.
18618
18619 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18620 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18621
18622 if Has_Static_Predicate (Par) then
18623 Set_Static_Discrete_Predicate
18624 (Subt, Static_Discrete_Predicate (Par));
18625 end if;
18626 end if;
18627 end Inherit_Predicate_Flags;
18628
18629 ----------------------
18630 -- Is_EVF_Procedure --
18631 ----------------------
18632
18633 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18634 Formal : Entity_Id;
18635
18636 begin
18637 -- Examine the formals of an Extensions_Visible False procedure looking
18638 -- for a controlling OUT parameter.
18639
18640 if Ekind (Subp) = E_Procedure
18641 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18642 then
18643 Formal := First_Formal (Subp);
18644 while Present (Formal) loop
18645 if Ekind (Formal) = E_Out_Parameter
18646 and then Is_Controlling_Formal (Formal)
18647 then
18648 return True;
18649 end if;
18650
18651 Next_Formal (Formal);
18652 end loop;
18653 end if;
18654
18655 return False;
18656 end Is_EVF_Procedure;
18657
18658 -----------------------
18659 -- Is_Null_Extension --
18660 -----------------------
18661
18662 function Is_Null_Extension (T : Entity_Id) return Boolean is
18663 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18664 Comp_List : Node_Id;
18665 Comp : Node_Id;
18666
18667 begin
18668 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18669 or else not Is_Tagged_Type (T)
18670 or else Nkind (Type_Definition (Type_Decl)) /=
18671 N_Derived_Type_Definition
18672 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18673 then
18674 return False;
18675 end if;
18676
18677 Comp_List :=
18678 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18679
18680 if Present (Discriminant_Specifications (Type_Decl)) then
18681 return False;
18682
18683 elsif Present (Comp_List)
18684 and then Is_Non_Empty_List (Component_Items (Comp_List))
18685 then
18686 Comp := First (Component_Items (Comp_List));
18687
18688 -- Only user-defined components are relevant. The component list
18689 -- may also contain a parent component and internal components
18690 -- corresponding to secondary tags, but these do not determine
18691 -- whether this is a null extension.
18692
18693 while Present (Comp) loop
18694 if Comes_From_Source (Comp) then
18695 return False;
18696 end if;
18697
18698 Next (Comp);
18699 end loop;
18700
18701 return True;
18702
18703 else
18704 return True;
18705 end if;
18706 end Is_Null_Extension;
18707
18708 ------------------------------
18709 -- Is_Valid_Constraint_Kind --
18710 ------------------------------
18711
18712 function Is_Valid_Constraint_Kind
18713 (T_Kind : Type_Kind;
18714 Constraint_Kind : Node_Kind) return Boolean
18715 is
18716 begin
18717 case T_Kind is
18718 when Enumeration_Kind
18719 | Integer_Kind
18720 =>
18721 return Constraint_Kind = N_Range_Constraint;
18722
18723 when Decimal_Fixed_Point_Kind =>
18724 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18725 N_Range_Constraint);
18726
18727 when Ordinary_Fixed_Point_Kind =>
18728 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18729 N_Range_Constraint);
18730
18731 when Float_Kind =>
18732 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18733 N_Range_Constraint);
18734
18735 when Access_Kind
18736 | Array_Kind
18737 | Class_Wide_Kind
18738 | Concurrent_Kind
18739 | Private_Kind
18740 | E_Incomplete_Type
18741 | E_Record_Subtype
18742 | E_Record_Type
18743 =>
18744 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18745
18746 when others =>
18747 return True; -- Error will be detected later
18748 end case;
18749 end Is_Valid_Constraint_Kind;
18750
18751 --------------------------
18752 -- Is_Visible_Component --
18753 --------------------------
18754
18755 function Is_Visible_Component
18756 (C : Entity_Id;
18757 N : Node_Id := Empty) return Boolean
18758 is
18759 Original_Comp : Entity_Id := Empty;
18760 Original_Type : Entity_Id;
18761 Type_Scope : Entity_Id;
18762
18763 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18764 -- Check whether parent type of inherited component is declared locally,
18765 -- possibly within a nested package or instance. The current scope is
18766 -- the derived record itself.
18767
18768 -------------------
18769 -- Is_Local_Type --
18770 -------------------
18771
18772 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18773 Scop : Entity_Id;
18774
18775 begin
18776 Scop := Scope (Typ);
18777 while Present (Scop)
18778 and then Scop /= Standard_Standard
18779 loop
18780 if Scop = Scope (Current_Scope) then
18781 return True;
18782 end if;
18783
18784 Scop := Scope (Scop);
18785 end loop;
18786
18787 return False;
18788 end Is_Local_Type;
18789
18790 -- Start of processing for Is_Visible_Component
18791
18792 begin
18793 if Ekind_In (C, E_Component, E_Discriminant) then
18794 Original_Comp := Original_Record_Component (C);
18795 end if;
18796
18797 if No (Original_Comp) then
18798
18799 -- Premature usage, or previous error
18800
18801 return False;
18802
18803 else
18804 Original_Type := Scope (Original_Comp);
18805 Type_Scope := Scope (Base_Type (Scope (C)));
18806 end if;
18807
18808 -- This test only concerns tagged types
18809
18810 if not Is_Tagged_Type (Original_Type) then
18811
18812 -- Check if this is a renamed discriminant (hidden either by the
18813 -- derived type or by some ancestor), unless we are analyzing code
18814 -- generated by the expander since it may reference such components
18815 -- (for example see the expansion of Deep_Adjust).
18816
18817 if Ekind (C) = E_Discriminant and then Present (N) then
18818 return
18819 not Comes_From_Source (N)
18820 or else not Is_Completely_Hidden (C);
18821 else
18822 return True;
18823 end if;
18824
18825 -- If it is _Parent or _Tag, there is no visibility issue
18826
18827 elsif not Comes_From_Source (Original_Comp) then
18828 return True;
18829
18830 -- Discriminants are visible unless the (private) type has unknown
18831 -- discriminants. If the discriminant reference is inserted for a
18832 -- discriminant check on a full view it is also visible.
18833
18834 elsif Ekind (Original_Comp) = E_Discriminant
18835 and then
18836 (not Has_Unknown_Discriminants (Original_Type)
18837 or else (Present (N)
18838 and then Nkind (N) = N_Selected_Component
18839 and then Nkind (Prefix (N)) = N_Type_Conversion
18840 and then not Comes_From_Source (Prefix (N))))
18841 then
18842 return True;
18843
18844 -- In the body of an instantiation, check the visibility of a component
18845 -- in case it has a homograph that is a primitive operation of a private
18846 -- type which was not visible in the generic unit.
18847
18848 -- Should Is_Prefixed_Call be propagated from template to instance???
18849
18850 elsif In_Instance_Body then
18851 if not Is_Tagged_Type (Original_Type)
18852 or else not Is_Private_Type (Original_Type)
18853 then
18854 return True;
18855
18856 else
18857 declare
18858 Subp_Elmt : Elmt_Id;
18859
18860 begin
18861 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18862 while Present (Subp_Elmt) loop
18863
18864 -- The component is hidden by a primitive operation
18865
18866 if Chars (Node (Subp_Elmt)) = Chars (C) then
18867 return False;
18868 end if;
18869
18870 Next_Elmt (Subp_Elmt);
18871 end loop;
18872
18873 return True;
18874 end;
18875 end if;
18876
18877 -- If the component has been declared in an ancestor which is currently
18878 -- a private type, then it is not visible. The same applies if the
18879 -- component's containing type is not in an open scope and the original
18880 -- component's enclosing type is a visible full view of a private type
18881 -- (which can occur in cases where an attempt is being made to reference
18882 -- a component in a sibling package that is inherited from a visible
18883 -- component of a type in an ancestor package; the component in the
18884 -- sibling package should not be visible even though the component it
18885 -- inherited from is visible). This does not apply however in the case
18886 -- where the scope of the type is a private child unit, or when the
18887 -- parent comes from a local package in which the ancestor is currently
18888 -- visible. The latter suppression of visibility is needed for cases
18889 -- that are tested in B730006.
18890
18891 elsif Is_Private_Type (Original_Type)
18892 or else
18893 (not Is_Private_Descendant (Type_Scope)
18894 and then not In_Open_Scopes (Type_Scope)
18895 and then Has_Private_Declaration (Original_Type))
18896 then
18897 -- If the type derives from an entity in a formal package, there
18898 -- are no additional visible components.
18899
18900 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18901 N_Formal_Package_Declaration
18902 then
18903 return False;
18904
18905 -- if we are not in the private part of the current package, there
18906 -- are no additional visible components.
18907
18908 elsif Ekind (Scope (Current_Scope)) = E_Package
18909 and then not In_Private_Part (Scope (Current_Scope))
18910 then
18911 return False;
18912 else
18913 return
18914 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18915 and then In_Open_Scopes (Scope (Original_Type))
18916 and then Is_Local_Type (Type_Scope);
18917 end if;
18918
18919 -- There is another weird way in which a component may be invisible when
18920 -- the private and the full view are not derived from the same ancestor.
18921 -- Here is an example :
18922
18923 -- type A1 is tagged record F1 : integer; end record;
18924 -- type A2 is new A1 with record F2 : integer; end record;
18925 -- type T is new A1 with private;
18926 -- private
18927 -- type T is new A2 with null record;
18928
18929 -- In this case, the full view of T inherits F1 and F2 but the private
18930 -- view inherits only F1
18931
18932 else
18933 declare
18934 Ancestor : Entity_Id := Scope (C);
18935
18936 begin
18937 loop
18938 if Ancestor = Original_Type then
18939 return True;
18940
18941 -- The ancestor may have a partial view of the original type,
18942 -- but if the full view is in scope, as in a child body, the
18943 -- component is visible.
18944
18945 elsif In_Private_Part (Scope (Original_Type))
18946 and then Full_View (Ancestor) = Original_Type
18947 then
18948 return True;
18949
18950 elsif Ancestor = Etype (Ancestor) then
18951
18952 -- No further ancestors to examine
18953
18954 return False;
18955 end if;
18956
18957 Ancestor := Etype (Ancestor);
18958 end loop;
18959 end;
18960 end if;
18961 end Is_Visible_Component;
18962
18963 --------------------------
18964 -- Make_Class_Wide_Type --
18965 --------------------------
18966
18967 procedure Make_Class_Wide_Type (T : Entity_Id) is
18968 CW_Type : Entity_Id;
18969 CW_Name : Name_Id;
18970 Next_E : Entity_Id;
18971 Prev_E : Entity_Id;
18972
18973 begin
18974 if Present (Class_Wide_Type (T)) then
18975
18976 -- The class-wide type is a partially decorated entity created for a
18977 -- unanalyzed tagged type referenced through a limited with clause.
18978 -- When the tagged type is analyzed, its class-wide type needs to be
18979 -- redecorated. Note that we reuse the entity created by Decorate_
18980 -- Tagged_Type in order to preserve all links.
18981
18982 if Materialize_Entity (Class_Wide_Type (T)) then
18983 CW_Type := Class_Wide_Type (T);
18984 Set_Materialize_Entity (CW_Type, False);
18985
18986 -- The class wide type can have been defined by the partial view, in
18987 -- which case everything is already done.
18988
18989 else
18990 return;
18991 end if;
18992
18993 -- Default case, we need to create a new class-wide type
18994
18995 else
18996 CW_Type :=
18997 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18998 end if;
18999
19000 -- Inherit root type characteristics
19001
19002 CW_Name := Chars (CW_Type);
19003 Next_E := Next_Entity (CW_Type);
19004 Prev_E := Prev_Entity (CW_Type);
19005 Copy_Node (T, CW_Type);
19006 Set_Comes_From_Source (CW_Type, False);
19007 Set_Chars (CW_Type, CW_Name);
19008 Set_Parent (CW_Type, Parent (T));
19009 Set_Prev_Entity (CW_Type, Prev_E);
19010 Set_Next_Entity (CW_Type, Next_E);
19011
19012 -- Ensure we have a new freeze node for the class-wide type. The partial
19013 -- view may have freeze action of its own, requiring a proper freeze
19014 -- node, and the same freeze node cannot be shared between the two
19015 -- types.
19016
19017 Set_Has_Delayed_Freeze (CW_Type);
19018 Set_Freeze_Node (CW_Type, Empty);
19019
19020 -- Customize the class-wide type: It has no prim. op., it cannot be
19021 -- abstract, its Etype points back to the specific root type, and it
19022 -- cannot have any invariants.
19023
19024 Set_Ekind (CW_Type, E_Class_Wide_Type);
19025 Set_Is_Tagged_Type (CW_Type, True);
19026 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19027 Set_Is_Abstract_Type (CW_Type, False);
19028 Set_Is_Constrained (CW_Type, False);
19029 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19030 Set_Default_SSO (CW_Type);
19031 Set_Has_Inheritable_Invariants (CW_Type, False);
19032 Set_Has_Inherited_Invariants (CW_Type, False);
19033 Set_Has_Own_Invariants (CW_Type, False);
19034
19035 if Ekind (T) = E_Class_Wide_Subtype then
19036 Set_Etype (CW_Type, Etype (Base_Type (T)));
19037 else
19038 Set_Etype (CW_Type, T);
19039 end if;
19040
19041 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19042
19043 -- If this is the class_wide type of a constrained subtype, it does
19044 -- not have discriminants.
19045
19046 Set_Has_Discriminants (CW_Type,
19047 Has_Discriminants (T) and then not Is_Constrained (T));
19048
19049 Set_Has_Unknown_Discriminants (CW_Type, True);
19050 Set_Class_Wide_Type (T, CW_Type);
19051 Set_Equivalent_Type (CW_Type, Empty);
19052
19053 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19054
19055 Set_Class_Wide_Type (CW_Type, CW_Type);
19056 end Make_Class_Wide_Type;
19057
19058 ----------------
19059 -- Make_Index --
19060 ----------------
19061
19062 procedure Make_Index
19063 (N : Node_Id;
19064 Related_Nod : Node_Id;
19065 Related_Id : Entity_Id := Empty;
19066 Suffix_Index : Nat := 1;
19067 In_Iter_Schm : Boolean := False)
19068 is
19069 R : Node_Id;
19070 T : Entity_Id;
19071 Def_Id : Entity_Id := Empty;
19072 Found : Boolean := False;
19073
19074 begin
19075 -- For a discrete range used in a constrained array definition and
19076 -- defined by a range, an implicit conversion to the predefined type
19077 -- INTEGER is assumed if each bound is either a numeric literal, a named
19078 -- number, or an attribute, and the type of both bounds (prior to the
19079 -- implicit conversion) is the type universal_integer. Otherwise, both
19080 -- bounds must be of the same discrete type, other than universal
19081 -- integer; this type must be determinable independently of the
19082 -- context, but using the fact that the type must be discrete and that
19083 -- both bounds must have the same type.
19084
19085 -- Character literals also have a universal type in the absence of
19086 -- of additional context, and are resolved to Standard_Character.
19087
19088 if Nkind (N) = N_Range then
19089
19090 -- The index is given by a range constraint. The bounds are known
19091 -- to be of a consistent type.
19092
19093 if not Is_Overloaded (N) then
19094 T := Etype (N);
19095
19096 -- For universal bounds, choose the specific predefined type
19097
19098 if T = Universal_Integer then
19099 T := Standard_Integer;
19100
19101 elsif T = Any_Character then
19102 Ambiguous_Character (Low_Bound (N));
19103
19104 T := Standard_Character;
19105 end if;
19106
19107 -- The node may be overloaded because some user-defined operators
19108 -- are available, but if a universal interpretation exists it is
19109 -- also the selected one.
19110
19111 elsif Universal_Interpretation (N) = Universal_Integer then
19112 T := Standard_Integer;
19113
19114 else
19115 T := Any_Type;
19116
19117 declare
19118 Ind : Interp_Index;
19119 It : Interp;
19120
19121 begin
19122 Get_First_Interp (N, Ind, It);
19123 while Present (It.Typ) loop
19124 if Is_Discrete_Type (It.Typ) then
19125
19126 if Found
19127 and then not Covers (It.Typ, T)
19128 and then not Covers (T, It.Typ)
19129 then
19130 Error_Msg_N ("ambiguous bounds in discrete range", N);
19131 exit;
19132 else
19133 T := It.Typ;
19134 Found := True;
19135 end if;
19136 end if;
19137
19138 Get_Next_Interp (Ind, It);
19139 end loop;
19140
19141 if T = Any_Type then
19142 Error_Msg_N ("discrete type required for range", N);
19143 Set_Etype (N, Any_Type);
19144 return;
19145
19146 elsif T = Universal_Integer then
19147 T := Standard_Integer;
19148 end if;
19149 end;
19150 end if;
19151
19152 if not Is_Discrete_Type (T) then
19153 Error_Msg_N ("discrete type required for range", N);
19154 Set_Etype (N, Any_Type);
19155 return;
19156 end if;
19157
19158 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19159 and then Attribute_Name (Low_Bound (N)) = Name_First
19160 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19161 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19162 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19163 then
19164 -- The type of the index will be the type of the prefix, as long
19165 -- as the upper bound is 'Last of the same type.
19166
19167 Def_Id := Entity (Prefix (Low_Bound (N)));
19168
19169 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19170 or else Attribute_Name (High_Bound (N)) /= Name_Last
19171 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19172 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19173 then
19174 Def_Id := Empty;
19175 end if;
19176 end if;
19177
19178 R := N;
19179 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19180
19181 elsif Nkind (N) = N_Subtype_Indication then
19182
19183 -- The index is given by a subtype with a range constraint
19184
19185 T := Base_Type (Entity (Subtype_Mark (N)));
19186
19187 if not Is_Discrete_Type (T) then
19188 Error_Msg_N ("discrete type required for range", N);
19189 Set_Etype (N, Any_Type);
19190 return;
19191 end if;
19192
19193 R := Range_Expression (Constraint (N));
19194
19195 Resolve (R, T);
19196 Process_Range_Expr_In_Decl
19197 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19198
19199 elsif Nkind (N) = N_Attribute_Reference then
19200
19201 -- Catch beginner's error (use of attribute other than 'Range)
19202
19203 if Attribute_Name (N) /= Name_Range then
19204 Error_Msg_N ("expect attribute ''Range", N);
19205 Set_Etype (N, Any_Type);
19206 return;
19207 end if;
19208
19209 -- If the node denotes the range of a type mark, that is also the
19210 -- resulting type, and we do not need to create an Itype for it.
19211
19212 if Is_Entity_Name (Prefix (N))
19213 and then Comes_From_Source (N)
19214 and then Is_Type (Entity (Prefix (N)))
19215 and then Is_Discrete_Type (Entity (Prefix (N)))
19216 then
19217 Def_Id := Entity (Prefix (N));
19218 end if;
19219
19220 Analyze_And_Resolve (N);
19221 T := Etype (N);
19222 R := N;
19223
19224 -- If none of the above, must be a subtype. We convert this to a
19225 -- range attribute reference because in the case of declared first
19226 -- named subtypes, the types in the range reference can be different
19227 -- from the type of the entity. A range attribute normalizes the
19228 -- reference and obtains the correct types for the bounds.
19229
19230 -- This transformation is in the nature of an expansion, is only
19231 -- done if expansion is active. In particular, it is not done on
19232 -- formal generic types, because we need to retain the name of the
19233 -- original index for instantiation purposes.
19234
19235 else
19236 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19237 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19238 Set_Etype (N, Any_Integer);
19239 return;
19240
19241 else
19242 -- The type mark may be that of an incomplete type. It is only
19243 -- now that we can get the full view, previous analysis does
19244 -- not look specifically for a type mark.
19245
19246 Set_Entity (N, Get_Full_View (Entity (N)));
19247 Set_Etype (N, Entity (N));
19248 Def_Id := Entity (N);
19249
19250 if not Is_Discrete_Type (Def_Id) then
19251 Error_Msg_N ("discrete type required for index", N);
19252 Set_Etype (N, Any_Type);
19253 return;
19254 end if;
19255 end if;
19256
19257 if Expander_Active then
19258 Rewrite (N,
19259 Make_Attribute_Reference (Sloc (N),
19260 Attribute_Name => Name_Range,
19261 Prefix => Relocate_Node (N)));
19262
19263 -- The original was a subtype mark that does not freeze. This
19264 -- means that the rewritten version must not freeze either.
19265
19266 Set_Must_Not_Freeze (N);
19267 Set_Must_Not_Freeze (Prefix (N));
19268 Analyze_And_Resolve (N);
19269 T := Etype (N);
19270 R := N;
19271
19272 -- If expander is inactive, type is legal, nothing else to construct
19273
19274 else
19275 return;
19276 end if;
19277 end if;
19278
19279 if not Is_Discrete_Type (T) then
19280 Error_Msg_N ("discrete type required for range", N);
19281 Set_Etype (N, Any_Type);
19282 return;
19283
19284 elsif T = Any_Type then
19285 Set_Etype (N, Any_Type);
19286 return;
19287 end if;
19288
19289 -- We will now create the appropriate Itype to describe the range, but
19290 -- first a check. If we originally had a subtype, then we just label
19291 -- the range with this subtype. Not only is there no need to construct
19292 -- a new subtype, but it is wrong to do so for two reasons:
19293
19294 -- 1. A legality concern, if we have a subtype, it must not freeze,
19295 -- and the Itype would cause freezing incorrectly
19296
19297 -- 2. An efficiency concern, if we created an Itype, it would not be
19298 -- recognized as the same type for the purposes of eliminating
19299 -- checks in some circumstances.
19300
19301 -- We signal this case by setting the subtype entity in Def_Id
19302
19303 if No (Def_Id) then
19304 Def_Id :=
19305 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19306 Set_Etype (Def_Id, Base_Type (T));
19307
19308 if Is_Signed_Integer_Type (T) then
19309 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19310
19311 elsif Is_Modular_Integer_Type (T) then
19312 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19313
19314 else
19315 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19316 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19317 Set_First_Literal (Def_Id, First_Literal (T));
19318 end if;
19319
19320 Set_Size_Info (Def_Id, (T));
19321 Set_RM_Size (Def_Id, RM_Size (T));
19322 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19323
19324 Set_Scalar_Range (Def_Id, R);
19325 Conditional_Delay (Def_Id, T);
19326
19327 if Nkind (N) = N_Subtype_Indication then
19328 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19329 end if;
19330
19331 -- In the subtype indication case, if the immediate parent of the
19332 -- new subtype is non-static, then the subtype we create is non-
19333 -- static, even if its bounds are static.
19334
19335 if Nkind (N) = N_Subtype_Indication
19336 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19337 then
19338 Set_Is_Non_Static_Subtype (Def_Id);
19339 end if;
19340 end if;
19341
19342 -- Final step is to label the index with this constructed type
19343
19344 Set_Etype (N, Def_Id);
19345 end Make_Index;
19346
19347 ------------------------------
19348 -- Modular_Type_Declaration --
19349 ------------------------------
19350
19351 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19352 Mod_Expr : constant Node_Id := Expression (Def);
19353 M_Val : Uint;
19354
19355 procedure Set_Modular_Size (Bits : Int);
19356 -- Sets RM_Size to Bits, and Esize to normal word size above this
19357
19358 ----------------------
19359 -- Set_Modular_Size --
19360 ----------------------
19361
19362 procedure Set_Modular_Size (Bits : Int) is
19363 begin
19364 Set_RM_Size (T, UI_From_Int (Bits));
19365
19366 if Bits <= 8 then
19367 Init_Esize (T, 8);
19368
19369 elsif Bits <= 16 then
19370 Init_Esize (T, 16);
19371
19372 elsif Bits <= 32 then
19373 Init_Esize (T, 32);
19374
19375 else
19376 Init_Esize (T, System_Max_Binary_Modulus_Power);
19377 end if;
19378
19379 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19380 Set_Is_Known_Valid (T);
19381 end if;
19382 end Set_Modular_Size;
19383
19384 -- Start of processing for Modular_Type_Declaration
19385
19386 begin
19387 -- If the mod expression is (exactly) 2 * literal, where literal is
19388 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19389
19390 if Warn_On_Suspicious_Modulus_Value
19391 and then Nkind (Mod_Expr) = N_Op_Multiply
19392 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19393 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19394 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19395 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19396 then
19397 Error_Msg_N
19398 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19399 end if;
19400
19401 -- Proceed with analysis of mod expression
19402
19403 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19404 Set_Etype (T, T);
19405 Set_Ekind (T, E_Modular_Integer_Type);
19406 Init_Alignment (T);
19407 Set_Is_Constrained (T);
19408
19409 if not Is_OK_Static_Expression (Mod_Expr) then
19410 Flag_Non_Static_Expr
19411 ("non-static expression used for modular type bound!", Mod_Expr);
19412 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19413 else
19414 M_Val := Expr_Value (Mod_Expr);
19415 end if;
19416
19417 if M_Val < 1 then
19418 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19419 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19420 end if;
19421
19422 if M_Val > 2 ** Standard_Long_Integer_Size then
19423 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19424 end if;
19425
19426 Set_Modulus (T, M_Val);
19427
19428 -- Create bounds for the modular type based on the modulus given in
19429 -- the type declaration and then analyze and resolve those bounds.
19430
19431 Set_Scalar_Range (T,
19432 Make_Range (Sloc (Mod_Expr),
19433 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19434 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19435
19436 -- Properly analyze the literals for the range. We do this manually
19437 -- because we can't go calling Resolve, since we are resolving these
19438 -- bounds with the type, and this type is certainly not complete yet.
19439
19440 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19441 Set_Etype (High_Bound (Scalar_Range (T)), T);
19442 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19443 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19444
19445 -- Loop through powers of two to find number of bits required
19446
19447 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19448
19449 -- Binary case
19450
19451 if M_Val = 2 ** Bits then
19452 Set_Modular_Size (Bits);
19453 return;
19454
19455 -- Nonbinary case
19456
19457 elsif M_Val < 2 ** Bits then
19458 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19459 Set_Non_Binary_Modulus (T);
19460
19461 if Bits > System_Max_Nonbinary_Modulus_Power then
19462 Error_Msg_Uint_1 :=
19463 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19464 Error_Msg_F
19465 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19466 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19467 return;
19468
19469 else
19470 -- In the nonbinary case, set size as per RM 13.3(55)
19471
19472 Set_Modular_Size (Bits);
19473 return;
19474 end if;
19475 end if;
19476
19477 end loop;
19478
19479 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19480 -- so we just signal an error and set the maximum size.
19481
19482 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19483 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19484
19485 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19486 Init_Alignment (T);
19487
19488 end Modular_Type_Declaration;
19489
19490 --------------------------
19491 -- New_Concatenation_Op --
19492 --------------------------
19493
19494 procedure New_Concatenation_Op (Typ : Entity_Id) is
19495 Loc : constant Source_Ptr := Sloc (Typ);
19496 Op : Entity_Id;
19497
19498 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19499 -- Create abbreviated declaration for the formal of a predefined
19500 -- Operator 'Op' of type 'Typ'
19501
19502 --------------------
19503 -- Make_Op_Formal --
19504 --------------------
19505
19506 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19507 Formal : Entity_Id;
19508 begin
19509 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19510 Set_Etype (Formal, Typ);
19511 Set_Mechanism (Formal, Default_Mechanism);
19512 return Formal;
19513 end Make_Op_Formal;
19514
19515 -- Start of processing for New_Concatenation_Op
19516
19517 begin
19518 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19519
19520 Set_Ekind (Op, E_Operator);
19521 Set_Scope (Op, Current_Scope);
19522 Set_Etype (Op, Typ);
19523 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19524 Set_Is_Immediately_Visible (Op);
19525 Set_Is_Intrinsic_Subprogram (Op);
19526 Set_Has_Completion (Op);
19527 Append_Entity (Op, Current_Scope);
19528
19529 Set_Name_Entity_Id (Name_Op_Concat, Op);
19530
19531 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19532 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19533 end New_Concatenation_Op;
19534
19535 -------------------------
19536 -- OK_For_Limited_Init --
19537 -------------------------
19538
19539 -- ???Check all calls of this, and compare the conditions under which it's
19540 -- called.
19541
19542 function OK_For_Limited_Init
19543 (Typ : Entity_Id;
19544 Exp : Node_Id) return Boolean
19545 is
19546 begin
19547 return Is_CPP_Constructor_Call (Exp)
19548 or else (Ada_Version >= Ada_2005
19549 and then not Debug_Flag_Dot_L
19550 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19551 end OK_For_Limited_Init;
19552
19553 -------------------------------
19554 -- OK_For_Limited_Init_In_05 --
19555 -------------------------------
19556
19557 function OK_For_Limited_Init_In_05
19558 (Typ : Entity_Id;
19559 Exp : Node_Id) return Boolean
19560 is
19561 begin
19562 -- An object of a limited interface type can be initialized with any
19563 -- expression of a nonlimited descendant type. However this does not
19564 -- apply if this is a view conversion of some other expression. This
19565 -- is checked below.
19566
19567 if Is_Class_Wide_Type (Typ)
19568 and then Is_Limited_Interface (Typ)
19569 and then not Is_Limited_Type (Etype (Exp))
19570 and then Nkind (Exp) /= N_Type_Conversion
19571 then
19572 return True;
19573 end if;
19574
19575 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19576 -- case of limited aggregates (including extension aggregates), and
19577 -- function calls. The function call may have been given in prefixed
19578 -- notation, in which case the original node is an indexed component.
19579 -- If the function is parameterless, the original node was an explicit
19580 -- dereference. The function may also be parameterless, in which case
19581 -- the source node is just an identifier.
19582
19583 -- A branch of a conditional expression may have been removed if the
19584 -- condition is statically known. This happens during expansion, and
19585 -- thus will not happen if previous errors were encountered. The check
19586 -- will have been performed on the chosen branch, which replaces the
19587 -- original conditional expression.
19588
19589 if No (Exp) then
19590 return True;
19591 end if;
19592
19593 case Nkind (Original_Node (Exp)) is
19594 when N_Aggregate
19595 | N_Extension_Aggregate
19596 | N_Function_Call
19597 | N_Op
19598 =>
19599 return True;
19600
19601 when N_Identifier =>
19602 return Present (Entity (Original_Node (Exp)))
19603 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19604
19605 when N_Qualified_Expression =>
19606 return
19607 OK_For_Limited_Init_In_05
19608 (Typ, Expression (Original_Node (Exp)));
19609
19610 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19611 -- with a function call, the expander has rewritten the call into an
19612 -- N_Type_Conversion node to force displacement of the pointer to
19613 -- reference the component containing the secondary dispatch table.
19614 -- Otherwise a type conversion is not a legal context.
19615 -- A return statement for a build-in-place function returning a
19616 -- synchronized type also introduces an unchecked conversion.
19617
19618 when N_Type_Conversion
19619 | N_Unchecked_Type_Conversion
19620 =>
19621 return not Comes_From_Source (Exp)
19622 and then
19623 OK_For_Limited_Init_In_05
19624 (Typ, Expression (Original_Node (Exp)));
19625
19626 when N_Explicit_Dereference
19627 | N_Indexed_Component
19628 | N_Selected_Component
19629 =>
19630 return Nkind (Exp) = N_Function_Call;
19631
19632 -- A use of 'Input is a function call, hence allowed. Normally the
19633 -- attribute will be changed to a call, but the attribute by itself
19634 -- can occur with -gnatc.
19635
19636 when N_Attribute_Reference =>
19637 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19638
19639 -- "return raise ..." is OK
19640
19641 when N_Raise_Expression =>
19642 return True;
19643
19644 -- For a case expression, all dependent expressions must be legal
19645
19646 when N_Case_Expression =>
19647 declare
19648 Alt : Node_Id;
19649
19650 begin
19651 Alt := First (Alternatives (Original_Node (Exp)));
19652 while Present (Alt) loop
19653 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19654 return False;
19655 end if;
19656
19657 Next (Alt);
19658 end loop;
19659
19660 return True;
19661 end;
19662
19663 -- For an if expression, all dependent expressions must be legal
19664
19665 when N_If_Expression =>
19666 declare
19667 Then_Expr : constant Node_Id :=
19668 Next (First (Expressions (Original_Node (Exp))));
19669 Else_Expr : constant Node_Id := Next (Then_Expr);
19670 begin
19671 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19672 and then
19673 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19674 end;
19675
19676 when others =>
19677 return False;
19678 end case;
19679 end OK_For_Limited_Init_In_05;
19680
19681 -------------------------------------------
19682 -- Ordinary_Fixed_Point_Type_Declaration --
19683 -------------------------------------------
19684
19685 procedure Ordinary_Fixed_Point_Type_Declaration
19686 (T : Entity_Id;
19687 Def : Node_Id)
19688 is
19689 Loc : constant Source_Ptr := Sloc (Def);
19690 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19691 RRS : constant Node_Id := Real_Range_Specification (Def);
19692 Implicit_Base : Entity_Id;
19693 Delta_Val : Ureal;
19694 Small_Val : Ureal;
19695 Low_Val : Ureal;
19696 High_Val : Ureal;
19697
19698 begin
19699 Check_Restriction (No_Fixed_Point, Def);
19700
19701 -- Create implicit base type
19702
19703 Implicit_Base :=
19704 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19705 Set_Etype (Implicit_Base, Implicit_Base);
19706
19707 -- Analyze and process delta expression
19708
19709 Analyze_And_Resolve (Delta_Expr, Any_Real);
19710
19711 Check_Delta_Expression (Delta_Expr);
19712 Delta_Val := Expr_Value_R (Delta_Expr);
19713
19714 Set_Delta_Value (Implicit_Base, Delta_Val);
19715
19716 -- Compute default small from given delta, which is the largest power
19717 -- of two that does not exceed the given delta value.
19718
19719 declare
19720 Tmp : Ureal;
19721 Scale : Int;
19722
19723 begin
19724 Tmp := Ureal_1;
19725 Scale := 0;
19726
19727 if Delta_Val < Ureal_1 then
19728 while Delta_Val < Tmp loop
19729 Tmp := Tmp / Ureal_2;
19730 Scale := Scale + 1;
19731 end loop;
19732
19733 else
19734 loop
19735 Tmp := Tmp * Ureal_2;
19736 exit when Tmp > Delta_Val;
19737 Scale := Scale - 1;
19738 end loop;
19739 end if;
19740
19741 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19742 end;
19743
19744 Set_Small_Value (Implicit_Base, Small_Val);
19745
19746 -- If no range was given, set a dummy range
19747
19748 if RRS <= Empty_Or_Error then
19749 Low_Val := -Small_Val;
19750 High_Val := Small_Val;
19751
19752 -- Otherwise analyze and process given range
19753
19754 else
19755 declare
19756 Low : constant Node_Id := Low_Bound (RRS);
19757 High : constant Node_Id := High_Bound (RRS);
19758
19759 begin
19760 Analyze_And_Resolve (Low, Any_Real);
19761 Analyze_And_Resolve (High, Any_Real);
19762 Check_Real_Bound (Low);
19763 Check_Real_Bound (High);
19764
19765 -- Obtain and set the range
19766
19767 Low_Val := Expr_Value_R (Low);
19768 High_Val := Expr_Value_R (High);
19769
19770 if Low_Val > High_Val then
19771 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19772 end if;
19773 end;
19774 end if;
19775
19776 -- The range for both the implicit base and the declared first subtype
19777 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19778 -- set a temporary range in place. Note that the bounds of the base
19779 -- type will be widened to be symmetrical and to fill the available
19780 -- bits when the type is frozen.
19781
19782 -- We could do this with all discrete types, and probably should, but
19783 -- we absolutely have to do it for fixed-point, since the end-points
19784 -- of the range and the size are determined by the small value, which
19785 -- could be reset before the freeze point.
19786
19787 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19788 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19789
19790 -- Complete definition of first subtype. The inheritance of the rep item
19791 -- chain ensures that SPARK-related pragmas are not clobbered when the
19792 -- ordinary fixed point type acts as a full view of a private type.
19793
19794 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19795 Set_Etype (T, Implicit_Base);
19796 Init_Size_Align (T);
19797 Inherit_Rep_Item_Chain (T, Implicit_Base);
19798 Set_Small_Value (T, Small_Val);
19799 Set_Delta_Value (T, Delta_Val);
19800 Set_Is_Constrained (T);
19801 end Ordinary_Fixed_Point_Type_Declaration;
19802
19803 ----------------------------------
19804 -- Preanalyze_Assert_Expression --
19805 ----------------------------------
19806
19807 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19808 begin
19809 In_Assertion_Expr := In_Assertion_Expr + 1;
19810 Preanalyze_Spec_Expression (N, T);
19811 In_Assertion_Expr := In_Assertion_Expr - 1;
19812 end Preanalyze_Assert_Expression;
19813
19814 -----------------------------------
19815 -- Preanalyze_Default_Expression --
19816 -----------------------------------
19817
19818 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19819 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19820 begin
19821 In_Default_Expr := True;
19822 Preanalyze_Spec_Expression (N, T);
19823 In_Default_Expr := Save_In_Default_Expr;
19824 end Preanalyze_Default_Expression;
19825
19826 --------------------------------
19827 -- Preanalyze_Spec_Expression --
19828 --------------------------------
19829
19830 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19831 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19832 begin
19833 In_Spec_Expression := True;
19834 Preanalyze_And_Resolve (N, T);
19835 In_Spec_Expression := Save_In_Spec_Expression;
19836 end Preanalyze_Spec_Expression;
19837
19838 ----------------------------------------
19839 -- Prepare_Private_Subtype_Completion --
19840 ----------------------------------------
19841
19842 procedure Prepare_Private_Subtype_Completion
19843 (Id : Entity_Id;
19844 Related_Nod : Node_Id)
19845 is
19846 Id_B : constant Entity_Id := Base_Type (Id);
19847 Full_B : Entity_Id := Full_View (Id_B);
19848 Full : Entity_Id;
19849
19850 begin
19851 if Present (Full_B) then
19852
19853 -- Get to the underlying full view if necessary
19854
19855 if Is_Private_Type (Full_B)
19856 and then Present (Underlying_Full_View (Full_B))
19857 then
19858 Full_B := Underlying_Full_View (Full_B);
19859 end if;
19860
19861 -- The Base_Type is already completed, we can complete the subtype
19862 -- now. We have to create a new entity with the same name, Thus we
19863 -- can't use Create_Itype.
19864
19865 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19866 Set_Is_Itype (Full);
19867 Set_Associated_Node_For_Itype (Full, Related_Nod);
19868 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19869 end if;
19870
19871 -- The parent subtype may be private, but the base might not, in some
19872 -- nested instances. In that case, the subtype does not need to be
19873 -- exchanged. It would still be nice to make private subtypes and their
19874 -- bases consistent at all times ???
19875
19876 if Is_Private_Type (Id_B) then
19877 Append_Elmt (Id, Private_Dependents (Id_B));
19878 end if;
19879 end Prepare_Private_Subtype_Completion;
19880
19881 ---------------------------
19882 -- Process_Discriminants --
19883 ---------------------------
19884
19885 procedure Process_Discriminants
19886 (N : Node_Id;
19887 Prev : Entity_Id := Empty)
19888 is
19889 Elist : constant Elist_Id := New_Elmt_List;
19890 Id : Node_Id;
19891 Discr : Node_Id;
19892 Discr_Number : Uint;
19893 Discr_Type : Entity_Id;
19894 Default_Present : Boolean := False;
19895 Default_Not_Present : Boolean := False;
19896
19897 begin
19898 -- A composite type other than an array type can have discriminants.
19899 -- On entry, the current scope is the composite type.
19900
19901 -- The discriminants are initially entered into the scope of the type
19902 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19903 -- use, as explained at the end of this procedure.
19904
19905 Discr := First (Discriminant_Specifications (N));
19906 while Present (Discr) loop
19907 Enter_Name (Defining_Identifier (Discr));
19908
19909 -- For navigation purposes we add a reference to the discriminant
19910 -- in the entity for the type. If the current declaration is a
19911 -- completion, place references on the partial view. Otherwise the
19912 -- type is the current scope.
19913
19914 if Present (Prev) then
19915
19916 -- The references go on the partial view, if present. If the
19917 -- partial view has discriminants, the references have been
19918 -- generated already.
19919
19920 if not Has_Discriminants (Prev) then
19921 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19922 end if;
19923 else
19924 Generate_Reference
19925 (Current_Scope, Defining_Identifier (Discr), 'd');
19926 end if;
19927
19928 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19929 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19930
19931 -- Ada 2005 (AI-254)
19932
19933 if Present (Access_To_Subprogram_Definition
19934 (Discriminant_Type (Discr)))
19935 and then Protected_Present (Access_To_Subprogram_Definition
19936 (Discriminant_Type (Discr)))
19937 then
19938 Discr_Type :=
19939 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19940 end if;
19941
19942 else
19943 Find_Type (Discriminant_Type (Discr));
19944 Discr_Type := Etype (Discriminant_Type (Discr));
19945
19946 if Error_Posted (Discriminant_Type (Discr)) then
19947 Discr_Type := Any_Type;
19948 end if;
19949 end if;
19950
19951 -- Handling of discriminants that are access types
19952
19953 if Is_Access_Type (Discr_Type) then
19954
19955 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19956 -- limited record types
19957
19958 if Ada_Version < Ada_2005 then
19959 Check_Access_Discriminant_Requires_Limited
19960 (Discr, Discriminant_Type (Discr));
19961 end if;
19962
19963 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19964 Error_Msg_N
19965 ("(Ada 83) access discriminant not allowed", Discr);
19966 end if;
19967
19968 -- If not access type, must be a discrete type
19969
19970 elsif not Is_Discrete_Type (Discr_Type) then
19971 Error_Msg_N
19972 ("discriminants must have a discrete or access type",
19973 Discriminant_Type (Discr));
19974 end if;
19975
19976 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19977
19978 -- If a discriminant specification includes the assignment compound
19979 -- delimiter followed by an expression, the expression is the default
19980 -- expression of the discriminant; the default expression must be of
19981 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19982 -- a default expression, we do the special preanalysis, since this
19983 -- expression does not freeze (see section "Handling of Default and
19984 -- Per-Object Expressions" in spec of package Sem).
19985
19986 if Present (Expression (Discr)) then
19987 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19988
19989 -- Legaity checks
19990
19991 if Nkind (N) = N_Formal_Type_Declaration then
19992 Error_Msg_N
19993 ("discriminant defaults not allowed for formal type",
19994 Expression (Discr));
19995
19996 -- Flag an error for a tagged type with defaulted discriminants,
19997 -- excluding limited tagged types when compiling for Ada 2012
19998 -- (see AI05-0214).
19999
20000 elsif Is_Tagged_Type (Current_Scope)
20001 and then (not Is_Limited_Type (Current_Scope)
20002 or else Ada_Version < Ada_2012)
20003 and then Comes_From_Source (N)
20004 then
20005 -- Note: see similar test in Check_Or_Process_Discriminants, to
20006 -- handle the (illegal) case of the completion of an untagged
20007 -- view with discriminants with defaults by a tagged full view.
20008 -- We skip the check if Discr does not come from source, to
20009 -- account for the case of an untagged derived type providing
20010 -- defaults for a renamed discriminant from a private untagged
20011 -- ancestor with a tagged full view (ACATS B460006).
20012
20013 if Ada_Version >= Ada_2012 then
20014 Error_Msg_N
20015 ("discriminants of nonlimited tagged type cannot have"
20016 & " defaults",
20017 Expression (Discr));
20018 else
20019 Error_Msg_N
20020 ("discriminants of tagged type cannot have defaults",
20021 Expression (Discr));
20022 end if;
20023
20024 else
20025 Default_Present := True;
20026 Append_Elmt (Expression (Discr), Elist);
20027
20028 -- Tag the defining identifiers for the discriminants with
20029 -- their corresponding default expressions from the tree.
20030
20031 Set_Discriminant_Default_Value
20032 (Defining_Identifier (Discr), Expression (Discr));
20033 end if;
20034
20035 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20036 -- gets set unless we can be sure that no range check is required.
20037
20038 if (GNATprove_Mode or not Expander_Active)
20039 and then not
20040 Is_In_Range
20041 (Expression (Discr), Discr_Type, Assume_Valid => True)
20042 then
20043 Set_Do_Range_Check (Expression (Discr));
20044 end if;
20045
20046 -- No default discriminant value given
20047
20048 else
20049 Default_Not_Present := True;
20050 end if;
20051
20052 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20053 -- Discr_Type but with the null-exclusion attribute
20054
20055 if Ada_Version >= Ada_2005 then
20056
20057 -- Ada 2005 (AI-231): Static checks
20058
20059 if Can_Never_Be_Null (Discr_Type) then
20060 Null_Exclusion_Static_Checks (Discr);
20061
20062 elsif Is_Access_Type (Discr_Type)
20063 and then Null_Exclusion_Present (Discr)
20064
20065 -- No need to check itypes because in their case this check
20066 -- was done at their point of creation
20067
20068 and then not Is_Itype (Discr_Type)
20069 then
20070 if Can_Never_Be_Null (Discr_Type) then
20071 Error_Msg_NE
20072 ("`NOT NULL` not allowed (& already excludes null)",
20073 Discr,
20074 Discr_Type);
20075 end if;
20076
20077 Set_Etype (Defining_Identifier (Discr),
20078 Create_Null_Excluding_Itype
20079 (T => Discr_Type,
20080 Related_Nod => Discr));
20081
20082 -- Check for improper null exclusion if the type is otherwise
20083 -- legal for a discriminant.
20084
20085 elsif Null_Exclusion_Present (Discr)
20086 and then Is_Discrete_Type (Discr_Type)
20087 then
20088 Error_Msg_N
20089 ("null exclusion can only apply to an access type", Discr);
20090 end if;
20091
20092 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20093 -- can't have defaults. Synchronized types, or types that are
20094 -- explicitly limited are fine, but special tests apply to derived
20095 -- types in generics: in a generic body we have to assume the
20096 -- worst, and therefore defaults are not allowed if the parent is
20097 -- a generic formal private type (see ACATS B370001).
20098
20099 if Is_Access_Type (Discr_Type) and then Default_Present then
20100 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20101 or else Is_Limited_Record (Current_Scope)
20102 or else Is_Concurrent_Type (Current_Scope)
20103 or else Is_Concurrent_Record_Type (Current_Scope)
20104 or else Ekind (Current_Scope) = E_Limited_Private_Type
20105 then
20106 if not Is_Derived_Type (Current_Scope)
20107 or else not Is_Generic_Type (Etype (Current_Scope))
20108 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20109 or else Limited_Present
20110 (Type_Definition (Parent (Current_Scope)))
20111 then
20112 null;
20113
20114 else
20115 Error_Msg_N
20116 ("access discriminants of nonlimited types cannot "
20117 & "have defaults", Expression (Discr));
20118 end if;
20119
20120 elsif Present (Expression (Discr)) then
20121 Error_Msg_N
20122 ("(Ada 2005) access discriminants of nonlimited types "
20123 & "cannot have defaults", Expression (Discr));
20124 end if;
20125 end if;
20126 end if;
20127
20128 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
20129 -- This check is relevant only when SPARK_Mode is on as it is not a
20130 -- standard Ada legality rule.
20131
20132 if SPARK_Mode = On
20133 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20134 then
20135 Error_Msg_N ("discriminant cannot be volatile", Discr);
20136 end if;
20137
20138 Next (Discr);
20139 end loop;
20140
20141 -- An element list consisting of the default expressions of the
20142 -- discriminants is constructed in the above loop and used to set
20143 -- the Discriminant_Constraint attribute for the type. If an object
20144 -- is declared of this (record or task) type without any explicit
20145 -- discriminant constraint given, this element list will form the
20146 -- actual parameters for the corresponding initialization procedure
20147 -- for the type.
20148
20149 Set_Discriminant_Constraint (Current_Scope, Elist);
20150 Set_Stored_Constraint (Current_Scope, No_Elist);
20151
20152 -- Default expressions must be provided either for all or for none
20153 -- of the discriminants of a discriminant part. (RM 3.7.1)
20154
20155 if Default_Present and then Default_Not_Present then
20156 Error_Msg_N
20157 ("incomplete specification of defaults for discriminants", N);
20158 end if;
20159
20160 -- The use of the name of a discriminant is not allowed in default
20161 -- expressions of a discriminant part if the specification of the
20162 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20163
20164 -- To detect this, the discriminant names are entered initially with an
20165 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20166 -- attempt to use a void entity (for example in an expression that is
20167 -- type-checked) produces the error message: premature usage. Now after
20168 -- completing the semantic analysis of the discriminant part, we can set
20169 -- the Ekind of all the discriminants appropriately.
20170
20171 Discr := First (Discriminant_Specifications (N));
20172 Discr_Number := Uint_1;
20173 while Present (Discr) loop
20174 Id := Defining_Identifier (Discr);
20175 Set_Ekind (Id, E_Discriminant);
20176 Init_Component_Location (Id);
20177 Init_Esize (Id);
20178 Set_Discriminant_Number (Id, Discr_Number);
20179
20180 -- Make sure this is always set, even in illegal programs
20181
20182 Set_Corresponding_Discriminant (Id, Empty);
20183
20184 -- Initialize the Original_Record_Component to the entity itself.
20185 -- Inherit_Components will propagate the right value to
20186 -- discriminants in derived record types.
20187
20188 Set_Original_Record_Component (Id, Id);
20189
20190 -- Create the discriminal for the discriminant
20191
20192 Build_Discriminal (Id);
20193
20194 Next (Discr);
20195 Discr_Number := Discr_Number + 1;
20196 end loop;
20197
20198 Set_Has_Discriminants (Current_Scope);
20199 end Process_Discriminants;
20200
20201 -----------------------
20202 -- Process_Full_View --
20203 -----------------------
20204
20205 -- WARNING: This routine manages Ghost regions. Return statements must be
20206 -- replaced by gotos which jump to the end of the routine and restore the
20207 -- Ghost mode.
20208
20209 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20210 procedure Collect_Implemented_Interfaces
20211 (Typ : Entity_Id;
20212 Ifaces : Elist_Id);
20213 -- Ada 2005: Gather all the interfaces that Typ directly or
20214 -- inherently implements. Duplicate entries are not added to
20215 -- the list Ifaces.
20216
20217 ------------------------------------
20218 -- Collect_Implemented_Interfaces --
20219 ------------------------------------
20220
20221 procedure Collect_Implemented_Interfaces
20222 (Typ : Entity_Id;
20223 Ifaces : Elist_Id)
20224 is
20225 Iface : Entity_Id;
20226 Iface_Elmt : Elmt_Id;
20227
20228 begin
20229 -- Abstract interfaces are only associated with tagged record types
20230
20231 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20232 return;
20233 end if;
20234
20235 -- Recursively climb to the ancestors
20236
20237 if Etype (Typ) /= Typ
20238
20239 -- Protect the frontend against wrong cyclic declarations like:
20240
20241 -- type B is new A with private;
20242 -- type C is new A with private;
20243 -- private
20244 -- type B is new C with null record;
20245 -- type C is new B with null record;
20246
20247 and then Etype (Typ) /= Priv_T
20248 and then Etype (Typ) /= Full_T
20249 then
20250 -- Keep separate the management of private type declarations
20251
20252 if Ekind (Typ) = E_Record_Type_With_Private then
20253
20254 -- Handle the following illegal usage:
20255 -- type Private_Type is tagged private;
20256 -- private
20257 -- type Private_Type is new Type_Implementing_Iface;
20258
20259 if Present (Full_View (Typ))
20260 and then Etype (Typ) /= Full_View (Typ)
20261 then
20262 if Is_Interface (Etype (Typ)) then
20263 Append_Unique_Elmt (Etype (Typ), Ifaces);
20264 end if;
20265
20266 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20267 end if;
20268
20269 -- Non-private types
20270
20271 else
20272 if Is_Interface (Etype (Typ)) then
20273 Append_Unique_Elmt (Etype (Typ), Ifaces);
20274 end if;
20275
20276 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20277 end if;
20278 end if;
20279
20280 -- Handle entities in the list of abstract interfaces
20281
20282 if Present (Interfaces (Typ)) then
20283 Iface_Elmt := First_Elmt (Interfaces (Typ));
20284 while Present (Iface_Elmt) loop
20285 Iface := Node (Iface_Elmt);
20286
20287 pragma Assert (Is_Interface (Iface));
20288
20289 if not Contain_Interface (Iface, Ifaces) then
20290 Append_Elmt (Iface, Ifaces);
20291 Collect_Implemented_Interfaces (Iface, Ifaces);
20292 end if;
20293
20294 Next_Elmt (Iface_Elmt);
20295 end loop;
20296 end if;
20297 end Collect_Implemented_Interfaces;
20298
20299 -- Local variables
20300
20301 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20302 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20303 -- Save the Ghost-related attributes to restore on exit
20304
20305 Full_Indic : Node_Id;
20306 Full_Parent : Entity_Id;
20307 Priv_Parent : Entity_Id;
20308
20309 -- Start of processing for Process_Full_View
20310
20311 begin
20312 Mark_And_Set_Ghost_Completion (N, Priv_T);
20313
20314 -- First some sanity checks that must be done after semantic
20315 -- decoration of the full view and thus cannot be placed with other
20316 -- similar checks in Find_Type_Name
20317
20318 if not Is_Limited_Type (Priv_T)
20319 and then (Is_Limited_Type (Full_T)
20320 or else Is_Limited_Composite (Full_T))
20321 then
20322 if In_Instance then
20323 null;
20324 else
20325 Error_Msg_N
20326 ("completion of nonlimited type cannot be limited", Full_T);
20327 Explain_Limited_Type (Full_T, Full_T);
20328 end if;
20329
20330 elsif Is_Abstract_Type (Full_T)
20331 and then not Is_Abstract_Type (Priv_T)
20332 then
20333 Error_Msg_N
20334 ("completion of nonabstract type cannot be abstract", Full_T);
20335
20336 elsif Is_Tagged_Type (Priv_T)
20337 and then Is_Limited_Type (Priv_T)
20338 and then not Is_Limited_Type (Full_T)
20339 then
20340 -- If pragma CPP_Class was applied to the private declaration
20341 -- propagate the limitedness to the full-view
20342
20343 if Is_CPP_Class (Priv_T) then
20344 Set_Is_Limited_Record (Full_T);
20345
20346 -- GNAT allow its own definition of Limited_Controlled to disobey
20347 -- this rule in order in ease the implementation. This test is safe
20348 -- because Root_Controlled is defined in a child of System that
20349 -- normal programs are not supposed to use.
20350
20351 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20352 Set_Is_Limited_Composite (Full_T);
20353 else
20354 Error_Msg_N
20355 ("completion of limited tagged type must be limited", Full_T);
20356 end if;
20357
20358 elsif Is_Generic_Type (Priv_T) then
20359 Error_Msg_N ("generic type cannot have a completion", Full_T);
20360 end if;
20361
20362 -- Check that ancestor interfaces of private and full views are
20363 -- consistent. We omit this check for synchronized types because
20364 -- they are performed on the corresponding record type when frozen.
20365
20366 if Ada_Version >= Ada_2005
20367 and then Is_Tagged_Type (Priv_T)
20368 and then Is_Tagged_Type (Full_T)
20369 and then not Is_Concurrent_Type (Full_T)
20370 then
20371 declare
20372 Iface : Entity_Id;
20373 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20374 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20375
20376 begin
20377 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20378 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20379
20380 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20381 -- an interface type if and only if the full type is descendant
20382 -- of the interface type (AARM 7.3 (7.3/2)).
20383
20384 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20385
20386 if Present (Iface) then
20387 Error_Msg_NE
20388 ("interface in partial view& not implemented by full type "
20389 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20390 end if;
20391
20392 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20393
20394 if Present (Iface) then
20395 Error_Msg_NE
20396 ("interface & not implemented by partial view "
20397 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20398 end if;
20399 end;
20400 end if;
20401
20402 if Is_Tagged_Type (Priv_T)
20403 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20404 and then Is_Derived_Type (Full_T)
20405 then
20406 Priv_Parent := Etype (Priv_T);
20407
20408 -- The full view of a private extension may have been transformed
20409 -- into an unconstrained derived type declaration and a subtype
20410 -- declaration (see build_derived_record_type for details).
20411
20412 if Nkind (N) = N_Subtype_Declaration then
20413 Full_Indic := Subtype_Indication (N);
20414 Full_Parent := Etype (Base_Type (Full_T));
20415 else
20416 Full_Indic := Subtype_Indication (Type_Definition (N));
20417 Full_Parent := Etype (Full_T);
20418 end if;
20419
20420 -- Check that the parent type of the full type is a descendant of
20421 -- the ancestor subtype given in the private extension. If either
20422 -- entity has an Etype equal to Any_Type then we had some previous
20423 -- error situation [7.3(8)].
20424
20425 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20426 goto Leave;
20427
20428 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20429 -- any order. Therefore we don't have to check that its parent must
20430 -- be a descendant of the parent of the private type declaration.
20431
20432 elsif Is_Interface (Priv_Parent)
20433 and then Is_Interface (Full_Parent)
20434 then
20435 null;
20436
20437 -- Ada 2005 (AI-251): If the parent of the private type declaration
20438 -- is an interface there is no need to check that it is an ancestor
20439 -- of the associated full type declaration. The required tests for
20440 -- this case are performed by Build_Derived_Record_Type.
20441
20442 elsif not Is_Interface (Base_Type (Priv_Parent))
20443 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20444 then
20445 Error_Msg_N
20446 ("parent of full type must descend from parent of private "
20447 & "extension", Full_Indic);
20448
20449 -- First check a formal restriction, and then proceed with checking
20450 -- Ada rules. Since the formal restriction is not a serious error, we
20451 -- don't prevent further error detection for this check, hence the
20452 -- ELSE.
20453
20454 else
20455 -- In formal mode, when completing a private extension the type
20456 -- named in the private part must be exactly the same as that
20457 -- named in the visible part.
20458
20459 if Priv_Parent /= Full_Parent then
20460 Error_Msg_Name_1 := Chars (Priv_Parent);
20461 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20462 end if;
20463
20464 -- Check the rules of 7.3(10): if the private extension inherits
20465 -- known discriminants, then the full type must also inherit those
20466 -- discriminants from the same (ancestor) type, and the parent
20467 -- subtype of the full type must be constrained if and only if
20468 -- the ancestor subtype of the private extension is constrained.
20469
20470 if No (Discriminant_Specifications (Parent (Priv_T)))
20471 and then not Has_Unknown_Discriminants (Priv_T)
20472 and then Has_Discriminants (Base_Type (Priv_Parent))
20473 then
20474 declare
20475 Priv_Indic : constant Node_Id :=
20476 Subtype_Indication (Parent (Priv_T));
20477
20478 Priv_Constr : constant Boolean :=
20479 Is_Constrained (Priv_Parent)
20480 or else
20481 Nkind (Priv_Indic) = N_Subtype_Indication
20482 or else
20483 Is_Constrained (Entity (Priv_Indic));
20484
20485 Full_Constr : constant Boolean :=
20486 Is_Constrained (Full_Parent)
20487 or else
20488 Nkind (Full_Indic) = N_Subtype_Indication
20489 or else
20490 Is_Constrained (Entity (Full_Indic));
20491
20492 Priv_Discr : Entity_Id;
20493 Full_Discr : Entity_Id;
20494
20495 begin
20496 Priv_Discr := First_Discriminant (Priv_Parent);
20497 Full_Discr := First_Discriminant (Full_Parent);
20498 while Present (Priv_Discr) and then Present (Full_Discr) loop
20499 if Original_Record_Component (Priv_Discr) =
20500 Original_Record_Component (Full_Discr)
20501 or else
20502 Corresponding_Discriminant (Priv_Discr) =
20503 Corresponding_Discriminant (Full_Discr)
20504 then
20505 null;
20506 else
20507 exit;
20508 end if;
20509
20510 Next_Discriminant (Priv_Discr);
20511 Next_Discriminant (Full_Discr);
20512 end loop;
20513
20514 if Present (Priv_Discr) or else Present (Full_Discr) then
20515 Error_Msg_N
20516 ("full view must inherit discriminants of the parent "
20517 & "type used in the private extension", Full_Indic);
20518
20519 elsif Priv_Constr and then not Full_Constr then
20520 Error_Msg_N
20521 ("parent subtype of full type must be constrained",
20522 Full_Indic);
20523
20524 elsif Full_Constr and then not Priv_Constr then
20525 Error_Msg_N
20526 ("parent subtype of full type must be unconstrained",
20527 Full_Indic);
20528 end if;
20529 end;
20530
20531 -- Check the rules of 7.3(12): if a partial view has neither
20532 -- known or unknown discriminants, then the full type
20533 -- declaration shall define a definite subtype.
20534
20535 elsif not Has_Unknown_Discriminants (Priv_T)
20536 and then not Has_Discriminants (Priv_T)
20537 and then not Is_Constrained (Full_T)
20538 then
20539 Error_Msg_N
20540 ("full view must define a constrained type if partial view "
20541 & "has no discriminants", Full_T);
20542 end if;
20543
20544 -- ??????? Do we implement the following properly ?????
20545 -- If the ancestor subtype of a private extension has constrained
20546 -- discriminants, then the parent subtype of the full view shall
20547 -- impose a statically matching constraint on those discriminants
20548 -- [7.3(13)].
20549 end if;
20550
20551 else
20552 -- For untagged types, verify that a type without discriminants is
20553 -- not completed with an unconstrained type. A separate error message
20554 -- is produced if the full type has defaulted discriminants.
20555
20556 if Is_Definite_Subtype (Priv_T)
20557 and then not Is_Definite_Subtype (Full_T)
20558 then
20559 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20560 Error_Msg_NE
20561 ("full view of& not compatible with declaration#",
20562 Full_T, Priv_T);
20563
20564 if not Is_Tagged_Type (Full_T) then
20565 Error_Msg_N
20566 ("\one is constrained, the other unconstrained", Full_T);
20567 end if;
20568 end if;
20569 end if;
20570
20571 -- AI-419: verify that the use of "limited" is consistent
20572
20573 declare
20574 Orig_Decl : constant Node_Id := Original_Node (N);
20575
20576 begin
20577 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20578 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20579 and then Nkind
20580 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20581 then
20582 if not Limited_Present (Parent (Priv_T))
20583 and then not Synchronized_Present (Parent (Priv_T))
20584 and then Limited_Present (Type_Definition (Orig_Decl))
20585 then
20586 Error_Msg_N
20587 ("full view of non-limited extension cannot be limited", N);
20588
20589 -- Conversely, if the partial view carries the limited keyword,
20590 -- the full view must as well, even if it may be redundant.
20591
20592 elsif Limited_Present (Parent (Priv_T))
20593 and then not Limited_Present (Type_Definition (Orig_Decl))
20594 then
20595 Error_Msg_N
20596 ("full view of limited extension must be explicitly limited",
20597 N);
20598 end if;
20599 end if;
20600 end;
20601
20602 -- Ada 2005 (AI-443): A synchronized private extension must be
20603 -- completed by a task or protected type.
20604
20605 if Ada_Version >= Ada_2005
20606 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20607 and then Synchronized_Present (Parent (Priv_T))
20608 and then not Is_Concurrent_Type (Full_T)
20609 then
20610 Error_Msg_N ("full view of synchronized extension must " &
20611 "be synchronized type", N);
20612 end if;
20613
20614 -- Ada 2005 AI-363: if the full view has discriminants with
20615 -- defaults, it is illegal to declare constrained access subtypes
20616 -- whose designated type is the current type. This allows objects
20617 -- of the type that are declared in the heap to be unconstrained.
20618
20619 if not Has_Unknown_Discriminants (Priv_T)
20620 and then not Has_Discriminants (Priv_T)
20621 and then Has_Discriminants (Full_T)
20622 and then
20623 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20624 then
20625 Set_Has_Constrained_Partial_View (Full_T);
20626 Set_Has_Constrained_Partial_View (Priv_T);
20627 end if;
20628
20629 -- Create a full declaration for all its subtypes recorded in
20630 -- Private_Dependents and swap them similarly to the base type. These
20631 -- are subtypes that have been define before the full declaration of
20632 -- the private type. We also swap the entry in Private_Dependents list
20633 -- so we can properly restore the private view on exit from the scope.
20634
20635 declare
20636 Priv_Elmt : Elmt_Id;
20637 Priv_Scop : Entity_Id;
20638 Priv : Entity_Id;
20639 Full : Entity_Id;
20640
20641 begin
20642 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20643 while Present (Priv_Elmt) loop
20644 Priv := Node (Priv_Elmt);
20645 Priv_Scop := Scope (Priv);
20646
20647 if Ekind_In (Priv, E_Private_Subtype,
20648 E_Limited_Private_Subtype,
20649 E_Record_Subtype_With_Private)
20650 then
20651 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20652 Set_Is_Itype (Full);
20653 Set_Parent (Full, Parent (Priv));
20654 Set_Associated_Node_For_Itype (Full, N);
20655
20656 -- Now we need to complete the private subtype, but since the
20657 -- base type has already been swapped, we must also swap the
20658 -- subtypes (and thus, reverse the arguments in the call to
20659 -- Complete_Private_Subtype). Also note that we may need to
20660 -- re-establish the scope of the private subtype.
20661
20662 Copy_And_Swap (Priv, Full);
20663
20664 if not In_Open_Scopes (Priv_Scop) then
20665 Push_Scope (Priv_Scop);
20666
20667 else
20668 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20669
20670 Priv_Scop := Empty;
20671 end if;
20672
20673 Complete_Private_Subtype (Full, Priv, Full_T, N);
20674
20675 if Present (Priv_Scop) then
20676 Pop_Scope;
20677 end if;
20678
20679 Replace_Elmt (Priv_Elmt, Full);
20680 end if;
20681
20682 Next_Elmt (Priv_Elmt);
20683 end loop;
20684 end;
20685
20686 -- If the private view was tagged, copy the new primitive operations
20687 -- from the private view to the full view.
20688
20689 if Is_Tagged_Type (Full_T) then
20690 declare
20691 Disp_Typ : Entity_Id;
20692 Full_List : Elist_Id;
20693 Prim : Entity_Id;
20694 Prim_Elmt : Elmt_Id;
20695 Priv_List : Elist_Id;
20696
20697 function Contains
20698 (E : Entity_Id;
20699 L : Elist_Id) return Boolean;
20700 -- Determine whether list L contains element E
20701
20702 --------------
20703 -- Contains --
20704 --------------
20705
20706 function Contains
20707 (E : Entity_Id;
20708 L : Elist_Id) return Boolean
20709 is
20710 List_Elmt : Elmt_Id;
20711
20712 begin
20713 List_Elmt := First_Elmt (L);
20714 while Present (List_Elmt) loop
20715 if Node (List_Elmt) = E then
20716 return True;
20717 end if;
20718
20719 Next_Elmt (List_Elmt);
20720 end loop;
20721
20722 return False;
20723 end Contains;
20724
20725 -- Start of processing
20726
20727 begin
20728 if Is_Tagged_Type (Priv_T) then
20729 Priv_List := Primitive_Operations (Priv_T);
20730 Prim_Elmt := First_Elmt (Priv_List);
20731
20732 -- In the case of a concurrent type completing a private tagged
20733 -- type, primitives may have been declared in between the two
20734 -- views. These subprograms need to be wrapped the same way
20735 -- entries and protected procedures are handled because they
20736 -- cannot be directly shared by the two views.
20737
20738 if Is_Concurrent_Type (Full_T) then
20739 declare
20740 Conc_Typ : constant Entity_Id :=
20741 Corresponding_Record_Type (Full_T);
20742 Curr_Nod : Node_Id := Parent (Conc_Typ);
20743 Wrap_Spec : Node_Id;
20744
20745 begin
20746 while Present (Prim_Elmt) loop
20747 Prim := Node (Prim_Elmt);
20748
20749 if Comes_From_Source (Prim)
20750 and then not Is_Abstract_Subprogram (Prim)
20751 then
20752 Wrap_Spec :=
20753 Make_Subprogram_Declaration (Sloc (Prim),
20754 Specification =>
20755 Build_Wrapper_Spec
20756 (Subp_Id => Prim,
20757 Obj_Typ => Conc_Typ,
20758 Formals =>
20759 Parameter_Specifications
20760 (Parent (Prim))));
20761
20762 Insert_After (Curr_Nod, Wrap_Spec);
20763 Curr_Nod := Wrap_Spec;
20764
20765 Analyze (Wrap_Spec);
20766
20767 -- Remove the wrapper from visibility to avoid
20768 -- spurious conflict with the wrapped entity.
20769
20770 Set_Is_Immediately_Visible
20771 (Defining_Entity (Specification (Wrap_Spec)),
20772 False);
20773 end if;
20774
20775 Next_Elmt (Prim_Elmt);
20776 end loop;
20777
20778 goto Leave;
20779 end;
20780
20781 -- For non-concurrent types, transfer explicit primitives, but
20782 -- omit those inherited from the parent of the private view
20783 -- since they will be re-inherited later on.
20784
20785 else
20786 Full_List := Primitive_Operations (Full_T);
20787 while Present (Prim_Elmt) loop
20788 Prim := Node (Prim_Elmt);
20789
20790 if Comes_From_Source (Prim)
20791 and then not Contains (Prim, Full_List)
20792 then
20793 Append_Elmt (Prim, Full_List);
20794 end if;
20795
20796 Next_Elmt (Prim_Elmt);
20797 end loop;
20798 end if;
20799
20800 -- Untagged private view
20801
20802 else
20803 Full_List := Primitive_Operations (Full_T);
20804
20805 -- In this case the partial view is untagged, so here we locate
20806 -- all of the earlier primitives that need to be treated as
20807 -- dispatching (those that appear between the two views). Note
20808 -- that these additional operations must all be new operations
20809 -- (any earlier operations that override inherited operations
20810 -- of the full view will already have been inserted in the
20811 -- primitives list, marked by Check_Operation_From_Private_View
20812 -- as dispatching. Note that implicit "/=" operators are
20813 -- excluded from being added to the primitives list since they
20814 -- shouldn't be treated as dispatching (tagged "/=" is handled
20815 -- specially).
20816
20817 Prim := Next_Entity (Full_T);
20818 while Present (Prim) and then Prim /= Priv_T loop
20819 if Ekind_In (Prim, E_Procedure, E_Function) then
20820 Disp_Typ := Find_Dispatching_Type (Prim);
20821
20822 if Disp_Typ = Full_T
20823 and then (Chars (Prim) /= Name_Op_Ne
20824 or else Comes_From_Source (Prim))
20825 then
20826 Check_Controlling_Formals (Full_T, Prim);
20827
20828 if Is_Suitable_Primitive (Prim)
20829 and then not Is_Dispatching_Operation (Prim)
20830 then
20831 Append_Elmt (Prim, Full_List);
20832 Set_Is_Dispatching_Operation (Prim);
20833 Set_DT_Position_Value (Prim, No_Uint);
20834 end if;
20835
20836 elsif Is_Dispatching_Operation (Prim)
20837 and then Disp_Typ /= Full_T
20838 then
20839 -- Verify that it is not otherwise controlled by a
20840 -- formal or a return value of type T.
20841
20842 Check_Controlling_Formals (Disp_Typ, Prim);
20843 end if;
20844 end if;
20845
20846 Next_Entity (Prim);
20847 end loop;
20848 end if;
20849
20850 -- For the tagged case, the two views can share the same primitive
20851 -- operations list and the same class-wide type. Update attributes
20852 -- of the class-wide type which depend on the full declaration.
20853
20854 if Is_Tagged_Type (Priv_T) then
20855 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20856 Set_Class_Wide_Type
20857 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20858
20859 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20860 end if;
20861 end;
20862 end if;
20863
20864 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20865
20866 if Known_To_Have_Preelab_Init (Priv_T) then
20867
20868 -- Case where there is a pragma Preelaborable_Initialization. We
20869 -- always allow this in predefined units, which is cheating a bit,
20870 -- but it means we don't have to struggle to meet the requirements in
20871 -- the RM for having Preelaborable Initialization. Otherwise we
20872 -- require that the type meets the RM rules. But we can't check that
20873 -- yet, because of the rule about overriding Initialize, so we simply
20874 -- set a flag that will be checked at freeze time.
20875
20876 if not In_Predefined_Unit (Full_T) then
20877 Set_Must_Have_Preelab_Init (Full_T);
20878 end if;
20879 end if;
20880
20881 -- If pragma CPP_Class was applied to the private type declaration,
20882 -- propagate it now to the full type declaration.
20883
20884 if Is_CPP_Class (Priv_T) then
20885 Set_Is_CPP_Class (Full_T);
20886 Set_Convention (Full_T, Convention_CPP);
20887
20888 -- Check that components of imported CPP types do not have default
20889 -- expressions.
20890
20891 Check_CPP_Type_Has_No_Defaults (Full_T);
20892 end if;
20893
20894 -- If the private view has user specified stream attributes, then so has
20895 -- the full view.
20896
20897 -- Why the test, how could these flags be already set in Full_T ???
20898
20899 if Has_Specified_Stream_Read (Priv_T) then
20900 Set_Has_Specified_Stream_Read (Full_T);
20901 end if;
20902
20903 if Has_Specified_Stream_Write (Priv_T) then
20904 Set_Has_Specified_Stream_Write (Full_T);
20905 end if;
20906
20907 if Has_Specified_Stream_Input (Priv_T) then
20908 Set_Has_Specified_Stream_Input (Full_T);
20909 end if;
20910
20911 if Has_Specified_Stream_Output (Priv_T) then
20912 Set_Has_Specified_Stream_Output (Full_T);
20913 end if;
20914
20915 -- Propagate Default_Initial_Condition-related attributes from the
20916 -- partial view to the full view and its base type.
20917
20918 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20919 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20920
20921 -- Propagate invariant-related attributes from the partial view to the
20922 -- full view and its base type.
20923
20924 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20925 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20926
20927 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20928 -- in the full view without advertising the inheritance in the partial
20929 -- view. This can only occur when the partial view has no parent type
20930 -- and the full view has an interface as a parent. Any other scenarios
20931 -- are illegal because implemented interfaces must match between the
20932 -- two views.
20933
20934 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20935 declare
20936 Full_Par : constant Entity_Id := Etype (Full_T);
20937 Priv_Par : constant Entity_Id := Etype (Priv_T);
20938
20939 begin
20940 if not Is_Interface (Priv_Par)
20941 and then Is_Interface (Full_Par)
20942 and then Has_Inheritable_Invariants (Full_Par)
20943 then
20944 Error_Msg_N
20945 ("hidden inheritance of class-wide type invariants not "
20946 & "allowed", N);
20947 end if;
20948 end;
20949 end if;
20950
20951 -- Propagate predicates to full type, and predicate function if already
20952 -- defined. It is not clear that this can actually happen? the partial
20953 -- view cannot be frozen yet, and the predicate function has not been
20954 -- built. Still it is a cheap check and seems safer to make it.
20955
20956 if Has_Predicates (Priv_T) then
20957 Set_Has_Predicates (Full_T);
20958
20959 if Present (Predicate_Function (Priv_T)) then
20960 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20961 end if;
20962 end if;
20963
20964 <<Leave>>
20965 Restore_Ghost_Region (Saved_GM, Saved_IGR);
20966 end Process_Full_View;
20967
20968 -----------------------------------
20969 -- Process_Incomplete_Dependents --
20970 -----------------------------------
20971
20972 procedure Process_Incomplete_Dependents
20973 (N : Node_Id;
20974 Full_T : Entity_Id;
20975 Inc_T : Entity_Id)
20976 is
20977 Inc_Elmt : Elmt_Id;
20978 Priv_Dep : Entity_Id;
20979 New_Subt : Entity_Id;
20980
20981 Disc_Constraint : Elist_Id;
20982
20983 begin
20984 if No (Private_Dependents (Inc_T)) then
20985 return;
20986 end if;
20987
20988 -- Itypes that may be generated by the completion of an incomplete
20989 -- subtype are not used by the back-end and not attached to the tree.
20990 -- They are created only for constraint-checking purposes.
20991
20992 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20993 while Present (Inc_Elmt) loop
20994 Priv_Dep := Node (Inc_Elmt);
20995
20996 if Ekind (Priv_Dep) = E_Subprogram_Type then
20997
20998 -- An Access_To_Subprogram type may have a return type or a
20999 -- parameter type that is incomplete. Replace with the full view.
21000
21001 if Etype (Priv_Dep) = Inc_T then
21002 Set_Etype (Priv_Dep, Full_T);
21003 end if;
21004
21005 declare
21006 Formal : Entity_Id;
21007
21008 begin
21009 Formal := First_Formal (Priv_Dep);
21010 while Present (Formal) loop
21011 if Etype (Formal) = Inc_T then
21012 Set_Etype (Formal, Full_T);
21013 end if;
21014
21015 Next_Formal (Formal);
21016 end loop;
21017 end;
21018
21019 elsif Is_Overloadable (Priv_Dep) then
21020
21021 -- If a subprogram in the incomplete dependents list is primitive
21022 -- for a tagged full type then mark it as a dispatching operation,
21023 -- check whether it overrides an inherited subprogram, and check
21024 -- restrictions on its controlling formals. Note that a protected
21025 -- operation is never dispatching: only its wrapper operation
21026 -- (which has convention Ada) is.
21027
21028 if Is_Tagged_Type (Full_T)
21029 and then Is_Primitive (Priv_Dep)
21030 and then Convention (Priv_Dep) /= Convention_Protected
21031 then
21032 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21033 Set_Is_Dispatching_Operation (Priv_Dep);
21034 Check_Controlling_Formals (Full_T, Priv_Dep);
21035 end if;
21036
21037 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21038
21039 -- Can happen during processing of a body before the completion
21040 -- of a TA type. Ignore, because spec is also on dependent list.
21041
21042 return;
21043
21044 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21045 -- corresponding subtype of the full view.
21046
21047 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21048 and then Comes_From_Source (Priv_Dep)
21049 then
21050 Set_Subtype_Indication
21051 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21052 Set_Etype (Priv_Dep, Full_T);
21053 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21054 Set_Analyzed (Parent (Priv_Dep), False);
21055
21056 -- Reanalyze the declaration, suppressing the call to Enter_Name
21057 -- to avoid duplicate names.
21058
21059 Analyze_Subtype_Declaration
21060 (N => Parent (Priv_Dep),
21061 Skip => True);
21062
21063 -- Dependent is a subtype
21064
21065 else
21066 -- We build a new subtype indication using the full view of the
21067 -- incomplete parent. The discriminant constraints have been
21068 -- elaborated already at the point of the subtype declaration.
21069
21070 New_Subt := Create_Itype (E_Void, N);
21071
21072 if Has_Discriminants (Full_T) then
21073 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21074 else
21075 Disc_Constraint := No_Elist;
21076 end if;
21077
21078 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21079 Set_Full_View (Priv_Dep, New_Subt);
21080 end if;
21081
21082 Next_Elmt (Inc_Elmt);
21083 end loop;
21084 end Process_Incomplete_Dependents;
21085
21086 --------------------------------
21087 -- Process_Range_Expr_In_Decl --
21088 --------------------------------
21089
21090 procedure Process_Range_Expr_In_Decl
21091 (R : Node_Id;
21092 T : Entity_Id;
21093 Subtyp : Entity_Id := Empty;
21094 Check_List : List_Id := Empty_List;
21095 R_Check_Off : Boolean := False;
21096 In_Iter_Schm : Boolean := False)
21097 is
21098 Lo, Hi : Node_Id;
21099 R_Checks : Check_Result;
21100 Insert_Node : Node_Id;
21101 Def_Id : Entity_Id;
21102
21103 begin
21104 Analyze_And_Resolve (R, Base_Type (T));
21105
21106 if Nkind (R) = N_Range then
21107
21108 -- In SPARK, all ranges should be static, with the exception of the
21109 -- discrete type definition of a loop parameter specification.
21110
21111 if not In_Iter_Schm
21112 and then not Is_OK_Static_Range (R)
21113 then
21114 Check_SPARK_05_Restriction ("range should be static", R);
21115 end if;
21116
21117 Lo := Low_Bound (R);
21118 Hi := High_Bound (R);
21119
21120 -- Validity checks on the range of a quantified expression are
21121 -- delayed until the construct is transformed into a loop.
21122
21123 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21124 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21125 then
21126 null;
21127
21128 -- We need to ensure validity of the bounds here, because if we
21129 -- go ahead and do the expansion, then the expanded code will get
21130 -- analyzed with range checks suppressed and we miss the check.
21131
21132 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21133 -- the temporaries generated by routine Remove_Side_Effects by means
21134 -- of validity checks must use the same names. When a range appears
21135 -- in the parent of a generic, the range is processed with checks
21136 -- disabled as part of the generic context and with checks enabled
21137 -- for code generation purposes. This leads to link issues as the
21138 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21139 -- template sees the temporaries generated by Remove_Side_Effects.
21140
21141 else
21142 Validity_Check_Range (R, Subtyp);
21143 end if;
21144
21145 -- If there were errors in the declaration, try and patch up some
21146 -- common mistakes in the bounds. The cases handled are literals
21147 -- which are Integer where the expected type is Real and vice versa.
21148 -- These corrections allow the compilation process to proceed further
21149 -- along since some basic assumptions of the format of the bounds
21150 -- are guaranteed.
21151
21152 if Etype (R) = Any_Type then
21153 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21154 Rewrite (Lo,
21155 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21156
21157 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21158 Rewrite (Hi,
21159 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21160
21161 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21162 Rewrite (Lo,
21163 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21164
21165 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21166 Rewrite (Hi,
21167 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21168 end if;
21169
21170 Set_Etype (Lo, T);
21171 Set_Etype (Hi, T);
21172 end if;
21173
21174 -- If the bounds of the range have been mistakenly given as string
21175 -- literals (perhaps in place of character literals), then an error
21176 -- has already been reported, but we rewrite the string literal as a
21177 -- bound of the range's type to avoid blowups in later processing
21178 -- that looks at static values.
21179
21180 if Nkind (Lo) = N_String_Literal then
21181 Rewrite (Lo,
21182 Make_Attribute_Reference (Sloc (Lo),
21183 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21184 Attribute_Name => Name_First));
21185 Analyze_And_Resolve (Lo);
21186 end if;
21187
21188 if Nkind (Hi) = N_String_Literal then
21189 Rewrite (Hi,
21190 Make_Attribute_Reference (Sloc (Hi),
21191 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21192 Attribute_Name => Name_First));
21193 Analyze_And_Resolve (Hi);
21194 end if;
21195
21196 -- If bounds aren't scalar at this point then exit, avoiding
21197 -- problems with further processing of the range in this procedure.
21198
21199 if not Is_Scalar_Type (Etype (Lo)) then
21200 return;
21201 end if;
21202
21203 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21204 -- then range of the base type. Here we check whether the bounds
21205 -- are in the range of the subtype itself. Note that if the bounds
21206 -- represent the null range the Constraint_Error exception should
21207 -- not be raised.
21208
21209 -- ??? The following code should be cleaned up as follows
21210
21211 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21212 -- is done in the call to Range_Check (R, T); below
21213
21214 -- 2. The use of R_Check_Off should be investigated and possibly
21215 -- removed, this would clean up things a bit.
21216
21217 if Is_Null_Range (Lo, Hi) then
21218 null;
21219
21220 else
21221 -- Capture values of bounds and generate temporaries for them
21222 -- if needed, before applying checks, since checks may cause
21223 -- duplication of the expression without forcing evaluation.
21224
21225 -- The forced evaluation removes side effects from expressions,
21226 -- which should occur also in GNATprove mode. Otherwise, we end up
21227 -- with unexpected insertions of actions at places where this is
21228 -- not supposed to occur, e.g. on default parameters of a call.
21229
21230 if Expander_Active or GNATprove_Mode then
21231
21232 -- Call Force_Evaluation to create declarations as needed to
21233 -- deal with side effects, and also create typ_FIRST/LAST
21234 -- entities for bounds if we have a subtype name.
21235
21236 -- Note: we do this transformation even if expansion is not
21237 -- active if we are in GNATprove_Mode since the transformation
21238 -- is in general required to ensure that the resulting tree has
21239 -- proper Ada semantics.
21240
21241 Force_Evaluation
21242 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21243 Force_Evaluation
21244 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21245 end if;
21246
21247 -- We use a flag here instead of suppressing checks on the type
21248 -- because the type we check against isn't necessarily the place
21249 -- where we put the check.
21250
21251 if not R_Check_Off then
21252 R_Checks := Get_Range_Checks (R, T);
21253
21254 -- Look up tree to find an appropriate insertion point. We
21255 -- can't just use insert_actions because later processing
21256 -- depends on the insertion node. Prior to Ada 2012 the
21257 -- insertion point could only be a declaration or a loop, but
21258 -- quantified expressions can appear within any context in an
21259 -- expression, and the insertion point can be any statement,
21260 -- pragma, or declaration.
21261
21262 Insert_Node := Parent (R);
21263 while Present (Insert_Node) loop
21264 exit when
21265 Nkind (Insert_Node) in N_Declaration
21266 and then
21267 not Nkind_In
21268 (Insert_Node, N_Component_Declaration,
21269 N_Loop_Parameter_Specification,
21270 N_Function_Specification,
21271 N_Procedure_Specification);
21272
21273 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21274 or else Nkind (Insert_Node) in
21275 N_Statement_Other_Than_Procedure_Call
21276 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21277 N_Pragma);
21278
21279 Insert_Node := Parent (Insert_Node);
21280 end loop;
21281
21282 -- Why would Type_Decl not be present??? Without this test,
21283 -- short regression tests fail.
21284
21285 if Present (Insert_Node) then
21286
21287 -- Case of loop statement. Verify that the range is part
21288 -- of the subtype indication of the iteration scheme.
21289
21290 if Nkind (Insert_Node) = N_Loop_Statement then
21291 declare
21292 Indic : Node_Id;
21293
21294 begin
21295 Indic := Parent (R);
21296 while Present (Indic)
21297 and then Nkind (Indic) /= N_Subtype_Indication
21298 loop
21299 Indic := Parent (Indic);
21300 end loop;
21301
21302 if Present (Indic) then
21303 Def_Id := Etype (Subtype_Mark (Indic));
21304
21305 Insert_Range_Checks
21306 (R_Checks,
21307 Insert_Node,
21308 Def_Id,
21309 Sloc (Insert_Node),
21310 R,
21311 Do_Before => True);
21312 end if;
21313 end;
21314
21315 -- Insertion before a declaration. If the declaration
21316 -- includes discriminants, the list of applicable checks
21317 -- is given by the caller.
21318
21319 elsif Nkind (Insert_Node) in N_Declaration then
21320 Def_Id := Defining_Identifier (Insert_Node);
21321
21322 if (Ekind (Def_Id) = E_Record_Type
21323 and then Depends_On_Discriminant (R))
21324 or else
21325 (Ekind (Def_Id) = E_Protected_Type
21326 and then Has_Discriminants (Def_Id))
21327 then
21328 Append_Range_Checks
21329 (R_Checks,
21330 Check_List, Def_Id, Sloc (Insert_Node), R);
21331
21332 else
21333 Insert_Range_Checks
21334 (R_Checks,
21335 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21336
21337 end if;
21338
21339 -- Insertion before a statement. Range appears in the
21340 -- context of a quantified expression. Insertion will
21341 -- take place when expression is expanded.
21342
21343 else
21344 null;
21345 end if;
21346 end if;
21347 end if;
21348 end if;
21349
21350 -- Case of other than an explicit N_Range node
21351
21352 -- The forced evaluation removes side effects from expressions, which
21353 -- should occur also in GNATprove mode. Otherwise, we end up with
21354 -- unexpected insertions of actions at places where this is not
21355 -- supposed to occur, e.g. on default parameters of a call.
21356
21357 elsif Expander_Active or GNATprove_Mode then
21358 Get_Index_Bounds (R, Lo, Hi);
21359 Force_Evaluation (Lo);
21360 Force_Evaluation (Hi);
21361 end if;
21362 end Process_Range_Expr_In_Decl;
21363
21364 --------------------------------------
21365 -- Process_Real_Range_Specification --
21366 --------------------------------------
21367
21368 procedure Process_Real_Range_Specification (Def : Node_Id) is
21369 Spec : constant Node_Id := Real_Range_Specification (Def);
21370 Lo : Node_Id;
21371 Hi : Node_Id;
21372 Err : Boolean := False;
21373
21374 procedure Analyze_Bound (N : Node_Id);
21375 -- Analyze and check one bound
21376
21377 -------------------
21378 -- Analyze_Bound --
21379 -------------------
21380
21381 procedure Analyze_Bound (N : Node_Id) is
21382 begin
21383 Analyze_And_Resolve (N, Any_Real);
21384
21385 if not Is_OK_Static_Expression (N) then
21386 Flag_Non_Static_Expr
21387 ("bound in real type definition is not static!", N);
21388 Err := True;
21389 end if;
21390 end Analyze_Bound;
21391
21392 -- Start of processing for Process_Real_Range_Specification
21393
21394 begin
21395 if Present (Spec) then
21396 Lo := Low_Bound (Spec);
21397 Hi := High_Bound (Spec);
21398 Analyze_Bound (Lo);
21399 Analyze_Bound (Hi);
21400
21401 -- If error, clear away junk range specification
21402
21403 if Err then
21404 Set_Real_Range_Specification (Def, Empty);
21405 end if;
21406 end if;
21407 end Process_Real_Range_Specification;
21408
21409 ---------------------
21410 -- Process_Subtype --
21411 ---------------------
21412
21413 function Process_Subtype
21414 (S : Node_Id;
21415 Related_Nod : Node_Id;
21416 Related_Id : Entity_Id := Empty;
21417 Suffix : Character := ' ') return Entity_Id
21418 is
21419 P : Node_Id;
21420 Def_Id : Entity_Id;
21421 Error_Node : Node_Id;
21422 Full_View_Id : Entity_Id;
21423 Subtype_Mark_Id : Entity_Id;
21424
21425 May_Have_Null_Exclusion : Boolean;
21426
21427 procedure Check_Incomplete (T : Node_Id);
21428 -- Called to verify that an incomplete type is not used prematurely
21429
21430 ----------------------
21431 -- Check_Incomplete --
21432 ----------------------
21433
21434 procedure Check_Incomplete (T : Node_Id) is
21435 begin
21436 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21437
21438 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21439 and then
21440 not (Ada_Version >= Ada_2005
21441 and then
21442 (Nkind (Parent (T)) = N_Subtype_Declaration
21443 or else (Nkind (Parent (T)) = N_Subtype_Indication
21444 and then Nkind (Parent (Parent (T))) =
21445 N_Subtype_Declaration)))
21446 then
21447 Error_Msg_N ("invalid use of type before its full declaration", T);
21448 end if;
21449 end Check_Incomplete;
21450
21451 -- Start of processing for Process_Subtype
21452
21453 begin
21454 -- Case of no constraints present
21455
21456 if Nkind (S) /= N_Subtype_Indication then
21457 Find_Type (S);
21458
21459 -- No way to proceed if the subtype indication is malformed. This
21460 -- will happen for example when the subtype indication in an object
21461 -- declaration is missing altogether and the expression is analyzed
21462 -- as if it were that indication.
21463
21464 if not Is_Entity_Name (S) then
21465 return Any_Type;
21466 end if;
21467
21468 Check_Incomplete (S);
21469 P := Parent (S);
21470
21471 -- Ada 2005 (AI-231): Static check
21472
21473 if Ada_Version >= Ada_2005
21474 and then Present (P)
21475 and then Null_Exclusion_Present (P)
21476 and then Nkind (P) /= N_Access_To_Object_Definition
21477 and then not Is_Access_Type (Entity (S))
21478 then
21479 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21480 end if;
21481
21482 -- The following is ugly, can't we have a range or even a flag???
21483
21484 May_Have_Null_Exclusion :=
21485 Nkind_In (P, N_Access_Definition,
21486 N_Access_Function_Definition,
21487 N_Access_Procedure_Definition,
21488 N_Access_To_Object_Definition,
21489 N_Allocator,
21490 N_Component_Definition)
21491 or else
21492 Nkind_In (P, N_Derived_Type_Definition,
21493 N_Discriminant_Specification,
21494 N_Formal_Object_Declaration,
21495 N_Object_Declaration,
21496 N_Object_Renaming_Declaration,
21497 N_Parameter_Specification,
21498 N_Subtype_Declaration);
21499
21500 -- Create an Itype that is a duplicate of Entity (S) but with the
21501 -- null-exclusion attribute.
21502
21503 if May_Have_Null_Exclusion
21504 and then Is_Access_Type (Entity (S))
21505 and then Null_Exclusion_Present (P)
21506
21507 -- No need to check the case of an access to object definition.
21508 -- It is correct to define double not-null pointers.
21509
21510 -- Example:
21511 -- type Not_Null_Int_Ptr is not null access Integer;
21512 -- type Acc is not null access Not_Null_Int_Ptr;
21513
21514 and then Nkind (P) /= N_Access_To_Object_Definition
21515 then
21516 if Can_Never_Be_Null (Entity (S)) then
21517 case Nkind (Related_Nod) is
21518 when N_Full_Type_Declaration =>
21519 if Nkind (Type_Definition (Related_Nod))
21520 in N_Array_Type_Definition
21521 then
21522 Error_Node :=
21523 Subtype_Indication
21524 (Component_Definition
21525 (Type_Definition (Related_Nod)));
21526 else
21527 Error_Node :=
21528 Subtype_Indication (Type_Definition (Related_Nod));
21529 end if;
21530
21531 when N_Subtype_Declaration =>
21532 Error_Node := Subtype_Indication (Related_Nod);
21533
21534 when N_Object_Declaration =>
21535 Error_Node := Object_Definition (Related_Nod);
21536
21537 when N_Component_Declaration =>
21538 Error_Node :=
21539 Subtype_Indication (Component_Definition (Related_Nod));
21540
21541 when N_Allocator =>
21542 Error_Node := Expression (Related_Nod);
21543
21544 when others =>
21545 pragma Assert (False);
21546 Error_Node := Related_Nod;
21547 end case;
21548
21549 Error_Msg_NE
21550 ("`NOT NULL` not allowed (& already excludes null)",
21551 Error_Node,
21552 Entity (S));
21553 end if;
21554
21555 Set_Etype (S,
21556 Create_Null_Excluding_Itype
21557 (T => Entity (S),
21558 Related_Nod => P));
21559 Set_Entity (S, Etype (S));
21560 end if;
21561
21562 return Entity (S);
21563
21564 -- Case of constraint present, so that we have an N_Subtype_Indication
21565 -- node (this node is created only if constraints are present).
21566
21567 else
21568 Find_Type (Subtype_Mark (S));
21569
21570 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21571 and then not
21572 (Nkind (Parent (S)) = N_Subtype_Declaration
21573 and then Is_Itype (Defining_Identifier (Parent (S))))
21574 then
21575 Check_Incomplete (Subtype_Mark (S));
21576 end if;
21577
21578 P := Parent (S);
21579 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21580
21581 -- Explicit subtype declaration case
21582
21583 if Nkind (P) = N_Subtype_Declaration then
21584 Def_Id := Defining_Identifier (P);
21585
21586 -- Explicit derived type definition case
21587
21588 elsif Nkind (P) = N_Derived_Type_Definition then
21589 Def_Id := Defining_Identifier (Parent (P));
21590
21591 -- Implicit case, the Def_Id must be created as an implicit type.
21592 -- The one exception arises in the case of concurrent types, array
21593 -- and access types, where other subsidiary implicit types may be
21594 -- created and must appear before the main implicit type. In these
21595 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21596 -- has not yet been called to create Def_Id.
21597
21598 else
21599 if Is_Array_Type (Subtype_Mark_Id)
21600 or else Is_Concurrent_Type (Subtype_Mark_Id)
21601 or else Is_Access_Type (Subtype_Mark_Id)
21602 then
21603 Def_Id := Empty;
21604
21605 -- For the other cases, we create a new unattached Itype,
21606 -- and set the indication to ensure it gets attached later.
21607
21608 else
21609 Def_Id :=
21610 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21611 end if;
21612 end if;
21613
21614 -- If the kind of constraint is invalid for this kind of type,
21615 -- then give an error, and then pretend no constraint was given.
21616
21617 if not Is_Valid_Constraint_Kind
21618 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21619 then
21620 Error_Msg_N
21621 ("incorrect constraint for this kind of type", Constraint (S));
21622
21623 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21624
21625 -- Set Ekind of orphan itype, to prevent cascaded errors
21626
21627 if Present (Def_Id) then
21628 Set_Ekind (Def_Id, Ekind (Any_Type));
21629 end if;
21630
21631 -- Make recursive call, having got rid of the bogus constraint
21632
21633 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21634 end if;
21635
21636 -- Remaining processing depends on type. Select on Base_Type kind to
21637 -- ensure getting to the concrete type kind in the case of a private
21638 -- subtype (needed when only doing semantic analysis).
21639
21640 case Ekind (Base_Type (Subtype_Mark_Id)) is
21641 when Access_Kind =>
21642
21643 -- If this is a constraint on a class-wide type, discard it.
21644 -- There is currently no way to express a partial discriminant
21645 -- constraint on a type with unknown discriminants. This is
21646 -- a pathology that the ACATS wisely decides not to test.
21647
21648 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21649 if Comes_From_Source (S) then
21650 Error_Msg_N
21651 ("constraint on class-wide type ignored??",
21652 Constraint (S));
21653 end if;
21654
21655 if Nkind (P) = N_Subtype_Declaration then
21656 Set_Subtype_Indication (P,
21657 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21658 end if;
21659
21660 return Subtype_Mark_Id;
21661 end if;
21662
21663 Constrain_Access (Def_Id, S, Related_Nod);
21664
21665 if Expander_Active
21666 and then Is_Itype (Designated_Type (Def_Id))
21667 and then Nkind (Related_Nod) = N_Subtype_Declaration
21668 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21669 then
21670 Build_Itype_Reference
21671 (Designated_Type (Def_Id), Related_Nod);
21672 end if;
21673
21674 when Array_Kind =>
21675 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21676
21677 when Decimal_Fixed_Point_Kind =>
21678 Constrain_Decimal (Def_Id, S);
21679
21680 when Enumeration_Kind =>
21681 Constrain_Enumeration (Def_Id, S);
21682
21683 when Ordinary_Fixed_Point_Kind =>
21684 Constrain_Ordinary_Fixed (Def_Id, S);
21685
21686 when Float_Kind =>
21687 Constrain_Float (Def_Id, S);
21688
21689 when Integer_Kind =>
21690 Constrain_Integer (Def_Id, S);
21691
21692 when Class_Wide_Kind
21693 | E_Incomplete_Type
21694 | E_Record_Subtype
21695 | E_Record_Type
21696 =>
21697 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21698
21699 if Ekind (Def_Id) = E_Incomplete_Type then
21700 Set_Private_Dependents (Def_Id, New_Elmt_List);
21701 end if;
21702
21703 when Private_Kind =>
21704
21705 -- A private type with unknown discriminants may be completed
21706 -- by an unconstrained array type.
21707
21708 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21709 and then Present (Full_View (Subtype_Mark_Id))
21710 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21711 then
21712 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21713
21714 -- ... but more commonly is completed by a discriminated record
21715 -- type.
21716
21717 else
21718 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21719 end if;
21720
21721 -- The base type may be private but Def_Id may be a full view
21722 -- in an instance.
21723
21724 if Is_Private_Type (Def_Id) then
21725 Set_Private_Dependents (Def_Id, New_Elmt_List);
21726 end if;
21727
21728 -- In case of an invalid constraint prevent further processing
21729 -- since the type constructed is missing expected fields.
21730
21731 if Etype (Def_Id) = Any_Type then
21732 return Def_Id;
21733 end if;
21734
21735 -- If the full view is that of a task with discriminants,
21736 -- we must constrain both the concurrent type and its
21737 -- corresponding record type. Otherwise we will just propagate
21738 -- the constraint to the full view, if available.
21739
21740 if Present (Full_View (Subtype_Mark_Id))
21741 and then Has_Discriminants (Subtype_Mark_Id)
21742 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21743 then
21744 Full_View_Id :=
21745 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21746
21747 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21748 Constrain_Concurrent (Full_View_Id, S,
21749 Related_Nod, Related_Id, Suffix);
21750 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21751 Set_Full_View (Def_Id, Full_View_Id);
21752
21753 -- Introduce an explicit reference to the private subtype,
21754 -- to prevent scope anomalies in gigi if first use appears
21755 -- in a nested context, e.g. a later function body.
21756 -- Should this be generated in other contexts than a full
21757 -- type declaration?
21758
21759 if Is_Itype (Def_Id)
21760 and then
21761 Nkind (Parent (P)) = N_Full_Type_Declaration
21762 then
21763 Build_Itype_Reference (Def_Id, Parent (P));
21764 end if;
21765
21766 else
21767 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21768 end if;
21769
21770 when Concurrent_Kind =>
21771 Constrain_Concurrent (Def_Id, S,
21772 Related_Nod, Related_Id, Suffix);
21773
21774 when others =>
21775 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21776 end case;
21777
21778 -- Size, Alignment, Representation aspects and Convention are always
21779 -- inherited from the base type.
21780
21781 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21782 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21783 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21784
21785 -- The anonymous subtype created for the subtype indication
21786 -- inherits the predicates of the parent.
21787
21788 if Has_Predicates (Subtype_Mark_Id) then
21789 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21790
21791 -- Indicate where the predicate function may be found
21792
21793 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
21794 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21795 end if;
21796 end if;
21797
21798 return Def_Id;
21799 end if;
21800 end Process_Subtype;
21801
21802 -----------------------------
21803 -- Record_Type_Declaration --
21804 -----------------------------
21805
21806 procedure Record_Type_Declaration
21807 (T : Entity_Id;
21808 N : Node_Id;
21809 Prev : Entity_Id)
21810 is
21811 Def : constant Node_Id := Type_Definition (N);
21812 Is_Tagged : Boolean;
21813 Tag_Comp : Entity_Id;
21814
21815 begin
21816 -- These flags must be initialized before calling Process_Discriminants
21817 -- because this routine makes use of them.
21818
21819 Set_Ekind (T, E_Record_Type);
21820 Set_Etype (T, T);
21821 Init_Size_Align (T);
21822 Set_Interfaces (T, No_Elist);
21823 Set_Stored_Constraint (T, No_Elist);
21824 Set_Default_SSO (T);
21825 Set_No_Reordering (T, No_Component_Reordering);
21826
21827 -- Normal case
21828
21829 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21830 if Limited_Present (Def) then
21831 Check_SPARK_05_Restriction ("limited is not allowed", N);
21832 end if;
21833
21834 if Abstract_Present (Def) then
21835 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21836 end if;
21837
21838 -- The flag Is_Tagged_Type might have already been set by
21839 -- Find_Type_Name if it detected an error for declaration T. This
21840 -- arises in the case of private tagged types where the full view
21841 -- omits the word tagged.
21842
21843 Is_Tagged :=
21844 Tagged_Present (Def)
21845 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21846
21847 Set_Is_Limited_Record (T, Limited_Present (Def));
21848
21849 if Is_Tagged then
21850 Set_Is_Tagged_Type (T, True);
21851 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21852 end if;
21853
21854 -- Type is abstract if full declaration carries keyword, or if
21855 -- previous partial view did.
21856
21857 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21858 or else Abstract_Present (Def));
21859
21860 else
21861 Check_SPARK_05_Restriction ("interface is not allowed", N);
21862
21863 Is_Tagged := True;
21864 Analyze_Interface_Declaration (T, Def);
21865
21866 if Present (Discriminant_Specifications (N)) then
21867 Error_Msg_N
21868 ("interface types cannot have discriminants",
21869 Defining_Identifier
21870 (First (Discriminant_Specifications (N))));
21871 end if;
21872 end if;
21873
21874 -- First pass: if there are self-referential access components,
21875 -- create the required anonymous access type declarations, and if
21876 -- need be an incomplete type declaration for T itself.
21877
21878 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21879
21880 if Ada_Version >= Ada_2005
21881 and then Present (Interface_List (Def))
21882 then
21883 Check_Interfaces (N, Def);
21884
21885 declare
21886 Ifaces_List : Elist_Id;
21887
21888 begin
21889 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21890 -- already in the parents.
21891
21892 Collect_Interfaces
21893 (T => T,
21894 Ifaces_List => Ifaces_List,
21895 Exclude_Parents => True);
21896
21897 Set_Interfaces (T, Ifaces_List);
21898 end;
21899 end if;
21900
21901 -- Records constitute a scope for the component declarations within.
21902 -- The scope is created prior to the processing of these declarations.
21903 -- Discriminants are processed first, so that they are visible when
21904 -- processing the other components. The Ekind of the record type itself
21905 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21906
21907 -- Enter record scope
21908
21909 Push_Scope (T);
21910
21911 -- If an incomplete or private type declaration was already given for
21912 -- the type, then this scope already exists, and the discriminants have
21913 -- been declared within. We must verify that the full declaration
21914 -- matches the incomplete one.
21915
21916 Check_Or_Process_Discriminants (N, T, Prev);
21917
21918 Set_Is_Constrained (T, not Has_Discriminants (T));
21919 Set_Has_Delayed_Freeze (T, True);
21920
21921 -- For tagged types add a manually analyzed component corresponding
21922 -- to the component _tag, the corresponding piece of tree will be
21923 -- expanded as part of the freezing actions if it is not a CPP_Class.
21924
21925 if Is_Tagged then
21926
21927 -- Do not add the tag unless we are in expansion mode
21928
21929 if Expander_Active then
21930 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21931 Enter_Name (Tag_Comp);
21932
21933 Set_Ekind (Tag_Comp, E_Component);
21934 Set_Is_Tag (Tag_Comp);
21935 Set_Is_Aliased (Tag_Comp);
21936 Set_Etype (Tag_Comp, RTE (RE_Tag));
21937 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21938 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21939 Init_Component_Location (Tag_Comp);
21940
21941 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21942 -- implemented interfaces.
21943
21944 if Has_Interfaces (T) then
21945 Add_Interface_Tag_Components (N, T);
21946 end if;
21947 end if;
21948
21949 Make_Class_Wide_Type (T);
21950 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21951 end if;
21952
21953 -- We must suppress range checks when processing record components in
21954 -- the presence of discriminants, since we don't want spurious checks to
21955 -- be generated during their analysis, but Suppress_Range_Checks flags
21956 -- must be reset the after processing the record definition.
21957
21958 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21959 -- couldn't we just use the normal range check suppression method here.
21960 -- That would seem cleaner ???
21961
21962 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21963 Set_Kill_Range_Checks (T, True);
21964 Record_Type_Definition (Def, Prev);
21965 Set_Kill_Range_Checks (T, False);
21966 else
21967 Record_Type_Definition (Def, Prev);
21968 end if;
21969
21970 -- Exit from record scope
21971
21972 End_Scope;
21973
21974 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21975 -- the implemented interfaces and associate them an aliased entity.
21976
21977 if Is_Tagged
21978 and then not Is_Empty_List (Interface_List (Def))
21979 then
21980 Derive_Progenitor_Subprograms (T, T);
21981 end if;
21982
21983 Check_Function_Writable_Actuals (N);
21984 end Record_Type_Declaration;
21985
21986 ----------------------------
21987 -- Record_Type_Definition --
21988 ----------------------------
21989
21990 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21991 Component : Entity_Id;
21992 Ctrl_Components : Boolean := False;
21993 Final_Storage_Only : Boolean;
21994 T : Entity_Id;
21995
21996 begin
21997 if Ekind (Prev_T) = E_Incomplete_Type then
21998 T := Full_View (Prev_T);
21999 else
22000 T := Prev_T;
22001 end if;
22002
22003 -- In SPARK, tagged types and type extensions may only be declared in
22004 -- the specification of library unit packages.
22005
22006 if Present (Def) and then Is_Tagged_Type (T) then
22007 declare
22008 Typ : Node_Id;
22009 Ctxt : Node_Id;
22010
22011 begin
22012 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
22013 Typ := Parent (Def);
22014 else
22015 pragma Assert
22016 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
22017 Typ := Parent (Parent (Def));
22018 end if;
22019
22020 Ctxt := Parent (Typ);
22021
22022 if Nkind (Ctxt) = N_Package_Body
22023 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
22024 then
22025 Check_SPARK_05_Restriction
22026 ("type should be defined in package specification", Typ);
22027
22028 elsif Nkind (Ctxt) /= N_Package_Specification
22029 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22030 then
22031 Check_SPARK_05_Restriction
22032 ("type should be defined in library unit package", Typ);
22033 end if;
22034 end;
22035 end if;
22036
22037 Final_Storage_Only := not Is_Controlled (T);
22038
22039 -- Ada 2005: Check whether an explicit Limited is present in a derived
22040 -- type declaration.
22041
22042 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22043 and then Limited_Present (Parent (Def))
22044 then
22045 Set_Is_Limited_Record (T);
22046 end if;
22047
22048 -- If the component list of a record type is defined by the reserved
22049 -- word null and there is no discriminant part, then the record type has
22050 -- no components and all records of the type are null records (RM 3.7)
22051 -- This procedure is also called to process the extension part of a
22052 -- record extension, in which case the current scope may have inherited
22053 -- components.
22054
22055 if No (Def)
22056 or else No (Component_List (Def))
22057 or else Null_Present (Component_List (Def))
22058 then
22059 if not Is_Tagged_Type (T) then
22060 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22061 end if;
22062
22063 else
22064 Analyze_Declarations (Component_Items (Component_List (Def)));
22065
22066 if Present (Variant_Part (Component_List (Def))) then
22067 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22068 Analyze (Variant_Part (Component_List (Def)));
22069 end if;
22070 end if;
22071
22072 -- After completing the semantic analysis of the record definition,
22073 -- record components, both new and inherited, are accessible. Set their
22074 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22075 -- whose Ekind may be void.
22076
22077 Component := First_Entity (Current_Scope);
22078 while Present (Component) loop
22079 if Ekind (Component) = E_Void
22080 and then not Is_Itype (Component)
22081 then
22082 Set_Ekind (Component, E_Component);
22083 Init_Component_Location (Component);
22084 end if;
22085
22086 Propagate_Concurrent_Flags (T, Etype (Component));
22087
22088 if Ekind (Component) /= E_Component then
22089 null;
22090
22091 -- Do not set Has_Controlled_Component on a class-wide equivalent
22092 -- type. See Make_CW_Equivalent_Type.
22093
22094 elsif not Is_Class_Wide_Equivalent_Type (T)
22095 and then (Has_Controlled_Component (Etype (Component))
22096 or else (Chars (Component) /= Name_uParent
22097 and then Is_Controlled (Etype (Component))))
22098 then
22099 Set_Has_Controlled_Component (T, True);
22100 Final_Storage_Only :=
22101 Final_Storage_Only
22102 and then Finalize_Storage_Only (Etype (Component));
22103 Ctrl_Components := True;
22104 end if;
22105
22106 Next_Entity (Component);
22107 end loop;
22108
22109 -- A Type is Finalize_Storage_Only only if all its controlled components
22110 -- are also.
22111
22112 if Ctrl_Components then
22113 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22114 end if;
22115
22116 -- Place reference to end record on the proper entity, which may
22117 -- be a partial view.
22118
22119 if Present (Def) then
22120 Process_End_Label (Def, 'e', Prev_T);
22121 end if;
22122 end Record_Type_Definition;
22123
22124 ------------------------
22125 -- Replace_Components --
22126 ------------------------
22127
22128 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22129 function Process (N : Node_Id) return Traverse_Result;
22130
22131 -------------
22132 -- Process --
22133 -------------
22134
22135 function Process (N : Node_Id) return Traverse_Result is
22136 Comp : Entity_Id;
22137
22138 begin
22139 if Nkind (N) = N_Discriminant_Specification then
22140 Comp := First_Discriminant (Typ);
22141 while Present (Comp) loop
22142 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22143 Set_Defining_Identifier (N, Comp);
22144 exit;
22145 end if;
22146
22147 Next_Discriminant (Comp);
22148 end loop;
22149
22150 elsif Nkind (N) = N_Variant_Part then
22151 Comp := First_Discriminant (Typ);
22152 while Present (Comp) loop
22153 if Chars (Comp) = Chars (Name (N)) then
22154 Set_Entity (Name (N), Comp);
22155 exit;
22156 end if;
22157
22158 Next_Discriminant (Comp);
22159 end loop;
22160
22161 elsif Nkind (N) = N_Component_Declaration then
22162 Comp := First_Component (Typ);
22163 while Present (Comp) loop
22164 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22165 Set_Defining_Identifier (N, Comp);
22166 exit;
22167 end if;
22168
22169 Next_Component (Comp);
22170 end loop;
22171 end if;
22172
22173 return OK;
22174 end Process;
22175
22176 procedure Replace is new Traverse_Proc (Process);
22177
22178 -- Start of processing for Replace_Components
22179
22180 begin
22181 Replace (Decl);
22182 end Replace_Components;
22183
22184 -------------------------------
22185 -- Set_Completion_Referenced --
22186 -------------------------------
22187
22188 procedure Set_Completion_Referenced (E : Entity_Id) is
22189 begin
22190 -- If in main unit, mark entity that is a completion as referenced,
22191 -- warnings go on the partial view when needed.
22192
22193 if In_Extended_Main_Source_Unit (E) then
22194 Set_Referenced (E);
22195 end if;
22196 end Set_Completion_Referenced;
22197
22198 ---------------------
22199 -- Set_Default_SSO --
22200 ---------------------
22201
22202 procedure Set_Default_SSO (T : Entity_Id) is
22203 begin
22204 case Opt.Default_SSO is
22205 when ' ' =>
22206 null;
22207 when 'L' =>
22208 Set_SSO_Set_Low_By_Default (T, True);
22209 when 'H' =>
22210 Set_SSO_Set_High_By_Default (T, True);
22211 when others =>
22212 raise Program_Error;
22213 end case;
22214 end Set_Default_SSO;
22215
22216 ---------------------
22217 -- Set_Fixed_Range --
22218 ---------------------
22219
22220 -- The range for fixed-point types is complicated by the fact that we
22221 -- do not know the exact end points at the time of the declaration. This
22222 -- is true for three reasons:
22223
22224 -- A size clause may affect the fudging of the end-points.
22225 -- A small clause may affect the values of the end-points.
22226 -- We try to include the end-points if it does not affect the size.
22227
22228 -- This means that the actual end-points must be established at the
22229 -- point when the type is frozen. Meanwhile, we first narrow the range
22230 -- as permitted (so that it will fit if necessary in a small specified
22231 -- size), and then build a range subtree with these narrowed bounds.
22232 -- Set_Fixed_Range constructs the range from real literal values, and
22233 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22234
22235 -- The parent of this range is set to point to the entity so that it is
22236 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22237 -- other scalar types, which are just pointers to the range in the
22238 -- original tree, this would otherwise be an orphan).
22239
22240 -- The tree is left unanalyzed. When the type is frozen, the processing
22241 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22242 -- analyzed, and uses this as an indication that it should complete
22243 -- work on the range (it will know the final small and size values).
22244
22245 procedure Set_Fixed_Range
22246 (E : Entity_Id;
22247 Loc : Source_Ptr;
22248 Lo : Ureal;
22249 Hi : Ureal)
22250 is
22251 S : constant Node_Id :=
22252 Make_Range (Loc,
22253 Low_Bound => Make_Real_Literal (Loc, Lo),
22254 High_Bound => Make_Real_Literal (Loc, Hi));
22255 begin
22256 Set_Scalar_Range (E, S);
22257 Set_Parent (S, E);
22258
22259 -- Before the freeze point, the bounds of a fixed point are universal
22260 -- and carry the corresponding type.
22261
22262 Set_Etype (Low_Bound (S), Universal_Real);
22263 Set_Etype (High_Bound (S), Universal_Real);
22264 end Set_Fixed_Range;
22265
22266 ----------------------------------
22267 -- Set_Scalar_Range_For_Subtype --
22268 ----------------------------------
22269
22270 procedure Set_Scalar_Range_For_Subtype
22271 (Def_Id : Entity_Id;
22272 R : Node_Id;
22273 Subt : Entity_Id)
22274 is
22275 Kind : constant Entity_Kind := Ekind (Def_Id);
22276
22277 begin
22278 -- Defend against previous error
22279
22280 if Nkind (R) = N_Error then
22281 return;
22282 end if;
22283
22284 Set_Scalar_Range (Def_Id, R);
22285
22286 -- We need to link the range into the tree before resolving it so
22287 -- that types that are referenced, including importantly the subtype
22288 -- itself, are properly frozen (Freeze_Expression requires that the
22289 -- expression be properly linked into the tree). Of course if it is
22290 -- already linked in, then we do not disturb the current link.
22291
22292 if No (Parent (R)) then
22293 Set_Parent (R, Def_Id);
22294 end if;
22295
22296 -- Reset the kind of the subtype during analysis of the range, to
22297 -- catch possible premature use in the bounds themselves.
22298
22299 Set_Ekind (Def_Id, E_Void);
22300 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22301 Set_Ekind (Def_Id, Kind);
22302 end Set_Scalar_Range_For_Subtype;
22303
22304 --------------------------------------------------------
22305 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22306 --------------------------------------------------------
22307
22308 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22309 (E : Entity_Id)
22310 is
22311 begin
22312 -- Make sure set if encountered during Expand_To_Stored_Constraint
22313
22314 Set_Stored_Constraint (E, No_Elist);
22315
22316 -- Give it the right value
22317
22318 if Is_Constrained (E) and then Has_Discriminants (E) then
22319 Set_Stored_Constraint (E,
22320 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22321 end if;
22322 end Set_Stored_Constraint_From_Discriminant_Constraint;
22323
22324 -------------------------------------
22325 -- Signed_Integer_Type_Declaration --
22326 -------------------------------------
22327
22328 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22329 Implicit_Base : Entity_Id;
22330 Base_Typ : Entity_Id;
22331 Lo_Val : Uint;
22332 Hi_Val : Uint;
22333 Errs : Boolean := False;
22334 Lo : Node_Id;
22335 Hi : Node_Id;
22336
22337 function Can_Derive_From (E : Entity_Id) return Boolean;
22338 -- Determine whether given bounds allow derivation from specified type
22339
22340 procedure Check_Bound (Expr : Node_Id);
22341 -- Check bound to make sure it is integral and static. If not, post
22342 -- appropriate error message and set Errs flag
22343
22344 ---------------------
22345 -- Can_Derive_From --
22346 ---------------------
22347
22348 -- Note we check both bounds against both end values, to deal with
22349 -- strange types like ones with a range of 0 .. -12341234.
22350
22351 function Can_Derive_From (E : Entity_Id) return Boolean is
22352 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22353 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22354 begin
22355 return Lo <= Lo_Val and then Lo_Val <= Hi
22356 and then
22357 Lo <= Hi_Val and then Hi_Val <= Hi;
22358 end Can_Derive_From;
22359
22360 -----------------
22361 -- Check_Bound --
22362 -----------------
22363
22364 procedure Check_Bound (Expr : Node_Id) is
22365 begin
22366 -- If a range constraint is used as an integer type definition, each
22367 -- bound of the range must be defined by a static expression of some
22368 -- integer type, but the two bounds need not have the same integer
22369 -- type (Negative bounds are allowed.) (RM 3.5.4)
22370
22371 if not Is_Integer_Type (Etype (Expr)) then
22372 Error_Msg_N
22373 ("integer type definition bounds must be of integer type", Expr);
22374 Errs := True;
22375
22376 elsif not Is_OK_Static_Expression (Expr) then
22377 Flag_Non_Static_Expr
22378 ("non-static expression used for integer type bound!", Expr);
22379 Errs := True;
22380
22381 -- The bounds are folded into literals, and we set their type to be
22382 -- universal, to avoid typing difficulties: we cannot set the type
22383 -- of the literal to the new type, because this would be a forward
22384 -- reference for the back end, and if the original type is user-
22385 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22386
22387 else
22388 if Is_Entity_Name (Expr) then
22389 Fold_Uint (Expr, Expr_Value (Expr), True);
22390 end if;
22391
22392 Set_Etype (Expr, Universal_Integer);
22393 end if;
22394 end Check_Bound;
22395
22396 -- Start of processing for Signed_Integer_Type_Declaration
22397
22398 begin
22399 -- Create an anonymous base type
22400
22401 Implicit_Base :=
22402 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22403
22404 -- Analyze and check the bounds, they can be of any integer type
22405
22406 Lo := Low_Bound (Def);
22407 Hi := High_Bound (Def);
22408
22409 -- Arbitrarily use Integer as the type if either bound had an error
22410
22411 if Hi = Error or else Lo = Error then
22412 Base_Typ := Any_Integer;
22413 Set_Error_Posted (T, True);
22414
22415 -- Here both bounds are OK expressions
22416
22417 else
22418 Analyze_And_Resolve (Lo, Any_Integer);
22419 Analyze_And_Resolve (Hi, Any_Integer);
22420
22421 Check_Bound (Lo);
22422 Check_Bound (Hi);
22423
22424 if Errs then
22425 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22426 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22427 end if;
22428
22429 -- Find type to derive from
22430
22431 Lo_Val := Expr_Value (Lo);
22432 Hi_Val := Expr_Value (Hi);
22433
22434 if Can_Derive_From (Standard_Short_Short_Integer) then
22435 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22436
22437 elsif Can_Derive_From (Standard_Short_Integer) then
22438 Base_Typ := Base_Type (Standard_Short_Integer);
22439
22440 elsif Can_Derive_From (Standard_Integer) then
22441 Base_Typ := Base_Type (Standard_Integer);
22442
22443 elsif Can_Derive_From (Standard_Long_Integer) then
22444 Base_Typ := Base_Type (Standard_Long_Integer);
22445
22446 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22447 Check_Restriction (No_Long_Long_Integers, Def);
22448 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22449
22450 else
22451 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22452 Error_Msg_N ("integer type definition bounds out of range", Def);
22453 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22454 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22455 end if;
22456 end if;
22457
22458 -- Complete both implicit base and declared first subtype entities. The
22459 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22460 -- are not clobbered when the signed integer type acts as a full view of
22461 -- a private type.
22462
22463 Set_Etype (Implicit_Base, Base_Typ);
22464 Set_Size_Info (Implicit_Base, Base_Typ);
22465 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22466 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22467 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22468
22469 Set_Ekind (T, E_Signed_Integer_Subtype);
22470 Set_Etype (T, Implicit_Base);
22471 Set_Size_Info (T, Implicit_Base);
22472 Inherit_Rep_Item_Chain (T, Implicit_Base);
22473 Set_Scalar_Range (T, Def);
22474 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22475 Set_Is_Constrained (T);
22476 end Signed_Integer_Type_Declaration;
22477
22478 end Sem_Ch3;