]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_ch3.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_Smem; use Sem_Smem;
69 with Sem_Type; use Sem_Type;
70 with Sem_Util; use Sem_Util;
71 with Sem_Warn; use Sem_Warn;
72 with Stand; use Stand;
73 with Sinfo; use Sinfo;
74 with Sinput; use Sinput;
75 with Snames; use Snames;
76 with Targparm; use Targparm;
77 with Tbuild; use Tbuild;
78 with Ttypes; use Ttypes;
79 with Uintp; use Uintp;
80 with Urealp; use Urealp;
81
82 package body Sem_Ch3 is
83
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
87
88 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
91 -- record type.
92
93 procedure Build_Derived_Type
94 (N : Node_Id;
95 Parent_Type : Entity_Id;
96 Derived_Type : Entity_Id;
97 Is_Completion : Boolean;
98 Derive_Subps : Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
113 -- the type).
114 --
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
117
118 procedure Build_Derived_Access_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
125
126 procedure Build_Derived_Array_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
133
134 procedure Build_Derived_Concurrent_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
141
142 procedure Build_Derived_Enumeration_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
149
150 procedure Build_Derived_Numeric_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
156
157 procedure Build_Derived_Private_Type
158 (N : Node_Id;
159 Parent_Type : Entity_Id;
160 Derived_Type : Entity_Id;
161 Is_Completion : Boolean;
162 Derive_Subps : Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
166
167 procedure Build_Derived_Record_Type
168 (N : Node_Id;
169 Parent_Type : Entity_Id;
170 Derived_Type : Entity_Id;
171 Derive_Subps : Boolean := True);
172 -- Subsidiary procedure used for tagged and untagged record types
173 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
174 -- All parameters are as in Build_Derived_Type except that N, in
175 -- addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should be
178 -- derived from the parent type. The only case where Derive_Subps is False
179 -- is for an implicit derived full type for a type derived from a private
180 -- type (see Build_Derived_Type).
181
182 procedure Build_Discriminal (Discrim : Entity_Id);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
189
190 function Build_Discriminant_Constraints
191 (T : Entity_Id;
192 Def : Node_Id;
193 Derived_Def : Boolean := False) return Elist_Id;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
203
204 procedure Build_Discriminated_Subtype
205 (T : Entity_Id;
206 Def_Id : Entity_Id;
207 Elist : Elist_Id;
208 Related_Nod : Node_Id;
209 For_Access : Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
212 --
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
215 --
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 --
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
226
227 function Build_Scalar_Bound
228 (Bound : Node_Id;
229 Par_T : Entity_Id;
230 Der_T : Entity_Id) return Node_Id;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
235
236 procedure Build_Underlying_Full_View
237 (N : Node_Id;
238 Typ : Entity_Id;
239 Par : Entity_Id);
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
246 -- view exchanges).
247
248 procedure Check_Access_Discriminant_Requires_Limited
249 (D : Node_Id;
250 Loc : Node_Id);
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
254
255 procedure Check_Anonymous_Access_Components
256 (Typ_Decl : Node_Id;
257 Typ : Entity_Id;
258 Prev : Entity_Id;
259 Comp_List : Node_Id);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
268
269 procedure Check_Delta_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
272
273 procedure Check_Digits_Expression (E : Node_Id);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
276
277 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
280
281 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283
284 procedure Check_Or_Process_Discriminants
285 (N : Node_Id;
286 T : Entity_Id;
287 Prev : Entity_Id := Empty);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
292 -- if any.
293
294 procedure Check_Real_Bound (Bound : Node_Id);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
297
298 procedure Constant_Redeclaration
299 (Id : Entity_Id;
300 N : Node_Id;
301 T : out Entity_Id);
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
305
306 function Contain_Interface
307 (Iface : Entity_Id;
308 Ifaces : Elist_Id) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310
311 procedure Convert_Scalar_Bounds
312 (N : Node_Id;
313 Parent_Type : Entity_Id;
314 Derived_Type : Entity_Id;
315 Loc : Source_Ptr);
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
323
324 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
327
328 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
331
332 procedure Create_Constrained_Components
333 (Subt : Entity_Id;
334 Decl_Node : Node_Id;
335 Typ : Entity_Id;
336 Constraints : Elist_Id);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
345
346 function Constrain_Component_Type
347 (Comp : Entity_Id;
348 Constrained_Typ : Entity_Id;
349 Related_Node : Node_Id;
350 Typ : Entity_Id;
351 Constraints : Elist_Id) return Entity_Id;
352 -- Given a discriminated base type Typ, a list of discriminant constraints,
353 -- Constraints, for Typ and a component Comp of Typ, create and return the
354 -- type corresponding to Etype (Comp) where all discriminant references
355 -- are replaced with the corresponding constraint. If Etype (Comp) contains
356 -- no discriminant references then it is returned as-is. Constrained_Typ
357 -- is the final constrained subtype to which the constrained component
358 -- belongs. Related_Node is the node where we attach all created itypes.
359
360 procedure Constrain_Access
361 (Def_Id : in out Entity_Id;
362 S : Node_Id;
363 Related_Nod : Node_Id);
364 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
365 -- an anonymous type created for a subtype indication. In that case it is
366 -- created in the procedure and attached to Related_Nod.
367
368 procedure Constrain_Array
369 (Def_Id : in out Entity_Id;
370 SI : Node_Id;
371 Related_Nod : Node_Id;
372 Related_Id : Entity_Id;
373 Suffix : Character);
374 -- Apply a list of index constraints to an unconstrained array type. The
375 -- first parameter is the entity for the resulting subtype. A value of
376 -- Empty for Def_Id indicates that an implicit type must be created, but
377 -- creation is delayed (and must be done by this procedure) because other
378 -- subsidiary implicit types must be created first (which is why Def_Id
379 -- is an in/out parameter). The second parameter is a subtype indication
380 -- node for the constrained array to be created (e.g. something of the
381 -- form string (1 .. 10)). Related_Nod gives the place where this type
382 -- has to be inserted in the tree. The Related_Id and Suffix parameters
383 -- are used to build the associated Implicit type name.
384
385 procedure Constrain_Concurrent
386 (Def_Id : in out Entity_Id;
387 SI : Node_Id;
388 Related_Nod : Node_Id;
389 Related_Id : Entity_Id;
390 Suffix : Character);
391 -- Apply list of discriminant constraints to an unconstrained concurrent
392 -- type.
393 --
394 -- SI is the N_Subtype_Indication node containing the constraint and
395 -- the unconstrained type to constrain.
396 --
397 -- Def_Id is the entity for the resulting constrained subtype. A value
398 -- of Empty for Def_Id indicates that an implicit type must be created,
399 -- but creation is delayed (and must be done by this procedure) because
400 -- other subsidiary implicit types must be created first (which is why
401 -- Def_Id is an in/out parameter).
402 --
403 -- Related_Nod gives the place where this type has to be inserted
404 -- in the tree.
405 --
406 -- The last two arguments are used to create its external name if needed.
407
408 function Constrain_Corresponding_Record
409 (Prot_Subt : Entity_Id;
410 Corr_Rec : Entity_Id;
411 Related_Nod : Node_Id) return Entity_Id;
412 -- When constraining a protected type or task type with discriminants,
413 -- constrain the corresponding record with the same discriminant values.
414
415 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
416 -- Constrain a decimal fixed point type with a digits constraint and/or a
417 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
418
419 procedure Constrain_Discriminated_Type
420 (Def_Id : Entity_Id;
421 S : Node_Id;
422 Related_Nod : Node_Id;
423 For_Access : Boolean := False);
424 -- Process discriminant constraints of composite type. Verify that values
425 -- have been provided for all discriminants, that the original type is
426 -- unconstrained, and that the types of the supplied expressions match
427 -- the discriminant types. The first three parameters are like in routine
428 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
429 -- of For_Access.
430
431 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain an enumeration type with a range constraint. This is identical
433 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
434
435 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
436 -- Constrain a floating point type with either a digits constraint
437 -- and/or a range constraint, building a E_Floating_Point_Subtype.
438
439 procedure Constrain_Index
440 (Index : Node_Id;
441 S : Node_Id;
442 Related_Nod : Node_Id;
443 Related_Id : Entity_Id;
444 Suffix : Character;
445 Suffix_Index : Nat);
446 -- Process an index constraint S in a constrained array declaration. The
447 -- constraint can be a subtype name, or a range with or without an explicit
448 -- subtype mark. The index is the corresponding index of the unconstrained
449 -- array. The Related_Id and Suffix parameters are used to build the
450 -- associated Implicit type name.
451
452 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
453 -- Build subtype of a signed or modular integer type
454
455 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
456 -- Constrain an ordinary fixed point type with a range constraint, and
457 -- build an E_Ordinary_Fixed_Point_Subtype entity.
458
459 procedure Copy_And_Swap (Priv, Full : Entity_Id);
460 -- Copy the Priv entity into the entity of its full declaration then swap
461 -- the two entities in such a manner that the former private type is now
462 -- seen as a full type.
463
464 procedure Decimal_Fixed_Point_Type_Declaration
465 (T : Entity_Id;
466 Def : Node_Id);
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
469
470 procedure Complete_Private_Subtype
471 (Priv : Entity_Id;
472 Full : Entity_Id;
473 Full_Base : Entity_Id;
474 Related_Nod : Node_Id);
475 -- Complete the implicit full view of a private subtype by setting the
476 -- appropriate semantic fields. If the full view of the parent is a record
477 -- type, build constrained components of subtype.
478
479 procedure Derive_Progenitor_Subprograms
480 (Parent_Type : Entity_Id;
481 Tagged_Type : Entity_Id);
482 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
483 -- operations of progenitors of Tagged_Type, and replace the subsidiary
484 -- subtypes with Tagged_Type, to build the specs of the inherited interface
485 -- primitives. The derived primitives are aliased to those of the
486 -- interface. This routine takes care also of transferring to the full view
487 -- subprograms associated with the partial view of Tagged_Type that cover
488 -- interface primitives.
489
490 procedure Derived_Standard_Character
491 (N : Node_Id;
492 Parent_Type : Entity_Id;
493 Derived_Type : Entity_Id);
494 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
495 -- derivations from types Standard.Character and Standard.Wide_Character.
496
497 procedure Derived_Type_Declaration
498 (T : Entity_Id;
499 N : Node_Id;
500 Is_Completion : Boolean);
501 -- Process a derived type declaration. Build_Derived_Type is invoked
502 -- to process the actual derived type definition. Parameters N and
503 -- Is_Completion have the same meaning as in Build_Derived_Type.
504 -- T is the N_Defining_Identifier for the entity defined in the
505 -- N_Full_Type_Declaration node N, that is T is the derived type.
506
507 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
508 -- Insert each literal in symbol table, as an overloadable identifier. Each
509 -- enumeration type is mapped into a sequence of integers, and each literal
510 -- is defined as a constant with integer value. If any of the literals are
511 -- character literals, the type is a character type, which means that
512 -- strings are legal aggregates for arrays of components of the type.
513
514 function Expand_To_Stored_Constraint
515 (Typ : Entity_Id;
516 Constraint : Elist_Id) return Elist_Id;
517 -- Given a constraint (i.e. a list of expressions) on the discriminants of
518 -- Typ, expand it into a constraint on the stored discriminants and return
519 -- the new list of expressions constraining the stored discriminants.
520
521 function Find_Type_Of_Object
522 (Obj_Def : Node_Id;
523 Related_Nod : Node_Id) return Entity_Id;
524 -- Get type entity for object referenced by Obj_Def, attaching the implicit
525 -- types generated to Related_Nod.
526
527 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
528 -- Create a new float and apply the constraint to obtain subtype of it
529
530 function Has_Range_Constraint (N : Node_Id) return Boolean;
531 -- Given an N_Subtype_Indication node N, return True if a range constraint
532 -- is present, either directly, or as part of a digits or delta constraint.
533 -- In addition, a digits constraint in the decimal case returns True, since
534 -- it establishes a default range if no explicit range is present.
535
536 function Inherit_Components
537 (N : Node_Id;
538 Parent_Base : Entity_Id;
539 Derived_Base : Entity_Id;
540 Is_Tagged : Boolean;
541 Inherit_Discr : Boolean;
542 Discs : Elist_Id) return Elist_Id;
543 -- Called from Build_Derived_Record_Type to inherit the components of
544 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
545 -- For more information on derived types and component inheritance please
546 -- consult the comment above the body of Build_Derived_Record_Type.
547 --
548 -- N is the original derived type declaration
549 --
550 -- Is_Tagged is set if we are dealing with tagged types
551 --
552 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
553 -- Parent_Base, otherwise no discriminants are inherited.
554 --
555 -- Discs gives the list of constraints that apply to Parent_Base in the
556 -- derived type declaration. If Discs is set to No_Elist, then we have
557 -- the following situation:
558 --
559 -- type Parent (D1..Dn : ..) is [tagged] record ...;
560 -- type Derived is new Parent [with ...];
561 --
562 -- which gets treated as
563 --
564 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
565 --
566 -- For untagged types the returned value is an association list. The list
567 -- starts from the association (Parent_Base => Derived_Base), and then it
568 -- contains a sequence of the associations of the form
569 --
570 -- (Old_Component => New_Component),
571 --
572 -- where Old_Component is the Entity_Id of a component in Parent_Base and
573 -- New_Component is the Entity_Id of the corresponding component in
574 -- Derived_Base. For untagged records, this association list is needed when
575 -- copying the record declaration for the derived base. In the tagged case
576 -- the value returned is irrelevant.
577
578 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
579 -- Propagate static and dynamic predicate flags from a parent to the
580 -- subtype in a subtype declaration with and without constraints.
581
582 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
583 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
584 -- Determine whether subprogram Subp is a procedure subject to pragma
585 -- Extensions_Visible with value False and has at least one controlling
586 -- parameter of mode OUT.
587
588 function Is_Valid_Constraint_Kind
589 (T_Kind : Type_Kind;
590 Constraint_Kind : Node_Kind) return Boolean;
591 -- Returns True if it is legal to apply the given kind of constraint to the
592 -- given kind of type (index constraint to an array type, for example).
593
594 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
595 -- Create new modular type. Verify that modulus is in bounds
596
597 procedure New_Concatenation_Op (Typ : Entity_Id);
598 -- Create an abbreviated declaration for an operator in order to
599 -- materialize concatenation on array types.
600
601 procedure Ordinary_Fixed_Point_Type_Declaration
602 (T : Entity_Id;
603 Def : Node_Id);
604 -- Create a new ordinary fixed point type, and apply the constraint to
605 -- obtain subtype of it.
606
607 procedure Prepare_Private_Subtype_Completion
608 (Id : Entity_Id;
609 Related_Nod : Node_Id);
610 -- Id is a subtype of some private type. Creates the full declaration
611 -- associated with Id whenever possible, i.e. when the full declaration
612 -- of the base type is already known. Records each subtype into
613 -- Private_Dependents of the base type.
614
615 procedure Process_Incomplete_Dependents
616 (N : Node_Id;
617 Full_T : Entity_Id;
618 Inc_T : Entity_Id);
619 -- Process all entities that depend on an incomplete type. There include
620 -- subtypes, subprogram types that mention the incomplete type in their
621 -- profiles, and subprogram with access parameters that designate the
622 -- incomplete type.
623
624 -- Inc_T is the defining identifier of an incomplete type declaration, its
625 -- Ekind is E_Incomplete_Type.
626 --
627 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
628 --
629 -- Full_T is N's defining identifier.
630 --
631 -- Subtypes of incomplete types with discriminants are completed when the
632 -- parent type is. This is simpler than private subtypes, because they can
633 -- only appear in the same scope, and there is no need to exchange views.
634 -- Similarly, access_to_subprogram types may have a parameter or a return
635 -- type that is an incomplete type, and that must be replaced with the
636 -- full type.
637 --
638 -- If the full type is tagged, subprogram with access parameters that
639 -- designated the incomplete may be primitive operations of the full type,
640 -- and have to be processed accordingly.
641
642 procedure Process_Real_Range_Specification (Def : Node_Id);
643 -- Given the type definition for a real type, this procedure processes and
644 -- checks the real range specification of this type definition if one is
645 -- present. If errors are found, error messages are posted, and the
646 -- Real_Range_Specification of Def is reset to Empty.
647
648 procedure Record_Type_Declaration
649 (T : Entity_Id;
650 N : Node_Id;
651 Prev : Entity_Id);
652 -- Process a record type declaration (for both untagged and tagged
653 -- records). Parameters T and N are exactly like in procedure
654 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
655 -- for this routine. If this is the completion of an incomplete type
656 -- declaration, Prev is the entity of the incomplete declaration, used for
657 -- cross-referencing. Otherwise Prev = T.
658
659 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
660 -- This routine is used to process the actual record type definition (both
661 -- for untagged and tagged records). Def is a record type definition node.
662 -- This procedure analyzes the components in this record type definition.
663 -- Prev_T is the entity for the enclosing record type. It is provided so
664 -- that its Has_Task flag can be set if any of the component have Has_Task
665 -- set. If the declaration is the completion of an incomplete type
666 -- declaration, Prev_T is the original incomplete type, whose full view is
667 -- the record type.
668
669 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
670 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
671 -- build a copy of the declaration tree of the parent, and we create
672 -- independently the list of components for the derived type. Semantic
673 -- information uses the component entities, but record representation
674 -- clauses are validated on the declaration tree. This procedure replaces
675 -- discriminants and components in the declaration with those that have
676 -- been created by Inherit_Components.
677
678 procedure Set_Fixed_Range
679 (E : Entity_Id;
680 Loc : Source_Ptr;
681 Lo : Ureal;
682 Hi : Ureal);
683 -- Build a range node with the given bounds and set it as the Scalar_Range
684 -- of the given fixed-point type entity. Loc is the source location used
685 -- for the constructed range. See body for further details.
686
687 procedure Set_Scalar_Range_For_Subtype
688 (Def_Id : Entity_Id;
689 R : Node_Id;
690 Subt : Entity_Id);
691 -- This routine is used to set the scalar range field for a subtype given
692 -- Def_Id, the entity for the subtype, and R, the range expression for the
693 -- scalar range. Subt provides the parent subtype to be used to analyze,
694 -- resolve, and check the given range.
695
696 procedure Set_Default_SSO (T : Entity_Id);
697 -- T is the entity for an array or record being declared. This procedure
698 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
699 -- to the setting of Opt.Default_SSO.
700
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
704
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
709
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
713
714 -----------------------
715 -- Access_Definition --
716 -----------------------
717
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
721 is
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
726
727 begin
728 Check_SPARK_05_Restriction ("access type is not allowed", N);
729
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
736
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
739
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
743
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
748
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
752
753 declare
754 Par : Node_Id;
755
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
763
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
768
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
776
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
784
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
789
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
792
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
798
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
801
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
805
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
808
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
811
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
814
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
818
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
822
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
828
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
831
832 if Present (Access_To_Subprogram_Definition (N)) then
833
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
837
838 Check_Compiler_Unit ("anonymous access to subprogram", N);
839
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
843
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
849 end if;
850
851 Set_Can_Use_Internal_Rep
852 (Anon_Type, not Always_Compatible_Rep_On_Target);
853
854 -- If the anonymous access is associated with a protected operation,
855 -- create a reference to it after the enclosing protected definition
856 -- because the itype will be used in the subsequent bodies.
857
858 -- If the anonymous access itself is protected, a full type
859 -- declaratiton will be created for it, so that the equivalent
860 -- record type can be constructed. For further details, see
861 -- Replace_Anonymous_Access_To_Protected-Subprogram.
862
863 if Ekind (Current_Scope) = E_Protected_Type
864 and then not Protected_Present (Access_To_Subprogram_Definition (N))
865 then
866 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
867 end if;
868
869 return Anon_Type;
870 end if;
871
872 Find_Type (Subtype_Mark (N));
873 Desig_Type := Entity (Subtype_Mark (N));
874
875 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
876 Set_Etype (Anon_Type, Anon_Type);
877
878 -- Make sure the anonymous access type has size and alignment fields
879 -- set, as required by gigi. This is necessary in the case of the
880 -- Task_Body_Procedure.
881
882 if not Has_Private_Component (Desig_Type) then
883 Layout_Type (Anon_Type);
884 end if;
885
886 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
887 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
888 -- the null value is allowed. In Ada 95 the null value is never allowed.
889
890 if Ada_Version >= Ada_2005 then
891 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
892 else
893 Set_Can_Never_Be_Null (Anon_Type, True);
894 end if;
895
896 -- The anonymous access type is as public as the discriminated type or
897 -- subprogram that defines it. It is imported (for back-end purposes)
898 -- if the designated type is.
899
900 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
901
902 -- Ada 2005 (AI-231): Propagate the access-constant attribute
903
904 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
905
906 -- The context is either a subprogram declaration, object declaration,
907 -- or an access discriminant, in a private or a full type declaration.
908 -- In the case of a subprogram, if the designated type is incomplete,
909 -- the operation will be a primitive operation of the full type, to be
910 -- updated subsequently. If the type is imported through a limited_with
911 -- clause, the subprogram is not a primitive operation of the type
912 -- (which is declared elsewhere in some other scope).
913
914 if Ekind (Desig_Type) = E_Incomplete_Type
915 and then not From_Limited_With (Desig_Type)
916 and then Is_Overloadable (Current_Scope)
917 then
918 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
919 Set_Has_Delayed_Freeze (Current_Scope);
920 end if;
921
922 -- Ada 2005: If the designated type is an interface that may contain
923 -- tasks, create a Master entity for the declaration. This must be done
924 -- before expansion of the full declaration, because the declaration may
925 -- include an expression that is an allocator, whose expansion needs the
926 -- proper Master for the created tasks.
927
928 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
929 then
930 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
931 then
932 Build_Class_Wide_Master (Anon_Type);
933
934 -- Similarly, if the type is an anonymous access that designates
935 -- tasks, create a master entity for it in the current context.
936
937 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
938 then
939 Build_Master_Entity (Defining_Identifier (Related_Nod));
940 Build_Master_Renaming (Anon_Type);
941 end if;
942 end if;
943
944 -- For a private component of a protected type, it is imperative that
945 -- the back-end elaborate the type immediately after the protected
946 -- declaration, because this type will be used in the declarations
947 -- created for the component within each protected body, so we must
948 -- create an itype reference for it now.
949
950 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
951 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
952
953 -- Similarly, if the access definition is the return result of a
954 -- function, create an itype reference for it because it will be used
955 -- within the function body. For a regular function that is not a
956 -- compilation unit, insert reference after the declaration. For a
957 -- protected operation, insert it after the enclosing protected type
958 -- declaration. In either case, do not create a reference for a type
959 -- obtained through a limited_with clause, because this would introduce
960 -- semantic dependencies.
961
962 -- Similarly, do not create a reference if the designated type is a
963 -- generic formal, because no use of it will reach the backend.
964
965 elsif Nkind (Related_Nod) = N_Function_Specification
966 and then not From_Limited_With (Desig_Type)
967 and then not Is_Generic_Type (Desig_Type)
968 then
969 if Present (Enclosing_Prot_Type) then
970 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
971
972 elsif Is_List_Member (Parent (Related_Nod))
973 and then Nkind (Parent (N)) /= N_Parameter_Specification
974 then
975 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
976 end if;
977
978 -- Finally, create an itype reference for an object declaration of an
979 -- anonymous access type. This is strictly necessary only for deferred
980 -- constants, but in any case will avoid out-of-scope problems in the
981 -- back-end.
982
983 elsif Nkind (Related_Nod) = N_Object_Declaration then
984 Build_Itype_Reference (Anon_Type, Related_Nod);
985 end if;
986
987 return Anon_Type;
988 end Access_Definition;
989
990 -----------------------------------
991 -- Access_Subprogram_Declaration --
992 -----------------------------------
993
994 procedure Access_Subprogram_Declaration
995 (T_Name : Entity_Id;
996 T_Def : Node_Id)
997 is
998 procedure Check_For_Premature_Usage (Def : Node_Id);
999 -- Check that type T_Name is not used, directly or recursively, as a
1000 -- parameter or a return type in Def. Def is either a subtype, an
1001 -- access_definition, or an access_to_subprogram_definition.
1002
1003 -------------------------------
1004 -- Check_For_Premature_Usage --
1005 -------------------------------
1006
1007 procedure Check_For_Premature_Usage (Def : Node_Id) is
1008 Param : Node_Id;
1009
1010 begin
1011 -- Check for a subtype mark
1012
1013 if Nkind (Def) in N_Has_Etype then
1014 if Etype (Def) = T_Name then
1015 Error_Msg_N
1016 ("type& cannot be used before end of its declaration", Def);
1017 end if;
1018
1019 -- If this is not a subtype, then this is an access_definition
1020
1021 elsif Nkind (Def) = N_Access_Definition then
1022 if Present (Access_To_Subprogram_Definition (Def)) then
1023 Check_For_Premature_Usage
1024 (Access_To_Subprogram_Definition (Def));
1025 else
1026 Check_For_Premature_Usage (Subtype_Mark (Def));
1027 end if;
1028
1029 -- The only cases left are N_Access_Function_Definition and
1030 -- N_Access_Procedure_Definition.
1031
1032 else
1033 if Present (Parameter_Specifications (Def)) then
1034 Param := First (Parameter_Specifications (Def));
1035 while Present (Param) loop
1036 Check_For_Premature_Usage (Parameter_Type (Param));
1037 Param := Next (Param);
1038 end loop;
1039 end if;
1040
1041 if Nkind (Def) = N_Access_Function_Definition then
1042 Check_For_Premature_Usage (Result_Definition (Def));
1043 end if;
1044 end if;
1045 end Check_For_Premature_Usage;
1046
1047 -- Local variables
1048
1049 Formals : constant List_Id := Parameter_Specifications (T_Def);
1050 Formal : Entity_Id;
1051 D_Ityp : Node_Id;
1052 Desig_Type : constant Entity_Id :=
1053 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1054
1055 -- Start of processing for Access_Subprogram_Declaration
1056
1057 begin
1058 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1059
1060 -- Associate the Itype node with the inner full-type declaration or
1061 -- subprogram spec or entry body. This is required to handle nested
1062 -- anonymous declarations. For example:
1063
1064 -- procedure P
1065 -- (X : access procedure
1066 -- (Y : access procedure
1067 -- (Z : access T)))
1068
1069 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1070 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1071 N_Private_Type_Declaration,
1072 N_Private_Extension_Declaration,
1073 N_Procedure_Specification,
1074 N_Function_Specification,
1075 N_Entry_Body)
1076
1077 or else
1078 Nkind_In (D_Ityp, N_Object_Declaration,
1079 N_Object_Renaming_Declaration,
1080 N_Formal_Object_Declaration,
1081 N_Formal_Type_Declaration,
1082 N_Task_Type_Declaration,
1083 N_Protected_Type_Declaration))
1084 loop
1085 D_Ityp := Parent (D_Ityp);
1086 pragma Assert (D_Ityp /= Empty);
1087 end loop;
1088
1089 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1090
1091 if Nkind_In (D_Ityp, N_Procedure_Specification,
1092 N_Function_Specification)
1093 then
1094 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1095
1096 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1097 N_Object_Declaration,
1098 N_Object_Renaming_Declaration,
1099 N_Formal_Type_Declaration)
1100 then
1101 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1102 end if;
1103
1104 if Nkind (T_Def) = N_Access_Function_Definition then
1105 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1106 declare
1107 Acc : constant Node_Id := Result_Definition (T_Def);
1108
1109 begin
1110 if Present (Access_To_Subprogram_Definition (Acc))
1111 and then
1112 Protected_Present (Access_To_Subprogram_Definition (Acc))
1113 then
1114 Set_Etype
1115 (Desig_Type,
1116 Replace_Anonymous_Access_To_Protected_Subprogram
1117 (T_Def));
1118
1119 else
1120 Set_Etype
1121 (Desig_Type,
1122 Access_Definition (T_Def, Result_Definition (T_Def)));
1123 end if;
1124 end;
1125
1126 else
1127 Analyze (Result_Definition (T_Def));
1128
1129 declare
1130 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1131
1132 begin
1133 -- If a null exclusion is imposed on the result type, then
1134 -- create a null-excluding itype (an access subtype) and use
1135 -- it as the function's Etype.
1136
1137 if Is_Access_Type (Typ)
1138 and then Null_Exclusion_In_Return_Present (T_Def)
1139 then
1140 Set_Etype (Desig_Type,
1141 Create_Null_Excluding_Itype
1142 (T => Typ,
1143 Related_Nod => T_Def,
1144 Scope_Id => Current_Scope));
1145
1146 else
1147 if From_Limited_With (Typ) then
1148
1149 -- AI05-151: Incomplete types are allowed in all basic
1150 -- declarations, including access to subprograms.
1151
1152 if Ada_Version >= Ada_2012 then
1153 null;
1154
1155 else
1156 Error_Msg_NE
1157 ("illegal use of incomplete type&",
1158 Result_Definition (T_Def), Typ);
1159 end if;
1160
1161 elsif Ekind (Current_Scope) = E_Package
1162 and then In_Private_Part (Current_Scope)
1163 then
1164 if Ekind (Typ) = E_Incomplete_Type then
1165 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1166
1167 elsif Is_Class_Wide_Type (Typ)
1168 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1169 then
1170 Append_Elmt
1171 (Desig_Type, Private_Dependents (Etype (Typ)));
1172 end if;
1173 end if;
1174
1175 Set_Etype (Desig_Type, Typ);
1176 end if;
1177 end;
1178 end if;
1179
1180 if not (Is_Type (Etype (Desig_Type))) then
1181 Error_Msg_N
1182 ("expect type in function specification",
1183 Result_Definition (T_Def));
1184 end if;
1185
1186 else
1187 Set_Etype (Desig_Type, Standard_Void_Type);
1188 end if;
1189
1190 if Present (Formals) then
1191 Push_Scope (Desig_Type);
1192
1193 -- Some special tests here. These special tests can be removed
1194 -- if and when Itypes always have proper parent pointers to their
1195 -- declarations???
1196
1197 -- Special test 1) Link defining_identifier of formals. Required by
1198 -- First_Formal to provide its functionality.
1199
1200 declare
1201 F : Node_Id;
1202
1203 begin
1204 F := First (Formals);
1205
1206 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1207 -- when it is part of an unconstrained type and subtype expansion
1208 -- is disabled. To avoid back-end problems with shared profiles,
1209 -- use previous subprogram type as the designated type, and then
1210 -- remove scope added above.
1211
1212 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1213 then
1214 Set_Etype (T_Name, T_Name);
1215 Init_Size_Align (T_Name);
1216 Set_Directly_Designated_Type (T_Name,
1217 Scope (Defining_Identifier (F)));
1218 End_Scope;
1219 return;
1220 end if;
1221
1222 while Present (F) loop
1223 if No (Parent (Defining_Identifier (F))) then
1224 Set_Parent (Defining_Identifier (F), F);
1225 end if;
1226
1227 Next (F);
1228 end loop;
1229 end;
1230
1231 Process_Formals (Formals, Parent (T_Def));
1232
1233 -- Special test 2) End_Scope requires that the parent pointer be set
1234 -- to something reasonable, but Itypes don't have parent pointers. So
1235 -- we set it and then unset it ???
1236
1237 Set_Parent (Desig_Type, T_Name);
1238 End_Scope;
1239 Set_Parent (Desig_Type, Empty);
1240 end if;
1241
1242 -- Check for premature usage of the type being defined
1243
1244 Check_For_Premature_Usage (T_Def);
1245
1246 -- The return type and/or any parameter type may be incomplete. Mark the
1247 -- subprogram_type as depending on the incomplete type, so that it can
1248 -- be updated when the full type declaration is seen. This only applies
1249 -- to incomplete types declared in some enclosing scope, not to limited
1250 -- views from other packages.
1251
1252 -- Prior to Ada 2012, access to functions can only have in_parameters.
1253
1254 if Present (Formals) then
1255 Formal := First_Formal (Desig_Type);
1256 while Present (Formal) loop
1257 if Ekind (Formal) /= E_In_Parameter
1258 and then Nkind (T_Def) = N_Access_Function_Definition
1259 and then Ada_Version < Ada_2012
1260 then
1261 Error_Msg_N ("functions can only have IN parameters", Formal);
1262 end if;
1263
1264 if Ekind (Etype (Formal)) = E_Incomplete_Type
1265 and then In_Open_Scopes (Scope (Etype (Formal)))
1266 then
1267 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1268 Set_Has_Delayed_Freeze (Desig_Type);
1269 end if;
1270
1271 Next_Formal (Formal);
1272 end loop;
1273 end if;
1274
1275 -- Check whether an indirect call without actuals may be possible. This
1276 -- is used when resolving calls whose result is then indexed.
1277
1278 May_Need_Actuals (Desig_Type);
1279
1280 -- If the return type is incomplete, this is legal as long as the type
1281 -- is declared in the current scope and will be completed in it (rather
1282 -- than being part of limited view).
1283
1284 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1285 and then not Has_Delayed_Freeze (Desig_Type)
1286 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1287 then
1288 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1289 Set_Has_Delayed_Freeze (Desig_Type);
1290 end if;
1291
1292 Check_Delayed_Subprogram (Desig_Type);
1293
1294 if Protected_Present (T_Def) then
1295 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1296 Set_Convention (Desig_Type, Convention_Protected);
1297 else
1298 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1299 end if;
1300
1301 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1302
1303 Set_Etype (T_Name, T_Name);
1304 Init_Size_Align (T_Name);
1305 Set_Directly_Designated_Type (T_Name, Desig_Type);
1306
1307 Generate_Reference_To_Formals (T_Name);
1308
1309 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1310
1311 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1312
1313 Check_Restriction (No_Access_Subprograms, T_Def);
1314 end Access_Subprogram_Declaration;
1315
1316 ----------------------------
1317 -- Access_Type_Declaration --
1318 ----------------------------
1319
1320 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1321 P : constant Node_Id := Parent (Def);
1322 S : constant Node_Id := Subtype_Indication (Def);
1323
1324 Full_Desig : Entity_Id;
1325
1326 begin
1327 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1328
1329 -- Check for permissible use of incomplete type
1330
1331 if Nkind (S) /= N_Subtype_Indication then
1332 Analyze (S);
1333
1334 if Present (Entity (S))
1335 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1336 then
1337 Set_Directly_Designated_Type (T, Entity (S));
1338
1339 -- If the designated type is a limited view, we cannot tell if
1340 -- the full view contains tasks, and there is no way to handle
1341 -- that full view in a client. We create a master entity for the
1342 -- scope, which will be used when a client determines that one
1343 -- is needed.
1344
1345 if From_Limited_With (Entity (S))
1346 and then not Is_Class_Wide_Type (Entity (S))
1347 then
1348 Set_Ekind (T, E_Access_Type);
1349 Build_Master_Entity (T);
1350 Build_Master_Renaming (T);
1351 end if;
1352
1353 else
1354 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1355 end if;
1356
1357 -- If the access definition is of the form: ACCESS NOT NULL ..
1358 -- the subtype indication must be of an access type. Create
1359 -- a null-excluding subtype of it.
1360
1361 if Null_Excluding_Subtype (Def) then
1362 if not Is_Access_Type (Entity (S)) then
1363 Error_Msg_N ("null exclusion must apply to access type", Def);
1364
1365 else
1366 declare
1367 Loc : constant Source_Ptr := Sloc (S);
1368 Decl : Node_Id;
1369 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1370
1371 begin
1372 Decl :=
1373 Make_Subtype_Declaration (Loc,
1374 Defining_Identifier => Nam,
1375 Subtype_Indication =>
1376 New_Occurrence_Of (Entity (S), Loc));
1377 Set_Null_Exclusion_Present (Decl);
1378 Insert_Before (Parent (Def), Decl);
1379 Analyze (Decl);
1380 Set_Entity (S, Nam);
1381 end;
1382 end if;
1383 end if;
1384
1385 else
1386 Set_Directly_Designated_Type (T,
1387 Process_Subtype (S, P, T, 'P'));
1388 end if;
1389
1390 if All_Present (Def) or Constant_Present (Def) then
1391 Set_Ekind (T, E_General_Access_Type);
1392 else
1393 Set_Ekind (T, E_Access_Type);
1394 end if;
1395
1396 Full_Desig := Designated_Type (T);
1397
1398 if Base_Type (Full_Desig) = T then
1399 Error_Msg_N ("access type cannot designate itself", S);
1400
1401 -- In Ada 2005, the type may have a limited view through some unit in
1402 -- its own context, allowing the following circularity that cannot be
1403 -- detected earlier.
1404
1405 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1406 then
1407 Error_Msg_N
1408 ("access type cannot designate its own class-wide type", S);
1409
1410 -- Clean up indication of tagged status to prevent cascaded errors
1411
1412 Set_Is_Tagged_Type (T, False);
1413 end if;
1414
1415 Set_Etype (T, T);
1416
1417 -- If the type has appeared already in a with_type clause, it is frozen
1418 -- and the pointer size is already set. Else, initialize.
1419
1420 if not From_Limited_With (T) then
1421 Init_Size_Align (T);
1422 end if;
1423
1424 -- Note that Has_Task is always false, since the access type itself
1425 -- is not a task type. See Einfo for more description on this point.
1426 -- Exactly the same consideration applies to Has_Controlled_Component
1427 -- and to Has_Protected.
1428
1429 Set_Has_Task (T, False);
1430 Set_Has_Protected (T, False);
1431 Set_Has_Timing_Event (T, False);
1432 Set_Has_Controlled_Component (T, False);
1433
1434 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1435 -- problems where an incomplete view of this entity has been previously
1436 -- established by a limited with and an overlaid version of this field
1437 -- (Stored_Constraint) was initialized for the incomplete view.
1438
1439 -- This reset is performed in most cases except where the access type
1440 -- has been created for the purposes of allocating or deallocating a
1441 -- build-in-place object. Such access types have explicitly set pools
1442 -- and finalization masters.
1443
1444 if No (Associated_Storage_Pool (T)) then
1445 Set_Finalization_Master (T, Empty);
1446 end if;
1447
1448 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1449 -- attributes
1450
1451 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1452 Set_Is_Access_Constant (T, Constant_Present (Def));
1453 end Access_Type_Declaration;
1454
1455 ----------------------------------
1456 -- Add_Interface_Tag_Components --
1457 ----------------------------------
1458
1459 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1460 Loc : constant Source_Ptr := Sloc (N);
1461 L : List_Id;
1462 Last_Tag : Node_Id;
1463
1464 procedure Add_Tag (Iface : Entity_Id);
1465 -- Add tag for one of the progenitor interfaces
1466
1467 -------------
1468 -- Add_Tag --
1469 -------------
1470
1471 procedure Add_Tag (Iface : Entity_Id) is
1472 Decl : Node_Id;
1473 Def : Node_Id;
1474 Tag : Entity_Id;
1475 Offset : Entity_Id;
1476
1477 begin
1478 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1479
1480 -- This is a reasonable place to propagate predicates
1481
1482 if Has_Predicates (Iface) then
1483 Set_Has_Predicates (Typ);
1484 end if;
1485
1486 Def :=
1487 Make_Component_Definition (Loc,
1488 Aliased_Present => True,
1489 Subtype_Indication =>
1490 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1491
1492 Tag := Make_Temporary (Loc, 'V');
1493
1494 Decl :=
1495 Make_Component_Declaration (Loc,
1496 Defining_Identifier => Tag,
1497 Component_Definition => Def);
1498
1499 Analyze_Component_Declaration (Decl);
1500
1501 Set_Analyzed (Decl);
1502 Set_Ekind (Tag, E_Component);
1503 Set_Is_Tag (Tag);
1504 Set_Is_Aliased (Tag);
1505 Set_Related_Type (Tag, Iface);
1506 Init_Component_Location (Tag);
1507
1508 pragma Assert (Is_Frozen (Iface));
1509
1510 Set_DT_Entry_Count (Tag,
1511 DT_Entry_Count (First_Entity (Iface)));
1512
1513 if No (Last_Tag) then
1514 Prepend (Decl, L);
1515 else
1516 Insert_After (Last_Tag, Decl);
1517 end if;
1518
1519 Last_Tag := Decl;
1520
1521 -- If the ancestor has discriminants we need to give special support
1522 -- to store the offset_to_top value of the secondary dispatch tables.
1523 -- For this purpose we add a supplementary component just after the
1524 -- field that contains the tag associated with each secondary DT.
1525
1526 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1527 Def :=
1528 Make_Component_Definition (Loc,
1529 Subtype_Indication =>
1530 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1531
1532 Offset := Make_Temporary (Loc, 'V');
1533
1534 Decl :=
1535 Make_Component_Declaration (Loc,
1536 Defining_Identifier => Offset,
1537 Component_Definition => Def);
1538
1539 Analyze_Component_Declaration (Decl);
1540
1541 Set_Analyzed (Decl);
1542 Set_Ekind (Offset, E_Component);
1543 Set_Is_Aliased (Offset);
1544 Set_Related_Type (Offset, Iface);
1545 Init_Component_Location (Offset);
1546 Insert_After (Last_Tag, Decl);
1547 Last_Tag := Decl;
1548 end if;
1549 end Add_Tag;
1550
1551 -- Local variables
1552
1553 Elmt : Elmt_Id;
1554 Ext : Node_Id;
1555 Comp : Node_Id;
1556
1557 -- Start of processing for Add_Interface_Tag_Components
1558
1559 begin
1560 if not RTE_Available (RE_Interface_Tag) then
1561 Error_Msg
1562 ("(Ada 2005) interface types not supported by this run-time!",
1563 Sloc (N));
1564 return;
1565 end if;
1566
1567 if Ekind (Typ) /= E_Record_Type
1568 or else (Is_Concurrent_Record_Type (Typ)
1569 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1570 or else (not Is_Concurrent_Record_Type (Typ)
1571 and then No (Interfaces (Typ))
1572 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1573 then
1574 return;
1575 end if;
1576
1577 -- Find the current last tag
1578
1579 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1580 Ext := Record_Extension_Part (Type_Definition (N));
1581 else
1582 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1583 Ext := Type_Definition (N);
1584 end if;
1585
1586 Last_Tag := Empty;
1587
1588 if not (Present (Component_List (Ext))) then
1589 Set_Null_Present (Ext, False);
1590 L := New_List;
1591 Set_Component_List (Ext,
1592 Make_Component_List (Loc,
1593 Component_Items => L,
1594 Null_Present => False));
1595 else
1596 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1597 L := Component_Items
1598 (Component_List
1599 (Record_Extension_Part
1600 (Type_Definition (N))));
1601 else
1602 L := Component_Items
1603 (Component_List
1604 (Type_Definition (N)));
1605 end if;
1606
1607 -- Find the last tag component
1608
1609 Comp := First (L);
1610 while Present (Comp) loop
1611 if Nkind (Comp) = N_Component_Declaration
1612 and then Is_Tag (Defining_Identifier (Comp))
1613 then
1614 Last_Tag := Comp;
1615 end if;
1616
1617 Next (Comp);
1618 end loop;
1619 end if;
1620
1621 -- At this point L references the list of components and Last_Tag
1622 -- references the current last tag (if any). Now we add the tag
1623 -- corresponding with all the interfaces that are not implemented
1624 -- by the parent.
1625
1626 if Present (Interfaces (Typ)) then
1627 Elmt := First_Elmt (Interfaces (Typ));
1628 while Present (Elmt) loop
1629 Add_Tag (Node (Elmt));
1630 Next_Elmt (Elmt);
1631 end loop;
1632 end if;
1633 end Add_Interface_Tag_Components;
1634
1635 -------------------------------------
1636 -- Add_Internal_Interface_Entities --
1637 -------------------------------------
1638
1639 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1640 Elmt : Elmt_Id;
1641 Iface : Entity_Id;
1642 Iface_Elmt : Elmt_Id;
1643 Iface_Prim : Entity_Id;
1644 Ifaces_List : Elist_Id;
1645 New_Subp : Entity_Id := Empty;
1646 Prim : Entity_Id;
1647 Restore_Scope : Boolean := False;
1648
1649 begin
1650 pragma Assert (Ada_Version >= Ada_2005
1651 and then Is_Record_Type (Tagged_Type)
1652 and then Is_Tagged_Type (Tagged_Type)
1653 and then Has_Interfaces (Tagged_Type)
1654 and then not Is_Interface (Tagged_Type));
1655
1656 -- Ensure that the internal entities are added to the scope of the type
1657
1658 if Scope (Tagged_Type) /= Current_Scope then
1659 Push_Scope (Scope (Tagged_Type));
1660 Restore_Scope := True;
1661 end if;
1662
1663 Collect_Interfaces (Tagged_Type, Ifaces_List);
1664
1665 Iface_Elmt := First_Elmt (Ifaces_List);
1666 while Present (Iface_Elmt) loop
1667 Iface := Node (Iface_Elmt);
1668
1669 -- Originally we excluded here from this processing interfaces that
1670 -- are parents of Tagged_Type because their primitives are located
1671 -- in the primary dispatch table (and hence no auxiliary internal
1672 -- entities are required to handle secondary dispatch tables in such
1673 -- case). However, these auxiliary entities are also required to
1674 -- handle derivations of interfaces in formals of generics (see
1675 -- Derive_Subprograms).
1676
1677 Elmt := First_Elmt (Primitive_Operations (Iface));
1678 while Present (Elmt) loop
1679 Iface_Prim := Node (Elmt);
1680
1681 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1682 Prim :=
1683 Find_Primitive_Covering_Interface
1684 (Tagged_Type => Tagged_Type,
1685 Iface_Prim => Iface_Prim);
1686
1687 if No (Prim) and then Serious_Errors_Detected > 0 then
1688 goto Continue;
1689 end if;
1690
1691 pragma Assert (Present (Prim));
1692
1693 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1694 -- differs from the name of the interface primitive then it is
1695 -- a private primitive inherited from a parent type. In such
1696 -- case, given that Tagged_Type covers the interface, the
1697 -- inherited private primitive becomes visible. For such
1698 -- purpose we add a new entity that renames the inherited
1699 -- private primitive.
1700
1701 if Chars (Prim) /= Chars (Iface_Prim) then
1702 pragma Assert (Has_Suffix (Prim, 'P'));
1703 Derive_Subprogram
1704 (New_Subp => New_Subp,
1705 Parent_Subp => Iface_Prim,
1706 Derived_Type => Tagged_Type,
1707 Parent_Type => Iface);
1708 Set_Alias (New_Subp, Prim);
1709 Set_Is_Abstract_Subprogram
1710 (New_Subp, Is_Abstract_Subprogram (Prim));
1711 end if;
1712
1713 Derive_Subprogram
1714 (New_Subp => New_Subp,
1715 Parent_Subp => Iface_Prim,
1716 Derived_Type => Tagged_Type,
1717 Parent_Type => Iface);
1718
1719 declare
1720 Anc : Entity_Id;
1721 begin
1722 if Is_Inherited_Operation (Prim)
1723 and then Present (Alias (Prim))
1724 then
1725 Anc := Alias (Prim);
1726 else
1727 Anc := Overridden_Operation (Prim);
1728 end if;
1729
1730 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1731 -- nonconforming preconditions in both an ancestor and
1732 -- a progenitor operation.
1733
1734 if Present (Anc)
1735 and then Has_Non_Trivial_Precondition (Anc)
1736 and then Has_Non_Trivial_Precondition (Iface_Prim)
1737 then
1738 if Is_Abstract_Subprogram (Prim)
1739 or else
1740 (Ekind (Prim) = E_Procedure
1741 and then Nkind (Parent (Prim)) =
1742 N_Procedure_Specification
1743 and then Null_Present (Parent (Prim)))
1744 then
1745 null;
1746
1747 -- The inherited operation must be overridden
1748
1749 elsif not Comes_From_Source (Prim) then
1750 Error_Msg_NE
1751 ("&inherits non-conforming preconditions and must "
1752 & "be overridden (RM 6.1.1 (10-16)",
1753 Parent (Tagged_Type), Prim);
1754 end if;
1755 end if;
1756 end;
1757
1758 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1759 -- associated with interface types. These entities are
1760 -- only registered in the list of primitives of its
1761 -- corresponding tagged type because they are only used
1762 -- to fill the contents of the secondary dispatch tables.
1763 -- Therefore they are removed from the homonym chains.
1764
1765 Set_Is_Hidden (New_Subp);
1766 Set_Is_Internal (New_Subp);
1767 Set_Alias (New_Subp, Prim);
1768 Set_Is_Abstract_Subprogram
1769 (New_Subp, Is_Abstract_Subprogram (Prim));
1770 Set_Interface_Alias (New_Subp, Iface_Prim);
1771
1772 -- If the returned type is an interface then propagate it to
1773 -- the returned type. Needed by the thunk to generate the code
1774 -- which displaces "this" to reference the corresponding
1775 -- secondary dispatch table in the returned object.
1776
1777 if Is_Interface (Etype (Iface_Prim)) then
1778 Set_Etype (New_Subp, Etype (Iface_Prim));
1779 end if;
1780
1781 -- Internal entities associated with interface types are only
1782 -- registered in the list of primitives of the tagged type.
1783 -- They are only used to fill the contents of the secondary
1784 -- dispatch tables. Therefore they are not needed in the
1785 -- homonym chains.
1786
1787 Remove_Homonym (New_Subp);
1788
1789 -- Hidden entities associated with interfaces must have set
1790 -- the Has_Delay_Freeze attribute to ensure that, in case
1791 -- of locally defined tagged types (or compiling with static
1792 -- dispatch tables generation disabled) the corresponding
1793 -- entry of the secondary dispatch table is filled when such
1794 -- an entity is frozen. This is an expansion activity that must
1795 -- be suppressed for ASIS because it leads to gigi elaboration
1796 -- issues in annotate mode.
1797
1798 if not ASIS_Mode then
1799 Set_Has_Delayed_Freeze (New_Subp);
1800 end if;
1801 end if;
1802
1803 <<Continue>>
1804 Next_Elmt (Elmt);
1805 end loop;
1806
1807 Next_Elmt (Iface_Elmt);
1808 end loop;
1809
1810 if Restore_Scope then
1811 Pop_Scope;
1812 end if;
1813 end Add_Internal_Interface_Entities;
1814
1815 -----------------------------------
1816 -- Analyze_Component_Declaration --
1817 -----------------------------------
1818
1819 procedure Analyze_Component_Declaration (N : Node_Id) is
1820 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1821 Id : constant Entity_Id := Defining_Identifier (N);
1822 E : constant Node_Id := Expression (N);
1823 Typ : constant Node_Id :=
1824 Subtype_Indication (Component_Definition (N));
1825 T : Entity_Id;
1826 P : Entity_Id;
1827
1828 function Contains_POC (Constr : Node_Id) return Boolean;
1829 -- Determines whether a constraint uses the discriminant of a record
1830 -- type thus becoming a per-object constraint (POC).
1831
1832 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1833 -- Typ is the type of the current component, check whether this type is
1834 -- a limited type. Used to validate declaration against that of
1835 -- enclosing record.
1836
1837 ------------------
1838 -- Contains_POC --
1839 ------------------
1840
1841 function Contains_POC (Constr : Node_Id) return Boolean is
1842 begin
1843 -- Prevent cascaded errors
1844
1845 if Error_Posted (Constr) then
1846 return False;
1847 end if;
1848
1849 case Nkind (Constr) is
1850 when N_Attribute_Reference =>
1851 return Attribute_Name (Constr) = Name_Access
1852 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1853
1854 when N_Discriminant_Association =>
1855 return Denotes_Discriminant (Expression (Constr));
1856
1857 when N_Identifier =>
1858 return Denotes_Discriminant (Constr);
1859
1860 when N_Index_Or_Discriminant_Constraint =>
1861 declare
1862 IDC : Node_Id;
1863
1864 begin
1865 IDC := First (Constraints (Constr));
1866 while Present (IDC) loop
1867
1868 -- One per-object constraint is sufficient
1869
1870 if Contains_POC (IDC) then
1871 return True;
1872 end if;
1873
1874 Next (IDC);
1875 end loop;
1876
1877 return False;
1878 end;
1879
1880 when N_Range =>
1881 return Denotes_Discriminant (Low_Bound (Constr))
1882 or else
1883 Denotes_Discriminant (High_Bound (Constr));
1884
1885 when N_Range_Constraint =>
1886 return Denotes_Discriminant (Range_Expression (Constr));
1887
1888 when others =>
1889 return False;
1890 end case;
1891 end Contains_POC;
1892
1893 ----------------------
1894 -- Is_Known_Limited --
1895 ----------------------
1896
1897 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1898 P : constant Entity_Id := Etype (Typ);
1899 R : constant Entity_Id := Root_Type (Typ);
1900
1901 begin
1902 if Is_Limited_Record (Typ) then
1903 return True;
1904
1905 -- If the root type is limited (and not a limited interface)
1906 -- so is the current type
1907
1908 elsif Is_Limited_Record (R)
1909 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1910 then
1911 return True;
1912
1913 -- Else the type may have a limited interface progenitor, but a
1914 -- limited record parent.
1915
1916 elsif R /= P and then Is_Limited_Record (P) then
1917 return True;
1918
1919 else
1920 return False;
1921 end if;
1922 end Is_Known_Limited;
1923
1924 -- Start of processing for Analyze_Component_Declaration
1925
1926 begin
1927 Generate_Definition (Id);
1928 Enter_Name (Id);
1929
1930 if Present (Typ) then
1931 T := Find_Type_Of_Object
1932 (Subtype_Indication (Component_Definition (N)), N);
1933
1934 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1935 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1936 end if;
1937
1938 -- Ada 2005 (AI-230): Access Definition case
1939
1940 else
1941 pragma Assert (Present
1942 (Access_Definition (Component_Definition (N))));
1943
1944 T := Access_Definition
1945 (Related_Nod => N,
1946 N => Access_Definition (Component_Definition (N)));
1947 Set_Is_Local_Anonymous_Access (T);
1948
1949 -- Ada 2005 (AI-254)
1950
1951 if Present (Access_To_Subprogram_Definition
1952 (Access_Definition (Component_Definition (N))))
1953 and then Protected_Present (Access_To_Subprogram_Definition
1954 (Access_Definition
1955 (Component_Definition (N))))
1956 then
1957 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1958 end if;
1959 end if;
1960
1961 -- If the subtype is a constrained subtype of the enclosing record,
1962 -- (which must have a partial view) the back-end does not properly
1963 -- handle the recursion. Rewrite the component declaration with an
1964 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1965 -- the tree directly because side effects have already been removed from
1966 -- discriminant constraints.
1967
1968 if Ekind (T) = E_Access_Subtype
1969 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1970 and then Comes_From_Source (T)
1971 and then Nkind (Parent (T)) = N_Subtype_Declaration
1972 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1973 then
1974 Rewrite
1975 (Subtype_Indication (Component_Definition (N)),
1976 New_Copy_Tree (Subtype_Indication (Parent (T))));
1977 T := Find_Type_Of_Object
1978 (Subtype_Indication (Component_Definition (N)), N);
1979 end if;
1980
1981 -- If the component declaration includes a default expression, then we
1982 -- check that the component is not of a limited type (RM 3.7(5)),
1983 -- and do the special preanalysis of the expression (see section on
1984 -- "Handling of Default and Per-Object Expressions" in the spec of
1985 -- package Sem).
1986
1987 if Present (E) then
1988 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1989 Preanalyze_Default_Expression (E, T);
1990 Check_Initialization (T, E);
1991
1992 if Ada_Version >= Ada_2005
1993 and then Ekind (T) = E_Anonymous_Access_Type
1994 and then Etype (E) /= Any_Type
1995 then
1996 -- Check RM 3.9.2(9): "if the expected type for an expression is
1997 -- an anonymous access-to-specific tagged type, then the object
1998 -- designated by the expression shall not be dynamically tagged
1999 -- unless it is a controlling operand in a call on a dispatching
2000 -- operation"
2001
2002 if Is_Tagged_Type (Directly_Designated_Type (T))
2003 and then
2004 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2005 and then
2006 Ekind (Directly_Designated_Type (Etype (E))) =
2007 E_Class_Wide_Type
2008 then
2009 Error_Msg_N
2010 ("access to specific tagged type required (RM 3.9.2(9))", E);
2011 end if;
2012
2013 -- (Ada 2005: AI-230): Accessibility check for anonymous
2014 -- components
2015
2016 if Type_Access_Level (Etype (E)) >
2017 Deepest_Type_Access_Level (T)
2018 then
2019 Error_Msg_N
2020 ("expression has deeper access level than component " &
2021 "(RM 3.10.2 (12.2))", E);
2022 end if;
2023
2024 -- The initialization expression is a reference to an access
2025 -- discriminant. The type of the discriminant is always deeper
2026 -- than any access type.
2027
2028 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2029 and then Is_Entity_Name (E)
2030 and then Ekind (Entity (E)) = E_In_Parameter
2031 and then Present (Discriminal_Link (Entity (E)))
2032 then
2033 Error_Msg_N
2034 ("discriminant has deeper accessibility level than target",
2035 E);
2036 end if;
2037 end if;
2038 end if;
2039
2040 -- The parent type may be a private view with unknown discriminants,
2041 -- and thus unconstrained. Regular components must be constrained.
2042
2043 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2044 if Is_Class_Wide_Type (T) then
2045 Error_Msg_N
2046 ("class-wide subtype with unknown discriminants" &
2047 " in component declaration",
2048 Subtype_Indication (Component_Definition (N)));
2049 else
2050 Error_Msg_N
2051 ("unconstrained subtype in component declaration",
2052 Subtype_Indication (Component_Definition (N)));
2053 end if;
2054
2055 -- Components cannot be abstract, except for the special case of
2056 -- the _Parent field (case of extending an abstract tagged type)
2057
2058 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2059 Error_Msg_N ("type of a component cannot be abstract", N);
2060 end if;
2061
2062 Set_Etype (Id, T);
2063 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2064
2065 -- The component declaration may have a per-object constraint, set
2066 -- the appropriate flag in the defining identifier of the subtype.
2067
2068 if Present (Subtype_Indication (Component_Definition (N))) then
2069 declare
2070 Sindic : constant Node_Id :=
2071 Subtype_Indication (Component_Definition (N));
2072 begin
2073 if Nkind (Sindic) = N_Subtype_Indication
2074 and then Present (Constraint (Sindic))
2075 and then Contains_POC (Constraint (Sindic))
2076 then
2077 Set_Has_Per_Object_Constraint (Id);
2078 end if;
2079 end;
2080 end if;
2081
2082 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2083 -- out some static checks.
2084
2085 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2086 Null_Exclusion_Static_Checks (N);
2087 end if;
2088
2089 -- If this component is private (or depends on a private type), flag the
2090 -- record type to indicate that some operations are not available.
2091
2092 P := Private_Component (T);
2093
2094 if Present (P) then
2095
2096 -- Check for circular definitions
2097
2098 if P = Any_Type then
2099 Set_Etype (Id, Any_Type);
2100
2101 -- There is a gap in the visibility of operations only if the
2102 -- component type is not defined in the scope of the record type.
2103
2104 elsif Scope (P) = Scope (Current_Scope) then
2105 null;
2106
2107 elsif Is_Limited_Type (P) then
2108 Set_Is_Limited_Composite (Current_Scope);
2109
2110 else
2111 Set_Is_Private_Composite (Current_Scope);
2112 end if;
2113 end if;
2114
2115 if P /= Any_Type
2116 and then Is_Limited_Type (T)
2117 and then Chars (Id) /= Name_uParent
2118 and then Is_Tagged_Type (Current_Scope)
2119 then
2120 if Is_Derived_Type (Current_Scope)
2121 and then not Is_Known_Limited (Current_Scope)
2122 then
2123 Error_Msg_N
2124 ("extension of nonlimited type cannot have limited components",
2125 N);
2126
2127 if Is_Interface (Root_Type (Current_Scope)) then
2128 Error_Msg_N
2129 ("\limitedness is not inherited from limited interface", N);
2130 Error_Msg_N ("\add LIMITED to type indication", N);
2131 end if;
2132
2133 Explain_Limited_Type (T, N);
2134 Set_Etype (Id, Any_Type);
2135 Set_Is_Limited_Composite (Current_Scope, False);
2136
2137 elsif not Is_Derived_Type (Current_Scope)
2138 and then not Is_Limited_Record (Current_Scope)
2139 and then not Is_Concurrent_Type (Current_Scope)
2140 then
2141 Error_Msg_N
2142 ("nonlimited tagged type cannot have limited components", N);
2143 Explain_Limited_Type (T, N);
2144 Set_Etype (Id, Any_Type);
2145 Set_Is_Limited_Composite (Current_Scope, False);
2146 end if;
2147 end if;
2148
2149 -- If the component is an unconstrained task or protected type with
2150 -- discriminants, the component and the enclosing record are limited
2151 -- and the component is constrained by its default values. Compute
2152 -- its actual subtype, else it may be allocated the maximum size by
2153 -- the backend, and possibly overflow.
2154
2155 if Is_Concurrent_Type (T)
2156 and then not Is_Constrained (T)
2157 and then Has_Discriminants (T)
2158 and then not Has_Discriminants (Current_Scope)
2159 then
2160 declare
2161 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2162
2163 begin
2164 Set_Etype (Id, Act_T);
2165
2166 -- Rewrite component definition to use the constrained subtype
2167
2168 Rewrite (Component_Definition (N),
2169 Make_Component_Definition (Loc,
2170 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2171 end;
2172 end if;
2173
2174 Set_Original_Record_Component (Id, Id);
2175
2176 if Has_Aspects (N) then
2177 Analyze_Aspect_Specifications (N, Id);
2178 end if;
2179
2180 Analyze_Dimension (N);
2181 end Analyze_Component_Declaration;
2182
2183 --------------------------
2184 -- Analyze_Declarations --
2185 --------------------------
2186
2187 procedure Analyze_Declarations (L : List_Id) is
2188 Decl : Node_Id;
2189
2190 procedure Adjust_Decl;
2191 -- Adjust Decl not to include implicit label declarations, since these
2192 -- have strange Sloc values that result in elaboration check problems.
2193 -- (They have the sloc of the label as found in the source, and that
2194 -- is ahead of the current declarative part).
2195
2196 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2197 -- Create the subprogram bodies which verify the run-time semantics of
2198 -- the pragmas listed below for each elibigle type found in declarative
2199 -- list Decls. The pragmas are:
2200 --
2201 -- Default_Initial_Condition
2202 -- Invariant
2203 -- Type_Invariant
2204 --
2205 -- Context denotes the owner of the declarative list.
2206
2207 procedure Check_Entry_Contracts;
2208 -- Perform a pre-analysis of the pre- and postconditions of an entry
2209 -- declaration. This must be done before full resolution and creation
2210 -- of the parameter block, etc. to catch illegal uses within the
2211 -- contract expression. Full analysis of the expression is done when
2212 -- the contract is processed.
2213
2214 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2215 -- Determine whether Body_Decl denotes the body of a late controlled
2216 -- primitive (either Initialize, Adjust or Finalize). If this is the
2217 -- case, add a proper spec if the body lacks one. The spec is inserted
2218 -- before Body_Decl and immediately analyzed.
2219
2220 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2221 -- Spec_Id is the entity of a package that may define abstract states,
2222 -- and in the case of a child unit, whose ancestors may define abstract
2223 -- states. If the states have partial visible refinement, remove the
2224 -- partial visibility of each constituent at the end of the package
2225 -- spec and body declarations.
2226
2227 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2228 -- Spec_Id is the entity of a package that may define abstract states.
2229 -- If the states have visible refinement, remove the visibility of each
2230 -- constituent at the end of the package body declaration.
2231
2232 procedure Resolve_Aspects;
2233 -- Utility to resolve the expressions of aspects at the end of a list of
2234 -- declarations.
2235
2236 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean;
2237 -- Check if an inner package has entities within it that rely on library
2238 -- level private types where the full view has not been seen.
2239
2240 -----------------
2241 -- Adjust_Decl --
2242 -----------------
2243
2244 procedure Adjust_Decl is
2245 begin
2246 while Present (Prev (Decl))
2247 and then Nkind (Decl) = N_Implicit_Label_Declaration
2248 loop
2249 Prev (Decl);
2250 end loop;
2251 end Adjust_Decl;
2252
2253 ----------------------------
2254 -- Build_Assertion_Bodies --
2255 ----------------------------
2256
2257 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2258 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2259 -- Create the subprogram bodies which verify the run-time semantics
2260 -- of the pragmas listed below for type Typ. The pragmas are:
2261 --
2262 -- Default_Initial_Condition
2263 -- Invariant
2264 -- Type_Invariant
2265
2266 -------------------------------------
2267 -- Build_Assertion_Bodies_For_Type --
2268 -------------------------------------
2269
2270 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2271 begin
2272 -- Preanalyze and resolve the Default_Initial_Condition assertion
2273 -- expression at the end of the declarations to catch any errors.
2274
2275 if Has_DIC (Typ) then
2276 Build_DIC_Procedure_Body (Typ);
2277 end if;
2278
2279 if Nkind (Context) = N_Package_Specification then
2280
2281 -- Preanalyze and resolve the class-wide invariants of an
2282 -- interface at the end of whichever declarative part has the
2283 -- interface type. Note that an interface may be declared in
2284 -- any non-package declarative part, but reaching the end of
2285 -- such a declarative part will always freeze the type and
2286 -- generate the invariant procedure (see Freeze_Type).
2287
2288 if Is_Interface (Typ) then
2289
2290 -- Interfaces are treated as the partial view of a private
2291 -- type, in order to achieve uniformity with the general
2292 -- case. As a result, an interface receives only a "partial"
2293 -- invariant procedure, which is never called.
2294
2295 if Has_Own_Invariants (Typ) then
2296 Build_Invariant_Procedure_Body
2297 (Typ => Typ,
2298 Partial_Invariant => True);
2299 end if;
2300
2301 -- Preanalyze and resolve the invariants of a private type
2302 -- at the end of the visible declarations to catch potential
2303 -- errors. Inherited class-wide invariants are not included
2304 -- because they have already been resolved.
2305
2306 elsif Decls = Visible_Declarations (Context)
2307 and then Ekind_In (Typ, E_Limited_Private_Type,
2308 E_Private_Type,
2309 E_Record_Type_With_Private)
2310 and then Has_Own_Invariants (Typ)
2311 then
2312 Build_Invariant_Procedure_Body
2313 (Typ => Typ,
2314 Partial_Invariant => True);
2315
2316 -- Preanalyze and resolve the invariants of a private type's
2317 -- full view at the end of the private declarations to catch
2318 -- potential errors.
2319
2320 elsif Decls = Private_Declarations (Context)
2321 and then not Is_Private_Type (Typ)
2322 and then Has_Private_Declaration (Typ)
2323 and then Has_Invariants (Typ)
2324 then
2325 Build_Invariant_Procedure_Body (Typ);
2326 end if;
2327 end if;
2328 end Build_Assertion_Bodies_For_Type;
2329
2330 -- Local variables
2331
2332 Decl : Node_Id;
2333 Decl_Id : Entity_Id;
2334
2335 -- Start of processing for Build_Assertion_Bodies
2336
2337 begin
2338 Decl := First (Decls);
2339 while Present (Decl) loop
2340 if Is_Declaration (Decl) then
2341 Decl_Id := Defining_Entity (Decl);
2342
2343 if Is_Type (Decl_Id) then
2344 Build_Assertion_Bodies_For_Type (Decl_Id);
2345 end if;
2346 end if;
2347
2348 Next (Decl);
2349 end loop;
2350 end Build_Assertion_Bodies;
2351
2352 ---------------------------
2353 -- Check_Entry_Contracts --
2354 ---------------------------
2355
2356 procedure Check_Entry_Contracts is
2357 ASN : Node_Id;
2358 Ent : Entity_Id;
2359 Exp : Node_Id;
2360
2361 begin
2362 Ent := First_Entity (Current_Scope);
2363 while Present (Ent) loop
2364
2365 -- This only concerns entries with pre/postconditions
2366
2367 if Ekind (Ent) = E_Entry
2368 and then Present (Contract (Ent))
2369 and then Present (Pre_Post_Conditions (Contract (Ent)))
2370 then
2371 ASN := Pre_Post_Conditions (Contract (Ent));
2372 Push_Scope (Ent);
2373 Install_Formals (Ent);
2374
2375 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2376 -- is performed on a copy of the pragma expression, to prevent
2377 -- modifying the original expression.
2378
2379 while Present (ASN) loop
2380 if Nkind (ASN) = N_Pragma then
2381 Exp :=
2382 New_Copy_Tree
2383 (Expression
2384 (First (Pragma_Argument_Associations (ASN))));
2385 Set_Parent (Exp, ASN);
2386
2387 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2388 end if;
2389
2390 ASN := Next_Pragma (ASN);
2391 end loop;
2392
2393 End_Scope;
2394 end if;
2395
2396 Next_Entity (Ent);
2397 end loop;
2398 end Check_Entry_Contracts;
2399
2400 --------------------------------------
2401 -- Handle_Late_Controlled_Primitive --
2402 --------------------------------------
2403
2404 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2405 Body_Spec : constant Node_Id := Specification (Body_Decl);
2406 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2407 Loc : constant Source_Ptr := Sloc (Body_Id);
2408 Params : constant List_Id :=
2409 Parameter_Specifications (Body_Spec);
2410 Spec : Node_Id;
2411 Spec_Id : Entity_Id;
2412 Typ : Node_Id;
2413
2414 begin
2415 -- Consider only procedure bodies whose name matches one of the three
2416 -- controlled primitives.
2417
2418 if Nkind (Body_Spec) /= N_Procedure_Specification
2419 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2420 Name_Finalize,
2421 Name_Initialize)
2422 then
2423 return;
2424
2425 -- A controlled primitive must have exactly one formal which is not
2426 -- an anonymous access type.
2427
2428 elsif List_Length (Params) /= 1 then
2429 return;
2430 end if;
2431
2432 Typ := Parameter_Type (First (Params));
2433
2434 if Nkind (Typ) = N_Access_Definition then
2435 return;
2436 end if;
2437
2438 Find_Type (Typ);
2439
2440 -- The type of the formal must be derived from [Limited_]Controlled
2441
2442 if not Is_Controlled (Entity (Typ)) then
2443 return;
2444 end if;
2445
2446 -- Check whether a specification exists for this body. We do not
2447 -- analyze the spec of the body in full, because it will be analyzed
2448 -- again when the body is properly analyzed, and we cannot create
2449 -- duplicate entries in the formals chain. We look for an explicit
2450 -- specification because the body may be an overriding operation and
2451 -- an inherited spec may be present.
2452
2453 Spec_Id := Current_Entity (Body_Id);
2454
2455 while Present (Spec_Id) loop
2456 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2457 and then Scope (Spec_Id) = Current_Scope
2458 and then Present (First_Formal (Spec_Id))
2459 and then No (Next_Formal (First_Formal (Spec_Id)))
2460 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2461 and then Comes_From_Source (Spec_Id)
2462 then
2463 return;
2464 end if;
2465
2466 Spec_Id := Homonym (Spec_Id);
2467 end loop;
2468
2469 -- At this point the body is known to be a late controlled primitive.
2470 -- Generate a matching spec and insert it before the body. Note the
2471 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2472 -- tree in this case.
2473
2474 Spec := Copy_Separate_Tree (Body_Spec);
2475
2476 -- Ensure that the subprogram declaration does not inherit the null
2477 -- indicator from the body as we now have a proper spec/body pair.
2478
2479 Set_Null_Present (Spec, False);
2480
2481 -- Ensure that the freeze node is inserted after the declaration of
2482 -- the primitive since its expansion will freeze the primitive.
2483
2484 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2485
2486 Insert_Before_And_Analyze (Body_Decl, Decl);
2487 end Handle_Late_Controlled_Primitive;
2488
2489 ----------------------------------------
2490 -- Remove_Partial_Visible_Refinements --
2491 ----------------------------------------
2492
2493 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2494 State_Elmt : Elmt_Id;
2495 begin
2496 if Present (Abstract_States (Spec_Id)) then
2497 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2498 while Present (State_Elmt) loop
2499 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2500 Next_Elmt (State_Elmt);
2501 end loop;
2502 end if;
2503
2504 -- For a child unit, also hide the partial state refinement from
2505 -- ancestor packages.
2506
2507 if Is_Child_Unit (Spec_Id) then
2508 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2509 end if;
2510 end Remove_Partial_Visible_Refinements;
2511
2512 --------------------------------
2513 -- Remove_Visible_Refinements --
2514 --------------------------------
2515
2516 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2517 State_Elmt : Elmt_Id;
2518 begin
2519 if Present (Abstract_States (Spec_Id)) then
2520 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2521 while Present (State_Elmt) loop
2522 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2523 Next_Elmt (State_Elmt);
2524 end loop;
2525 end if;
2526 end Remove_Visible_Refinements;
2527
2528 ---------------------
2529 -- Resolve_Aspects --
2530 ---------------------
2531
2532 procedure Resolve_Aspects is
2533 E : Entity_Id;
2534
2535 begin
2536 E := First_Entity (Current_Scope);
2537 while Present (E) loop
2538 Resolve_Aspect_Expressions (E);
2539 Next_Entity (E);
2540 end loop;
2541 end Resolve_Aspects;
2542
2543 -------------------------------
2544 -- Uses_Unseen_Lib_Unit_Priv --
2545 -------------------------------
2546
2547 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean is
2548 Curr : Entity_Id;
2549
2550 begin
2551 -- Avoid looking through scopes that do not meet the precondition of
2552 -- Pkg not being within a library unit spec.
2553
2554 if not Is_Compilation_Unit (Pkg)
2555 and then not Is_Generic_Instance (Pkg)
2556 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2557 then
2558 -- Loop through all entities in the current scope to identify
2559 -- an entity that depends on a private type.
2560
2561 Curr := First_Entity (Pkg);
2562 loop
2563 if Nkind (Curr) in N_Entity
2564 and then Depends_On_Private (Curr)
2565 then
2566 return True;
2567 end if;
2568
2569 exit when Last_Entity (Current_Scope) = Curr;
2570 Curr := Next_Entity (Curr);
2571 end loop;
2572 end if;
2573
2574 return False;
2575 end Uses_Unseen_Lib_Unit_Priv;
2576
2577 -- Local variables
2578
2579 Context : Node_Id := Empty;
2580 Freeze_From : Entity_Id := Empty;
2581 Next_Decl : Node_Id;
2582
2583 Body_Seen : Boolean := False;
2584 -- Flag set when the first body [stub] is encountered
2585
2586 -- Start of processing for Analyze_Declarations
2587
2588 begin
2589 if Restriction_Check_Required (SPARK_05) then
2590 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2591 end if;
2592
2593 Decl := First (L);
2594 while Present (Decl) loop
2595
2596 -- Package spec cannot contain a package declaration in SPARK
2597
2598 if Nkind (Decl) = N_Package_Declaration
2599 and then Nkind (Parent (L)) = N_Package_Specification
2600 then
2601 Check_SPARK_05_Restriction
2602 ("package specification cannot contain a package declaration",
2603 Decl);
2604 end if;
2605
2606 -- Complete analysis of declaration
2607
2608 Analyze (Decl);
2609 Next_Decl := Next (Decl);
2610
2611 if No (Freeze_From) then
2612 Freeze_From := First_Entity (Current_Scope);
2613 end if;
2614
2615 -- At the end of a declarative part, freeze remaining entities
2616 -- declared in it. The end of the visible declarations of package
2617 -- specification is not the end of a declarative part if private
2618 -- declarations are present. The end of a package declaration is a
2619 -- freezing point only if it a library package. A task definition or
2620 -- protected type definition is not a freeze point either. Finally,
2621 -- we do not freeze entities in generic scopes, because there is no
2622 -- code generated for them and freeze nodes will be generated for
2623 -- the instance.
2624
2625 -- The end of a package instantiation is not a freeze point, but
2626 -- for now we make it one, because the generic body is inserted
2627 -- (currently) immediately after. Generic instantiations will not
2628 -- be a freeze point once delayed freezing of bodies is implemented.
2629 -- (This is needed in any case for early instantiations ???).
2630
2631 if No (Next_Decl) then
2632 if Nkind (Parent (L)) = N_Component_List then
2633 null;
2634
2635 elsif Nkind_In (Parent (L), N_Protected_Definition,
2636 N_Task_Definition)
2637 then
2638 Check_Entry_Contracts;
2639
2640 elsif Nkind (Parent (L)) /= N_Package_Specification then
2641 if Nkind (Parent (L)) = N_Package_Body then
2642 Freeze_From := First_Entity (Current_Scope);
2643 end if;
2644
2645 -- There may have been several freezing points previously,
2646 -- for example object declarations or subprogram bodies, but
2647 -- at the end of a declarative part we check freezing from
2648 -- the beginning, even though entities may already be frozen,
2649 -- in order to perform visibility checks on delayed aspects.
2650
2651 Adjust_Decl;
2652
2653 -- If the current scope is a generic subprogram body. Skip the
2654 -- generic formal parameters that are not frozen here.
2655
2656 if Is_Subprogram (Current_Scope)
2657 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2658 N_Generic_Subprogram_Declaration
2659 and then Present (First_Entity (Current_Scope))
2660 then
2661 while Is_Generic_Formal (Freeze_From) loop
2662 Freeze_From := Next_Entity (Freeze_From);
2663 end loop;
2664
2665 Freeze_All (Freeze_From, Decl);
2666 Freeze_From := Last_Entity (Current_Scope);
2667
2668 else
2669 -- For declarations in a subprogram body there is no issue
2670 -- with name resolution in aspect specifications, but in
2671 -- ASIS mode we need to preanalyze aspect specifications
2672 -- that may otherwise only be analyzed during expansion
2673 -- (e.g. during generation of a related subprogram).
2674
2675 if ASIS_Mode then
2676 Resolve_Aspects;
2677 end if;
2678
2679 Freeze_All (First_Entity (Current_Scope), Decl);
2680 Freeze_From := Last_Entity (Current_Scope);
2681 end if;
2682
2683 -- Current scope is a package specification
2684
2685 elsif Scope (Current_Scope) /= Standard_Standard
2686 and then not Is_Child_Unit (Current_Scope)
2687 and then No (Generic_Parent (Parent (L)))
2688 then
2689 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2690 -- resolved at the end of the immediately enclosing declaration
2691 -- list (AI05-0183-1).
2692
2693 Resolve_Aspects;
2694
2695 elsif L /= Visible_Declarations (Parent (L))
2696 or else No (Private_Declarations (Parent (L)))
2697 or else Is_Empty_List (Private_Declarations (Parent (L)))
2698 then
2699 Adjust_Decl;
2700
2701 -- End of a package declaration
2702
2703 -- In compilation mode the expansion of freeze node takes care
2704 -- of resolving expressions of all aspects in the list. In ASIS
2705 -- mode this must be done explicitly.
2706
2707 if ASIS_Mode
2708 and then Scope (Current_Scope) = Standard_Standard
2709 then
2710 Resolve_Aspects;
2711 end if;
2712
2713 -- This is a freeze point because it is the end of a
2714 -- compilation unit.
2715
2716 Freeze_All (First_Entity (Current_Scope), Decl);
2717 Freeze_From := Last_Entity (Current_Scope);
2718
2719 -- At the end of the visible declarations the expressions in
2720 -- aspects of all entities declared so far must be resolved.
2721 -- The entities themselves might be frozen later, and the
2722 -- generated pragmas and attribute definition clauses analyzed
2723 -- in full at that point, but name resolution must take place
2724 -- now.
2725 -- In addition to being the proper semantics, this is mandatory
2726 -- within generic units, because global name capture requires
2727 -- those expressions to be analyzed, given that the generated
2728 -- pragmas do not appear in the original generic tree.
2729
2730 elsif Serious_Errors_Detected = 0 then
2731 Resolve_Aspects;
2732 end if;
2733
2734 -- If next node is a body then freeze all types before the body.
2735 -- An exception occurs for some expander-generated bodies. If these
2736 -- are generated at places where in general language rules would not
2737 -- allow a freeze point, then we assume that the expander has
2738 -- explicitly checked that all required types are properly frozen,
2739 -- and we do not cause general freezing here. This special circuit
2740 -- is used when the encountered body is marked as having already
2741 -- been analyzed.
2742
2743 -- In all other cases (bodies that come from source, and expander
2744 -- generated bodies that have not been analyzed yet), freeze all
2745 -- types now. Note that in the latter case, the expander must take
2746 -- care to attach the bodies at a proper place in the tree so as to
2747 -- not cause unwanted freezing at that point.
2748
2749 -- It is also necessary to check for a case where both an expression
2750 -- function is used and the current scope depends on an unseen
2751 -- private type from a library unit, otherwise premature freezing of
2752 -- the private type will occur.
2753
2754 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2755 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2756 or else not Was_Expression_Function (Next_Decl))
2757 or else not Uses_Unseen_Lib_Unit_Priv (Current_Scope))
2758 then
2759 -- When a controlled type is frozen, the expander generates stream
2760 -- and controlled-type support routines. If the freeze is caused
2761 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2762 -- expander will end up using the wrong version of these routines,
2763 -- as the body has not been processed yet. To remedy this, detect
2764 -- a late controlled primitive and create a proper spec for it.
2765 -- This ensures that the primitive will override its inherited
2766 -- counterpart before the freeze takes place.
2767
2768 -- If the declaration we just processed is a body, do not attempt
2769 -- to examine Next_Decl as the late primitive idiom can only apply
2770 -- to the first encountered body.
2771
2772 -- The spec of the late primitive is not generated in ASIS mode to
2773 -- ensure a consistent list of primitives that indicates the true
2774 -- semantic structure of the program (which is not relevant when
2775 -- generating executable code).
2776
2777 -- ??? A cleaner approach may be possible and/or this solution
2778 -- could be extended to general-purpose late primitives, TBD.
2779
2780 if not ASIS_Mode
2781 and then not Body_Seen
2782 and then not Is_Body (Decl)
2783 then
2784 Body_Seen := True;
2785
2786 if Nkind (Next_Decl) = N_Subprogram_Body then
2787 Handle_Late_Controlled_Primitive (Next_Decl);
2788 end if;
2789 end if;
2790
2791 Adjust_Decl;
2792
2793 -- The generated body of an expression function does not freeze,
2794 -- unless it is a completion, in which case only the expression
2795 -- itself freezes. This is handled when the body itself is
2796 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2797
2798 Freeze_All (Freeze_From, Decl);
2799 Freeze_From := Last_Entity (Current_Scope);
2800 end if;
2801
2802 Decl := Next_Decl;
2803 end loop;
2804
2805 -- Post-freezing actions
2806
2807 if Present (L) then
2808 Context := Parent (L);
2809
2810 -- Analyze the contracts of packages and their bodies
2811
2812 if Nkind (Context) = N_Package_Specification then
2813
2814 -- When a package has private declarations, its contract must be
2815 -- analyzed at the end of the said declarations. This way both the
2816 -- analysis and freeze actions are properly synchronized in case
2817 -- of private type use within the contract.
2818
2819 if L = Private_Declarations (Context) then
2820 Analyze_Package_Contract (Defining_Entity (Context));
2821
2822 -- Otherwise the contract is analyzed at the end of the visible
2823 -- declarations.
2824
2825 elsif L = Visible_Declarations (Context)
2826 and then No (Private_Declarations (Context))
2827 then
2828 Analyze_Package_Contract (Defining_Entity (Context));
2829 end if;
2830
2831 elsif Nkind (Context) = N_Package_Body then
2832 Analyze_Package_Body_Contract (Defining_Entity (Context));
2833 end if;
2834
2835 -- Analyze the contracts of various constructs now due to the delayed
2836 -- visibility needs of their aspects and pragmas.
2837
2838 Analyze_Contracts (L);
2839
2840 if Nkind (Context) = N_Package_Body then
2841
2842 -- Ensure that all abstract states and objects declared in the
2843 -- state space of a package body are utilized as constituents.
2844
2845 Check_Unused_Body_States (Defining_Entity (Context));
2846
2847 -- State refinements are visible up to the end of the package body
2848 -- declarations. Hide the state refinements from visibility to
2849 -- restore the original state conditions.
2850
2851 Remove_Visible_Refinements (Corresponding_Spec (Context));
2852 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2853
2854 elsif Nkind (Context) = N_Package_Declaration then
2855
2856 -- Partial state refinements are visible up to the end of the
2857 -- package spec declarations. Hide the partial state refinements
2858 -- from visibility to restore the original state conditions.
2859
2860 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2861 end if;
2862
2863 -- Verify that all abstract states found in any package declared in
2864 -- the input declarative list have proper refinements. The check is
2865 -- performed only when the context denotes a block, entry, package,
2866 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2867
2868 Check_State_Refinements (Context);
2869
2870 -- Create the subprogram bodies which verify the run-time semantics
2871 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2872 -- types within the current declarative list. This ensures that all
2873 -- assertion expressions are preanalyzed and resolved at the end of
2874 -- the declarative part. Note that the resolution happens even when
2875 -- freezing does not take place.
2876
2877 Build_Assertion_Bodies (L, Context);
2878 end if;
2879 end Analyze_Declarations;
2880
2881 -----------------------------------
2882 -- Analyze_Full_Type_Declaration --
2883 -----------------------------------
2884
2885 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2886 Def : constant Node_Id := Type_Definition (N);
2887 Def_Id : constant Entity_Id := Defining_Identifier (N);
2888 T : Entity_Id;
2889 Prev : Entity_Id;
2890
2891 Is_Remote : constant Boolean :=
2892 (Is_Remote_Types (Current_Scope)
2893 or else Is_Remote_Call_Interface (Current_Scope))
2894 and then not (In_Private_Part (Current_Scope)
2895 or else In_Package_Body (Current_Scope));
2896
2897 procedure Check_Nonoverridable_Aspects;
2898 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2899 -- be overridden, and can only be confirmed on derivation.
2900
2901 procedure Check_Ops_From_Incomplete_Type;
2902 -- If there is a tagged incomplete partial view of the type, traverse
2903 -- the primitives of the incomplete view and change the type of any
2904 -- controlling formals and result to indicate the full view. The
2905 -- primitives will be added to the full type's primitive operations
2906 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2907 -- is called from Process_Incomplete_Dependents).
2908
2909 ----------------------------------
2910 -- Check_Nonoverridable_Aspects --
2911 ----------------------------------
2912
2913 procedure Check_Nonoverridable_Aspects is
2914 function Get_Aspect_Spec
2915 (Specs : List_Id;
2916 Aspect_Name : Name_Id) return Node_Id;
2917 -- Check whether a list of aspect specifications includes an entry
2918 -- for a specific aspect. The list is either that of a partial or
2919 -- a full view.
2920
2921 ---------------------
2922 -- Get_Aspect_Spec --
2923 ---------------------
2924
2925 function Get_Aspect_Spec
2926 (Specs : List_Id;
2927 Aspect_Name : Name_Id) return Node_Id
2928 is
2929 Spec : Node_Id;
2930
2931 begin
2932 Spec := First (Specs);
2933 while Present (Spec) loop
2934 if Chars (Identifier (Spec)) = Aspect_Name then
2935 return Spec;
2936 end if;
2937 Next (Spec);
2938 end loop;
2939
2940 return Empty;
2941 end Get_Aspect_Spec;
2942
2943 -- Local variables
2944
2945 Prev_Aspects : constant List_Id :=
2946 Aspect_Specifications (Parent (Def_Id));
2947 Par_Type : Entity_Id;
2948 Prev_Aspect : Node_Id;
2949
2950 -- Start of processing for Check_Nonoverridable_Aspects
2951
2952 begin
2953 -- Get parent type of derived type. Note that Prev is the entity in
2954 -- the partial declaration, but its contents are now those of full
2955 -- view, while Def_Id reflects the partial view.
2956
2957 if Is_Private_Type (Def_Id) then
2958 Par_Type := Etype (Full_View (Def_Id));
2959 else
2960 Par_Type := Etype (Def_Id);
2961 end if;
2962
2963 -- If there is an inherited Implicit_Dereference, verify that it is
2964 -- made explicit in the partial view.
2965
2966 if Has_Discriminants (Base_Type (Par_Type))
2967 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2968 and then Present (Discriminant_Specifications (Parent (Prev)))
2969 and then Present (Get_Reference_Discriminant (Par_Type))
2970 then
2971 Prev_Aspect :=
2972 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2973
2974 if No (Prev_Aspect)
2975 and then Present
2976 (Discriminant_Specifications
2977 (Original_Node (Parent (Prev))))
2978 then
2979 Error_Msg_N
2980 ("type does not inherit implicit dereference", Prev);
2981
2982 else
2983 -- If one of the views has the aspect specified, verify that it
2984 -- is consistent with that of the parent.
2985
2986 declare
2987 Par_Discr : constant Entity_Id :=
2988 Get_Reference_Discriminant (Par_Type);
2989 Cur_Discr : constant Entity_Id :=
2990 Get_Reference_Discriminant (Prev);
2991
2992 begin
2993 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2994 Error_Msg_N ("aspect incosistent with that of parent", N);
2995 end if;
2996
2997 -- Check that specification in partial view matches the
2998 -- inherited aspect. Compare names directly because aspect
2999 -- expression may not be analyzed.
3000
3001 if Present (Prev_Aspect)
3002 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3003 and then Chars (Expression (Prev_Aspect)) /=
3004 Chars (Cur_Discr)
3005 then
3006 Error_Msg_N
3007 ("aspect incosistent with that of parent", N);
3008 end if;
3009 end;
3010 end if;
3011 end if;
3012
3013 -- TBD : other nonoverridable aspects.
3014 end Check_Nonoverridable_Aspects;
3015
3016 ------------------------------------
3017 -- Check_Ops_From_Incomplete_Type --
3018 ------------------------------------
3019
3020 procedure Check_Ops_From_Incomplete_Type is
3021 Elmt : Elmt_Id;
3022 Formal : Entity_Id;
3023 Op : Entity_Id;
3024
3025 begin
3026 if Prev /= T
3027 and then Ekind (Prev) = E_Incomplete_Type
3028 and then Is_Tagged_Type (Prev)
3029 and then Is_Tagged_Type (T)
3030 then
3031 Elmt := First_Elmt (Primitive_Operations (Prev));
3032 while Present (Elmt) loop
3033 Op := Node (Elmt);
3034
3035 Formal := First_Formal (Op);
3036 while Present (Formal) loop
3037 if Etype (Formal) = Prev then
3038 Set_Etype (Formal, T);
3039 end if;
3040
3041 Next_Formal (Formal);
3042 end loop;
3043
3044 if Etype (Op) = Prev then
3045 Set_Etype (Op, T);
3046 end if;
3047
3048 Next_Elmt (Elmt);
3049 end loop;
3050 end if;
3051 end Check_Ops_From_Incomplete_Type;
3052
3053 -- Start of processing for Analyze_Full_Type_Declaration
3054
3055 begin
3056 Prev := Find_Type_Name (N);
3057
3058 -- The full view, if present, now points to the current type. If there
3059 -- is an incomplete partial view, set a link to it, to simplify the
3060 -- retrieval of primitive operations of the type.
3061
3062 -- Ada 2005 (AI-50217): If the type was previously decorated when
3063 -- imported through a LIMITED WITH clause, it appears as incomplete
3064 -- but has no full view.
3065
3066 if Ekind (Prev) = E_Incomplete_Type
3067 and then Present (Full_View (Prev))
3068 then
3069 T := Full_View (Prev);
3070 Set_Incomplete_View (N, Parent (Prev));
3071 else
3072 T := Prev;
3073 end if;
3074
3075 Set_Is_Pure (T, Is_Pure (Current_Scope));
3076
3077 -- We set the flag Is_First_Subtype here. It is needed to set the
3078 -- corresponding flag for the Implicit class-wide-type created
3079 -- during tagged types processing.
3080
3081 Set_Is_First_Subtype (T, True);
3082
3083 -- Only composite types other than array types are allowed to have
3084 -- discriminants.
3085
3086 case Nkind (Def) is
3087
3088 -- For derived types, the rule will be checked once we've figured
3089 -- out the parent type.
3090
3091 when N_Derived_Type_Definition =>
3092 null;
3093
3094 -- For record types, discriminants are allowed, unless we are in
3095 -- SPARK.
3096
3097 when N_Record_Definition =>
3098 if Present (Discriminant_Specifications (N)) then
3099 Check_SPARK_05_Restriction
3100 ("discriminant type is not allowed",
3101 Defining_Identifier
3102 (First (Discriminant_Specifications (N))));
3103 end if;
3104
3105 when others =>
3106 if Present (Discriminant_Specifications (N)) then
3107 Error_Msg_N
3108 ("elementary or array type cannot have discriminants",
3109 Defining_Identifier
3110 (First (Discriminant_Specifications (N))));
3111 end if;
3112 end case;
3113
3114 -- Elaborate the type definition according to kind, and generate
3115 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3116 -- already done (this happens during the reanalysis that follows a call
3117 -- to the high level optimizer).
3118
3119 if not Analyzed (T) then
3120 Set_Analyzed (T);
3121
3122 case Nkind (Def) is
3123 when N_Access_To_Subprogram_Definition =>
3124 Access_Subprogram_Declaration (T, Def);
3125
3126 -- If this is a remote access to subprogram, we must create the
3127 -- equivalent fat pointer type, and related subprograms.
3128
3129 if Is_Remote then
3130 Process_Remote_AST_Declaration (N);
3131 end if;
3132
3133 -- Validate categorization rule against access type declaration
3134 -- usually a violation in Pure unit, Shared_Passive unit.
3135
3136 Validate_Access_Type_Declaration (T, N);
3137
3138 when N_Access_To_Object_Definition =>
3139 Access_Type_Declaration (T, Def);
3140
3141 -- Validate categorization rule against access type declaration
3142 -- usually a violation in Pure unit, Shared_Passive unit.
3143
3144 Validate_Access_Type_Declaration (T, N);
3145
3146 -- If we are in a Remote_Call_Interface package and define a
3147 -- RACW, then calling stubs and specific stream attributes
3148 -- must be added.
3149
3150 if Is_Remote
3151 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3152 then
3153 Add_RACW_Features (Def_Id);
3154 end if;
3155
3156 when N_Array_Type_Definition =>
3157 Array_Type_Declaration (T, Def);
3158
3159 when N_Derived_Type_Definition =>
3160 Derived_Type_Declaration (T, N, T /= Def_Id);
3161
3162 -- Inherit predicates from parent, and protect against illegal
3163 -- derivations.
3164
3165 if Is_Type (T) and then Has_Predicates (T) then
3166 Set_Has_Predicates (Def_Id);
3167 end if;
3168
3169 when N_Enumeration_Type_Definition =>
3170 Enumeration_Type_Declaration (T, Def);
3171
3172 when N_Floating_Point_Definition =>
3173 Floating_Point_Type_Declaration (T, Def);
3174
3175 when N_Decimal_Fixed_Point_Definition =>
3176 Decimal_Fixed_Point_Type_Declaration (T, Def);
3177
3178 when N_Ordinary_Fixed_Point_Definition =>
3179 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3180
3181 when N_Signed_Integer_Type_Definition =>
3182 Signed_Integer_Type_Declaration (T, Def);
3183
3184 when N_Modular_Type_Definition =>
3185 Modular_Type_Declaration (T, Def);
3186
3187 when N_Record_Definition =>
3188 Record_Type_Declaration (T, N, Prev);
3189
3190 -- If declaration has a parse error, nothing to elaborate.
3191
3192 when N_Error =>
3193 null;
3194
3195 when others =>
3196 raise Program_Error;
3197 end case;
3198 end if;
3199
3200 if Etype (T) = Any_Type then
3201 return;
3202 end if;
3203
3204 -- Controlled type is not allowed in SPARK
3205
3206 if Is_Visibly_Controlled (T) then
3207 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3208 end if;
3209
3210 -- Some common processing for all types
3211
3212 Set_Depends_On_Private (T, Has_Private_Component (T));
3213 Check_Ops_From_Incomplete_Type;
3214
3215 -- Both the declared entity, and its anonymous base type if one was
3216 -- created, need freeze nodes allocated.
3217
3218 declare
3219 B : constant Entity_Id := Base_Type (T);
3220
3221 begin
3222 -- In the case where the base type differs from the first subtype, we
3223 -- pre-allocate a freeze node, and set the proper link to the first
3224 -- subtype. Freeze_Entity will use this preallocated freeze node when
3225 -- it freezes the entity.
3226
3227 -- This does not apply if the base type is a generic type, whose
3228 -- declaration is independent of the current derived definition.
3229
3230 if B /= T and then not Is_Generic_Type (B) then
3231 Ensure_Freeze_Node (B);
3232 Set_First_Subtype_Link (Freeze_Node (B), T);
3233 end if;
3234
3235 -- A type that is imported through a limited_with clause cannot
3236 -- generate any code, and thus need not be frozen. However, an access
3237 -- type with an imported designated type needs a finalization list,
3238 -- which may be referenced in some other package that has non-limited
3239 -- visibility on the designated type. Thus we must create the
3240 -- finalization list at the point the access type is frozen, to
3241 -- prevent unsatisfied references at link time.
3242
3243 if not From_Limited_With (T) or else Is_Access_Type (T) then
3244 Set_Has_Delayed_Freeze (T);
3245 end if;
3246 end;
3247
3248 -- Case where T is the full declaration of some private type which has
3249 -- been swapped in Defining_Identifier (N).
3250
3251 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3252 Process_Full_View (N, T, Def_Id);
3253
3254 -- Record the reference. The form of this is a little strange, since
3255 -- the full declaration has been swapped in. So the first parameter
3256 -- here represents the entity to which a reference is made which is
3257 -- the "real" entity, i.e. the one swapped in, and the second
3258 -- parameter provides the reference location.
3259
3260 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3261 -- since we don't want a complaint about the full type being an
3262 -- unwanted reference to the private type
3263
3264 declare
3265 B : constant Boolean := Has_Pragma_Unreferenced (T);
3266 begin
3267 Set_Has_Pragma_Unreferenced (T, False);
3268 Generate_Reference (T, T, 'c');
3269 Set_Has_Pragma_Unreferenced (T, B);
3270 end;
3271
3272 Set_Completion_Referenced (Def_Id);
3273
3274 -- For completion of incomplete type, process incomplete dependents
3275 -- and always mark the full type as referenced (it is the incomplete
3276 -- type that we get for any real reference).
3277
3278 elsif Ekind (Prev) = E_Incomplete_Type then
3279 Process_Incomplete_Dependents (N, T, Prev);
3280 Generate_Reference (Prev, Def_Id, 'c');
3281 Set_Completion_Referenced (Def_Id);
3282
3283 -- If not private type or incomplete type completion, this is a real
3284 -- definition of a new entity, so record it.
3285
3286 else
3287 Generate_Definition (Def_Id);
3288 end if;
3289
3290 -- Propagate any pending access types whose finalization masters need to
3291 -- be fully initialized from the partial to the full view. Guard against
3292 -- an illegal full view that remains unanalyzed.
3293
3294 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3295 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3296 end if;
3297
3298 if Chars (Scope (Def_Id)) = Name_System
3299 and then Chars (Def_Id) = Name_Address
3300 and then In_Predefined_Unit (N)
3301 then
3302 Set_Is_Descendant_Of_Address (Def_Id);
3303 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3304 Set_Is_Descendant_Of_Address (Prev);
3305 end if;
3306
3307 Set_Optimize_Alignment_Flags (Def_Id);
3308 Check_Eliminated (Def_Id);
3309
3310 -- If the declaration is a completion and aspects are present, apply
3311 -- them to the entity for the type which is currently the partial
3312 -- view, but which is the one that will be frozen.
3313
3314 if Has_Aspects (N) then
3315
3316 -- In most cases the partial view is a private type, and both views
3317 -- appear in different declarative parts. In the unusual case where
3318 -- the partial view is incomplete, perform the analysis on the
3319 -- full view, to prevent freezing anomalies with the corresponding
3320 -- class-wide type, which otherwise might be frozen before the
3321 -- dispatch table is built.
3322
3323 if Prev /= Def_Id
3324 and then Ekind (Prev) /= E_Incomplete_Type
3325 then
3326 Analyze_Aspect_Specifications (N, Prev);
3327
3328 -- Normal case
3329
3330 else
3331 Analyze_Aspect_Specifications (N, Def_Id);
3332 end if;
3333 end if;
3334
3335 if Is_Derived_Type (Prev)
3336 and then Def_Id /= Prev
3337 then
3338 Check_Nonoverridable_Aspects;
3339 end if;
3340 end Analyze_Full_Type_Declaration;
3341
3342 ----------------------------------
3343 -- Analyze_Incomplete_Type_Decl --
3344 ----------------------------------
3345
3346 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3347 F : constant Boolean := Is_Pure (Current_Scope);
3348 T : Entity_Id;
3349
3350 begin
3351 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3352
3353 Generate_Definition (Defining_Identifier (N));
3354
3355 -- Process an incomplete declaration. The identifier must not have been
3356 -- declared already in the scope. However, an incomplete declaration may
3357 -- appear in the private part of a package, for a private type that has
3358 -- already been declared.
3359
3360 -- In this case, the discriminants (if any) must match
3361
3362 T := Find_Type_Name (N);
3363
3364 Set_Ekind (T, E_Incomplete_Type);
3365 Init_Size_Align (T);
3366 Set_Is_First_Subtype (T, True);
3367 Set_Etype (T, T);
3368
3369 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3370 -- incomplete types.
3371
3372 if Tagged_Present (N) then
3373 Set_Is_Tagged_Type (T, True);
3374 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3375 Make_Class_Wide_Type (T);
3376 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3377 end if;
3378
3379 Set_Stored_Constraint (T, No_Elist);
3380
3381 if Present (Discriminant_Specifications (N)) then
3382 Push_Scope (T);
3383 Process_Discriminants (N);
3384 End_Scope;
3385 end if;
3386
3387 -- If the type has discriminants, nontrivial subtypes may be declared
3388 -- before the full view of the type. The full views of those subtypes
3389 -- will be built after the full view of the type.
3390
3391 Set_Private_Dependents (T, New_Elmt_List);
3392 Set_Is_Pure (T, F);
3393 end Analyze_Incomplete_Type_Decl;
3394
3395 -----------------------------------
3396 -- Analyze_Interface_Declaration --
3397 -----------------------------------
3398
3399 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3400 CW : constant Entity_Id := Class_Wide_Type (T);
3401
3402 begin
3403 Set_Is_Tagged_Type (T);
3404 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3405
3406 Set_Is_Limited_Record (T, Limited_Present (Def)
3407 or else Task_Present (Def)
3408 or else Protected_Present (Def)
3409 or else Synchronized_Present (Def));
3410
3411 -- Type is abstract if full declaration carries keyword, or if previous
3412 -- partial view did.
3413
3414 Set_Is_Abstract_Type (T);
3415 Set_Is_Interface (T);
3416
3417 -- Type is a limited interface if it includes the keyword limited, task,
3418 -- protected, or synchronized.
3419
3420 Set_Is_Limited_Interface
3421 (T, Limited_Present (Def)
3422 or else Protected_Present (Def)
3423 or else Synchronized_Present (Def)
3424 or else Task_Present (Def));
3425
3426 Set_Interfaces (T, New_Elmt_List);
3427 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3428
3429 -- Complete the decoration of the class-wide entity if it was already
3430 -- built (i.e. during the creation of the limited view)
3431
3432 if Present (CW) then
3433 Set_Is_Interface (CW);
3434 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3435 end if;
3436
3437 -- Check runtime support for synchronized interfaces
3438
3439 if (Is_Task_Interface (T)
3440 or else Is_Protected_Interface (T)
3441 or else Is_Synchronized_Interface (T))
3442 and then not RTE_Available (RE_Select_Specific_Data)
3443 then
3444 Error_Msg_CRT ("synchronized interfaces", T);
3445 end if;
3446 end Analyze_Interface_Declaration;
3447
3448 -----------------------------
3449 -- Analyze_Itype_Reference --
3450 -----------------------------
3451
3452 -- Nothing to do. This node is placed in the tree only for the benefit of
3453 -- back end processing, and has no effect on the semantic processing.
3454
3455 procedure Analyze_Itype_Reference (N : Node_Id) is
3456 begin
3457 pragma Assert (Is_Itype (Itype (N)));
3458 null;
3459 end Analyze_Itype_Reference;
3460
3461 --------------------------------
3462 -- Analyze_Number_Declaration --
3463 --------------------------------
3464
3465 procedure Analyze_Number_Declaration (N : Node_Id) is
3466 E : constant Node_Id := Expression (N);
3467 Id : constant Entity_Id := Defining_Identifier (N);
3468 Index : Interp_Index;
3469 It : Interp;
3470 T : Entity_Id;
3471
3472 begin
3473 Generate_Definition (Id);
3474 Enter_Name (Id);
3475
3476 -- This is an optimization of a common case of an integer literal
3477
3478 if Nkind (E) = N_Integer_Literal then
3479 Set_Is_Static_Expression (E, True);
3480 Set_Etype (E, Universal_Integer);
3481
3482 Set_Etype (Id, Universal_Integer);
3483 Set_Ekind (Id, E_Named_Integer);
3484 Set_Is_Frozen (Id, True);
3485 return;
3486 end if;
3487
3488 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3489
3490 -- Process expression, replacing error by integer zero, to avoid
3491 -- cascaded errors or aborts further along in the processing
3492
3493 -- Replace Error by integer zero, which seems least likely to cause
3494 -- cascaded errors.
3495
3496 if E = Error then
3497 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3498 Set_Error_Posted (E);
3499 end if;
3500
3501 Analyze (E);
3502
3503 -- Verify that the expression is static and numeric. If
3504 -- the expression is overloaded, we apply the preference
3505 -- rule that favors root numeric types.
3506
3507 if not Is_Overloaded (E) then
3508 T := Etype (E);
3509 if Has_Dynamic_Predicate_Aspect (T) then
3510 Error_Msg_N
3511 ("subtype has dynamic predicate, "
3512 & "not allowed in number declaration", N);
3513 end if;
3514
3515 else
3516 T := Any_Type;
3517
3518 Get_First_Interp (E, Index, It);
3519 while Present (It.Typ) loop
3520 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3521 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3522 then
3523 if T = Any_Type then
3524 T := It.Typ;
3525
3526 elsif It.Typ = Universal_Real
3527 or else
3528 It.Typ = Universal_Integer
3529 then
3530 -- Choose universal interpretation over any other
3531
3532 T := It.Typ;
3533 exit;
3534 end if;
3535 end if;
3536
3537 Get_Next_Interp (Index, It);
3538 end loop;
3539 end if;
3540
3541 if Is_Integer_Type (T) then
3542 Resolve (E, T);
3543 Set_Etype (Id, Universal_Integer);
3544 Set_Ekind (Id, E_Named_Integer);
3545
3546 elsif Is_Real_Type (T) then
3547
3548 -- Because the real value is converted to universal_real, this is a
3549 -- legal context for a universal fixed expression.
3550
3551 if T = Universal_Fixed then
3552 declare
3553 Loc : constant Source_Ptr := Sloc (N);
3554 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3555 Subtype_Mark =>
3556 New_Occurrence_Of (Universal_Real, Loc),
3557 Expression => Relocate_Node (E));
3558
3559 begin
3560 Rewrite (E, Conv);
3561 Analyze (E);
3562 end;
3563
3564 elsif T = Any_Fixed then
3565 Error_Msg_N ("illegal context for mixed mode operation", E);
3566
3567 -- Expression is of the form : universal_fixed * integer. Try to
3568 -- resolve as universal_real.
3569
3570 T := Universal_Real;
3571 Set_Etype (E, T);
3572 end if;
3573
3574 Resolve (E, T);
3575 Set_Etype (Id, Universal_Real);
3576 Set_Ekind (Id, E_Named_Real);
3577
3578 else
3579 Wrong_Type (E, Any_Numeric);
3580 Resolve (E, T);
3581
3582 Set_Etype (Id, T);
3583 Set_Ekind (Id, E_Constant);
3584 Set_Never_Set_In_Source (Id, True);
3585 Set_Is_True_Constant (Id, True);
3586 return;
3587 end if;
3588
3589 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3590 Set_Etype (E, Etype (Id));
3591 end if;
3592
3593 if not Is_OK_Static_Expression (E) then
3594 Flag_Non_Static_Expr
3595 ("non-static expression used in number declaration!", E);
3596 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3597 Set_Etype (E, Any_Type);
3598 end if;
3599
3600 Analyze_Dimension (N);
3601 end Analyze_Number_Declaration;
3602
3603 --------------------------------
3604 -- Analyze_Object_Declaration --
3605 --------------------------------
3606
3607 -- WARNING: This routine manages Ghost regions. Return statements must be
3608 -- replaced by gotos which jump to the end of the routine and restore the
3609 -- Ghost mode.
3610
3611 procedure Analyze_Object_Declaration (N : Node_Id) is
3612 Loc : constant Source_Ptr := Sloc (N);
3613 Id : constant Entity_Id := Defining_Identifier (N);
3614 Act_T : Entity_Id;
3615 T : Entity_Id;
3616
3617 E : Node_Id := Expression (N);
3618 -- E is set to Expression (N) throughout this routine. When Expression
3619 -- (N) is modified, E is changed accordingly.
3620
3621 Prev_Entity : Entity_Id := Empty;
3622
3623 procedure Check_Dynamic_Object (Typ : Entity_Id);
3624 -- A library-level object with non-static discriminant constraints may
3625 -- require dynamic allocation. The declaration is illegal if the
3626 -- profile includes the restriction No_Implicit_Heap_Allocations.
3627
3628 procedure Check_For_Null_Excluding_Components
3629 (Obj_Typ : Entity_Id;
3630 Obj_Decl : Node_Id);
3631 -- Verify that each null-excluding component of object declaration
3632 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3633 -- a compile-time warning if this is not the case.
3634
3635 function Count_Tasks (T : Entity_Id) return Uint;
3636 -- This function is called when a non-generic library level object of a
3637 -- task type is declared. Its function is to count the static number of
3638 -- tasks declared within the type (it is only called if Has_Task is set
3639 -- for T). As a side effect, if an array of tasks with non-static bounds
3640 -- or a variant record type is encountered, Check_Restriction is called
3641 -- indicating the count is unknown.
3642
3643 function Delayed_Aspect_Present return Boolean;
3644 -- If the declaration has an expression that is an aggregate, and it
3645 -- has aspects that require delayed analysis, the resolution of the
3646 -- aggregate must be deferred to the freeze point of the objet. This
3647 -- special processing was created for address clauses, but it must
3648 -- also apply to Alignment. This must be done before the aspect
3649 -- specifications are analyzed because we must handle the aggregate
3650 -- before the analysis of the object declaration is complete.
3651
3652 -- Any other relevant delayed aspects on object declarations ???
3653
3654 --------------------------
3655 -- Check_Dynamic_Object --
3656 --------------------------
3657
3658 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3659 Comp : Entity_Id;
3660 Obj_Type : Entity_Id;
3661
3662 begin
3663 Obj_Type := Typ;
3664
3665 if Is_Private_Type (Obj_Type)
3666 and then Present (Full_View (Obj_Type))
3667 then
3668 Obj_Type := Full_View (Obj_Type);
3669 end if;
3670
3671 if Known_Static_Esize (Obj_Type) then
3672 return;
3673 end if;
3674
3675 if Restriction_Active (No_Implicit_Heap_Allocations)
3676 and then Expander_Active
3677 and then Has_Discriminants (Obj_Type)
3678 then
3679 Comp := First_Component (Obj_Type);
3680 while Present (Comp) loop
3681 if Known_Static_Esize (Etype (Comp))
3682 or else Size_Known_At_Compile_Time (Etype (Comp))
3683 then
3684 null;
3685
3686 elsif not Discriminated_Size (Comp)
3687 and then Comes_From_Source (Comp)
3688 then
3689 Error_Msg_NE
3690 ("component& of non-static size will violate restriction "
3691 & "No_Implicit_Heap_Allocation?", N, Comp);
3692
3693 elsif Is_Record_Type (Etype (Comp)) then
3694 Check_Dynamic_Object (Etype (Comp));
3695 end if;
3696
3697 Next_Component (Comp);
3698 end loop;
3699 end if;
3700 end Check_Dynamic_Object;
3701
3702 -----------------------------------------
3703 -- Check_For_Null_Excluding_Components --
3704 -----------------------------------------
3705
3706 procedure Check_For_Null_Excluding_Components
3707 (Obj_Typ : Entity_Id;
3708 Obj_Decl : Node_Id)
3709 is
3710 procedure Check_Component
3711 (Comp_Typ : Entity_Id;
3712 Comp_Decl : Node_Id := Empty;
3713 Array_Comp : Boolean := False);
3714 -- Apply a compile-time null-exclusion check on a component denoted
3715 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3716 -- subcomponents (if any).
3717
3718 ---------------------
3719 -- Check_Component --
3720 ---------------------
3721
3722 procedure Check_Component
3723 (Comp_Typ : Entity_Id;
3724 Comp_Decl : Node_Id := Empty;
3725 Array_Comp : Boolean := False)
3726 is
3727 Comp : Entity_Id;
3728 T : Entity_Id;
3729
3730 begin
3731 -- Do not consider internally-generated components or those that
3732 -- are already initialized.
3733
3734 if Present (Comp_Decl)
3735 and then (not Comes_From_Source (Comp_Decl)
3736 or else Present (Expression (Comp_Decl)))
3737 then
3738 return;
3739 end if;
3740
3741 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3742 and then Present (Full_View (Comp_Typ))
3743 then
3744 T := Full_View (Comp_Typ);
3745 else
3746 T := Comp_Typ;
3747 end if;
3748
3749 -- Verify a component of a null-excluding access type
3750
3751 if Is_Access_Type (T)
3752 and then Can_Never_Be_Null (T)
3753 then
3754 if Comp_Decl = Obj_Decl then
3755 Null_Exclusion_Static_Checks
3756 (N => Obj_Decl,
3757 Comp => Empty,
3758 Array_Comp => Array_Comp);
3759
3760 else
3761 Null_Exclusion_Static_Checks
3762 (N => Obj_Decl,
3763 Comp => Comp_Decl,
3764 Array_Comp => Array_Comp);
3765 end if;
3766
3767 -- Check array components
3768
3769 elsif Is_Array_Type (T) then
3770
3771 -- There is no suitable component when the object is of an
3772 -- array type. However, a namable component may appear at some
3773 -- point during the recursive inspection, but not at the top
3774 -- level. At the top level just indicate array component case.
3775
3776 if Comp_Decl = Obj_Decl then
3777 Check_Component (Component_Type (T), Array_Comp => True);
3778 else
3779 Check_Component (Component_Type (T), Comp_Decl);
3780 end if;
3781
3782 -- Verify all components of type T
3783
3784 -- Note: No checks are performed on types with discriminants due
3785 -- to complexities involving variants. ???
3786
3787 elsif (Is_Concurrent_Type (T)
3788 or else Is_Incomplete_Or_Private_Type (T)
3789 or else Is_Record_Type (T))
3790 and then not Has_Discriminants (T)
3791 then
3792 Comp := First_Component (T);
3793 while Present (Comp) loop
3794 Check_Component (Etype (Comp), Parent (Comp));
3795
3796 Comp := Next_Component (Comp);
3797 end loop;
3798 end if;
3799 end Check_Component;
3800
3801 -- Start processing for Check_For_Null_Excluding_Components
3802
3803 begin
3804 Check_Component (Obj_Typ, Obj_Decl);
3805 end Check_For_Null_Excluding_Components;
3806
3807 -----------------
3808 -- Count_Tasks --
3809 -----------------
3810
3811 function Count_Tasks (T : Entity_Id) return Uint is
3812 C : Entity_Id;
3813 X : Node_Id;
3814 V : Uint;
3815
3816 begin
3817 if Is_Task_Type (T) then
3818 return Uint_1;
3819
3820 elsif Is_Record_Type (T) then
3821 if Has_Discriminants (T) then
3822 Check_Restriction (Max_Tasks, N);
3823 return Uint_0;
3824
3825 else
3826 V := Uint_0;
3827 C := First_Component (T);
3828 while Present (C) loop
3829 V := V + Count_Tasks (Etype (C));
3830 Next_Component (C);
3831 end loop;
3832
3833 return V;
3834 end if;
3835
3836 elsif Is_Array_Type (T) then
3837 X := First_Index (T);
3838 V := Count_Tasks (Component_Type (T));
3839 while Present (X) loop
3840 C := Etype (X);
3841
3842 if not Is_OK_Static_Subtype (C) then
3843 Check_Restriction (Max_Tasks, N);
3844 return Uint_0;
3845 else
3846 V := V * (UI_Max (Uint_0,
3847 Expr_Value (Type_High_Bound (C)) -
3848 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3849 end if;
3850
3851 Next_Index (X);
3852 end loop;
3853
3854 return V;
3855
3856 else
3857 return Uint_0;
3858 end if;
3859 end Count_Tasks;
3860
3861 ----------------------------
3862 -- Delayed_Aspect_Present --
3863 ----------------------------
3864
3865 function Delayed_Aspect_Present return Boolean is
3866 A : Node_Id;
3867 A_Id : Aspect_Id;
3868
3869 begin
3870 if Present (Aspect_Specifications (N)) then
3871 A := First (Aspect_Specifications (N));
3872 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3873 while Present (A) loop
3874 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3875 return True;
3876 end if;
3877
3878 Next (A);
3879 end loop;
3880 end if;
3881
3882 return False;
3883 end Delayed_Aspect_Present;
3884
3885 -- Local variables
3886
3887 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3888 -- Save the Ghost mode to restore on exit
3889
3890 Related_Id : Entity_Id;
3891
3892 -- Start of processing for Analyze_Object_Declaration
3893
3894 begin
3895 -- There are three kinds of implicit types generated by an
3896 -- object declaration:
3897
3898 -- 1. Those generated by the original Object Definition
3899
3900 -- 2. Those generated by the Expression
3901
3902 -- 3. Those used to constrain the Object Definition with the
3903 -- expression constraints when the definition is unconstrained.
3904
3905 -- They must be generated in this order to avoid order of elaboration
3906 -- issues. Thus the first step (after entering the name) is to analyze
3907 -- the object definition.
3908
3909 if Constant_Present (N) then
3910 Prev_Entity := Current_Entity_In_Scope (Id);
3911
3912 if Present (Prev_Entity)
3913 and then
3914 -- If the homograph is an implicit subprogram, it is overridden
3915 -- by the current declaration.
3916
3917 ((Is_Overloadable (Prev_Entity)
3918 and then Is_Inherited_Operation (Prev_Entity))
3919
3920 -- The current object is a discriminal generated for an entry
3921 -- family index. Even though the index is a constant, in this
3922 -- particular context there is no true constant redeclaration.
3923 -- Enter_Name will handle the visibility.
3924
3925 or else
3926 (Is_Discriminal (Id)
3927 and then Ekind (Discriminal_Link (Id)) =
3928 E_Entry_Index_Parameter)
3929
3930 -- The current object is the renaming for a generic declared
3931 -- within the instance.
3932
3933 or else
3934 (Ekind (Prev_Entity) = E_Package
3935 and then Nkind (Parent (Prev_Entity)) =
3936 N_Package_Renaming_Declaration
3937 and then not Comes_From_Source (Prev_Entity)
3938 and then
3939 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3940
3941 -- The entity may be a homonym of a private component of the
3942 -- enclosing protected object, for which we create a local
3943 -- renaming declaration. The declaration is legal, even if
3944 -- useless when it just captures that component.
3945
3946 or else
3947 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3948 and then Nkind (Parent (Prev_Entity)) =
3949 N_Object_Renaming_Declaration))
3950 then
3951 Prev_Entity := Empty;
3952 end if;
3953 end if;
3954
3955 if Present (Prev_Entity) then
3956
3957 -- The object declaration is Ghost when it completes a deferred Ghost
3958 -- constant.
3959
3960 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3961
3962 Constant_Redeclaration (Id, N, T);
3963
3964 Generate_Reference (Prev_Entity, Id, 'c');
3965 Set_Completion_Referenced (Id);
3966
3967 if Error_Posted (N) then
3968
3969 -- Type mismatch or illegal redeclaration; do not analyze
3970 -- expression to avoid cascaded errors.
3971
3972 T := Find_Type_Of_Object (Object_Definition (N), N);
3973 Set_Etype (Id, T);
3974 Set_Ekind (Id, E_Variable);
3975 goto Leave;
3976 end if;
3977
3978 -- In the normal case, enter identifier at the start to catch premature
3979 -- usage in the initialization expression.
3980
3981 else
3982 Generate_Definition (Id);
3983 Enter_Name (Id);
3984
3985 Mark_Coextensions (N, Object_Definition (N));
3986
3987 T := Find_Type_Of_Object (Object_Definition (N), N);
3988
3989 if Nkind (Object_Definition (N)) = N_Access_Definition
3990 and then Present
3991 (Access_To_Subprogram_Definition (Object_Definition (N)))
3992 and then Protected_Present
3993 (Access_To_Subprogram_Definition (Object_Definition (N)))
3994 then
3995 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3996 end if;
3997
3998 if Error_Posted (Id) then
3999 Set_Etype (Id, T);
4000 Set_Ekind (Id, E_Variable);
4001 goto Leave;
4002 end if;
4003 end if;
4004
4005 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4006 -- out some static checks.
4007
4008 if Ada_Version >= Ada_2005 then
4009
4010 -- In case of aggregates we must also take care of the correct
4011 -- initialization of nested aggregates bug this is done at the
4012 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4013
4014 if Can_Never_Be_Null (T) then
4015 if Present (Expression (N))
4016 and then Nkind (Expression (N)) = N_Aggregate
4017 then
4018 null;
4019
4020 else
4021 declare
4022 Save_Typ : constant Entity_Id := Etype (Id);
4023 begin
4024 Set_Etype (Id, T); -- Temp. decoration for static checks
4025 Null_Exclusion_Static_Checks (N);
4026 Set_Etype (Id, Save_Typ);
4027 end;
4028 end if;
4029
4030 -- We might be dealing with an object of a composite type containing
4031 -- null-excluding components without an aggregate, so we must verify
4032 -- that such components have default initialization.
4033
4034 else
4035 Check_For_Null_Excluding_Components (T, N);
4036 end if;
4037 end if;
4038
4039 -- Object is marked pure if it is in a pure scope
4040
4041 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4042
4043 -- If deferred constant, make sure context is appropriate. We detect
4044 -- a deferred constant as a constant declaration with no expression.
4045 -- A deferred constant can appear in a package body if its completion
4046 -- is by means of an interface pragma.
4047
4048 if Constant_Present (N) and then No (E) then
4049
4050 -- A deferred constant may appear in the declarative part of the
4051 -- following constructs:
4052
4053 -- blocks
4054 -- entry bodies
4055 -- extended return statements
4056 -- package specs
4057 -- package bodies
4058 -- subprogram bodies
4059 -- task bodies
4060
4061 -- When declared inside a package spec, a deferred constant must be
4062 -- completed by a full constant declaration or pragma Import. In all
4063 -- other cases, the only proper completion is pragma Import. Extended
4064 -- return statements are flagged as invalid contexts because they do
4065 -- not have a declarative part and so cannot accommodate the pragma.
4066
4067 if Ekind (Current_Scope) = E_Return_Statement then
4068 Error_Msg_N
4069 ("invalid context for deferred constant declaration (RM 7.4)",
4070 N);
4071 Error_Msg_N
4072 ("\declaration requires an initialization expression",
4073 N);
4074 Set_Constant_Present (N, False);
4075
4076 -- In Ada 83, deferred constant must be of private type
4077
4078 elsif not Is_Private_Type (T) then
4079 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4080 Error_Msg_N
4081 ("(Ada 83) deferred constant must be private type", N);
4082 end if;
4083 end if;
4084
4085 -- If not a deferred constant, then the object declaration freezes
4086 -- its type, unless the object is of an anonymous type and has delayed
4087 -- aspects. In that case the type is frozen when the object itself is.
4088
4089 else
4090 Check_Fully_Declared (T, N);
4091
4092 if Has_Delayed_Aspects (Id)
4093 and then Is_Array_Type (T)
4094 and then Is_Itype (T)
4095 then
4096 Set_Has_Delayed_Freeze (T);
4097 else
4098 Freeze_Before (N, T);
4099 end if;
4100 end if;
4101
4102 -- If the object was created by a constrained array definition, then
4103 -- set the link in both the anonymous base type and anonymous subtype
4104 -- that are built to represent the array type to point to the object.
4105
4106 if Nkind (Object_Definition (Declaration_Node (Id))) =
4107 N_Constrained_Array_Definition
4108 then
4109 Set_Related_Array_Object (T, Id);
4110 Set_Related_Array_Object (Base_Type (T), Id);
4111 end if;
4112
4113 -- Special checks for protected objects not at library level
4114
4115 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4116 Check_Restriction (No_Local_Protected_Objects, Id);
4117
4118 -- Protected objects with interrupt handlers must be at library level
4119
4120 -- Ada 2005: This test is not needed (and the corresponding clause
4121 -- in the RM is removed) because accessibility checks are sufficient
4122 -- to make handlers not at the library level illegal.
4123
4124 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4125 -- applies to the '95 version of the language as well.
4126
4127 if Is_Protected_Type (T)
4128 and then Has_Interrupt_Handler (T)
4129 and then Ada_Version < Ada_95
4130 then
4131 Error_Msg_N
4132 ("interrupt object can only be declared at library level", Id);
4133 end if;
4134 end if;
4135
4136 -- Check for violation of No_Local_Timing_Events
4137
4138 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4139 Check_Restriction (No_Local_Timing_Events, Id);
4140 end if;
4141
4142 -- The actual subtype of the object is the nominal subtype, unless
4143 -- the nominal one is unconstrained and obtained from the expression.
4144
4145 Act_T := T;
4146
4147 -- These checks should be performed before the initialization expression
4148 -- is considered, so that the Object_Definition node is still the same
4149 -- as in source code.
4150
4151 -- In SPARK, the nominal subtype is always given by a subtype mark
4152 -- and must not be unconstrained. (The only exception to this is the
4153 -- acceptance of declarations of constants of type String.)
4154
4155 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4156 then
4157 Check_SPARK_05_Restriction
4158 ("subtype mark required", Object_Definition (N));
4159
4160 elsif Is_Array_Type (T)
4161 and then not Is_Constrained (T)
4162 and then T /= Standard_String
4163 then
4164 Check_SPARK_05_Restriction
4165 ("subtype mark of constrained type expected",
4166 Object_Definition (N));
4167 end if;
4168
4169 if Is_Library_Level_Entity (Id) then
4170 Check_Dynamic_Object (T);
4171 end if;
4172
4173 -- There are no aliased objects in SPARK
4174
4175 if Aliased_Present (N) then
4176 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4177 end if;
4178
4179 -- Process initialization expression if present and not in error
4180
4181 if Present (E) and then E /= Error then
4182
4183 -- Generate an error in case of CPP class-wide object initialization.
4184 -- Required because otherwise the expansion of the class-wide
4185 -- assignment would try to use 'size to initialize the object
4186 -- (primitive that is not available in CPP tagged types).
4187
4188 if Is_Class_Wide_Type (Act_T)
4189 and then
4190 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4191 or else
4192 (Present (Full_View (Root_Type (Etype (Act_T))))
4193 and then
4194 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4195 then
4196 Error_Msg_N
4197 ("predefined assignment not available for 'C'P'P tagged types",
4198 E);
4199 end if;
4200
4201 Mark_Coextensions (N, E);
4202 Analyze (E);
4203
4204 -- In case of errors detected in the analysis of the expression,
4205 -- decorate it with the expected type to avoid cascaded errors
4206
4207 if No (Etype (E)) then
4208 Set_Etype (E, T);
4209 end if;
4210
4211 -- If an initialization expression is present, then we set the
4212 -- Is_True_Constant flag. It will be reset if this is a variable
4213 -- and it is indeed modified.
4214
4215 Set_Is_True_Constant (Id, True);
4216
4217 -- If we are analyzing a constant declaration, set its completion
4218 -- flag after analyzing and resolving the expression.
4219
4220 if Constant_Present (N) then
4221 Set_Has_Completion (Id);
4222 end if;
4223
4224 -- Set type and resolve (type may be overridden later on). Note:
4225 -- Ekind (Id) must still be E_Void at this point so that incorrect
4226 -- early usage within E is properly diagnosed.
4227
4228 Set_Etype (Id, T);
4229
4230 -- If the expression is an aggregate we must look ahead to detect
4231 -- the possible presence of an address clause, and defer resolution
4232 -- and expansion of the aggregate to the freeze point of the entity.
4233
4234 -- This is not always legal because the aggregate may contain other
4235 -- references that need freezing, e.g. references to other entities
4236 -- with address clauses. In any case, when compiling with -gnatI the
4237 -- presence of the address clause must be ignored.
4238
4239 if Comes_From_Source (N)
4240 and then Expander_Active
4241 and then Nkind (E) = N_Aggregate
4242 and then
4243 ((Present (Following_Address_Clause (N))
4244 and then not Ignore_Rep_Clauses)
4245 or else Delayed_Aspect_Present)
4246 then
4247 Set_Etype (E, T);
4248
4249 else
4250 Resolve (E, T);
4251 end if;
4252
4253 -- No further action needed if E is a call to an inlined function
4254 -- which returns an unconstrained type and it has been expanded into
4255 -- a procedure call. In that case N has been replaced by an object
4256 -- declaration without initializing expression and it has been
4257 -- analyzed (see Expand_Inlined_Call).
4258
4259 if Back_End_Inlining
4260 and then Expander_Active
4261 and then Nkind (E) = N_Function_Call
4262 and then Nkind (Name (E)) in N_Has_Entity
4263 and then Is_Inlined (Entity (Name (E)))
4264 and then not Is_Constrained (Etype (E))
4265 and then Analyzed (N)
4266 and then No (Expression (N))
4267 then
4268 goto Leave;
4269 end if;
4270
4271 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4272 -- node (which was marked already-analyzed), we need to set the type
4273 -- to something other than Any_Access in order to keep gigi happy.
4274
4275 if Etype (E) = Any_Access then
4276 Set_Etype (E, T);
4277 end if;
4278
4279 -- If the object is an access to variable, the initialization
4280 -- expression cannot be an access to constant.
4281
4282 if Is_Access_Type (T)
4283 and then not Is_Access_Constant (T)
4284 and then Is_Access_Type (Etype (E))
4285 and then Is_Access_Constant (Etype (E))
4286 then
4287 Error_Msg_N
4288 ("access to variable cannot be initialized with an "
4289 & "access-to-constant expression", E);
4290 end if;
4291
4292 if not Assignment_OK (N) then
4293 Check_Initialization (T, E);
4294 end if;
4295
4296 Check_Unset_Reference (E);
4297
4298 -- If this is a variable, then set current value. If this is a
4299 -- declared constant of a scalar type with a static expression,
4300 -- indicate that it is always valid.
4301
4302 if not Constant_Present (N) then
4303 if Compile_Time_Known_Value (E) then
4304 Set_Current_Value (Id, E);
4305 end if;
4306
4307 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4308 Set_Is_Known_Valid (Id);
4309 end if;
4310
4311 -- Deal with setting of null flags
4312
4313 if Is_Access_Type (T) then
4314 if Known_Non_Null (E) then
4315 Set_Is_Known_Non_Null (Id, True);
4316 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4317 Set_Is_Known_Null (Id, True);
4318 end if;
4319 end if;
4320
4321 -- Check incorrect use of dynamically tagged expressions
4322
4323 if Is_Tagged_Type (T) then
4324 Check_Dynamically_Tagged_Expression
4325 (Expr => E,
4326 Typ => T,
4327 Related_Nod => N);
4328 end if;
4329
4330 Apply_Scalar_Range_Check (E, T);
4331 Apply_Static_Length_Check (E, T);
4332
4333 if Nkind (Original_Node (N)) = N_Object_Declaration
4334 and then Comes_From_Source (Original_Node (N))
4335
4336 -- Only call test if needed
4337
4338 and then Restriction_Check_Required (SPARK_05)
4339 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4340 then
4341 Check_SPARK_05_Restriction
4342 ("initialization expression is not appropriate", E);
4343 end if;
4344
4345 -- A formal parameter of a specific tagged type whose related
4346 -- subprogram is subject to pragma Extensions_Visible with value
4347 -- "False" cannot be implicitly converted to a class-wide type by
4348 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4349 -- not consider internally generated expressions.
4350
4351 if Is_Class_Wide_Type (T)
4352 and then Comes_From_Source (E)
4353 and then Is_EVF_Expression (E)
4354 then
4355 Error_Msg_N
4356 ("formal parameter cannot be implicitly converted to "
4357 & "class-wide type when Extensions_Visible is False", E);
4358 end if;
4359 end if;
4360
4361 -- If the No_Streams restriction is set, check that the type of the
4362 -- object is not, and does not contain, any subtype derived from
4363 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4364 -- Has_Stream just for efficiency reasons. There is no point in
4365 -- spending time on a Has_Stream check if the restriction is not set.
4366
4367 if Restriction_Check_Required (No_Streams) then
4368 if Has_Stream (T) then
4369 Check_Restriction (No_Streams, N);
4370 end if;
4371 end if;
4372
4373 -- Deal with predicate check before we start to do major rewriting. It
4374 -- is OK to initialize and then check the initialized value, since the
4375 -- object goes out of scope if we get a predicate failure. Note that we
4376 -- do this in the analyzer and not the expander because the analyzer
4377 -- does some substantial rewriting in some cases.
4378
4379 -- We need a predicate check if the type has predicates that are not
4380 -- ignored, and if either there is an initializing expression, or for
4381 -- default initialization when we have at least one case of an explicit
4382 -- default initial value and then this is not an internal declaration
4383 -- whose initialization comes later (as for an aggregate expansion).
4384
4385 if not Suppress_Assignment_Checks (N)
4386 and then Present (Predicate_Function (T))
4387 and then not Predicates_Ignored (T)
4388 and then not No_Initialization (N)
4389 and then
4390 (Present (E)
4391 or else
4392 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4393 then
4394 -- If the type has a static predicate and the expression is known at
4395 -- compile time, see if the expression satisfies the predicate.
4396
4397 if Present (E) then
4398 Check_Expression_Against_Static_Predicate (E, T);
4399 end if;
4400
4401 -- If the type is a null record and there is no explicit initial
4402 -- expression, no predicate check applies.
4403
4404 if No (E) and then Is_Null_Record_Type (T) then
4405 null;
4406
4407 -- Do not generate a predicate check if the initialization expression
4408 -- is a type conversion because the conversion has been subjected to
4409 -- the same check. This is a small optimization which avoid redundant
4410 -- checks.
4411
4412 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4413 null;
4414
4415 else
4416 Insert_After (N,
4417 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4418 end if;
4419 end if;
4420
4421 -- Case of unconstrained type
4422
4423 if not Is_Definite_Subtype (T) then
4424
4425 -- In SPARK, a declaration of unconstrained type is allowed
4426 -- only for constants of type string.
4427
4428 if Is_String_Type (T) and then not Constant_Present (N) then
4429 Check_SPARK_05_Restriction
4430 ("declaration of object of unconstrained type not allowed", N);
4431 end if;
4432
4433 -- Nothing to do in deferred constant case
4434
4435 if Constant_Present (N) and then No (E) then
4436 null;
4437
4438 -- Case of no initialization present
4439
4440 elsif No (E) then
4441 if No_Initialization (N) then
4442 null;
4443
4444 elsif Is_Class_Wide_Type (T) then
4445 Error_Msg_N
4446 ("initialization required in class-wide declaration ", N);
4447
4448 else
4449 Error_Msg_N
4450 ("unconstrained subtype not allowed (need initialization)",
4451 Object_Definition (N));
4452
4453 if Is_Record_Type (T) and then Has_Discriminants (T) then
4454 Error_Msg_N
4455 ("\provide initial value or explicit discriminant values",
4456 Object_Definition (N));
4457
4458 Error_Msg_NE
4459 ("\or give default discriminant values for type&",
4460 Object_Definition (N), T);
4461
4462 elsif Is_Array_Type (T) then
4463 Error_Msg_N
4464 ("\provide initial value or explicit array bounds",
4465 Object_Definition (N));
4466 end if;
4467 end if;
4468
4469 -- Case of initialization present but in error. Set initial
4470 -- expression as absent (but do not make above complaints)
4471
4472 elsif E = Error then
4473 Set_Expression (N, Empty);
4474 E := Empty;
4475
4476 -- Case of initialization present
4477
4478 else
4479 -- Check restrictions in Ada 83
4480
4481 if not Constant_Present (N) then
4482
4483 -- Unconstrained variables not allowed in Ada 83 mode
4484
4485 if Ada_Version = Ada_83
4486 and then Comes_From_Source (Object_Definition (N))
4487 then
4488 Error_Msg_N
4489 ("(Ada 83) unconstrained variable not allowed",
4490 Object_Definition (N));
4491 end if;
4492 end if;
4493
4494 -- Now we constrain the variable from the initializing expression
4495
4496 -- If the expression is an aggregate, it has been expanded into
4497 -- individual assignments. Retrieve the actual type from the
4498 -- expanded construct.
4499
4500 if Is_Array_Type (T)
4501 and then No_Initialization (N)
4502 and then Nkind (Original_Node (E)) = N_Aggregate
4503 then
4504 Act_T := Etype (E);
4505
4506 -- In case of class-wide interface object declarations we delay
4507 -- the generation of the equivalent record type declarations until
4508 -- its expansion because there are cases in they are not required.
4509
4510 elsif Is_Interface (T) then
4511 null;
4512
4513 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4514 -- we should prevent the generation of another Itype with the
4515 -- same name as the one already generated, or we end up with
4516 -- two identical types in GNATprove.
4517
4518 elsif GNATprove_Mode then
4519 null;
4520
4521 -- If the type is an unchecked union, no subtype can be built from
4522 -- the expression. Rewrite declaration as a renaming, which the
4523 -- back-end can handle properly. This is a rather unusual case,
4524 -- because most unchecked_union declarations have default values
4525 -- for discriminants and are thus not indefinite.
4526
4527 elsif Is_Unchecked_Union (T) then
4528 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4529 Set_Ekind (Id, E_Constant);
4530 else
4531 Set_Ekind (Id, E_Variable);
4532 end if;
4533
4534 Rewrite (N,
4535 Make_Object_Renaming_Declaration (Loc,
4536 Defining_Identifier => Id,
4537 Subtype_Mark => New_Occurrence_Of (T, Loc),
4538 Name => E));
4539
4540 Set_Renamed_Object (Id, E);
4541 Freeze_Before (N, T);
4542 Set_Is_Frozen (Id);
4543 goto Leave;
4544
4545 else
4546 -- Ensure that the generated subtype has a unique external name
4547 -- when the related object is public. This guarantees that the
4548 -- subtype and its bounds will not be affected by switches or
4549 -- pragmas that may offset the internal counter due to extra
4550 -- generated code.
4551
4552 if Is_Public (Id) then
4553 Related_Id := Id;
4554 else
4555 Related_Id := Empty;
4556 end if;
4557
4558 Expand_Subtype_From_Expr
4559 (N => N,
4560 Unc_Type => T,
4561 Subtype_Indic => Object_Definition (N),
4562 Exp => E,
4563 Related_Id => Related_Id);
4564
4565 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4566 end if;
4567
4568 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4569
4570 if Aliased_Present (N) then
4571 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4572 end if;
4573
4574 Freeze_Before (N, Act_T);
4575 Freeze_Before (N, T);
4576 end if;
4577
4578 elsif Is_Array_Type (T)
4579 and then No_Initialization (N)
4580 and then (Nkind (Original_Node (E)) = N_Aggregate
4581 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4582 and then Nkind (Original_Node (Expression
4583 (Original_Node (E)))) = N_Aggregate))
4584 then
4585 if not Is_Entity_Name (Object_Definition (N)) then
4586 Act_T := Etype (E);
4587 Check_Compile_Time_Size (Act_T);
4588
4589 if Aliased_Present (N) then
4590 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4591 end if;
4592 end if;
4593
4594 -- When the given object definition and the aggregate are specified
4595 -- independently, and their lengths might differ do a length check.
4596 -- This cannot happen if the aggregate is of the form (others =>...)
4597
4598 if not Is_Constrained (T) then
4599 null;
4600
4601 elsif Nkind (E) = N_Raise_Constraint_Error then
4602
4603 -- Aggregate is statically illegal. Place back in declaration
4604
4605 Set_Expression (N, E);
4606 Set_No_Initialization (N, False);
4607
4608 elsif T = Etype (E) then
4609 null;
4610
4611 elsif Nkind (E) = N_Aggregate
4612 and then Present (Component_Associations (E))
4613 and then Present (Choice_List (First (Component_Associations (E))))
4614 and then
4615 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4616 N_Others_Choice
4617 then
4618 null;
4619
4620 else
4621 Apply_Length_Check (E, T);
4622 end if;
4623
4624 -- If the type is limited unconstrained with defaulted discriminants and
4625 -- there is no expression, then the object is constrained by the
4626 -- defaults, so it is worthwhile building the corresponding subtype.
4627
4628 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4629 and then not Is_Constrained (T)
4630 and then Has_Discriminants (T)
4631 then
4632 if No (E) then
4633 Act_T := Build_Default_Subtype (T, N);
4634 else
4635 -- Ada 2005: A limited object may be initialized by means of an
4636 -- aggregate. If the type has default discriminants it has an
4637 -- unconstrained nominal type, Its actual subtype will be obtained
4638 -- from the aggregate, and not from the default discriminants.
4639
4640 Act_T := Etype (E);
4641 end if;
4642
4643 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4644
4645 elsif Nkind (E) = N_Function_Call
4646 and then Constant_Present (N)
4647 and then Has_Unconstrained_Elements (Etype (E))
4648 then
4649 -- The back-end has problems with constants of a discriminated type
4650 -- with defaults, if the initial value is a function call. We
4651 -- generate an intermediate temporary that will receive a reference
4652 -- to the result of the call. The initialization expression then
4653 -- becomes a dereference of that temporary.
4654
4655 Remove_Side_Effects (E);
4656
4657 -- If this is a constant declaration of an unconstrained type and
4658 -- the initialization is an aggregate, we can use the subtype of the
4659 -- aggregate for the declared entity because it is immutable.
4660
4661 elsif not Is_Constrained (T)
4662 and then Has_Discriminants (T)
4663 and then Constant_Present (N)
4664 and then not Has_Unchecked_Union (T)
4665 and then Nkind (E) = N_Aggregate
4666 then
4667 Act_T := Etype (E);
4668 end if;
4669
4670 -- Check No_Wide_Characters restriction
4671
4672 Check_Wide_Character_Restriction (T, Object_Definition (N));
4673
4674 -- Indicate this is not set in source. Certainly true for constants, and
4675 -- true for variables so far (will be reset for a variable if and when
4676 -- we encounter a modification in the source).
4677
4678 Set_Never_Set_In_Source (Id);
4679
4680 -- Now establish the proper kind and type of the object
4681
4682 if Constant_Present (N) then
4683 Set_Ekind (Id, E_Constant);
4684 Set_Is_True_Constant (Id);
4685
4686 else
4687 Set_Ekind (Id, E_Variable);
4688
4689 -- A variable is set as shared passive if it appears in a shared
4690 -- passive package, and is at the outer level. This is not done for
4691 -- entities generated during expansion, because those are always
4692 -- manipulated locally.
4693
4694 if Is_Shared_Passive (Current_Scope)
4695 and then Is_Library_Level_Entity (Id)
4696 and then Comes_From_Source (Id)
4697 then
4698 Set_Is_Shared_Passive (Id);
4699 Check_Shared_Var (Id, T, N);
4700 end if;
4701
4702 -- Set Has_Initial_Value if initializing expression present. Note
4703 -- that if there is no initializing expression, we leave the state
4704 -- of this flag unchanged (usually it will be False, but notably in
4705 -- the case of exception choice variables, it will already be true).
4706
4707 if Present (E) then
4708 Set_Has_Initial_Value (Id);
4709 end if;
4710 end if;
4711
4712 -- Set the SPARK mode from the current context (may be overwritten later
4713 -- with explicit pragma).
4714
4715 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4716 Set_SPARK_Pragma_Inherited (Id);
4717
4718 -- Preserve relevant elaboration-related attributes of the context which
4719 -- are no longer available or very expensive to recompute once analysis,
4720 -- resolution, and expansion are over.
4721
4722 Mark_Elaboration_Attributes
4723 (N_Id => Id,
4724 Checks => True);
4725
4726 -- Initialize alignment and size and capture alignment setting
4727
4728 Init_Alignment (Id);
4729 Init_Esize (Id);
4730 Set_Optimize_Alignment_Flags (Id);
4731
4732 -- Deal with aliased case
4733
4734 if Aliased_Present (N) then
4735 Set_Is_Aliased (Id);
4736
4737 -- If the object is aliased and the type is unconstrained with
4738 -- defaulted discriminants and there is no expression, then the
4739 -- object is constrained by the defaults, so it is worthwhile
4740 -- building the corresponding subtype.
4741
4742 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4743 -- unconstrained, then only establish an actual subtype if the
4744 -- nominal subtype is indefinite. In definite cases the object is
4745 -- unconstrained in Ada 2005.
4746
4747 if No (E)
4748 and then Is_Record_Type (T)
4749 and then not Is_Constrained (T)
4750 and then Has_Discriminants (T)
4751 and then (Ada_Version < Ada_2005
4752 or else not Is_Definite_Subtype (T))
4753 then
4754 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4755 end if;
4756 end if;
4757
4758 -- Now we can set the type of the object
4759
4760 Set_Etype (Id, Act_T);
4761
4762 -- Non-constant object is marked to be treated as volatile if type is
4763 -- volatile and we clear the Current_Value setting that may have been
4764 -- set above. Doing so for constants isn't required and might interfere
4765 -- with possible uses of the object as a static expression in contexts
4766 -- incompatible with volatility (e.g. as a case-statement alternative).
4767
4768 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4769 Set_Treat_As_Volatile (Id);
4770 Set_Current_Value (Id, Empty);
4771 end if;
4772
4773 -- Deal with controlled types
4774
4775 if Has_Controlled_Component (Etype (Id))
4776 or else Is_Controlled (Etype (Id))
4777 then
4778 if not Is_Library_Level_Entity (Id) then
4779 Check_Restriction (No_Nested_Finalization, N);
4780 else
4781 Validate_Controlled_Object (Id);
4782 end if;
4783 end if;
4784
4785 if Has_Task (Etype (Id)) then
4786 Check_Restriction (No_Tasking, N);
4787
4788 -- Deal with counting max tasks
4789
4790 -- Nothing to do if inside a generic
4791
4792 if Inside_A_Generic then
4793 null;
4794
4795 -- If library level entity, then count tasks
4796
4797 elsif Is_Library_Level_Entity (Id) then
4798 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4799
4800 -- If not library level entity, then indicate we don't know max
4801 -- tasks and also check task hierarchy restriction and blocking
4802 -- operation (since starting a task is definitely blocking).
4803
4804 else
4805 Check_Restriction (Max_Tasks, N);
4806 Check_Restriction (No_Task_Hierarchy, N);
4807 Check_Potentially_Blocking_Operation (N);
4808 end if;
4809
4810 -- A rather specialized test. If we see two tasks being declared
4811 -- of the same type in the same object declaration, and the task
4812 -- has an entry with an address clause, we know that program error
4813 -- will be raised at run time since we can't have two tasks with
4814 -- entries at the same address.
4815
4816 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4817 declare
4818 E : Entity_Id;
4819
4820 begin
4821 E := First_Entity (Etype (Id));
4822 while Present (E) loop
4823 if Ekind (E) = E_Entry
4824 and then Present (Get_Attribute_Definition_Clause
4825 (E, Attribute_Address))
4826 then
4827 Error_Msg_Warn := SPARK_Mode /= On;
4828 Error_Msg_N
4829 ("more than one task with same entry address<<", N);
4830 Error_Msg_N ("\Program_Error [<<", N);
4831 Insert_Action (N,
4832 Make_Raise_Program_Error (Loc,
4833 Reason => PE_Duplicated_Entry_Address));
4834 exit;
4835 end if;
4836
4837 Next_Entity (E);
4838 end loop;
4839 end;
4840 end if;
4841 end if;
4842
4843 -- Some simple constant-propagation: if the expression is a constant
4844 -- string initialized with a literal, share the literal. This avoids
4845 -- a run-time copy.
4846
4847 if Present (E)
4848 and then Is_Entity_Name (E)
4849 and then Ekind (Entity (E)) = E_Constant
4850 and then Base_Type (Etype (E)) = Standard_String
4851 then
4852 declare
4853 Val : constant Node_Id := Constant_Value (Entity (E));
4854 begin
4855 if Present (Val) and then Nkind (Val) = N_String_Literal then
4856 Rewrite (E, New_Copy (Val));
4857 end if;
4858 end;
4859 end if;
4860
4861 -- Another optimization: if the nominal subtype is unconstrained and
4862 -- the expression is a function call that returns an unconstrained
4863 -- type, rewrite the declaration as a renaming of the result of the
4864 -- call. The exceptions below are cases where the copy is expected,
4865 -- either by the back end (Aliased case) or by the semantics, as for
4866 -- initializing controlled types or copying tags for class-wide types.
4867
4868 if Present (E)
4869 and then Nkind (E) = N_Explicit_Dereference
4870 and then Nkind (Original_Node (E)) = N_Function_Call
4871 and then not Is_Library_Level_Entity (Id)
4872 and then not Is_Constrained (Underlying_Type (T))
4873 and then not Is_Aliased (Id)
4874 and then not Is_Class_Wide_Type (T)
4875 and then not Is_Controlled (T)
4876 and then not Has_Controlled_Component (Base_Type (T))
4877 and then Expander_Active
4878 then
4879 Rewrite (N,
4880 Make_Object_Renaming_Declaration (Loc,
4881 Defining_Identifier => Id,
4882 Access_Definition => Empty,
4883 Subtype_Mark => New_Occurrence_Of
4884 (Base_Type (Etype (Id)), Loc),
4885 Name => E));
4886
4887 Set_Renamed_Object (Id, E);
4888
4889 -- Force generation of debugging information for the constant and for
4890 -- the renamed function call.
4891
4892 Set_Debug_Info_Needed (Id);
4893 Set_Debug_Info_Needed (Entity (Prefix (E)));
4894 end if;
4895
4896 if Present (Prev_Entity)
4897 and then Is_Frozen (Prev_Entity)
4898 and then not Error_Posted (Id)
4899 then
4900 Error_Msg_N ("full constant declaration appears too late", N);
4901 end if;
4902
4903 Check_Eliminated (Id);
4904
4905 -- Deal with setting In_Private_Part flag if in private part
4906
4907 if Ekind (Scope (Id)) = E_Package
4908 and then In_Private_Part (Scope (Id))
4909 then
4910 Set_In_Private_Part (Id);
4911 end if;
4912
4913 <<Leave>>
4914 -- Initialize the refined state of a variable here because this is a
4915 -- common destination for legal and illegal object declarations.
4916
4917 if Ekind (Id) = E_Variable then
4918 Set_Encapsulating_State (Id, Empty);
4919 end if;
4920
4921 if Has_Aspects (N) then
4922 Analyze_Aspect_Specifications (N, Id);
4923 end if;
4924
4925 Analyze_Dimension (N);
4926
4927 -- Verify whether the object declaration introduces an illegal hidden
4928 -- state within a package subject to a null abstract state.
4929
4930 if Ekind (Id) = E_Variable then
4931 Check_No_Hidden_State (Id);
4932 end if;
4933
4934 Restore_Ghost_Mode (Saved_GM);
4935 end Analyze_Object_Declaration;
4936
4937 ---------------------------
4938 -- Analyze_Others_Choice --
4939 ---------------------------
4940
4941 -- Nothing to do for the others choice node itself, the semantic analysis
4942 -- of the others choice will occur as part of the processing of the parent
4943
4944 procedure Analyze_Others_Choice (N : Node_Id) is
4945 pragma Warnings (Off, N);
4946 begin
4947 null;
4948 end Analyze_Others_Choice;
4949
4950 -------------------------------------------
4951 -- Analyze_Private_Extension_Declaration --
4952 -------------------------------------------
4953
4954 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4955 Indic : constant Node_Id := Subtype_Indication (N);
4956 T : constant Entity_Id := Defining_Identifier (N);
4957 Iface : Entity_Id;
4958 Iface_Elmt : Elmt_Id;
4959 Parent_Base : Entity_Id;
4960 Parent_Type : Entity_Id;
4961
4962 begin
4963 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4964
4965 if Is_Non_Empty_List (Interface_List (N)) then
4966 declare
4967 Intf : Node_Id;
4968 T : Entity_Id;
4969
4970 begin
4971 Intf := First (Interface_List (N));
4972 while Present (Intf) loop
4973 T := Find_Type_Of_Subtype_Indic (Intf);
4974
4975 Diagnose_Interface (Intf, T);
4976 Next (Intf);
4977 end loop;
4978 end;
4979 end if;
4980
4981 Generate_Definition (T);
4982
4983 -- For other than Ada 2012, just enter the name in the current scope
4984
4985 if Ada_Version < Ada_2012 then
4986 Enter_Name (T);
4987
4988 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4989 -- case of private type that completes an incomplete type.
4990
4991 else
4992 declare
4993 Prev : Entity_Id;
4994
4995 begin
4996 Prev := Find_Type_Name (N);
4997
4998 pragma Assert (Prev = T
4999 or else (Ekind (Prev) = E_Incomplete_Type
5000 and then Present (Full_View (Prev))
5001 and then Full_View (Prev) = T));
5002 end;
5003 end if;
5004
5005 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5006 Parent_Base := Base_Type (Parent_Type);
5007
5008 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5009 Set_Ekind (T, Ekind (Parent_Type));
5010 Set_Etype (T, Any_Type);
5011 goto Leave;
5012
5013 elsif not Is_Tagged_Type (Parent_Type) then
5014 Error_Msg_N
5015 ("parent of type extension must be a tagged type ", Indic);
5016 goto Leave;
5017
5018 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5019 Error_Msg_N ("premature derivation of incomplete type", Indic);
5020 goto Leave;
5021
5022 elsif Is_Concurrent_Type (Parent_Type) then
5023 Error_Msg_N
5024 ("parent type of a private extension cannot be a synchronized "
5025 & "tagged type (RM 3.9.1 (3/1))", N);
5026
5027 Set_Etype (T, Any_Type);
5028 Set_Ekind (T, E_Limited_Private_Type);
5029 Set_Private_Dependents (T, New_Elmt_List);
5030 Set_Error_Posted (T);
5031 goto Leave;
5032 end if;
5033
5034 -- Perhaps the parent type should be changed to the class-wide type's
5035 -- specific type in this case to prevent cascading errors ???
5036
5037 if Is_Class_Wide_Type (Parent_Type) then
5038 Error_Msg_N
5039 ("parent of type extension must not be a class-wide type", Indic);
5040 goto Leave;
5041 end if;
5042
5043 if (not Is_Package_Or_Generic_Package (Current_Scope)
5044 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5045 or else In_Private_Part (Current_Scope)
5046 then
5047 Error_Msg_N ("invalid context for private extension", N);
5048 end if;
5049
5050 -- Set common attributes
5051
5052 Set_Is_Pure (T, Is_Pure (Current_Scope));
5053 Set_Scope (T, Current_Scope);
5054 Set_Ekind (T, E_Record_Type_With_Private);
5055 Init_Size_Align (T);
5056 Set_Default_SSO (T);
5057 Set_No_Reordering (T, No_Component_Reordering);
5058
5059 Set_Etype (T, Parent_Base);
5060 Propagate_Concurrent_Flags (T, Parent_Base);
5061
5062 Set_Convention (T, Convention (Parent_Type));
5063 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5064 Set_Is_First_Subtype (T);
5065 Make_Class_Wide_Type (T);
5066
5067 if Unknown_Discriminants_Present (N) then
5068 Set_Discriminant_Constraint (T, No_Elist);
5069 end if;
5070
5071 Build_Derived_Record_Type (N, Parent_Type, T);
5072
5073 -- A private extension inherits the Default_Initial_Condition pragma
5074 -- coming from any parent type within the derivation chain.
5075
5076 if Has_DIC (Parent_Type) then
5077 Set_Has_Inherited_DIC (T);
5078 end if;
5079
5080 -- A private extension inherits any class-wide invariants coming from a
5081 -- parent type or an interface. Note that the invariant procedure of the
5082 -- parent type should not be inherited because the private extension may
5083 -- define invariants of its own.
5084
5085 if Has_Inherited_Invariants (Parent_Type)
5086 or else Has_Inheritable_Invariants (Parent_Type)
5087 then
5088 Set_Has_Inherited_Invariants (T);
5089
5090 elsif Present (Interfaces (T)) then
5091 Iface_Elmt := First_Elmt (Interfaces (T));
5092 while Present (Iface_Elmt) loop
5093 Iface := Node (Iface_Elmt);
5094
5095 if Has_Inheritable_Invariants (Iface) then
5096 Set_Has_Inherited_Invariants (T);
5097 exit;
5098 end if;
5099
5100 Next_Elmt (Iface_Elmt);
5101 end loop;
5102 end if;
5103
5104 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5105 -- synchronized formal derived type.
5106
5107 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5108 Set_Is_Limited_Record (T);
5109
5110 -- Formal derived type case
5111
5112 if Is_Generic_Type (T) then
5113
5114 -- The parent must be a tagged limited type or a synchronized
5115 -- interface.
5116
5117 if (not Is_Tagged_Type (Parent_Type)
5118 or else not Is_Limited_Type (Parent_Type))
5119 and then
5120 (not Is_Interface (Parent_Type)
5121 or else not Is_Synchronized_Interface (Parent_Type))
5122 then
5123 Error_Msg_NE
5124 ("parent type of & must be tagged limited or synchronized",
5125 N, T);
5126 end if;
5127
5128 -- The progenitors (if any) must be limited or synchronized
5129 -- interfaces.
5130
5131 if Present (Interfaces (T)) then
5132 Iface_Elmt := First_Elmt (Interfaces (T));
5133 while Present (Iface_Elmt) loop
5134 Iface := Node (Iface_Elmt);
5135
5136 if not Is_Limited_Interface (Iface)
5137 and then not Is_Synchronized_Interface (Iface)
5138 then
5139 Error_Msg_NE
5140 ("progenitor & must be limited or synchronized",
5141 N, Iface);
5142 end if;
5143
5144 Next_Elmt (Iface_Elmt);
5145 end loop;
5146 end if;
5147
5148 -- Regular derived extension, the parent must be a limited or
5149 -- synchronized interface.
5150
5151 else
5152 if not Is_Interface (Parent_Type)
5153 or else (not Is_Limited_Interface (Parent_Type)
5154 and then not Is_Synchronized_Interface (Parent_Type))
5155 then
5156 Error_Msg_NE
5157 ("parent type of & must be limited interface", N, T);
5158 end if;
5159 end if;
5160
5161 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5162 -- extension with a synchronized parent must be explicitly declared
5163 -- synchronized, because the full view will be a synchronized type.
5164 -- This must be checked before the check for limited types below,
5165 -- to ensure that types declared limited are not allowed to extend
5166 -- synchronized interfaces.
5167
5168 elsif Is_Interface (Parent_Type)
5169 and then Is_Synchronized_Interface (Parent_Type)
5170 and then not Synchronized_Present (N)
5171 then
5172 Error_Msg_NE
5173 ("private extension of& must be explicitly synchronized",
5174 N, Parent_Type);
5175
5176 elsif Limited_Present (N) then
5177 Set_Is_Limited_Record (T);
5178
5179 if not Is_Limited_Type (Parent_Type)
5180 and then
5181 (not Is_Interface (Parent_Type)
5182 or else not Is_Limited_Interface (Parent_Type))
5183 then
5184 Error_Msg_NE ("parent type& of limited extension must be limited",
5185 N, Parent_Type);
5186 end if;
5187 end if;
5188
5189 -- Remember that its parent type has a private extension. Used to warn
5190 -- on public primitives of the parent type defined after its private
5191 -- extensions (see Check_Dispatching_Operation).
5192
5193 Set_Has_Private_Extension (Parent_Type);
5194
5195 <<Leave>>
5196 if Has_Aspects (N) then
5197 Analyze_Aspect_Specifications (N, T);
5198 end if;
5199 end Analyze_Private_Extension_Declaration;
5200
5201 ---------------------------------
5202 -- Analyze_Subtype_Declaration --
5203 ---------------------------------
5204
5205 procedure Analyze_Subtype_Declaration
5206 (N : Node_Id;
5207 Skip : Boolean := False)
5208 is
5209 Id : constant Entity_Id := Defining_Identifier (N);
5210 R_Checks : Check_Result;
5211 T : Entity_Id;
5212
5213 begin
5214 Generate_Definition (Id);
5215 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5216 Init_Size_Align (Id);
5217
5218 -- The following guard condition on Enter_Name is to handle cases where
5219 -- the defining identifier has already been entered into the scope but
5220 -- the declaration as a whole needs to be analyzed.
5221
5222 -- This case in particular happens for derived enumeration types. The
5223 -- derived enumeration type is processed as an inserted enumeration type
5224 -- declaration followed by a rewritten subtype declaration. The defining
5225 -- identifier, however, is entered into the name scope very early in the
5226 -- processing of the original type declaration and therefore needs to be
5227 -- avoided here, when the created subtype declaration is analyzed. (See
5228 -- Build_Derived_Types)
5229
5230 -- This also happens when the full view of a private type is derived
5231 -- type with constraints. In this case the entity has been introduced
5232 -- in the private declaration.
5233
5234 -- Finally this happens in some complex cases when validity checks are
5235 -- enabled, where the same subtype declaration may be analyzed twice.
5236 -- This can happen if the subtype is created by the pre-analysis of
5237 -- an attribute tht gives the range of a loop statement, and the loop
5238 -- itself appears within an if_statement that will be rewritten during
5239 -- expansion.
5240
5241 if Skip
5242 or else (Present (Etype (Id))
5243 and then (Is_Private_Type (Etype (Id))
5244 or else Is_Task_Type (Etype (Id))
5245 or else Is_Rewrite_Substitution (N)))
5246 then
5247 null;
5248
5249 elsif Current_Entity (Id) = Id then
5250 null;
5251
5252 else
5253 Enter_Name (Id);
5254 end if;
5255
5256 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5257
5258 -- Class-wide equivalent types of records with unknown discriminants
5259 -- involve the generation of an itype which serves as the private view
5260 -- of a constrained record subtype. In such cases the base type of the
5261 -- current subtype we are processing is the private itype. Use the full
5262 -- of the private itype when decorating various attributes.
5263
5264 if Is_Itype (T)
5265 and then Is_Private_Type (T)
5266 and then Present (Full_View (T))
5267 then
5268 T := Full_View (T);
5269 end if;
5270
5271 -- Inherit common attributes
5272
5273 Set_Is_Volatile (Id, Is_Volatile (T));
5274 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5275 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5276 Set_Convention (Id, Convention (T));
5277
5278 -- If ancestor has predicates then so does the subtype, and in addition
5279 -- we must delay the freeze to properly arrange predicate inheritance.
5280
5281 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5282 -- in which T = ID, so the above tests and assignments do nothing???
5283
5284 if Has_Predicates (T)
5285 or else (Present (Ancestor_Subtype (T))
5286 and then Has_Predicates (Ancestor_Subtype (T)))
5287 then
5288 Set_Has_Predicates (Id);
5289 Set_Has_Delayed_Freeze (Id);
5290
5291 -- Generated subtypes inherit the predicate function from the parent
5292 -- (no aspects to examine on the generated declaration).
5293
5294 if not Comes_From_Source (N) then
5295 Set_Ekind (Id, Ekind (T));
5296
5297 if Present (Predicate_Function (T)) then
5298 Set_Predicate_Function (Id, Predicate_Function (T));
5299
5300 elsif Present (Ancestor_Subtype (T))
5301 and then Has_Predicates (Ancestor_Subtype (T))
5302 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5303 then
5304 Set_Predicate_Function (Id,
5305 Predicate_Function (Ancestor_Subtype (T)));
5306 end if;
5307 end if;
5308 end if;
5309
5310 -- Subtype of Boolean cannot have a constraint in SPARK
5311
5312 if Is_Boolean_Type (T)
5313 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5314 then
5315 Check_SPARK_05_Restriction
5316 ("subtype of Boolean cannot have constraint", N);
5317 end if;
5318
5319 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5320 declare
5321 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5322 One_Cstr : Node_Id;
5323 Low : Node_Id;
5324 High : Node_Id;
5325
5326 begin
5327 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5328 One_Cstr := First (Constraints (Cstr));
5329 while Present (One_Cstr) loop
5330
5331 -- Index or discriminant constraint in SPARK must be a
5332 -- subtype mark.
5333
5334 if not
5335 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5336 then
5337 Check_SPARK_05_Restriction
5338 ("subtype mark required", One_Cstr);
5339
5340 -- String subtype must have a lower bound of 1 in SPARK.
5341 -- Note that we do not need to test for the non-static case
5342 -- here, since that was already taken care of in
5343 -- Process_Range_Expr_In_Decl.
5344
5345 elsif Base_Type (T) = Standard_String then
5346 Get_Index_Bounds (One_Cstr, Low, High);
5347
5348 if Is_OK_Static_Expression (Low)
5349 and then Expr_Value (Low) /= 1
5350 then
5351 Check_SPARK_05_Restriction
5352 ("String subtype must have lower bound of 1", N);
5353 end if;
5354 end if;
5355
5356 Next (One_Cstr);
5357 end loop;
5358 end if;
5359 end;
5360 end if;
5361
5362 -- In the case where there is no constraint given in the subtype
5363 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5364 -- semantic attributes must be established here.
5365
5366 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5367 Set_Etype (Id, Base_Type (T));
5368
5369 -- Subtype of unconstrained array without constraint is not allowed
5370 -- in SPARK.
5371
5372 if Is_Array_Type (T) and then not Is_Constrained (T) then
5373 Check_SPARK_05_Restriction
5374 ("subtype of unconstrained array must have constraint", N);
5375 end if;
5376
5377 case Ekind (T) is
5378 when Array_Kind =>
5379 Set_Ekind (Id, E_Array_Subtype);
5380 Copy_Array_Subtype_Attributes (Id, T);
5381
5382 when Decimal_Fixed_Point_Kind =>
5383 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5384 Set_Digits_Value (Id, Digits_Value (T));
5385 Set_Delta_Value (Id, Delta_Value (T));
5386 Set_Scale_Value (Id, Scale_Value (T));
5387 Set_Small_Value (Id, Small_Value (T));
5388 Set_Scalar_Range (Id, Scalar_Range (T));
5389 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5390 Set_Is_Constrained (Id, Is_Constrained (T));
5391 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5392 Set_RM_Size (Id, RM_Size (T));
5393
5394 when Enumeration_Kind =>
5395 Set_Ekind (Id, E_Enumeration_Subtype);
5396 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5397 Set_Scalar_Range (Id, Scalar_Range (T));
5398 Set_Is_Character_Type (Id, Is_Character_Type (T));
5399 Set_Is_Constrained (Id, Is_Constrained (T));
5400 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5401 Set_RM_Size (Id, RM_Size (T));
5402 Inherit_Predicate_Flags (Id, T);
5403
5404 when Ordinary_Fixed_Point_Kind =>
5405 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5406 Set_Scalar_Range (Id, Scalar_Range (T));
5407 Set_Small_Value (Id, Small_Value (T));
5408 Set_Delta_Value (Id, Delta_Value (T));
5409 Set_Is_Constrained (Id, Is_Constrained (T));
5410 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5411 Set_RM_Size (Id, RM_Size (T));
5412
5413 when Float_Kind =>
5414 Set_Ekind (Id, E_Floating_Point_Subtype);
5415 Set_Scalar_Range (Id, Scalar_Range (T));
5416 Set_Digits_Value (Id, Digits_Value (T));
5417 Set_Is_Constrained (Id, Is_Constrained (T));
5418
5419 -- If the floating point type has dimensions, these will be
5420 -- inherited subsequently when Analyze_Dimensions is called.
5421
5422 when Signed_Integer_Kind =>
5423 Set_Ekind (Id, E_Signed_Integer_Subtype);
5424 Set_Scalar_Range (Id, Scalar_Range (T));
5425 Set_Is_Constrained (Id, Is_Constrained (T));
5426 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5427 Set_RM_Size (Id, RM_Size (T));
5428 Inherit_Predicate_Flags (Id, T);
5429
5430 when Modular_Integer_Kind =>
5431 Set_Ekind (Id, E_Modular_Integer_Subtype);
5432 Set_Scalar_Range (Id, Scalar_Range (T));
5433 Set_Is_Constrained (Id, Is_Constrained (T));
5434 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5435 Set_RM_Size (Id, RM_Size (T));
5436 Inherit_Predicate_Flags (Id, T);
5437
5438 when Class_Wide_Kind =>
5439 Set_Ekind (Id, E_Class_Wide_Subtype);
5440 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5441 Set_Cloned_Subtype (Id, T);
5442 Set_Is_Tagged_Type (Id, True);
5443 Set_Has_Unknown_Discriminants
5444 (Id, True);
5445 Set_No_Tagged_Streams_Pragma
5446 (Id, No_Tagged_Streams_Pragma (T));
5447
5448 if Ekind (T) = E_Class_Wide_Subtype then
5449 Set_Equivalent_Type (Id, Equivalent_Type (T));
5450 end if;
5451
5452 when E_Record_Subtype
5453 | E_Record_Type
5454 =>
5455 Set_Ekind (Id, E_Record_Subtype);
5456
5457 if Ekind (T) = E_Record_Subtype
5458 and then Present (Cloned_Subtype (T))
5459 then
5460 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5461 else
5462 Set_Cloned_Subtype (Id, T);
5463 end if;
5464
5465 Set_First_Entity (Id, First_Entity (T));
5466 Set_Last_Entity (Id, Last_Entity (T));
5467 Set_Has_Discriminants (Id, Has_Discriminants (T));
5468 Set_Is_Constrained (Id, Is_Constrained (T));
5469 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5470 Set_Has_Implicit_Dereference
5471 (Id, Has_Implicit_Dereference (T));
5472 Set_Has_Unknown_Discriminants
5473 (Id, Has_Unknown_Discriminants (T));
5474
5475 if Has_Discriminants (T) then
5476 Set_Discriminant_Constraint
5477 (Id, Discriminant_Constraint (T));
5478 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5479
5480 elsif Has_Unknown_Discriminants (Id) then
5481 Set_Discriminant_Constraint (Id, No_Elist);
5482 end if;
5483
5484 if Is_Tagged_Type (T) then
5485 Set_Is_Tagged_Type (Id, True);
5486 Set_No_Tagged_Streams_Pragma
5487 (Id, No_Tagged_Streams_Pragma (T));
5488 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5489 Set_Direct_Primitive_Operations
5490 (Id, Direct_Primitive_Operations (T));
5491 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5492
5493 if Is_Interface (T) then
5494 Set_Is_Interface (Id);
5495 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5496 end if;
5497 end if;
5498
5499 when Private_Kind =>
5500 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5501 Set_Has_Discriminants (Id, Has_Discriminants (T));
5502 Set_Is_Constrained (Id, Is_Constrained (T));
5503 Set_First_Entity (Id, First_Entity (T));
5504 Set_Last_Entity (Id, Last_Entity (T));
5505 Set_Private_Dependents (Id, New_Elmt_List);
5506 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5507 Set_Has_Implicit_Dereference
5508 (Id, Has_Implicit_Dereference (T));
5509 Set_Has_Unknown_Discriminants
5510 (Id, Has_Unknown_Discriminants (T));
5511 Set_Known_To_Have_Preelab_Init
5512 (Id, Known_To_Have_Preelab_Init (T));
5513
5514 if Is_Tagged_Type (T) then
5515 Set_Is_Tagged_Type (Id);
5516 Set_No_Tagged_Streams_Pragma (Id,
5517 No_Tagged_Streams_Pragma (T));
5518 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5519 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5520 Set_Direct_Primitive_Operations (Id,
5521 Direct_Primitive_Operations (T));
5522 end if;
5523
5524 -- In general the attributes of the subtype of a private type
5525 -- are the attributes of the partial view of parent. However,
5526 -- the full view may be a discriminated type, and the subtype
5527 -- must share the discriminant constraint to generate correct
5528 -- calls to initialization procedures.
5529
5530 if Has_Discriminants (T) then
5531 Set_Discriminant_Constraint
5532 (Id, Discriminant_Constraint (T));
5533 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5534
5535 elsif Present (Full_View (T))
5536 and then Has_Discriminants (Full_View (T))
5537 then
5538 Set_Discriminant_Constraint
5539 (Id, Discriminant_Constraint (Full_View (T)));
5540 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5541
5542 -- This would seem semantically correct, but apparently
5543 -- generates spurious errors about missing components ???
5544
5545 -- Set_Has_Discriminants (Id);
5546 end if;
5547
5548 Prepare_Private_Subtype_Completion (Id, N);
5549
5550 -- If this is the subtype of a constrained private type with
5551 -- discriminants that has got a full view and we also have
5552 -- built a completion just above, show that the completion
5553 -- is a clone of the full view to the back-end.
5554
5555 if Has_Discriminants (T)
5556 and then not Has_Unknown_Discriminants (T)
5557 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5558 and then Present (Full_View (T))
5559 and then Present (Full_View (Id))
5560 then
5561 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5562 end if;
5563
5564 when Access_Kind =>
5565 Set_Ekind (Id, E_Access_Subtype);
5566 Set_Is_Constrained (Id, Is_Constrained (T));
5567 Set_Is_Access_Constant
5568 (Id, Is_Access_Constant (T));
5569 Set_Directly_Designated_Type
5570 (Id, Designated_Type (T));
5571 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5572
5573 -- A Pure library_item must not contain the declaration of a
5574 -- named access type, except within a subprogram, generic
5575 -- subprogram, task unit, or protected unit, or if it has
5576 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5577
5578 if Comes_From_Source (Id)
5579 and then In_Pure_Unit
5580 and then not In_Subprogram_Task_Protected_Unit
5581 and then not No_Pool_Assigned (Id)
5582 then
5583 Error_Msg_N
5584 ("named access types not allowed in pure unit", N);
5585 end if;
5586
5587 when Concurrent_Kind =>
5588 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5589 Set_Corresponding_Record_Type (Id,
5590 Corresponding_Record_Type (T));
5591 Set_First_Entity (Id, First_Entity (T));
5592 Set_First_Private_Entity (Id, First_Private_Entity (T));
5593 Set_Has_Discriminants (Id, Has_Discriminants (T));
5594 Set_Is_Constrained (Id, Is_Constrained (T));
5595 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5596 Set_Last_Entity (Id, Last_Entity (T));
5597
5598 if Is_Tagged_Type (T) then
5599 Set_No_Tagged_Streams_Pragma
5600 (Id, No_Tagged_Streams_Pragma (T));
5601 end if;
5602
5603 if Has_Discriminants (T) then
5604 Set_Discriminant_Constraint
5605 (Id, Discriminant_Constraint (T));
5606 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5607 end if;
5608
5609 when Incomplete_Kind =>
5610 if Ada_Version >= Ada_2005 then
5611
5612 -- In Ada 2005 an incomplete type can be explicitly tagged:
5613 -- propagate indication. Note that we also have to include
5614 -- subtypes for Ada 2012 extended use of incomplete types.
5615
5616 Set_Ekind (Id, E_Incomplete_Subtype);
5617 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5618 Set_Private_Dependents (Id, New_Elmt_List);
5619
5620 if Is_Tagged_Type (Id) then
5621 Set_No_Tagged_Streams_Pragma
5622 (Id, No_Tagged_Streams_Pragma (T));
5623 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5624 end if;
5625
5626 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5627 -- incomplete type visible through a limited with clause.
5628
5629 if From_Limited_With (T)
5630 and then Present (Non_Limited_View (T))
5631 then
5632 Set_From_Limited_With (Id);
5633 Set_Non_Limited_View (Id, Non_Limited_View (T));
5634
5635 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5636 -- to the private dependents of the original incomplete
5637 -- type for future transformation.
5638
5639 else
5640 Append_Elmt (Id, Private_Dependents (T));
5641 end if;
5642
5643 -- If the subtype name denotes an incomplete type an error
5644 -- was already reported by Process_Subtype.
5645
5646 else
5647 Set_Etype (Id, Any_Type);
5648 end if;
5649
5650 when others =>
5651 raise Program_Error;
5652 end case;
5653 end if;
5654
5655 if Etype (Id) = Any_Type then
5656 goto Leave;
5657 end if;
5658
5659 -- Some common processing on all types
5660
5661 Set_Size_Info (Id, T);
5662 Set_First_Rep_Item (Id, First_Rep_Item (T));
5663
5664 -- If the parent type is a generic actual, so is the subtype. This may
5665 -- happen in a nested instance. Why Comes_From_Source test???
5666
5667 if not Comes_From_Source (N) then
5668 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5669 end if;
5670
5671 -- If this is a subtype declaration for an actual in an instance,
5672 -- inherit static and dynamic predicates if any.
5673
5674 -- If declaration has no aspect specifications, inherit predicate
5675 -- info as well. Unclear how to handle the case of both specified
5676 -- and inherited predicates ??? Other inherited aspects, such as
5677 -- invariants, should be OK, but the combination with later pragmas
5678 -- may also require special merging.
5679
5680 if Has_Predicates (T)
5681 and then Present (Predicate_Function (T))
5682 and then
5683 ((In_Instance and then not Comes_From_Source (N))
5684 or else No (Aspect_Specifications (N)))
5685 then
5686 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5687
5688 if Has_Static_Predicate (T) then
5689 Set_Has_Static_Predicate (Id);
5690 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5691 end if;
5692 end if;
5693
5694 -- Remaining processing depends on characteristics of base type
5695
5696 T := Etype (Id);
5697
5698 Set_Is_Immediately_Visible (Id, True);
5699 Set_Depends_On_Private (Id, Has_Private_Component (T));
5700 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5701
5702 if Is_Interface (T) then
5703 Set_Is_Interface (Id);
5704 end if;
5705
5706 if Present (Generic_Parent_Type (N))
5707 and then
5708 (Nkind (Parent (Generic_Parent_Type (N))) /=
5709 N_Formal_Type_Declaration
5710 or else Nkind (Formal_Type_Definition
5711 (Parent (Generic_Parent_Type (N)))) /=
5712 N_Formal_Private_Type_Definition)
5713 then
5714 if Is_Tagged_Type (Id) then
5715
5716 -- If this is a generic actual subtype for a synchronized type,
5717 -- the primitive operations are those of the corresponding record
5718 -- for which there is a separate subtype declaration.
5719
5720 if Is_Concurrent_Type (Id) then
5721 null;
5722 elsif Is_Class_Wide_Type (Id) then
5723 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5724 else
5725 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5726 end if;
5727
5728 elsif Scope (Etype (Id)) /= Standard_Standard then
5729 Derive_Subprograms (Generic_Parent_Type (N), Id);
5730 end if;
5731 end if;
5732
5733 if Is_Private_Type (T) and then Present (Full_View (T)) then
5734 Conditional_Delay (Id, Full_View (T));
5735
5736 -- The subtypes of components or subcomponents of protected types
5737 -- do not need freeze nodes, which would otherwise appear in the
5738 -- wrong scope (before the freeze node for the protected type). The
5739 -- proper subtypes are those of the subcomponents of the corresponding
5740 -- record.
5741
5742 elsif Ekind (Scope (Id)) /= E_Protected_Type
5743 and then Present (Scope (Scope (Id))) -- error defense
5744 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5745 then
5746 Conditional_Delay (Id, T);
5747 end if;
5748
5749 -- If we have a subtype of an incomplete type whose full type is a
5750 -- derived numeric type, we need to have a freeze node for the subtype.
5751 -- Otherwise gigi will complain while computing the (static) bounds of
5752 -- the subtype.
5753
5754 if Is_Itype (T)
5755 and then Is_Elementary_Type (Id)
5756 and then Etype (Id) /= Id
5757 then
5758 declare
5759 Partial : constant Entity_Id :=
5760 Incomplete_Or_Partial_View (First_Subtype (Id));
5761 begin
5762 if Present (Partial)
5763 and then Ekind (Partial) = E_Incomplete_Type
5764 then
5765 Set_Has_Delayed_Freeze (Id);
5766 end if;
5767 end;
5768 end if;
5769
5770 -- Check that Constraint_Error is raised for a scalar subtype indication
5771 -- when the lower or upper bound of a non-null range lies outside the
5772 -- range of the type mark.
5773
5774 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5775 if Is_Scalar_Type (Etype (Id))
5776 and then Scalar_Range (Id) /=
5777 Scalar_Range
5778 (Etype (Subtype_Mark (Subtype_Indication (N))))
5779 then
5780 Apply_Range_Check
5781 (Scalar_Range (Id),
5782 Etype (Subtype_Mark (Subtype_Indication (N))));
5783
5784 -- In the array case, check compatibility for each index
5785
5786 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5787 then
5788 -- This really should be a subprogram that finds the indications
5789 -- to check???
5790
5791 declare
5792 Subt_Index : Node_Id := First_Index (Id);
5793 Target_Index : Node_Id :=
5794 First_Index (Etype
5795 (Subtype_Mark (Subtype_Indication (N))));
5796 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5797
5798 begin
5799 while Present (Subt_Index) loop
5800 if ((Nkind (Subt_Index) = N_Identifier
5801 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5802 or else Nkind (Subt_Index) = N_Subtype_Indication)
5803 and then
5804 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5805 then
5806 declare
5807 Target_Typ : constant Entity_Id :=
5808 Etype (Target_Index);
5809 begin
5810 R_Checks :=
5811 Get_Range_Checks
5812 (Scalar_Range (Etype (Subt_Index)),
5813 Target_Typ,
5814 Etype (Subt_Index),
5815 Defining_Identifier (N));
5816
5817 -- Reset Has_Dynamic_Range_Check on the subtype to
5818 -- prevent elision of the index check due to a dynamic
5819 -- check generated for a preceding index (needed since
5820 -- Insert_Range_Checks tries to avoid generating
5821 -- redundant checks on a given declaration).
5822
5823 Set_Has_Dynamic_Range_Check (N, False);
5824
5825 Insert_Range_Checks
5826 (R_Checks,
5827 N,
5828 Target_Typ,
5829 Sloc (Defining_Identifier (N)));
5830
5831 -- Record whether this index involved a dynamic check
5832
5833 Has_Dyn_Chk :=
5834 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5835 end;
5836 end if;
5837
5838 Next_Index (Subt_Index);
5839 Next_Index (Target_Index);
5840 end loop;
5841
5842 -- Finally, mark whether the subtype involves dynamic checks
5843
5844 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5845 end;
5846 end if;
5847 end if;
5848
5849 Set_Optimize_Alignment_Flags (Id);
5850 Check_Eliminated (Id);
5851
5852 <<Leave>>
5853 if Has_Aspects (N) then
5854 Analyze_Aspect_Specifications (N, Id);
5855 end if;
5856
5857 Analyze_Dimension (N);
5858
5859 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5860 -- indications on composite types where the constraints are dynamic.
5861 -- Note that object declarations and aggregates generate implicit
5862 -- subtype declarations, which this covers. One special case is that the
5863 -- implicitly generated "=" for discriminated types includes an
5864 -- offending subtype declaration, which is harmless, so we ignore it
5865 -- here.
5866
5867 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5868 declare
5869 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5870 begin
5871 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5872 and then not (Is_Internal (Id)
5873 and then Is_TSS (Scope (Id),
5874 TSS_Composite_Equality))
5875 and then not Within_Init_Proc
5876 and then not All_Composite_Constraints_Static (Cstr)
5877 then
5878 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5879 end if;
5880 end;
5881 end if;
5882 end Analyze_Subtype_Declaration;
5883
5884 --------------------------------
5885 -- Analyze_Subtype_Indication --
5886 --------------------------------
5887
5888 procedure Analyze_Subtype_Indication (N : Node_Id) is
5889 T : constant Entity_Id := Subtype_Mark (N);
5890 R : constant Node_Id := Range_Expression (Constraint (N));
5891
5892 begin
5893 Analyze (T);
5894
5895 if R /= Error then
5896 Analyze (R);
5897 Set_Etype (N, Etype (R));
5898 Resolve (R, Entity (T));
5899 else
5900 Set_Error_Posted (R);
5901 Set_Error_Posted (T);
5902 end if;
5903 end Analyze_Subtype_Indication;
5904
5905 --------------------------
5906 -- Analyze_Variant_Part --
5907 --------------------------
5908
5909 procedure Analyze_Variant_Part (N : Node_Id) is
5910 Discr_Name : Node_Id;
5911 Discr_Type : Entity_Id;
5912
5913 procedure Process_Variant (A : Node_Id);
5914 -- Analyze declarations for a single variant
5915
5916 package Analyze_Variant_Choices is
5917 new Generic_Analyze_Choices (Process_Variant);
5918 use Analyze_Variant_Choices;
5919
5920 ---------------------
5921 -- Process_Variant --
5922 ---------------------
5923
5924 procedure Process_Variant (A : Node_Id) is
5925 CL : constant Node_Id := Component_List (A);
5926 begin
5927 if not Null_Present (CL) then
5928 Analyze_Declarations (Component_Items (CL));
5929
5930 if Present (Variant_Part (CL)) then
5931 Analyze (Variant_Part (CL));
5932 end if;
5933 end if;
5934 end Process_Variant;
5935
5936 -- Start of processing for Analyze_Variant_Part
5937
5938 begin
5939 Discr_Name := Name (N);
5940 Analyze (Discr_Name);
5941
5942 -- If Discr_Name bad, get out (prevent cascaded errors)
5943
5944 if Etype (Discr_Name) = Any_Type then
5945 return;
5946 end if;
5947
5948 -- Check invalid discriminant in variant part
5949
5950 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5951 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5952 end if;
5953
5954 Discr_Type := Etype (Entity (Discr_Name));
5955
5956 if not Is_Discrete_Type (Discr_Type) then
5957 Error_Msg_N
5958 ("discriminant in a variant part must be of a discrete type",
5959 Name (N));
5960 return;
5961 end if;
5962
5963 -- Now analyze the choices, which also analyzes the declarations that
5964 -- are associated with each choice.
5965
5966 Analyze_Choices (Variants (N), Discr_Type);
5967
5968 -- Note: we used to instantiate and call Check_Choices here to check
5969 -- that the choices covered the discriminant, but it's too early to do
5970 -- that because of statically predicated subtypes, whose analysis may
5971 -- be deferred to their freeze point which may be as late as the freeze
5972 -- point of the containing record. So this call is now to be found in
5973 -- Freeze_Record_Declaration.
5974
5975 end Analyze_Variant_Part;
5976
5977 ----------------------------
5978 -- Array_Type_Declaration --
5979 ----------------------------
5980
5981 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5982 Component_Def : constant Node_Id := Component_Definition (Def);
5983 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5984 P : constant Node_Id := Parent (Def);
5985 Element_Type : Entity_Id;
5986 Implicit_Base : Entity_Id;
5987 Index : Node_Id;
5988 Nb_Index : Nat;
5989 Priv : Entity_Id;
5990 Related_Id : Entity_Id := Empty;
5991
5992 begin
5993 if Nkind (Def) = N_Constrained_Array_Definition then
5994 Index := First (Discrete_Subtype_Definitions (Def));
5995 else
5996 Index := First (Subtype_Marks (Def));
5997 end if;
5998
5999 -- Find proper names for the implicit types which may be public. In case
6000 -- of anonymous arrays we use the name of the first object of that type
6001 -- as prefix.
6002
6003 if No (T) then
6004 Related_Id := Defining_Identifier (P);
6005 else
6006 Related_Id := T;
6007 end if;
6008
6009 Nb_Index := 1;
6010 while Present (Index) loop
6011 Analyze (Index);
6012
6013 -- Test for odd case of trying to index a type by the type itself
6014
6015 if Is_Entity_Name (Index) and then Entity (Index) = T then
6016 Error_Msg_N ("type& cannot be indexed by itself", Index);
6017 Set_Entity (Index, Standard_Boolean);
6018 Set_Etype (Index, Standard_Boolean);
6019 end if;
6020
6021 -- Check SPARK restriction requiring a subtype mark
6022
6023 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6024 Check_SPARK_05_Restriction ("subtype mark required", Index);
6025 end if;
6026
6027 -- Add a subtype declaration for each index of private array type
6028 -- declaration whose etype is also private. For example:
6029
6030 -- package Pkg is
6031 -- type Index is private;
6032 -- private
6033 -- type Table is array (Index) of ...
6034 -- end;
6035
6036 -- This is currently required by the expander for the internally
6037 -- generated equality subprogram of records with variant parts in
6038 -- which the etype of some component is such private type.
6039
6040 if Ekind (Current_Scope) = E_Package
6041 and then In_Private_Part (Current_Scope)
6042 and then Has_Private_Declaration (Etype (Index))
6043 then
6044 declare
6045 Loc : constant Source_Ptr := Sloc (Def);
6046 Decl : Entity_Id;
6047 New_E : Entity_Id;
6048
6049 begin
6050 New_E := Make_Temporary (Loc, 'T');
6051 Set_Is_Internal (New_E);
6052
6053 Decl :=
6054 Make_Subtype_Declaration (Loc,
6055 Defining_Identifier => New_E,
6056 Subtype_Indication =>
6057 New_Occurrence_Of (Etype (Index), Loc));
6058
6059 Insert_Before (Parent (Def), Decl);
6060 Analyze (Decl);
6061 Set_Etype (Index, New_E);
6062
6063 -- If the index is a range or a subtype indication it carries
6064 -- no entity. Example:
6065
6066 -- package Pkg is
6067 -- type T is private;
6068 -- private
6069 -- type T is new Natural;
6070 -- Table : array (T(1) .. T(10)) of Boolean;
6071 -- end Pkg;
6072
6073 -- Otherwise the type of the reference is its entity.
6074
6075 if Is_Entity_Name (Index) then
6076 Set_Entity (Index, New_E);
6077 end if;
6078 end;
6079 end if;
6080
6081 Make_Index (Index, P, Related_Id, Nb_Index);
6082
6083 -- Check error of subtype with predicate for index type
6084
6085 Bad_Predicated_Subtype_Use
6086 ("subtype& has predicate, not allowed as index subtype",
6087 Index, Etype (Index));
6088
6089 -- Move to next index
6090
6091 Next_Index (Index);
6092 Nb_Index := Nb_Index + 1;
6093 end loop;
6094
6095 -- Process subtype indication if one is present
6096
6097 if Present (Component_Typ) then
6098 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6099
6100 Set_Etype (Component_Typ, Element_Type);
6101
6102 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6103 Check_SPARK_05_Restriction
6104 ("subtype mark required", Component_Typ);
6105 end if;
6106
6107 -- Ada 2005 (AI-230): Access Definition case
6108
6109 else pragma Assert (Present (Access_Definition (Component_Def)));
6110
6111 -- Indicate that the anonymous access type is created by the
6112 -- array type declaration.
6113
6114 Element_Type := Access_Definition
6115 (Related_Nod => P,
6116 N => Access_Definition (Component_Def));
6117 Set_Is_Local_Anonymous_Access (Element_Type);
6118
6119 -- Propagate the parent. This field is needed if we have to generate
6120 -- the master_id associated with an anonymous access to task type
6121 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6122
6123 Set_Parent (Element_Type, Parent (T));
6124
6125 -- Ada 2005 (AI-230): In case of components that are anonymous access
6126 -- types the level of accessibility depends on the enclosing type
6127 -- declaration
6128
6129 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6130
6131 -- Ada 2005 (AI-254)
6132
6133 declare
6134 CD : constant Node_Id :=
6135 Access_To_Subprogram_Definition
6136 (Access_Definition (Component_Def));
6137 begin
6138 if Present (CD) and then Protected_Present (CD) then
6139 Element_Type :=
6140 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6141 end if;
6142 end;
6143 end if;
6144
6145 -- Constrained array case
6146
6147 if No (T) then
6148 T := Create_Itype (E_Void, P, Related_Id, 'T');
6149 end if;
6150
6151 if Nkind (Def) = N_Constrained_Array_Definition then
6152
6153 -- Establish Implicit_Base as unconstrained base type
6154
6155 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6156
6157 Set_Etype (Implicit_Base, Implicit_Base);
6158 Set_Scope (Implicit_Base, Current_Scope);
6159 Set_Has_Delayed_Freeze (Implicit_Base);
6160 Set_Default_SSO (Implicit_Base);
6161
6162 -- The constrained array type is a subtype of the unconstrained one
6163
6164 Set_Ekind (T, E_Array_Subtype);
6165 Init_Size_Align (T);
6166 Set_Etype (T, Implicit_Base);
6167 Set_Scope (T, Current_Scope);
6168 Set_Is_Constrained (T);
6169 Set_First_Index (T,
6170 First (Discrete_Subtype_Definitions (Def)));
6171 Set_Has_Delayed_Freeze (T);
6172
6173 -- Complete setup of implicit base type
6174
6175 Set_Component_Size (Implicit_Base, Uint_0);
6176 Set_Component_Type (Implicit_Base, Element_Type);
6177 Set_Finalize_Storage_Only
6178 (Implicit_Base,
6179 Finalize_Storage_Only (Element_Type));
6180 Set_First_Index (Implicit_Base, First_Index (T));
6181 Set_Has_Controlled_Component
6182 (Implicit_Base,
6183 Has_Controlled_Component (Element_Type)
6184 or else Is_Controlled (Element_Type));
6185 Set_Packed_Array_Impl_Type
6186 (Implicit_Base, Empty);
6187
6188 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6189
6190 -- Unconstrained array case
6191
6192 else
6193 Set_Ekind (T, E_Array_Type);
6194 Init_Size_Align (T);
6195 Set_Etype (T, T);
6196 Set_Scope (T, Current_Scope);
6197 Set_Component_Size (T, Uint_0);
6198 Set_Is_Constrained (T, False);
6199 Set_First_Index (T, First (Subtype_Marks (Def)));
6200 Set_Has_Delayed_Freeze (T, True);
6201 Propagate_Concurrent_Flags (T, Element_Type);
6202 Set_Has_Controlled_Component (T, Has_Controlled_Component
6203 (Element_Type)
6204 or else
6205 Is_Controlled (Element_Type));
6206 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6207 (Element_Type));
6208 Set_Default_SSO (T);
6209 end if;
6210
6211 -- Common attributes for both cases
6212
6213 Set_Component_Type (Base_Type (T), Element_Type);
6214 Set_Packed_Array_Impl_Type (T, Empty);
6215
6216 if Aliased_Present (Component_Definition (Def)) then
6217 Check_SPARK_05_Restriction
6218 ("aliased is not allowed", Component_Definition (Def));
6219 Set_Has_Aliased_Components (Etype (T));
6220 end if;
6221
6222 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6223 -- array type to ensure that objects of this type are initialized.
6224
6225 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6226 Set_Can_Never_Be_Null (T);
6227
6228 if Null_Exclusion_Present (Component_Definition (Def))
6229
6230 -- No need to check itypes because in their case this check was
6231 -- done at their point of creation
6232
6233 and then not Is_Itype (Element_Type)
6234 then
6235 Error_Msg_N
6236 ("`NOT NULL` not allowed (null already excluded)",
6237 Subtype_Indication (Component_Definition (Def)));
6238 end if;
6239 end if;
6240
6241 Priv := Private_Component (Element_Type);
6242
6243 if Present (Priv) then
6244
6245 -- Check for circular definitions
6246
6247 if Priv = Any_Type then
6248 Set_Component_Type (Etype (T), Any_Type);
6249
6250 -- There is a gap in the visibility of operations on the composite
6251 -- type only if the component type is defined in a different scope.
6252
6253 elsif Scope (Priv) = Current_Scope then
6254 null;
6255
6256 elsif Is_Limited_Type (Priv) then
6257 Set_Is_Limited_Composite (Etype (T));
6258 Set_Is_Limited_Composite (T);
6259 else
6260 Set_Is_Private_Composite (Etype (T));
6261 Set_Is_Private_Composite (T);
6262 end if;
6263 end if;
6264
6265 -- A syntax error in the declaration itself may lead to an empty index
6266 -- list, in which case do a minimal patch.
6267
6268 if No (First_Index (T)) then
6269 Error_Msg_N ("missing index definition in array type declaration", T);
6270
6271 declare
6272 Indexes : constant List_Id :=
6273 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6274 begin
6275 Set_Discrete_Subtype_Definitions (Def, Indexes);
6276 Set_First_Index (T, First (Indexes));
6277 return;
6278 end;
6279 end if;
6280
6281 -- Create a concatenation operator for the new type. Internal array
6282 -- types created for packed entities do not need such, they are
6283 -- compatible with the user-defined type.
6284
6285 if Number_Dimensions (T) = 1
6286 and then not Is_Packed_Array_Impl_Type (T)
6287 then
6288 New_Concatenation_Op (T);
6289 end if;
6290
6291 -- In the case of an unconstrained array the parser has already verified
6292 -- that all the indexes are unconstrained but we still need to make sure
6293 -- that the element type is constrained.
6294
6295 if not Is_Definite_Subtype (Element_Type) then
6296 Error_Msg_N
6297 ("unconstrained element type in array declaration",
6298 Subtype_Indication (Component_Def));
6299
6300 elsif Is_Abstract_Type (Element_Type) then
6301 Error_Msg_N
6302 ("the type of a component cannot be abstract",
6303 Subtype_Indication (Component_Def));
6304 end if;
6305
6306 -- There may be an invariant declared for the component type, but
6307 -- the construction of the component invariant checking procedure
6308 -- takes place during expansion.
6309 end Array_Type_Declaration;
6310
6311 ------------------------------------------------------
6312 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6313 ------------------------------------------------------
6314
6315 function Replace_Anonymous_Access_To_Protected_Subprogram
6316 (N : Node_Id) return Entity_Id
6317 is
6318 Loc : constant Source_Ptr := Sloc (N);
6319
6320 Curr_Scope : constant Scope_Stack_Entry :=
6321 Scope_Stack.Table (Scope_Stack.Last);
6322
6323 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6324
6325 Acc : Node_Id;
6326 -- Access definition in declaration
6327
6328 Comp : Node_Id;
6329 -- Object definition or formal definition with an access definition
6330
6331 Decl : Node_Id;
6332 -- Declaration of anonymous access to subprogram type
6333
6334 Spec : Node_Id;
6335 -- Original specification in access to subprogram
6336
6337 P : Node_Id;
6338
6339 begin
6340 Set_Is_Internal (Anon);
6341
6342 case Nkind (N) is
6343 when N_Constrained_Array_Definition
6344 | N_Component_Declaration
6345 | N_Unconstrained_Array_Definition
6346 =>
6347 Comp := Component_Definition (N);
6348 Acc := Access_Definition (Comp);
6349
6350 when N_Discriminant_Specification =>
6351 Comp := Discriminant_Type (N);
6352 Acc := Comp;
6353
6354 when N_Parameter_Specification =>
6355 Comp := Parameter_Type (N);
6356 Acc := Comp;
6357
6358 when N_Access_Function_Definition =>
6359 Comp := Result_Definition (N);
6360 Acc := Comp;
6361
6362 when N_Object_Declaration =>
6363 Comp := Object_Definition (N);
6364 Acc := Comp;
6365
6366 when N_Function_Specification =>
6367 Comp := Result_Definition (N);
6368 Acc := Comp;
6369
6370 when others =>
6371 raise Program_Error;
6372 end case;
6373
6374 Spec := Access_To_Subprogram_Definition (Acc);
6375
6376 Decl :=
6377 Make_Full_Type_Declaration (Loc,
6378 Defining_Identifier => Anon,
6379 Type_Definition => Copy_Separate_Tree (Spec));
6380
6381 Mark_Rewrite_Insertion (Decl);
6382
6383 -- In ASIS mode, analyze the profile on the original node, because
6384 -- the separate copy does not provide enough links to recover the
6385 -- original tree. Analysis is limited to type annotations, within
6386 -- a temporary scope that serves as an anonymous subprogram to collect
6387 -- otherwise useless temporaries and itypes.
6388
6389 if ASIS_Mode then
6390 declare
6391 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6392
6393 begin
6394 if Nkind (Spec) = N_Access_Function_Definition then
6395 Set_Ekind (Typ, E_Function);
6396 else
6397 Set_Ekind (Typ, E_Procedure);
6398 end if;
6399
6400 Set_Parent (Typ, N);
6401 Set_Scope (Typ, Current_Scope);
6402 Push_Scope (Typ);
6403
6404 -- Nothing to do if procedure is parameterless
6405
6406 if Present (Parameter_Specifications (Spec)) then
6407 Process_Formals (Parameter_Specifications (Spec), Spec);
6408 end if;
6409
6410 if Nkind (Spec) = N_Access_Function_Definition then
6411 declare
6412 Def : constant Node_Id := Result_Definition (Spec);
6413
6414 begin
6415 -- The result might itself be an anonymous access type, so
6416 -- have to recurse.
6417
6418 if Nkind (Def) = N_Access_Definition then
6419 if Present (Access_To_Subprogram_Definition (Def)) then
6420 Set_Etype
6421 (Def,
6422 Replace_Anonymous_Access_To_Protected_Subprogram
6423 (Spec));
6424 else
6425 Find_Type (Subtype_Mark (Def));
6426 end if;
6427
6428 else
6429 Find_Type (Def);
6430 end if;
6431 end;
6432 end if;
6433
6434 End_Scope;
6435 end;
6436 end if;
6437
6438 -- Insert the new declaration in the nearest enclosing scope. If the
6439 -- parent is a body and N is its return type, the declaration belongs
6440 -- in the enclosing scope. Likewise if N is the type of a parameter.
6441
6442 P := Parent (N);
6443
6444 if Nkind (N) = N_Function_Specification
6445 and then Nkind (P) = N_Subprogram_Body
6446 then
6447 P := Parent (P);
6448 elsif Nkind (N) = N_Parameter_Specification
6449 and then Nkind (P) in N_Subprogram_Specification
6450 and then Nkind (Parent (P)) = N_Subprogram_Body
6451 then
6452 P := Parent (Parent (P));
6453 end if;
6454
6455 while Present (P) and then not Has_Declarations (P) loop
6456 P := Parent (P);
6457 end loop;
6458
6459 pragma Assert (Present (P));
6460
6461 if Nkind (P) = N_Package_Specification then
6462 Prepend (Decl, Visible_Declarations (P));
6463 else
6464 Prepend (Decl, Declarations (P));
6465 end if;
6466
6467 -- Replace the anonymous type with an occurrence of the new declaration.
6468 -- In all cases the rewritten node does not have the null-exclusion
6469 -- attribute because (if present) it was already inherited by the
6470 -- anonymous entity (Anon). Thus, in case of components we do not
6471 -- inherit this attribute.
6472
6473 if Nkind (N) = N_Parameter_Specification then
6474 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6475 Set_Etype (Defining_Identifier (N), Anon);
6476 Set_Null_Exclusion_Present (N, False);
6477
6478 elsif Nkind (N) = N_Object_Declaration then
6479 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6480 Set_Etype (Defining_Identifier (N), Anon);
6481
6482 elsif Nkind (N) = N_Access_Function_Definition then
6483 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6484
6485 elsif Nkind (N) = N_Function_Specification then
6486 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6487 Set_Etype (Defining_Unit_Name (N), Anon);
6488
6489 else
6490 Rewrite (Comp,
6491 Make_Component_Definition (Loc,
6492 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6493 end if;
6494
6495 Mark_Rewrite_Insertion (Comp);
6496
6497 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6498 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6499 and then not Is_Type (Current_Scope))
6500 then
6501
6502 -- Declaration can be analyzed in the current scope.
6503
6504 Analyze (Decl);
6505
6506 else
6507 -- Temporarily remove the current scope (record or subprogram) from
6508 -- the stack to add the new declarations to the enclosing scope.
6509 -- The anonymous entity is an Itype with the proper attributes.
6510
6511 Scope_Stack.Decrement_Last;
6512 Analyze (Decl);
6513 Set_Is_Itype (Anon);
6514 Set_Associated_Node_For_Itype (Anon, N);
6515 Scope_Stack.Append (Curr_Scope);
6516 end if;
6517
6518 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6519 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6520 return Anon;
6521 end Replace_Anonymous_Access_To_Protected_Subprogram;
6522
6523 -------------------------------
6524 -- Build_Derived_Access_Type --
6525 -------------------------------
6526
6527 procedure Build_Derived_Access_Type
6528 (N : Node_Id;
6529 Parent_Type : Entity_Id;
6530 Derived_Type : Entity_Id)
6531 is
6532 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6533
6534 Desig_Type : Entity_Id;
6535 Discr : Entity_Id;
6536 Discr_Con_Elist : Elist_Id;
6537 Discr_Con_El : Elmt_Id;
6538 Subt : Entity_Id;
6539
6540 begin
6541 -- Set the designated type so it is available in case this is an access
6542 -- to a self-referential type, e.g. a standard list type with a next
6543 -- pointer. Will be reset after subtype is built.
6544
6545 Set_Directly_Designated_Type
6546 (Derived_Type, Designated_Type (Parent_Type));
6547
6548 Subt := Process_Subtype (S, N);
6549
6550 if Nkind (S) /= N_Subtype_Indication
6551 and then Subt /= Base_Type (Subt)
6552 then
6553 Set_Ekind (Derived_Type, E_Access_Subtype);
6554 end if;
6555
6556 if Ekind (Derived_Type) = E_Access_Subtype then
6557 declare
6558 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6559 Ibase : constant Entity_Id :=
6560 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6561 Svg_Chars : constant Name_Id := Chars (Ibase);
6562 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6563
6564 begin
6565 Copy_Node (Pbase, Ibase);
6566
6567 -- Restore Itype status after Copy_Node
6568
6569 Set_Is_Itype (Ibase);
6570 Set_Associated_Node_For_Itype (Ibase, N);
6571
6572 Set_Chars (Ibase, Svg_Chars);
6573 Set_Next_Entity (Ibase, Svg_Next_E);
6574 Set_Sloc (Ibase, Sloc (Derived_Type));
6575 Set_Scope (Ibase, Scope (Derived_Type));
6576 Set_Freeze_Node (Ibase, Empty);
6577 Set_Is_Frozen (Ibase, False);
6578 Set_Comes_From_Source (Ibase, False);
6579 Set_Is_First_Subtype (Ibase, False);
6580
6581 Set_Etype (Ibase, Pbase);
6582 Set_Etype (Derived_Type, Ibase);
6583 end;
6584 end if;
6585
6586 Set_Directly_Designated_Type
6587 (Derived_Type, Designated_Type (Subt));
6588
6589 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6590 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6591 Set_Size_Info (Derived_Type, Parent_Type);
6592 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6593 Set_Depends_On_Private (Derived_Type,
6594 Has_Private_Component (Derived_Type));
6595 Conditional_Delay (Derived_Type, Subt);
6596
6597 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6598 -- that it is not redundant.
6599
6600 if Null_Exclusion_Present (Type_Definition (N)) then
6601 Set_Can_Never_Be_Null (Derived_Type);
6602
6603 elsif Can_Never_Be_Null (Parent_Type) then
6604 Set_Can_Never_Be_Null (Derived_Type);
6605 end if;
6606
6607 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6608 -- the root type for this information.
6609
6610 -- Apply range checks to discriminants for derived record case
6611 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6612
6613 Desig_Type := Designated_Type (Derived_Type);
6614
6615 if Is_Composite_Type (Desig_Type)
6616 and then (not Is_Array_Type (Desig_Type))
6617 and then Has_Discriminants (Desig_Type)
6618 and then Base_Type (Desig_Type) /= Desig_Type
6619 then
6620 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6621 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6622
6623 Discr := First_Discriminant (Base_Type (Desig_Type));
6624 while Present (Discr_Con_El) loop
6625 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6626 Next_Elmt (Discr_Con_El);
6627 Next_Discriminant (Discr);
6628 end loop;
6629 end if;
6630 end Build_Derived_Access_Type;
6631
6632 ------------------------------
6633 -- Build_Derived_Array_Type --
6634 ------------------------------
6635
6636 procedure Build_Derived_Array_Type
6637 (N : Node_Id;
6638 Parent_Type : Entity_Id;
6639 Derived_Type : Entity_Id)
6640 is
6641 Loc : constant Source_Ptr := Sloc (N);
6642 Tdef : constant Node_Id := Type_Definition (N);
6643 Indic : constant Node_Id := Subtype_Indication (Tdef);
6644 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6645 Implicit_Base : Entity_Id;
6646 New_Indic : Node_Id;
6647
6648 procedure Make_Implicit_Base;
6649 -- If the parent subtype is constrained, the derived type is a subtype
6650 -- of an implicit base type derived from the parent base.
6651
6652 ------------------------
6653 -- Make_Implicit_Base --
6654 ------------------------
6655
6656 procedure Make_Implicit_Base is
6657 begin
6658 Implicit_Base :=
6659 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6660
6661 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6662 Set_Etype (Implicit_Base, Parent_Base);
6663
6664 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6665 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6666
6667 Set_Has_Delayed_Freeze (Implicit_Base, True);
6668 end Make_Implicit_Base;
6669
6670 -- Start of processing for Build_Derived_Array_Type
6671
6672 begin
6673 if not Is_Constrained (Parent_Type) then
6674 if Nkind (Indic) /= N_Subtype_Indication then
6675 Set_Ekind (Derived_Type, E_Array_Type);
6676
6677 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6678 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6679
6680 Set_Has_Delayed_Freeze (Derived_Type, True);
6681
6682 else
6683 Make_Implicit_Base;
6684 Set_Etype (Derived_Type, Implicit_Base);
6685
6686 New_Indic :=
6687 Make_Subtype_Declaration (Loc,
6688 Defining_Identifier => Derived_Type,
6689 Subtype_Indication =>
6690 Make_Subtype_Indication (Loc,
6691 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6692 Constraint => Constraint (Indic)));
6693
6694 Rewrite (N, New_Indic);
6695 Analyze (N);
6696 end if;
6697
6698 else
6699 if Nkind (Indic) /= N_Subtype_Indication then
6700 Make_Implicit_Base;
6701
6702 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6703 Set_Etype (Derived_Type, Implicit_Base);
6704 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6705
6706 else
6707 Error_Msg_N ("illegal constraint on constrained type", Indic);
6708 end if;
6709 end if;
6710
6711 -- If parent type is not a derived type itself, and is declared in
6712 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6713 -- the new type's concatenation operator since Derive_Subprograms
6714 -- will not inherit the parent's operator. If the parent type is
6715 -- unconstrained, the operator is of the unconstrained base type.
6716
6717 if Number_Dimensions (Parent_Type) = 1
6718 and then not Is_Limited_Type (Parent_Type)
6719 and then not Is_Derived_Type (Parent_Type)
6720 and then not Is_Package_Or_Generic_Package
6721 (Scope (Base_Type (Parent_Type)))
6722 then
6723 if not Is_Constrained (Parent_Type)
6724 and then Is_Constrained (Derived_Type)
6725 then
6726 New_Concatenation_Op (Implicit_Base);
6727 else
6728 New_Concatenation_Op (Derived_Type);
6729 end if;
6730 end if;
6731 end Build_Derived_Array_Type;
6732
6733 -----------------------------------
6734 -- Build_Derived_Concurrent_Type --
6735 -----------------------------------
6736
6737 procedure Build_Derived_Concurrent_Type
6738 (N : Node_Id;
6739 Parent_Type : Entity_Id;
6740 Derived_Type : Entity_Id)
6741 is
6742 Loc : constant Source_Ptr := Sloc (N);
6743
6744 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6745 Corr_Decl : Node_Id;
6746 Corr_Decl_Needed : Boolean;
6747 -- If the derived type has fewer discriminants than its parent, the
6748 -- corresponding record is also a derived type, in order to account for
6749 -- the bound discriminants. We create a full type declaration for it in
6750 -- this case.
6751
6752 Constraint_Present : constant Boolean :=
6753 Nkind (Subtype_Indication (Type_Definition (N))) =
6754 N_Subtype_Indication;
6755
6756 D_Constraint : Node_Id;
6757 New_Constraint : Elist_Id;
6758 Old_Disc : Entity_Id;
6759 New_Disc : Entity_Id;
6760 New_N : Node_Id;
6761
6762 begin
6763 Set_Stored_Constraint (Derived_Type, No_Elist);
6764 Corr_Decl_Needed := False;
6765 Old_Disc := Empty;
6766
6767 if Present (Discriminant_Specifications (N))
6768 and then Constraint_Present
6769 then
6770 Old_Disc := First_Discriminant (Parent_Type);
6771 New_Disc := First (Discriminant_Specifications (N));
6772 while Present (New_Disc) and then Present (Old_Disc) loop
6773 Next_Discriminant (Old_Disc);
6774 Next (New_Disc);
6775 end loop;
6776 end if;
6777
6778 if Present (Old_Disc) and then Expander_Active then
6779
6780 -- The new type has fewer discriminants, so we need to create a new
6781 -- corresponding record, which is derived from the corresponding
6782 -- record of the parent, and has a stored constraint that captures
6783 -- the values of the discriminant constraints. The corresponding
6784 -- record is needed only if expander is active and code generation is
6785 -- enabled.
6786
6787 -- The type declaration for the derived corresponding record has the
6788 -- same discriminant part and constraints as the current declaration.
6789 -- Copy the unanalyzed tree to build declaration.
6790
6791 Corr_Decl_Needed := True;
6792 New_N := Copy_Separate_Tree (N);
6793
6794 Corr_Decl :=
6795 Make_Full_Type_Declaration (Loc,
6796 Defining_Identifier => Corr_Record,
6797 Discriminant_Specifications =>
6798 Discriminant_Specifications (New_N),
6799 Type_Definition =>
6800 Make_Derived_Type_Definition (Loc,
6801 Subtype_Indication =>
6802 Make_Subtype_Indication (Loc,
6803 Subtype_Mark =>
6804 New_Occurrence_Of
6805 (Corresponding_Record_Type (Parent_Type), Loc),
6806 Constraint =>
6807 Constraint
6808 (Subtype_Indication (Type_Definition (New_N))))));
6809 end if;
6810
6811 -- Copy Storage_Size and Relative_Deadline variables if task case
6812
6813 if Is_Task_Type (Parent_Type) then
6814 Set_Storage_Size_Variable (Derived_Type,
6815 Storage_Size_Variable (Parent_Type));
6816 Set_Relative_Deadline_Variable (Derived_Type,
6817 Relative_Deadline_Variable (Parent_Type));
6818 end if;
6819
6820 if Present (Discriminant_Specifications (N)) then
6821 Push_Scope (Derived_Type);
6822 Check_Or_Process_Discriminants (N, Derived_Type);
6823
6824 if Constraint_Present then
6825 New_Constraint :=
6826 Expand_To_Stored_Constraint
6827 (Parent_Type,
6828 Build_Discriminant_Constraints
6829 (Parent_Type,
6830 Subtype_Indication (Type_Definition (N)), True));
6831 end if;
6832
6833 End_Scope;
6834
6835 elsif Constraint_Present then
6836
6837 -- Build constrained subtype, copying the constraint, and derive
6838 -- from it to create a derived constrained type.
6839
6840 declare
6841 Loc : constant Source_Ptr := Sloc (N);
6842 Anon : constant Entity_Id :=
6843 Make_Defining_Identifier (Loc,
6844 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6845 Decl : Node_Id;
6846
6847 begin
6848 Decl :=
6849 Make_Subtype_Declaration (Loc,
6850 Defining_Identifier => Anon,
6851 Subtype_Indication =>
6852 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6853 Insert_Before (N, Decl);
6854 Analyze (Decl);
6855
6856 Rewrite (Subtype_Indication (Type_Definition (N)),
6857 New_Occurrence_Of (Anon, Loc));
6858 Set_Analyzed (Derived_Type, False);
6859 Analyze (N);
6860 return;
6861 end;
6862 end if;
6863
6864 -- By default, operations and private data are inherited from parent.
6865 -- However, in the presence of bound discriminants, a new corresponding
6866 -- record will be created, see below.
6867
6868 Set_Has_Discriminants
6869 (Derived_Type, Has_Discriminants (Parent_Type));
6870 Set_Corresponding_Record_Type
6871 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6872
6873 -- Is_Constrained is set according the parent subtype, but is set to
6874 -- False if the derived type is declared with new discriminants.
6875
6876 Set_Is_Constrained
6877 (Derived_Type,
6878 (Is_Constrained (Parent_Type) or else Constraint_Present)
6879 and then not Present (Discriminant_Specifications (N)));
6880
6881 if Constraint_Present then
6882 if not Has_Discriminants (Parent_Type) then
6883 Error_Msg_N ("untagged parent must have discriminants", N);
6884
6885 elsif Present (Discriminant_Specifications (N)) then
6886
6887 -- Verify that new discriminants are used to constrain old ones
6888
6889 D_Constraint :=
6890 First
6891 (Constraints
6892 (Constraint (Subtype_Indication (Type_Definition (N)))));
6893
6894 Old_Disc := First_Discriminant (Parent_Type);
6895
6896 while Present (D_Constraint) loop
6897 if Nkind (D_Constraint) /= N_Discriminant_Association then
6898
6899 -- Positional constraint. If it is a reference to a new
6900 -- discriminant, it constrains the corresponding old one.
6901
6902 if Nkind (D_Constraint) = N_Identifier then
6903 New_Disc := First_Discriminant (Derived_Type);
6904 while Present (New_Disc) loop
6905 exit when Chars (New_Disc) = Chars (D_Constraint);
6906 Next_Discriminant (New_Disc);
6907 end loop;
6908
6909 if Present (New_Disc) then
6910 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6911 end if;
6912 end if;
6913
6914 Next_Discriminant (Old_Disc);
6915
6916 -- if this is a named constraint, search by name for the old
6917 -- discriminants constrained by the new one.
6918
6919 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6920
6921 -- Find new discriminant with that name
6922
6923 New_Disc := First_Discriminant (Derived_Type);
6924 while Present (New_Disc) loop
6925 exit when
6926 Chars (New_Disc) = Chars (Expression (D_Constraint));
6927 Next_Discriminant (New_Disc);
6928 end loop;
6929
6930 if Present (New_Disc) then
6931
6932 -- Verify that new discriminant renames some discriminant
6933 -- of the parent type, and associate the new discriminant
6934 -- with one or more old ones that it renames.
6935
6936 declare
6937 Selector : Node_Id;
6938
6939 begin
6940 Selector := First (Selector_Names (D_Constraint));
6941 while Present (Selector) loop
6942 Old_Disc := First_Discriminant (Parent_Type);
6943 while Present (Old_Disc) loop
6944 exit when Chars (Old_Disc) = Chars (Selector);
6945 Next_Discriminant (Old_Disc);
6946 end loop;
6947
6948 if Present (Old_Disc) then
6949 Set_Corresponding_Discriminant
6950 (New_Disc, Old_Disc);
6951 end if;
6952
6953 Next (Selector);
6954 end loop;
6955 end;
6956 end if;
6957 end if;
6958
6959 Next (D_Constraint);
6960 end loop;
6961
6962 New_Disc := First_Discriminant (Derived_Type);
6963 while Present (New_Disc) loop
6964 if No (Corresponding_Discriminant (New_Disc)) then
6965 Error_Msg_NE
6966 ("new discriminant& must constrain old one", N, New_Disc);
6967
6968 elsif not
6969 Subtypes_Statically_Compatible
6970 (Etype (New_Disc),
6971 Etype (Corresponding_Discriminant (New_Disc)))
6972 then
6973 Error_Msg_NE
6974 ("& not statically compatible with parent discriminant",
6975 N, New_Disc);
6976 end if;
6977
6978 Next_Discriminant (New_Disc);
6979 end loop;
6980 end if;
6981
6982 elsif Present (Discriminant_Specifications (N)) then
6983 Error_Msg_N
6984 ("missing discriminant constraint in untagged derivation", N);
6985 end if;
6986
6987 -- The entity chain of the derived type includes the new discriminants
6988 -- but shares operations with the parent.
6989
6990 if Present (Discriminant_Specifications (N)) then
6991 Old_Disc := First_Discriminant (Parent_Type);
6992 while Present (Old_Disc) loop
6993 if No (Next_Entity (Old_Disc))
6994 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6995 then
6996 Set_Next_Entity
6997 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6998 exit;
6999 end if;
7000
7001 Next_Discriminant (Old_Disc);
7002 end loop;
7003
7004 else
7005 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7006 if Has_Discriminants (Parent_Type) then
7007 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7008 Set_Discriminant_Constraint (
7009 Derived_Type, Discriminant_Constraint (Parent_Type));
7010 end if;
7011 end if;
7012
7013 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7014
7015 Set_Has_Completion (Derived_Type);
7016
7017 if Corr_Decl_Needed then
7018 Set_Stored_Constraint (Derived_Type, New_Constraint);
7019 Insert_After (N, Corr_Decl);
7020 Analyze (Corr_Decl);
7021 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7022 end if;
7023 end Build_Derived_Concurrent_Type;
7024
7025 ------------------------------------
7026 -- Build_Derived_Enumeration_Type --
7027 ------------------------------------
7028
7029 procedure Build_Derived_Enumeration_Type
7030 (N : Node_Id;
7031 Parent_Type : Entity_Id;
7032 Derived_Type : Entity_Id)
7033 is
7034 Loc : constant Source_Ptr := Sloc (N);
7035 Def : constant Node_Id := Type_Definition (N);
7036 Indic : constant Node_Id := Subtype_Indication (Def);
7037 Implicit_Base : Entity_Id;
7038 Literal : Entity_Id;
7039 New_Lit : Entity_Id;
7040 Literals_List : List_Id;
7041 Type_Decl : Node_Id;
7042 Hi, Lo : Node_Id;
7043 Rang_Expr : Node_Id;
7044
7045 begin
7046 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7047 -- not have explicit literals lists we need to process types derived
7048 -- from them specially. This is handled by Derived_Standard_Character.
7049 -- If the parent type is a generic type, there are no literals either,
7050 -- and we construct the same skeletal representation as for the generic
7051 -- parent type.
7052
7053 if Is_Standard_Character_Type (Parent_Type) then
7054 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7055
7056 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7057 declare
7058 Lo : Node_Id;
7059 Hi : Node_Id;
7060
7061 begin
7062 if Nkind (Indic) /= N_Subtype_Indication then
7063 Lo :=
7064 Make_Attribute_Reference (Loc,
7065 Attribute_Name => Name_First,
7066 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7067 Set_Etype (Lo, Derived_Type);
7068
7069 Hi :=
7070 Make_Attribute_Reference (Loc,
7071 Attribute_Name => Name_Last,
7072 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7073 Set_Etype (Hi, Derived_Type);
7074
7075 Set_Scalar_Range (Derived_Type,
7076 Make_Range (Loc,
7077 Low_Bound => Lo,
7078 High_Bound => Hi));
7079 else
7080
7081 -- Analyze subtype indication and verify compatibility
7082 -- with parent type.
7083
7084 if Base_Type (Process_Subtype (Indic, N)) /=
7085 Base_Type (Parent_Type)
7086 then
7087 Error_Msg_N
7088 ("illegal constraint for formal discrete type", N);
7089 end if;
7090 end if;
7091 end;
7092
7093 else
7094 -- If a constraint is present, analyze the bounds to catch
7095 -- premature usage of the derived literals.
7096
7097 if Nkind (Indic) = N_Subtype_Indication
7098 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7099 then
7100 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7101 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7102 end if;
7103
7104 -- Introduce an implicit base type for the derived type even if there
7105 -- is no constraint attached to it, since this seems closer to the
7106 -- Ada semantics. Build a full type declaration tree for the derived
7107 -- type using the implicit base type as the defining identifier. The
7108 -- build a subtype declaration tree which applies the constraint (if
7109 -- any) have it replace the derived type declaration.
7110
7111 Literal := First_Literal (Parent_Type);
7112 Literals_List := New_List;
7113 while Present (Literal)
7114 and then Ekind (Literal) = E_Enumeration_Literal
7115 loop
7116 -- Literals of the derived type have the same representation as
7117 -- those of the parent type, but this representation can be
7118 -- overridden by an explicit representation clause. Indicate
7119 -- that there is no explicit representation given yet. These
7120 -- derived literals are implicit operations of the new type,
7121 -- and can be overridden by explicit ones.
7122
7123 if Nkind (Literal) = N_Defining_Character_Literal then
7124 New_Lit :=
7125 Make_Defining_Character_Literal (Loc, Chars (Literal));
7126 else
7127 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7128 end if;
7129
7130 Set_Ekind (New_Lit, E_Enumeration_Literal);
7131 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7132 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7133 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7134 Set_Alias (New_Lit, Literal);
7135 Set_Is_Known_Valid (New_Lit, True);
7136
7137 Append (New_Lit, Literals_List);
7138 Next_Literal (Literal);
7139 end loop;
7140
7141 Implicit_Base :=
7142 Make_Defining_Identifier (Sloc (Derived_Type),
7143 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7144
7145 -- Indicate the proper nature of the derived type. This must be done
7146 -- before analysis of the literals, to recognize cases when a literal
7147 -- may be hidden by a previous explicit function definition (cf.
7148 -- c83031a).
7149
7150 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7151 Set_Etype (Derived_Type, Implicit_Base);
7152
7153 Type_Decl :=
7154 Make_Full_Type_Declaration (Loc,
7155 Defining_Identifier => Implicit_Base,
7156 Discriminant_Specifications => No_List,
7157 Type_Definition =>
7158 Make_Enumeration_Type_Definition (Loc, Literals_List));
7159
7160 Mark_Rewrite_Insertion (Type_Decl);
7161 Insert_Before (N, Type_Decl);
7162 Analyze (Type_Decl);
7163
7164 -- The anonymous base now has a full declaration, but this base
7165 -- is not a first subtype.
7166
7167 Set_Is_First_Subtype (Implicit_Base, False);
7168
7169 -- After the implicit base is analyzed its Etype needs to be changed
7170 -- to reflect the fact that it is derived from the parent type which
7171 -- was ignored during analysis. We also set the size at this point.
7172
7173 Set_Etype (Implicit_Base, Parent_Type);
7174
7175 Set_Size_Info (Implicit_Base, Parent_Type);
7176 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7177 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7178
7179 -- Copy other flags from parent type
7180
7181 Set_Has_Non_Standard_Rep
7182 (Implicit_Base, Has_Non_Standard_Rep
7183 (Parent_Type));
7184 Set_Has_Pragma_Ordered
7185 (Implicit_Base, Has_Pragma_Ordered
7186 (Parent_Type));
7187 Set_Has_Delayed_Freeze (Implicit_Base);
7188
7189 -- Process the subtype indication including a validation check on the
7190 -- constraint, if any. If a constraint is given, its bounds must be
7191 -- implicitly converted to the new type.
7192
7193 if Nkind (Indic) = N_Subtype_Indication then
7194 declare
7195 R : constant Node_Id :=
7196 Range_Expression (Constraint (Indic));
7197
7198 begin
7199 if Nkind (R) = N_Range then
7200 Hi := Build_Scalar_Bound
7201 (High_Bound (R), Parent_Type, Implicit_Base);
7202 Lo := Build_Scalar_Bound
7203 (Low_Bound (R), Parent_Type, Implicit_Base);
7204
7205 else
7206 -- Constraint is a Range attribute. Replace with explicit
7207 -- mention of the bounds of the prefix, which must be a
7208 -- subtype.
7209
7210 Analyze (Prefix (R));
7211 Hi :=
7212 Convert_To (Implicit_Base,
7213 Make_Attribute_Reference (Loc,
7214 Attribute_Name => Name_Last,
7215 Prefix =>
7216 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7217
7218 Lo :=
7219 Convert_To (Implicit_Base,
7220 Make_Attribute_Reference (Loc,
7221 Attribute_Name => Name_First,
7222 Prefix =>
7223 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7224 end if;
7225 end;
7226
7227 else
7228 Hi :=
7229 Build_Scalar_Bound
7230 (Type_High_Bound (Parent_Type),
7231 Parent_Type, Implicit_Base);
7232 Lo :=
7233 Build_Scalar_Bound
7234 (Type_Low_Bound (Parent_Type),
7235 Parent_Type, Implicit_Base);
7236 end if;
7237
7238 Rang_Expr :=
7239 Make_Range (Loc,
7240 Low_Bound => Lo,
7241 High_Bound => Hi);
7242
7243 -- If we constructed a default range for the case where no range
7244 -- was given, then the expressions in the range must not freeze
7245 -- since they do not correspond to expressions in the source.
7246 -- However, if the type inherits predicates the expressions will
7247 -- be elaborated earlier and must freeze.
7248
7249 if Nkind (Indic) /= N_Subtype_Indication
7250 and then not Has_Predicates (Derived_Type)
7251 then
7252 Set_Must_Not_Freeze (Lo);
7253 Set_Must_Not_Freeze (Hi);
7254 Set_Must_Not_Freeze (Rang_Expr);
7255 end if;
7256
7257 Rewrite (N,
7258 Make_Subtype_Declaration (Loc,
7259 Defining_Identifier => Derived_Type,
7260 Subtype_Indication =>
7261 Make_Subtype_Indication (Loc,
7262 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7263 Constraint =>
7264 Make_Range_Constraint (Loc,
7265 Range_Expression => Rang_Expr))));
7266
7267 Analyze (N);
7268
7269 -- Propagate the aspects from the original type declaration to the
7270 -- declaration of the implicit base.
7271
7272 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7273
7274 -- Apply a range check. Since this range expression doesn't have an
7275 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7276 -- this right???
7277
7278 if Nkind (Indic) = N_Subtype_Indication then
7279 Apply_Range_Check
7280 (Range_Expression (Constraint (Indic)), Parent_Type,
7281 Source_Typ => Entity (Subtype_Mark (Indic)));
7282 end if;
7283 end if;
7284 end Build_Derived_Enumeration_Type;
7285
7286 --------------------------------
7287 -- Build_Derived_Numeric_Type --
7288 --------------------------------
7289
7290 procedure Build_Derived_Numeric_Type
7291 (N : Node_Id;
7292 Parent_Type : Entity_Id;
7293 Derived_Type : Entity_Id)
7294 is
7295 Loc : constant Source_Ptr := Sloc (N);
7296 Tdef : constant Node_Id := Type_Definition (N);
7297 Indic : constant Node_Id := Subtype_Indication (Tdef);
7298 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7299 No_Constraint : constant Boolean := Nkind (Indic) /=
7300 N_Subtype_Indication;
7301 Implicit_Base : Entity_Id;
7302
7303 Lo : Node_Id;
7304 Hi : Node_Id;
7305
7306 begin
7307 -- Process the subtype indication including a validation check on
7308 -- the constraint if any.
7309
7310 Discard_Node (Process_Subtype (Indic, N));
7311
7312 -- Introduce an implicit base type for the derived type even if there
7313 -- is no constraint attached to it, since this seems closer to the Ada
7314 -- semantics.
7315
7316 Implicit_Base :=
7317 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7318
7319 Set_Etype (Implicit_Base, Parent_Base);
7320 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7321 Set_Size_Info (Implicit_Base, Parent_Base);
7322 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7323 Set_Parent (Implicit_Base, Parent (Derived_Type));
7324 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7325
7326 -- Set RM Size for discrete type or decimal fixed-point type
7327 -- Ordinary fixed-point is excluded, why???
7328
7329 if Is_Discrete_Type (Parent_Base)
7330 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7331 then
7332 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7333 end if;
7334
7335 Set_Has_Delayed_Freeze (Implicit_Base);
7336
7337 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7338 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7339
7340 Set_Scalar_Range (Implicit_Base,
7341 Make_Range (Loc,
7342 Low_Bound => Lo,
7343 High_Bound => Hi));
7344
7345 if Has_Infinities (Parent_Base) then
7346 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7347 end if;
7348
7349 -- The Derived_Type, which is the entity of the declaration, is a
7350 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7351 -- absence of an explicit constraint.
7352
7353 Set_Etype (Derived_Type, Implicit_Base);
7354
7355 -- If we did not have a constraint, then the Ekind is set from the
7356 -- parent type (otherwise Process_Subtype has set the bounds)
7357
7358 if No_Constraint then
7359 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7360 end if;
7361
7362 -- If we did not have a range constraint, then set the range from the
7363 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7364
7365 if No_Constraint or else not Has_Range_Constraint (Indic) then
7366 Set_Scalar_Range (Derived_Type,
7367 Make_Range (Loc,
7368 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7369 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7370 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7371
7372 if Has_Infinities (Parent_Type) then
7373 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7374 end if;
7375
7376 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7377 end if;
7378
7379 Set_Is_Descendant_Of_Address (Derived_Type,
7380 Is_Descendant_Of_Address (Parent_Type));
7381 Set_Is_Descendant_Of_Address (Implicit_Base,
7382 Is_Descendant_Of_Address (Parent_Type));
7383
7384 -- Set remaining type-specific fields, depending on numeric type
7385
7386 if Is_Modular_Integer_Type (Parent_Type) then
7387 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7388
7389 Set_Non_Binary_Modulus
7390 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7391
7392 Set_Is_Known_Valid
7393 (Implicit_Base, Is_Known_Valid (Parent_Base));
7394
7395 elsif Is_Floating_Point_Type (Parent_Type) then
7396
7397 -- Digits of base type is always copied from the digits value of
7398 -- the parent base type, but the digits of the derived type will
7399 -- already have been set if there was a constraint present.
7400
7401 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7402 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7403
7404 if No_Constraint then
7405 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7406 end if;
7407
7408 elsif Is_Fixed_Point_Type (Parent_Type) then
7409
7410 -- Small of base type and derived type are always copied from the
7411 -- parent base type, since smalls never change. The delta of the
7412 -- base type is also copied from the parent base type. However the
7413 -- delta of the derived type will have been set already if a
7414 -- constraint was present.
7415
7416 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7417 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7418 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7419
7420 if No_Constraint then
7421 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7422 end if;
7423
7424 -- The scale and machine radix in the decimal case are always
7425 -- copied from the parent base type.
7426
7427 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7428 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7429 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7430
7431 Set_Machine_Radix_10
7432 (Derived_Type, Machine_Radix_10 (Parent_Base));
7433 Set_Machine_Radix_10
7434 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7435
7436 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7437
7438 if No_Constraint then
7439 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7440
7441 else
7442 -- the analysis of the subtype_indication sets the
7443 -- digits value of the derived type.
7444
7445 null;
7446 end if;
7447 end if;
7448 end if;
7449
7450 if Is_Integer_Type (Parent_Type) then
7451 Set_Has_Shift_Operator
7452 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7453 end if;
7454
7455 -- The type of the bounds is that of the parent type, and they
7456 -- must be converted to the derived type.
7457
7458 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7459
7460 -- The implicit_base should be frozen when the derived type is frozen,
7461 -- but note that it is used in the conversions of the bounds. For fixed
7462 -- types we delay the determination of the bounds until the proper
7463 -- freezing point. For other numeric types this is rejected by GCC, for
7464 -- reasons that are currently unclear (???), so we choose to freeze the
7465 -- implicit base now. In the case of integers and floating point types
7466 -- this is harmless because subsequent representation clauses cannot
7467 -- affect anything, but it is still baffling that we cannot use the
7468 -- same mechanism for all derived numeric types.
7469
7470 -- There is a further complication: actually some representation
7471 -- clauses can affect the implicit base type. For example, attribute
7472 -- definition clauses for stream-oriented attributes need to set the
7473 -- corresponding TSS entries on the base type, and this normally
7474 -- cannot be done after the base type is frozen, so the circuitry in
7475 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7476 -- and not use Set_TSS in this case.
7477
7478 -- There are also consequences for the case of delayed representation
7479 -- aspects for some cases. For example, a Size aspect is delayed and
7480 -- should not be evaluated to the freeze point. This early freezing
7481 -- means that the size attribute evaluation happens too early???
7482
7483 if Is_Fixed_Point_Type (Parent_Type) then
7484 Conditional_Delay (Implicit_Base, Parent_Type);
7485 else
7486 Freeze_Before (N, Implicit_Base);
7487 end if;
7488 end Build_Derived_Numeric_Type;
7489
7490 --------------------------------
7491 -- Build_Derived_Private_Type --
7492 --------------------------------
7493
7494 procedure Build_Derived_Private_Type
7495 (N : Node_Id;
7496 Parent_Type : Entity_Id;
7497 Derived_Type : Entity_Id;
7498 Is_Completion : Boolean;
7499 Derive_Subps : Boolean := True)
7500 is
7501 Loc : constant Source_Ptr := Sloc (N);
7502 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7503 Par_Scope : constant Entity_Id := Scope (Par_Base);
7504 Full_N : constant Node_Id := New_Copy_Tree (N);
7505 Full_Der : Entity_Id := New_Copy (Derived_Type);
7506 Full_P : Entity_Id;
7507
7508 procedure Build_Full_Derivation;
7509 -- Build full derivation, i.e. derive from the full view
7510
7511 procedure Copy_And_Build;
7512 -- Copy derived type declaration, replace parent with its full view,
7513 -- and build derivation
7514
7515 ---------------------------
7516 -- Build_Full_Derivation --
7517 ---------------------------
7518
7519 procedure Build_Full_Derivation is
7520 begin
7521 -- If parent scope is not open, install the declarations
7522
7523 if not In_Open_Scopes (Par_Scope) then
7524 Install_Private_Declarations (Par_Scope);
7525 Install_Visible_Declarations (Par_Scope);
7526 Copy_And_Build;
7527 Uninstall_Declarations (Par_Scope);
7528
7529 -- If parent scope is open and in another unit, and parent has a
7530 -- completion, then the derivation is taking place in the visible
7531 -- part of a child unit. In that case retrieve the full view of
7532 -- the parent momentarily.
7533
7534 elsif not In_Same_Source_Unit (N, Parent_Type) then
7535 Full_P := Full_View (Parent_Type);
7536 Exchange_Declarations (Parent_Type);
7537 Copy_And_Build;
7538 Exchange_Declarations (Full_P);
7539
7540 -- Otherwise it is a local derivation
7541
7542 else
7543 Copy_And_Build;
7544 end if;
7545 end Build_Full_Derivation;
7546
7547 --------------------
7548 -- Copy_And_Build --
7549 --------------------
7550
7551 procedure Copy_And_Build is
7552 Full_Parent : Entity_Id := Parent_Type;
7553
7554 begin
7555 -- If the parent is itself derived from another private type,
7556 -- installing the private declarations has not affected its
7557 -- privacy status, so use its own full view explicitly.
7558
7559 if Is_Private_Type (Full_Parent)
7560 and then Present (Full_View (Full_Parent))
7561 then
7562 Full_Parent := Full_View (Full_Parent);
7563 end if;
7564
7565 -- And its underlying full view if necessary
7566
7567 if Is_Private_Type (Full_Parent)
7568 and then Present (Underlying_Full_View (Full_Parent))
7569 then
7570 Full_Parent := Underlying_Full_View (Full_Parent);
7571 end if;
7572
7573 -- For record, access and most enumeration types, derivation from
7574 -- the full view requires a fully-fledged declaration. In the other
7575 -- cases, just use an itype.
7576
7577 if Ekind (Full_Parent) in Record_Kind
7578 or else Ekind (Full_Parent) in Access_Kind
7579 or else
7580 (Ekind (Full_Parent) in Enumeration_Kind
7581 and then not Is_Standard_Character_Type (Full_Parent)
7582 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7583 then
7584 -- Copy and adjust declaration to provide a completion for what
7585 -- is originally a private declaration. Indicate that full view
7586 -- is internally generated.
7587
7588 Set_Comes_From_Source (Full_N, False);
7589 Set_Comes_From_Source (Full_Der, False);
7590 Set_Parent (Full_Der, Full_N);
7591 Set_Defining_Identifier (Full_N, Full_Der);
7592
7593 -- If there are no constraints, adjust the subtype mark
7594
7595 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7596 N_Subtype_Indication
7597 then
7598 Set_Subtype_Indication
7599 (Type_Definition (Full_N),
7600 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7601 end if;
7602
7603 Insert_After (N, Full_N);
7604
7605 -- Build full view of derived type from full view of parent which
7606 -- is now installed. Subprograms have been derived on the partial
7607 -- view, the completion does not derive them anew.
7608
7609 if Ekind (Full_Parent) in Record_Kind then
7610
7611 -- If parent type is tagged, the completion inherits the proper
7612 -- primitive operations.
7613
7614 if Is_Tagged_Type (Parent_Type) then
7615 Build_Derived_Record_Type
7616 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7617 else
7618 Build_Derived_Record_Type
7619 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7620 end if;
7621
7622 else
7623 Build_Derived_Type
7624 (Full_N, Full_Parent, Full_Der,
7625 Is_Completion => False, Derive_Subps => False);
7626 end if;
7627
7628 -- The full declaration has been introduced into the tree and
7629 -- processed in the step above. It should not be analyzed again
7630 -- (when encountered later in the current list of declarations)
7631 -- to prevent spurious name conflicts. The full entity remains
7632 -- invisible.
7633
7634 Set_Analyzed (Full_N);
7635
7636 else
7637 Full_Der :=
7638 Make_Defining_Identifier (Sloc (Derived_Type),
7639 Chars => Chars (Derived_Type));
7640 Set_Is_Itype (Full_Der);
7641 Set_Associated_Node_For_Itype (Full_Der, N);
7642 Set_Parent (Full_Der, N);
7643 Build_Derived_Type
7644 (N, Full_Parent, Full_Der,
7645 Is_Completion => False, Derive_Subps => False);
7646 end if;
7647
7648 Set_Has_Private_Declaration (Full_Der);
7649 Set_Has_Private_Declaration (Derived_Type);
7650
7651 Set_Scope (Full_Der, Scope (Derived_Type));
7652 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7653 Set_Has_Size_Clause (Full_Der, False);
7654 Set_Has_Alignment_Clause (Full_Der, False);
7655 Set_Has_Delayed_Freeze (Full_Der);
7656 Set_Is_Frozen (Full_Der, False);
7657 Set_Freeze_Node (Full_Der, Empty);
7658 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7659 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7660
7661 -- The convention on the base type may be set in the private part
7662 -- and not propagated to the subtype until later, so we obtain the
7663 -- convention from the base type of the parent.
7664
7665 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7666 end Copy_And_Build;
7667
7668 -- Start of processing for Build_Derived_Private_Type
7669
7670 begin
7671 if Is_Tagged_Type (Parent_Type) then
7672 Full_P := Full_View (Parent_Type);
7673
7674 -- A type extension of a type with unknown discriminants is an
7675 -- indefinite type that the back-end cannot handle directly.
7676 -- We treat it as a private type, and build a completion that is
7677 -- derived from the full view of the parent, and hopefully has
7678 -- known discriminants.
7679
7680 -- If the full view of the parent type has an underlying record view,
7681 -- use it to generate the underlying record view of this derived type
7682 -- (required for chains of derivations with unknown discriminants).
7683
7684 -- Minor optimization: we avoid the generation of useless underlying
7685 -- record view entities if the private type declaration has unknown
7686 -- discriminants but its corresponding full view has no
7687 -- discriminants.
7688
7689 if Has_Unknown_Discriminants (Parent_Type)
7690 and then Present (Full_P)
7691 and then (Has_Discriminants (Full_P)
7692 or else Present (Underlying_Record_View (Full_P)))
7693 and then not In_Open_Scopes (Par_Scope)
7694 and then Expander_Active
7695 then
7696 declare
7697 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7698 New_Ext : constant Node_Id :=
7699 Copy_Separate_Tree
7700 (Record_Extension_Part (Type_Definition (N)));
7701 Decl : Node_Id;
7702
7703 begin
7704 Build_Derived_Record_Type
7705 (N, Parent_Type, Derived_Type, Derive_Subps);
7706
7707 -- Build anonymous completion, as a derivation from the full
7708 -- view of the parent. This is not a completion in the usual
7709 -- sense, because the current type is not private.
7710
7711 Decl :=
7712 Make_Full_Type_Declaration (Loc,
7713 Defining_Identifier => Full_Der,
7714 Type_Definition =>
7715 Make_Derived_Type_Definition (Loc,
7716 Subtype_Indication =>
7717 New_Copy_Tree
7718 (Subtype_Indication (Type_Definition (N))),
7719 Record_Extension_Part => New_Ext));
7720
7721 -- If the parent type has an underlying record view, use it
7722 -- here to build the new underlying record view.
7723
7724 if Present (Underlying_Record_View (Full_P)) then
7725 pragma Assert
7726 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7727 = N_Identifier);
7728 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7729 Underlying_Record_View (Full_P));
7730 end if;
7731
7732 Install_Private_Declarations (Par_Scope);
7733 Install_Visible_Declarations (Par_Scope);
7734 Insert_Before (N, Decl);
7735
7736 -- Mark entity as an underlying record view before analysis,
7737 -- to avoid generating the list of its primitive operations
7738 -- (which is not really required for this entity) and thus
7739 -- prevent spurious errors associated with missing overriding
7740 -- of abstract primitives (overridden only for Derived_Type).
7741
7742 Set_Ekind (Full_Der, E_Record_Type);
7743 Set_Is_Underlying_Record_View (Full_Der);
7744 Set_Default_SSO (Full_Der);
7745 Set_No_Reordering (Full_Der, No_Component_Reordering);
7746
7747 Analyze (Decl);
7748
7749 pragma Assert (Has_Discriminants (Full_Der)
7750 and then not Has_Unknown_Discriminants (Full_Der));
7751
7752 Uninstall_Declarations (Par_Scope);
7753
7754 -- Freeze the underlying record view, to prevent generation of
7755 -- useless dispatching information, which is simply shared with
7756 -- the real derived type.
7757
7758 Set_Is_Frozen (Full_Der);
7759
7760 -- If the derived type has access discriminants, create
7761 -- references to their anonymous types now, to prevent
7762 -- back-end problems when their first use is in generated
7763 -- bodies of primitives.
7764
7765 declare
7766 E : Entity_Id;
7767
7768 begin
7769 E := First_Entity (Full_Der);
7770
7771 while Present (E) loop
7772 if Ekind (E) = E_Discriminant
7773 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7774 then
7775 Build_Itype_Reference (Etype (E), Decl);
7776 end if;
7777
7778 Next_Entity (E);
7779 end loop;
7780 end;
7781
7782 -- Set up links between real entity and underlying record view
7783
7784 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7785 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7786 end;
7787
7788 -- If discriminants are known, build derived record
7789
7790 else
7791 Build_Derived_Record_Type
7792 (N, Parent_Type, Derived_Type, Derive_Subps);
7793 end if;
7794
7795 return;
7796
7797 elsif Has_Discriminants (Parent_Type) then
7798
7799 -- Build partial view of derived type from partial view of parent.
7800 -- This must be done before building the full derivation because the
7801 -- second derivation will modify the discriminants of the first and
7802 -- the discriminants are chained with the rest of the components in
7803 -- the full derivation.
7804
7805 Build_Derived_Record_Type
7806 (N, Parent_Type, Derived_Type, Derive_Subps);
7807
7808 -- Build the full derivation if this is not the anonymous derived
7809 -- base type created by Build_Derived_Record_Type in the constrained
7810 -- case (see point 5. of its head comment) since we build it for the
7811 -- derived subtype. And skip it for protected types altogether, as
7812 -- gigi does not use these types directly.
7813
7814 if Present (Full_View (Parent_Type))
7815 and then not Is_Itype (Derived_Type)
7816 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7817 then
7818 declare
7819 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7820 Discr : Entity_Id;
7821 Last_Discr : Entity_Id;
7822
7823 begin
7824 -- If this is not a completion, construct the implicit full
7825 -- view by deriving from the full view of the parent type.
7826 -- But if this is a completion, the derived private type
7827 -- being built is a full view and the full derivation can
7828 -- only be its underlying full view.
7829
7830 Build_Full_Derivation;
7831
7832 if not Is_Completion then
7833 Set_Full_View (Derived_Type, Full_Der);
7834 else
7835 Set_Underlying_Full_View (Derived_Type, Full_Der);
7836 Set_Is_Underlying_Full_View (Full_Der);
7837 end if;
7838
7839 if not Is_Base_Type (Derived_Type) then
7840 Set_Full_View (Der_Base, Base_Type (Full_Der));
7841 end if;
7842
7843 -- Copy the discriminant list from full view to the partial
7844 -- view (base type and its subtype). Gigi requires that the
7845 -- partial and full views have the same discriminants.
7846
7847 -- Note that since the partial view points to discriminants
7848 -- in the full view, their scope will be that of the full
7849 -- view. This might cause some front end problems and need
7850 -- adjustment???
7851
7852 Discr := First_Discriminant (Base_Type (Full_Der));
7853 Set_First_Entity (Der_Base, Discr);
7854
7855 loop
7856 Last_Discr := Discr;
7857 Next_Discriminant (Discr);
7858 exit when No (Discr);
7859 end loop;
7860
7861 Set_Last_Entity (Der_Base, Last_Discr);
7862 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7863 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7864 end;
7865 end if;
7866
7867 elsif Present (Full_View (Parent_Type))
7868 and then Has_Discriminants (Full_View (Parent_Type))
7869 then
7870 if Has_Unknown_Discriminants (Parent_Type)
7871 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7872 N_Subtype_Indication
7873 then
7874 Error_Msg_N
7875 ("cannot constrain type with unknown discriminants",
7876 Subtype_Indication (Type_Definition (N)));
7877 return;
7878 end if;
7879
7880 -- If this is not a completion, construct the implicit full view by
7881 -- deriving from the full view of the parent type. But if this is a
7882 -- completion, the derived private type being built is a full view
7883 -- and the full derivation can only be its underlying full view.
7884
7885 Build_Full_Derivation;
7886
7887 if not Is_Completion then
7888 Set_Full_View (Derived_Type, Full_Der);
7889 else
7890 Set_Underlying_Full_View (Derived_Type, Full_Der);
7891 Set_Is_Underlying_Full_View (Full_Der);
7892 end if;
7893
7894 -- In any case, the primitive operations are inherited from the
7895 -- parent type, not from the internal full view.
7896
7897 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7898
7899 if Derive_Subps then
7900 Derive_Subprograms (Parent_Type, Derived_Type);
7901 end if;
7902
7903 Set_Stored_Constraint (Derived_Type, No_Elist);
7904 Set_Is_Constrained
7905 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7906
7907 else
7908 -- Untagged type, No discriminants on either view
7909
7910 if Nkind (Subtype_Indication (Type_Definition (N))) =
7911 N_Subtype_Indication
7912 then
7913 Error_Msg_N
7914 ("illegal constraint on type without discriminants", N);
7915 end if;
7916
7917 if Present (Discriminant_Specifications (N))
7918 and then Present (Full_View (Parent_Type))
7919 and then not Is_Tagged_Type (Full_View (Parent_Type))
7920 then
7921 Error_Msg_N ("cannot add discriminants to untagged type", N);
7922 end if;
7923
7924 Set_Stored_Constraint (Derived_Type, No_Elist);
7925 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7926
7927 Set_Is_Controlled_Active
7928 (Derived_Type, Is_Controlled_Active (Parent_Type));
7929
7930 Set_Disable_Controlled
7931 (Derived_Type, Disable_Controlled (Parent_Type));
7932
7933 Set_Has_Controlled_Component
7934 (Derived_Type, Has_Controlled_Component (Parent_Type));
7935
7936 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7937
7938 if not Is_Controlled (Parent_Type) then
7939 Set_Finalize_Storage_Only
7940 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7941 end if;
7942
7943 -- If this is not a completion, construct the implicit full view by
7944 -- deriving from the full view of the parent type.
7945
7946 -- ??? If the parent is untagged private and its completion is
7947 -- tagged, this mechanism will not work because we cannot derive from
7948 -- the tagged full view unless we have an extension.
7949
7950 if Present (Full_View (Parent_Type))
7951 and then not Is_Tagged_Type (Full_View (Parent_Type))
7952 and then not Is_Completion
7953 then
7954 Build_Full_Derivation;
7955 Set_Full_View (Derived_Type, Full_Der);
7956 end if;
7957 end if;
7958
7959 Set_Has_Unknown_Discriminants (Derived_Type,
7960 Has_Unknown_Discriminants (Parent_Type));
7961
7962 if Is_Private_Type (Derived_Type) then
7963 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7964 end if;
7965
7966 -- If the parent base type is in scope, add the derived type to its
7967 -- list of private dependents, because its full view may become
7968 -- visible subsequently (in a nested private part, a body, or in a
7969 -- further child unit).
7970
7971 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7972 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7973
7974 -- Check for unusual case where a type completed by a private
7975 -- derivation occurs within a package nested in a child unit, and
7976 -- the parent is declared in an ancestor.
7977
7978 if Is_Child_Unit (Scope (Current_Scope))
7979 and then Is_Completion
7980 and then In_Private_Part (Current_Scope)
7981 and then Scope (Parent_Type) /= Current_Scope
7982
7983 -- Note that if the parent has a completion in the private part,
7984 -- (which is itself a derivation from some other private type)
7985 -- it is that completion that is visible, there is no full view
7986 -- available, and no special processing is needed.
7987
7988 and then Present (Full_View (Parent_Type))
7989 then
7990 -- In this case, the full view of the parent type will become
7991 -- visible in the body of the enclosing child, and only then will
7992 -- the current type be possibly non-private. Build an underlying
7993 -- full view that will be installed when the enclosing child body
7994 -- is compiled.
7995
7996 if Present (Underlying_Full_View (Derived_Type)) then
7997 Full_Der := Underlying_Full_View (Derived_Type);
7998 else
7999 Build_Full_Derivation;
8000 Set_Underlying_Full_View (Derived_Type, Full_Der);
8001 Set_Is_Underlying_Full_View (Full_Der);
8002 end if;
8003
8004 -- The full view will be used to swap entities on entry/exit to
8005 -- the body, and must appear in the entity list for the package.
8006
8007 Append_Entity (Full_Der, Scope (Derived_Type));
8008 end if;
8009 end if;
8010 end Build_Derived_Private_Type;
8011
8012 -------------------------------
8013 -- Build_Derived_Record_Type --
8014 -------------------------------
8015
8016 -- 1. INTRODUCTION
8017
8018 -- Ideally we would like to use the same model of type derivation for
8019 -- tagged and untagged record types. Unfortunately this is not quite
8020 -- possible because the semantics of representation clauses is different
8021 -- for tagged and untagged records under inheritance. Consider the
8022 -- following:
8023
8024 -- type R (...) is [tagged] record ... end record;
8025 -- type T (...) is new R (...) [with ...];
8026
8027 -- The representation clauses for T can specify a completely different
8028 -- record layout from R's. Hence the same component can be placed in two
8029 -- very different positions in objects of type T and R. If R and T are
8030 -- tagged types, representation clauses for T can only specify the layout
8031 -- of non inherited components, thus components that are common in R and T
8032 -- have the same position in objects of type R and T.
8033
8034 -- This has two implications. The first is that the entire tree for R's
8035 -- declaration needs to be copied for T in the untagged case, so that T
8036 -- can be viewed as a record type of its own with its own representation
8037 -- clauses. The second implication is the way we handle discriminants.
8038 -- Specifically, in the untagged case we need a way to communicate to Gigi
8039 -- what are the real discriminants in the record, while for the semantics
8040 -- we need to consider those introduced by the user to rename the
8041 -- discriminants in the parent type. This is handled by introducing the
8042 -- notion of stored discriminants. See below for more.
8043
8044 -- Fortunately the way regular components are inherited can be handled in
8045 -- the same way in tagged and untagged types.
8046
8047 -- To complicate things a bit more the private view of a private extension
8048 -- cannot be handled in the same way as the full view (for one thing the
8049 -- semantic rules are somewhat different). We will explain what differs
8050 -- below.
8051
8052 -- 2. DISCRIMINANTS UNDER INHERITANCE
8053
8054 -- The semantic rules governing the discriminants of derived types are
8055 -- quite subtle.
8056
8057 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8058 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8059
8060 -- If parent type has discriminants, then the discriminants that are
8061 -- declared in the derived type are [3.4 (11)]:
8062
8063 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8064 -- there is one;
8065
8066 -- o Otherwise, each discriminant of the parent type (implicitly declared
8067 -- in the same order with the same specifications). In this case, the
8068 -- discriminants are said to be "inherited", or if unknown in the parent
8069 -- are also unknown in the derived type.
8070
8071 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8072
8073 -- o The parent subtype must be constrained;
8074
8075 -- o If the parent type is not a tagged type, then each discriminant of
8076 -- the derived type must be used in the constraint defining a parent
8077 -- subtype. [Implementation note: This ensures that the new discriminant
8078 -- can share storage with an existing discriminant.]
8079
8080 -- For the derived type each discriminant of the parent type is either
8081 -- inherited, constrained to equal some new discriminant of the derived
8082 -- type, or constrained to the value of an expression.
8083
8084 -- When inherited or constrained to equal some new discriminant, the
8085 -- parent discriminant and the discriminant of the derived type are said
8086 -- to "correspond".
8087
8088 -- If a discriminant of the parent type is constrained to a specific value
8089 -- in the derived type definition, then the discriminant is said to be
8090 -- "specified" by that derived type definition.
8091
8092 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8093
8094 -- We have spoken about stored discriminants in point 1 (introduction)
8095 -- above. There are two sorts of stored discriminants: implicit and
8096 -- explicit. As long as the derived type inherits the same discriminants as
8097 -- the root record type, stored discriminants are the same as regular
8098 -- discriminants, and are said to be implicit. However, if any discriminant
8099 -- in the root type was renamed in the derived type, then the derived
8100 -- type will contain explicit stored discriminants. Explicit stored
8101 -- discriminants are discriminants in addition to the semantically visible
8102 -- discriminants defined for the derived type. Stored discriminants are
8103 -- used by Gigi to figure out what are the physical discriminants in
8104 -- objects of the derived type (see precise definition in einfo.ads).
8105 -- As an example, consider the following:
8106
8107 -- type R (D1, D2, D3 : Int) is record ... end record;
8108 -- type T1 is new R;
8109 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8110 -- type T3 is new T2;
8111 -- type T4 (Y : Int) is new T3 (Y, 99);
8112
8113 -- The following table summarizes the discriminants and stored
8114 -- discriminants in R and T1 through T4:
8115
8116 -- Type Discrim Stored Discrim Comment
8117 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8118 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8119 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8120 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8121 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8122
8123 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8124 -- find the corresponding discriminant in the parent type, while
8125 -- Original_Record_Component (abbreviated ORC below) the actual physical
8126 -- component that is renamed. Finally the field Is_Completely_Hidden
8127 -- (abbreviated ICH below) is set for all explicit stored discriminants
8128 -- (see einfo.ads for more info). For the above example this gives:
8129
8130 -- Discrim CD ORC ICH
8131 -- ^^^^^^^ ^^ ^^^ ^^^
8132 -- D1 in R empty itself no
8133 -- D2 in R empty itself no
8134 -- D3 in R empty itself no
8135
8136 -- D1 in T1 D1 in R itself no
8137 -- D2 in T1 D2 in R itself no
8138 -- D3 in T1 D3 in R itself no
8139
8140 -- X1 in T2 D3 in T1 D3 in T2 no
8141 -- X2 in T2 D1 in T1 D1 in T2 no
8142 -- D1 in T2 empty itself yes
8143 -- D2 in T2 empty itself yes
8144 -- D3 in T2 empty itself yes
8145
8146 -- X1 in T3 X1 in T2 D3 in T3 no
8147 -- X2 in T3 X2 in T2 D1 in T3 no
8148 -- D1 in T3 empty itself yes
8149 -- D2 in T3 empty itself yes
8150 -- D3 in T3 empty itself yes
8151
8152 -- Y in T4 X1 in T3 D3 in T4 no
8153 -- D1 in T4 empty itself yes
8154 -- D2 in T4 empty itself yes
8155 -- D3 in T4 empty itself yes
8156
8157 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8158
8159 -- Type derivation for tagged types is fairly straightforward. If no
8160 -- discriminants are specified by the derived type, these are inherited
8161 -- from the parent. No explicit stored discriminants are ever necessary.
8162 -- The only manipulation that is done to the tree is that of adding a
8163 -- _parent field with parent type and constrained to the same constraint
8164 -- specified for the parent in the derived type definition. For instance:
8165
8166 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8167 -- type T1 is new R with null record;
8168 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8169
8170 -- are changed into:
8171
8172 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8173 -- _parent : R (D1, D2, D3);
8174 -- end record;
8175
8176 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8177 -- _parent : T1 (X2, 88, X1);
8178 -- end record;
8179
8180 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8181 -- ORC and ICH fields are:
8182
8183 -- Discrim CD ORC ICH
8184 -- ^^^^^^^ ^^ ^^^ ^^^
8185 -- D1 in R empty itself no
8186 -- D2 in R empty itself no
8187 -- D3 in R empty itself no
8188
8189 -- D1 in T1 D1 in R D1 in R no
8190 -- D2 in T1 D2 in R D2 in R no
8191 -- D3 in T1 D3 in R D3 in R no
8192
8193 -- X1 in T2 D3 in T1 D3 in R no
8194 -- X2 in T2 D1 in T1 D1 in R no
8195
8196 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8197 --
8198 -- Regardless of whether we dealing with a tagged or untagged type
8199 -- we will transform all derived type declarations of the form
8200 --
8201 -- type T is new R (...) [with ...];
8202 -- or
8203 -- subtype S is R (...);
8204 -- type T is new S [with ...];
8205 -- into
8206 -- type BT is new R [with ...];
8207 -- subtype T is BT (...);
8208 --
8209 -- That is, the base derived type is constrained only if it has no
8210 -- discriminants. The reason for doing this is that GNAT's semantic model
8211 -- assumes that a base type with discriminants is unconstrained.
8212 --
8213 -- Note that, strictly speaking, the above transformation is not always
8214 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8215 --
8216 -- procedure B34011A is
8217 -- type REC (D : integer := 0) is record
8218 -- I : Integer;
8219 -- end record;
8220
8221 -- package P is
8222 -- type T6 is new Rec;
8223 -- function F return T6;
8224 -- end P;
8225
8226 -- use P;
8227 -- package Q6 is
8228 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8229 -- end Q6;
8230 --
8231 -- The definition of Q6.U is illegal. However transforming Q6.U into
8232
8233 -- type BaseU is new T6;
8234 -- subtype U is BaseU (Q6.F.I)
8235
8236 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8237 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8238 -- the transformation described above.
8239
8240 -- There is another instance where the above transformation is incorrect.
8241 -- Consider:
8242
8243 -- package Pack is
8244 -- type Base (D : Integer) is tagged null record;
8245 -- procedure P (X : Base);
8246
8247 -- type Der is new Base (2) with null record;
8248 -- procedure P (X : Der);
8249 -- end Pack;
8250
8251 -- Then the above transformation turns this into
8252
8253 -- type Der_Base is new Base with null record;
8254 -- -- procedure P (X : Base) is implicitly inherited here
8255 -- -- as procedure P (X : Der_Base).
8256
8257 -- subtype Der is Der_Base (2);
8258 -- procedure P (X : Der);
8259 -- -- The overriding of P (X : Der_Base) is illegal since we
8260 -- -- have a parameter conformance problem.
8261
8262 -- To get around this problem, after having semantically processed Der_Base
8263 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8264 -- Discriminant_Constraint from Der so that when parameter conformance is
8265 -- checked when P is overridden, no semantic errors are flagged.
8266
8267 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8268
8269 -- Regardless of whether we are dealing with a tagged or untagged type
8270 -- we will transform all derived type declarations of the form
8271
8272 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8273 -- type T is new R [with ...];
8274 -- into
8275 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8276
8277 -- The reason for such transformation is that it allows us to implement a
8278 -- very clean form of component inheritance as explained below.
8279
8280 -- Note that this transformation is not achieved by direct tree rewriting
8281 -- and manipulation, but rather by redoing the semantic actions that the
8282 -- above transformation will entail. This is done directly in routine
8283 -- Inherit_Components.
8284
8285 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8286
8287 -- In both tagged and untagged derived types, regular non discriminant
8288 -- components are inherited in the derived type from the parent type. In
8289 -- the absence of discriminants component, inheritance is straightforward
8290 -- as components can simply be copied from the parent.
8291
8292 -- If the parent has discriminants, inheriting components constrained with
8293 -- these discriminants requires caution. Consider the following example:
8294
8295 -- type R (D1, D2 : Positive) is [tagged] record
8296 -- S : String (D1 .. D2);
8297 -- end record;
8298
8299 -- type T1 is new R [with null record];
8300 -- type T2 (X : positive) is new R (1, X) [with null record];
8301
8302 -- As explained in 6. above, T1 is rewritten as
8303 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8304 -- which makes the treatment for T1 and T2 identical.
8305
8306 -- What we want when inheriting S, is that references to D1 and D2 in R are
8307 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8308 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8309 -- with either discriminant references in the derived type or expressions.
8310 -- This replacement is achieved as follows: before inheriting R's
8311 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8312 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8313 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8314 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8315 -- by String (1 .. X).
8316
8317 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8318
8319 -- We explain here the rules governing private type extensions relevant to
8320 -- type derivation. These rules are explained on the following example:
8321
8322 -- type D [(...)] is new A [(...)] with private; <-- partial view
8323 -- type D [(...)] is new P [(...)] with null record; <-- full view
8324
8325 -- Type A is called the ancestor subtype of the private extension.
8326 -- Type P is the parent type of the full view of the private extension. It
8327 -- must be A or a type derived from A.
8328
8329 -- The rules concerning the discriminants of private type extensions are
8330 -- [7.3(10-13)]:
8331
8332 -- o If a private extension inherits known discriminants from the ancestor
8333 -- subtype, then the full view must also inherit its discriminants from
8334 -- the ancestor subtype and the parent subtype of the full view must be
8335 -- constrained if and only if the ancestor subtype is constrained.
8336
8337 -- o If a partial view has unknown discriminants, then the full view may
8338 -- define a definite or an indefinite subtype, with or without
8339 -- discriminants.
8340
8341 -- o If a partial view has neither known nor unknown discriminants, then
8342 -- the full view must define a definite subtype.
8343
8344 -- o If the ancestor subtype of a private extension has constrained
8345 -- discriminants, then the parent subtype of the full view must impose a
8346 -- statically matching constraint on those discriminants.
8347
8348 -- This means that only the following forms of private extensions are
8349 -- allowed:
8350
8351 -- type D is new A with private; <-- partial view
8352 -- type D is new P with null record; <-- full view
8353
8354 -- If A has no discriminants than P has no discriminants, otherwise P must
8355 -- inherit A's discriminants.
8356
8357 -- type D is new A (...) with private; <-- partial view
8358 -- type D is new P (:::) with null record; <-- full view
8359
8360 -- P must inherit A's discriminants and (...) and (:::) must statically
8361 -- match.
8362
8363 -- subtype A is R (...);
8364 -- type D is new A with private; <-- partial view
8365 -- type D is new P with null record; <-- full view
8366
8367 -- P must have inherited R's discriminants and must be derived from A or
8368 -- any of its subtypes.
8369
8370 -- type D (..) is new A with private; <-- partial view
8371 -- type D (..) is new P [(:::)] with null record; <-- full view
8372
8373 -- No specific constraints on P's discriminants or constraint (:::).
8374 -- Note that A can be unconstrained, but the parent subtype P must either
8375 -- be constrained or (:::) must be present.
8376
8377 -- type D (..) is new A [(...)] with private; <-- partial view
8378 -- type D (..) is new P [(:::)] with null record; <-- full view
8379
8380 -- P's constraints on A's discriminants must statically match those
8381 -- imposed by (...).
8382
8383 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8384
8385 -- The full view of a private extension is handled exactly as described
8386 -- above. The model chose for the private view of a private extension is
8387 -- the same for what concerns discriminants (i.e. they receive the same
8388 -- treatment as in the tagged case). However, the private view of the
8389 -- private extension always inherits the components of the parent base,
8390 -- without replacing any discriminant reference. Strictly speaking this is
8391 -- incorrect. However, Gigi never uses this view to generate code so this
8392 -- is a purely semantic issue. In theory, a set of transformations similar
8393 -- to those given in 5. and 6. above could be applied to private views of
8394 -- private extensions to have the same model of component inheritance as
8395 -- for non private extensions. However, this is not done because it would
8396 -- further complicate private type processing. Semantically speaking, this
8397 -- leaves us in an uncomfortable situation. As an example consider:
8398
8399 -- package Pack is
8400 -- type R (D : integer) is tagged record
8401 -- S : String (1 .. D);
8402 -- end record;
8403 -- procedure P (X : R);
8404 -- type T is new R (1) with private;
8405 -- private
8406 -- type T is new R (1) with null record;
8407 -- end;
8408
8409 -- This is transformed into:
8410
8411 -- package Pack is
8412 -- type R (D : integer) is tagged record
8413 -- S : String (1 .. D);
8414 -- end record;
8415 -- procedure P (X : R);
8416 -- type T is new R (1) with private;
8417 -- private
8418 -- type BaseT is new R with null record;
8419 -- subtype T is BaseT (1);
8420 -- end;
8421
8422 -- (strictly speaking the above is incorrect Ada)
8423
8424 -- From the semantic standpoint the private view of private extension T
8425 -- should be flagged as constrained since one can clearly have
8426 --
8427 -- Obj : T;
8428 --
8429 -- in a unit withing Pack. However, when deriving subprograms for the
8430 -- private view of private extension T, T must be seen as unconstrained
8431 -- since T has discriminants (this is a constraint of the current
8432 -- subprogram derivation model). Thus, when processing the private view of
8433 -- a private extension such as T, we first mark T as unconstrained, we
8434 -- process it, we perform program derivation and just before returning from
8435 -- Build_Derived_Record_Type we mark T as constrained.
8436
8437 -- ??? Are there are other uncomfortable cases that we will have to
8438 -- deal with.
8439
8440 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8441
8442 -- Types that are derived from a visible record type and have a private
8443 -- extension present other peculiarities. They behave mostly like private
8444 -- types, but if they have primitive operations defined, these will not
8445 -- have the proper signatures for further inheritance, because other
8446 -- primitive operations will use the implicit base that we define for
8447 -- private derivations below. This affect subprogram inheritance (see
8448 -- Derive_Subprograms for details). We also derive the implicit base from
8449 -- the base type of the full view, so that the implicit base is a record
8450 -- type and not another private type, This avoids infinite loops.
8451
8452 procedure Build_Derived_Record_Type
8453 (N : Node_Id;
8454 Parent_Type : Entity_Id;
8455 Derived_Type : Entity_Id;
8456 Derive_Subps : Boolean := True)
8457 is
8458 Discriminant_Specs : constant Boolean :=
8459 Present (Discriminant_Specifications (N));
8460 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8461 Loc : constant Source_Ptr := Sloc (N);
8462 Private_Extension : constant Boolean :=
8463 Nkind (N) = N_Private_Extension_Declaration;
8464 Assoc_List : Elist_Id;
8465 Constraint_Present : Boolean;
8466 Constrs : Elist_Id;
8467 Discrim : Entity_Id;
8468 Indic : Node_Id;
8469 Inherit_Discrims : Boolean := False;
8470 Last_Discrim : Entity_Id;
8471 New_Base : Entity_Id;
8472 New_Decl : Node_Id;
8473 New_Discrs : Elist_Id;
8474 New_Indic : Node_Id;
8475 Parent_Base : Entity_Id;
8476 Save_Etype : Entity_Id;
8477 Save_Discr_Constr : Elist_Id;
8478 Save_Next_Entity : Entity_Id;
8479 Type_Def : Node_Id;
8480
8481 Discs : Elist_Id := New_Elmt_List;
8482 -- An empty Discs list means that there were no constraints in the
8483 -- subtype indication or that there was an error processing it.
8484
8485 begin
8486 if Ekind (Parent_Type) = E_Record_Type_With_Private
8487 and then Present (Full_View (Parent_Type))
8488 and then Has_Discriminants (Parent_Type)
8489 then
8490 Parent_Base := Base_Type (Full_View (Parent_Type));
8491 else
8492 Parent_Base := Base_Type (Parent_Type);
8493 end if;
8494
8495 -- AI05-0115 : if this is a derivation from a private type in some
8496 -- other scope that may lead to invisible components for the derived
8497 -- type, mark it accordingly.
8498
8499 if Is_Private_Type (Parent_Type) then
8500 if Scope (Parent_Type) = Scope (Derived_Type) then
8501 null;
8502
8503 elsif In_Open_Scopes (Scope (Parent_Type))
8504 and then In_Private_Part (Scope (Parent_Type))
8505 then
8506 null;
8507
8508 else
8509 Set_Has_Private_Ancestor (Derived_Type);
8510 end if;
8511
8512 else
8513 Set_Has_Private_Ancestor
8514 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8515 end if;
8516
8517 -- Before we start the previously documented transformations, here is
8518 -- little fix for size and alignment of tagged types. Normally when we
8519 -- derive type D from type P, we copy the size and alignment of P as the
8520 -- default for D, and in the absence of explicit representation clauses
8521 -- for D, the size and alignment are indeed the same as the parent.
8522
8523 -- But this is wrong for tagged types, since fields may be added, and
8524 -- the default size may need to be larger, and the default alignment may
8525 -- need to be larger.
8526
8527 -- We therefore reset the size and alignment fields in the tagged case.
8528 -- Note that the size and alignment will in any case be at least as
8529 -- large as the parent type (since the derived type has a copy of the
8530 -- parent type in the _parent field)
8531
8532 -- The type is also marked as being tagged here, which is needed when
8533 -- processing components with a self-referential anonymous access type
8534 -- in the call to Check_Anonymous_Access_Components below. Note that
8535 -- this flag is also set later on for completeness.
8536
8537 if Is_Tagged then
8538 Set_Is_Tagged_Type (Derived_Type);
8539 Init_Size_Align (Derived_Type);
8540 end if;
8541
8542 -- STEP 0a: figure out what kind of derived type declaration we have
8543
8544 if Private_Extension then
8545 Type_Def := N;
8546 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8547 Set_Default_SSO (Derived_Type);
8548 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8549
8550 else
8551 Type_Def := Type_Definition (N);
8552
8553 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8554 -- Parent_Base can be a private type or private extension. However,
8555 -- for tagged types with an extension the newly added fields are
8556 -- visible and hence the Derived_Type is always an E_Record_Type.
8557 -- (except that the parent may have its own private fields).
8558 -- For untagged types we preserve the Ekind of the Parent_Base.
8559
8560 if Present (Record_Extension_Part (Type_Def)) then
8561 Set_Ekind (Derived_Type, E_Record_Type);
8562 Set_Default_SSO (Derived_Type);
8563 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8564
8565 -- Create internal access types for components with anonymous
8566 -- access types.
8567
8568 if Ada_Version >= Ada_2005 then
8569 Check_Anonymous_Access_Components
8570 (N, Derived_Type, Derived_Type,
8571 Component_List (Record_Extension_Part (Type_Def)));
8572 end if;
8573
8574 else
8575 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8576 end if;
8577 end if;
8578
8579 -- Indic can either be an N_Identifier if the subtype indication
8580 -- contains no constraint or an N_Subtype_Indication if the subtype
8581 -- indication has a constraint.
8582
8583 Indic := Subtype_Indication (Type_Def);
8584 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8585
8586 -- Check that the type has visible discriminants. The type may be
8587 -- a private type with unknown discriminants whose full view has
8588 -- discriminants which are invisible.
8589
8590 if Constraint_Present then
8591 if not Has_Discriminants (Parent_Base)
8592 or else
8593 (Has_Unknown_Discriminants (Parent_Base)
8594 and then Is_Private_Type (Parent_Base))
8595 then
8596 Error_Msg_N
8597 ("invalid constraint: type has no discriminant",
8598 Constraint (Indic));
8599
8600 Constraint_Present := False;
8601 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8602
8603 elsif Is_Constrained (Parent_Type) then
8604 Error_Msg_N
8605 ("invalid constraint: parent type is already constrained",
8606 Constraint (Indic));
8607
8608 Constraint_Present := False;
8609 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8610 end if;
8611 end if;
8612
8613 -- STEP 0b: If needed, apply transformation given in point 5. above
8614
8615 if not Private_Extension
8616 and then Has_Discriminants (Parent_Type)
8617 and then not Discriminant_Specs
8618 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8619 then
8620 -- First, we must analyze the constraint (see comment in point 5.)
8621 -- The constraint may come from the subtype indication of the full
8622 -- declaration.
8623
8624 if Constraint_Present then
8625 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8626
8627 -- If there is no explicit constraint, there might be one that is
8628 -- inherited from a constrained parent type. In that case verify that
8629 -- it conforms to the constraint in the partial view. In perverse
8630 -- cases the parent subtypes of the partial and full view can have
8631 -- different constraints.
8632
8633 elsif Present (Stored_Constraint (Parent_Type)) then
8634 New_Discrs := Stored_Constraint (Parent_Type);
8635
8636 else
8637 New_Discrs := No_Elist;
8638 end if;
8639
8640 if Has_Discriminants (Derived_Type)
8641 and then Has_Private_Declaration (Derived_Type)
8642 and then Present (Discriminant_Constraint (Derived_Type))
8643 and then Present (New_Discrs)
8644 then
8645 -- Verify that constraints of the full view statically match
8646 -- those given in the partial view.
8647
8648 declare
8649 C1, C2 : Elmt_Id;
8650
8651 begin
8652 C1 := First_Elmt (New_Discrs);
8653 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8654 while Present (C1) and then Present (C2) loop
8655 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8656 or else
8657 (Is_OK_Static_Expression (Node (C1))
8658 and then Is_OK_Static_Expression (Node (C2))
8659 and then
8660 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8661 then
8662 null;
8663
8664 else
8665 if Constraint_Present then
8666 Error_Msg_N
8667 ("constraint not conformant to previous declaration",
8668 Node (C1));
8669 else
8670 Error_Msg_N
8671 ("constraint of full view is incompatible "
8672 & "with partial view", N);
8673 end if;
8674 end if;
8675
8676 Next_Elmt (C1);
8677 Next_Elmt (C2);
8678 end loop;
8679 end;
8680 end if;
8681
8682 -- Insert and analyze the declaration for the unconstrained base type
8683
8684 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8685
8686 New_Decl :=
8687 Make_Full_Type_Declaration (Loc,
8688 Defining_Identifier => New_Base,
8689 Type_Definition =>
8690 Make_Derived_Type_Definition (Loc,
8691 Abstract_Present => Abstract_Present (Type_Def),
8692 Limited_Present => Limited_Present (Type_Def),
8693 Subtype_Indication =>
8694 New_Occurrence_Of (Parent_Base, Loc),
8695 Record_Extension_Part =>
8696 Relocate_Node (Record_Extension_Part (Type_Def)),
8697 Interface_List => Interface_List (Type_Def)));
8698
8699 Set_Parent (New_Decl, Parent (N));
8700 Mark_Rewrite_Insertion (New_Decl);
8701 Insert_Before (N, New_Decl);
8702
8703 -- In the extension case, make sure ancestor is frozen appropriately
8704 -- (see also non-discriminated case below).
8705
8706 if Present (Record_Extension_Part (Type_Def))
8707 or else Is_Interface (Parent_Base)
8708 then
8709 Freeze_Before (New_Decl, Parent_Type);
8710 end if;
8711
8712 -- Note that this call passes False for the Derive_Subps parameter
8713 -- because subprogram derivation is deferred until after creating
8714 -- the subtype (see below).
8715
8716 Build_Derived_Type
8717 (New_Decl, Parent_Base, New_Base,
8718 Is_Completion => False, Derive_Subps => False);
8719
8720 -- ??? This needs re-examination to determine whether the
8721 -- above call can simply be replaced by a call to Analyze.
8722
8723 Set_Analyzed (New_Decl);
8724
8725 -- Insert and analyze the declaration for the constrained subtype
8726
8727 if Constraint_Present then
8728 New_Indic :=
8729 Make_Subtype_Indication (Loc,
8730 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8731 Constraint => Relocate_Node (Constraint (Indic)));
8732
8733 else
8734 declare
8735 Constr_List : constant List_Id := New_List;
8736 C : Elmt_Id;
8737 Expr : Node_Id;
8738
8739 begin
8740 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8741 while Present (C) loop
8742 Expr := Node (C);
8743
8744 -- It is safe here to call New_Copy_Tree since we called
8745 -- Force_Evaluation on each constraint previously
8746 -- in Build_Discriminant_Constraints.
8747
8748 Append (New_Copy_Tree (Expr), To => Constr_List);
8749
8750 Next_Elmt (C);
8751 end loop;
8752
8753 New_Indic :=
8754 Make_Subtype_Indication (Loc,
8755 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8756 Constraint =>
8757 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8758 end;
8759 end if;
8760
8761 Rewrite (N,
8762 Make_Subtype_Declaration (Loc,
8763 Defining_Identifier => Derived_Type,
8764 Subtype_Indication => New_Indic));
8765
8766 Analyze (N);
8767
8768 -- Derivation of subprograms must be delayed until the full subtype
8769 -- has been established, to ensure proper overriding of subprograms
8770 -- inherited by full types. If the derivations occurred as part of
8771 -- the call to Build_Derived_Type above, then the check for type
8772 -- conformance would fail because earlier primitive subprograms
8773 -- could still refer to the full type prior the change to the new
8774 -- subtype and hence would not match the new base type created here.
8775 -- Subprograms are not derived, however, when Derive_Subps is False
8776 -- (since otherwise there could be redundant derivations).
8777
8778 if Derive_Subps then
8779 Derive_Subprograms (Parent_Type, Derived_Type);
8780 end if;
8781
8782 -- For tagged types the Discriminant_Constraint of the new base itype
8783 -- is inherited from the first subtype so that no subtype conformance
8784 -- problem arise when the first subtype overrides primitive
8785 -- operations inherited by the implicit base type.
8786
8787 if Is_Tagged then
8788 Set_Discriminant_Constraint
8789 (New_Base, Discriminant_Constraint (Derived_Type));
8790 end if;
8791
8792 return;
8793 end if;
8794
8795 -- If we get here Derived_Type will have no discriminants or it will be
8796 -- a discriminated unconstrained base type.
8797
8798 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8799
8800 if Is_Tagged then
8801
8802 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8803 -- The declaration of a specific descendant of an interface type
8804 -- freezes the interface type (RM 13.14).
8805
8806 if not Private_Extension or else Is_Interface (Parent_Base) then
8807 Freeze_Before (N, Parent_Type);
8808 end if;
8809
8810 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8811 -- cannot be declared at a deeper level than its parent type is
8812 -- removed. The check on derivation within a generic body is also
8813 -- relaxed, but there's a restriction that a derived tagged type
8814 -- cannot be declared in a generic body if it's derived directly
8815 -- or indirectly from a formal type of that generic.
8816
8817 if Ada_Version >= Ada_2005 then
8818 if Present (Enclosing_Generic_Body (Derived_Type)) then
8819 declare
8820 Ancestor_Type : Entity_Id;
8821
8822 begin
8823 -- Check to see if any ancestor of the derived type is a
8824 -- formal type.
8825
8826 Ancestor_Type := Parent_Type;
8827 while not Is_Generic_Type (Ancestor_Type)
8828 and then Etype (Ancestor_Type) /= Ancestor_Type
8829 loop
8830 Ancestor_Type := Etype (Ancestor_Type);
8831 end loop;
8832
8833 -- If the derived type does have a formal type as an
8834 -- ancestor, then it's an error if the derived type is
8835 -- declared within the body of the generic unit that
8836 -- declares the formal type in its generic formal part. It's
8837 -- sufficient to check whether the ancestor type is declared
8838 -- inside the same generic body as the derived type (such as
8839 -- within a nested generic spec), in which case the
8840 -- derivation is legal. If the formal type is declared
8841 -- outside of that generic body, then it's guaranteed that
8842 -- the derived type is declared within the generic body of
8843 -- the generic unit declaring the formal type.
8844
8845 if Is_Generic_Type (Ancestor_Type)
8846 and then Enclosing_Generic_Body (Ancestor_Type) /=
8847 Enclosing_Generic_Body (Derived_Type)
8848 then
8849 Error_Msg_NE
8850 ("parent type of& must not be descendant of formal type"
8851 & " of an enclosing generic body",
8852 Indic, Derived_Type);
8853 end if;
8854 end;
8855 end if;
8856
8857 elsif Type_Access_Level (Derived_Type) /=
8858 Type_Access_Level (Parent_Type)
8859 and then not Is_Generic_Type (Derived_Type)
8860 then
8861 if Is_Controlled (Parent_Type) then
8862 Error_Msg_N
8863 ("controlled type must be declared at the library level",
8864 Indic);
8865 else
8866 Error_Msg_N
8867 ("type extension at deeper accessibility level than parent",
8868 Indic);
8869 end if;
8870
8871 else
8872 declare
8873 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8874 begin
8875 if Present (GB)
8876 and then GB /= Enclosing_Generic_Body (Parent_Base)
8877 then
8878 Error_Msg_NE
8879 ("parent type of& must not be outside generic body"
8880 & " (RM 3.9.1(4))",
8881 Indic, Derived_Type);
8882 end if;
8883 end;
8884 end if;
8885 end if;
8886
8887 -- Ada 2005 (AI-251)
8888
8889 if Ada_Version >= Ada_2005 and then Is_Tagged then
8890
8891 -- "The declaration of a specific descendant of an interface type
8892 -- freezes the interface type" (RM 13.14).
8893
8894 declare
8895 Iface : Node_Id;
8896 begin
8897 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8898 Iface := First (Interface_List (Type_Def));
8899 while Present (Iface) loop
8900 Freeze_Before (N, Etype (Iface));
8901 Next (Iface);
8902 end loop;
8903 end if;
8904 end;
8905 end if;
8906
8907 -- STEP 1b : preliminary cleanup of the full view of private types
8908
8909 -- If the type is already marked as having discriminants, then it's the
8910 -- completion of a private type or private extension and we need to
8911 -- retain the discriminants from the partial view if the current
8912 -- declaration has Discriminant_Specifications so that we can verify
8913 -- conformance. However, we must remove any existing components that
8914 -- were inherited from the parent (and attached in Copy_And_Swap)
8915 -- because the full type inherits all appropriate components anyway, and
8916 -- we do not want the partial view's components interfering.
8917
8918 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8919 Discrim := First_Discriminant (Derived_Type);
8920 loop
8921 Last_Discrim := Discrim;
8922 Next_Discriminant (Discrim);
8923 exit when No (Discrim);
8924 end loop;
8925
8926 Set_Last_Entity (Derived_Type, Last_Discrim);
8927
8928 -- In all other cases wipe out the list of inherited components (even
8929 -- inherited discriminants), it will be properly rebuilt here.
8930
8931 else
8932 Set_First_Entity (Derived_Type, Empty);
8933 Set_Last_Entity (Derived_Type, Empty);
8934 end if;
8935
8936 -- STEP 1c: Initialize some flags for the Derived_Type
8937
8938 -- The following flags must be initialized here so that
8939 -- Process_Discriminants can check that discriminants of tagged types do
8940 -- not have a default initial value and that access discriminants are
8941 -- only specified for limited records. For completeness, these flags are
8942 -- also initialized along with all the other flags below.
8943
8944 -- AI-419: Limitedness is not inherited from an interface parent, so to
8945 -- be limited in that case the type must be explicitly declared as
8946 -- limited. However, task and protected interfaces are always limited.
8947
8948 if Limited_Present (Type_Def) then
8949 Set_Is_Limited_Record (Derived_Type);
8950
8951 elsif Is_Limited_Record (Parent_Type)
8952 or else (Present (Full_View (Parent_Type))
8953 and then Is_Limited_Record (Full_View (Parent_Type)))
8954 then
8955 if not Is_Interface (Parent_Type)
8956 or else Is_Synchronized_Interface (Parent_Type)
8957 or else Is_Protected_Interface (Parent_Type)
8958 or else Is_Task_Interface (Parent_Type)
8959 then
8960 Set_Is_Limited_Record (Derived_Type);
8961 end if;
8962 end if;
8963
8964 -- STEP 2a: process discriminants of derived type if any
8965
8966 Push_Scope (Derived_Type);
8967
8968 if Discriminant_Specs then
8969 Set_Has_Unknown_Discriminants (Derived_Type, False);
8970
8971 -- The following call initializes fields Has_Discriminants and
8972 -- Discriminant_Constraint, unless we are processing the completion
8973 -- of a private type declaration.
8974
8975 Check_Or_Process_Discriminants (N, Derived_Type);
8976
8977 -- For untagged types, the constraint on the Parent_Type must be
8978 -- present and is used to rename the discriminants.
8979
8980 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8981 Error_Msg_N ("untagged parent must have discriminants", Indic);
8982
8983 elsif not Is_Tagged and then not Constraint_Present then
8984 Error_Msg_N
8985 ("discriminant constraint needed for derived untagged records",
8986 Indic);
8987
8988 -- Otherwise the parent subtype must be constrained unless we have a
8989 -- private extension.
8990
8991 elsif not Constraint_Present
8992 and then not Private_Extension
8993 and then not Is_Constrained (Parent_Type)
8994 then
8995 Error_Msg_N
8996 ("unconstrained type not allowed in this context", Indic);
8997
8998 elsif Constraint_Present then
8999 -- The following call sets the field Corresponding_Discriminant
9000 -- for the discriminants in the Derived_Type.
9001
9002 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9003
9004 -- For untagged types all new discriminants must rename
9005 -- discriminants in the parent. For private extensions new
9006 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9007
9008 Discrim := First_Discriminant (Derived_Type);
9009 while Present (Discrim) loop
9010 if not Is_Tagged
9011 and then No (Corresponding_Discriminant (Discrim))
9012 then
9013 Error_Msg_N
9014 ("new discriminants must constrain old ones", Discrim);
9015
9016 elsif Private_Extension
9017 and then Present (Corresponding_Discriminant (Discrim))
9018 then
9019 Error_Msg_N
9020 ("only static constraints allowed for parent"
9021 & " discriminants in the partial view", Indic);
9022 exit;
9023 end if;
9024
9025 -- If a new discriminant is used in the constraint, then its
9026 -- subtype must be statically compatible with the parent
9027 -- discriminant's subtype (3.7(15)).
9028
9029 -- However, if the record contains an array constrained by
9030 -- the discriminant but with some different bound, the compiler
9031 -- tries to create a smaller range for the discriminant type.
9032 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9033 -- the discriminant type is a scalar type, the check must use
9034 -- the original discriminant type in the parent declaration.
9035
9036 declare
9037 Corr_Disc : constant Entity_Id :=
9038 Corresponding_Discriminant (Discrim);
9039 Disc_Type : constant Entity_Id := Etype (Discrim);
9040 Corr_Type : Entity_Id;
9041
9042 begin
9043 if Present (Corr_Disc) then
9044 if Is_Scalar_Type (Disc_Type) then
9045 Corr_Type :=
9046 Entity (Discriminant_Type (Parent (Corr_Disc)));
9047 else
9048 Corr_Type := Etype (Corr_Disc);
9049 end if;
9050
9051 if not
9052 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9053 then
9054 Error_Msg_N
9055 ("subtype must be compatible "
9056 & "with parent discriminant",
9057 Discrim);
9058 end if;
9059 end if;
9060 end;
9061
9062 Next_Discriminant (Discrim);
9063 end loop;
9064
9065 -- Check whether the constraints of the full view statically
9066 -- match those imposed by the parent subtype [7.3(13)].
9067
9068 if Present (Stored_Constraint (Derived_Type)) then
9069 declare
9070 C1, C2 : Elmt_Id;
9071
9072 begin
9073 C1 := First_Elmt (Discs);
9074 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9075 while Present (C1) and then Present (C2) loop
9076 if not
9077 Fully_Conformant_Expressions (Node (C1), Node (C2))
9078 then
9079 Error_Msg_N
9080 ("not conformant with previous declaration",
9081 Node (C1));
9082 end if;
9083
9084 Next_Elmt (C1);
9085 Next_Elmt (C2);
9086 end loop;
9087 end;
9088 end if;
9089 end if;
9090
9091 -- STEP 2b: No new discriminants, inherit discriminants if any
9092
9093 else
9094 if Private_Extension then
9095 Set_Has_Unknown_Discriminants
9096 (Derived_Type,
9097 Has_Unknown_Discriminants (Parent_Type)
9098 or else Unknown_Discriminants_Present (N));
9099
9100 -- The partial view of the parent may have unknown discriminants,
9101 -- but if the full view has discriminants and the parent type is
9102 -- in scope they must be inherited.
9103
9104 elsif Has_Unknown_Discriminants (Parent_Type)
9105 and then
9106 (not Has_Discriminants (Parent_Type)
9107 or else not In_Open_Scopes (Scope (Parent_Type)))
9108 then
9109 Set_Has_Unknown_Discriminants (Derived_Type);
9110 end if;
9111
9112 if not Has_Unknown_Discriminants (Derived_Type)
9113 and then not Has_Unknown_Discriminants (Parent_Base)
9114 and then Has_Discriminants (Parent_Type)
9115 then
9116 Inherit_Discrims := True;
9117 Set_Has_Discriminants
9118 (Derived_Type, True);
9119 Set_Discriminant_Constraint
9120 (Derived_Type, Discriminant_Constraint (Parent_Base));
9121 end if;
9122
9123 -- The following test is true for private types (remember
9124 -- transformation 5. is not applied to those) and in an error
9125 -- situation.
9126
9127 if Constraint_Present then
9128 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9129 end if;
9130
9131 -- For now mark a new derived type as constrained only if it has no
9132 -- discriminants. At the end of Build_Derived_Record_Type we properly
9133 -- set this flag in the case of private extensions. See comments in
9134 -- point 9. just before body of Build_Derived_Record_Type.
9135
9136 Set_Is_Constrained
9137 (Derived_Type,
9138 not (Inherit_Discrims
9139 or else Has_Unknown_Discriminants (Derived_Type)));
9140 end if;
9141
9142 -- STEP 3: initialize fields of derived type
9143
9144 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9145 Set_Stored_Constraint (Derived_Type, No_Elist);
9146
9147 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9148 -- but cannot be interfaces
9149
9150 if not Private_Extension
9151 and then Ekind (Derived_Type) /= E_Private_Type
9152 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9153 then
9154 if Interface_Present (Type_Def) then
9155 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9156 end if;
9157
9158 Set_Interfaces (Derived_Type, No_Elist);
9159 end if;
9160
9161 -- Fields inherited from the Parent_Type
9162
9163 Set_Has_Specified_Layout
9164 (Derived_Type, Has_Specified_Layout (Parent_Type));
9165 Set_Is_Limited_Composite
9166 (Derived_Type, Is_Limited_Composite (Parent_Type));
9167 Set_Is_Private_Composite
9168 (Derived_Type, Is_Private_Composite (Parent_Type));
9169
9170 if Is_Tagged_Type (Parent_Type) then
9171 Set_No_Tagged_Streams_Pragma
9172 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9173 end if;
9174
9175 -- Fields inherited from the Parent_Base
9176
9177 Set_Has_Controlled_Component
9178 (Derived_Type, Has_Controlled_Component (Parent_Base));
9179 Set_Has_Non_Standard_Rep
9180 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9181 Set_Has_Primitive_Operations
9182 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9183
9184 -- Set fields for private derived types
9185
9186 if Is_Private_Type (Derived_Type) then
9187 Set_Depends_On_Private (Derived_Type, True);
9188 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9189 end if;
9190
9191 -- Inherit fields for non-private types. If this is the completion of a
9192 -- derivation from a private type, the parent itself is private and the
9193 -- attributes come from its full view, which must be present.
9194
9195 if Is_Record_Type (Derived_Type) then
9196 declare
9197 Parent_Full : Entity_Id;
9198
9199 begin
9200 if Is_Private_Type (Parent_Base)
9201 and then not Is_Record_Type (Parent_Base)
9202 then
9203 Parent_Full := Full_View (Parent_Base);
9204 else
9205 Parent_Full := Parent_Base;
9206 end if;
9207
9208 Set_Component_Alignment
9209 (Derived_Type, Component_Alignment (Parent_Full));
9210 Set_C_Pass_By_Copy
9211 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9212 Set_Has_Complex_Representation
9213 (Derived_Type, Has_Complex_Representation (Parent_Full));
9214
9215 -- For untagged types, inherit the layout by default to avoid
9216 -- costly changes of representation for type conversions.
9217
9218 if not Is_Tagged then
9219 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9220 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9221 end if;
9222 end;
9223 end if;
9224
9225 -- Set fields for tagged types
9226
9227 if Is_Tagged then
9228 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9229
9230 -- All tagged types defined in Ada.Finalization are controlled
9231
9232 if Chars (Scope (Derived_Type)) = Name_Finalization
9233 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9234 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9235 then
9236 Set_Is_Controlled_Active (Derived_Type);
9237 else
9238 Set_Is_Controlled_Active
9239 (Derived_Type, Is_Controlled_Active (Parent_Base));
9240 end if;
9241
9242 -- Minor optimization: there is no need to generate the class-wide
9243 -- entity associated with an underlying record view.
9244
9245 if not Is_Underlying_Record_View (Derived_Type) then
9246 Make_Class_Wide_Type (Derived_Type);
9247 end if;
9248
9249 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9250
9251 if Has_Discriminants (Derived_Type)
9252 and then Constraint_Present
9253 then
9254 Set_Stored_Constraint
9255 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9256 end if;
9257
9258 if Ada_Version >= Ada_2005 then
9259 declare
9260 Ifaces_List : Elist_Id;
9261
9262 begin
9263 -- Checks rules 3.9.4 (13/2 and 14/2)
9264
9265 if Comes_From_Source (Derived_Type)
9266 and then not Is_Private_Type (Derived_Type)
9267 and then Is_Interface (Parent_Type)
9268 and then not Is_Interface (Derived_Type)
9269 then
9270 if Is_Task_Interface (Parent_Type) then
9271 Error_Msg_N
9272 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9273 Derived_Type);
9274
9275 elsif Is_Protected_Interface (Parent_Type) then
9276 Error_Msg_N
9277 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9278 Derived_Type);
9279 end if;
9280 end if;
9281
9282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9283
9284 Check_Interfaces (N, Type_Def);
9285
9286 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9287 -- not already in the parents.
9288
9289 Collect_Interfaces
9290 (T => Derived_Type,
9291 Ifaces_List => Ifaces_List,
9292 Exclude_Parents => True);
9293
9294 Set_Interfaces (Derived_Type, Ifaces_List);
9295
9296 -- If the derived type is the anonymous type created for
9297 -- a declaration whose parent has a constraint, propagate
9298 -- the interface list to the source type. This must be done
9299 -- prior to the completion of the analysis of the source type
9300 -- because the components in the extension may contain current
9301 -- instances whose legality depends on some ancestor.
9302
9303 if Is_Itype (Derived_Type) then
9304 declare
9305 Def : constant Node_Id :=
9306 Associated_Node_For_Itype (Derived_Type);
9307 begin
9308 if Present (Def)
9309 and then Nkind (Def) = N_Full_Type_Declaration
9310 then
9311 Set_Interfaces
9312 (Defining_Identifier (Def), Ifaces_List);
9313 end if;
9314 end;
9315 end if;
9316
9317 -- A type extension is automatically Ghost when one of its
9318 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9319 -- also inherited when the parent type is Ghost, but this is
9320 -- done in Build_Derived_Type as the mechanism also handles
9321 -- untagged derivations.
9322
9323 if Implements_Ghost_Interface (Derived_Type) then
9324 Set_Is_Ghost_Entity (Derived_Type);
9325 end if;
9326 end;
9327 end if;
9328 end if;
9329
9330 -- STEP 4: Inherit components from the parent base and constrain them.
9331 -- Apply the second transformation described in point 6. above.
9332
9333 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9334 or else not Has_Discriminants (Parent_Type)
9335 or else not Is_Constrained (Parent_Type)
9336 then
9337 Constrs := Discs;
9338 else
9339 Constrs := Discriminant_Constraint (Parent_Type);
9340 end if;
9341
9342 Assoc_List :=
9343 Inherit_Components
9344 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9345
9346 -- STEP 5a: Copy the parent record declaration for untagged types
9347
9348 Set_Has_Implicit_Dereference
9349 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9350
9351 if not Is_Tagged then
9352
9353 -- Discriminant_Constraint (Derived_Type) has been properly
9354 -- constructed. Save it and temporarily set it to Empty because we
9355 -- do not want the call to New_Copy_Tree below to mess this list.
9356
9357 if Has_Discriminants (Derived_Type) then
9358 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9359 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9360 else
9361 Save_Discr_Constr := No_Elist;
9362 end if;
9363
9364 -- Save the Etype field of Derived_Type. It is correctly set now,
9365 -- but the call to New_Copy tree may remap it to point to itself,
9366 -- which is not what we want. Ditto for the Next_Entity field.
9367
9368 Save_Etype := Etype (Derived_Type);
9369 Save_Next_Entity := Next_Entity (Derived_Type);
9370
9371 -- Assoc_List maps all stored discriminants in the Parent_Base to
9372 -- stored discriminants in the Derived_Type. It is fundamental that
9373 -- no types or itypes with discriminants other than the stored
9374 -- discriminants appear in the entities declared inside
9375 -- Derived_Type, since the back end cannot deal with it.
9376
9377 New_Decl :=
9378 New_Copy_Tree
9379 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9380 Copy_Dimensions_Of_Components (Derived_Type);
9381
9382 -- Restore the fields saved prior to the New_Copy_Tree call
9383 -- and compute the stored constraint.
9384
9385 Set_Etype (Derived_Type, Save_Etype);
9386 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9387
9388 if Has_Discriminants (Derived_Type) then
9389 Set_Discriminant_Constraint
9390 (Derived_Type, Save_Discr_Constr);
9391 Set_Stored_Constraint
9392 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9393 Replace_Components (Derived_Type, New_Decl);
9394 end if;
9395
9396 -- Insert the new derived type declaration
9397
9398 Rewrite (N, New_Decl);
9399
9400 -- STEP 5b: Complete the processing for record extensions in generics
9401
9402 -- There is no completion for record extensions declared in the
9403 -- parameter part of a generic, so we need to complete processing for
9404 -- these generic record extensions here. The Record_Type_Definition call
9405 -- will change the Ekind of the components from E_Void to E_Component.
9406
9407 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9408 Record_Type_Definition (Empty, Derived_Type);
9409
9410 -- STEP 5c: Process the record extension for non private tagged types
9411
9412 elsif not Private_Extension then
9413 Expand_Record_Extension (Derived_Type, Type_Def);
9414
9415 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9416 -- derived type to propagate some semantic information. This led
9417 -- to other ASIS failures and has been removed.
9418
9419 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9420 -- implemented interfaces if we are in expansion mode
9421
9422 if Expander_Active
9423 and then Has_Interfaces (Derived_Type)
9424 then
9425 Add_Interface_Tag_Components (N, Derived_Type);
9426 end if;
9427
9428 -- Analyze the record extension
9429
9430 Record_Type_Definition
9431 (Record_Extension_Part (Type_Def), Derived_Type);
9432 end if;
9433
9434 End_Scope;
9435
9436 -- Nothing else to do if there is an error in the derivation.
9437 -- An unusual case: the full view may be derived from a type in an
9438 -- instance, when the partial view was used illegally as an actual
9439 -- in that instance, leading to a circular definition.
9440
9441 if Etype (Derived_Type) = Any_Type
9442 or else Etype (Parent_Type) = Derived_Type
9443 then
9444 return;
9445 end if;
9446
9447 -- Set delayed freeze and then derive subprograms, we need to do
9448 -- this in this order so that derived subprograms inherit the
9449 -- derived freeze if necessary.
9450
9451 Set_Has_Delayed_Freeze (Derived_Type);
9452
9453 if Derive_Subps then
9454 Derive_Subprograms (Parent_Type, Derived_Type);
9455 end if;
9456
9457 -- If we have a private extension which defines a constrained derived
9458 -- type mark as constrained here after we have derived subprograms. See
9459 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9460
9461 if Private_Extension and then Inherit_Discrims then
9462 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9463 Set_Is_Constrained (Derived_Type, True);
9464 Set_Discriminant_Constraint (Derived_Type, Discs);
9465
9466 elsif Is_Constrained (Parent_Type) then
9467 Set_Is_Constrained
9468 (Derived_Type, True);
9469 Set_Discriminant_Constraint
9470 (Derived_Type, Discriminant_Constraint (Parent_Type));
9471 end if;
9472 end if;
9473
9474 -- Update the class-wide type, which shares the now-completed entity
9475 -- list with its specific type. In case of underlying record views,
9476 -- we do not generate the corresponding class wide entity.
9477
9478 if Is_Tagged
9479 and then not Is_Underlying_Record_View (Derived_Type)
9480 then
9481 Set_First_Entity
9482 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9483 Set_Last_Entity
9484 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9485 end if;
9486
9487 Check_Function_Writable_Actuals (N);
9488 end Build_Derived_Record_Type;
9489
9490 ------------------------
9491 -- Build_Derived_Type --
9492 ------------------------
9493
9494 procedure Build_Derived_Type
9495 (N : Node_Id;
9496 Parent_Type : Entity_Id;
9497 Derived_Type : Entity_Id;
9498 Is_Completion : Boolean;
9499 Derive_Subps : Boolean := True)
9500 is
9501 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9502
9503 begin
9504 -- Set common attributes
9505
9506 Set_Scope (Derived_Type, Current_Scope);
9507 Set_Etype (Derived_Type, Parent_Base);
9508 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9509 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9510
9511 Set_Size_Info (Derived_Type, Parent_Type);
9512 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9513
9514 Set_Is_Controlled_Active
9515 (Derived_Type, Is_Controlled_Active (Parent_Type));
9516
9517 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9518 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9519 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9520
9521 if Is_Tagged_Type (Derived_Type) then
9522 Set_No_Tagged_Streams_Pragma
9523 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9524 end if;
9525
9526 -- If the parent has primitive routines, set the derived type link
9527
9528 if Has_Primitive_Operations (Parent_Type) then
9529 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9530 end if;
9531
9532 -- If the parent type is a private subtype, the convention on the base
9533 -- type may be set in the private part, and not propagated to the
9534 -- subtype until later, so we obtain the convention from the base type.
9535
9536 Set_Convention (Derived_Type, Convention (Parent_Base));
9537
9538 -- Set SSO default for record or array type
9539
9540 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9541 and then Is_Base_Type (Derived_Type)
9542 then
9543 Set_Default_SSO (Derived_Type);
9544 end if;
9545
9546 -- A derived type inherits the Default_Initial_Condition pragma coming
9547 -- from any parent type within the derivation chain.
9548
9549 if Has_DIC (Parent_Type) then
9550 Set_Has_Inherited_DIC (Derived_Type);
9551 end if;
9552
9553 -- A derived type inherits any class-wide invariants coming from a
9554 -- parent type or an interface. Note that the invariant procedure of
9555 -- the parent type should not be inherited because the derived type may
9556 -- define invariants of its own.
9557
9558 if not Is_Interface (Derived_Type) then
9559 if Has_Inherited_Invariants (Parent_Type)
9560 or else Has_Inheritable_Invariants (Parent_Type)
9561 then
9562 Set_Has_Inherited_Invariants (Derived_Type);
9563
9564 elsif Is_Concurrent_Type (Derived_Type)
9565 or else Is_Tagged_Type (Derived_Type)
9566 then
9567 declare
9568 Iface : Entity_Id;
9569 Ifaces : Elist_Id;
9570 Iface_Elmt : Elmt_Id;
9571
9572 begin
9573 Collect_Interfaces
9574 (T => Derived_Type,
9575 Ifaces_List => Ifaces,
9576 Exclude_Parents => True);
9577
9578 if Present (Ifaces) then
9579 Iface_Elmt := First_Elmt (Ifaces);
9580 while Present (Iface_Elmt) loop
9581 Iface := Node (Iface_Elmt);
9582
9583 if Has_Inheritable_Invariants (Iface) then
9584 Set_Has_Inherited_Invariants (Derived_Type);
9585 exit;
9586 end if;
9587
9588 Next_Elmt (Iface_Elmt);
9589 end loop;
9590 end if;
9591 end;
9592 end if;
9593 end if;
9594
9595 -- We similarly inherit predicates. Note that for scalar derived types
9596 -- the predicate is inherited from the first subtype, and not from its
9597 -- (anonymous) base type.
9598
9599 if Has_Predicates (Parent_Type)
9600 or else Has_Predicates (First_Subtype (Parent_Type))
9601 then
9602 Set_Has_Predicates (Derived_Type);
9603 end if;
9604
9605 -- The derived type inherits representation clauses from the parent
9606 -- type, and from any interfaces.
9607
9608 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9609
9610 declare
9611 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9612 begin
9613 while Present (Iface) loop
9614 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9615 Next (Iface);
9616 end loop;
9617 end;
9618
9619 -- If the parent type has delayed rep aspects, then mark the derived
9620 -- type as possibly inheriting a delayed rep aspect.
9621
9622 if Has_Delayed_Rep_Aspects (Parent_Type) then
9623 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9624 end if;
9625
9626 -- A derived type becomes Ghost when its parent type is also Ghost
9627 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9628 -- directly inherited because the Ghost policy in effect may differ.
9629
9630 if Is_Ghost_Entity (Parent_Type) then
9631 Set_Is_Ghost_Entity (Derived_Type);
9632 end if;
9633
9634 -- Type dependent processing
9635
9636 case Ekind (Parent_Type) is
9637 when Numeric_Kind =>
9638 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9639
9640 when Array_Kind =>
9641 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9642
9643 when Class_Wide_Kind
9644 | E_Record_Subtype
9645 | E_Record_Type
9646 =>
9647 Build_Derived_Record_Type
9648 (N, Parent_Type, Derived_Type, Derive_Subps);
9649 return;
9650
9651 when Enumeration_Kind =>
9652 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9653
9654 when Access_Kind =>
9655 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9656
9657 when Incomplete_Or_Private_Kind =>
9658 Build_Derived_Private_Type
9659 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9660
9661 -- For discriminated types, the derivation includes deriving
9662 -- primitive operations. For others it is done below.
9663
9664 if Is_Tagged_Type (Parent_Type)
9665 or else Has_Discriminants (Parent_Type)
9666 or else (Present (Full_View (Parent_Type))
9667 and then Has_Discriminants (Full_View (Parent_Type)))
9668 then
9669 return;
9670 end if;
9671
9672 when Concurrent_Kind =>
9673 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9674
9675 when others =>
9676 raise Program_Error;
9677 end case;
9678
9679 -- Nothing more to do if some error occurred
9680
9681 if Etype (Derived_Type) = Any_Type then
9682 return;
9683 end if;
9684
9685 -- Set delayed freeze and then derive subprograms, we need to do this
9686 -- in this order so that derived subprograms inherit the derived freeze
9687 -- if necessary.
9688
9689 Set_Has_Delayed_Freeze (Derived_Type);
9690
9691 if Derive_Subps then
9692 Derive_Subprograms (Parent_Type, Derived_Type);
9693 end if;
9694
9695 Set_Has_Primitive_Operations
9696 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9697 end Build_Derived_Type;
9698
9699 -----------------------
9700 -- Build_Discriminal --
9701 -----------------------
9702
9703 procedure Build_Discriminal (Discrim : Entity_Id) is
9704 D_Minal : Entity_Id;
9705 CR_Disc : Entity_Id;
9706
9707 begin
9708 -- A discriminal has the same name as the discriminant
9709
9710 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9711
9712 Set_Ekind (D_Minal, E_In_Parameter);
9713 Set_Mechanism (D_Minal, Default_Mechanism);
9714 Set_Etype (D_Minal, Etype (Discrim));
9715 Set_Scope (D_Minal, Current_Scope);
9716 Set_Parent (D_Minal, Parent (Discrim));
9717
9718 Set_Discriminal (Discrim, D_Minal);
9719 Set_Discriminal_Link (D_Minal, Discrim);
9720
9721 -- For task types, build at once the discriminants of the corresponding
9722 -- record, which are needed if discriminants are used in entry defaults
9723 -- and in family bounds.
9724
9725 if Is_Concurrent_Type (Current_Scope)
9726 or else
9727 Is_Limited_Type (Current_Scope)
9728 then
9729 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9730
9731 Set_Ekind (CR_Disc, E_In_Parameter);
9732 Set_Mechanism (CR_Disc, Default_Mechanism);
9733 Set_Etype (CR_Disc, Etype (Discrim));
9734 Set_Scope (CR_Disc, Current_Scope);
9735 Set_Discriminal_Link (CR_Disc, Discrim);
9736 Set_CR_Discriminant (Discrim, CR_Disc);
9737 end if;
9738 end Build_Discriminal;
9739
9740 ------------------------------------
9741 -- Build_Discriminant_Constraints --
9742 ------------------------------------
9743
9744 function Build_Discriminant_Constraints
9745 (T : Entity_Id;
9746 Def : Node_Id;
9747 Derived_Def : Boolean := False) return Elist_Id
9748 is
9749 C : constant Node_Id := Constraint (Def);
9750 Nb_Discr : constant Nat := Number_Discriminants (T);
9751
9752 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9753 -- Saves the expression corresponding to a given discriminant in T
9754
9755 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9756 -- Return the Position number within array Discr_Expr of a discriminant
9757 -- D within the discriminant list of the discriminated type T.
9758
9759 procedure Process_Discriminant_Expression
9760 (Expr : Node_Id;
9761 D : Entity_Id);
9762 -- If this is a discriminant constraint on a partial view, do not
9763 -- generate an overflow check on the discriminant expression. The check
9764 -- will be generated when constraining the full view. Otherwise the
9765 -- backend creates duplicate symbols for the temporaries corresponding
9766 -- to the expressions to be checked, causing spurious assembler errors.
9767
9768 ------------------
9769 -- Pos_Of_Discr --
9770 ------------------
9771
9772 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9773 Disc : Entity_Id;
9774
9775 begin
9776 Disc := First_Discriminant (T);
9777 for J in Discr_Expr'Range loop
9778 if Disc = D then
9779 return J;
9780 end if;
9781
9782 Next_Discriminant (Disc);
9783 end loop;
9784
9785 -- Note: Since this function is called on discriminants that are
9786 -- known to belong to the discriminated type, falling through the
9787 -- loop with no match signals an internal compiler error.
9788
9789 raise Program_Error;
9790 end Pos_Of_Discr;
9791
9792 -------------------------------------
9793 -- Process_Discriminant_Expression --
9794 -------------------------------------
9795
9796 procedure Process_Discriminant_Expression
9797 (Expr : Node_Id;
9798 D : Entity_Id)
9799 is
9800 BDT : constant Entity_Id := Base_Type (Etype (D));
9801
9802 begin
9803 -- If this is a discriminant constraint on a partial view, do
9804 -- not generate an overflow on the discriminant expression. The
9805 -- check will be generated when constraining the full view.
9806
9807 if Is_Private_Type (T)
9808 and then Present (Full_View (T))
9809 then
9810 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9811 else
9812 Analyze_And_Resolve (Expr, BDT);
9813 end if;
9814 end Process_Discriminant_Expression;
9815
9816 -- Declarations local to Build_Discriminant_Constraints
9817
9818 Discr : Entity_Id;
9819 E : Entity_Id;
9820 Elist : constant Elist_Id := New_Elmt_List;
9821
9822 Constr : Node_Id;
9823 Expr : Node_Id;
9824 Id : Node_Id;
9825 Position : Nat;
9826 Found : Boolean;
9827
9828 Discrim_Present : Boolean := False;
9829
9830 -- Start of processing for Build_Discriminant_Constraints
9831
9832 begin
9833 -- The following loop will process positional associations only.
9834 -- For a positional association, the (single) discriminant is
9835 -- implicitly specified by position, in textual order (RM 3.7.2).
9836
9837 Discr := First_Discriminant (T);
9838 Constr := First (Constraints (C));
9839 for D in Discr_Expr'Range loop
9840 exit when Nkind (Constr) = N_Discriminant_Association;
9841
9842 if No (Constr) then
9843 Error_Msg_N ("too few discriminants given in constraint", C);
9844 return New_Elmt_List;
9845
9846 elsif Nkind (Constr) = N_Range
9847 or else (Nkind (Constr) = N_Attribute_Reference
9848 and then Attribute_Name (Constr) = Name_Range)
9849 then
9850 Error_Msg_N
9851 ("a range is not a valid discriminant constraint", Constr);
9852 Discr_Expr (D) := Error;
9853
9854 else
9855 Process_Discriminant_Expression (Constr, Discr);
9856 Discr_Expr (D) := Constr;
9857 end if;
9858
9859 Next_Discriminant (Discr);
9860 Next (Constr);
9861 end loop;
9862
9863 if No (Discr) and then Present (Constr) then
9864 Error_Msg_N ("too many discriminants given in constraint", Constr);
9865 return New_Elmt_List;
9866 end if;
9867
9868 -- Named associations can be given in any order, but if both positional
9869 -- and named associations are used in the same discriminant constraint,
9870 -- then positional associations must occur first, at their normal
9871 -- position. Hence once a named association is used, the rest of the
9872 -- discriminant constraint must use only named associations.
9873
9874 while Present (Constr) loop
9875
9876 -- Positional association forbidden after a named association
9877
9878 if Nkind (Constr) /= N_Discriminant_Association then
9879 Error_Msg_N ("positional association follows named one", Constr);
9880 return New_Elmt_List;
9881
9882 -- Otherwise it is a named association
9883
9884 else
9885 -- E records the type of the discriminants in the named
9886 -- association. All the discriminants specified in the same name
9887 -- association must have the same type.
9888
9889 E := Empty;
9890
9891 -- Search the list of discriminants in T to see if the simple name
9892 -- given in the constraint matches any of them.
9893
9894 Id := First (Selector_Names (Constr));
9895 while Present (Id) loop
9896 Found := False;
9897
9898 -- If Original_Discriminant is present, we are processing a
9899 -- generic instantiation and this is an instance node. We need
9900 -- to find the name of the corresponding discriminant in the
9901 -- actual record type T and not the name of the discriminant in
9902 -- the generic formal. Example:
9903
9904 -- generic
9905 -- type G (D : int) is private;
9906 -- package P is
9907 -- subtype W is G (D => 1);
9908 -- end package;
9909 -- type Rec (X : int) is record ... end record;
9910 -- package Q is new P (G => Rec);
9911
9912 -- At the point of the instantiation, formal type G is Rec
9913 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9914 -- which really looks like "subtype W is Rec (D => 1);" at
9915 -- the point of instantiation, we want to find the discriminant
9916 -- that corresponds to D in Rec, i.e. X.
9917
9918 if Present (Original_Discriminant (Id))
9919 and then In_Instance
9920 then
9921 Discr := Find_Corresponding_Discriminant (Id, T);
9922 Found := True;
9923
9924 else
9925 Discr := First_Discriminant (T);
9926 while Present (Discr) loop
9927 if Chars (Discr) = Chars (Id) then
9928 Found := True;
9929 exit;
9930 end if;
9931
9932 Next_Discriminant (Discr);
9933 end loop;
9934
9935 if not Found then
9936 Error_Msg_N ("& does not match any discriminant", Id);
9937 return New_Elmt_List;
9938
9939 -- If the parent type is a generic formal, preserve the
9940 -- name of the discriminant for subsequent instances.
9941 -- see comment at the beginning of this if statement.
9942
9943 elsif Is_Generic_Type (Root_Type (T)) then
9944 Set_Original_Discriminant (Id, Discr);
9945 end if;
9946 end if;
9947
9948 Position := Pos_Of_Discr (T, Discr);
9949
9950 if Present (Discr_Expr (Position)) then
9951 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9952
9953 else
9954 -- Each discriminant specified in the same named association
9955 -- must be associated with a separate copy of the
9956 -- corresponding expression.
9957
9958 if Present (Next (Id)) then
9959 Expr := New_Copy_Tree (Expression (Constr));
9960 Set_Parent (Expr, Parent (Expression (Constr)));
9961 else
9962 Expr := Expression (Constr);
9963 end if;
9964
9965 Discr_Expr (Position) := Expr;
9966 Process_Discriminant_Expression (Expr, Discr);
9967 end if;
9968
9969 -- A discriminant association with more than one discriminant
9970 -- name is only allowed if the named discriminants are all of
9971 -- the same type (RM 3.7.1(8)).
9972
9973 if E = Empty then
9974 E := Base_Type (Etype (Discr));
9975
9976 elsif Base_Type (Etype (Discr)) /= E then
9977 Error_Msg_N
9978 ("all discriminants in an association " &
9979 "must have the same type", Id);
9980 end if;
9981
9982 Next (Id);
9983 end loop;
9984 end if;
9985
9986 Next (Constr);
9987 end loop;
9988
9989 -- A discriminant constraint must provide exactly one value for each
9990 -- discriminant of the type (RM 3.7.1(8)).
9991
9992 for J in Discr_Expr'Range loop
9993 if No (Discr_Expr (J)) then
9994 Error_Msg_N ("too few discriminants given in constraint", C);
9995 return New_Elmt_List;
9996 end if;
9997 end loop;
9998
9999 -- Determine if there are discriminant expressions in the constraint
10000
10001 for J in Discr_Expr'Range loop
10002 if Denotes_Discriminant
10003 (Discr_Expr (J), Check_Concurrent => True)
10004 then
10005 Discrim_Present := True;
10006 end if;
10007 end loop;
10008
10009 -- Build an element list consisting of the expressions given in the
10010 -- discriminant constraint and apply the appropriate checks. The list
10011 -- is constructed after resolving any named discriminant associations
10012 -- and therefore the expressions appear in the textual order of the
10013 -- discriminants.
10014
10015 Discr := First_Discriminant (T);
10016 for J in Discr_Expr'Range loop
10017 if Discr_Expr (J) /= Error then
10018 Append_Elmt (Discr_Expr (J), Elist);
10019
10020 -- If any of the discriminant constraints is given by a
10021 -- discriminant and we are in a derived type declaration we
10022 -- have a discriminant renaming. Establish link between new
10023 -- and old discriminant. The new discriminant has an implicit
10024 -- dereference if the old one does.
10025
10026 if Denotes_Discriminant (Discr_Expr (J)) then
10027 if Derived_Def then
10028 declare
10029 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10030
10031 begin
10032 Set_Corresponding_Discriminant (New_Discr, Discr);
10033 Set_Has_Implicit_Dereference (New_Discr,
10034 Has_Implicit_Dereference (Discr));
10035 end;
10036 end if;
10037
10038 -- Force the evaluation of non-discriminant expressions.
10039 -- If we have found a discriminant in the constraint 3.4(26)
10040 -- and 3.8(18) demand that no range checks are performed are
10041 -- after evaluation. If the constraint is for a component
10042 -- definition that has a per-object constraint, expressions are
10043 -- evaluated but not checked either. In all other cases perform
10044 -- a range check.
10045
10046 else
10047 if Discrim_Present then
10048 null;
10049
10050 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10051 and then Has_Per_Object_Constraint
10052 (Defining_Identifier (Parent (Parent (Def))))
10053 then
10054 null;
10055
10056 elsif Is_Access_Type (Etype (Discr)) then
10057 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10058
10059 else
10060 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10061 end if;
10062
10063 Force_Evaluation (Discr_Expr (J));
10064 end if;
10065
10066 -- Check that the designated type of an access discriminant's
10067 -- expression is not a class-wide type unless the discriminant's
10068 -- designated type is also class-wide.
10069
10070 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10071 and then not Is_Class_Wide_Type
10072 (Designated_Type (Etype (Discr)))
10073 and then Etype (Discr_Expr (J)) /= Any_Type
10074 and then Is_Class_Wide_Type
10075 (Designated_Type (Etype (Discr_Expr (J))))
10076 then
10077 Wrong_Type (Discr_Expr (J), Etype (Discr));
10078
10079 elsif Is_Access_Type (Etype (Discr))
10080 and then not Is_Access_Constant (Etype (Discr))
10081 and then Is_Access_Type (Etype (Discr_Expr (J)))
10082 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10083 then
10084 Error_Msg_NE
10085 ("constraint for discriminant& must be access to variable",
10086 Def, Discr);
10087 end if;
10088 end if;
10089
10090 Next_Discriminant (Discr);
10091 end loop;
10092
10093 return Elist;
10094 end Build_Discriminant_Constraints;
10095
10096 ---------------------------------
10097 -- Build_Discriminated_Subtype --
10098 ---------------------------------
10099
10100 procedure Build_Discriminated_Subtype
10101 (T : Entity_Id;
10102 Def_Id : Entity_Id;
10103 Elist : Elist_Id;
10104 Related_Nod : Node_Id;
10105 For_Access : Boolean := False)
10106 is
10107 Has_Discrs : constant Boolean := Has_Discriminants (T);
10108 Constrained : constant Boolean :=
10109 (Has_Discrs
10110 and then not Is_Empty_Elmt_List (Elist)
10111 and then not Is_Class_Wide_Type (T))
10112 or else Is_Constrained (T);
10113
10114 begin
10115 if Ekind (T) = E_Record_Type then
10116 if For_Access then
10117 Set_Ekind (Def_Id, E_Private_Subtype);
10118 Set_Is_For_Access_Subtype (Def_Id, True);
10119 else
10120 Set_Ekind (Def_Id, E_Record_Subtype);
10121 end if;
10122
10123 -- Inherit preelaboration flag from base, for types for which it
10124 -- may have been set: records, private types, protected types.
10125
10126 Set_Known_To_Have_Preelab_Init
10127 (Def_Id, Known_To_Have_Preelab_Init (T));
10128
10129 elsif Ekind (T) = E_Task_Type then
10130 Set_Ekind (Def_Id, E_Task_Subtype);
10131
10132 elsif Ekind (T) = E_Protected_Type then
10133 Set_Ekind (Def_Id, E_Protected_Subtype);
10134 Set_Known_To_Have_Preelab_Init
10135 (Def_Id, Known_To_Have_Preelab_Init (T));
10136
10137 elsif Is_Private_Type (T) then
10138 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10139 Set_Known_To_Have_Preelab_Init
10140 (Def_Id, Known_To_Have_Preelab_Init (T));
10141
10142 -- Private subtypes may have private dependents
10143
10144 Set_Private_Dependents (Def_Id, New_Elmt_List);
10145
10146 elsif Is_Class_Wide_Type (T) then
10147 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10148
10149 else
10150 -- Incomplete type. Attach subtype to list of dependents, to be
10151 -- completed with full view of parent type, unless is it the
10152 -- designated subtype of a record component within an init_proc.
10153 -- This last case arises for a component of an access type whose
10154 -- designated type is incomplete (e.g. a Taft Amendment type).
10155 -- The designated subtype is within an inner scope, and needs no
10156 -- elaboration, because only the access type is needed in the
10157 -- initialization procedure.
10158
10159 if Ekind (T) = E_Incomplete_Type then
10160 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10161 else
10162 Set_Ekind (Def_Id, Ekind (T));
10163 end if;
10164
10165 if For_Access and then Within_Init_Proc then
10166 null;
10167 else
10168 Append_Elmt (Def_Id, Private_Dependents (T));
10169 end if;
10170 end if;
10171
10172 Set_Etype (Def_Id, T);
10173 Init_Size_Align (Def_Id);
10174 Set_Has_Discriminants (Def_Id, Has_Discrs);
10175 Set_Is_Constrained (Def_Id, Constrained);
10176
10177 Set_First_Entity (Def_Id, First_Entity (T));
10178 Set_Last_Entity (Def_Id, Last_Entity (T));
10179 Set_Has_Implicit_Dereference
10180 (Def_Id, Has_Implicit_Dereference (T));
10181 Set_Has_Pragma_Unreferenced_Objects
10182 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10183
10184 -- If the subtype is the completion of a private declaration, there may
10185 -- have been representation clauses for the partial view, and they must
10186 -- be preserved. Build_Derived_Type chains the inherited clauses with
10187 -- the ones appearing on the extension. If this comes from a subtype
10188 -- declaration, all clauses are inherited.
10189
10190 if No (First_Rep_Item (Def_Id)) then
10191 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10192 end if;
10193
10194 if Is_Tagged_Type (T) then
10195 Set_Is_Tagged_Type (Def_Id);
10196 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10197 Make_Class_Wide_Type (Def_Id);
10198 end if;
10199
10200 Set_Stored_Constraint (Def_Id, No_Elist);
10201
10202 if Has_Discrs then
10203 Set_Discriminant_Constraint (Def_Id, Elist);
10204 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10205 end if;
10206
10207 if Is_Tagged_Type (T) then
10208
10209 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10210 -- concurrent record type (which has the list of primitive
10211 -- operations).
10212
10213 if Ada_Version >= Ada_2005
10214 and then Is_Concurrent_Type (T)
10215 then
10216 Set_Corresponding_Record_Type (Def_Id,
10217 Corresponding_Record_Type (T));
10218 else
10219 Set_Direct_Primitive_Operations (Def_Id,
10220 Direct_Primitive_Operations (T));
10221 end if;
10222
10223 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10224 end if;
10225
10226 -- Subtypes introduced by component declarations do not need to be
10227 -- marked as delayed, and do not get freeze nodes, because the semantics
10228 -- verifies that the parents of the subtypes are frozen before the
10229 -- enclosing record is frozen.
10230
10231 if not Is_Type (Scope (Def_Id)) then
10232 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10233
10234 if Is_Private_Type (T)
10235 and then Present (Full_View (T))
10236 then
10237 Conditional_Delay (Def_Id, Full_View (T));
10238 else
10239 Conditional_Delay (Def_Id, T);
10240 end if;
10241 end if;
10242
10243 if Is_Record_Type (T) then
10244 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10245
10246 if Has_Discrs
10247 and then not Is_Empty_Elmt_List (Elist)
10248 and then not For_Access
10249 then
10250 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10251 elsif not For_Access then
10252 Set_Cloned_Subtype (Def_Id, T);
10253 end if;
10254 end if;
10255 end Build_Discriminated_Subtype;
10256
10257 ---------------------------
10258 -- Build_Itype_Reference --
10259 ---------------------------
10260
10261 procedure Build_Itype_Reference
10262 (Ityp : Entity_Id;
10263 Nod : Node_Id)
10264 is
10265 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10266 begin
10267
10268 -- Itype references are only created for use by the back-end
10269
10270 if Inside_A_Generic then
10271 return;
10272 else
10273 Set_Itype (IR, Ityp);
10274
10275 -- If Nod is a library unit entity, then Insert_After won't work,
10276 -- because Nod is not a member of any list. Therefore, we use
10277 -- Add_Global_Declaration in this case. This can happen if we have a
10278 -- build-in-place library function.
10279
10280 if (Nkind (Nod) in N_Entity
10281 and then Is_Compilation_Unit (Nod))
10282 or else
10283 (Nkind (Nod) = N_Defining_Program_Unit_Name
10284 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10285 then
10286 Add_Global_Declaration (IR);
10287 else
10288 Insert_After (Nod, IR);
10289 end if;
10290 end if;
10291 end Build_Itype_Reference;
10292
10293 ------------------------
10294 -- Build_Scalar_Bound --
10295 ------------------------
10296
10297 function Build_Scalar_Bound
10298 (Bound : Node_Id;
10299 Par_T : Entity_Id;
10300 Der_T : Entity_Id) return Node_Id
10301 is
10302 New_Bound : Entity_Id;
10303
10304 begin
10305 -- Note: not clear why this is needed, how can the original bound
10306 -- be unanalyzed at this point? and if it is, what business do we
10307 -- have messing around with it? and why is the base type of the
10308 -- parent type the right type for the resolution. It probably is
10309 -- not. It is OK for the new bound we are creating, but not for
10310 -- the old one??? Still if it never happens, no problem.
10311
10312 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10313
10314 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10315 New_Bound := New_Copy (Bound);
10316 Set_Etype (New_Bound, Der_T);
10317 Set_Analyzed (New_Bound);
10318
10319 elsif Is_Entity_Name (Bound) then
10320 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10321
10322 -- The following is almost certainly wrong. What business do we have
10323 -- relocating a node (Bound) that is presumably still attached to
10324 -- the tree elsewhere???
10325
10326 else
10327 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10328 end if;
10329
10330 Set_Etype (New_Bound, Der_T);
10331 return New_Bound;
10332 end Build_Scalar_Bound;
10333
10334 --------------------------------
10335 -- Build_Underlying_Full_View --
10336 --------------------------------
10337
10338 procedure Build_Underlying_Full_View
10339 (N : Node_Id;
10340 Typ : Entity_Id;
10341 Par : Entity_Id)
10342 is
10343 Loc : constant Source_Ptr := Sloc (N);
10344 Subt : constant Entity_Id :=
10345 Make_Defining_Identifier
10346 (Loc, New_External_Name (Chars (Typ), 'S'));
10347
10348 Constr : Node_Id;
10349 Indic : Node_Id;
10350 C : Node_Id;
10351 Id : Node_Id;
10352
10353 procedure Set_Discriminant_Name (Id : Node_Id);
10354 -- If the derived type has discriminants, they may rename discriminants
10355 -- of the parent. When building the full view of the parent, we need to
10356 -- recover the names of the original discriminants if the constraint is
10357 -- given by named associations.
10358
10359 ---------------------------
10360 -- Set_Discriminant_Name --
10361 ---------------------------
10362
10363 procedure Set_Discriminant_Name (Id : Node_Id) is
10364 Disc : Entity_Id;
10365
10366 begin
10367 Set_Original_Discriminant (Id, Empty);
10368
10369 if Has_Discriminants (Typ) then
10370 Disc := First_Discriminant (Typ);
10371 while Present (Disc) loop
10372 if Chars (Disc) = Chars (Id)
10373 and then Present (Corresponding_Discriminant (Disc))
10374 then
10375 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10376 end if;
10377 Next_Discriminant (Disc);
10378 end loop;
10379 end if;
10380 end Set_Discriminant_Name;
10381
10382 -- Start of processing for Build_Underlying_Full_View
10383
10384 begin
10385 if Nkind (N) = N_Full_Type_Declaration then
10386 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10387
10388 elsif Nkind (N) = N_Subtype_Declaration then
10389 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10390
10391 elsif Nkind (N) = N_Component_Declaration then
10392 Constr :=
10393 New_Copy_Tree
10394 (Constraint (Subtype_Indication (Component_Definition (N))));
10395
10396 else
10397 raise Program_Error;
10398 end if;
10399
10400 C := First (Constraints (Constr));
10401 while Present (C) loop
10402 if Nkind (C) = N_Discriminant_Association then
10403 Id := First (Selector_Names (C));
10404 while Present (Id) loop
10405 Set_Discriminant_Name (Id);
10406 Next (Id);
10407 end loop;
10408 end if;
10409
10410 Next (C);
10411 end loop;
10412
10413 Indic :=
10414 Make_Subtype_Declaration (Loc,
10415 Defining_Identifier => Subt,
10416 Subtype_Indication =>
10417 Make_Subtype_Indication (Loc,
10418 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10419 Constraint => New_Copy_Tree (Constr)));
10420
10421 -- If this is a component subtype for an outer itype, it is not
10422 -- a list member, so simply set the parent link for analysis: if
10423 -- the enclosing type does not need to be in a declarative list,
10424 -- neither do the components.
10425
10426 if Is_List_Member (N)
10427 and then Nkind (N) /= N_Component_Declaration
10428 then
10429 Insert_Before (N, Indic);
10430 else
10431 Set_Parent (Indic, Parent (N));
10432 end if;
10433
10434 Analyze (Indic);
10435 Set_Underlying_Full_View (Typ, Full_View (Subt));
10436 Set_Is_Underlying_Full_View (Full_View (Subt));
10437 end Build_Underlying_Full_View;
10438
10439 -------------------------------
10440 -- Check_Abstract_Overriding --
10441 -------------------------------
10442
10443 procedure Check_Abstract_Overriding (T : Entity_Id) is
10444 Alias_Subp : Entity_Id;
10445 Elmt : Elmt_Id;
10446 Op_List : Elist_Id;
10447 Subp : Entity_Id;
10448 Type_Def : Node_Id;
10449
10450 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10451 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10452 -- which has pragma Implemented already set. Check whether Subp's entity
10453 -- kind conforms to the implementation kind of the overridden routine.
10454
10455 procedure Check_Pragma_Implemented
10456 (Subp : Entity_Id;
10457 Iface_Subp : Entity_Id);
10458 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10459 -- Iface_Subp and both entities have pragma Implemented already set on
10460 -- them. Check whether the two implementation kinds are conforming.
10461
10462 procedure Inherit_Pragma_Implemented
10463 (Subp : Entity_Id;
10464 Iface_Subp : Entity_Id);
10465 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10466 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10467 -- Propagate the implementation kind of Iface_Subp to Subp.
10468
10469 ------------------------------
10470 -- Check_Pragma_Implemented --
10471 ------------------------------
10472
10473 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10474 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10475 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10476 Subp_Alias : constant Entity_Id := Alias (Subp);
10477 Contr_Typ : Entity_Id;
10478 Impl_Subp : Entity_Id;
10479
10480 begin
10481 -- Subp must have an alias since it is a hidden entity used to link
10482 -- an interface subprogram to its overriding counterpart.
10483
10484 pragma Assert (Present (Subp_Alias));
10485
10486 -- Handle aliases to synchronized wrappers
10487
10488 Impl_Subp := Subp_Alias;
10489
10490 if Is_Primitive_Wrapper (Impl_Subp) then
10491 Impl_Subp := Wrapped_Entity (Impl_Subp);
10492 end if;
10493
10494 -- Extract the type of the controlling formal
10495
10496 Contr_Typ := Etype (First_Formal (Subp_Alias));
10497
10498 if Is_Concurrent_Record_Type (Contr_Typ) then
10499 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10500 end if;
10501
10502 -- An interface subprogram whose implementation kind is By_Entry must
10503 -- be implemented by an entry.
10504
10505 if Impl_Kind = Name_By_Entry
10506 and then Ekind (Impl_Subp) /= E_Entry
10507 then
10508 Error_Msg_Node_2 := Iface_Alias;
10509 Error_Msg_NE
10510 ("type & must implement abstract subprogram & with an entry",
10511 Subp_Alias, Contr_Typ);
10512
10513 elsif Impl_Kind = Name_By_Protected_Procedure then
10514
10515 -- An interface subprogram whose implementation kind is By_
10516 -- Protected_Procedure cannot be implemented by a primitive
10517 -- procedure of a task type.
10518
10519 if Ekind (Contr_Typ) /= E_Protected_Type then
10520 Error_Msg_Node_2 := Contr_Typ;
10521 Error_Msg_NE
10522 ("interface subprogram & cannot be implemented by a " &
10523 "primitive procedure of task type &", Subp_Alias,
10524 Iface_Alias);
10525
10526 -- An interface subprogram whose implementation kind is By_
10527 -- Protected_Procedure must be implemented by a procedure.
10528
10529 elsif Ekind (Impl_Subp) /= E_Procedure then
10530 Error_Msg_Node_2 := Iface_Alias;
10531 Error_Msg_NE
10532 ("type & must implement abstract subprogram & with a " &
10533 "procedure", Subp_Alias, Contr_Typ);
10534
10535 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10536 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10537 then
10538 Error_Msg_Name_1 := Impl_Kind;
10539 Error_Msg_N
10540 ("overriding operation& must have synchronization%",
10541 Subp_Alias);
10542 end if;
10543
10544 -- If primitive has Optional synchronization, overriding operation
10545 -- must match if it has an explicit synchronization..
10546
10547 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10548 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10549 then
10550 Error_Msg_Name_1 := Impl_Kind;
10551 Error_Msg_N
10552 ("overriding operation& must have syncrhonization%",
10553 Subp_Alias);
10554 end if;
10555 end Check_Pragma_Implemented;
10556
10557 ------------------------------
10558 -- Check_Pragma_Implemented --
10559 ------------------------------
10560
10561 procedure Check_Pragma_Implemented
10562 (Subp : Entity_Id;
10563 Iface_Subp : Entity_Id)
10564 is
10565 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10566 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10567
10568 begin
10569 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10570 -- and overriding subprogram are different. In general this is an
10571 -- error except when the implementation kind of the overridden
10572 -- subprograms is By_Any or Optional.
10573
10574 if Iface_Kind /= Subp_Kind
10575 and then Iface_Kind /= Name_By_Any
10576 and then Iface_Kind /= Name_Optional
10577 then
10578 if Iface_Kind = Name_By_Entry then
10579 Error_Msg_N
10580 ("incompatible implementation kind, overridden subprogram " &
10581 "is marked By_Entry", Subp);
10582 else
10583 Error_Msg_N
10584 ("incompatible implementation kind, overridden subprogram " &
10585 "is marked By_Protected_Procedure", Subp);
10586 end if;
10587 end if;
10588 end Check_Pragma_Implemented;
10589
10590 --------------------------------
10591 -- Inherit_Pragma_Implemented --
10592 --------------------------------
10593
10594 procedure Inherit_Pragma_Implemented
10595 (Subp : Entity_Id;
10596 Iface_Subp : Entity_Id)
10597 is
10598 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10599 Loc : constant Source_Ptr := Sloc (Subp);
10600 Impl_Prag : Node_Id;
10601
10602 begin
10603 -- Since the implementation kind is stored as a representation item
10604 -- rather than a flag, create a pragma node.
10605
10606 Impl_Prag :=
10607 Make_Pragma (Loc,
10608 Chars => Name_Implemented,
10609 Pragma_Argument_Associations => New_List (
10610 Make_Pragma_Argument_Association (Loc,
10611 Expression => New_Occurrence_Of (Subp, Loc)),
10612
10613 Make_Pragma_Argument_Association (Loc,
10614 Expression => Make_Identifier (Loc, Iface_Kind))));
10615
10616 -- The pragma doesn't need to be analyzed because it is internally
10617 -- built. It is safe to directly register it as a rep item since we
10618 -- are only interested in the characters of the implementation kind.
10619
10620 Record_Rep_Item (Subp, Impl_Prag);
10621 end Inherit_Pragma_Implemented;
10622
10623 -- Start of processing for Check_Abstract_Overriding
10624
10625 begin
10626 Op_List := Primitive_Operations (T);
10627
10628 -- Loop to check primitive operations
10629
10630 Elmt := First_Elmt (Op_List);
10631 while Present (Elmt) loop
10632 Subp := Node (Elmt);
10633 Alias_Subp := Alias (Subp);
10634
10635 -- Inherited subprograms are identified by the fact that they do not
10636 -- come from source, and the associated source location is the
10637 -- location of the first subtype of the derived type.
10638
10639 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10640 -- subprograms that "require overriding".
10641
10642 -- Special exception, do not complain about failure to override the
10643 -- stream routines _Input and _Output, as well as the primitive
10644 -- operations used in dispatching selects since we always provide
10645 -- automatic overridings for these subprograms.
10646
10647 -- The partial view of T may have been a private extension, for
10648 -- which inherited functions dispatching on result are abstract.
10649 -- If the full view is a null extension, there is no need for
10650 -- overriding in Ada 2005, but wrappers need to be built for them
10651 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10652
10653 if Is_Null_Extension (T)
10654 and then Has_Controlling_Result (Subp)
10655 and then Ada_Version >= Ada_2005
10656 and then Present (Alias_Subp)
10657 and then not Comes_From_Source (Subp)
10658 and then not Is_Abstract_Subprogram (Alias_Subp)
10659 and then not Is_Access_Type (Etype (Subp))
10660 then
10661 null;
10662
10663 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10664 -- processing because this check is done with the aliased
10665 -- entity
10666
10667 elsif Present (Interface_Alias (Subp)) then
10668 null;
10669
10670 elsif (Is_Abstract_Subprogram (Subp)
10671 or else Requires_Overriding (Subp)
10672 or else
10673 (Has_Controlling_Result (Subp)
10674 and then Present (Alias_Subp)
10675 and then not Comes_From_Source (Subp)
10676 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10677 and then not Is_TSS (Subp, TSS_Stream_Input)
10678 and then not Is_TSS (Subp, TSS_Stream_Output)
10679 and then not Is_Abstract_Type (T)
10680 and then not Is_Predefined_Interface_Primitive (Subp)
10681
10682 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10683 -- with abstract interface types because the check will be done
10684 -- with the aliased entity (otherwise we generate a duplicated
10685 -- error message).
10686
10687 and then not Present (Interface_Alias (Subp))
10688 then
10689 if Present (Alias_Subp) then
10690
10691 -- Only perform the check for a derived subprogram when the
10692 -- type has an explicit record extension. This avoids incorrect
10693 -- flagging of abstract subprograms for the case of a type
10694 -- without an extension that is derived from a formal type
10695 -- with a tagged actual (can occur within a private part).
10696
10697 -- Ada 2005 (AI-391): In the case of an inherited function with
10698 -- a controlling result of the type, the rule does not apply if
10699 -- the type is a null extension (unless the parent function
10700 -- itself is abstract, in which case the function must still be
10701 -- be overridden). The expander will generate an overriding
10702 -- wrapper function calling the parent subprogram (see
10703 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10704
10705 Type_Def := Type_Definition (Parent (T));
10706
10707 if Nkind (Type_Def) = N_Derived_Type_Definition
10708 and then Present (Record_Extension_Part (Type_Def))
10709 and then
10710 (Ada_Version < Ada_2005
10711 or else not Is_Null_Extension (T)
10712 or else Ekind (Subp) = E_Procedure
10713 or else not Has_Controlling_Result (Subp)
10714 or else Is_Abstract_Subprogram (Alias_Subp)
10715 or else Requires_Overriding (Subp)
10716 or else Is_Access_Type (Etype (Subp)))
10717 then
10718 -- Avoid reporting error in case of abstract predefined
10719 -- primitive inherited from interface type because the
10720 -- body of internally generated predefined primitives
10721 -- of tagged types are generated later by Freeze_Type
10722
10723 if Is_Interface (Root_Type (T))
10724 and then Is_Abstract_Subprogram (Subp)
10725 and then Is_Predefined_Dispatching_Operation (Subp)
10726 and then not Comes_From_Source (Ultimate_Alias (Subp))
10727 then
10728 null;
10729
10730 -- A null extension is not obliged to override an inherited
10731 -- procedure subject to pragma Extensions_Visible with value
10732 -- False and at least one controlling OUT parameter
10733 -- (SPARK RM 6.1.7(6)).
10734
10735 elsif Is_Null_Extension (T)
10736 and then Is_EVF_Procedure (Subp)
10737 then
10738 null;
10739
10740 else
10741 Error_Msg_NE
10742 ("type must be declared abstract or & overridden",
10743 T, Subp);
10744
10745 -- Traverse the whole chain of aliased subprograms to
10746 -- complete the error notification. This is especially
10747 -- useful for traceability of the chain of entities when
10748 -- the subprogram corresponds with an interface
10749 -- subprogram (which may be defined in another package).
10750
10751 if Present (Alias_Subp) then
10752 declare
10753 E : Entity_Id;
10754
10755 begin
10756 E := Subp;
10757 while Present (Alias (E)) loop
10758
10759 -- Avoid reporting redundant errors on entities
10760 -- inherited from interfaces
10761
10762 if Sloc (E) /= Sloc (T) then
10763 Error_Msg_Sloc := Sloc (E);
10764 Error_Msg_NE
10765 ("\& has been inherited #", T, Subp);
10766 end if;
10767
10768 E := Alias (E);
10769 end loop;
10770
10771 Error_Msg_Sloc := Sloc (E);
10772
10773 -- AI05-0068: report if there is an overriding
10774 -- non-abstract subprogram that is invisible.
10775
10776 if Is_Hidden (E)
10777 and then not Is_Abstract_Subprogram (E)
10778 then
10779 Error_Msg_NE
10780 ("\& subprogram# is not visible",
10781 T, Subp);
10782
10783 -- Clarify the case where a non-null extension must
10784 -- override inherited procedure subject to pragma
10785 -- Extensions_Visible with value False and at least
10786 -- one controlling OUT param.
10787
10788 elsif Is_EVF_Procedure (E) then
10789 Error_Msg_NE
10790 ("\& # is subject to Extensions_Visible False",
10791 T, Subp);
10792
10793 else
10794 Error_Msg_NE
10795 ("\& has been inherited from subprogram #",
10796 T, Subp);
10797 end if;
10798 end;
10799 end if;
10800 end if;
10801
10802 -- Ada 2005 (AI-345): Protected or task type implementing
10803 -- abstract interfaces.
10804
10805 elsif Is_Concurrent_Record_Type (T)
10806 and then Present (Interfaces (T))
10807 then
10808 -- There is no need to check here RM 9.4(11.9/3) since we
10809 -- are processing the corresponding record type and the
10810 -- mode of the overriding subprograms was verified by
10811 -- Check_Conformance when the corresponding concurrent
10812 -- type declaration was analyzed.
10813
10814 Error_Msg_NE
10815 ("interface subprogram & must be overridden", T, Subp);
10816
10817 -- Examine primitive operations of synchronized type to find
10818 -- homonyms that have the wrong profile.
10819
10820 declare
10821 Prim : Entity_Id;
10822
10823 begin
10824 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10825 while Present (Prim) loop
10826 if Chars (Prim) = Chars (Subp) then
10827 Error_Msg_NE
10828 ("profile is not type conformant with prefixed "
10829 & "view profile of inherited operation&",
10830 Prim, Subp);
10831 end if;
10832
10833 Next_Entity (Prim);
10834 end loop;
10835 end;
10836 end if;
10837
10838 else
10839 Error_Msg_Node_2 := T;
10840 Error_Msg_N
10841 ("abstract subprogram& not allowed for type&", Subp);
10842
10843 -- Also post unconditional warning on the type (unconditional
10844 -- so that if there are more than one of these cases, we get
10845 -- them all, and not just the first one).
10846
10847 Error_Msg_Node_2 := Subp;
10848 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10849 end if;
10850
10851 -- A subprogram subject to pragma Extensions_Visible with value
10852 -- "True" cannot override a subprogram subject to the same pragma
10853 -- with value "False" (SPARK RM 6.1.7(5)).
10854
10855 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10856 and then Present (Overridden_Operation (Subp))
10857 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10858 Extensions_Visible_False
10859 then
10860 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10861 Error_Msg_N
10862 ("subprogram & with Extensions_Visible True cannot override "
10863 & "subprogram # with Extensions_Visible False", Subp);
10864 end if;
10865
10866 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10867
10868 -- Subp is an expander-generated procedure which maps an interface
10869 -- alias to a protected wrapper. The interface alias is flagged by
10870 -- pragma Implemented. Ensure that Subp is a procedure when the
10871 -- implementation kind is By_Protected_Procedure or an entry when
10872 -- By_Entry.
10873
10874 if Ada_Version >= Ada_2012
10875 and then Is_Hidden (Subp)
10876 and then Present (Interface_Alias (Subp))
10877 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10878 then
10879 Check_Pragma_Implemented (Subp);
10880 end if;
10881
10882 -- Subp is an interface primitive which overrides another interface
10883 -- primitive marked with pragma Implemented.
10884
10885 if Ada_Version >= Ada_2012
10886 and then Present (Overridden_Operation (Subp))
10887 and then Has_Rep_Pragma
10888 (Overridden_Operation (Subp), Name_Implemented)
10889 then
10890 -- If the overriding routine is also marked by Implemented, check
10891 -- that the two implementation kinds are conforming.
10892
10893 if Has_Rep_Pragma (Subp, Name_Implemented) then
10894 Check_Pragma_Implemented
10895 (Subp => Subp,
10896 Iface_Subp => Overridden_Operation (Subp));
10897
10898 -- Otherwise the overriding routine inherits the implementation
10899 -- kind from the overridden subprogram.
10900
10901 else
10902 Inherit_Pragma_Implemented
10903 (Subp => Subp,
10904 Iface_Subp => Overridden_Operation (Subp));
10905 end if;
10906 end if;
10907
10908 -- If the operation is a wrapper for a synchronized primitive, it
10909 -- may be called indirectly through a dispatching select. We assume
10910 -- that it will be referenced elsewhere indirectly, and suppress
10911 -- warnings about an unused entity.
10912
10913 if Is_Primitive_Wrapper (Subp)
10914 and then Present (Wrapped_Entity (Subp))
10915 then
10916 Set_Referenced (Wrapped_Entity (Subp));
10917 end if;
10918
10919 Next_Elmt (Elmt);
10920 end loop;
10921 end Check_Abstract_Overriding;
10922
10923 ------------------------------------------------
10924 -- Check_Access_Discriminant_Requires_Limited --
10925 ------------------------------------------------
10926
10927 procedure Check_Access_Discriminant_Requires_Limited
10928 (D : Node_Id;
10929 Loc : Node_Id)
10930 is
10931 begin
10932 -- A discriminant_specification for an access discriminant shall appear
10933 -- only in the declaration for a task or protected type, or for a type
10934 -- with the reserved word 'limited' in its definition or in one of its
10935 -- ancestors (RM 3.7(10)).
10936
10937 -- AI-0063: The proper condition is that type must be immutably limited,
10938 -- or else be a partial view.
10939
10940 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10941 if Is_Limited_View (Current_Scope)
10942 or else
10943 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10944 and then Limited_Present (Parent (Current_Scope)))
10945 then
10946 null;
10947
10948 else
10949 Error_Msg_N
10950 ("access discriminants allowed only for limited types", Loc);
10951 end if;
10952 end if;
10953 end Check_Access_Discriminant_Requires_Limited;
10954
10955 -----------------------------------
10956 -- Check_Aliased_Component_Types --
10957 -----------------------------------
10958
10959 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10960 C : Entity_Id;
10961
10962 begin
10963 -- ??? Also need to check components of record extensions, but not
10964 -- components of protected types (which are always limited).
10965
10966 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10967 -- types to be unconstrained. This is safe because it is illegal to
10968 -- create access subtypes to such types with explicit discriminant
10969 -- constraints.
10970
10971 if not Is_Limited_Type (T) then
10972 if Ekind (T) = E_Record_Type then
10973 C := First_Component (T);
10974 while Present (C) loop
10975 if Is_Aliased (C)
10976 and then Has_Discriminants (Etype (C))
10977 and then not Is_Constrained (Etype (C))
10978 and then not In_Instance_Body
10979 and then Ada_Version < Ada_2005
10980 then
10981 Error_Msg_N
10982 ("aliased component must be constrained (RM 3.6(11))",
10983 C);
10984 end if;
10985
10986 Next_Component (C);
10987 end loop;
10988
10989 elsif Ekind (T) = E_Array_Type then
10990 if Has_Aliased_Components (T)
10991 and then Has_Discriminants (Component_Type (T))
10992 and then not Is_Constrained (Component_Type (T))
10993 and then not In_Instance_Body
10994 and then Ada_Version < Ada_2005
10995 then
10996 Error_Msg_N
10997 ("aliased component type must be constrained (RM 3.6(11))",
10998 T);
10999 end if;
11000 end if;
11001 end if;
11002 end Check_Aliased_Component_Types;
11003
11004 ---------------------------------------
11005 -- Check_Anonymous_Access_Components --
11006 ---------------------------------------
11007
11008 procedure Check_Anonymous_Access_Components
11009 (Typ_Decl : Node_Id;
11010 Typ : Entity_Id;
11011 Prev : Entity_Id;
11012 Comp_List : Node_Id)
11013 is
11014 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11015 Anon_Access : Entity_Id;
11016 Acc_Def : Node_Id;
11017 Comp : Node_Id;
11018 Comp_Def : Node_Id;
11019 Decl : Node_Id;
11020 Type_Def : Node_Id;
11021
11022 procedure Build_Incomplete_Type_Declaration;
11023 -- If the record type contains components that include an access to the
11024 -- current record, then create an incomplete type declaration for the
11025 -- record, to be used as the designated type of the anonymous access.
11026 -- This is done only once, and only if there is no previous partial
11027 -- view of the type.
11028
11029 function Designates_T (Subt : Node_Id) return Boolean;
11030 -- Check whether a node designates the enclosing record type, or 'Class
11031 -- of that type
11032
11033 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11034 -- Check whether an access definition includes a reference to
11035 -- the enclosing record type. The reference can be a subtype mark
11036 -- in the access definition itself, a 'Class attribute reference, or
11037 -- recursively a reference appearing in a parameter specification
11038 -- or result definition of an access_to_subprogram definition.
11039
11040 --------------------------------------
11041 -- Build_Incomplete_Type_Declaration --
11042 --------------------------------------
11043
11044 procedure Build_Incomplete_Type_Declaration is
11045 Decl : Node_Id;
11046 Inc_T : Entity_Id;
11047 H : Entity_Id;
11048
11049 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11050 -- it's "is new ... with record" or else "is tagged record ...".
11051
11052 Is_Tagged : constant Boolean :=
11053 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11054 and then
11055 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11056 or else
11057 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11058 and then Tagged_Present (Type_Definition (Typ_Decl)));
11059
11060 begin
11061 -- If there is a previous partial view, no need to create a new one
11062 -- If the partial view, given by Prev, is incomplete, If Prev is
11063 -- a private declaration, full declaration is flagged accordingly.
11064
11065 if Prev /= Typ then
11066 if Is_Tagged then
11067 Make_Class_Wide_Type (Prev);
11068 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11069 Set_Etype (Class_Wide_Type (Typ), Typ);
11070 end if;
11071
11072 return;
11073
11074 elsif Has_Private_Declaration (Typ) then
11075
11076 -- If we refer to T'Class inside T, and T is the completion of a
11077 -- private type, then make sure the class-wide type exists.
11078
11079 if Is_Tagged then
11080 Make_Class_Wide_Type (Typ);
11081 end if;
11082
11083 return;
11084
11085 -- If there was a previous anonymous access type, the incomplete
11086 -- type declaration will have been created already.
11087
11088 elsif Present (Current_Entity (Typ))
11089 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11090 and then Full_View (Current_Entity (Typ)) = Typ
11091 then
11092 if Is_Tagged
11093 and then Comes_From_Source (Current_Entity (Typ))
11094 and then not Is_Tagged_Type (Current_Entity (Typ))
11095 then
11096 Make_Class_Wide_Type (Typ);
11097 Error_Msg_N
11098 ("incomplete view of tagged type should be declared tagged??",
11099 Parent (Current_Entity (Typ)));
11100 end if;
11101 return;
11102
11103 else
11104 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11105 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11106
11107 -- Type has already been inserted into the current scope. Remove
11108 -- it, and add incomplete declaration for type, so that subsequent
11109 -- anonymous access types can use it. The entity is unchained from
11110 -- the homonym list and from immediate visibility. After analysis,
11111 -- the entity in the incomplete declaration becomes immediately
11112 -- visible in the record declaration that follows.
11113
11114 H := Current_Entity (Typ);
11115
11116 if H = Typ then
11117 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11118 else
11119 while Present (H)
11120 and then Homonym (H) /= Typ
11121 loop
11122 H := Homonym (Typ);
11123 end loop;
11124
11125 Set_Homonym (H, Homonym (Typ));
11126 end if;
11127
11128 Insert_Before (Typ_Decl, Decl);
11129 Analyze (Decl);
11130 Set_Full_View (Inc_T, Typ);
11131
11132 if Is_Tagged then
11133
11134 -- Create a common class-wide type for both views, and set the
11135 -- Etype of the class-wide type to the full view.
11136
11137 Make_Class_Wide_Type (Inc_T);
11138 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11139 Set_Etype (Class_Wide_Type (Typ), Typ);
11140 end if;
11141 end if;
11142 end Build_Incomplete_Type_Declaration;
11143
11144 ------------------
11145 -- Designates_T --
11146 ------------------
11147
11148 function Designates_T (Subt : Node_Id) return Boolean is
11149 Type_Id : constant Name_Id := Chars (Typ);
11150
11151 function Names_T (Nam : Node_Id) return Boolean;
11152 -- The record type has not been introduced in the current scope
11153 -- yet, so we must examine the name of the type itself, either
11154 -- an identifier T, or an expanded name of the form P.T, where
11155 -- P denotes the current scope.
11156
11157 -------------
11158 -- Names_T --
11159 -------------
11160
11161 function Names_T (Nam : Node_Id) return Boolean is
11162 begin
11163 if Nkind (Nam) = N_Identifier then
11164 return Chars (Nam) = Type_Id;
11165
11166 elsif Nkind (Nam) = N_Selected_Component then
11167 if Chars (Selector_Name (Nam)) = Type_Id then
11168 if Nkind (Prefix (Nam)) = N_Identifier then
11169 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11170
11171 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11172 return Chars (Selector_Name (Prefix (Nam))) =
11173 Chars (Current_Scope);
11174 else
11175 return False;
11176 end if;
11177
11178 else
11179 return False;
11180 end if;
11181
11182 else
11183 return False;
11184 end if;
11185 end Names_T;
11186
11187 -- Start of processing for Designates_T
11188
11189 begin
11190 if Nkind (Subt) = N_Identifier then
11191 return Chars (Subt) = Type_Id;
11192
11193 -- Reference can be through an expanded name which has not been
11194 -- analyzed yet, and which designates enclosing scopes.
11195
11196 elsif Nkind (Subt) = N_Selected_Component then
11197 if Names_T (Subt) then
11198 return True;
11199
11200 -- Otherwise it must denote an entity that is already visible.
11201 -- The access definition may name a subtype of the enclosing
11202 -- type, if there is a previous incomplete declaration for it.
11203
11204 else
11205 Find_Selected_Component (Subt);
11206 return
11207 Is_Entity_Name (Subt)
11208 and then Scope (Entity (Subt)) = Current_Scope
11209 and then
11210 (Chars (Base_Type (Entity (Subt))) = Type_Id
11211 or else
11212 (Is_Class_Wide_Type (Entity (Subt))
11213 and then
11214 Chars (Etype (Base_Type (Entity (Subt)))) =
11215 Type_Id));
11216 end if;
11217
11218 -- A reference to the current type may appear as the prefix of
11219 -- a 'Class attribute.
11220
11221 elsif Nkind (Subt) = N_Attribute_Reference
11222 and then Attribute_Name (Subt) = Name_Class
11223 then
11224 return Names_T (Prefix (Subt));
11225
11226 else
11227 return False;
11228 end if;
11229 end Designates_T;
11230
11231 ----------------
11232 -- Mentions_T --
11233 ----------------
11234
11235 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11236 Param_Spec : Node_Id;
11237
11238 Acc_Subprg : constant Node_Id :=
11239 Access_To_Subprogram_Definition (Acc_Def);
11240
11241 begin
11242 if No (Acc_Subprg) then
11243 return Designates_T (Subtype_Mark (Acc_Def));
11244 end if;
11245
11246 -- Component is an access_to_subprogram: examine its formals,
11247 -- and result definition in the case of an access_to_function.
11248
11249 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11250 while Present (Param_Spec) loop
11251 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11252 and then Mentions_T (Parameter_Type (Param_Spec))
11253 then
11254 return True;
11255
11256 elsif Designates_T (Parameter_Type (Param_Spec)) then
11257 return True;
11258 end if;
11259
11260 Next (Param_Spec);
11261 end loop;
11262
11263 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11264 if Nkind (Result_Definition (Acc_Subprg)) =
11265 N_Access_Definition
11266 then
11267 return Mentions_T (Result_Definition (Acc_Subprg));
11268 else
11269 return Designates_T (Result_Definition (Acc_Subprg));
11270 end if;
11271 end if;
11272
11273 return False;
11274 end Mentions_T;
11275
11276 -- Start of processing for Check_Anonymous_Access_Components
11277
11278 begin
11279 if No (Comp_List) then
11280 return;
11281 end if;
11282
11283 Comp := First (Component_Items (Comp_List));
11284 while Present (Comp) loop
11285 if Nkind (Comp) = N_Component_Declaration
11286 and then Present
11287 (Access_Definition (Component_Definition (Comp)))
11288 and then
11289 Mentions_T (Access_Definition (Component_Definition (Comp)))
11290 then
11291 Comp_Def := Component_Definition (Comp);
11292 Acc_Def :=
11293 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11294
11295 Build_Incomplete_Type_Declaration;
11296 Anon_Access := Make_Temporary (Loc, 'S');
11297
11298 -- Create a declaration for the anonymous access type: either
11299 -- an access_to_object or an access_to_subprogram.
11300
11301 if Present (Acc_Def) then
11302 if Nkind (Acc_Def) = N_Access_Function_Definition then
11303 Type_Def :=
11304 Make_Access_Function_Definition (Loc,
11305 Parameter_Specifications =>
11306 Parameter_Specifications (Acc_Def),
11307 Result_Definition => Result_Definition (Acc_Def));
11308 else
11309 Type_Def :=
11310 Make_Access_Procedure_Definition (Loc,
11311 Parameter_Specifications =>
11312 Parameter_Specifications (Acc_Def));
11313 end if;
11314
11315 else
11316 Type_Def :=
11317 Make_Access_To_Object_Definition (Loc,
11318 Subtype_Indication =>
11319 Relocate_Node
11320 (Subtype_Mark (Access_Definition (Comp_Def))));
11321
11322 Set_Constant_Present
11323 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11324 Set_All_Present
11325 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11326 end if;
11327
11328 Set_Null_Exclusion_Present
11329 (Type_Def,
11330 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11331
11332 Decl :=
11333 Make_Full_Type_Declaration (Loc,
11334 Defining_Identifier => Anon_Access,
11335 Type_Definition => Type_Def);
11336
11337 Insert_Before (Typ_Decl, Decl);
11338 Analyze (Decl);
11339
11340 -- If an access to subprogram, create the extra formals
11341
11342 if Present (Acc_Def) then
11343 Create_Extra_Formals (Designated_Type (Anon_Access));
11344
11345 -- If an access to object, preserve entity of designated type,
11346 -- for ASIS use, before rewriting the component definition.
11347
11348 else
11349 declare
11350 Desig : Entity_Id;
11351
11352 begin
11353 Desig := Entity (Subtype_Indication (Type_Def));
11354
11355 -- If the access definition is to the current record,
11356 -- the visible entity at this point is an incomplete
11357 -- type. Retrieve the full view to simplify ASIS queries
11358
11359 if Ekind (Desig) = E_Incomplete_Type then
11360 Desig := Full_View (Desig);
11361 end if;
11362
11363 Set_Entity
11364 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11365 end;
11366 end if;
11367
11368 Rewrite (Comp_Def,
11369 Make_Component_Definition (Loc,
11370 Subtype_Indication =>
11371 New_Occurrence_Of (Anon_Access, Loc)));
11372
11373 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11374 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11375 else
11376 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11377 end if;
11378
11379 Set_Is_Local_Anonymous_Access (Anon_Access);
11380 end if;
11381
11382 Next (Comp);
11383 end loop;
11384
11385 if Present (Variant_Part (Comp_List)) then
11386 declare
11387 V : Node_Id;
11388 begin
11389 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11390 while Present (V) loop
11391 Check_Anonymous_Access_Components
11392 (Typ_Decl, Typ, Prev, Component_List (V));
11393 Next_Non_Pragma (V);
11394 end loop;
11395 end;
11396 end if;
11397 end Check_Anonymous_Access_Components;
11398
11399 ----------------------
11400 -- Check_Completion --
11401 ----------------------
11402
11403 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11404 E : Entity_Id;
11405
11406 procedure Post_Error;
11407 -- Post error message for lack of completion for entity E
11408
11409 ----------------
11410 -- Post_Error --
11411 ----------------
11412
11413 procedure Post_Error is
11414 procedure Missing_Body;
11415 -- Output missing body message
11416
11417 ------------------
11418 -- Missing_Body --
11419 ------------------
11420
11421 procedure Missing_Body is
11422 begin
11423 -- Spec is in same unit, so we can post on spec
11424
11425 if In_Same_Source_Unit (Body_Id, E) then
11426 Error_Msg_N ("missing body for &", E);
11427
11428 -- Spec is in a separate unit, so we have to post on the body
11429
11430 else
11431 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11432 end if;
11433 end Missing_Body;
11434
11435 -- Start of processing for Post_Error
11436
11437 begin
11438 if not Comes_From_Source (E) then
11439 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11440
11441 -- It may be an anonymous protected type created for a
11442 -- single variable. Post error on variable, if present.
11443
11444 declare
11445 Var : Entity_Id;
11446
11447 begin
11448 Var := First_Entity (Current_Scope);
11449 while Present (Var) loop
11450 exit when Etype (Var) = E
11451 and then Comes_From_Source (Var);
11452
11453 Next_Entity (Var);
11454 end loop;
11455
11456 if Present (Var) then
11457 E := Var;
11458 end if;
11459 end;
11460 end if;
11461 end if;
11462
11463 -- If a generated entity has no completion, then either previous
11464 -- semantic errors have disabled the expansion phase, or else we had
11465 -- missing subunits, or else we are compiling without expansion,
11466 -- or else something is very wrong.
11467
11468 if not Comes_From_Source (E) then
11469 pragma Assert
11470 (Serious_Errors_Detected > 0
11471 or else Configurable_Run_Time_Violations > 0
11472 or else Subunits_Missing
11473 or else not Expander_Active);
11474 return;
11475
11476 -- Here for source entity
11477
11478 else
11479 -- Here if no body to post the error message, so we post the error
11480 -- on the declaration that has no completion. This is not really
11481 -- the right place to post it, think about this later ???
11482
11483 if No (Body_Id) then
11484 if Is_Type (E) then
11485 Error_Msg_NE
11486 ("missing full declaration for }", Parent (E), E);
11487 else
11488 Error_Msg_NE ("missing body for &", Parent (E), E);
11489 end if;
11490
11491 -- Package body has no completion for a declaration that appears
11492 -- in the corresponding spec. Post error on the body, with a
11493 -- reference to the non-completed declaration.
11494
11495 else
11496 Error_Msg_Sloc := Sloc (E);
11497
11498 if Is_Type (E) then
11499 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11500
11501 elsif Is_Overloadable (E)
11502 and then Current_Entity_In_Scope (E) /= E
11503 then
11504 -- It may be that the completion is mistyped and appears as
11505 -- a distinct overloading of the entity.
11506
11507 declare
11508 Candidate : constant Entity_Id :=
11509 Current_Entity_In_Scope (E);
11510 Decl : constant Node_Id :=
11511 Unit_Declaration_Node (Candidate);
11512
11513 begin
11514 if Is_Overloadable (Candidate)
11515 and then Ekind (Candidate) = Ekind (E)
11516 and then Nkind (Decl) = N_Subprogram_Body
11517 and then Acts_As_Spec (Decl)
11518 then
11519 Check_Type_Conformant (Candidate, E);
11520
11521 else
11522 Missing_Body;
11523 end if;
11524 end;
11525
11526 else
11527 Missing_Body;
11528 end if;
11529 end if;
11530 end if;
11531 end Post_Error;
11532
11533 -- Local variables
11534
11535 Pack_Id : constant Entity_Id := Current_Scope;
11536
11537 -- Start of processing for Check_Completion
11538
11539 begin
11540 E := First_Entity (Pack_Id);
11541 while Present (E) loop
11542 if Is_Intrinsic_Subprogram (E) then
11543 null;
11544
11545 -- The following situation requires special handling: a child unit
11546 -- that appears in the context clause of the body of its parent:
11547
11548 -- procedure Parent.Child (...);
11549
11550 -- with Parent.Child;
11551 -- package body Parent is
11552
11553 -- Here Parent.Child appears as a local entity, but should not be
11554 -- flagged as requiring completion, because it is a compilation
11555 -- unit.
11556
11557 -- Ignore missing completion for a subprogram that does not come from
11558 -- source (including the _Call primitive operation of RAS types,
11559 -- which has to have the flag Comes_From_Source for other purposes):
11560 -- we assume that the expander will provide the missing completion.
11561 -- In case of previous errors, other expansion actions that provide
11562 -- bodies for null procedures with not be invoked, so inhibit message
11563 -- in those cases.
11564
11565 -- Note that E_Operator is not in the list that follows, because
11566 -- this kind is reserved for predefined operators, that are
11567 -- intrinsic and do not need completion.
11568
11569 elsif Ekind_In (E, E_Function,
11570 E_Procedure,
11571 E_Generic_Function,
11572 E_Generic_Procedure)
11573 then
11574 if Has_Completion (E) then
11575 null;
11576
11577 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11578 null;
11579
11580 elsif Is_Subprogram (E)
11581 and then (not Comes_From_Source (E)
11582 or else Chars (E) = Name_uCall)
11583 then
11584 null;
11585
11586 elsif
11587 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11588 then
11589 null;
11590
11591 elsif Nkind (Parent (E)) = N_Procedure_Specification
11592 and then Null_Present (Parent (E))
11593 and then Serious_Errors_Detected > 0
11594 then
11595 null;
11596
11597 else
11598 Post_Error;
11599 end if;
11600
11601 elsif Is_Entry (E) then
11602 if not Has_Completion (E) and then
11603 (Ekind (Scope (E)) = E_Protected_Object
11604 or else Ekind (Scope (E)) = E_Protected_Type)
11605 then
11606 Post_Error;
11607 end if;
11608
11609 elsif Is_Package_Or_Generic_Package (E) then
11610 if Unit_Requires_Body (E) then
11611 if not Has_Completion (E)
11612 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11613 N_Compilation_Unit
11614 then
11615 Post_Error;
11616 end if;
11617
11618 elsif not Is_Child_Unit (E) then
11619 May_Need_Implicit_Body (E);
11620 end if;
11621
11622 -- A formal incomplete type (Ada 2012) does not require a completion;
11623 -- other incomplete type declarations do.
11624
11625 elsif Ekind (E) = E_Incomplete_Type
11626 and then No (Underlying_Type (E))
11627 and then not Is_Generic_Type (E)
11628 then
11629 Post_Error;
11630
11631 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11632 and then not Has_Completion (E)
11633 then
11634 Post_Error;
11635
11636 -- A single task declared in the current scope is a constant, verify
11637 -- that the body of its anonymous type is in the same scope. If the
11638 -- task is defined elsewhere, this may be a renaming declaration for
11639 -- which no completion is needed.
11640
11641 elsif Ekind (E) = E_Constant
11642 and then Ekind (Etype (E)) = E_Task_Type
11643 and then not Has_Completion (Etype (E))
11644 and then Scope (Etype (E)) = Current_Scope
11645 then
11646 Post_Error;
11647
11648 elsif Ekind (E) = E_Protected_Object
11649 and then not Has_Completion (Etype (E))
11650 then
11651 Post_Error;
11652
11653 elsif Ekind (E) = E_Record_Type then
11654 if Is_Tagged_Type (E) then
11655 Check_Abstract_Overriding (E);
11656 Check_Conventions (E);
11657 end if;
11658
11659 Check_Aliased_Component_Types (E);
11660
11661 elsif Ekind (E) = E_Array_Type then
11662 Check_Aliased_Component_Types (E);
11663
11664 end if;
11665
11666 Next_Entity (E);
11667 end loop;
11668 end Check_Completion;
11669
11670 ------------------------------------
11671 -- Check_CPP_Type_Has_No_Defaults --
11672 ------------------------------------
11673
11674 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11675 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11676 Clist : Node_Id;
11677 Comp : Node_Id;
11678
11679 begin
11680 -- Obtain the component list
11681
11682 if Nkind (Tdef) = N_Record_Definition then
11683 Clist := Component_List (Tdef);
11684 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11685 Clist := Component_List (Record_Extension_Part (Tdef));
11686 end if;
11687
11688 -- Check all components to ensure no default expressions
11689
11690 if Present (Clist) then
11691 Comp := First (Component_Items (Clist));
11692 while Present (Comp) loop
11693 if Present (Expression (Comp)) then
11694 Error_Msg_N
11695 ("component of imported 'C'P'P type cannot have "
11696 & "default expression", Expression (Comp));
11697 end if;
11698
11699 Next (Comp);
11700 end loop;
11701 end if;
11702 end Check_CPP_Type_Has_No_Defaults;
11703
11704 ----------------------------
11705 -- Check_Delta_Expression --
11706 ----------------------------
11707
11708 procedure Check_Delta_Expression (E : Node_Id) is
11709 begin
11710 if not (Is_Real_Type (Etype (E))) then
11711 Wrong_Type (E, Any_Real);
11712
11713 elsif not Is_OK_Static_Expression (E) then
11714 Flag_Non_Static_Expr
11715 ("non-static expression used for delta value!", E);
11716
11717 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11718 Error_Msg_N ("delta expression must be positive", E);
11719
11720 else
11721 return;
11722 end if;
11723
11724 -- If any of above errors occurred, then replace the incorrect
11725 -- expression by the real 0.1, which should prevent further errors.
11726
11727 Rewrite (E,
11728 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11729 Analyze_And_Resolve (E, Standard_Float);
11730 end Check_Delta_Expression;
11731
11732 -----------------------------
11733 -- Check_Digits_Expression --
11734 -----------------------------
11735
11736 procedure Check_Digits_Expression (E : Node_Id) is
11737 begin
11738 if not (Is_Integer_Type (Etype (E))) then
11739 Wrong_Type (E, Any_Integer);
11740
11741 elsif not Is_OK_Static_Expression (E) then
11742 Flag_Non_Static_Expr
11743 ("non-static expression used for digits value!", E);
11744
11745 elsif Expr_Value (E) <= 0 then
11746 Error_Msg_N ("digits value must be greater than zero", E);
11747
11748 else
11749 return;
11750 end if;
11751
11752 -- If any of above errors occurred, then replace the incorrect
11753 -- expression by the integer 1, which should prevent further errors.
11754
11755 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11756 Analyze_And_Resolve (E, Standard_Integer);
11757
11758 end Check_Digits_Expression;
11759
11760 --------------------------
11761 -- Check_Initialization --
11762 --------------------------
11763
11764 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11765 begin
11766 -- Special processing for limited types
11767
11768 if Is_Limited_Type (T)
11769 and then not In_Instance
11770 and then not In_Inlined_Body
11771 then
11772 if not OK_For_Limited_Init (T, Exp) then
11773
11774 -- In GNAT mode, this is just a warning, to allow it to be evilly
11775 -- turned off. Otherwise it is a real error.
11776
11777 if GNAT_Mode then
11778 Error_Msg_N
11779 ("??cannot initialize entities of limited type!", Exp);
11780
11781 elsif Ada_Version < Ada_2005 then
11782
11783 -- The side effect removal machinery may generate illegal Ada
11784 -- code to avoid the usage of access types and 'reference in
11785 -- SPARK mode. Since this is legal code with respect to theorem
11786 -- proving, do not emit the error.
11787
11788 if GNATprove_Mode
11789 and then Nkind (Exp) = N_Function_Call
11790 and then Nkind (Parent (Exp)) = N_Object_Declaration
11791 and then not Comes_From_Source
11792 (Defining_Identifier (Parent (Exp)))
11793 then
11794 null;
11795
11796 else
11797 Error_Msg_N
11798 ("cannot initialize entities of limited type", Exp);
11799 Explain_Limited_Type (T, Exp);
11800 end if;
11801
11802 else
11803 -- Specialize error message according to kind of illegal
11804 -- initial expression.
11805
11806 if Nkind (Exp) = N_Type_Conversion
11807 and then Nkind (Expression (Exp)) = N_Function_Call
11808 then
11809 -- No error for internally-generated object declarations,
11810 -- which can come from build-in-place assignment statements.
11811
11812 if Nkind (Parent (Exp)) = N_Object_Declaration
11813 and then not Comes_From_Source
11814 (Defining_Identifier (Parent (Exp)))
11815 then
11816 null;
11817
11818 else
11819 Error_Msg_N
11820 ("illegal context for call"
11821 & " to function with limited result", Exp);
11822 end if;
11823
11824 else
11825 Error_Msg_N
11826 ("initialization of limited object requires aggregate "
11827 & "or function call", Exp);
11828 end if;
11829 end if;
11830 end if;
11831 end if;
11832
11833 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11834 -- set unless we can be sure that no range check is required.
11835
11836 if (GNATprove_Mode or not Expander_Active)
11837 and then Is_Scalar_Type (T)
11838 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11839 then
11840 Set_Do_Range_Check (Exp);
11841 end if;
11842 end Check_Initialization;
11843
11844 ----------------------
11845 -- Check_Interfaces --
11846 ----------------------
11847
11848 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11849 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11850
11851 Iface : Node_Id;
11852 Iface_Def : Node_Id;
11853 Iface_Typ : Entity_Id;
11854 Parent_Node : Node_Id;
11855
11856 Is_Task : Boolean := False;
11857 -- Set True if parent type or any progenitor is a task interface
11858
11859 Is_Protected : Boolean := False;
11860 -- Set True if parent type or any progenitor is a protected interface
11861
11862 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11863 -- Check that a progenitor is compatible with declaration. If an error
11864 -- message is output, it is posted on Error_Node.
11865
11866 ------------------
11867 -- Check_Ifaces --
11868 ------------------
11869
11870 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11871 Iface_Id : constant Entity_Id :=
11872 Defining_Identifier (Parent (Iface_Def));
11873 Type_Def : Node_Id;
11874
11875 begin
11876 if Nkind (N) = N_Private_Extension_Declaration then
11877 Type_Def := N;
11878 else
11879 Type_Def := Type_Definition (N);
11880 end if;
11881
11882 if Is_Task_Interface (Iface_Id) then
11883 Is_Task := True;
11884
11885 elsif Is_Protected_Interface (Iface_Id) then
11886 Is_Protected := True;
11887 end if;
11888
11889 if Is_Synchronized_Interface (Iface_Id) then
11890
11891 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11892 -- extension derived from a synchronized interface must explicitly
11893 -- be declared synchronized, because the full view will be a
11894 -- synchronized type.
11895
11896 if Nkind (N) = N_Private_Extension_Declaration then
11897 if not Synchronized_Present (N) then
11898 Error_Msg_NE
11899 ("private extension of& must be explicitly synchronized",
11900 N, Iface_Id);
11901 end if;
11902
11903 -- However, by 3.9.4(16/2), a full type that is a record extension
11904 -- is never allowed to derive from a synchronized interface (note
11905 -- that interfaces must be excluded from this check, because those
11906 -- are represented by derived type definitions in some cases).
11907
11908 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11909 and then not Interface_Present (Type_Definition (N))
11910 then
11911 Error_Msg_N ("record extension cannot derive from synchronized "
11912 & "interface", Error_Node);
11913 end if;
11914 end if;
11915
11916 -- Check that the characteristics of the progenitor are compatible
11917 -- with the explicit qualifier in the declaration.
11918 -- The check only applies to qualifiers that come from source.
11919 -- Limited_Present also appears in the declaration of corresponding
11920 -- records, and the check does not apply to them.
11921
11922 if Limited_Present (Type_Def)
11923 and then not
11924 Is_Concurrent_Record_Type (Defining_Identifier (N))
11925 then
11926 if Is_Limited_Interface (Parent_Type)
11927 and then not Is_Limited_Interface (Iface_Id)
11928 then
11929 Error_Msg_NE
11930 ("progenitor & must be limited interface",
11931 Error_Node, Iface_Id);
11932
11933 elsif
11934 (Task_Present (Iface_Def)
11935 or else Protected_Present (Iface_Def)
11936 or else Synchronized_Present (Iface_Def))
11937 and then Nkind (N) /= N_Private_Extension_Declaration
11938 and then not Error_Posted (N)
11939 then
11940 Error_Msg_NE
11941 ("progenitor & must be limited interface",
11942 Error_Node, Iface_Id);
11943 end if;
11944
11945 -- Protected interfaces can only inherit from limited, synchronized
11946 -- or protected interfaces.
11947
11948 elsif Nkind (N) = N_Full_Type_Declaration
11949 and then Protected_Present (Type_Def)
11950 then
11951 if Limited_Present (Iface_Def)
11952 or else Synchronized_Present (Iface_Def)
11953 or else Protected_Present (Iface_Def)
11954 then
11955 null;
11956
11957 elsif Task_Present (Iface_Def) then
11958 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11959 & "from task interface", Error_Node);
11960
11961 else
11962 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11963 & "from non-limited interface", Error_Node);
11964 end if;
11965
11966 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11967 -- limited and synchronized.
11968
11969 elsif Synchronized_Present (Type_Def) then
11970 if Limited_Present (Iface_Def)
11971 or else Synchronized_Present (Iface_Def)
11972 then
11973 null;
11974
11975 elsif Protected_Present (Iface_Def)
11976 and then Nkind (N) /= N_Private_Extension_Declaration
11977 then
11978 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11979 & "from protected interface", Error_Node);
11980
11981 elsif Task_Present (Iface_Def)
11982 and then Nkind (N) /= N_Private_Extension_Declaration
11983 then
11984 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11985 & "from task interface", Error_Node);
11986
11987 elsif not Is_Limited_Interface (Iface_Id) then
11988 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11989 & "from non-limited interface", Error_Node);
11990 end if;
11991
11992 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11993 -- synchronized or task interfaces.
11994
11995 elsif Nkind (N) = N_Full_Type_Declaration
11996 and then Task_Present (Type_Def)
11997 then
11998 if Limited_Present (Iface_Def)
11999 or else Synchronized_Present (Iface_Def)
12000 or else Task_Present (Iface_Def)
12001 then
12002 null;
12003
12004 elsif Protected_Present (Iface_Def) then
12005 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12006 & "protected interface", Error_Node);
12007
12008 else
12009 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12010 & "non-limited interface", Error_Node);
12011 end if;
12012 end if;
12013 end Check_Ifaces;
12014
12015 -- Start of processing for Check_Interfaces
12016
12017 begin
12018 if Is_Interface (Parent_Type) then
12019 if Is_Task_Interface (Parent_Type) then
12020 Is_Task := True;
12021
12022 elsif Is_Protected_Interface (Parent_Type) then
12023 Is_Protected := True;
12024 end if;
12025 end if;
12026
12027 if Nkind (N) = N_Private_Extension_Declaration then
12028
12029 -- Check that progenitors are compatible with declaration
12030
12031 Iface := First (Interface_List (Def));
12032 while Present (Iface) loop
12033 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12034
12035 Parent_Node := Parent (Base_Type (Iface_Typ));
12036 Iface_Def := Type_Definition (Parent_Node);
12037
12038 if not Is_Interface (Iface_Typ) then
12039 Diagnose_Interface (Iface, Iface_Typ);
12040 else
12041 Check_Ifaces (Iface_Def, Iface);
12042 end if;
12043
12044 Next (Iface);
12045 end loop;
12046
12047 if Is_Task and Is_Protected then
12048 Error_Msg_N
12049 ("type cannot derive from task and protected interface", N);
12050 end if;
12051
12052 return;
12053 end if;
12054
12055 -- Full type declaration of derived type.
12056 -- Check compatibility with parent if it is interface type
12057
12058 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12059 and then Is_Interface (Parent_Type)
12060 then
12061 Parent_Node := Parent (Parent_Type);
12062
12063 -- More detailed checks for interface varieties
12064
12065 Check_Ifaces
12066 (Iface_Def => Type_Definition (Parent_Node),
12067 Error_Node => Subtype_Indication (Type_Definition (N)));
12068 end if;
12069
12070 Iface := First (Interface_List (Def));
12071 while Present (Iface) loop
12072 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12073
12074 Parent_Node := Parent (Base_Type (Iface_Typ));
12075 Iface_Def := Type_Definition (Parent_Node);
12076
12077 if not Is_Interface (Iface_Typ) then
12078 Diagnose_Interface (Iface, Iface_Typ);
12079
12080 else
12081 -- "The declaration of a specific descendant of an interface
12082 -- type freezes the interface type" RM 13.14
12083
12084 Freeze_Before (N, Iface_Typ);
12085 Check_Ifaces (Iface_Def, Error_Node => Iface);
12086 end if;
12087
12088 Next (Iface);
12089 end loop;
12090
12091 if Is_Task and Is_Protected then
12092 Error_Msg_N
12093 ("type cannot derive from task and protected interface", N);
12094 end if;
12095 end Check_Interfaces;
12096
12097 ------------------------------------
12098 -- Check_Or_Process_Discriminants --
12099 ------------------------------------
12100
12101 -- If an incomplete or private type declaration was already given for the
12102 -- type, the discriminants may have already been processed if they were
12103 -- present on the incomplete declaration. In this case a full conformance
12104 -- check has been performed in Find_Type_Name, and we then recheck here
12105 -- some properties that can't be checked on the partial view alone.
12106 -- Otherwise we call Process_Discriminants.
12107
12108 procedure Check_Or_Process_Discriminants
12109 (N : Node_Id;
12110 T : Entity_Id;
12111 Prev : Entity_Id := Empty)
12112 is
12113 begin
12114 if Has_Discriminants (T) then
12115
12116 -- Discriminants are already set on T if they were already present
12117 -- on the partial view. Make them visible to component declarations.
12118
12119 declare
12120 D : Entity_Id;
12121 -- Discriminant on T (full view) referencing expr on partial view
12122
12123 Prev_D : Entity_Id;
12124 -- Entity of corresponding discriminant on partial view
12125
12126 New_D : Node_Id;
12127 -- Discriminant specification for full view, expression is
12128 -- the syntactic copy on full view (which has been checked for
12129 -- conformance with partial view), only used here to post error
12130 -- message.
12131
12132 begin
12133 D := First_Discriminant (T);
12134 New_D := First (Discriminant_Specifications (N));
12135 while Present (D) loop
12136 Prev_D := Current_Entity (D);
12137 Set_Current_Entity (D);
12138 Set_Is_Immediately_Visible (D);
12139 Set_Homonym (D, Prev_D);
12140
12141 -- Handle the case where there is an untagged partial view and
12142 -- the full view is tagged: must disallow discriminants with
12143 -- defaults, unless compiling for Ada 2012, which allows a
12144 -- limited tagged type to have defaulted discriminants (see
12145 -- AI05-0214). However, suppress error here if it was already
12146 -- reported on the default expression of the partial view.
12147
12148 if Is_Tagged_Type (T)
12149 and then Present (Expression (Parent (D)))
12150 and then (not Is_Limited_Type (Current_Scope)
12151 or else Ada_Version < Ada_2012)
12152 and then not Error_Posted (Expression (Parent (D)))
12153 then
12154 if Ada_Version >= Ada_2012 then
12155 Error_Msg_N
12156 ("discriminants of nonlimited tagged type cannot have "
12157 & "defaults",
12158 Expression (New_D));
12159 else
12160 Error_Msg_N
12161 ("discriminants of tagged type cannot have defaults",
12162 Expression (New_D));
12163 end if;
12164 end if;
12165
12166 -- Ada 2005 (AI-230): Access discriminant allowed in
12167 -- non-limited record types.
12168
12169 if Ada_Version < Ada_2005 then
12170
12171 -- This restriction gets applied to the full type here. It
12172 -- has already been applied earlier to the partial view.
12173
12174 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12175 end if;
12176
12177 Next_Discriminant (D);
12178 Next (New_D);
12179 end loop;
12180 end;
12181
12182 elsif Present (Discriminant_Specifications (N)) then
12183 Process_Discriminants (N, Prev);
12184 end if;
12185 end Check_Or_Process_Discriminants;
12186
12187 ----------------------
12188 -- Check_Real_Bound --
12189 ----------------------
12190
12191 procedure Check_Real_Bound (Bound : Node_Id) is
12192 begin
12193 if not Is_Real_Type (Etype (Bound)) then
12194 Error_Msg_N
12195 ("bound in real type definition must be of real type", Bound);
12196
12197 elsif not Is_OK_Static_Expression (Bound) then
12198 Flag_Non_Static_Expr
12199 ("non-static expression used for real type bound!", Bound);
12200
12201 else
12202 return;
12203 end if;
12204
12205 Rewrite
12206 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12207 Analyze (Bound);
12208 Resolve (Bound, Standard_Float);
12209 end Check_Real_Bound;
12210
12211 ------------------------------
12212 -- Complete_Private_Subtype --
12213 ------------------------------
12214
12215 procedure Complete_Private_Subtype
12216 (Priv : Entity_Id;
12217 Full : Entity_Id;
12218 Full_Base : Entity_Id;
12219 Related_Nod : Node_Id)
12220 is
12221 Save_Next_Entity : Entity_Id;
12222 Save_Homonym : Entity_Id;
12223
12224 begin
12225 -- Set semantic attributes for (implicit) private subtype completion.
12226 -- If the full type has no discriminants, then it is a copy of the
12227 -- full view of the base. Otherwise, it is a subtype of the base with
12228 -- a possible discriminant constraint. Save and restore the original
12229 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12230 -- not corrupt the entity chain.
12231
12232 -- Note that the type of the full view is the same entity as the type
12233 -- of the partial view. In this fashion, the subtype has access to the
12234 -- correct view of the parent.
12235
12236 Save_Next_Entity := Next_Entity (Full);
12237 Save_Homonym := Homonym (Priv);
12238
12239 case Ekind (Full_Base) is
12240 when Class_Wide_Kind
12241 | Private_Kind
12242 | Protected_Kind
12243 | Task_Kind
12244 | E_Record_Subtype
12245 | E_Record_Type
12246 =>
12247 Copy_Node (Priv, Full);
12248
12249 Set_Has_Discriminants
12250 (Full, Has_Discriminants (Full_Base));
12251 Set_Has_Unknown_Discriminants
12252 (Full, Has_Unknown_Discriminants (Full_Base));
12253 Set_First_Entity (Full, First_Entity (Full_Base));
12254 Set_Last_Entity (Full, Last_Entity (Full_Base));
12255
12256 -- If the underlying base type is constrained, we know that the
12257 -- full view of the subtype is constrained as well (the converse
12258 -- is not necessarily true).
12259
12260 if Is_Constrained (Full_Base) then
12261 Set_Is_Constrained (Full);
12262 end if;
12263
12264 when others =>
12265 Copy_Node (Full_Base, Full);
12266
12267 Set_Chars (Full, Chars (Priv));
12268 Conditional_Delay (Full, Priv);
12269 Set_Sloc (Full, Sloc (Priv));
12270 end case;
12271
12272 Set_Next_Entity (Full, Save_Next_Entity);
12273 Set_Homonym (Full, Save_Homonym);
12274 Set_Associated_Node_For_Itype (Full, Related_Nod);
12275
12276 -- Set common attributes for all subtypes: kind, convention, etc.
12277
12278 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12279 Set_Convention (Full, Convention (Full_Base));
12280
12281 -- The Etype of the full view is inconsistent. Gigi needs to see the
12282 -- structural full view, which is what the current scheme gives: the
12283 -- Etype of the full view is the etype of the full base. However, if the
12284 -- full base is a derived type, the full view then looks like a subtype
12285 -- of the parent, not a subtype of the full base. If instead we write:
12286
12287 -- Set_Etype (Full, Full_Base);
12288
12289 -- then we get inconsistencies in the front-end (confusion between
12290 -- views). Several outstanding bugs are related to this ???
12291
12292 Set_Is_First_Subtype (Full, False);
12293 Set_Scope (Full, Scope (Priv));
12294 Set_Size_Info (Full, Full_Base);
12295 Set_RM_Size (Full, RM_Size (Full_Base));
12296 Set_Is_Itype (Full);
12297
12298 -- A subtype of a private-type-without-discriminants, whose full-view
12299 -- has discriminants with default expressions, is not constrained.
12300
12301 if not Has_Discriminants (Priv) then
12302 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12303
12304 if Has_Discriminants (Full_Base) then
12305 Set_Discriminant_Constraint
12306 (Full, Discriminant_Constraint (Full_Base));
12307
12308 -- The partial view may have been indefinite, the full view
12309 -- might not be.
12310
12311 Set_Has_Unknown_Discriminants
12312 (Full, Has_Unknown_Discriminants (Full_Base));
12313 end if;
12314 end if;
12315
12316 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12317 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12318
12319 -- Freeze the private subtype entity if its parent is delayed, and not
12320 -- already frozen. We skip this processing if the type is an anonymous
12321 -- subtype of a record component, or is the corresponding record of a
12322 -- protected type, since these are processed when the enclosing type
12323 -- is frozen. If the parent type is declared in a nested package then
12324 -- the freezing of the private and full views also happens later.
12325
12326 if not Is_Type (Scope (Full)) then
12327 if Is_Itype (Priv)
12328 and then In_Same_Source_Unit (Full, Full_Base)
12329 and then Scope (Full_Base) /= Scope (Full)
12330 then
12331 Set_Has_Delayed_Freeze (Full);
12332 Set_Has_Delayed_Freeze (Priv);
12333
12334 else
12335 Set_Has_Delayed_Freeze (Full,
12336 Has_Delayed_Freeze (Full_Base)
12337 and then not Is_Frozen (Full_Base));
12338 end if;
12339 end if;
12340
12341 Set_Freeze_Node (Full, Empty);
12342 Set_Is_Frozen (Full, False);
12343 Set_Full_View (Priv, Full);
12344
12345 if Has_Discriminants (Full) then
12346 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12347 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12348
12349 if Has_Unknown_Discriminants (Full) then
12350 Set_Discriminant_Constraint (Full, No_Elist);
12351 end if;
12352 end if;
12353
12354 if Ekind (Full_Base) = E_Record_Type
12355 and then Has_Discriminants (Full_Base)
12356 and then Has_Discriminants (Priv) -- might not, if errors
12357 and then not Has_Unknown_Discriminants (Priv)
12358 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12359 then
12360 Create_Constrained_Components
12361 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12362
12363 -- If the full base is itself derived from private, build a congruent
12364 -- subtype of its underlying type, for use by the back end. For a
12365 -- constrained record component, the declaration cannot be placed on
12366 -- the component list, but it must nevertheless be built an analyzed, to
12367 -- supply enough information for Gigi to compute the size of component.
12368
12369 elsif Ekind (Full_Base) in Private_Kind
12370 and then Is_Derived_Type (Full_Base)
12371 and then Has_Discriminants (Full_Base)
12372 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12373 then
12374 if not Is_Itype (Priv)
12375 and then
12376 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12377 then
12378 Build_Underlying_Full_View
12379 (Parent (Priv), Full, Etype (Full_Base));
12380
12381 elsif Nkind (Related_Nod) = N_Component_Declaration then
12382 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12383 end if;
12384
12385 elsif Is_Record_Type (Full_Base) then
12386
12387 -- Show Full is simply a renaming of Full_Base
12388
12389 Set_Cloned_Subtype (Full, Full_Base);
12390 end if;
12391
12392 -- It is unsafe to share the bounds of a scalar type, because the Itype
12393 -- is elaborated on demand, and if a bound is non-static then different
12394 -- orders of elaboration in different units will lead to different
12395 -- external symbols.
12396
12397 if Is_Scalar_Type (Full_Base) then
12398 Set_Scalar_Range (Full,
12399 Make_Range (Sloc (Related_Nod),
12400 Low_Bound =>
12401 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12402 High_Bound =>
12403 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12404
12405 -- This completion inherits the bounds of the full parent, but if
12406 -- the parent is an unconstrained floating point type, so is the
12407 -- completion.
12408
12409 if Is_Floating_Point_Type (Full_Base) then
12410 Set_Includes_Infinities
12411 (Scalar_Range (Full), Has_Infinities (Full_Base));
12412 end if;
12413 end if;
12414
12415 -- ??? It seems that a lot of fields are missing that should be copied
12416 -- from Full_Base to Full. Here are some that are introduced in a
12417 -- non-disruptive way but a cleanup is necessary.
12418
12419 if Is_Tagged_Type (Full_Base) then
12420 Set_Is_Tagged_Type (Full);
12421 Set_Direct_Primitive_Operations
12422 (Full, Direct_Primitive_Operations (Full_Base));
12423 Set_No_Tagged_Streams_Pragma
12424 (Full, No_Tagged_Streams_Pragma (Full_Base));
12425
12426 -- Inherit class_wide type of full_base in case the partial view was
12427 -- not tagged. Otherwise it has already been created when the private
12428 -- subtype was analyzed.
12429
12430 if No (Class_Wide_Type (Full)) then
12431 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12432 end if;
12433
12434 -- If this is a subtype of a protected or task type, constrain its
12435 -- corresponding record, unless this is a subtype without constraints,
12436 -- i.e. a simple renaming as with an actual subtype in an instance.
12437
12438 elsif Is_Concurrent_Type (Full_Base) then
12439 if Has_Discriminants (Full)
12440 and then Present (Corresponding_Record_Type (Full_Base))
12441 and then
12442 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12443 then
12444 Set_Corresponding_Record_Type (Full,
12445 Constrain_Corresponding_Record
12446 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12447
12448 else
12449 Set_Corresponding_Record_Type (Full,
12450 Corresponding_Record_Type (Full_Base));
12451 end if;
12452 end if;
12453
12454 -- Link rep item chain, and also setting of Has_Predicates from private
12455 -- subtype to full subtype, since we will need these on the full subtype
12456 -- to create the predicate function. Note that the full subtype may
12457 -- already have rep items, inherited from the full view of the base
12458 -- type, so we must be sure not to overwrite these entries.
12459
12460 declare
12461 Append : Boolean;
12462 Item : Node_Id;
12463 Next_Item : Node_Id;
12464 Priv_Item : Node_Id;
12465
12466 begin
12467 Item := First_Rep_Item (Full);
12468 Priv_Item := First_Rep_Item (Priv);
12469
12470 -- If no existing rep items on full type, we can just link directly
12471 -- to the list of items on the private type, if any exist.. Same if
12472 -- the rep items are only those inherited from the base
12473
12474 if (No (Item)
12475 or else Nkind (Item) /= N_Aspect_Specification
12476 or else Entity (Item) = Full_Base)
12477 and then Present (First_Rep_Item (Priv))
12478 then
12479 Set_First_Rep_Item (Full, Priv_Item);
12480
12481 -- Otherwise, search to the end of items currently linked to the full
12482 -- subtype and append the private items to the end. However, if Priv
12483 -- and Full already have the same list of rep items, then the append
12484 -- is not done, as that would create a circularity.
12485 --
12486 -- The partial view may have a predicate and the rep item lists of
12487 -- both views agree when inherited from the same ancestor. In that
12488 -- case, simply propagate the list from one view to the other.
12489 -- A more complex analysis needed here ???
12490
12491 elsif Present (Priv_Item)
12492 and then Item = Next_Rep_Item (Priv_Item)
12493 then
12494 Set_First_Rep_Item (Full, Priv_Item);
12495
12496 elsif Item /= Priv_Item then
12497 Append := True;
12498 loop
12499 Next_Item := Next_Rep_Item (Item);
12500 exit when No (Next_Item);
12501 Item := Next_Item;
12502
12503 -- If the private view has aspect specifications, the full view
12504 -- inherits them. Since these aspects may already have been
12505 -- attached to the full view during derivation, do not append
12506 -- them if already present.
12507
12508 if Item = First_Rep_Item (Priv) then
12509 Append := False;
12510 exit;
12511 end if;
12512 end loop;
12513
12514 -- And link the private type items at the end of the chain
12515
12516 if Append then
12517 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12518 end if;
12519 end if;
12520 end;
12521
12522 -- Make sure Has_Predicates is set on full type if it is set on the
12523 -- private type. Note that it may already be set on the full type and
12524 -- if so, we don't want to unset it. Similarly, propagate information
12525 -- about delayed aspects, because the corresponding pragmas must be
12526 -- analyzed when one of the views is frozen. This last step is needed
12527 -- in particular when the full type is a scalar type for which an
12528 -- anonymous base type is constructed.
12529
12530 -- The predicate functions are generated either at the freeze point
12531 -- of the type or at the end of the visible part, and we must avoid
12532 -- generating them twice.
12533
12534 if Has_Predicates (Priv) then
12535 Set_Has_Predicates (Full);
12536
12537 if Present (Predicate_Function (Priv))
12538 and then No (Predicate_Function (Full))
12539 then
12540 Set_Predicate_Function (Full, Predicate_Function (Priv));
12541 end if;
12542 end if;
12543
12544 if Has_Delayed_Aspects (Priv) then
12545 Set_Has_Delayed_Aspects (Full);
12546 end if;
12547 end Complete_Private_Subtype;
12548
12549 ----------------------------
12550 -- Constant_Redeclaration --
12551 ----------------------------
12552
12553 procedure Constant_Redeclaration
12554 (Id : Entity_Id;
12555 N : Node_Id;
12556 T : out Entity_Id)
12557 is
12558 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12559 Obj_Def : constant Node_Id := Object_Definition (N);
12560 New_T : Entity_Id;
12561
12562 procedure Check_Possible_Deferred_Completion
12563 (Prev_Id : Entity_Id;
12564 Prev_Obj_Def : Node_Id;
12565 Curr_Obj_Def : Node_Id);
12566 -- Determine whether the two object definitions describe the partial
12567 -- and the full view of a constrained deferred constant. Generate
12568 -- a subtype for the full view and verify that it statically matches
12569 -- the subtype of the partial view.
12570
12571 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12572 -- If deferred constant is an access type initialized with an allocator,
12573 -- check whether there is an illegal recursion in the definition,
12574 -- through a default value of some record subcomponent. This is normally
12575 -- detected when generating init procs, but requires this additional
12576 -- mechanism when expansion is disabled.
12577
12578 ----------------------------------------
12579 -- Check_Possible_Deferred_Completion --
12580 ----------------------------------------
12581
12582 procedure Check_Possible_Deferred_Completion
12583 (Prev_Id : Entity_Id;
12584 Prev_Obj_Def : Node_Id;
12585 Curr_Obj_Def : Node_Id)
12586 is
12587 begin
12588 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12589 and then Present (Constraint (Prev_Obj_Def))
12590 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12591 and then Present (Constraint (Curr_Obj_Def))
12592 then
12593 declare
12594 Loc : constant Source_Ptr := Sloc (N);
12595 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12596 Decl : constant Node_Id :=
12597 Make_Subtype_Declaration (Loc,
12598 Defining_Identifier => Def_Id,
12599 Subtype_Indication =>
12600 Relocate_Node (Curr_Obj_Def));
12601
12602 begin
12603 Insert_Before_And_Analyze (N, Decl);
12604 Set_Etype (Id, Def_Id);
12605
12606 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12607 Error_Msg_Sloc := Sloc (Prev_Id);
12608 Error_Msg_N ("subtype does not statically match deferred "
12609 & "declaration #", N);
12610 end if;
12611 end;
12612 end if;
12613 end Check_Possible_Deferred_Completion;
12614
12615 ---------------------------------
12616 -- Check_Recursive_Declaration --
12617 ---------------------------------
12618
12619 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12620 Comp : Entity_Id;
12621
12622 begin
12623 if Is_Record_Type (Typ) then
12624 Comp := First_Component (Typ);
12625 while Present (Comp) loop
12626 if Comes_From_Source (Comp) then
12627 if Present (Expression (Parent (Comp)))
12628 and then Is_Entity_Name (Expression (Parent (Comp)))
12629 and then Entity (Expression (Parent (Comp))) = Prev
12630 then
12631 Error_Msg_Sloc := Sloc (Parent (Comp));
12632 Error_Msg_NE
12633 ("illegal circularity with declaration for & #",
12634 N, Comp);
12635 return;
12636
12637 elsif Is_Record_Type (Etype (Comp)) then
12638 Check_Recursive_Declaration (Etype (Comp));
12639 end if;
12640 end if;
12641
12642 Next_Component (Comp);
12643 end loop;
12644 end if;
12645 end Check_Recursive_Declaration;
12646
12647 -- Start of processing for Constant_Redeclaration
12648
12649 begin
12650 if Nkind (Parent (Prev)) = N_Object_Declaration then
12651 if Nkind (Object_Definition
12652 (Parent (Prev))) = N_Subtype_Indication
12653 then
12654 -- Find type of new declaration. The constraints of the two
12655 -- views must match statically, but there is no point in
12656 -- creating an itype for the full view.
12657
12658 if Nkind (Obj_Def) = N_Subtype_Indication then
12659 Find_Type (Subtype_Mark (Obj_Def));
12660 New_T := Entity (Subtype_Mark (Obj_Def));
12661
12662 else
12663 Find_Type (Obj_Def);
12664 New_T := Entity (Obj_Def);
12665 end if;
12666
12667 T := Etype (Prev);
12668
12669 else
12670 -- The full view may impose a constraint, even if the partial
12671 -- view does not, so construct the subtype.
12672
12673 New_T := Find_Type_Of_Object (Obj_Def, N);
12674 T := New_T;
12675 end if;
12676
12677 else
12678 -- Current declaration is illegal, diagnosed below in Enter_Name
12679
12680 T := Empty;
12681 New_T := Any_Type;
12682 end if;
12683
12684 -- If previous full declaration or a renaming declaration exists, or if
12685 -- a homograph is present, let Enter_Name handle it, either with an
12686 -- error or with the removal of an overridden implicit subprogram.
12687 -- The previous one is a full declaration if it has an expression
12688 -- (which in the case of an aggregate is indicated by the Init flag).
12689
12690 if Ekind (Prev) /= E_Constant
12691 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12692 or else Present (Expression (Parent (Prev)))
12693 or else Has_Init_Expression (Parent (Prev))
12694 or else Present (Full_View (Prev))
12695 then
12696 Enter_Name (Id);
12697
12698 -- Verify that types of both declarations match, or else that both types
12699 -- are anonymous access types whose designated subtypes statically match
12700 -- (as allowed in Ada 2005 by AI-385).
12701
12702 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12703 and then
12704 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12705 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12706 or else Is_Access_Constant (Etype (New_T)) /=
12707 Is_Access_Constant (Etype (Prev))
12708 or else Can_Never_Be_Null (Etype (New_T)) /=
12709 Can_Never_Be_Null (Etype (Prev))
12710 or else Null_Exclusion_Present (Parent (Prev)) /=
12711 Null_Exclusion_Present (Parent (Id))
12712 or else not Subtypes_Statically_Match
12713 (Designated_Type (Etype (Prev)),
12714 Designated_Type (Etype (New_T))))
12715 then
12716 Error_Msg_Sloc := Sloc (Prev);
12717 Error_Msg_N ("type does not match declaration#", N);
12718 Set_Full_View (Prev, Id);
12719 Set_Etype (Id, Any_Type);
12720
12721 -- A deferred constant whose type is an anonymous array is always
12722 -- illegal (unless imported). A detailed error message might be
12723 -- helpful for Ada beginners.
12724
12725 if Nkind (Object_Definition (Parent (Prev)))
12726 = N_Constrained_Array_Definition
12727 and then Nkind (Object_Definition (N))
12728 = N_Constrained_Array_Definition
12729 then
12730 Error_Msg_N ("\each anonymous array is a distinct type", N);
12731 Error_Msg_N ("a deferred constant must have a named type",
12732 Object_Definition (Parent (Prev)));
12733 end if;
12734
12735 elsif
12736 Null_Exclusion_Present (Parent (Prev))
12737 and then not Null_Exclusion_Present (N)
12738 then
12739 Error_Msg_Sloc := Sloc (Prev);
12740 Error_Msg_N ("null-exclusion does not match declaration#", N);
12741 Set_Full_View (Prev, Id);
12742 Set_Etype (Id, Any_Type);
12743
12744 -- If so, process the full constant declaration
12745
12746 else
12747 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12748 -- the deferred declaration is constrained, then the subtype defined
12749 -- by the subtype_indication in the full declaration shall match it
12750 -- statically.
12751
12752 Check_Possible_Deferred_Completion
12753 (Prev_Id => Prev,
12754 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12755 Curr_Obj_Def => Obj_Def);
12756
12757 Set_Full_View (Prev, Id);
12758 Set_Is_Public (Id, Is_Public (Prev));
12759 Set_Is_Internal (Id);
12760 Append_Entity (Id, Current_Scope);
12761
12762 -- Check ALIASED present if present before (RM 7.4(7))
12763
12764 if Is_Aliased (Prev)
12765 and then not Aliased_Present (N)
12766 then
12767 Error_Msg_Sloc := Sloc (Prev);
12768 Error_Msg_N ("ALIASED required (see declaration #)", N);
12769 end if;
12770
12771 -- Check that placement is in private part and that the incomplete
12772 -- declaration appeared in the visible part.
12773
12774 if Ekind (Current_Scope) = E_Package
12775 and then not In_Private_Part (Current_Scope)
12776 then
12777 Error_Msg_Sloc := Sloc (Prev);
12778 Error_Msg_N
12779 ("full constant for declaration # must be in private part", N);
12780
12781 elsif Ekind (Current_Scope) = E_Package
12782 and then
12783 List_Containing (Parent (Prev)) /=
12784 Visible_Declarations (Package_Specification (Current_Scope))
12785 then
12786 Error_Msg_N
12787 ("deferred constant must be declared in visible part",
12788 Parent (Prev));
12789 end if;
12790
12791 if Is_Access_Type (T)
12792 and then Nkind (Expression (N)) = N_Allocator
12793 then
12794 Check_Recursive_Declaration (Designated_Type (T));
12795 end if;
12796
12797 -- A deferred constant is a visible entity. If type has invariants,
12798 -- verify that the initial value satisfies them. This is not done in
12799 -- GNATprove mode, as GNATprove handles invariant checks itself.
12800
12801 if Has_Invariants (T)
12802 and then Present (Invariant_Procedure (T))
12803 and then not GNATprove_Mode
12804 then
12805 Insert_After (N,
12806 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12807 end if;
12808 end if;
12809 end Constant_Redeclaration;
12810
12811 ----------------------
12812 -- Constrain_Access --
12813 ----------------------
12814
12815 procedure Constrain_Access
12816 (Def_Id : in out Entity_Id;
12817 S : Node_Id;
12818 Related_Nod : Node_Id)
12819 is
12820 T : constant Entity_Id := Entity (Subtype_Mark (S));
12821 Desig_Type : constant Entity_Id := Designated_Type (T);
12822 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12823 Constraint_OK : Boolean := True;
12824
12825 begin
12826 if Is_Array_Type (Desig_Type) then
12827 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12828
12829 elsif (Is_Record_Type (Desig_Type)
12830 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12831 and then not Is_Constrained (Desig_Type)
12832 then
12833 -- ??? The following code is a temporary bypass to ignore a
12834 -- discriminant constraint on access type if it is constraining
12835 -- the current record. Avoid creating the implicit subtype of the
12836 -- record we are currently compiling since right now, we cannot
12837 -- handle these. For now, just return the access type itself.
12838
12839 if Desig_Type = Current_Scope
12840 and then No (Def_Id)
12841 then
12842 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12843 Def_Id := Entity (Subtype_Mark (S));
12844
12845 -- This call added to ensure that the constraint is analyzed
12846 -- (needed for a B test). Note that we still return early from
12847 -- this procedure to avoid recursive processing. ???
12848
12849 Constrain_Discriminated_Type
12850 (Desig_Subtype, S, Related_Nod, For_Access => True);
12851 return;
12852 end if;
12853
12854 -- Enforce rule that the constraint is illegal if there is an
12855 -- unconstrained view of the designated type. This means that the
12856 -- partial view (either a private type declaration or a derivation
12857 -- from a private type) has no discriminants. (Defect Report
12858 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12859
12860 -- Rule updated for Ada 2005: The private type is said to have
12861 -- a constrained partial view, given that objects of the type
12862 -- can be declared. Furthermore, the rule applies to all access
12863 -- types, unlike the rule concerning default discriminants (see
12864 -- RM 3.7.1(7/3))
12865
12866 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12867 and then Has_Private_Declaration (Desig_Type)
12868 and then In_Open_Scopes (Scope (Desig_Type))
12869 and then Has_Discriminants (Desig_Type)
12870 then
12871 declare
12872 Pack : constant Node_Id :=
12873 Unit_Declaration_Node (Scope (Desig_Type));
12874 Decls : List_Id;
12875 Decl : Node_Id;
12876
12877 begin
12878 if Nkind (Pack) = N_Package_Declaration then
12879 Decls := Visible_Declarations (Specification (Pack));
12880 Decl := First (Decls);
12881 while Present (Decl) loop
12882 if (Nkind (Decl) = N_Private_Type_Declaration
12883 and then Chars (Defining_Identifier (Decl)) =
12884 Chars (Desig_Type))
12885
12886 or else
12887 (Nkind (Decl) = N_Full_Type_Declaration
12888 and then
12889 Chars (Defining_Identifier (Decl)) =
12890 Chars (Desig_Type)
12891 and then Is_Derived_Type (Desig_Type)
12892 and then
12893 Has_Private_Declaration (Etype (Desig_Type)))
12894 then
12895 if No (Discriminant_Specifications (Decl)) then
12896 Error_Msg_N
12897 ("cannot constrain access type if designated "
12898 & "type has constrained partial view", S);
12899 end if;
12900
12901 exit;
12902 end if;
12903
12904 Next (Decl);
12905 end loop;
12906 end if;
12907 end;
12908 end if;
12909
12910 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12911 For_Access => True);
12912
12913 elsif Is_Concurrent_Type (Desig_Type)
12914 and then not Is_Constrained (Desig_Type)
12915 then
12916 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12917
12918 else
12919 Error_Msg_N ("invalid constraint on access type", S);
12920
12921 -- We simply ignore an invalid constraint
12922
12923 Desig_Subtype := Desig_Type;
12924 Constraint_OK := False;
12925 end if;
12926
12927 if No (Def_Id) then
12928 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12929 else
12930 Set_Ekind (Def_Id, E_Access_Subtype);
12931 end if;
12932
12933 if Constraint_OK then
12934 Set_Etype (Def_Id, Base_Type (T));
12935
12936 if Is_Private_Type (Desig_Type) then
12937 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12938 end if;
12939 else
12940 Set_Etype (Def_Id, Any_Type);
12941 end if;
12942
12943 Set_Size_Info (Def_Id, T);
12944 Set_Is_Constrained (Def_Id, Constraint_OK);
12945 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12946 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12947 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12948
12949 Conditional_Delay (Def_Id, T);
12950
12951 -- AI-363 : Subtypes of general access types whose designated types have
12952 -- default discriminants are disallowed. In instances, the rule has to
12953 -- be checked against the actual, of which T is the subtype. In a
12954 -- generic body, the rule is checked assuming that the actual type has
12955 -- defaulted discriminants.
12956
12957 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12958 if Ekind (Base_Type (T)) = E_General_Access_Type
12959 and then Has_Defaulted_Discriminants (Desig_Type)
12960 then
12961 if Ada_Version < Ada_2005 then
12962 Error_Msg_N
12963 ("access subtype of general access type would not " &
12964 "be allowed in Ada 2005?y?", S);
12965 else
12966 Error_Msg_N
12967 ("access subtype of general access type not allowed", S);
12968 end if;
12969
12970 Error_Msg_N ("\discriminants have defaults", S);
12971
12972 elsif Is_Access_Type (T)
12973 and then Is_Generic_Type (Desig_Type)
12974 and then Has_Discriminants (Desig_Type)
12975 and then In_Package_Body (Current_Scope)
12976 then
12977 if Ada_Version < Ada_2005 then
12978 Error_Msg_N
12979 ("access subtype would not be allowed in generic body "
12980 & "in Ada 2005?y?", S);
12981 else
12982 Error_Msg_N
12983 ("access subtype not allowed in generic body", S);
12984 end if;
12985
12986 Error_Msg_N
12987 ("\designated type is a discriminated formal", S);
12988 end if;
12989 end if;
12990 end Constrain_Access;
12991
12992 ---------------------
12993 -- Constrain_Array --
12994 ---------------------
12995
12996 procedure Constrain_Array
12997 (Def_Id : in out Entity_Id;
12998 SI : Node_Id;
12999 Related_Nod : Node_Id;
13000 Related_Id : Entity_Id;
13001 Suffix : Character)
13002 is
13003 C : constant Node_Id := Constraint (SI);
13004 Number_Of_Constraints : Nat := 0;
13005 Index : Node_Id;
13006 S, T : Entity_Id;
13007 Constraint_OK : Boolean := True;
13008
13009 begin
13010 T := Entity (Subtype_Mark (SI));
13011
13012 if Is_Access_Type (T) then
13013 T := Designated_Type (T);
13014 end if;
13015
13016 -- If an index constraint follows a subtype mark in a subtype indication
13017 -- then the type or subtype denoted by the subtype mark must not already
13018 -- impose an index constraint. The subtype mark must denote either an
13019 -- unconstrained array type or an access type whose designated type
13020 -- is such an array type... (RM 3.6.1)
13021
13022 if Is_Constrained (T) then
13023 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13024 Constraint_OK := False;
13025
13026 else
13027 S := First (Constraints (C));
13028 while Present (S) loop
13029 Number_Of_Constraints := Number_Of_Constraints + 1;
13030 Next (S);
13031 end loop;
13032
13033 -- In either case, the index constraint must provide a discrete
13034 -- range for each index of the array type and the type of each
13035 -- discrete range must be the same as that of the corresponding
13036 -- index. (RM 3.6.1)
13037
13038 if Number_Of_Constraints /= Number_Dimensions (T) then
13039 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13040 Constraint_OK := False;
13041
13042 else
13043 S := First (Constraints (C));
13044 Index := First_Index (T);
13045 Analyze (Index);
13046
13047 -- Apply constraints to each index type
13048
13049 for J in 1 .. Number_Of_Constraints loop
13050 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13051 Next (Index);
13052 Next (S);
13053 end loop;
13054
13055 end if;
13056 end if;
13057
13058 if No (Def_Id) then
13059 Def_Id :=
13060 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13061 Set_Parent (Def_Id, Related_Nod);
13062
13063 else
13064 Set_Ekind (Def_Id, E_Array_Subtype);
13065 end if;
13066
13067 Set_Size_Info (Def_Id, (T));
13068 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13069 Set_Etype (Def_Id, Base_Type (T));
13070
13071 if Constraint_OK then
13072 Set_First_Index (Def_Id, First (Constraints (C)));
13073 else
13074 Set_First_Index (Def_Id, First_Index (T));
13075 end if;
13076
13077 Set_Is_Constrained (Def_Id, True);
13078 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13079 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13080
13081 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13082 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13083
13084 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13085 -- We need to initialize the attribute because if Def_Id is previously
13086 -- analyzed through a limited_with clause, it will have the attributes
13087 -- of an incomplete type, one of which is an Elist that overlaps the
13088 -- Packed_Array_Impl_Type field.
13089
13090 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13091
13092 -- Build a freeze node if parent still needs one. Also make sure that
13093 -- the Depends_On_Private status is set because the subtype will need
13094 -- reprocessing at the time the base type does, and also we must set a
13095 -- conditional delay.
13096
13097 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13098 Conditional_Delay (Def_Id, T);
13099 end Constrain_Array;
13100
13101 ------------------------------
13102 -- Constrain_Component_Type --
13103 ------------------------------
13104
13105 function Constrain_Component_Type
13106 (Comp : Entity_Id;
13107 Constrained_Typ : Entity_Id;
13108 Related_Node : Node_Id;
13109 Typ : Entity_Id;
13110 Constraints : Elist_Id) return Entity_Id
13111 is
13112 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13113 Compon_Type : constant Entity_Id := Etype (Comp);
13114
13115 function Build_Constrained_Array_Type
13116 (Old_Type : Entity_Id) return Entity_Id;
13117 -- If Old_Type is an array type, one of whose indexes is constrained
13118 -- by a discriminant, build an Itype whose constraint replaces the
13119 -- discriminant with its value in the constraint.
13120
13121 function Build_Constrained_Discriminated_Type
13122 (Old_Type : Entity_Id) return Entity_Id;
13123 -- Ditto for record components
13124
13125 function Build_Constrained_Access_Type
13126 (Old_Type : Entity_Id) return Entity_Id;
13127 -- Ditto for access types. Makes use of previous two functions, to
13128 -- constrain designated type.
13129
13130 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13131 -- T is an array or discriminated type, C is a list of constraints
13132 -- that apply to T. This routine builds the constrained subtype.
13133
13134 function Is_Discriminant (Expr : Node_Id) return Boolean;
13135 -- Returns True if Expr is a discriminant
13136
13137 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13138 -- Find the value of discriminant Discrim in Constraint
13139
13140 -----------------------------------
13141 -- Build_Constrained_Access_Type --
13142 -----------------------------------
13143
13144 function Build_Constrained_Access_Type
13145 (Old_Type : Entity_Id) return Entity_Id
13146 is
13147 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13148 Itype : Entity_Id;
13149 Desig_Subtype : Entity_Id;
13150 Scop : Entity_Id;
13151
13152 begin
13153 -- if the original access type was not embedded in the enclosing
13154 -- type definition, there is no need to produce a new access
13155 -- subtype. In fact every access type with an explicit constraint
13156 -- generates an itype whose scope is the enclosing record.
13157
13158 if not Is_Type (Scope (Old_Type)) then
13159 return Old_Type;
13160
13161 elsif Is_Array_Type (Desig_Type) then
13162 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13163
13164 elsif Has_Discriminants (Desig_Type) then
13165
13166 -- This may be an access type to an enclosing record type for
13167 -- which we are constructing the constrained components. Return
13168 -- the enclosing record subtype. This is not always correct,
13169 -- but avoids infinite recursion. ???
13170
13171 Desig_Subtype := Any_Type;
13172
13173 for J in reverse 0 .. Scope_Stack.Last loop
13174 Scop := Scope_Stack.Table (J).Entity;
13175
13176 if Is_Type (Scop)
13177 and then Base_Type (Scop) = Base_Type (Desig_Type)
13178 then
13179 Desig_Subtype := Scop;
13180 end if;
13181
13182 exit when not Is_Type (Scop);
13183 end loop;
13184
13185 if Desig_Subtype = Any_Type then
13186 Desig_Subtype :=
13187 Build_Constrained_Discriminated_Type (Desig_Type);
13188 end if;
13189
13190 else
13191 return Old_Type;
13192 end if;
13193
13194 if Desig_Subtype /= Desig_Type then
13195
13196 -- The Related_Node better be here or else we won't be able
13197 -- to attach new itypes to a node in the tree.
13198
13199 pragma Assert (Present (Related_Node));
13200
13201 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13202
13203 Set_Etype (Itype, Base_Type (Old_Type));
13204 Set_Size_Info (Itype, (Old_Type));
13205 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13206 Set_Depends_On_Private (Itype, Has_Private_Component
13207 (Old_Type));
13208 Set_Is_Access_Constant (Itype, Is_Access_Constant
13209 (Old_Type));
13210
13211 -- The new itype needs freezing when it depends on a not frozen
13212 -- type and the enclosing subtype needs freezing.
13213
13214 if Has_Delayed_Freeze (Constrained_Typ)
13215 and then not Is_Frozen (Constrained_Typ)
13216 then
13217 Conditional_Delay (Itype, Base_Type (Old_Type));
13218 end if;
13219
13220 return Itype;
13221
13222 else
13223 return Old_Type;
13224 end if;
13225 end Build_Constrained_Access_Type;
13226
13227 ----------------------------------
13228 -- Build_Constrained_Array_Type --
13229 ----------------------------------
13230
13231 function Build_Constrained_Array_Type
13232 (Old_Type : Entity_Id) return Entity_Id
13233 is
13234 Lo_Expr : Node_Id;
13235 Hi_Expr : Node_Id;
13236 Old_Index : Node_Id;
13237 Range_Node : Node_Id;
13238 Constr_List : List_Id;
13239
13240 Need_To_Create_Itype : Boolean := False;
13241
13242 begin
13243 Old_Index := First_Index (Old_Type);
13244 while Present (Old_Index) loop
13245 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13246
13247 if Is_Discriminant (Lo_Expr)
13248 or else
13249 Is_Discriminant (Hi_Expr)
13250 then
13251 Need_To_Create_Itype := True;
13252 end if;
13253
13254 Next_Index (Old_Index);
13255 end loop;
13256
13257 if Need_To_Create_Itype then
13258 Constr_List := New_List;
13259
13260 Old_Index := First_Index (Old_Type);
13261 while Present (Old_Index) loop
13262 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13263
13264 if Is_Discriminant (Lo_Expr) then
13265 Lo_Expr := Get_Discr_Value (Lo_Expr);
13266 end if;
13267
13268 if Is_Discriminant (Hi_Expr) then
13269 Hi_Expr := Get_Discr_Value (Hi_Expr);
13270 end if;
13271
13272 Range_Node :=
13273 Make_Range
13274 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13275
13276 Append (Range_Node, To => Constr_List);
13277
13278 Next_Index (Old_Index);
13279 end loop;
13280
13281 return Build_Subtype (Old_Type, Constr_List);
13282
13283 else
13284 return Old_Type;
13285 end if;
13286 end Build_Constrained_Array_Type;
13287
13288 ------------------------------------------
13289 -- Build_Constrained_Discriminated_Type --
13290 ------------------------------------------
13291
13292 function Build_Constrained_Discriminated_Type
13293 (Old_Type : Entity_Id) return Entity_Id
13294 is
13295 Expr : Node_Id;
13296 Constr_List : List_Id;
13297 Old_Constraint : Elmt_Id;
13298
13299 Need_To_Create_Itype : Boolean := False;
13300
13301 begin
13302 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13303 while Present (Old_Constraint) loop
13304 Expr := Node (Old_Constraint);
13305
13306 if Is_Discriminant (Expr) then
13307 Need_To_Create_Itype := True;
13308 end if;
13309
13310 Next_Elmt (Old_Constraint);
13311 end loop;
13312
13313 if Need_To_Create_Itype then
13314 Constr_List := New_List;
13315
13316 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13317 while Present (Old_Constraint) loop
13318 Expr := Node (Old_Constraint);
13319
13320 if Is_Discriminant (Expr) then
13321 Expr := Get_Discr_Value (Expr);
13322 end if;
13323
13324 Append (New_Copy_Tree (Expr), To => Constr_List);
13325
13326 Next_Elmt (Old_Constraint);
13327 end loop;
13328
13329 return Build_Subtype (Old_Type, Constr_List);
13330
13331 else
13332 return Old_Type;
13333 end if;
13334 end Build_Constrained_Discriminated_Type;
13335
13336 -------------------
13337 -- Build_Subtype --
13338 -------------------
13339
13340 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13341 Indic : Node_Id;
13342 Subtyp_Decl : Node_Id;
13343 Def_Id : Entity_Id;
13344 Btyp : Entity_Id := Base_Type (T);
13345
13346 begin
13347 -- The Related_Node better be here or else we won't be able to
13348 -- attach new itypes to a node in the tree.
13349
13350 pragma Assert (Present (Related_Node));
13351
13352 -- If the view of the component's type is incomplete or private
13353 -- with unknown discriminants, then the constraint must be applied
13354 -- to the full type.
13355
13356 if Has_Unknown_Discriminants (Btyp)
13357 and then Present (Underlying_Type (Btyp))
13358 then
13359 Btyp := Underlying_Type (Btyp);
13360 end if;
13361
13362 Indic :=
13363 Make_Subtype_Indication (Loc,
13364 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13365 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13366
13367 Def_Id := Create_Itype (Ekind (T), Related_Node);
13368
13369 Subtyp_Decl :=
13370 Make_Subtype_Declaration (Loc,
13371 Defining_Identifier => Def_Id,
13372 Subtype_Indication => Indic);
13373
13374 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13375
13376 -- Itypes must be analyzed with checks off (see package Itypes)
13377
13378 Analyze (Subtyp_Decl, Suppress => All_Checks);
13379
13380 return Def_Id;
13381 end Build_Subtype;
13382
13383 ---------------------
13384 -- Get_Discr_Value --
13385 ---------------------
13386
13387 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13388 D : Entity_Id;
13389 E : Elmt_Id;
13390
13391 begin
13392 -- The discriminant may be declared for the type, in which case we
13393 -- find it by iterating over the list of discriminants. If the
13394 -- discriminant is inherited from a parent type, it appears as the
13395 -- corresponding discriminant of the current type. This will be the
13396 -- case when constraining an inherited component whose constraint is
13397 -- given by a discriminant of the parent.
13398
13399 D := First_Discriminant (Typ);
13400 E := First_Elmt (Constraints);
13401
13402 while Present (D) loop
13403 if D = Entity (Discrim)
13404 or else D = CR_Discriminant (Entity (Discrim))
13405 or else Corresponding_Discriminant (D) = Entity (Discrim)
13406 then
13407 return Node (E);
13408 end if;
13409
13410 Next_Discriminant (D);
13411 Next_Elmt (E);
13412 end loop;
13413
13414 -- The Corresponding_Discriminant mechanism is incomplete, because
13415 -- the correspondence between new and old discriminants is not one
13416 -- to one: one new discriminant can constrain several old ones. In
13417 -- that case, scan sequentially the stored_constraint, the list of
13418 -- discriminants of the parents, and the constraints.
13419
13420 -- Previous code checked for the present of the Stored_Constraint
13421 -- list for the derived type, but did not use it at all. Should it
13422 -- be present when the component is a discriminated task type?
13423
13424 if Is_Derived_Type (Typ)
13425 and then Scope (Entity (Discrim)) = Etype (Typ)
13426 then
13427 D := First_Discriminant (Etype (Typ));
13428 E := First_Elmt (Constraints);
13429 while Present (D) loop
13430 if D = Entity (Discrim) then
13431 return Node (E);
13432 end if;
13433
13434 Next_Discriminant (D);
13435 Next_Elmt (E);
13436 end loop;
13437 end if;
13438
13439 -- Something is wrong if we did not find the value
13440
13441 raise Program_Error;
13442 end Get_Discr_Value;
13443
13444 ---------------------
13445 -- Is_Discriminant --
13446 ---------------------
13447
13448 function Is_Discriminant (Expr : Node_Id) return Boolean is
13449 Discrim_Scope : Entity_Id;
13450
13451 begin
13452 if Denotes_Discriminant (Expr) then
13453 Discrim_Scope := Scope (Entity (Expr));
13454
13455 -- Either we have a reference to one of Typ's discriminants,
13456
13457 pragma Assert (Discrim_Scope = Typ
13458
13459 -- or to the discriminants of the parent type, in the case
13460 -- of a derivation of a tagged type with variants.
13461
13462 or else Discrim_Scope = Etype (Typ)
13463 or else Full_View (Discrim_Scope) = Etype (Typ)
13464
13465 -- or same as above for the case where the discriminants
13466 -- were declared in Typ's private view.
13467
13468 or else (Is_Private_Type (Discrim_Scope)
13469 and then Chars (Discrim_Scope) = Chars (Typ))
13470
13471 -- or else we are deriving from the full view and the
13472 -- discriminant is declared in the private entity.
13473
13474 or else (Is_Private_Type (Typ)
13475 and then Chars (Discrim_Scope) = Chars (Typ))
13476
13477 -- Or we are constrained the corresponding record of a
13478 -- synchronized type that completes a private declaration.
13479
13480 or else (Is_Concurrent_Record_Type (Typ)
13481 and then
13482 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13483
13484 -- or we have a class-wide type, in which case make sure the
13485 -- discriminant found belongs to the root type.
13486
13487 or else (Is_Class_Wide_Type (Typ)
13488 and then Etype (Typ) = Discrim_Scope));
13489
13490 return True;
13491 end if;
13492
13493 -- In all other cases we have something wrong
13494
13495 return False;
13496 end Is_Discriminant;
13497
13498 -- Start of processing for Constrain_Component_Type
13499
13500 begin
13501 if Nkind (Parent (Comp)) = N_Component_Declaration
13502 and then Comes_From_Source (Parent (Comp))
13503 and then Comes_From_Source
13504 (Subtype_Indication (Component_Definition (Parent (Comp))))
13505 and then
13506 Is_Entity_Name
13507 (Subtype_Indication (Component_Definition (Parent (Comp))))
13508 then
13509 return Compon_Type;
13510
13511 elsif Is_Array_Type (Compon_Type) then
13512 return Build_Constrained_Array_Type (Compon_Type);
13513
13514 elsif Has_Discriminants (Compon_Type) then
13515 return Build_Constrained_Discriminated_Type (Compon_Type);
13516
13517 elsif Is_Access_Type (Compon_Type) then
13518 return Build_Constrained_Access_Type (Compon_Type);
13519
13520 else
13521 return Compon_Type;
13522 end if;
13523 end Constrain_Component_Type;
13524
13525 --------------------------
13526 -- Constrain_Concurrent --
13527 --------------------------
13528
13529 -- For concurrent types, the associated record value type carries the same
13530 -- discriminants, so when we constrain a concurrent type, we must constrain
13531 -- the corresponding record type as well.
13532
13533 procedure Constrain_Concurrent
13534 (Def_Id : in out Entity_Id;
13535 SI : Node_Id;
13536 Related_Nod : Node_Id;
13537 Related_Id : Entity_Id;
13538 Suffix : Character)
13539 is
13540 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13541 -- case of a private subtype (needed when only doing semantic analysis).
13542
13543 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13544 T_Val : Entity_Id;
13545
13546 begin
13547 if Is_Access_Type (T_Ent) then
13548 T_Ent := Designated_Type (T_Ent);
13549 end if;
13550
13551 T_Val := Corresponding_Record_Type (T_Ent);
13552
13553 if Present (T_Val) then
13554
13555 if No (Def_Id) then
13556 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13557
13558 -- Elaborate itype now, as it may be used in a subsequent
13559 -- synchronized operation in another scope.
13560
13561 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13562 Build_Itype_Reference (Def_Id, Related_Nod);
13563 end if;
13564 end if;
13565
13566 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13567 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13568
13569 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13570 Set_Corresponding_Record_Type (Def_Id,
13571 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13572
13573 else
13574 -- If there is no associated record, expansion is disabled and this
13575 -- is a generic context. Create a subtype in any case, so that
13576 -- semantic analysis can proceed.
13577
13578 if No (Def_Id) then
13579 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13580 end if;
13581
13582 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13583 end if;
13584 end Constrain_Concurrent;
13585
13586 ------------------------------------
13587 -- Constrain_Corresponding_Record --
13588 ------------------------------------
13589
13590 function Constrain_Corresponding_Record
13591 (Prot_Subt : Entity_Id;
13592 Corr_Rec : Entity_Id;
13593 Related_Nod : Node_Id) return Entity_Id
13594 is
13595 T_Sub : constant Entity_Id :=
13596 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13597
13598 begin
13599 Set_Etype (T_Sub, Corr_Rec);
13600 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13601 Set_Is_Constrained (T_Sub, True);
13602 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13603 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13604
13605 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13606 Set_Discriminant_Constraint
13607 (T_Sub, Discriminant_Constraint (Prot_Subt));
13608 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13609 Create_Constrained_Components
13610 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13611 end if;
13612
13613 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13614
13615 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13616 Conditional_Delay (T_Sub, Corr_Rec);
13617
13618 else
13619 -- This is a component subtype: it will be frozen in the context of
13620 -- the enclosing record's init_proc, so that discriminant references
13621 -- are resolved to discriminals. (Note: we used to skip freezing
13622 -- altogether in that case, which caused errors downstream for
13623 -- components of a bit packed array type).
13624
13625 Set_Has_Delayed_Freeze (T_Sub);
13626 end if;
13627
13628 return T_Sub;
13629 end Constrain_Corresponding_Record;
13630
13631 -----------------------
13632 -- Constrain_Decimal --
13633 -----------------------
13634
13635 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13636 T : constant Entity_Id := Entity (Subtype_Mark (S));
13637 C : constant Node_Id := Constraint (S);
13638 Loc : constant Source_Ptr := Sloc (C);
13639 Range_Expr : Node_Id;
13640 Digits_Expr : Node_Id;
13641 Digits_Val : Uint;
13642 Bound_Val : Ureal;
13643
13644 begin
13645 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13646
13647 if Nkind (C) = N_Range_Constraint then
13648 Range_Expr := Range_Expression (C);
13649 Digits_Val := Digits_Value (T);
13650
13651 else
13652 pragma Assert (Nkind (C) = N_Digits_Constraint);
13653
13654 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13655
13656 Digits_Expr := Digits_Expression (C);
13657 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13658
13659 Check_Digits_Expression (Digits_Expr);
13660 Digits_Val := Expr_Value (Digits_Expr);
13661
13662 if Digits_Val > Digits_Value (T) then
13663 Error_Msg_N
13664 ("digits expression is incompatible with subtype", C);
13665 Digits_Val := Digits_Value (T);
13666 end if;
13667
13668 if Present (Range_Constraint (C)) then
13669 Range_Expr := Range_Expression (Range_Constraint (C));
13670 else
13671 Range_Expr := Empty;
13672 end if;
13673 end if;
13674
13675 Set_Etype (Def_Id, Base_Type (T));
13676 Set_Size_Info (Def_Id, (T));
13677 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13678 Set_Delta_Value (Def_Id, Delta_Value (T));
13679 Set_Scale_Value (Def_Id, Scale_Value (T));
13680 Set_Small_Value (Def_Id, Small_Value (T));
13681 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13682 Set_Digits_Value (Def_Id, Digits_Val);
13683
13684 -- Manufacture range from given digits value if no range present
13685
13686 if No (Range_Expr) then
13687 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13688 Range_Expr :=
13689 Make_Range (Loc,
13690 Low_Bound =>
13691 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13692 High_Bound =>
13693 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13694 end if;
13695
13696 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13697 Set_Discrete_RM_Size (Def_Id);
13698
13699 -- Unconditionally delay the freeze, since we cannot set size
13700 -- information in all cases correctly until the freeze point.
13701
13702 Set_Has_Delayed_Freeze (Def_Id);
13703 end Constrain_Decimal;
13704
13705 ----------------------------------
13706 -- Constrain_Discriminated_Type --
13707 ----------------------------------
13708
13709 procedure Constrain_Discriminated_Type
13710 (Def_Id : Entity_Id;
13711 S : Node_Id;
13712 Related_Nod : Node_Id;
13713 For_Access : Boolean := False)
13714 is
13715 E : Entity_Id := Entity (Subtype_Mark (S));
13716 T : Entity_Id;
13717
13718 procedure Fixup_Bad_Constraint;
13719 -- Called after finding a bad constraint, and after having posted an
13720 -- appropriate error message. The goal is to leave type Def_Id in as
13721 -- reasonable state as possible.
13722
13723 --------------------------
13724 -- Fixup_Bad_Constraint --
13725 --------------------------
13726
13727 procedure Fixup_Bad_Constraint is
13728 begin
13729 -- Set a reasonable Ekind for the entity, including incomplete types.
13730
13731 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13732
13733 -- Set Etype to the known type, to reduce chances of cascaded errors
13734
13735 Set_Etype (Def_Id, E);
13736 Set_Error_Posted (Def_Id);
13737 end Fixup_Bad_Constraint;
13738
13739 -- Local variables
13740
13741 C : Node_Id;
13742 Constr : Elist_Id := New_Elmt_List;
13743
13744 -- Start of processing for Constrain_Discriminated_Type
13745
13746 begin
13747 C := Constraint (S);
13748
13749 -- A discriminant constraint is only allowed in a subtype indication,
13750 -- after a subtype mark. This subtype mark must denote either a type
13751 -- with discriminants, or an access type whose designated type is a
13752 -- type with discriminants. A discriminant constraint specifies the
13753 -- values of these discriminants (RM 3.7.2(5)).
13754
13755 T := Base_Type (Entity (Subtype_Mark (S)));
13756
13757 if Is_Access_Type (T) then
13758 T := Designated_Type (T);
13759 end if;
13760
13761 -- In an instance it may be necessary to retrieve the full view of a
13762 -- type with unknown discriminants, or a full view with defaulted
13763 -- discriminants. In other contexts the constraint is illegal.
13764
13765 if In_Instance
13766 and then Is_Private_Type (T)
13767 and then Present (Full_View (T))
13768 and then
13769 (Has_Unknown_Discriminants (T)
13770 or else
13771 (not Has_Discriminants (T)
13772 and then Has_Discriminants (Full_View (T))
13773 and then Present (Discriminant_Default_Value
13774 (First_Discriminant (Full_View (T))))))
13775 then
13776 T := Full_View (T);
13777 E := Full_View (E);
13778 end if;
13779
13780 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13781 -- generating an error for access-to-incomplete subtypes.
13782
13783 if Ada_Version >= Ada_2005
13784 and then Ekind (T) = E_Incomplete_Type
13785 and then Nkind (Parent (S)) = N_Subtype_Declaration
13786 and then not Is_Itype (Def_Id)
13787 then
13788 -- A little sanity check: emit an error message if the type has
13789 -- discriminants to begin with. Type T may be a regular incomplete
13790 -- type or imported via a limited with clause.
13791
13792 if Has_Discriminants (T)
13793 or else (From_Limited_With (T)
13794 and then Present (Non_Limited_View (T))
13795 and then Nkind (Parent (Non_Limited_View (T))) =
13796 N_Full_Type_Declaration
13797 and then Present (Discriminant_Specifications
13798 (Parent (Non_Limited_View (T)))))
13799 then
13800 Error_Msg_N
13801 ("(Ada 2005) incomplete subtype may not be constrained", C);
13802 else
13803 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13804 end if;
13805
13806 Fixup_Bad_Constraint;
13807 return;
13808
13809 -- Check that the type has visible discriminants. The type may be
13810 -- a private type with unknown discriminants whose full view has
13811 -- discriminants which are invisible.
13812
13813 elsif not Has_Discriminants (T)
13814 or else
13815 (Has_Unknown_Discriminants (T)
13816 and then Is_Private_Type (T))
13817 then
13818 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13819 Fixup_Bad_Constraint;
13820 return;
13821
13822 elsif Is_Constrained (E)
13823 or else (Ekind (E) = E_Class_Wide_Subtype
13824 and then Present (Discriminant_Constraint (E)))
13825 then
13826 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13827 Fixup_Bad_Constraint;
13828 return;
13829 end if;
13830
13831 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13832 -- applies to the base type.
13833
13834 T := Base_Type (T);
13835
13836 Constr := Build_Discriminant_Constraints (T, S);
13837
13838 -- If the list returned was empty we had an error in building the
13839 -- discriminant constraint. We have also already signalled an error
13840 -- in the incomplete type case
13841
13842 if Is_Empty_Elmt_List (Constr) then
13843 Fixup_Bad_Constraint;
13844 return;
13845 end if;
13846
13847 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13848 end Constrain_Discriminated_Type;
13849
13850 ---------------------------
13851 -- Constrain_Enumeration --
13852 ---------------------------
13853
13854 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13855 T : constant Entity_Id := Entity (Subtype_Mark (S));
13856 C : constant Node_Id := Constraint (S);
13857
13858 begin
13859 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13860
13861 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13862
13863 Set_Etype (Def_Id, Base_Type (T));
13864 Set_Size_Info (Def_Id, (T));
13865 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13866 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13867
13868 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13869
13870 Set_Discrete_RM_Size (Def_Id);
13871 end Constrain_Enumeration;
13872
13873 ----------------------
13874 -- Constrain_Float --
13875 ----------------------
13876
13877 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13878 T : constant Entity_Id := Entity (Subtype_Mark (S));
13879 C : Node_Id;
13880 D : Node_Id;
13881 Rais : Node_Id;
13882
13883 begin
13884 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13885
13886 Set_Etype (Def_Id, Base_Type (T));
13887 Set_Size_Info (Def_Id, (T));
13888 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13889
13890 -- Process the constraint
13891
13892 C := Constraint (S);
13893
13894 -- Digits constraint present
13895
13896 if Nkind (C) = N_Digits_Constraint then
13897
13898 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13899 Check_Restriction (No_Obsolescent_Features, C);
13900
13901 if Warn_On_Obsolescent_Feature then
13902 Error_Msg_N
13903 ("subtype digits constraint is an " &
13904 "obsolescent feature (RM J.3(8))?j?", C);
13905 end if;
13906
13907 D := Digits_Expression (C);
13908 Analyze_And_Resolve (D, Any_Integer);
13909 Check_Digits_Expression (D);
13910 Set_Digits_Value (Def_Id, Expr_Value (D));
13911
13912 -- Check that digits value is in range. Obviously we can do this
13913 -- at compile time, but it is strictly a runtime check, and of
13914 -- course there is an ACVC test that checks this.
13915
13916 if Digits_Value (Def_Id) > Digits_Value (T) then
13917 Error_Msg_Uint_1 := Digits_Value (T);
13918 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13919 Rais :=
13920 Make_Raise_Constraint_Error (Sloc (D),
13921 Reason => CE_Range_Check_Failed);
13922 Insert_Action (Declaration_Node (Def_Id), Rais);
13923 end if;
13924
13925 C := Range_Constraint (C);
13926
13927 -- No digits constraint present
13928
13929 else
13930 Set_Digits_Value (Def_Id, Digits_Value (T));
13931 end if;
13932
13933 -- Range constraint present
13934
13935 if Nkind (C) = N_Range_Constraint then
13936 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13937
13938 -- No range constraint present
13939
13940 else
13941 pragma Assert (No (C));
13942 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13943 end if;
13944
13945 Set_Is_Constrained (Def_Id);
13946 end Constrain_Float;
13947
13948 ---------------------
13949 -- Constrain_Index --
13950 ---------------------
13951
13952 procedure Constrain_Index
13953 (Index : Node_Id;
13954 S : Node_Id;
13955 Related_Nod : Node_Id;
13956 Related_Id : Entity_Id;
13957 Suffix : Character;
13958 Suffix_Index : Nat)
13959 is
13960 Def_Id : Entity_Id;
13961 R : Node_Id := Empty;
13962 T : constant Entity_Id := Etype (Index);
13963
13964 begin
13965 Def_Id :=
13966 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13967 Set_Etype (Def_Id, Base_Type (T));
13968
13969 if Nkind (S) = N_Range
13970 or else
13971 (Nkind (S) = N_Attribute_Reference
13972 and then Attribute_Name (S) = Name_Range)
13973 then
13974 -- A Range attribute will be transformed into N_Range by Resolve
13975
13976 Analyze (S);
13977 Set_Etype (S, T);
13978 R := S;
13979
13980 Process_Range_Expr_In_Decl (R, T);
13981
13982 if not Error_Posted (S)
13983 and then
13984 (Nkind (S) /= N_Range
13985 or else not Covers (T, (Etype (Low_Bound (S))))
13986 or else not Covers (T, (Etype (High_Bound (S)))))
13987 then
13988 if Base_Type (T) /= Any_Type
13989 and then Etype (Low_Bound (S)) /= Any_Type
13990 and then Etype (High_Bound (S)) /= Any_Type
13991 then
13992 Error_Msg_N ("range expected", S);
13993 end if;
13994 end if;
13995
13996 elsif Nkind (S) = N_Subtype_Indication then
13997
13998 -- The parser has verified that this is a discrete indication
13999
14000 Resolve_Discrete_Subtype_Indication (S, T);
14001 Bad_Predicated_Subtype_Use
14002 ("subtype& has predicate, not allowed in index constraint",
14003 S, Entity (Subtype_Mark (S)));
14004
14005 R := Range_Expression (Constraint (S));
14006
14007 -- Capture values of bounds and generate temporaries for them if
14008 -- needed, since checks may cause duplication of the expressions
14009 -- which must not be reevaluated.
14010
14011 -- The forced evaluation removes side effects from expressions, which
14012 -- should occur also in GNATprove mode. Otherwise, we end up with
14013 -- unexpected insertions of actions at places where this is not
14014 -- supposed to occur, e.g. on default parameters of a call.
14015
14016 if Expander_Active or GNATprove_Mode then
14017 Force_Evaluation
14018 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14019 Force_Evaluation
14020 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14021 end if;
14022
14023 elsif Nkind (S) = N_Discriminant_Association then
14024
14025 -- Syntactically valid in subtype indication
14026
14027 Error_Msg_N ("invalid index constraint", S);
14028 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14029 return;
14030
14031 -- Subtype_Mark case, no anonymous subtypes to construct
14032
14033 else
14034 Analyze (S);
14035
14036 if Is_Entity_Name (S) then
14037 if not Is_Type (Entity (S)) then
14038 Error_Msg_N ("expect subtype mark for index constraint", S);
14039
14040 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14041 Wrong_Type (S, Base_Type (T));
14042
14043 -- Check error of subtype with predicate in index constraint
14044
14045 else
14046 Bad_Predicated_Subtype_Use
14047 ("subtype& has predicate, not allowed in index constraint",
14048 S, Entity (S));
14049 end if;
14050
14051 return;
14052
14053 else
14054 Error_Msg_N ("invalid index constraint", S);
14055 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14056 return;
14057 end if;
14058 end if;
14059
14060 -- Complete construction of the Itype
14061
14062 if Is_Modular_Integer_Type (T) then
14063 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14064
14065 elsif Is_Integer_Type (T) then
14066 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14067
14068 else
14069 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14070 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14071 Set_First_Literal (Def_Id, First_Literal (T));
14072 end if;
14073
14074 Set_Size_Info (Def_Id, (T));
14075 Set_RM_Size (Def_Id, RM_Size (T));
14076 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14077
14078 Set_Scalar_Range (Def_Id, R);
14079
14080 Set_Etype (S, Def_Id);
14081 Set_Discrete_RM_Size (Def_Id);
14082 end Constrain_Index;
14083
14084 -----------------------
14085 -- Constrain_Integer --
14086 -----------------------
14087
14088 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14089 T : constant Entity_Id := Entity (Subtype_Mark (S));
14090 C : constant Node_Id := Constraint (S);
14091
14092 begin
14093 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14094
14095 if Is_Modular_Integer_Type (T) then
14096 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14097 else
14098 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14099 end if;
14100
14101 Set_Etype (Def_Id, Base_Type (T));
14102 Set_Size_Info (Def_Id, (T));
14103 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14104 Set_Discrete_RM_Size (Def_Id);
14105 end Constrain_Integer;
14106
14107 ------------------------------
14108 -- Constrain_Ordinary_Fixed --
14109 ------------------------------
14110
14111 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14112 T : constant Entity_Id := Entity (Subtype_Mark (S));
14113 C : Node_Id;
14114 D : Node_Id;
14115 Rais : Node_Id;
14116
14117 begin
14118 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14119 Set_Etype (Def_Id, Base_Type (T));
14120 Set_Size_Info (Def_Id, (T));
14121 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14122 Set_Small_Value (Def_Id, Small_Value (T));
14123
14124 -- Process the constraint
14125
14126 C := Constraint (S);
14127
14128 -- Delta constraint present
14129
14130 if Nkind (C) = N_Delta_Constraint then
14131
14132 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14133 Check_Restriction (No_Obsolescent_Features, C);
14134
14135 if Warn_On_Obsolescent_Feature then
14136 Error_Msg_S
14137 ("subtype delta constraint is an " &
14138 "obsolescent feature (RM J.3(7))?j?");
14139 end if;
14140
14141 D := Delta_Expression (C);
14142 Analyze_And_Resolve (D, Any_Real);
14143 Check_Delta_Expression (D);
14144 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14145
14146 -- Check that delta value is in range. Obviously we can do this
14147 -- at compile time, but it is strictly a runtime check, and of
14148 -- course there is an ACVC test that checks this.
14149
14150 if Delta_Value (Def_Id) < Delta_Value (T) then
14151 Error_Msg_N ("??delta value is too small", D);
14152 Rais :=
14153 Make_Raise_Constraint_Error (Sloc (D),
14154 Reason => CE_Range_Check_Failed);
14155 Insert_Action (Declaration_Node (Def_Id), Rais);
14156 end if;
14157
14158 C := Range_Constraint (C);
14159
14160 -- No delta constraint present
14161
14162 else
14163 Set_Delta_Value (Def_Id, Delta_Value (T));
14164 end if;
14165
14166 -- Range constraint present
14167
14168 if Nkind (C) = N_Range_Constraint then
14169 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14170
14171 -- No range constraint present
14172
14173 else
14174 pragma Assert (No (C));
14175 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14176 end if;
14177
14178 Set_Discrete_RM_Size (Def_Id);
14179
14180 -- Unconditionally delay the freeze, since we cannot set size
14181 -- information in all cases correctly until the freeze point.
14182
14183 Set_Has_Delayed_Freeze (Def_Id);
14184 end Constrain_Ordinary_Fixed;
14185
14186 -----------------------
14187 -- Contain_Interface --
14188 -----------------------
14189
14190 function Contain_Interface
14191 (Iface : Entity_Id;
14192 Ifaces : Elist_Id) return Boolean
14193 is
14194 Iface_Elmt : Elmt_Id;
14195
14196 begin
14197 if Present (Ifaces) then
14198 Iface_Elmt := First_Elmt (Ifaces);
14199 while Present (Iface_Elmt) loop
14200 if Node (Iface_Elmt) = Iface then
14201 return True;
14202 end if;
14203
14204 Next_Elmt (Iface_Elmt);
14205 end loop;
14206 end if;
14207
14208 return False;
14209 end Contain_Interface;
14210
14211 ---------------------------
14212 -- Convert_Scalar_Bounds --
14213 ---------------------------
14214
14215 procedure Convert_Scalar_Bounds
14216 (N : Node_Id;
14217 Parent_Type : Entity_Id;
14218 Derived_Type : Entity_Id;
14219 Loc : Source_Ptr)
14220 is
14221 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14222
14223 Lo : Node_Id;
14224 Hi : Node_Id;
14225 Rng : Node_Id;
14226
14227 begin
14228 -- Defend against previous errors
14229
14230 if No (Scalar_Range (Derived_Type)) then
14231 Check_Error_Detected;
14232 return;
14233 end if;
14234
14235 Lo := Build_Scalar_Bound
14236 (Type_Low_Bound (Derived_Type),
14237 Parent_Type, Implicit_Base);
14238
14239 Hi := Build_Scalar_Bound
14240 (Type_High_Bound (Derived_Type),
14241 Parent_Type, Implicit_Base);
14242
14243 Rng :=
14244 Make_Range (Loc,
14245 Low_Bound => Lo,
14246 High_Bound => Hi);
14247
14248 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14249
14250 Set_Parent (Rng, N);
14251 Set_Scalar_Range (Derived_Type, Rng);
14252
14253 -- Analyze the bounds
14254
14255 Analyze_And_Resolve (Lo, Implicit_Base);
14256 Analyze_And_Resolve (Hi, Implicit_Base);
14257
14258 -- Analyze the range itself, except that we do not analyze it if
14259 -- the bounds are real literals, and we have a fixed-point type.
14260 -- The reason for this is that we delay setting the bounds in this
14261 -- case till we know the final Small and Size values (see circuit
14262 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14263
14264 if Is_Fixed_Point_Type (Parent_Type)
14265 and then Nkind (Lo) = N_Real_Literal
14266 and then Nkind (Hi) = N_Real_Literal
14267 then
14268 return;
14269
14270 -- Here we do the analysis of the range
14271
14272 -- Note: we do this manually, since if we do a normal Analyze and
14273 -- Resolve call, there are problems with the conversions used for
14274 -- the derived type range.
14275
14276 else
14277 Set_Etype (Rng, Implicit_Base);
14278 Set_Analyzed (Rng, True);
14279 end if;
14280 end Convert_Scalar_Bounds;
14281
14282 -------------------
14283 -- Copy_And_Swap --
14284 -------------------
14285
14286 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14287 begin
14288 -- Initialize new full declaration entity by copying the pertinent
14289 -- fields of the corresponding private declaration entity.
14290
14291 -- We temporarily set Ekind to a value appropriate for a type to
14292 -- avoid assert failures in Einfo from checking for setting type
14293 -- attributes on something that is not a type. Ekind (Priv) is an
14294 -- appropriate choice, since it allowed the attributes to be set
14295 -- in the first place. This Ekind value will be modified later.
14296
14297 Set_Ekind (Full, Ekind (Priv));
14298
14299 -- Also set Etype temporarily to Any_Type, again, in the absence
14300 -- of errors, it will be properly reset, and if there are errors,
14301 -- then we want a value of Any_Type to remain.
14302
14303 Set_Etype (Full, Any_Type);
14304
14305 -- Now start copying attributes
14306
14307 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14308
14309 if Has_Discriminants (Full) then
14310 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14311 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14312 end if;
14313
14314 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14315 Set_Homonym (Full, Homonym (Priv));
14316 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14317 Set_Is_Public (Full, Is_Public (Priv));
14318 Set_Is_Pure (Full, Is_Pure (Priv));
14319 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14320 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14321 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14322 Set_Has_Pragma_Unreferenced_Objects
14323 (Full, Has_Pragma_Unreferenced_Objects
14324 (Priv));
14325
14326 Conditional_Delay (Full, Priv);
14327
14328 if Is_Tagged_Type (Full) then
14329 Set_Direct_Primitive_Operations
14330 (Full, Direct_Primitive_Operations (Priv));
14331 Set_No_Tagged_Streams_Pragma
14332 (Full, No_Tagged_Streams_Pragma (Priv));
14333
14334 if Is_Base_Type (Priv) then
14335 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14336 end if;
14337 end if;
14338
14339 Set_Is_Volatile (Full, Is_Volatile (Priv));
14340 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14341 Set_Scope (Full, Scope (Priv));
14342 Set_Next_Entity (Full, Next_Entity (Priv));
14343 Set_First_Entity (Full, First_Entity (Priv));
14344 Set_Last_Entity (Full, Last_Entity (Priv));
14345
14346 -- If access types have been recorded for later handling, keep them in
14347 -- the full view so that they get handled when the full view freeze
14348 -- node is expanded.
14349
14350 if Present (Freeze_Node (Priv))
14351 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14352 then
14353 Ensure_Freeze_Node (Full);
14354 Set_Access_Types_To_Process
14355 (Freeze_Node (Full),
14356 Access_Types_To_Process (Freeze_Node (Priv)));
14357 end if;
14358
14359 -- Swap the two entities. Now Private is the full type entity and Full
14360 -- is the private one. They will be swapped back at the end of the
14361 -- private part. This swapping ensures that the entity that is visible
14362 -- in the private part is the full declaration.
14363
14364 Exchange_Entities (Priv, Full);
14365 Append_Entity (Full, Scope (Full));
14366 end Copy_And_Swap;
14367
14368 -------------------------------------
14369 -- Copy_Array_Base_Type_Attributes --
14370 -------------------------------------
14371
14372 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14373 begin
14374 Set_Component_Alignment (T1, Component_Alignment (T2));
14375 Set_Component_Type (T1, Component_Type (T2));
14376 Set_Component_Size (T1, Component_Size (T2));
14377 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14378 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14379 Propagate_Concurrent_Flags (T1, T2);
14380 Set_Is_Packed (T1, Is_Packed (T2));
14381 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14382 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14383 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14384 end Copy_Array_Base_Type_Attributes;
14385
14386 -----------------------------------
14387 -- Copy_Array_Subtype_Attributes --
14388 -----------------------------------
14389
14390 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14391 begin
14392 Set_Size_Info (T1, T2);
14393
14394 Set_First_Index (T1, First_Index (T2));
14395 Set_Is_Aliased (T1, Is_Aliased (T2));
14396 Set_Is_Volatile (T1, Is_Volatile (T2));
14397 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14398 Set_Is_Constrained (T1, Is_Constrained (T2));
14399 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14400 Inherit_Rep_Item_Chain (T1, T2);
14401 Set_Convention (T1, Convention (T2));
14402 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14403 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14404 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14405 end Copy_Array_Subtype_Attributes;
14406
14407 -----------------------------------
14408 -- Create_Constrained_Components --
14409 -----------------------------------
14410
14411 procedure Create_Constrained_Components
14412 (Subt : Entity_Id;
14413 Decl_Node : Node_Id;
14414 Typ : Entity_Id;
14415 Constraints : Elist_Id)
14416 is
14417 Loc : constant Source_Ptr := Sloc (Subt);
14418 Comp_List : constant Elist_Id := New_Elmt_List;
14419 Parent_Type : constant Entity_Id := Etype (Typ);
14420 Assoc_List : constant List_Id := New_List;
14421 Discr_Val : Elmt_Id;
14422 Errors : Boolean;
14423 New_C : Entity_Id;
14424 Old_C : Entity_Id;
14425 Is_Static : Boolean := True;
14426
14427 procedure Collect_Fixed_Components (Typ : Entity_Id);
14428 -- Collect parent type components that do not appear in a variant part
14429
14430 procedure Create_All_Components;
14431 -- Iterate over Comp_List to create the components of the subtype
14432
14433 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14434 -- Creates a new component from Old_Compon, copying all the fields from
14435 -- it, including its Etype, inserts the new component in the Subt entity
14436 -- chain and returns the new component.
14437
14438 function Is_Variant_Record (T : Entity_Id) return Boolean;
14439 -- If true, and discriminants are static, collect only components from
14440 -- variants selected by discriminant values.
14441
14442 ------------------------------
14443 -- Collect_Fixed_Components --
14444 ------------------------------
14445
14446 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14447 begin
14448 -- Build association list for discriminants, and find components of the
14449 -- variant part selected by the values of the discriminants.
14450
14451 Old_C := First_Discriminant (Typ);
14452 Discr_Val := First_Elmt (Constraints);
14453 while Present (Old_C) loop
14454 Append_To (Assoc_List,
14455 Make_Component_Association (Loc,
14456 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14457 Expression => New_Copy (Node (Discr_Val))));
14458
14459 Next_Elmt (Discr_Val);
14460 Next_Discriminant (Old_C);
14461 end loop;
14462
14463 -- The tag and the possible parent component are unconditionally in
14464 -- the subtype.
14465
14466 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14467 Old_C := First_Component (Typ);
14468 while Present (Old_C) loop
14469 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14470 Append_Elmt (Old_C, Comp_List);
14471 end if;
14472
14473 Next_Component (Old_C);
14474 end loop;
14475 end if;
14476 end Collect_Fixed_Components;
14477
14478 ---------------------------
14479 -- Create_All_Components --
14480 ---------------------------
14481
14482 procedure Create_All_Components is
14483 Comp : Elmt_Id;
14484
14485 begin
14486 Comp := First_Elmt (Comp_List);
14487 while Present (Comp) loop
14488 Old_C := Node (Comp);
14489 New_C := Create_Component (Old_C);
14490
14491 Set_Etype
14492 (New_C,
14493 Constrain_Component_Type
14494 (Old_C, Subt, Decl_Node, Typ, Constraints));
14495 Set_Is_Public (New_C, Is_Public (Subt));
14496
14497 Next_Elmt (Comp);
14498 end loop;
14499 end Create_All_Components;
14500
14501 ----------------------
14502 -- Create_Component --
14503 ----------------------
14504
14505 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14506 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14507
14508 begin
14509 if Ekind (Old_Compon) = E_Discriminant
14510 and then Is_Completely_Hidden (Old_Compon)
14511 then
14512 -- This is a shadow discriminant created for a discriminant of
14513 -- the parent type, which needs to be present in the subtype.
14514 -- Give the shadow discriminant an internal name that cannot
14515 -- conflict with that of visible components.
14516
14517 Set_Chars (New_Compon, New_Internal_Name ('C'));
14518 end if;
14519
14520 -- Set the parent so we have a proper link for freezing etc. This is
14521 -- not a real parent pointer, since of course our parent does not own
14522 -- up to us and reference us, we are an illegitimate child of the
14523 -- original parent.
14524
14525 Set_Parent (New_Compon, Parent (Old_Compon));
14526
14527 -- We do not want this node marked as Comes_From_Source, since
14528 -- otherwise it would get first class status and a separate cross-
14529 -- reference line would be generated. Illegitimate children do not
14530 -- rate such recognition.
14531
14532 Set_Comes_From_Source (New_Compon, False);
14533
14534 -- But it is a real entity, and a birth certificate must be properly
14535 -- registered by entering it into the entity list.
14536
14537 Enter_Name (New_Compon);
14538
14539 return New_Compon;
14540 end Create_Component;
14541
14542 -----------------------
14543 -- Is_Variant_Record --
14544 -----------------------
14545
14546 function Is_Variant_Record (T : Entity_Id) return Boolean is
14547 begin
14548 return Nkind (Parent (T)) = N_Full_Type_Declaration
14549 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14550 and then Present (Component_List (Type_Definition (Parent (T))))
14551 and then
14552 Present
14553 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14554 end Is_Variant_Record;
14555
14556 -- Start of processing for Create_Constrained_Components
14557
14558 begin
14559 pragma Assert (Subt /= Base_Type (Subt));
14560 pragma Assert (Typ = Base_Type (Typ));
14561
14562 Set_First_Entity (Subt, Empty);
14563 Set_Last_Entity (Subt, Empty);
14564
14565 -- Check whether constraint is fully static, in which case we can
14566 -- optimize the list of components.
14567
14568 Discr_Val := First_Elmt (Constraints);
14569 while Present (Discr_Val) loop
14570 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14571 Is_Static := False;
14572 exit;
14573 end if;
14574
14575 Next_Elmt (Discr_Val);
14576 end loop;
14577
14578 Set_Has_Static_Discriminants (Subt, Is_Static);
14579
14580 Push_Scope (Subt);
14581
14582 -- Inherit the discriminants of the parent type
14583
14584 Add_Discriminants : declare
14585 Num_Disc : Nat;
14586 Num_Gird : Nat;
14587
14588 begin
14589 Num_Disc := 0;
14590 Old_C := First_Discriminant (Typ);
14591
14592 while Present (Old_C) loop
14593 Num_Disc := Num_Disc + 1;
14594 New_C := Create_Component (Old_C);
14595 Set_Is_Public (New_C, Is_Public (Subt));
14596 Next_Discriminant (Old_C);
14597 end loop;
14598
14599 -- For an untagged derived subtype, the number of discriminants may
14600 -- be smaller than the number of inherited discriminants, because
14601 -- several of them may be renamed by a single new discriminant or
14602 -- constrained. In this case, add the hidden discriminants back into
14603 -- the subtype, because they need to be present if the optimizer of
14604 -- the GCC 4.x back-end decides to break apart assignments between
14605 -- objects using the parent view into member-wise assignments.
14606
14607 Num_Gird := 0;
14608
14609 if Is_Derived_Type (Typ)
14610 and then not Is_Tagged_Type (Typ)
14611 then
14612 Old_C := First_Stored_Discriminant (Typ);
14613
14614 while Present (Old_C) loop
14615 Num_Gird := Num_Gird + 1;
14616 Next_Stored_Discriminant (Old_C);
14617 end loop;
14618 end if;
14619
14620 if Num_Gird > Num_Disc then
14621
14622 -- Find out multiple uses of new discriminants, and add hidden
14623 -- components for the extra renamed discriminants. We recognize
14624 -- multiple uses through the Corresponding_Discriminant of a
14625 -- new discriminant: if it constrains several old discriminants,
14626 -- this field points to the last one in the parent type. The
14627 -- stored discriminants of the derived type have the same name
14628 -- as those of the parent.
14629
14630 declare
14631 Constr : Elmt_Id;
14632 New_Discr : Entity_Id;
14633 Old_Discr : Entity_Id;
14634
14635 begin
14636 Constr := First_Elmt (Stored_Constraint (Typ));
14637 Old_Discr := First_Stored_Discriminant (Typ);
14638 while Present (Constr) loop
14639 if Is_Entity_Name (Node (Constr))
14640 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14641 then
14642 New_Discr := Entity (Node (Constr));
14643
14644 if Chars (Corresponding_Discriminant (New_Discr)) /=
14645 Chars (Old_Discr)
14646 then
14647 -- The new discriminant has been used to rename a
14648 -- subsequent old discriminant. Introduce a shadow
14649 -- component for the current old discriminant.
14650
14651 New_C := Create_Component (Old_Discr);
14652 Set_Original_Record_Component (New_C, Old_Discr);
14653 end if;
14654
14655 else
14656 -- The constraint has eliminated the old discriminant.
14657 -- Introduce a shadow component.
14658
14659 New_C := Create_Component (Old_Discr);
14660 Set_Original_Record_Component (New_C, Old_Discr);
14661 end if;
14662
14663 Next_Elmt (Constr);
14664 Next_Stored_Discriminant (Old_Discr);
14665 end loop;
14666 end;
14667 end if;
14668 end Add_Discriminants;
14669
14670 if Is_Static
14671 and then Is_Variant_Record (Typ)
14672 then
14673 Collect_Fixed_Components (Typ);
14674
14675 Gather_Components (
14676 Typ,
14677 Component_List (Type_Definition (Parent (Typ))),
14678 Governed_By => Assoc_List,
14679 Into => Comp_List,
14680 Report_Errors => Errors);
14681 pragma Assert (not Errors
14682 or else Serious_Errors_Detected > 0);
14683
14684 Create_All_Components;
14685
14686 -- If the subtype declaration is created for a tagged type derivation
14687 -- with constraints, we retrieve the record definition of the parent
14688 -- type to select the components of the proper variant.
14689
14690 elsif Is_Static
14691 and then Is_Tagged_Type (Typ)
14692 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14693 and then
14694 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14695 and then Is_Variant_Record (Parent_Type)
14696 then
14697 Collect_Fixed_Components (Typ);
14698
14699 Gather_Components
14700 (Typ,
14701 Component_List (Type_Definition (Parent (Parent_Type))),
14702 Governed_By => Assoc_List,
14703 Into => Comp_List,
14704 Report_Errors => Errors);
14705
14706 -- Note: previously there was a check at this point that no errors
14707 -- were detected. As a consequence of AI05-220 there may be an error
14708 -- if an inherited discriminant that controls a variant has a non-
14709 -- static constraint.
14710
14711 -- If the tagged derivation has a type extension, collect all the
14712 -- new components therein.
14713
14714 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14715 then
14716 Old_C := First_Component (Typ);
14717 while Present (Old_C) loop
14718 if Original_Record_Component (Old_C) = Old_C
14719 and then Chars (Old_C) /= Name_uTag
14720 and then Chars (Old_C) /= Name_uParent
14721 then
14722 Append_Elmt (Old_C, Comp_List);
14723 end if;
14724
14725 Next_Component (Old_C);
14726 end loop;
14727 end if;
14728
14729 Create_All_Components;
14730
14731 else
14732 -- If discriminants are not static, or if this is a multi-level type
14733 -- extension, we have to include all components of the parent type.
14734
14735 Old_C := First_Component (Typ);
14736 while Present (Old_C) loop
14737 New_C := Create_Component (Old_C);
14738
14739 Set_Etype
14740 (New_C,
14741 Constrain_Component_Type
14742 (Old_C, Subt, Decl_Node, Typ, Constraints));
14743 Set_Is_Public (New_C, Is_Public (Subt));
14744
14745 Next_Component (Old_C);
14746 end loop;
14747 end if;
14748
14749 End_Scope;
14750 end Create_Constrained_Components;
14751
14752 ------------------------------------------
14753 -- Decimal_Fixed_Point_Type_Declaration --
14754 ------------------------------------------
14755
14756 procedure Decimal_Fixed_Point_Type_Declaration
14757 (T : Entity_Id;
14758 Def : Node_Id)
14759 is
14760 Loc : constant Source_Ptr := Sloc (Def);
14761 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14762 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14763 Implicit_Base : Entity_Id;
14764 Digs_Val : Uint;
14765 Delta_Val : Ureal;
14766 Scale_Val : Uint;
14767 Bound_Val : Ureal;
14768
14769 begin
14770 Check_SPARK_05_Restriction
14771 ("decimal fixed point type is not allowed", Def);
14772 Check_Restriction (No_Fixed_Point, Def);
14773
14774 -- Create implicit base type
14775
14776 Implicit_Base :=
14777 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14778 Set_Etype (Implicit_Base, Implicit_Base);
14779
14780 -- Analyze and process delta expression
14781
14782 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14783
14784 Check_Delta_Expression (Delta_Expr);
14785 Delta_Val := Expr_Value_R (Delta_Expr);
14786
14787 -- Check delta is power of 10, and determine scale value from it
14788
14789 declare
14790 Val : Ureal;
14791
14792 begin
14793 Scale_Val := Uint_0;
14794 Val := Delta_Val;
14795
14796 if Val < Ureal_1 then
14797 while Val < Ureal_1 loop
14798 Val := Val * Ureal_10;
14799 Scale_Val := Scale_Val + 1;
14800 end loop;
14801
14802 if Scale_Val > 18 then
14803 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14804 Scale_Val := UI_From_Int (+18);
14805 end if;
14806
14807 else
14808 while Val > Ureal_1 loop
14809 Val := Val / Ureal_10;
14810 Scale_Val := Scale_Val - 1;
14811 end loop;
14812
14813 if Scale_Val < -18 then
14814 Error_Msg_N ("scale is less than minimum value of -18", Def);
14815 Scale_Val := UI_From_Int (-18);
14816 end if;
14817 end if;
14818
14819 if Val /= Ureal_1 then
14820 Error_Msg_N ("delta expression must be a power of 10", Def);
14821 Delta_Val := Ureal_10 ** (-Scale_Val);
14822 end if;
14823 end;
14824
14825 -- Set delta, scale and small (small = delta for decimal type)
14826
14827 Set_Delta_Value (Implicit_Base, Delta_Val);
14828 Set_Scale_Value (Implicit_Base, Scale_Val);
14829 Set_Small_Value (Implicit_Base, Delta_Val);
14830
14831 -- Analyze and process digits expression
14832
14833 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14834 Check_Digits_Expression (Digs_Expr);
14835 Digs_Val := Expr_Value (Digs_Expr);
14836
14837 if Digs_Val > 18 then
14838 Digs_Val := UI_From_Int (+18);
14839 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14840 end if;
14841
14842 Set_Digits_Value (Implicit_Base, Digs_Val);
14843 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14844
14845 -- Set range of base type from digits value for now. This will be
14846 -- expanded to represent the true underlying base range by Freeze.
14847
14848 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14849
14850 -- Note: We leave size as zero for now, size will be set at freeze
14851 -- time. We have to do this for ordinary fixed-point, because the size
14852 -- depends on the specified small, and we might as well do the same for
14853 -- decimal fixed-point.
14854
14855 pragma Assert (Esize (Implicit_Base) = Uint_0);
14856
14857 -- If there are bounds given in the declaration use them as the
14858 -- bounds of the first named subtype.
14859
14860 if Present (Real_Range_Specification (Def)) then
14861 declare
14862 RRS : constant Node_Id := Real_Range_Specification (Def);
14863 Low : constant Node_Id := Low_Bound (RRS);
14864 High : constant Node_Id := High_Bound (RRS);
14865 Low_Val : Ureal;
14866 High_Val : Ureal;
14867
14868 begin
14869 Analyze_And_Resolve (Low, Any_Real);
14870 Analyze_And_Resolve (High, Any_Real);
14871 Check_Real_Bound (Low);
14872 Check_Real_Bound (High);
14873 Low_Val := Expr_Value_R (Low);
14874 High_Val := Expr_Value_R (High);
14875
14876 if Low_Val < (-Bound_Val) then
14877 Error_Msg_N
14878 ("range low bound too small for digits value", Low);
14879 Low_Val := -Bound_Val;
14880 end if;
14881
14882 if High_Val > Bound_Val then
14883 Error_Msg_N
14884 ("range high bound too large for digits value", High);
14885 High_Val := Bound_Val;
14886 end if;
14887
14888 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14889 end;
14890
14891 -- If no explicit range, use range that corresponds to given
14892 -- digits value. This will end up as the final range for the
14893 -- first subtype.
14894
14895 else
14896 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14897 end if;
14898
14899 -- Complete entity for first subtype. The inheritance of the rep item
14900 -- chain ensures that SPARK-related pragmas are not clobbered when the
14901 -- decimal fixed point type acts as a full view of a private type.
14902
14903 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14904 Set_Etype (T, Implicit_Base);
14905 Set_Size_Info (T, Implicit_Base);
14906 Inherit_Rep_Item_Chain (T, Implicit_Base);
14907 Set_Digits_Value (T, Digs_Val);
14908 Set_Delta_Value (T, Delta_Val);
14909 Set_Small_Value (T, Delta_Val);
14910 Set_Scale_Value (T, Scale_Val);
14911 Set_Is_Constrained (T);
14912 end Decimal_Fixed_Point_Type_Declaration;
14913
14914 -----------------------------------
14915 -- Derive_Progenitor_Subprograms --
14916 -----------------------------------
14917
14918 procedure Derive_Progenitor_Subprograms
14919 (Parent_Type : Entity_Id;
14920 Tagged_Type : Entity_Id)
14921 is
14922 E : Entity_Id;
14923 Elmt : Elmt_Id;
14924 Iface : Entity_Id;
14925 Iface_Elmt : Elmt_Id;
14926 Iface_Subp : Entity_Id;
14927 New_Subp : Entity_Id := Empty;
14928 Prim_Elmt : Elmt_Id;
14929 Subp : Entity_Id;
14930 Typ : Entity_Id;
14931
14932 begin
14933 pragma Assert (Ada_Version >= Ada_2005
14934 and then Is_Record_Type (Tagged_Type)
14935 and then Is_Tagged_Type (Tagged_Type)
14936 and then Has_Interfaces (Tagged_Type));
14937
14938 -- Step 1: Transfer to the full-view primitives associated with the
14939 -- partial-view that cover interface primitives. Conceptually this
14940 -- work should be done later by Process_Full_View; done here to
14941 -- simplify its implementation at later stages. It can be safely
14942 -- done here because interfaces must be visible in the partial and
14943 -- private view (RM 7.3(7.3/2)).
14944
14945 -- Small optimization: This work is only required if the parent may
14946 -- have entities whose Alias attribute reference an interface primitive.
14947 -- Such a situation may occur if the parent is an abstract type and the
14948 -- primitive has not been yet overridden or if the parent is a generic
14949 -- formal type covering interfaces.
14950
14951 -- If the tagged type is not abstract, it cannot have abstract
14952 -- primitives (the only entities in the list of primitives of
14953 -- non-abstract tagged types that can reference abstract primitives
14954 -- through its Alias attribute are the internal entities that have
14955 -- attribute Interface_Alias, and these entities are generated later
14956 -- by Add_Internal_Interface_Entities).
14957
14958 if In_Private_Part (Current_Scope)
14959 and then (Is_Abstract_Type (Parent_Type)
14960 or else
14961 Is_Generic_Type (Parent_Type))
14962 then
14963 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14964 while Present (Elmt) loop
14965 Subp := Node (Elmt);
14966
14967 -- At this stage it is not possible to have entities in the list
14968 -- of primitives that have attribute Interface_Alias.
14969
14970 pragma Assert (No (Interface_Alias (Subp)));
14971
14972 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14973
14974 if Is_Interface (Typ) then
14975 E := Find_Primitive_Covering_Interface
14976 (Tagged_Type => Tagged_Type,
14977 Iface_Prim => Subp);
14978
14979 if Present (E)
14980 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14981 then
14982 Replace_Elmt (Elmt, E);
14983 Remove_Homonym (Subp);
14984 end if;
14985 end if;
14986
14987 Next_Elmt (Elmt);
14988 end loop;
14989 end if;
14990
14991 -- Step 2: Add primitives of progenitors that are not implemented by
14992 -- parents of Tagged_Type.
14993
14994 if Present (Interfaces (Base_Type (Tagged_Type))) then
14995 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14996 while Present (Iface_Elmt) loop
14997 Iface := Node (Iface_Elmt);
14998
14999 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15000 while Present (Prim_Elmt) loop
15001 Iface_Subp := Node (Prim_Elmt);
15002
15003 -- Exclude derivation of predefined primitives except those
15004 -- that come from source, or are inherited from one that comes
15005 -- from source. Required to catch declarations of equality
15006 -- operators of interfaces. For example:
15007
15008 -- type Iface is interface;
15009 -- function "=" (Left, Right : Iface) return Boolean;
15010
15011 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15012 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
15013 then
15014 E := Find_Primitive_Covering_Interface
15015 (Tagged_Type => Tagged_Type,
15016 Iface_Prim => Iface_Subp);
15017
15018 -- If not found we derive a new primitive leaving its alias
15019 -- attribute referencing the interface primitive.
15020
15021 if No (E) then
15022 Derive_Subprogram
15023 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15024
15025 -- Ada 2012 (AI05-0197): If the covering primitive's name
15026 -- differs from the name of the interface primitive then it
15027 -- is a private primitive inherited from a parent type. In
15028 -- such case, given that Tagged_Type covers the interface,
15029 -- the inherited private primitive becomes visible. For such
15030 -- purpose we add a new entity that renames the inherited
15031 -- private primitive.
15032
15033 elsif Chars (E) /= Chars (Iface_Subp) then
15034 pragma Assert (Has_Suffix (E, 'P'));
15035 Derive_Subprogram
15036 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15037 Set_Alias (New_Subp, E);
15038 Set_Is_Abstract_Subprogram (New_Subp,
15039 Is_Abstract_Subprogram (E));
15040
15041 -- Propagate to the full view interface entities associated
15042 -- with the partial view.
15043
15044 elsif In_Private_Part (Current_Scope)
15045 and then Present (Alias (E))
15046 and then Alias (E) = Iface_Subp
15047 and then
15048 List_Containing (Parent (E)) /=
15049 Private_Declarations
15050 (Specification
15051 (Unit_Declaration_Node (Current_Scope)))
15052 then
15053 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15054 end if;
15055 end if;
15056
15057 Next_Elmt (Prim_Elmt);
15058 end loop;
15059
15060 Next_Elmt (Iface_Elmt);
15061 end loop;
15062 end if;
15063 end Derive_Progenitor_Subprograms;
15064
15065 -----------------------
15066 -- Derive_Subprogram --
15067 -----------------------
15068
15069 procedure Derive_Subprogram
15070 (New_Subp : out Entity_Id;
15071 Parent_Subp : Entity_Id;
15072 Derived_Type : Entity_Id;
15073 Parent_Type : Entity_Id;
15074 Actual_Subp : Entity_Id := Empty)
15075 is
15076 Formal : Entity_Id;
15077 -- Formal parameter of parent primitive operation
15078
15079 Formal_Of_Actual : Entity_Id;
15080 -- Formal parameter of actual operation, when the derivation is to
15081 -- create a renaming for a primitive operation of an actual in an
15082 -- instantiation.
15083
15084 New_Formal : Entity_Id;
15085 -- Formal of inherited operation
15086
15087 Visible_Subp : Entity_Id := Parent_Subp;
15088
15089 function Is_Private_Overriding return Boolean;
15090 -- If Subp is a private overriding of a visible operation, the inherited
15091 -- operation derives from the overridden op (even though its body is the
15092 -- overriding one) and the inherited operation is visible now. See
15093 -- sem_disp to see the full details of the handling of the overridden
15094 -- subprogram, which is removed from the list of primitive operations of
15095 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15096 -- and used to diagnose abstract operations that need overriding in the
15097 -- derived type.
15098
15099 procedure Replace_Type (Id, New_Id : Entity_Id);
15100 -- When the type is an anonymous access type, create a new access type
15101 -- designating the derived type.
15102
15103 procedure Set_Derived_Name;
15104 -- This procedure sets the appropriate Chars name for New_Subp. This
15105 -- is normally just a copy of the parent name. An exception arises for
15106 -- type support subprograms, where the name is changed to reflect the
15107 -- name of the derived type, e.g. if type foo is derived from type bar,
15108 -- then a procedure barDA is derived with a name fooDA.
15109
15110 ---------------------------
15111 -- Is_Private_Overriding --
15112 ---------------------------
15113
15114 function Is_Private_Overriding return Boolean is
15115 Prev : Entity_Id;
15116
15117 begin
15118 -- If the parent is not a dispatching operation there is no
15119 -- need to investigate overridings
15120
15121 if not Is_Dispatching_Operation (Parent_Subp) then
15122 return False;
15123 end if;
15124
15125 -- The visible operation that is overridden is a homonym of the
15126 -- parent subprogram. We scan the homonym chain to find the one
15127 -- whose alias is the subprogram we are deriving.
15128
15129 Prev := Current_Entity (Parent_Subp);
15130 while Present (Prev) loop
15131 if Ekind (Prev) = Ekind (Parent_Subp)
15132 and then Alias (Prev) = Parent_Subp
15133 and then Scope (Parent_Subp) = Scope (Prev)
15134 and then not Is_Hidden (Prev)
15135 then
15136 Visible_Subp := Prev;
15137 return True;
15138 end if;
15139
15140 Prev := Homonym (Prev);
15141 end loop;
15142
15143 return False;
15144 end Is_Private_Overriding;
15145
15146 ------------------
15147 -- Replace_Type --
15148 ------------------
15149
15150 procedure Replace_Type (Id, New_Id : Entity_Id) is
15151 Id_Type : constant Entity_Id := Etype (Id);
15152 Acc_Type : Entity_Id;
15153 Par : constant Node_Id := Parent (Derived_Type);
15154
15155 begin
15156 -- When the type is an anonymous access type, create a new access
15157 -- type designating the derived type. This itype must be elaborated
15158 -- at the point of the derivation, not on subsequent calls that may
15159 -- be out of the proper scope for Gigi, so we insert a reference to
15160 -- it after the derivation.
15161
15162 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15163 declare
15164 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15165
15166 begin
15167 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15168 and then Present (Full_View (Desig_Typ))
15169 and then not Is_Private_Type (Parent_Type)
15170 then
15171 Desig_Typ := Full_View (Desig_Typ);
15172 end if;
15173
15174 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15175
15176 -- Ada 2005 (AI-251): Handle also derivations of abstract
15177 -- interface primitives.
15178
15179 or else (Is_Interface (Desig_Typ)
15180 and then not Is_Class_Wide_Type (Desig_Typ))
15181 then
15182 Acc_Type := New_Copy (Id_Type);
15183 Set_Etype (Acc_Type, Acc_Type);
15184 Set_Scope (Acc_Type, New_Subp);
15185
15186 -- Set size of anonymous access type. If we have an access
15187 -- to an unconstrained array, this is a fat pointer, so it
15188 -- is sizes at twice addtress size.
15189
15190 if Is_Array_Type (Desig_Typ)
15191 and then not Is_Constrained (Desig_Typ)
15192 then
15193 Init_Size (Acc_Type, 2 * System_Address_Size);
15194
15195 -- Other cases use a thin pointer
15196
15197 else
15198 Init_Size (Acc_Type, System_Address_Size);
15199 end if;
15200
15201 -- Set remaining characterstics of anonymous access type
15202
15203 Init_Alignment (Acc_Type);
15204 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15205
15206 Set_Etype (New_Id, Acc_Type);
15207 Set_Scope (New_Id, New_Subp);
15208
15209 -- Create a reference to it
15210
15211 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15212
15213 else
15214 Set_Etype (New_Id, Id_Type);
15215 end if;
15216 end;
15217
15218 -- In Ada2012, a formal may have an incomplete type but the type
15219 -- derivation that inherits the primitive follows the full view.
15220
15221 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15222 or else
15223 (Ekind (Id_Type) = E_Record_Type_With_Private
15224 and then Present (Full_View (Id_Type))
15225 and then
15226 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15227 or else
15228 (Ada_Version >= Ada_2012
15229 and then Ekind (Id_Type) = E_Incomplete_Type
15230 and then Full_View (Id_Type) = Parent_Type)
15231 then
15232 -- Constraint checks on formals are generated during expansion,
15233 -- based on the signature of the original subprogram. The bounds
15234 -- of the derived type are not relevant, and thus we can use
15235 -- the base type for the formals. However, the return type may be
15236 -- used in a context that requires that the proper static bounds
15237 -- be used (a case statement, for example) and for those cases
15238 -- we must use the derived type (first subtype), not its base.
15239
15240 -- If the derived_type_definition has no constraints, we know that
15241 -- the derived type has the same constraints as the first subtype
15242 -- of the parent, and we can also use it rather than its base,
15243 -- which can lead to more efficient code.
15244
15245 if Etype (Id) = Parent_Type then
15246 if Is_Scalar_Type (Parent_Type)
15247 and then
15248 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15249 then
15250 Set_Etype (New_Id, Derived_Type);
15251
15252 elsif Nkind (Par) = N_Full_Type_Declaration
15253 and then
15254 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15255 and then
15256 Is_Entity_Name
15257 (Subtype_Indication (Type_Definition (Par)))
15258 then
15259 Set_Etype (New_Id, Derived_Type);
15260
15261 else
15262 Set_Etype (New_Id, Base_Type (Derived_Type));
15263 end if;
15264
15265 else
15266 Set_Etype (New_Id, Base_Type (Derived_Type));
15267 end if;
15268
15269 else
15270 Set_Etype (New_Id, Etype (Id));
15271 end if;
15272 end Replace_Type;
15273
15274 ----------------------
15275 -- Set_Derived_Name --
15276 ----------------------
15277
15278 procedure Set_Derived_Name is
15279 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15280 begin
15281 if Nm = TSS_Null then
15282 Set_Chars (New_Subp, Chars (Parent_Subp));
15283 else
15284 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15285 end if;
15286 end Set_Derived_Name;
15287
15288 -- Start of processing for Derive_Subprogram
15289
15290 begin
15291 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15292 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15293
15294 -- Check whether the inherited subprogram is a private operation that
15295 -- should be inherited but not yet made visible. Such subprograms can
15296 -- become visible at a later point (e.g., the private part of a public
15297 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15298 -- following predicate is true, then this is not such a private
15299 -- operation and the subprogram simply inherits the name of the parent
15300 -- subprogram. Note the special check for the names of controlled
15301 -- operations, which are currently exempted from being inherited with
15302 -- a hidden name because they must be findable for generation of
15303 -- implicit run-time calls.
15304
15305 if not Is_Hidden (Parent_Subp)
15306 or else Is_Internal (Parent_Subp)
15307 or else Is_Private_Overriding
15308 or else Is_Internal_Name (Chars (Parent_Subp))
15309 or else (Is_Controlled (Parent_Type)
15310 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15311 Name_Finalize,
15312 Name_Initialize))
15313 then
15314 Set_Derived_Name;
15315
15316 -- An inherited dispatching equality will be overridden by an internally
15317 -- generated one, or by an explicit one, so preserve its name and thus
15318 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15319 -- private operation it may become invisible if the full view has
15320 -- progenitors, and the dispatch table will be malformed.
15321 -- We check that the type is limited to handle the anomalous declaration
15322 -- of Limited_Controlled, which is derived from a non-limited type, and
15323 -- which is handled specially elsewhere as well.
15324
15325 elsif Chars (Parent_Subp) = Name_Op_Eq
15326 and then Is_Dispatching_Operation (Parent_Subp)
15327 and then Etype (Parent_Subp) = Standard_Boolean
15328 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15329 and then
15330 Etype (First_Formal (Parent_Subp)) =
15331 Etype (Next_Formal (First_Formal (Parent_Subp)))
15332 then
15333 Set_Derived_Name;
15334
15335 -- If parent is hidden, this can be a regular derivation if the
15336 -- parent is immediately visible in a non-instantiating context,
15337 -- or if we are in the private part of an instance. This test
15338 -- should still be refined ???
15339
15340 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15341 -- operation as a non-visible operation in cases where the parent
15342 -- subprogram might not be visible now, but was visible within the
15343 -- original generic, so it would be wrong to make the inherited
15344 -- subprogram non-visible now. (Not clear if this test is fully
15345 -- correct; are there any cases where we should declare the inherited
15346 -- operation as not visible to avoid it being overridden, e.g., when
15347 -- the parent type is a generic actual with private primitives ???)
15348
15349 -- (they should be treated the same as other private inherited
15350 -- subprograms, but it's not clear how to do this cleanly). ???
15351
15352 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15353 and then Is_Immediately_Visible (Parent_Subp)
15354 and then not In_Instance)
15355 or else In_Instance_Not_Visible
15356 then
15357 Set_Derived_Name;
15358
15359 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15360 -- overrides an interface primitive because interface primitives
15361 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15362
15363 elsif Ada_Version >= Ada_2005
15364 and then Is_Dispatching_Operation (Parent_Subp)
15365 and then Present (Covered_Interface_Op (Parent_Subp))
15366 then
15367 Set_Derived_Name;
15368
15369 -- Otherwise, the type is inheriting a private operation, so enter it
15370 -- with a special name so it can't be overridden.
15371
15372 else
15373 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15374 end if;
15375
15376 Set_Parent (New_Subp, Parent (Derived_Type));
15377
15378 if Present (Actual_Subp) then
15379 Replace_Type (Actual_Subp, New_Subp);
15380 else
15381 Replace_Type (Parent_Subp, New_Subp);
15382 end if;
15383
15384 Conditional_Delay (New_Subp, Parent_Subp);
15385
15386 -- If we are creating a renaming for a primitive operation of an
15387 -- actual of a generic derived type, we must examine the signature
15388 -- of the actual primitive, not that of the generic formal, which for
15389 -- example may be an interface. However the name and initial value
15390 -- of the inherited operation are those of the formal primitive.
15391
15392 Formal := First_Formal (Parent_Subp);
15393
15394 if Present (Actual_Subp) then
15395 Formal_Of_Actual := First_Formal (Actual_Subp);
15396 else
15397 Formal_Of_Actual := Empty;
15398 end if;
15399
15400 while Present (Formal) loop
15401 New_Formal := New_Copy (Formal);
15402
15403 -- Normally we do not go copying parents, but in the case of
15404 -- formals, we need to link up to the declaration (which is the
15405 -- parameter specification), and it is fine to link up to the
15406 -- original formal's parameter specification in this case.
15407
15408 Set_Parent (New_Formal, Parent (Formal));
15409 Append_Entity (New_Formal, New_Subp);
15410
15411 if Present (Formal_Of_Actual) then
15412 Replace_Type (Formal_Of_Actual, New_Formal);
15413 Next_Formal (Formal_Of_Actual);
15414 else
15415 Replace_Type (Formal, New_Formal);
15416 end if;
15417
15418 Next_Formal (Formal);
15419 end loop;
15420
15421 -- If this derivation corresponds to a tagged generic actual, then
15422 -- primitive operations rename those of the actual. Otherwise the
15423 -- primitive operations rename those of the parent type, If the parent
15424 -- renames an intrinsic operator, so does the new subprogram. We except
15425 -- concatenation, which is always properly typed, and does not get
15426 -- expanded as other intrinsic operations.
15427
15428 if No (Actual_Subp) then
15429 if Is_Intrinsic_Subprogram (Parent_Subp) then
15430 Set_Is_Intrinsic_Subprogram (New_Subp);
15431
15432 if Present (Alias (Parent_Subp))
15433 and then Chars (Parent_Subp) /= Name_Op_Concat
15434 then
15435 Set_Alias (New_Subp, Alias (Parent_Subp));
15436 else
15437 Set_Alias (New_Subp, Parent_Subp);
15438 end if;
15439
15440 else
15441 Set_Alias (New_Subp, Parent_Subp);
15442 end if;
15443
15444 else
15445 Set_Alias (New_Subp, Actual_Subp);
15446 end if;
15447
15448 -- Derived subprograms of a tagged type must inherit the convention
15449 -- of the parent subprogram (a requirement of AI-117). Derived
15450 -- subprograms of untagged types simply get convention Ada by default.
15451
15452 -- If the derived type is a tagged generic formal type with unknown
15453 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15454
15455 -- However, if the type is derived from a generic formal, the further
15456 -- inherited subprogram has the convention of the non-generic ancestor.
15457 -- Otherwise there would be no way to override the operation.
15458 -- (This is subject to forthcoming ARG discussions).
15459
15460 if Is_Tagged_Type (Derived_Type) then
15461 if Is_Generic_Type (Derived_Type)
15462 and then Has_Unknown_Discriminants (Derived_Type)
15463 then
15464 Set_Convention (New_Subp, Convention_Intrinsic);
15465
15466 else
15467 if Is_Generic_Type (Parent_Type)
15468 and then Has_Unknown_Discriminants (Parent_Type)
15469 then
15470 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15471 else
15472 Set_Convention (New_Subp, Convention (Parent_Subp));
15473 end if;
15474 end if;
15475 end if;
15476
15477 -- Predefined controlled operations retain their name even if the parent
15478 -- is hidden (see above), but they are not primitive operations if the
15479 -- ancestor is not visible, for example if the parent is a private
15480 -- extension completed with a controlled extension. Note that a full
15481 -- type that is controlled can break privacy: the flag Is_Controlled is
15482 -- set on both views of the type.
15483
15484 if Is_Controlled (Parent_Type)
15485 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15486 Name_Adjust,
15487 Name_Finalize)
15488 and then Is_Hidden (Parent_Subp)
15489 and then not Is_Visibly_Controlled (Parent_Type)
15490 then
15491 Set_Is_Hidden (New_Subp);
15492 end if;
15493
15494 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15495 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15496
15497 if Ekind (Parent_Subp) = E_Procedure then
15498 Set_Is_Valued_Procedure
15499 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15500 else
15501 Set_Has_Controlling_Result
15502 (New_Subp, Has_Controlling_Result (Parent_Subp));
15503 end if;
15504
15505 -- No_Return must be inherited properly. If this is overridden in the
15506 -- case of a dispatching operation, then a check is made in Sem_Disp
15507 -- that the overriding operation is also No_Return (no such check is
15508 -- required for the case of non-dispatching operation.
15509
15510 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15511
15512 -- A derived function with a controlling result is abstract. If the
15513 -- Derived_Type is a nonabstract formal generic derived type, then
15514 -- inherited operations are not abstract: the required check is done at
15515 -- instantiation time. If the derivation is for a generic actual, the
15516 -- function is not abstract unless the actual is.
15517
15518 if Is_Generic_Type (Derived_Type)
15519 and then not Is_Abstract_Type (Derived_Type)
15520 then
15521 null;
15522
15523 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15524 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15525
15526 -- A subprogram subject to pragma Extensions_Visible with value False
15527 -- requires overriding if the subprogram has at least one controlling
15528 -- OUT parameter (SPARK RM 6.1.7(6)).
15529
15530 elsif Ada_Version >= Ada_2005
15531 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15532 or else (Is_Tagged_Type (Derived_Type)
15533 and then Etype (New_Subp) = Derived_Type
15534 and then not Is_Null_Extension (Derived_Type))
15535 or else (Is_Tagged_Type (Derived_Type)
15536 and then Ekind (Etype (New_Subp)) =
15537 E_Anonymous_Access_Type
15538 and then Designated_Type (Etype (New_Subp)) =
15539 Derived_Type
15540 and then not Is_Null_Extension (Derived_Type))
15541 or else (Comes_From_Source (Alias (New_Subp))
15542 and then Is_EVF_Procedure (Alias (New_Subp))))
15543 and then No (Actual_Subp)
15544 then
15545 if not Is_Tagged_Type (Derived_Type)
15546 or else Is_Abstract_Type (Derived_Type)
15547 or else Is_Abstract_Subprogram (Alias (New_Subp))
15548 then
15549 Set_Is_Abstract_Subprogram (New_Subp);
15550 else
15551 Set_Requires_Overriding (New_Subp);
15552 end if;
15553
15554 elsif Ada_Version < Ada_2005
15555 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15556 or else (Is_Tagged_Type (Derived_Type)
15557 and then Etype (New_Subp) = Derived_Type
15558 and then No (Actual_Subp)))
15559 then
15560 Set_Is_Abstract_Subprogram (New_Subp);
15561
15562 -- AI05-0097 : an inherited operation that dispatches on result is
15563 -- abstract if the derived type is abstract, even if the parent type
15564 -- is concrete and the derived type is a null extension.
15565
15566 elsif Has_Controlling_Result (Alias (New_Subp))
15567 and then Is_Abstract_Type (Etype (New_Subp))
15568 then
15569 Set_Is_Abstract_Subprogram (New_Subp);
15570
15571 -- Finally, if the parent type is abstract we must verify that all
15572 -- inherited operations are either non-abstract or overridden, or that
15573 -- the derived type itself is abstract (this check is performed at the
15574 -- end of a package declaration, in Check_Abstract_Overriding). A
15575 -- private overriding in the parent type will not be visible in the
15576 -- derivation if we are not in an inner package or in a child unit of
15577 -- the parent type, in which case the abstractness of the inherited
15578 -- operation is carried to the new subprogram.
15579
15580 elsif Is_Abstract_Type (Parent_Type)
15581 and then not In_Open_Scopes (Scope (Parent_Type))
15582 and then Is_Private_Overriding
15583 and then Is_Abstract_Subprogram (Visible_Subp)
15584 then
15585 if No (Actual_Subp) then
15586 Set_Alias (New_Subp, Visible_Subp);
15587 Set_Is_Abstract_Subprogram (New_Subp, True);
15588
15589 else
15590 -- If this is a derivation for an instance of a formal derived
15591 -- type, abstractness comes from the primitive operation of the
15592 -- actual, not from the operation inherited from the ancestor.
15593
15594 Set_Is_Abstract_Subprogram
15595 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15596 end if;
15597 end if;
15598
15599 New_Overloaded_Entity (New_Subp, Derived_Type);
15600
15601 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15602 -- preconditions and the derived type is abstract, the derived operation
15603 -- is abstract as well if parent subprogram is not abstract or null.
15604
15605 if Is_Abstract_Type (Derived_Type)
15606 and then Has_Non_Trivial_Precondition (Parent_Subp)
15607 and then Present (Interfaces (Derived_Type))
15608 then
15609
15610 -- Add useful attributes of subprogram before the freeze point,
15611 -- in case freezing is delayed or there are previous errors.
15612
15613 Set_Is_Dispatching_Operation (New_Subp);
15614
15615 declare
15616 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15617
15618 begin
15619 if Present (Iface_Prim)
15620 and then Has_Non_Trivial_Precondition (Iface_Prim)
15621 then
15622 Set_Is_Abstract_Subprogram (New_Subp);
15623 end if;
15624 end;
15625 end if;
15626
15627 -- Check for case of a derived subprogram for the instantiation of a
15628 -- formal derived tagged type, if so mark the subprogram as dispatching
15629 -- and inherit the dispatching attributes of the actual subprogram. The
15630 -- derived subprogram is effectively renaming of the actual subprogram,
15631 -- so it needs to have the same attributes as the actual.
15632
15633 if Present (Actual_Subp)
15634 and then Is_Dispatching_Operation (Actual_Subp)
15635 then
15636 Set_Is_Dispatching_Operation (New_Subp);
15637
15638 if Present (DTC_Entity (Actual_Subp)) then
15639 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15640 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15641 end if;
15642 end if;
15643
15644 -- Indicate that a derived subprogram does not require a body and that
15645 -- it does not require processing of default expressions.
15646
15647 Set_Has_Completion (New_Subp);
15648 Set_Default_Expressions_Processed (New_Subp);
15649
15650 if Ekind (New_Subp) = E_Function then
15651 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15652 end if;
15653 end Derive_Subprogram;
15654
15655 ------------------------
15656 -- Derive_Subprograms --
15657 ------------------------
15658
15659 procedure Derive_Subprograms
15660 (Parent_Type : Entity_Id;
15661 Derived_Type : Entity_Id;
15662 Generic_Actual : Entity_Id := Empty)
15663 is
15664 Op_List : constant Elist_Id :=
15665 Collect_Primitive_Operations (Parent_Type);
15666
15667 function Check_Derived_Type return Boolean;
15668 -- Check that all the entities derived from Parent_Type are found in
15669 -- the list of primitives of Derived_Type exactly in the same order.
15670
15671 procedure Derive_Interface_Subprogram
15672 (New_Subp : out Entity_Id;
15673 Subp : Entity_Id;
15674 Actual_Subp : Entity_Id);
15675 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15676 -- (which is an interface primitive). If Generic_Actual is present then
15677 -- Actual_Subp is the actual subprogram corresponding with the generic
15678 -- subprogram Subp.
15679
15680 ------------------------
15681 -- Check_Derived_Type --
15682 ------------------------
15683
15684 function Check_Derived_Type return Boolean is
15685 E : Entity_Id;
15686 Elmt : Elmt_Id;
15687 List : Elist_Id;
15688 New_Subp : Entity_Id;
15689 Op_Elmt : Elmt_Id;
15690 Subp : Entity_Id;
15691
15692 begin
15693 -- Traverse list of entities in the current scope searching for
15694 -- an incomplete type whose full-view is derived type.
15695
15696 E := First_Entity (Scope (Derived_Type));
15697 while Present (E) and then E /= Derived_Type loop
15698 if Ekind (E) = E_Incomplete_Type
15699 and then Present (Full_View (E))
15700 and then Full_View (E) = Derived_Type
15701 then
15702 -- Disable this test if Derived_Type completes an incomplete
15703 -- type because in such case more primitives can be added
15704 -- later to the list of primitives of Derived_Type by routine
15705 -- Process_Incomplete_Dependents
15706
15707 return True;
15708 end if;
15709
15710 E := Next_Entity (E);
15711 end loop;
15712
15713 List := Collect_Primitive_Operations (Derived_Type);
15714 Elmt := First_Elmt (List);
15715
15716 Op_Elmt := First_Elmt (Op_List);
15717 while Present (Op_Elmt) loop
15718 Subp := Node (Op_Elmt);
15719 New_Subp := Node (Elmt);
15720
15721 -- At this early stage Derived_Type has no entities with attribute
15722 -- Interface_Alias. In addition, such primitives are always
15723 -- located at the end of the list of primitives of Parent_Type.
15724 -- Therefore, if found we can safely stop processing pending
15725 -- entities.
15726
15727 exit when Present (Interface_Alias (Subp));
15728
15729 -- Handle hidden entities
15730
15731 if not Is_Predefined_Dispatching_Operation (Subp)
15732 and then Is_Hidden (Subp)
15733 then
15734 if Present (New_Subp)
15735 and then Primitive_Names_Match (Subp, New_Subp)
15736 then
15737 Next_Elmt (Elmt);
15738 end if;
15739
15740 else
15741 if not Present (New_Subp)
15742 or else Ekind (Subp) /= Ekind (New_Subp)
15743 or else not Primitive_Names_Match (Subp, New_Subp)
15744 then
15745 return False;
15746 end if;
15747
15748 Next_Elmt (Elmt);
15749 end if;
15750
15751 Next_Elmt (Op_Elmt);
15752 end loop;
15753
15754 return True;
15755 end Check_Derived_Type;
15756
15757 ---------------------------------
15758 -- Derive_Interface_Subprogram --
15759 ---------------------------------
15760
15761 procedure Derive_Interface_Subprogram
15762 (New_Subp : out Entity_Id;
15763 Subp : Entity_Id;
15764 Actual_Subp : Entity_Id)
15765 is
15766 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15767 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15768
15769 begin
15770 pragma Assert (Is_Interface (Iface_Type));
15771
15772 Derive_Subprogram
15773 (New_Subp => New_Subp,
15774 Parent_Subp => Iface_Subp,
15775 Derived_Type => Derived_Type,
15776 Parent_Type => Iface_Type,
15777 Actual_Subp => Actual_Subp);
15778
15779 -- Given that this new interface entity corresponds with a primitive
15780 -- of the parent that was not overridden we must leave it associated
15781 -- with its parent primitive to ensure that it will share the same
15782 -- dispatch table slot when overridden. We must set the Alias to Subp
15783 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15784 -- (in case we inherited Subp from Iface_Type via a nonabstract
15785 -- generic formal type).
15786
15787 if No (Actual_Subp) then
15788 Set_Alias (New_Subp, Subp);
15789
15790 declare
15791 T : Entity_Id := Find_Dispatching_Type (Subp);
15792 begin
15793 while Etype (T) /= T loop
15794 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15795 Set_Is_Abstract_Subprogram (New_Subp, False);
15796 exit;
15797 end if;
15798
15799 T := Etype (T);
15800 end loop;
15801 end;
15802
15803 -- For instantiations this is not needed since the previous call to
15804 -- Derive_Subprogram leaves the entity well decorated.
15805
15806 else
15807 pragma Assert (Alias (New_Subp) = Actual_Subp);
15808 null;
15809 end if;
15810 end Derive_Interface_Subprogram;
15811
15812 -- Local variables
15813
15814 Alias_Subp : Entity_Id;
15815 Act_List : Elist_Id;
15816 Act_Elmt : Elmt_Id;
15817 Act_Subp : Entity_Id := Empty;
15818 Elmt : Elmt_Id;
15819 Need_Search : Boolean := False;
15820 New_Subp : Entity_Id := Empty;
15821 Parent_Base : Entity_Id;
15822 Subp : Entity_Id;
15823
15824 -- Start of processing for Derive_Subprograms
15825
15826 begin
15827 if Ekind (Parent_Type) = E_Record_Type_With_Private
15828 and then Has_Discriminants (Parent_Type)
15829 and then Present (Full_View (Parent_Type))
15830 then
15831 Parent_Base := Full_View (Parent_Type);
15832 else
15833 Parent_Base := Parent_Type;
15834 end if;
15835
15836 if Present (Generic_Actual) then
15837 Act_List := Collect_Primitive_Operations (Generic_Actual);
15838 Act_Elmt := First_Elmt (Act_List);
15839 else
15840 Act_List := No_Elist;
15841 Act_Elmt := No_Elmt;
15842 end if;
15843
15844 -- Derive primitives inherited from the parent. Note that if the generic
15845 -- actual is present, this is not really a type derivation, it is a
15846 -- completion within an instance.
15847
15848 -- Case 1: Derived_Type does not implement interfaces
15849
15850 if not Is_Tagged_Type (Derived_Type)
15851 or else (not Has_Interfaces (Derived_Type)
15852 and then not (Present (Generic_Actual)
15853 and then Has_Interfaces (Generic_Actual)))
15854 then
15855 Elmt := First_Elmt (Op_List);
15856 while Present (Elmt) loop
15857 Subp := Node (Elmt);
15858
15859 -- Literals are derived earlier in the process of building the
15860 -- derived type, and are skipped here.
15861
15862 if Ekind (Subp) = E_Enumeration_Literal then
15863 null;
15864
15865 -- The actual is a direct descendant and the common primitive
15866 -- operations appear in the same order.
15867
15868 -- If the generic parent type is present, the derived type is an
15869 -- instance of a formal derived type, and within the instance its
15870 -- operations are those of the actual. We derive from the formal
15871 -- type but make the inherited operations aliases of the
15872 -- corresponding operations of the actual.
15873
15874 else
15875 pragma Assert (No (Node (Act_Elmt))
15876 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15877 and then
15878 Type_Conformant
15879 (Subp, Node (Act_Elmt),
15880 Skip_Controlling_Formals => True)));
15881
15882 Derive_Subprogram
15883 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15884
15885 if Present (Act_Elmt) then
15886 Next_Elmt (Act_Elmt);
15887 end if;
15888 end if;
15889
15890 Next_Elmt (Elmt);
15891 end loop;
15892
15893 -- Case 2: Derived_Type implements interfaces
15894
15895 else
15896 -- If the parent type has no predefined primitives we remove
15897 -- predefined primitives from the list of primitives of generic
15898 -- actual to simplify the complexity of this algorithm.
15899
15900 if Present (Generic_Actual) then
15901 declare
15902 Has_Predefined_Primitives : Boolean := False;
15903
15904 begin
15905 -- Check if the parent type has predefined primitives
15906
15907 Elmt := First_Elmt (Op_List);
15908 while Present (Elmt) loop
15909 Subp := Node (Elmt);
15910
15911 if Is_Predefined_Dispatching_Operation (Subp)
15912 and then not Comes_From_Source (Ultimate_Alias (Subp))
15913 then
15914 Has_Predefined_Primitives := True;
15915 exit;
15916 end if;
15917
15918 Next_Elmt (Elmt);
15919 end loop;
15920
15921 -- Remove predefined primitives of Generic_Actual. We must use
15922 -- an auxiliary list because in case of tagged types the value
15923 -- returned by Collect_Primitive_Operations is the value stored
15924 -- in its Primitive_Operations attribute (and we don't want to
15925 -- modify its current contents).
15926
15927 if not Has_Predefined_Primitives then
15928 declare
15929 Aux_List : constant Elist_Id := New_Elmt_List;
15930
15931 begin
15932 Elmt := First_Elmt (Act_List);
15933 while Present (Elmt) loop
15934 Subp := Node (Elmt);
15935
15936 if not Is_Predefined_Dispatching_Operation (Subp)
15937 or else Comes_From_Source (Subp)
15938 then
15939 Append_Elmt (Subp, Aux_List);
15940 end if;
15941
15942 Next_Elmt (Elmt);
15943 end loop;
15944
15945 Act_List := Aux_List;
15946 end;
15947 end if;
15948
15949 Act_Elmt := First_Elmt (Act_List);
15950 Act_Subp := Node (Act_Elmt);
15951 end;
15952 end if;
15953
15954 -- Stage 1: If the generic actual is not present we derive the
15955 -- primitives inherited from the parent type. If the generic parent
15956 -- type is present, the derived type is an instance of a formal
15957 -- derived type, and within the instance its operations are those of
15958 -- the actual. We derive from the formal type but make the inherited
15959 -- operations aliases of the corresponding operations of the actual.
15960
15961 Elmt := First_Elmt (Op_List);
15962 while Present (Elmt) loop
15963 Subp := Node (Elmt);
15964 Alias_Subp := Ultimate_Alias (Subp);
15965
15966 -- Do not derive internal entities of the parent that link
15967 -- interface primitives with their covering primitive. These
15968 -- entities will be added to this type when frozen.
15969
15970 if Present (Interface_Alias (Subp)) then
15971 goto Continue;
15972 end if;
15973
15974 -- If the generic actual is present find the corresponding
15975 -- operation in the generic actual. If the parent type is a
15976 -- direct ancestor of the derived type then, even if it is an
15977 -- interface, the operations are inherited from the primary
15978 -- dispatch table and are in the proper order. If we detect here
15979 -- that primitives are not in the same order we traverse the list
15980 -- of primitive operations of the actual to find the one that
15981 -- implements the interface primitive.
15982
15983 if Need_Search
15984 or else
15985 (Present (Generic_Actual)
15986 and then Present (Act_Subp)
15987 and then not
15988 (Primitive_Names_Match (Subp, Act_Subp)
15989 and then
15990 Type_Conformant (Subp, Act_Subp,
15991 Skip_Controlling_Formals => True)))
15992 then
15993 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15994 Use_Full_View => True));
15995
15996 -- Remember that we need searching for all pending primitives
15997
15998 Need_Search := True;
15999
16000 -- Handle entities associated with interface primitives
16001
16002 if Present (Alias_Subp)
16003 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16004 and then not Is_Predefined_Dispatching_Operation (Subp)
16005 then
16006 -- Search for the primitive in the homonym chain
16007
16008 Act_Subp :=
16009 Find_Primitive_Covering_Interface
16010 (Tagged_Type => Generic_Actual,
16011 Iface_Prim => Alias_Subp);
16012
16013 -- Previous search may not locate primitives covering
16014 -- interfaces defined in generics units or instantiations.
16015 -- (it fails if the covering primitive has formals whose
16016 -- type is also defined in generics or instantiations).
16017 -- In such case we search in the list of primitives of the
16018 -- generic actual for the internal entity that links the
16019 -- interface primitive and the covering primitive.
16020
16021 if No (Act_Subp)
16022 and then Is_Generic_Type (Parent_Type)
16023 then
16024 -- This code has been designed to handle only generic
16025 -- formals that implement interfaces that are defined
16026 -- in a generic unit or instantiation. If this code is
16027 -- needed for other cases we must review it because
16028 -- (given that it relies on Original_Location to locate
16029 -- the primitive of Generic_Actual that covers the
16030 -- interface) it could leave linked through attribute
16031 -- Alias entities of unrelated instantiations).
16032
16033 pragma Assert
16034 (Is_Generic_Unit
16035 (Scope (Find_Dispatching_Type (Alias_Subp)))
16036 or else
16037 Instantiation_Depth
16038 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16039
16040 declare
16041 Iface_Prim_Loc : constant Source_Ptr :=
16042 Original_Location (Sloc (Alias_Subp));
16043
16044 Elmt : Elmt_Id;
16045 Prim : Entity_Id;
16046
16047 begin
16048 Elmt :=
16049 First_Elmt (Primitive_Operations (Generic_Actual));
16050
16051 Search : while Present (Elmt) loop
16052 Prim := Node (Elmt);
16053
16054 if Present (Interface_Alias (Prim))
16055 and then Original_Location
16056 (Sloc (Interface_Alias (Prim))) =
16057 Iface_Prim_Loc
16058 then
16059 Act_Subp := Alias (Prim);
16060 exit Search;
16061 end if;
16062
16063 Next_Elmt (Elmt);
16064 end loop Search;
16065 end;
16066 end if;
16067
16068 pragma Assert (Present (Act_Subp)
16069 or else Is_Abstract_Type (Generic_Actual)
16070 or else Serious_Errors_Detected > 0);
16071
16072 -- Handle predefined primitives plus the rest of user-defined
16073 -- primitives
16074
16075 else
16076 Act_Elmt := First_Elmt (Act_List);
16077 while Present (Act_Elmt) loop
16078 Act_Subp := Node (Act_Elmt);
16079
16080 exit when Primitive_Names_Match (Subp, Act_Subp)
16081 and then Type_Conformant
16082 (Subp, Act_Subp,
16083 Skip_Controlling_Formals => True)
16084 and then No (Interface_Alias (Act_Subp));
16085
16086 Next_Elmt (Act_Elmt);
16087 end loop;
16088
16089 if No (Act_Elmt) then
16090 Act_Subp := Empty;
16091 end if;
16092 end if;
16093 end if;
16094
16095 -- Case 1: If the parent is a limited interface then it has the
16096 -- predefined primitives of synchronized interfaces. However, the
16097 -- actual type may be a non-limited type and hence it does not
16098 -- have such primitives.
16099
16100 if Present (Generic_Actual)
16101 and then not Present (Act_Subp)
16102 and then Is_Limited_Interface (Parent_Base)
16103 and then Is_Predefined_Interface_Primitive (Subp)
16104 then
16105 null;
16106
16107 -- Case 2: Inherit entities associated with interfaces that were
16108 -- not covered by the parent type. We exclude here null interface
16109 -- primitives because they do not need special management.
16110
16111 -- We also exclude interface operations that are renamings. If the
16112 -- subprogram is an explicit renaming of an interface primitive,
16113 -- it is a regular primitive operation, and the presence of its
16114 -- alias is not relevant: it has to be derived like any other
16115 -- primitive.
16116
16117 elsif Present (Alias (Subp))
16118 and then Nkind (Unit_Declaration_Node (Subp)) /=
16119 N_Subprogram_Renaming_Declaration
16120 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16121 and then not
16122 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16123 and then Null_Present (Parent (Alias_Subp)))
16124 then
16125 -- If this is an abstract private type then we transfer the
16126 -- derivation of the interface primitive from the partial view
16127 -- to the full view. This is safe because all the interfaces
16128 -- must be visible in the partial view. Done to avoid adding
16129 -- a new interface derivation to the private part of the
16130 -- enclosing package; otherwise this new derivation would be
16131 -- decorated as hidden when the analysis of the enclosing
16132 -- package completes.
16133
16134 if Is_Abstract_Type (Derived_Type)
16135 and then In_Private_Part (Current_Scope)
16136 and then Has_Private_Declaration (Derived_Type)
16137 then
16138 declare
16139 Partial_View : Entity_Id;
16140 Elmt : Elmt_Id;
16141 Ent : Entity_Id;
16142
16143 begin
16144 Partial_View := First_Entity (Current_Scope);
16145 loop
16146 exit when No (Partial_View)
16147 or else (Has_Private_Declaration (Partial_View)
16148 and then
16149 Full_View (Partial_View) = Derived_Type);
16150
16151 Next_Entity (Partial_View);
16152 end loop;
16153
16154 -- If the partial view was not found then the source code
16155 -- has errors and the derivation is not needed.
16156
16157 if Present (Partial_View) then
16158 Elmt :=
16159 First_Elmt (Primitive_Operations (Partial_View));
16160 while Present (Elmt) loop
16161 Ent := Node (Elmt);
16162
16163 if Present (Alias (Ent))
16164 and then Ultimate_Alias (Ent) = Alias (Subp)
16165 then
16166 Append_Elmt
16167 (Ent, Primitive_Operations (Derived_Type));
16168 exit;
16169 end if;
16170
16171 Next_Elmt (Elmt);
16172 end loop;
16173
16174 -- If the interface primitive was not found in the
16175 -- partial view then this interface primitive was
16176 -- overridden. We add a derivation to activate in
16177 -- Derive_Progenitor_Subprograms the machinery to
16178 -- search for it.
16179
16180 if No (Elmt) then
16181 Derive_Interface_Subprogram
16182 (New_Subp => New_Subp,
16183 Subp => Subp,
16184 Actual_Subp => Act_Subp);
16185 end if;
16186 end if;
16187 end;
16188 else
16189 Derive_Interface_Subprogram
16190 (New_Subp => New_Subp,
16191 Subp => Subp,
16192 Actual_Subp => Act_Subp);
16193 end if;
16194
16195 -- Case 3: Common derivation
16196
16197 else
16198 Derive_Subprogram
16199 (New_Subp => New_Subp,
16200 Parent_Subp => Subp,
16201 Derived_Type => Derived_Type,
16202 Parent_Type => Parent_Base,
16203 Actual_Subp => Act_Subp);
16204 end if;
16205
16206 -- No need to update Act_Elm if we must search for the
16207 -- corresponding operation in the generic actual
16208
16209 if not Need_Search
16210 and then Present (Act_Elmt)
16211 then
16212 Next_Elmt (Act_Elmt);
16213 Act_Subp := Node (Act_Elmt);
16214 end if;
16215
16216 <<Continue>>
16217 Next_Elmt (Elmt);
16218 end loop;
16219
16220 -- Inherit additional operations from progenitors. If the derived
16221 -- type is a generic actual, there are not new primitive operations
16222 -- for the type because it has those of the actual, and therefore
16223 -- nothing needs to be done. The renamings generated above are not
16224 -- primitive operations, and their purpose is simply to make the
16225 -- proper operations visible within an instantiation.
16226
16227 if No (Generic_Actual) then
16228 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16229 end if;
16230 end if;
16231
16232 -- Final check: Direct descendants must have their primitives in the
16233 -- same order. We exclude from this test untagged types and instances
16234 -- of formal derived types. We skip this test if we have already
16235 -- reported serious errors in the sources.
16236
16237 pragma Assert (not Is_Tagged_Type (Derived_Type)
16238 or else Present (Generic_Actual)
16239 or else Serious_Errors_Detected > 0
16240 or else Check_Derived_Type);
16241 end Derive_Subprograms;
16242
16243 --------------------------------
16244 -- Derived_Standard_Character --
16245 --------------------------------
16246
16247 procedure Derived_Standard_Character
16248 (N : Node_Id;
16249 Parent_Type : Entity_Id;
16250 Derived_Type : Entity_Id)
16251 is
16252 Loc : constant Source_Ptr := Sloc (N);
16253 Def : constant Node_Id := Type_Definition (N);
16254 Indic : constant Node_Id := Subtype_Indication (Def);
16255 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16256 Implicit_Base : constant Entity_Id :=
16257 Create_Itype
16258 (E_Enumeration_Type, N, Derived_Type, 'B');
16259
16260 Lo : Node_Id;
16261 Hi : Node_Id;
16262
16263 begin
16264 Discard_Node (Process_Subtype (Indic, N));
16265
16266 Set_Etype (Implicit_Base, Parent_Base);
16267 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16268 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16269
16270 Set_Is_Character_Type (Implicit_Base, True);
16271 Set_Has_Delayed_Freeze (Implicit_Base);
16272
16273 -- The bounds of the implicit base are the bounds of the parent base.
16274 -- Note that their type is the parent base.
16275
16276 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16277 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16278
16279 Set_Scalar_Range (Implicit_Base,
16280 Make_Range (Loc,
16281 Low_Bound => Lo,
16282 High_Bound => Hi));
16283
16284 Conditional_Delay (Derived_Type, Parent_Type);
16285
16286 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16287 Set_Etype (Derived_Type, Implicit_Base);
16288 Set_Size_Info (Derived_Type, Parent_Type);
16289
16290 if Unknown_RM_Size (Derived_Type) then
16291 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16292 end if;
16293
16294 Set_Is_Character_Type (Derived_Type, True);
16295
16296 if Nkind (Indic) /= N_Subtype_Indication then
16297
16298 -- If no explicit constraint, the bounds are those
16299 -- of the parent type.
16300
16301 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16302 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16303 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16304 end if;
16305
16306 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16307
16308 -- Because the implicit base is used in the conversion of the bounds, we
16309 -- have to freeze it now. This is similar to what is done for numeric
16310 -- types, and it equally suspicious, but otherwise a non-static bound
16311 -- will have a reference to an unfrozen type, which is rejected by Gigi
16312 -- (???). This requires specific care for definition of stream
16313 -- attributes. For details, see comments at the end of
16314 -- Build_Derived_Numeric_Type.
16315
16316 Freeze_Before (N, Implicit_Base);
16317 end Derived_Standard_Character;
16318
16319 ------------------------------
16320 -- Derived_Type_Declaration --
16321 ------------------------------
16322
16323 procedure Derived_Type_Declaration
16324 (T : Entity_Id;
16325 N : Node_Id;
16326 Is_Completion : Boolean)
16327 is
16328 Parent_Type : Entity_Id;
16329
16330 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16331 -- Check whether the parent type is a generic formal, or derives
16332 -- directly or indirectly from one.
16333
16334 ------------------------
16335 -- Comes_From_Generic --
16336 ------------------------
16337
16338 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16339 begin
16340 if Is_Generic_Type (Typ) then
16341 return True;
16342
16343 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16344 return True;
16345
16346 elsif Is_Private_Type (Typ)
16347 and then Present (Full_View (Typ))
16348 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16349 then
16350 return True;
16351
16352 elsif Is_Generic_Actual_Type (Typ) then
16353 return True;
16354
16355 else
16356 return False;
16357 end if;
16358 end Comes_From_Generic;
16359
16360 -- Local variables
16361
16362 Def : constant Node_Id := Type_Definition (N);
16363 Iface_Def : Node_Id;
16364 Indic : constant Node_Id := Subtype_Indication (Def);
16365 Extension : constant Node_Id := Record_Extension_Part (Def);
16366 Parent_Node : Node_Id;
16367 Taggd : Boolean;
16368
16369 -- Start of processing for Derived_Type_Declaration
16370
16371 begin
16372 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16373
16374 if SPARK_Mode = On
16375 and then Is_Tagged_Type (Parent_Type)
16376 then
16377 declare
16378 Partial_View : constant Entity_Id :=
16379 Incomplete_Or_Partial_View (Parent_Type);
16380
16381 begin
16382 -- If the partial view was not found then the parent type is not
16383 -- a private type. Otherwise check if the partial view is a tagged
16384 -- private type.
16385
16386 if Present (Partial_View)
16387 and then Is_Private_Type (Partial_View)
16388 and then not Is_Tagged_Type (Partial_View)
16389 then
16390 Error_Msg_NE
16391 ("cannot derive from & declared as untagged private "
16392 & "(SPARK RM 3.4(1))", N, Partial_View);
16393 end if;
16394 end;
16395 end if;
16396
16397 -- Ada 2005 (AI-251): In case of interface derivation check that the
16398 -- parent is also an interface.
16399
16400 if Interface_Present (Def) then
16401 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16402
16403 if not Is_Interface (Parent_Type) then
16404 Diagnose_Interface (Indic, Parent_Type);
16405
16406 else
16407 Parent_Node := Parent (Base_Type (Parent_Type));
16408 Iface_Def := Type_Definition (Parent_Node);
16409
16410 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16411 -- other limited interfaces.
16412
16413 if Limited_Present (Def) then
16414 if Limited_Present (Iface_Def) then
16415 null;
16416
16417 elsif Protected_Present (Iface_Def) then
16418 Error_Msg_NE
16419 ("descendant of & must be declared as a protected "
16420 & "interface", N, Parent_Type);
16421
16422 elsif Synchronized_Present (Iface_Def) then
16423 Error_Msg_NE
16424 ("descendant of & must be declared as a synchronized "
16425 & "interface", N, Parent_Type);
16426
16427 elsif Task_Present (Iface_Def) then
16428 Error_Msg_NE
16429 ("descendant of & must be declared as a task interface",
16430 N, Parent_Type);
16431
16432 else
16433 Error_Msg_N
16434 ("(Ada 2005) limited interface cannot inherit from "
16435 & "non-limited interface", Indic);
16436 end if;
16437
16438 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16439 -- from non-limited or limited interfaces.
16440
16441 elsif not Protected_Present (Def)
16442 and then not Synchronized_Present (Def)
16443 and then not Task_Present (Def)
16444 then
16445 if Limited_Present (Iface_Def) then
16446 null;
16447
16448 elsif Protected_Present (Iface_Def) then
16449 Error_Msg_NE
16450 ("descendant of & must be declared as a protected "
16451 & "interface", N, Parent_Type);
16452
16453 elsif Synchronized_Present (Iface_Def) then
16454 Error_Msg_NE
16455 ("descendant of & must be declared as a synchronized "
16456 & "interface", N, Parent_Type);
16457
16458 elsif Task_Present (Iface_Def) then
16459 Error_Msg_NE
16460 ("descendant of & must be declared as a task interface",
16461 N, Parent_Type);
16462 else
16463 null;
16464 end if;
16465 end if;
16466 end if;
16467 end if;
16468
16469 if Is_Tagged_Type (Parent_Type)
16470 and then Is_Concurrent_Type (Parent_Type)
16471 and then not Is_Interface (Parent_Type)
16472 then
16473 Error_Msg_N
16474 ("parent type of a record extension cannot be a synchronized "
16475 & "tagged type (RM 3.9.1 (3/1))", N);
16476 Set_Etype (T, Any_Type);
16477 return;
16478 end if;
16479
16480 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16481 -- interfaces
16482
16483 if Is_Tagged_Type (Parent_Type)
16484 and then Is_Non_Empty_List (Interface_List (Def))
16485 then
16486 declare
16487 Intf : Node_Id;
16488 T : Entity_Id;
16489
16490 begin
16491 Intf := First (Interface_List (Def));
16492 while Present (Intf) loop
16493 T := Find_Type_Of_Subtype_Indic (Intf);
16494
16495 if not Is_Interface (T) then
16496 Diagnose_Interface (Intf, T);
16497
16498 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16499 -- a limited type from having a nonlimited progenitor.
16500
16501 elsif (Limited_Present (Def)
16502 or else (not Is_Interface (Parent_Type)
16503 and then Is_Limited_Type (Parent_Type)))
16504 and then not Is_Limited_Interface (T)
16505 then
16506 Error_Msg_NE
16507 ("progenitor interface& of limited type must be limited",
16508 N, T);
16509 end if;
16510
16511 Next (Intf);
16512 end loop;
16513 end;
16514 end if;
16515
16516 if Parent_Type = Any_Type
16517 or else Etype (Parent_Type) = Any_Type
16518 or else (Is_Class_Wide_Type (Parent_Type)
16519 and then Etype (Parent_Type) = T)
16520 then
16521 -- If Parent_Type is undefined or illegal, make new type into a
16522 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16523 -- errors. If this is a self-definition, emit error now.
16524
16525 if T = Parent_Type or else T = Etype (Parent_Type) then
16526 Error_Msg_N ("type cannot be used in its own definition", Indic);
16527 end if;
16528
16529 Set_Ekind (T, Ekind (Parent_Type));
16530 Set_Etype (T, Any_Type);
16531 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16532
16533 if Is_Tagged_Type (T)
16534 and then Is_Record_Type (T)
16535 then
16536 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16537 end if;
16538
16539 return;
16540 end if;
16541
16542 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16543 -- an interface is special because the list of interfaces in the full
16544 -- view can be given in any order. For example:
16545
16546 -- type A is interface;
16547 -- type B is interface and A;
16548 -- type D is new B with private;
16549 -- private
16550 -- type D is new A and B with null record; -- 1 --
16551
16552 -- In this case we perform the following transformation of -1-:
16553
16554 -- type D is new B and A with null record;
16555
16556 -- If the parent of the full-view covers the parent of the partial-view
16557 -- we have two possible cases:
16558
16559 -- 1) They have the same parent
16560 -- 2) The parent of the full-view implements some further interfaces
16561
16562 -- In both cases we do not need to perform the transformation. In the
16563 -- first case the source program is correct and the transformation is
16564 -- not needed; in the second case the source program does not fulfill
16565 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16566 -- later.
16567
16568 -- This transformation not only simplifies the rest of the analysis of
16569 -- this type declaration but also simplifies the correct generation of
16570 -- the object layout to the expander.
16571
16572 if In_Private_Part (Current_Scope)
16573 and then Is_Interface (Parent_Type)
16574 then
16575 declare
16576 Iface : Node_Id;
16577 Partial_View : Entity_Id;
16578 Partial_View_Parent : Entity_Id;
16579 New_Iface : Node_Id;
16580
16581 begin
16582 -- Look for the associated private type declaration
16583
16584 Partial_View := Incomplete_Or_Partial_View (T);
16585
16586 -- If the partial view was not found then the source code has
16587 -- errors and the transformation is not needed.
16588
16589 if Present (Partial_View) then
16590 Partial_View_Parent := Etype (Partial_View);
16591
16592 -- If the parent of the full-view covers the parent of the
16593 -- partial-view we have nothing else to do.
16594
16595 if Interface_Present_In_Ancestor
16596 (Parent_Type, Partial_View_Parent)
16597 then
16598 null;
16599
16600 -- Traverse the list of interfaces of the full-view to look
16601 -- for the parent of the partial-view and perform the tree
16602 -- transformation.
16603
16604 else
16605 Iface := First (Interface_List (Def));
16606 while Present (Iface) loop
16607 if Etype (Iface) = Etype (Partial_View) then
16608 Rewrite (Subtype_Indication (Def),
16609 New_Copy (Subtype_Indication
16610 (Parent (Partial_View))));
16611
16612 New_Iface :=
16613 Make_Identifier (Sloc (N), Chars (Parent_Type));
16614 Append (New_Iface, Interface_List (Def));
16615
16616 -- Analyze the transformed code
16617
16618 Derived_Type_Declaration (T, N, Is_Completion);
16619 return;
16620 end if;
16621
16622 Next (Iface);
16623 end loop;
16624 end if;
16625 end if;
16626 end;
16627 end if;
16628
16629 -- Only composite types other than array types are allowed to have
16630 -- discriminants.
16631
16632 if Present (Discriminant_Specifications (N)) then
16633 if (Is_Elementary_Type (Parent_Type)
16634 or else
16635 Is_Array_Type (Parent_Type))
16636 and then not Error_Posted (N)
16637 then
16638 Error_Msg_N
16639 ("elementary or array type cannot have discriminants",
16640 Defining_Identifier (First (Discriminant_Specifications (N))));
16641 Set_Has_Discriminants (T, False);
16642
16643 -- The type is allowed to have discriminants
16644
16645 else
16646 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16647 end if;
16648 end if;
16649
16650 -- In Ada 83, a derived type defined in a package specification cannot
16651 -- be used for further derivation until the end of its visible part.
16652 -- Note that derivation in the private part of the package is allowed.
16653
16654 if Ada_Version = Ada_83
16655 and then Is_Derived_Type (Parent_Type)
16656 and then In_Visible_Part (Scope (Parent_Type))
16657 then
16658 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16659 Error_Msg_N
16660 ("(Ada 83): premature use of type for derivation", Indic);
16661 end if;
16662 end if;
16663
16664 -- Check for early use of incomplete or private type
16665
16666 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16667 Error_Msg_N ("premature derivation of incomplete type", Indic);
16668 return;
16669
16670 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16671 and then not Comes_From_Generic (Parent_Type))
16672 or else Has_Private_Component (Parent_Type)
16673 then
16674 -- The ancestor type of a formal type can be incomplete, in which
16675 -- case only the operations of the partial view are available in the
16676 -- generic. Subsequent checks may be required when the full view is
16677 -- analyzed to verify that a derivation from a tagged type has an
16678 -- extension.
16679
16680 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16681 null;
16682
16683 elsif No (Underlying_Type (Parent_Type))
16684 or else Has_Private_Component (Parent_Type)
16685 then
16686 Error_Msg_N
16687 ("premature derivation of derived or private type", Indic);
16688
16689 -- Flag the type itself as being in error, this prevents some
16690 -- nasty problems with subsequent uses of the malformed type.
16691
16692 Set_Error_Posted (T);
16693
16694 -- Check that within the immediate scope of an untagged partial
16695 -- view it's illegal to derive from the partial view if the
16696 -- full view is tagged. (7.3(7))
16697
16698 -- We verify that the Parent_Type is a partial view by checking
16699 -- that it is not a Full_Type_Declaration (i.e. a private type or
16700 -- private extension declaration), to distinguish a partial view
16701 -- from a derivation from a private type which also appears as
16702 -- E_Private_Type. If the parent base type is not declared in an
16703 -- enclosing scope there is no need to check.
16704
16705 elsif Present (Full_View (Parent_Type))
16706 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16707 and then not Is_Tagged_Type (Parent_Type)
16708 and then Is_Tagged_Type (Full_View (Parent_Type))
16709 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16710 then
16711 Error_Msg_N
16712 ("premature derivation from type with tagged full view",
16713 Indic);
16714 end if;
16715 end if;
16716
16717 -- Check that form of derivation is appropriate
16718
16719 Taggd := Is_Tagged_Type (Parent_Type);
16720
16721 -- Set the parent type to the class-wide type's specific type in this
16722 -- case to prevent cascading errors
16723
16724 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16725 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16726 Set_Etype (T, Etype (Parent_Type));
16727 return;
16728 end if;
16729
16730 if Present (Extension) and then not Taggd then
16731 Error_Msg_N
16732 ("type derived from untagged type cannot have extension", Indic);
16733
16734 elsif No (Extension) and then Taggd then
16735
16736 -- If this declaration is within a private part (or body) of a
16737 -- generic instantiation then the derivation is allowed (the parent
16738 -- type can only appear tagged in this case if it's a generic actual
16739 -- type, since it would otherwise have been rejected in the analysis
16740 -- of the generic template).
16741
16742 if not Is_Generic_Actual_Type (Parent_Type)
16743 or else In_Visible_Part (Scope (Parent_Type))
16744 then
16745 if Is_Class_Wide_Type (Parent_Type) then
16746 Error_Msg_N
16747 ("parent type must not be a class-wide type", Indic);
16748
16749 -- Use specific type to prevent cascaded errors.
16750
16751 Parent_Type := Etype (Parent_Type);
16752
16753 else
16754 Error_Msg_N
16755 ("type derived from tagged type must have extension", Indic);
16756 end if;
16757 end if;
16758 end if;
16759
16760 -- AI-443: Synchronized formal derived types require a private
16761 -- extension. There is no point in checking the ancestor type or
16762 -- the progenitors since the construct is wrong to begin with.
16763
16764 if Ada_Version >= Ada_2005
16765 and then Is_Generic_Type (T)
16766 and then Present (Original_Node (N))
16767 then
16768 declare
16769 Decl : constant Node_Id := Original_Node (N);
16770
16771 begin
16772 if Nkind (Decl) = N_Formal_Type_Declaration
16773 and then Nkind (Formal_Type_Definition (Decl)) =
16774 N_Formal_Derived_Type_Definition
16775 and then Synchronized_Present (Formal_Type_Definition (Decl))
16776 and then No (Extension)
16777
16778 -- Avoid emitting a duplicate error message
16779
16780 and then not Error_Posted (Indic)
16781 then
16782 Error_Msg_N
16783 ("synchronized derived type must have extension", N);
16784 end if;
16785 end;
16786 end if;
16787
16788 if Null_Exclusion_Present (Def)
16789 and then not Is_Access_Type (Parent_Type)
16790 then
16791 Error_Msg_N ("null exclusion can only apply to an access type", N);
16792 end if;
16793
16794 -- Avoid deriving parent primitives of underlying record views
16795
16796 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16797 Derive_Subps => not Is_Underlying_Record_View (T));
16798
16799 -- AI-419: The parent type of an explicitly limited derived type must
16800 -- be a limited type or a limited interface.
16801
16802 if Limited_Present (Def) then
16803 Set_Is_Limited_Record (T);
16804
16805 if Is_Interface (T) then
16806 Set_Is_Limited_Interface (T);
16807 end if;
16808
16809 if not Is_Limited_Type (Parent_Type)
16810 and then
16811 (not Is_Interface (Parent_Type)
16812 or else not Is_Limited_Interface (Parent_Type))
16813 then
16814 -- AI05-0096: a derivation in the private part of an instance is
16815 -- legal if the generic formal is untagged limited, and the actual
16816 -- is non-limited.
16817
16818 if Is_Generic_Actual_Type (Parent_Type)
16819 and then In_Private_Part (Current_Scope)
16820 and then
16821 not Is_Tagged_Type
16822 (Generic_Parent_Type (Parent (Parent_Type)))
16823 then
16824 null;
16825
16826 else
16827 Error_Msg_NE
16828 ("parent type& of limited type must be limited",
16829 N, Parent_Type);
16830 end if;
16831 end if;
16832 end if;
16833
16834 -- In SPARK, there are no derived type definitions other than type
16835 -- extensions of tagged record types.
16836
16837 if No (Extension) then
16838 Check_SPARK_05_Restriction
16839 ("derived type is not allowed", Original_Node (N));
16840 end if;
16841 end Derived_Type_Declaration;
16842
16843 ------------------------
16844 -- Diagnose_Interface --
16845 ------------------------
16846
16847 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16848 begin
16849 if not Is_Interface (E) and then E /= Any_Type then
16850 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16851 end if;
16852 end Diagnose_Interface;
16853
16854 ----------------------------------
16855 -- Enumeration_Type_Declaration --
16856 ----------------------------------
16857
16858 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16859 Ev : Uint;
16860 L : Node_Id;
16861 R_Node : Node_Id;
16862 B_Node : Node_Id;
16863
16864 begin
16865 -- Create identifier node representing lower bound
16866
16867 B_Node := New_Node (N_Identifier, Sloc (Def));
16868 L := First (Literals (Def));
16869 Set_Chars (B_Node, Chars (L));
16870 Set_Entity (B_Node, L);
16871 Set_Etype (B_Node, T);
16872 Set_Is_Static_Expression (B_Node, True);
16873
16874 R_Node := New_Node (N_Range, Sloc (Def));
16875 Set_Low_Bound (R_Node, B_Node);
16876
16877 Set_Ekind (T, E_Enumeration_Type);
16878 Set_First_Literal (T, L);
16879 Set_Etype (T, T);
16880 Set_Is_Constrained (T);
16881
16882 Ev := Uint_0;
16883
16884 -- Loop through literals of enumeration type setting pos and rep values
16885 -- except that if the Ekind is already set, then it means the literal
16886 -- was already constructed (case of a derived type declaration and we
16887 -- should not disturb the Pos and Rep values.
16888
16889 while Present (L) loop
16890 if Ekind (L) /= E_Enumeration_Literal then
16891 Set_Ekind (L, E_Enumeration_Literal);
16892 Set_Enumeration_Pos (L, Ev);
16893 Set_Enumeration_Rep (L, Ev);
16894 Set_Is_Known_Valid (L, True);
16895 end if;
16896
16897 Set_Etype (L, T);
16898 New_Overloaded_Entity (L);
16899 Generate_Definition (L);
16900 Set_Convention (L, Convention_Intrinsic);
16901
16902 -- Case of character literal
16903
16904 if Nkind (L) = N_Defining_Character_Literal then
16905 Set_Is_Character_Type (T, True);
16906
16907 -- Check violation of No_Wide_Characters
16908
16909 if Restriction_Check_Required (No_Wide_Characters) then
16910 Get_Name_String (Chars (L));
16911
16912 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16913 Check_Restriction (No_Wide_Characters, L);
16914 end if;
16915 end if;
16916 end if;
16917
16918 Ev := Ev + 1;
16919 Next (L);
16920 end loop;
16921
16922 -- Now create a node representing upper bound
16923
16924 B_Node := New_Node (N_Identifier, Sloc (Def));
16925 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16926 Set_Entity (B_Node, Last (Literals (Def)));
16927 Set_Etype (B_Node, T);
16928 Set_Is_Static_Expression (B_Node, True);
16929
16930 Set_High_Bound (R_Node, B_Node);
16931
16932 -- Initialize various fields of the type. Some of this information
16933 -- may be overwritten later through rep.clauses.
16934
16935 Set_Scalar_Range (T, R_Node);
16936 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16937 Set_Enum_Esize (T);
16938 Set_Enum_Pos_To_Rep (T, Empty);
16939
16940 -- Set Discard_Names if configuration pragma set, or if there is
16941 -- a parameterless pragma in the current declarative region
16942
16943 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16944 Set_Discard_Names (T);
16945 end if;
16946
16947 -- Process end label if there is one
16948
16949 if Present (Def) then
16950 Process_End_Label (Def, 'e', T);
16951 end if;
16952 end Enumeration_Type_Declaration;
16953
16954 ---------------------------------
16955 -- Expand_To_Stored_Constraint --
16956 ---------------------------------
16957
16958 function Expand_To_Stored_Constraint
16959 (Typ : Entity_Id;
16960 Constraint : Elist_Id) return Elist_Id
16961 is
16962 Explicitly_Discriminated_Type : Entity_Id;
16963 Expansion : Elist_Id;
16964 Discriminant : Entity_Id;
16965
16966 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16967 -- Find the nearest type that actually specifies discriminants
16968
16969 ---------------------------------
16970 -- Type_With_Explicit_Discrims --
16971 ---------------------------------
16972
16973 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16974 Typ : constant E := Base_Type (Id);
16975
16976 begin
16977 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16978 if Present (Full_View (Typ)) then
16979 return Type_With_Explicit_Discrims (Full_View (Typ));
16980 end if;
16981
16982 else
16983 if Has_Discriminants (Typ) then
16984 return Typ;
16985 end if;
16986 end if;
16987
16988 if Etype (Typ) = Typ then
16989 return Empty;
16990 elsif Has_Discriminants (Typ) then
16991 return Typ;
16992 else
16993 return Type_With_Explicit_Discrims (Etype (Typ));
16994 end if;
16995
16996 end Type_With_Explicit_Discrims;
16997
16998 -- Start of processing for Expand_To_Stored_Constraint
16999
17000 begin
17001 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17002 return No_Elist;
17003 end if;
17004
17005 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17006
17007 if No (Explicitly_Discriminated_Type) then
17008 return No_Elist;
17009 end if;
17010
17011 Expansion := New_Elmt_List;
17012
17013 Discriminant :=
17014 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17015 while Present (Discriminant) loop
17016 Append_Elmt
17017 (Get_Discriminant_Value
17018 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17019 To => Expansion);
17020 Next_Stored_Discriminant (Discriminant);
17021 end loop;
17022
17023 return Expansion;
17024 end Expand_To_Stored_Constraint;
17025
17026 ---------------------------
17027 -- Find_Hidden_Interface --
17028 ---------------------------
17029
17030 function Find_Hidden_Interface
17031 (Src : Elist_Id;
17032 Dest : Elist_Id) return Entity_Id
17033 is
17034 Iface : Entity_Id;
17035 Iface_Elmt : Elmt_Id;
17036
17037 begin
17038 if Present (Src) and then Present (Dest) then
17039 Iface_Elmt := First_Elmt (Src);
17040 while Present (Iface_Elmt) loop
17041 Iface := Node (Iface_Elmt);
17042
17043 if Is_Interface (Iface)
17044 and then not Contain_Interface (Iface, Dest)
17045 then
17046 return Iface;
17047 end if;
17048
17049 Next_Elmt (Iface_Elmt);
17050 end loop;
17051 end if;
17052
17053 return Empty;
17054 end Find_Hidden_Interface;
17055
17056 --------------------
17057 -- Find_Type_Name --
17058 --------------------
17059
17060 function Find_Type_Name (N : Node_Id) return Entity_Id is
17061 Id : constant Entity_Id := Defining_Identifier (N);
17062 New_Id : Entity_Id;
17063 Prev : Entity_Id;
17064 Prev_Par : Node_Id;
17065
17066 procedure Check_Duplicate_Aspects;
17067 -- Check that aspects specified in a completion have not been specified
17068 -- already in the partial view.
17069
17070 procedure Tag_Mismatch;
17071 -- Diagnose a tagged partial view whose full view is untagged. We post
17072 -- the message on the full view, with a reference to the previous
17073 -- partial view. The partial view can be private or incomplete, and
17074 -- these are handled in a different manner, so we determine the position
17075 -- of the error message from the respective slocs of both.
17076
17077 -----------------------------
17078 -- Check_Duplicate_Aspects --
17079 -----------------------------
17080
17081 procedure Check_Duplicate_Aspects is
17082 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17083 -- Return the corresponding aspect of the partial view which matches
17084 -- the aspect id of Asp. Return Empty is no such aspect exists.
17085
17086 -----------------------------
17087 -- Get_Partial_View_Aspect --
17088 -----------------------------
17089
17090 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17091 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17092 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17093 Prev_Asp : Node_Id;
17094
17095 begin
17096 if Present (Prev_Asps) then
17097 Prev_Asp := First (Prev_Asps);
17098 while Present (Prev_Asp) loop
17099 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17100 return Prev_Asp;
17101 end if;
17102
17103 Next (Prev_Asp);
17104 end loop;
17105 end if;
17106
17107 return Empty;
17108 end Get_Partial_View_Aspect;
17109
17110 -- Local variables
17111
17112 Full_Asps : constant List_Id := Aspect_Specifications (N);
17113 Full_Asp : Node_Id;
17114 Part_Asp : Node_Id;
17115
17116 -- Start of processing for Check_Duplicate_Aspects
17117
17118 begin
17119 if Present (Full_Asps) then
17120 Full_Asp := First (Full_Asps);
17121 while Present (Full_Asp) loop
17122 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17123
17124 -- An aspect and its class-wide counterpart are two distinct
17125 -- aspects and may apply to both views of an entity.
17126
17127 if Present (Part_Asp)
17128 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17129 then
17130 Error_Msg_N
17131 ("aspect already specified in private declaration",
17132 Full_Asp);
17133
17134 Remove (Full_Asp);
17135 return;
17136 end if;
17137
17138 if Has_Discriminants (Prev)
17139 and then not Has_Unknown_Discriminants (Prev)
17140 and then Get_Aspect_Id (Full_Asp) =
17141 Aspect_Implicit_Dereference
17142 then
17143 Error_Msg_N
17144 ("cannot specify aspect if partial view has known "
17145 & "discriminants", Full_Asp);
17146 end if;
17147
17148 Next (Full_Asp);
17149 end loop;
17150 end if;
17151 end Check_Duplicate_Aspects;
17152
17153 ------------------
17154 -- Tag_Mismatch --
17155 ------------------
17156
17157 procedure Tag_Mismatch is
17158 begin
17159 if Sloc (Prev) < Sloc (Id) then
17160 if Ada_Version >= Ada_2012
17161 and then Nkind (N) = N_Private_Type_Declaration
17162 then
17163 Error_Msg_NE
17164 ("declaration of private } must be a tagged type ", Id, Prev);
17165 else
17166 Error_Msg_NE
17167 ("full declaration of } must be a tagged type ", Id, Prev);
17168 end if;
17169
17170 else
17171 if Ada_Version >= Ada_2012
17172 and then Nkind (N) = N_Private_Type_Declaration
17173 then
17174 Error_Msg_NE
17175 ("declaration of private } must be a tagged type ", Prev, Id);
17176 else
17177 Error_Msg_NE
17178 ("full declaration of } must be a tagged type ", Prev, Id);
17179 end if;
17180 end if;
17181 end Tag_Mismatch;
17182
17183 -- Start of processing for Find_Type_Name
17184
17185 begin
17186 -- Find incomplete declaration, if one was given
17187
17188 Prev := Current_Entity_In_Scope (Id);
17189
17190 -- New type declaration
17191
17192 if No (Prev) then
17193 Enter_Name (Id);
17194 return Id;
17195
17196 -- Previous declaration exists
17197
17198 else
17199 Prev_Par := Parent (Prev);
17200
17201 -- Error if not incomplete/private case except if previous
17202 -- declaration is implicit, etc. Enter_Name will emit error if
17203 -- appropriate.
17204
17205 if not Is_Incomplete_Or_Private_Type (Prev) then
17206 Enter_Name (Id);
17207 New_Id := Id;
17208
17209 -- Check invalid completion of private or incomplete type
17210
17211 elsif not Nkind_In (N, N_Full_Type_Declaration,
17212 N_Task_Type_Declaration,
17213 N_Protected_Type_Declaration)
17214 and then
17215 (Ada_Version < Ada_2012
17216 or else not Is_Incomplete_Type (Prev)
17217 or else not Nkind_In (N, N_Private_Type_Declaration,
17218 N_Private_Extension_Declaration))
17219 then
17220 -- Completion must be a full type declarations (RM 7.3(4))
17221
17222 Error_Msg_Sloc := Sloc (Prev);
17223 Error_Msg_NE ("invalid completion of }", Id, Prev);
17224
17225 -- Set scope of Id to avoid cascaded errors. Entity is never
17226 -- examined again, except when saving globals in generics.
17227
17228 Set_Scope (Id, Current_Scope);
17229 New_Id := Id;
17230
17231 -- If this is a repeated incomplete declaration, no further
17232 -- checks are possible.
17233
17234 if Nkind (N) = N_Incomplete_Type_Declaration then
17235 return Prev;
17236 end if;
17237
17238 -- Case of full declaration of incomplete type
17239
17240 elsif Ekind (Prev) = E_Incomplete_Type
17241 and then (Ada_Version < Ada_2012
17242 or else No (Full_View (Prev))
17243 or else not Is_Private_Type (Full_View (Prev)))
17244 then
17245 -- Indicate that the incomplete declaration has a matching full
17246 -- declaration. The defining occurrence of the incomplete
17247 -- declaration remains the visible one, and the procedure
17248 -- Get_Full_View dereferences it whenever the type is used.
17249
17250 if Present (Full_View (Prev)) then
17251 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17252 end if;
17253
17254 Set_Full_View (Prev, Id);
17255 Append_Entity (Id, Current_Scope);
17256 Set_Is_Public (Id, Is_Public (Prev));
17257 Set_Is_Internal (Id);
17258 New_Id := Prev;
17259
17260 -- If the incomplete view is tagged, a class_wide type has been
17261 -- created already. Use it for the private type as well, in order
17262 -- to prevent multiple incompatible class-wide types that may be
17263 -- created for self-referential anonymous access components.
17264
17265 if Is_Tagged_Type (Prev)
17266 and then Present (Class_Wide_Type (Prev))
17267 then
17268 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17269 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17270
17271 -- Type of the class-wide type is the current Id. Previously
17272 -- this was not done for private declarations because of order-
17273 -- of-elaboration issues in the back end, but gigi now handles
17274 -- this properly.
17275
17276 Set_Etype (Class_Wide_Type (Id), Id);
17277 end if;
17278
17279 -- Case of full declaration of private type
17280
17281 else
17282 -- If the private type was a completion of an incomplete type then
17283 -- update Prev to reference the private type
17284
17285 if Ada_Version >= Ada_2012
17286 and then Ekind (Prev) = E_Incomplete_Type
17287 and then Present (Full_View (Prev))
17288 and then Is_Private_Type (Full_View (Prev))
17289 then
17290 Prev := Full_View (Prev);
17291 Prev_Par := Parent (Prev);
17292 end if;
17293
17294 if Nkind (N) = N_Full_Type_Declaration
17295 and then Nkind_In
17296 (Type_Definition (N), N_Record_Definition,
17297 N_Derived_Type_Definition)
17298 and then Interface_Present (Type_Definition (N))
17299 then
17300 Error_Msg_N
17301 ("completion of private type cannot be an interface", N);
17302 end if;
17303
17304 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17305 if Etype (Prev) /= Prev then
17306
17307 -- Prev is a private subtype or a derived type, and needs
17308 -- no completion.
17309
17310 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17311 New_Id := Id;
17312
17313 elsif Ekind (Prev) = E_Private_Type
17314 and then Nkind_In (N, N_Task_Type_Declaration,
17315 N_Protected_Type_Declaration)
17316 then
17317 Error_Msg_N
17318 ("completion of nonlimited type cannot be limited", N);
17319
17320 elsif Ekind (Prev) = E_Record_Type_With_Private
17321 and then Nkind_In (N, N_Task_Type_Declaration,
17322 N_Protected_Type_Declaration)
17323 then
17324 if not Is_Limited_Record (Prev) then
17325 Error_Msg_N
17326 ("completion of nonlimited type cannot be limited", N);
17327
17328 elsif No (Interface_List (N)) then
17329 Error_Msg_N
17330 ("completion of tagged private type must be tagged",
17331 N);
17332 end if;
17333 end if;
17334
17335 -- Ada 2005 (AI-251): Private extension declaration of a task
17336 -- type or a protected type. This case arises when covering
17337 -- interface types.
17338
17339 elsif Nkind_In (N, N_Task_Type_Declaration,
17340 N_Protected_Type_Declaration)
17341 then
17342 null;
17343
17344 elsif Nkind (N) /= N_Full_Type_Declaration
17345 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17346 then
17347 Error_Msg_N
17348 ("full view of private extension must be an extension", N);
17349
17350 elsif not (Abstract_Present (Parent (Prev)))
17351 and then Abstract_Present (Type_Definition (N))
17352 then
17353 Error_Msg_N
17354 ("full view of non-abstract extension cannot be abstract", N);
17355 end if;
17356
17357 if not In_Private_Part (Current_Scope) then
17358 Error_Msg_N
17359 ("declaration of full view must appear in private part", N);
17360 end if;
17361
17362 if Ada_Version >= Ada_2012 then
17363 Check_Duplicate_Aspects;
17364 end if;
17365
17366 Copy_And_Swap (Prev, Id);
17367 Set_Has_Private_Declaration (Prev);
17368 Set_Has_Private_Declaration (Id);
17369
17370 -- AI12-0133: Indicate whether we have a partial view with
17371 -- unknown discriminants, in which case initialization of objects
17372 -- of the type do not receive an invariant check.
17373
17374 Set_Partial_View_Has_Unknown_Discr
17375 (Prev, Has_Unknown_Discriminants (Id));
17376
17377 -- Preserve aspect and iterator flags that may have been set on
17378 -- the partial view.
17379
17380 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17381 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17382
17383 -- If no error, propagate freeze_node from private to full view.
17384 -- It may have been generated for an early operational item.
17385
17386 if Present (Freeze_Node (Id))
17387 and then Serious_Errors_Detected = 0
17388 and then No (Full_View (Id))
17389 then
17390 Set_Freeze_Node (Prev, Freeze_Node (Id));
17391 Set_Freeze_Node (Id, Empty);
17392 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17393 end if;
17394
17395 Set_Full_View (Id, Prev);
17396 New_Id := Prev;
17397 end if;
17398
17399 -- Verify that full declaration conforms to partial one
17400
17401 if Is_Incomplete_Or_Private_Type (Prev)
17402 and then Present (Discriminant_Specifications (Prev_Par))
17403 then
17404 if Present (Discriminant_Specifications (N)) then
17405 if Ekind (Prev) = E_Incomplete_Type then
17406 Check_Discriminant_Conformance (N, Prev, Prev);
17407 else
17408 Check_Discriminant_Conformance (N, Prev, Id);
17409 end if;
17410
17411 else
17412 Error_Msg_N
17413 ("missing discriminants in full type declaration", N);
17414
17415 -- To avoid cascaded errors on subsequent use, share the
17416 -- discriminants of the partial view.
17417
17418 Set_Discriminant_Specifications (N,
17419 Discriminant_Specifications (Prev_Par));
17420 end if;
17421 end if;
17422
17423 -- A prior untagged partial view can have an associated class-wide
17424 -- type due to use of the class attribute, and in this case the full
17425 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17426 -- of incomplete tagged declarations, but we check for it.
17427
17428 if Is_Type (Prev)
17429 and then (Is_Tagged_Type (Prev)
17430 or else Present (Class_Wide_Type (Prev)))
17431 then
17432 -- Ada 2012 (AI05-0162): A private type may be the completion of
17433 -- an incomplete type.
17434
17435 if Ada_Version >= Ada_2012
17436 and then Is_Incomplete_Type (Prev)
17437 and then Nkind_In (N, N_Private_Type_Declaration,
17438 N_Private_Extension_Declaration)
17439 then
17440 -- No need to check private extensions since they are tagged
17441
17442 if Nkind (N) = N_Private_Type_Declaration
17443 and then not Tagged_Present (N)
17444 then
17445 Tag_Mismatch;
17446 end if;
17447
17448 -- The full declaration is either a tagged type (including
17449 -- a synchronized type that implements interfaces) or a
17450 -- type extension, otherwise this is an error.
17451
17452 elsif Nkind_In (N, N_Task_Type_Declaration,
17453 N_Protected_Type_Declaration)
17454 then
17455 if No (Interface_List (N)) and then not Error_Posted (N) then
17456 Tag_Mismatch;
17457 end if;
17458
17459 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17460
17461 -- Indicate that the previous declaration (tagged incomplete
17462 -- or private declaration) requires the same on the full one.
17463
17464 if not Tagged_Present (Type_Definition (N)) then
17465 Tag_Mismatch;
17466 Set_Is_Tagged_Type (Id);
17467 end if;
17468
17469 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17470 if No (Record_Extension_Part (Type_Definition (N))) then
17471 Error_Msg_NE
17472 ("full declaration of } must be a record extension",
17473 Prev, Id);
17474
17475 -- Set some attributes to produce a usable full view
17476
17477 Set_Is_Tagged_Type (Id);
17478 end if;
17479
17480 else
17481 Tag_Mismatch;
17482 end if;
17483 end if;
17484
17485 if Present (Prev)
17486 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17487 and then Present (Premature_Use (Parent (Prev)))
17488 then
17489 Error_Msg_Sloc := Sloc (N);
17490 Error_Msg_N
17491 ("\full declaration #", Premature_Use (Parent (Prev)));
17492 end if;
17493
17494 return New_Id;
17495 end if;
17496 end Find_Type_Name;
17497
17498 -------------------------
17499 -- Find_Type_Of_Object --
17500 -------------------------
17501
17502 function Find_Type_Of_Object
17503 (Obj_Def : Node_Id;
17504 Related_Nod : Node_Id) return Entity_Id
17505 is
17506 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17507 P : Node_Id := Parent (Obj_Def);
17508 T : Entity_Id;
17509 Nam : Name_Id;
17510
17511 begin
17512 -- If the parent is a component_definition node we climb to the
17513 -- component_declaration node
17514
17515 if Nkind (P) = N_Component_Definition then
17516 P := Parent (P);
17517 end if;
17518
17519 -- Case of an anonymous array subtype
17520
17521 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17522 N_Unconstrained_Array_Definition)
17523 then
17524 T := Empty;
17525 Array_Type_Declaration (T, Obj_Def);
17526
17527 -- Create an explicit subtype whenever possible
17528
17529 elsif Nkind (P) /= N_Component_Declaration
17530 and then Def_Kind = N_Subtype_Indication
17531 then
17532 -- Base name of subtype on object name, which will be unique in
17533 -- the current scope.
17534
17535 -- If this is a duplicate declaration, return base type, to avoid
17536 -- generating duplicate anonymous types.
17537
17538 if Error_Posted (P) then
17539 Analyze (Subtype_Mark (Obj_Def));
17540 return Entity (Subtype_Mark (Obj_Def));
17541 end if;
17542
17543 Nam :=
17544 New_External_Name
17545 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17546
17547 T := Make_Defining_Identifier (Sloc (P), Nam);
17548
17549 Insert_Action (Obj_Def,
17550 Make_Subtype_Declaration (Sloc (P),
17551 Defining_Identifier => T,
17552 Subtype_Indication => Relocate_Node (Obj_Def)));
17553
17554 -- This subtype may need freezing, and this will not be done
17555 -- automatically if the object declaration is not in declarative
17556 -- part. Since this is an object declaration, the type cannot always
17557 -- be frozen here. Deferred constants do not freeze their type
17558 -- (which often enough will be private).
17559
17560 if Nkind (P) = N_Object_Declaration
17561 and then Constant_Present (P)
17562 and then No (Expression (P))
17563 then
17564 null;
17565
17566 -- Here we freeze the base type of object type to catch premature use
17567 -- of discriminated private type without a full view.
17568
17569 else
17570 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17571 end if;
17572
17573 -- Ada 2005 AI-406: the object definition in an object declaration
17574 -- can be an access definition.
17575
17576 elsif Def_Kind = N_Access_Definition then
17577 T := Access_Definition (Related_Nod, Obj_Def);
17578
17579 Set_Is_Local_Anonymous_Access
17580 (T,
17581 V => (Ada_Version < Ada_2012)
17582 or else (Nkind (P) /= N_Object_Declaration)
17583 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17584
17585 -- Otherwise, the object definition is just a subtype_mark
17586
17587 else
17588 T := Process_Subtype (Obj_Def, Related_Nod);
17589
17590 -- If expansion is disabled an object definition that is an aggregate
17591 -- will not get expanded and may lead to scoping problems in the back
17592 -- end, if the object is referenced in an inner scope. In that case
17593 -- create an itype reference for the object definition now. This
17594 -- may be redundant in some cases, but harmless.
17595
17596 if Is_Itype (T)
17597 and then Nkind (Related_Nod) = N_Object_Declaration
17598 and then ASIS_Mode
17599 then
17600 Build_Itype_Reference (T, Related_Nod);
17601 end if;
17602 end if;
17603
17604 return T;
17605 end Find_Type_Of_Object;
17606
17607 --------------------------------
17608 -- Find_Type_Of_Subtype_Indic --
17609 --------------------------------
17610
17611 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17612 Typ : Entity_Id;
17613
17614 begin
17615 -- Case of subtype mark with a constraint
17616
17617 if Nkind (S) = N_Subtype_Indication then
17618 Find_Type (Subtype_Mark (S));
17619 Typ := Entity (Subtype_Mark (S));
17620
17621 if not
17622 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17623 then
17624 Error_Msg_N
17625 ("incorrect constraint for this kind of type", Constraint (S));
17626 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17627 end if;
17628
17629 -- Otherwise we have a subtype mark without a constraint
17630
17631 elsif Error_Posted (S) then
17632 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17633 return Any_Type;
17634
17635 else
17636 Find_Type (S);
17637 Typ := Entity (S);
17638 end if;
17639
17640 -- Check No_Wide_Characters restriction
17641
17642 Check_Wide_Character_Restriction (Typ, S);
17643
17644 return Typ;
17645 end Find_Type_Of_Subtype_Indic;
17646
17647 -------------------------------------
17648 -- Floating_Point_Type_Declaration --
17649 -------------------------------------
17650
17651 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17652 Digs : constant Node_Id := Digits_Expression (Def);
17653 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17654 Digs_Val : Uint;
17655 Base_Typ : Entity_Id;
17656 Implicit_Base : Entity_Id;
17657 Bound : Node_Id;
17658
17659 function Can_Derive_From (E : Entity_Id) return Boolean;
17660 -- Find if given digits value, and possibly a specified range, allows
17661 -- derivation from specified type
17662
17663 function Find_Base_Type return Entity_Id;
17664 -- Find a predefined base type that Def can derive from, or generate
17665 -- an error and substitute Long_Long_Float if none exists.
17666
17667 ---------------------
17668 -- Can_Derive_From --
17669 ---------------------
17670
17671 function Can_Derive_From (E : Entity_Id) return Boolean is
17672 Spec : constant Entity_Id := Real_Range_Specification (Def);
17673
17674 begin
17675 -- Check specified "digits" constraint
17676
17677 if Digs_Val > Digits_Value (E) then
17678 return False;
17679 end if;
17680
17681 -- Check for matching range, if specified
17682
17683 if Present (Spec) then
17684 if Expr_Value_R (Type_Low_Bound (E)) >
17685 Expr_Value_R (Low_Bound (Spec))
17686 then
17687 return False;
17688 end if;
17689
17690 if Expr_Value_R (Type_High_Bound (E)) <
17691 Expr_Value_R (High_Bound (Spec))
17692 then
17693 return False;
17694 end if;
17695 end if;
17696
17697 return True;
17698 end Can_Derive_From;
17699
17700 --------------------
17701 -- Find_Base_Type --
17702 --------------------
17703
17704 function Find_Base_Type return Entity_Id is
17705 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17706
17707 begin
17708 -- Iterate over the predefined types in order, returning the first
17709 -- one that Def can derive from.
17710
17711 while Present (Choice) loop
17712 if Can_Derive_From (Node (Choice)) then
17713 return Node (Choice);
17714 end if;
17715
17716 Next_Elmt (Choice);
17717 end loop;
17718
17719 -- If we can't derive from any existing type, use Long_Long_Float
17720 -- and give appropriate message explaining the problem.
17721
17722 if Digs_Val > Max_Digs_Val then
17723 -- It might be the case that there is a type with the requested
17724 -- range, just not the combination of digits and range.
17725
17726 Error_Msg_N
17727 ("no predefined type has requested range and precision",
17728 Real_Range_Specification (Def));
17729
17730 else
17731 Error_Msg_N
17732 ("range too large for any predefined type",
17733 Real_Range_Specification (Def));
17734 end if;
17735
17736 return Standard_Long_Long_Float;
17737 end Find_Base_Type;
17738
17739 -- Start of processing for Floating_Point_Type_Declaration
17740
17741 begin
17742 Check_Restriction (No_Floating_Point, Def);
17743
17744 -- Create an implicit base type
17745
17746 Implicit_Base :=
17747 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17748
17749 -- Analyze and verify digits value
17750
17751 Analyze_And_Resolve (Digs, Any_Integer);
17752 Check_Digits_Expression (Digs);
17753 Digs_Val := Expr_Value (Digs);
17754
17755 -- Process possible range spec and find correct type to derive from
17756
17757 Process_Real_Range_Specification (Def);
17758
17759 -- Check that requested number of digits is not too high.
17760
17761 if Digs_Val > Max_Digs_Val then
17762
17763 -- The check for Max_Base_Digits may be somewhat expensive, as it
17764 -- requires reading System, so only do it when necessary.
17765
17766 declare
17767 Max_Base_Digits : constant Uint :=
17768 Expr_Value
17769 (Expression
17770 (Parent (RTE (RE_Max_Base_Digits))));
17771
17772 begin
17773 if Digs_Val > Max_Base_Digits then
17774 Error_Msg_Uint_1 := Max_Base_Digits;
17775 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17776
17777 elsif No (Real_Range_Specification (Def)) then
17778 Error_Msg_Uint_1 := Max_Digs_Val;
17779 Error_Msg_N ("types with more than ^ digits need range spec "
17780 & "(RM 3.5.7(6))", Digs);
17781 end if;
17782 end;
17783 end if;
17784
17785 -- Find a suitable type to derive from or complain and use a substitute
17786
17787 Base_Typ := Find_Base_Type;
17788
17789 -- If there are bounds given in the declaration use them as the bounds
17790 -- of the type, otherwise use the bounds of the predefined base type
17791 -- that was chosen based on the Digits value.
17792
17793 if Present (Real_Range_Specification (Def)) then
17794 Set_Scalar_Range (T, Real_Range_Specification (Def));
17795 Set_Is_Constrained (T);
17796
17797 -- The bounds of this range must be converted to machine numbers
17798 -- in accordance with RM 4.9(38).
17799
17800 Bound := Type_Low_Bound (T);
17801
17802 if Nkind (Bound) = N_Real_Literal then
17803 Set_Realval
17804 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17805 Set_Is_Machine_Number (Bound);
17806 end if;
17807
17808 Bound := Type_High_Bound (T);
17809
17810 if Nkind (Bound) = N_Real_Literal then
17811 Set_Realval
17812 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17813 Set_Is_Machine_Number (Bound);
17814 end if;
17815
17816 else
17817 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17818 end if;
17819
17820 -- Complete definition of implicit base and declared first subtype. The
17821 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17822 -- are not clobbered when the floating point type acts as a full view of
17823 -- a private type.
17824
17825 Set_Etype (Implicit_Base, Base_Typ);
17826 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17827 Set_Size_Info (Implicit_Base, Base_Typ);
17828 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17829 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17830 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17831 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17832
17833 Set_Ekind (T, E_Floating_Point_Subtype);
17834 Set_Etype (T, Implicit_Base);
17835 Set_Size_Info (T, Implicit_Base);
17836 Set_RM_Size (T, RM_Size (Implicit_Base));
17837 Inherit_Rep_Item_Chain (T, Implicit_Base);
17838 Set_Digits_Value (T, Digs_Val);
17839 end Floating_Point_Type_Declaration;
17840
17841 ----------------------------
17842 -- Get_Discriminant_Value --
17843 ----------------------------
17844
17845 -- This is the situation:
17846
17847 -- There is a non-derived type
17848
17849 -- type T0 (Dx, Dy, Dz...)
17850
17851 -- There are zero or more levels of derivation, with each derivation
17852 -- either purely inheriting the discriminants, or defining its own.
17853
17854 -- type Ti is new Ti-1
17855 -- or
17856 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17857 -- or
17858 -- subtype Ti is ...
17859
17860 -- The subtype issue is avoided by the use of Original_Record_Component,
17861 -- and the fact that derived subtypes also derive the constraints.
17862
17863 -- This chain leads back from
17864
17865 -- Typ_For_Constraint
17866
17867 -- Typ_For_Constraint has discriminants, and the value for each
17868 -- discriminant is given by its corresponding Elmt of Constraints.
17869
17870 -- Discriminant is some discriminant in this hierarchy
17871
17872 -- We need to return its value
17873
17874 -- We do this by recursively searching each level, and looking for
17875 -- Discriminant. Once we get to the bottom, we start backing up
17876 -- returning the value for it which may in turn be a discriminant
17877 -- further up, so on the backup we continue the substitution.
17878
17879 function Get_Discriminant_Value
17880 (Discriminant : Entity_Id;
17881 Typ_For_Constraint : Entity_Id;
17882 Constraint : Elist_Id) return Node_Id
17883 is
17884 function Root_Corresponding_Discriminant
17885 (Discr : Entity_Id) return Entity_Id;
17886 -- Given a discriminant, traverse the chain of inherited discriminants
17887 -- and return the topmost discriminant.
17888
17889 function Search_Derivation_Levels
17890 (Ti : Entity_Id;
17891 Discrim_Values : Elist_Id;
17892 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17893 -- This is the routine that performs the recursive search of levels
17894 -- as described above.
17895
17896 -------------------------------------
17897 -- Root_Corresponding_Discriminant --
17898 -------------------------------------
17899
17900 function Root_Corresponding_Discriminant
17901 (Discr : Entity_Id) return Entity_Id
17902 is
17903 D : Entity_Id;
17904
17905 begin
17906 D := Discr;
17907 while Present (Corresponding_Discriminant (D)) loop
17908 D := Corresponding_Discriminant (D);
17909 end loop;
17910
17911 return D;
17912 end Root_Corresponding_Discriminant;
17913
17914 ------------------------------
17915 -- Search_Derivation_Levels --
17916 ------------------------------
17917
17918 function Search_Derivation_Levels
17919 (Ti : Entity_Id;
17920 Discrim_Values : Elist_Id;
17921 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17922 is
17923 Assoc : Elmt_Id;
17924 Disc : Entity_Id;
17925 Result : Node_Or_Entity_Id;
17926 Result_Entity : Node_Id;
17927
17928 begin
17929 -- If inappropriate type, return Error, this happens only in
17930 -- cascaded error situations, and we want to avoid a blow up.
17931
17932 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17933 return Error;
17934 end if;
17935
17936 -- Look deeper if possible. Use Stored_Constraints only for
17937 -- untagged types. For tagged types use the given constraint.
17938 -- This asymmetry needs explanation???
17939
17940 if not Stored_Discrim_Values
17941 and then Present (Stored_Constraint (Ti))
17942 and then not Is_Tagged_Type (Ti)
17943 then
17944 Result :=
17945 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17946 else
17947 declare
17948 Td : constant Entity_Id := Etype (Ti);
17949
17950 begin
17951 if Td = Ti then
17952 Result := Discriminant;
17953
17954 else
17955 if Present (Stored_Constraint (Ti)) then
17956 Result :=
17957 Search_Derivation_Levels
17958 (Td, Stored_Constraint (Ti), True);
17959 else
17960 Result :=
17961 Search_Derivation_Levels
17962 (Td, Discrim_Values, Stored_Discrim_Values);
17963 end if;
17964 end if;
17965 end;
17966 end if;
17967
17968 -- Extra underlying places to search, if not found above. For
17969 -- concurrent types, the relevant discriminant appears in the
17970 -- corresponding record. For a type derived from a private type
17971 -- without discriminant, the full view inherits the discriminants
17972 -- of the full view of the parent.
17973
17974 if Result = Discriminant then
17975 if Is_Concurrent_Type (Ti)
17976 and then Present (Corresponding_Record_Type (Ti))
17977 then
17978 Result :=
17979 Search_Derivation_Levels (
17980 Corresponding_Record_Type (Ti),
17981 Discrim_Values,
17982 Stored_Discrim_Values);
17983
17984 elsif Is_Private_Type (Ti)
17985 and then not Has_Discriminants (Ti)
17986 and then Present (Full_View (Ti))
17987 and then Etype (Full_View (Ti)) /= Ti
17988 then
17989 Result :=
17990 Search_Derivation_Levels (
17991 Full_View (Ti),
17992 Discrim_Values,
17993 Stored_Discrim_Values);
17994 end if;
17995 end if;
17996
17997 -- If Result is not a (reference to a) discriminant, return it,
17998 -- otherwise set Result_Entity to the discriminant.
17999
18000 if Nkind (Result) = N_Defining_Identifier then
18001 pragma Assert (Result = Discriminant);
18002 Result_Entity := Result;
18003
18004 else
18005 if not Denotes_Discriminant (Result) then
18006 return Result;
18007 end if;
18008
18009 Result_Entity := Entity (Result);
18010 end if;
18011
18012 -- See if this level of derivation actually has discriminants because
18013 -- tagged derivations can add them, hence the lower levels need not
18014 -- have any.
18015
18016 if not Has_Discriminants (Ti) then
18017 return Result;
18018 end if;
18019
18020 -- Scan Ti's discriminants for Result_Entity, and return its
18021 -- corresponding value, if any.
18022
18023 Result_Entity := Original_Record_Component (Result_Entity);
18024
18025 Assoc := First_Elmt (Discrim_Values);
18026
18027 if Stored_Discrim_Values then
18028 Disc := First_Stored_Discriminant (Ti);
18029 else
18030 Disc := First_Discriminant (Ti);
18031 end if;
18032
18033 while Present (Disc) loop
18034
18035 -- If no further associations return the discriminant, value will
18036 -- be found on the second pass.
18037
18038 if No (Assoc) then
18039 return Result;
18040 end if;
18041
18042 if Original_Record_Component (Disc) = Result_Entity then
18043 return Node (Assoc);
18044 end if;
18045
18046 Next_Elmt (Assoc);
18047
18048 if Stored_Discrim_Values then
18049 Next_Stored_Discriminant (Disc);
18050 else
18051 Next_Discriminant (Disc);
18052 end if;
18053 end loop;
18054
18055 -- Could not find it
18056
18057 return Result;
18058 end Search_Derivation_Levels;
18059
18060 -- Local Variables
18061
18062 Result : Node_Or_Entity_Id;
18063
18064 -- Start of processing for Get_Discriminant_Value
18065
18066 begin
18067 -- ??? This routine is a gigantic mess and will be deleted. For the
18068 -- time being just test for the trivial case before calling recurse.
18069
18070 -- We are now celebrating the 20th anniversary of this comment!
18071
18072 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18073 declare
18074 D : Entity_Id;
18075 E : Elmt_Id;
18076
18077 begin
18078 D := First_Discriminant (Typ_For_Constraint);
18079 E := First_Elmt (Constraint);
18080 while Present (D) loop
18081 if Chars (D) = Chars (Discriminant) then
18082 return Node (E);
18083 end if;
18084
18085 Next_Discriminant (D);
18086 Next_Elmt (E);
18087 end loop;
18088 end;
18089 end if;
18090
18091 Result := Search_Derivation_Levels
18092 (Typ_For_Constraint, Constraint, False);
18093
18094 -- ??? hack to disappear when this routine is gone
18095
18096 if Nkind (Result) = N_Defining_Identifier then
18097 declare
18098 D : Entity_Id;
18099 E : Elmt_Id;
18100
18101 begin
18102 D := First_Discriminant (Typ_For_Constraint);
18103 E := First_Elmt (Constraint);
18104 while Present (D) loop
18105 if Root_Corresponding_Discriminant (D) = Discriminant then
18106 return Node (E);
18107 end if;
18108
18109 Next_Discriminant (D);
18110 Next_Elmt (E);
18111 end loop;
18112 end;
18113 end if;
18114
18115 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18116 return Result;
18117 end Get_Discriminant_Value;
18118
18119 --------------------------
18120 -- Has_Range_Constraint --
18121 --------------------------
18122
18123 function Has_Range_Constraint (N : Node_Id) return Boolean is
18124 C : constant Node_Id := Constraint (N);
18125
18126 begin
18127 if Nkind (C) = N_Range_Constraint then
18128 return True;
18129
18130 elsif Nkind (C) = N_Digits_Constraint then
18131 return
18132 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18133 or else Present (Range_Constraint (C));
18134
18135 elsif Nkind (C) = N_Delta_Constraint then
18136 return Present (Range_Constraint (C));
18137
18138 else
18139 return False;
18140 end if;
18141 end Has_Range_Constraint;
18142
18143 ------------------------
18144 -- Inherit_Components --
18145 ------------------------
18146
18147 function Inherit_Components
18148 (N : Node_Id;
18149 Parent_Base : Entity_Id;
18150 Derived_Base : Entity_Id;
18151 Is_Tagged : Boolean;
18152 Inherit_Discr : Boolean;
18153 Discs : Elist_Id) return Elist_Id
18154 is
18155 Assoc_List : constant Elist_Id := New_Elmt_List;
18156
18157 procedure Inherit_Component
18158 (Old_C : Entity_Id;
18159 Plain_Discrim : Boolean := False;
18160 Stored_Discrim : Boolean := False);
18161 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18162 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18163 -- True, Old_C is a stored discriminant. If they are both false then
18164 -- Old_C is a regular component.
18165
18166 -----------------------
18167 -- Inherit_Component --
18168 -----------------------
18169
18170 procedure Inherit_Component
18171 (Old_C : Entity_Id;
18172 Plain_Discrim : Boolean := False;
18173 Stored_Discrim : Boolean := False)
18174 is
18175 procedure Set_Anonymous_Type (Id : Entity_Id);
18176 -- Id denotes the entity of an access discriminant or anonymous
18177 -- access component. Set the type of Id to either the same type of
18178 -- Old_C or create a new one depending on whether the parent and
18179 -- the child types are in the same scope.
18180
18181 ------------------------
18182 -- Set_Anonymous_Type --
18183 ------------------------
18184
18185 procedure Set_Anonymous_Type (Id : Entity_Id) is
18186 Old_Typ : constant Entity_Id := Etype (Old_C);
18187
18188 begin
18189 if Scope (Parent_Base) = Scope (Derived_Base) then
18190 Set_Etype (Id, Old_Typ);
18191
18192 -- The parent and the derived type are in two different scopes.
18193 -- Reuse the type of the original discriminant / component by
18194 -- copying it in order to preserve all attributes.
18195
18196 else
18197 declare
18198 Typ : constant Entity_Id := New_Copy (Old_Typ);
18199
18200 begin
18201 Set_Etype (Id, Typ);
18202
18203 -- Since we do not generate component declarations for
18204 -- inherited components, associate the itype with the
18205 -- derived type.
18206
18207 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18208 Set_Scope (Typ, Derived_Base);
18209 end;
18210 end if;
18211 end Set_Anonymous_Type;
18212
18213 -- Local variables and constants
18214
18215 New_C : constant Entity_Id := New_Copy (Old_C);
18216
18217 Corr_Discrim : Entity_Id;
18218 Discrim : Entity_Id;
18219
18220 -- Start of processing for Inherit_Component
18221
18222 begin
18223 pragma Assert (not Is_Tagged or not Stored_Discrim);
18224
18225 Set_Parent (New_C, Parent (Old_C));
18226
18227 -- Regular discriminants and components must be inserted in the scope
18228 -- of the Derived_Base. Do it here.
18229
18230 if not Stored_Discrim then
18231 Enter_Name (New_C);
18232 end if;
18233
18234 -- For tagged types the Original_Record_Component must point to
18235 -- whatever this field was pointing to in the parent type. This has
18236 -- already been achieved by the call to New_Copy above.
18237
18238 if not Is_Tagged then
18239 Set_Original_Record_Component (New_C, New_C);
18240 Set_Corresponding_Record_Component (New_C, Old_C);
18241 end if;
18242
18243 -- Set the proper type of an access discriminant
18244
18245 if Ekind (New_C) = E_Discriminant
18246 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18247 then
18248 Set_Anonymous_Type (New_C);
18249 end if;
18250
18251 -- If we have inherited a component then see if its Etype contains
18252 -- references to Parent_Base discriminants. In this case, replace
18253 -- these references with the constraints given in Discs. We do not
18254 -- do this for the partial view of private types because this is
18255 -- not needed (only the components of the full view will be used
18256 -- for code generation) and cause problem. We also avoid this
18257 -- transformation in some error situations.
18258
18259 if Ekind (New_C) = E_Component then
18260
18261 -- Set the proper type of an anonymous access component
18262
18263 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18264 Set_Anonymous_Type (New_C);
18265
18266 elsif (Is_Private_Type (Derived_Base)
18267 and then not Is_Generic_Type (Derived_Base))
18268 or else (Is_Empty_Elmt_List (Discs)
18269 and then not Expander_Active)
18270 then
18271 Set_Etype (New_C, Etype (Old_C));
18272
18273 else
18274 -- The current component introduces a circularity of the
18275 -- following kind:
18276
18277 -- limited with Pack_2;
18278 -- package Pack_1 is
18279 -- type T_1 is tagged record
18280 -- Comp : access Pack_2.T_2;
18281 -- ...
18282 -- end record;
18283 -- end Pack_1;
18284
18285 -- with Pack_1;
18286 -- package Pack_2 is
18287 -- type T_2 is new Pack_1.T_1 with ...;
18288 -- end Pack_2;
18289
18290 Set_Etype
18291 (New_C,
18292 Constrain_Component_Type
18293 (Old_C, Derived_Base, N, Parent_Base, Discs));
18294 end if;
18295 end if;
18296
18297 -- In derived tagged types it is illegal to reference a non
18298 -- discriminant component in the parent type. To catch this, mark
18299 -- these components with an Ekind of E_Void. This will be reset in
18300 -- Record_Type_Definition after processing the record extension of
18301 -- the derived type.
18302
18303 -- If the declaration is a private extension, there is no further
18304 -- record extension to process, and the components retain their
18305 -- current kind, because they are visible at this point.
18306
18307 if Is_Tagged and then Ekind (New_C) = E_Component
18308 and then Nkind (N) /= N_Private_Extension_Declaration
18309 then
18310 Set_Ekind (New_C, E_Void);
18311 end if;
18312
18313 if Plain_Discrim then
18314 Set_Corresponding_Discriminant (New_C, Old_C);
18315 Build_Discriminal (New_C);
18316
18317 -- If we are explicitly inheriting a stored discriminant it will be
18318 -- completely hidden.
18319
18320 elsif Stored_Discrim then
18321 Set_Corresponding_Discriminant (New_C, Empty);
18322 Set_Discriminal (New_C, Empty);
18323 Set_Is_Completely_Hidden (New_C);
18324
18325 -- Set the Original_Record_Component of each discriminant in the
18326 -- derived base to point to the corresponding stored that we just
18327 -- created.
18328
18329 Discrim := First_Discriminant (Derived_Base);
18330 while Present (Discrim) loop
18331 Corr_Discrim := Corresponding_Discriminant (Discrim);
18332
18333 -- Corr_Discrim could be missing in an error situation
18334
18335 if Present (Corr_Discrim)
18336 and then Original_Record_Component (Corr_Discrim) = Old_C
18337 then
18338 Set_Original_Record_Component (Discrim, New_C);
18339 Set_Corresponding_Record_Component (Discrim, Empty);
18340 end if;
18341
18342 Next_Discriminant (Discrim);
18343 end loop;
18344
18345 Append_Entity (New_C, Derived_Base);
18346 end if;
18347
18348 if not Is_Tagged then
18349 Append_Elmt (Old_C, Assoc_List);
18350 Append_Elmt (New_C, Assoc_List);
18351 end if;
18352 end Inherit_Component;
18353
18354 -- Variables local to Inherit_Component
18355
18356 Loc : constant Source_Ptr := Sloc (N);
18357
18358 Parent_Discrim : Entity_Id;
18359 Stored_Discrim : Entity_Id;
18360 D : Entity_Id;
18361 Component : Entity_Id;
18362
18363 -- Start of processing for Inherit_Components
18364
18365 begin
18366 if not Is_Tagged then
18367 Append_Elmt (Parent_Base, Assoc_List);
18368 Append_Elmt (Derived_Base, Assoc_List);
18369 end if;
18370
18371 -- Inherit parent discriminants if needed
18372
18373 if Inherit_Discr then
18374 Parent_Discrim := First_Discriminant (Parent_Base);
18375 while Present (Parent_Discrim) loop
18376 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18377 Next_Discriminant (Parent_Discrim);
18378 end loop;
18379 end if;
18380
18381 -- Create explicit stored discrims for untagged types when necessary
18382
18383 if not Has_Unknown_Discriminants (Derived_Base)
18384 and then Has_Discriminants (Parent_Base)
18385 and then not Is_Tagged
18386 and then
18387 (not Inherit_Discr
18388 or else First_Discriminant (Parent_Base) /=
18389 First_Stored_Discriminant (Parent_Base))
18390 then
18391 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18392 while Present (Stored_Discrim) loop
18393 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18394 Next_Stored_Discriminant (Stored_Discrim);
18395 end loop;
18396 end if;
18397
18398 -- See if we can apply the second transformation for derived types, as
18399 -- explained in point 6. in the comments above Build_Derived_Record_Type
18400 -- This is achieved by appending Derived_Base discriminants into Discs,
18401 -- which has the side effect of returning a non empty Discs list to the
18402 -- caller of Inherit_Components, which is what we want. This must be
18403 -- done for private derived types if there are explicit stored
18404 -- discriminants, to ensure that we can retrieve the values of the
18405 -- constraints provided in the ancestors.
18406
18407 if Inherit_Discr
18408 and then Is_Empty_Elmt_List (Discs)
18409 and then Present (First_Discriminant (Derived_Base))
18410 and then
18411 (not Is_Private_Type (Derived_Base)
18412 or else Is_Completely_Hidden
18413 (First_Stored_Discriminant (Derived_Base))
18414 or else Is_Generic_Type (Derived_Base))
18415 then
18416 D := First_Discriminant (Derived_Base);
18417 while Present (D) loop
18418 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18419 Next_Discriminant (D);
18420 end loop;
18421 end if;
18422
18423 -- Finally, inherit non-discriminant components unless they are not
18424 -- visible because defined or inherited from the full view of the
18425 -- parent. Don't inherit the _parent field of the parent type.
18426
18427 Component := First_Entity (Parent_Base);
18428 while Present (Component) loop
18429
18430 -- Ada 2005 (AI-251): Do not inherit components associated with
18431 -- secondary tags of the parent.
18432
18433 if Ekind (Component) = E_Component
18434 and then Present (Related_Type (Component))
18435 then
18436 null;
18437
18438 elsif Ekind (Component) /= E_Component
18439 or else Chars (Component) = Name_uParent
18440 then
18441 null;
18442
18443 -- If the derived type is within the parent type's declarative
18444 -- region, then the components can still be inherited even though
18445 -- they aren't visible at this point. This can occur for cases
18446 -- such as within public child units where the components must
18447 -- become visible upon entering the child unit's private part.
18448
18449 elsif not Is_Visible_Component (Component)
18450 and then not In_Open_Scopes (Scope (Parent_Base))
18451 then
18452 null;
18453
18454 elsif Ekind_In (Derived_Base, E_Private_Type,
18455 E_Limited_Private_Type)
18456 then
18457 null;
18458
18459 else
18460 Inherit_Component (Component);
18461 end if;
18462
18463 Next_Entity (Component);
18464 end loop;
18465
18466 -- For tagged derived types, inherited discriminants cannot be used in
18467 -- component declarations of the record extension part. To achieve this
18468 -- we mark the inherited discriminants as not visible.
18469
18470 if Is_Tagged and then Inherit_Discr then
18471 D := First_Discriminant (Derived_Base);
18472 while Present (D) loop
18473 Set_Is_Immediately_Visible (D, False);
18474 Next_Discriminant (D);
18475 end loop;
18476 end if;
18477
18478 return Assoc_List;
18479 end Inherit_Components;
18480
18481 -----------------------------
18482 -- Inherit_Predicate_Flags --
18483 -----------------------------
18484
18485 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18486 begin
18487 Set_Has_Predicates (Subt, Has_Predicates (Par));
18488 Set_Has_Static_Predicate_Aspect
18489 (Subt, Has_Static_Predicate_Aspect (Par));
18490 Set_Has_Dynamic_Predicate_Aspect
18491 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18492
18493 -- A named subtype does not inherit the predicate function of its
18494 -- parent but an itype declared for a loop index needs the discrete
18495 -- predicate information of its parent to execute the loop properly.
18496
18497 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18498 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18499
18500 if Has_Static_Predicate (Par) then
18501 Set_Static_Discrete_Predicate
18502 (Subt, Static_Discrete_Predicate (Par));
18503 end if;
18504 end if;
18505 end Inherit_Predicate_Flags;
18506
18507 ----------------------
18508 -- Is_EVF_Procedure --
18509 ----------------------
18510
18511 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18512 Formal : Entity_Id;
18513
18514 begin
18515 -- Examine the formals of an Extensions_Visible False procedure looking
18516 -- for a controlling OUT parameter.
18517
18518 if Ekind (Subp) = E_Procedure
18519 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18520 then
18521 Formal := First_Formal (Subp);
18522 while Present (Formal) loop
18523 if Ekind (Formal) = E_Out_Parameter
18524 and then Is_Controlling_Formal (Formal)
18525 then
18526 return True;
18527 end if;
18528
18529 Next_Formal (Formal);
18530 end loop;
18531 end if;
18532
18533 return False;
18534 end Is_EVF_Procedure;
18535
18536 -----------------------
18537 -- Is_Null_Extension --
18538 -----------------------
18539
18540 function Is_Null_Extension (T : Entity_Id) return Boolean is
18541 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18542 Comp_List : Node_Id;
18543 Comp : Node_Id;
18544
18545 begin
18546 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18547 or else not Is_Tagged_Type (T)
18548 or else Nkind (Type_Definition (Type_Decl)) /=
18549 N_Derived_Type_Definition
18550 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18551 then
18552 return False;
18553 end if;
18554
18555 Comp_List :=
18556 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18557
18558 if Present (Discriminant_Specifications (Type_Decl)) then
18559 return False;
18560
18561 elsif Present (Comp_List)
18562 and then Is_Non_Empty_List (Component_Items (Comp_List))
18563 then
18564 Comp := First (Component_Items (Comp_List));
18565
18566 -- Only user-defined components are relevant. The component list
18567 -- may also contain a parent component and internal components
18568 -- corresponding to secondary tags, but these do not determine
18569 -- whether this is a null extension.
18570
18571 while Present (Comp) loop
18572 if Comes_From_Source (Comp) then
18573 return False;
18574 end if;
18575
18576 Next (Comp);
18577 end loop;
18578
18579 return True;
18580
18581 else
18582 return True;
18583 end if;
18584 end Is_Null_Extension;
18585
18586 ------------------------------
18587 -- Is_Valid_Constraint_Kind --
18588 ------------------------------
18589
18590 function Is_Valid_Constraint_Kind
18591 (T_Kind : Type_Kind;
18592 Constraint_Kind : Node_Kind) return Boolean
18593 is
18594 begin
18595 case T_Kind is
18596 when Enumeration_Kind
18597 | Integer_Kind
18598 =>
18599 return Constraint_Kind = N_Range_Constraint;
18600
18601 when Decimal_Fixed_Point_Kind =>
18602 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18603 N_Range_Constraint);
18604
18605 when Ordinary_Fixed_Point_Kind =>
18606 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18607 N_Range_Constraint);
18608
18609 when Float_Kind =>
18610 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18611 N_Range_Constraint);
18612
18613 when Access_Kind
18614 | Array_Kind
18615 | Class_Wide_Kind
18616 | Concurrent_Kind
18617 | Private_Kind
18618 | E_Incomplete_Type
18619 | E_Record_Subtype
18620 | E_Record_Type
18621 =>
18622 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18623
18624 when others =>
18625 return True; -- Error will be detected later
18626 end case;
18627 end Is_Valid_Constraint_Kind;
18628
18629 --------------------------
18630 -- Is_Visible_Component --
18631 --------------------------
18632
18633 function Is_Visible_Component
18634 (C : Entity_Id;
18635 N : Node_Id := Empty) return Boolean
18636 is
18637 Original_Comp : Entity_Id := Empty;
18638 Original_Type : Entity_Id;
18639 Type_Scope : Entity_Id;
18640
18641 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18642 -- Check whether parent type of inherited component is declared locally,
18643 -- possibly within a nested package or instance. The current scope is
18644 -- the derived record itself.
18645
18646 -------------------
18647 -- Is_Local_Type --
18648 -------------------
18649
18650 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18651 Scop : Entity_Id;
18652
18653 begin
18654 Scop := Scope (Typ);
18655 while Present (Scop)
18656 and then Scop /= Standard_Standard
18657 loop
18658 if Scop = Scope (Current_Scope) then
18659 return True;
18660 end if;
18661
18662 Scop := Scope (Scop);
18663 end loop;
18664
18665 return False;
18666 end Is_Local_Type;
18667
18668 -- Start of processing for Is_Visible_Component
18669
18670 begin
18671 if Ekind_In (C, E_Component, E_Discriminant) then
18672 Original_Comp := Original_Record_Component (C);
18673 end if;
18674
18675 if No (Original_Comp) then
18676
18677 -- Premature usage, or previous error
18678
18679 return False;
18680
18681 else
18682 Original_Type := Scope (Original_Comp);
18683 Type_Scope := Scope (Base_Type (Scope (C)));
18684 end if;
18685
18686 -- This test only concerns tagged types
18687
18688 if not Is_Tagged_Type (Original_Type) then
18689 return True;
18690
18691 -- If it is _Parent or _Tag, there is no visibility issue
18692
18693 elsif not Comes_From_Source (Original_Comp) then
18694 return True;
18695
18696 -- Discriminants are visible unless the (private) type has unknown
18697 -- discriminants. If the discriminant reference is inserted for a
18698 -- discriminant check on a full view it is also visible.
18699
18700 elsif Ekind (Original_Comp) = E_Discriminant
18701 and then
18702 (not Has_Unknown_Discriminants (Original_Type)
18703 or else (Present (N)
18704 and then Nkind (N) = N_Selected_Component
18705 and then Nkind (Prefix (N)) = N_Type_Conversion
18706 and then not Comes_From_Source (Prefix (N))))
18707 then
18708 return True;
18709
18710 -- In the body of an instantiation, check the visibility of a component
18711 -- in case it has a homograph that is a primitive operation of a private
18712 -- type which was not visible in the generic unit.
18713
18714 -- Should Is_Prefixed_Call be propagated from template to instance???
18715
18716 elsif In_Instance_Body then
18717 if not Is_Tagged_Type (Original_Type)
18718 or else not Is_Private_Type (Original_Type)
18719 then
18720 return True;
18721
18722 else
18723 declare
18724 Subp_Elmt : Elmt_Id;
18725
18726 begin
18727 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18728 while Present (Subp_Elmt) loop
18729
18730 -- The component is hidden by a primitive operation
18731
18732 if Chars (Node (Subp_Elmt)) = Chars (C) then
18733 return False;
18734 end if;
18735
18736 Next_Elmt (Subp_Elmt);
18737 end loop;
18738
18739 return True;
18740 end;
18741 end if;
18742
18743 -- If the component has been declared in an ancestor which is currently
18744 -- a private type, then it is not visible. The same applies if the
18745 -- component's containing type is not in an open scope and the original
18746 -- component's enclosing type is a visible full view of a private type
18747 -- (which can occur in cases where an attempt is being made to reference
18748 -- a component in a sibling package that is inherited from a visible
18749 -- component of a type in an ancestor package; the component in the
18750 -- sibling package should not be visible even though the component it
18751 -- inherited from is visible). This does not apply however in the case
18752 -- where the scope of the type is a private child unit, or when the
18753 -- parent comes from a local package in which the ancestor is currently
18754 -- visible. The latter suppression of visibility is needed for cases
18755 -- that are tested in B730006.
18756
18757 elsif Is_Private_Type (Original_Type)
18758 or else
18759 (not Is_Private_Descendant (Type_Scope)
18760 and then not In_Open_Scopes (Type_Scope)
18761 and then Has_Private_Declaration (Original_Type))
18762 then
18763 -- If the type derives from an entity in a formal package, there
18764 -- are no additional visible components.
18765
18766 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18767 N_Formal_Package_Declaration
18768 then
18769 return False;
18770
18771 -- if we are not in the private part of the current package, there
18772 -- are no additional visible components.
18773
18774 elsif Ekind (Scope (Current_Scope)) = E_Package
18775 and then not In_Private_Part (Scope (Current_Scope))
18776 then
18777 return False;
18778 else
18779 return
18780 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18781 and then In_Open_Scopes (Scope (Original_Type))
18782 and then Is_Local_Type (Type_Scope);
18783 end if;
18784
18785 -- There is another weird way in which a component may be invisible when
18786 -- the private and the full view are not derived from the same ancestor.
18787 -- Here is an example :
18788
18789 -- type A1 is tagged record F1 : integer; end record;
18790 -- type A2 is new A1 with record F2 : integer; end record;
18791 -- type T is new A1 with private;
18792 -- private
18793 -- type T is new A2 with null record;
18794
18795 -- In this case, the full view of T inherits F1 and F2 but the private
18796 -- view inherits only F1
18797
18798 else
18799 declare
18800 Ancestor : Entity_Id := Scope (C);
18801
18802 begin
18803 loop
18804 if Ancestor = Original_Type then
18805 return True;
18806
18807 -- The ancestor may have a partial view of the original type,
18808 -- but if the full view is in scope, as in a child body, the
18809 -- component is visible.
18810
18811 elsif In_Private_Part (Scope (Original_Type))
18812 and then Full_View (Ancestor) = Original_Type
18813 then
18814 return True;
18815
18816 elsif Ancestor = Etype (Ancestor) then
18817
18818 -- No further ancestors to examine
18819
18820 return False;
18821 end if;
18822
18823 Ancestor := Etype (Ancestor);
18824 end loop;
18825 end;
18826 end if;
18827 end Is_Visible_Component;
18828
18829 --------------------------
18830 -- Make_Class_Wide_Type --
18831 --------------------------
18832
18833 procedure Make_Class_Wide_Type (T : Entity_Id) is
18834 CW_Type : Entity_Id;
18835 CW_Name : Name_Id;
18836 Next_E : Entity_Id;
18837
18838 begin
18839 if Present (Class_Wide_Type (T)) then
18840
18841 -- The class-wide type is a partially decorated entity created for a
18842 -- unanalyzed tagged type referenced through a limited with clause.
18843 -- When the tagged type is analyzed, its class-wide type needs to be
18844 -- redecorated. Note that we reuse the entity created by Decorate_
18845 -- Tagged_Type in order to preserve all links.
18846
18847 if Materialize_Entity (Class_Wide_Type (T)) then
18848 CW_Type := Class_Wide_Type (T);
18849 Set_Materialize_Entity (CW_Type, False);
18850
18851 -- The class wide type can have been defined by the partial view, in
18852 -- which case everything is already done.
18853
18854 else
18855 return;
18856 end if;
18857
18858 -- Default case, we need to create a new class-wide type
18859
18860 else
18861 CW_Type :=
18862 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18863 end if;
18864
18865 -- Inherit root type characteristics
18866
18867 CW_Name := Chars (CW_Type);
18868 Next_E := Next_Entity (CW_Type);
18869 Copy_Node (T, CW_Type);
18870 Set_Comes_From_Source (CW_Type, False);
18871 Set_Chars (CW_Type, CW_Name);
18872 Set_Parent (CW_Type, Parent (T));
18873 Set_Next_Entity (CW_Type, Next_E);
18874
18875 -- Ensure we have a new freeze node for the class-wide type. The partial
18876 -- view may have freeze action of its own, requiring a proper freeze
18877 -- node, and the same freeze node cannot be shared between the two
18878 -- types.
18879
18880 Set_Has_Delayed_Freeze (CW_Type);
18881 Set_Freeze_Node (CW_Type, Empty);
18882
18883 -- Customize the class-wide type: It has no prim. op., it cannot be
18884 -- abstract, its Etype points back to the specific root type, and it
18885 -- cannot have any invariants.
18886
18887 Set_Ekind (CW_Type, E_Class_Wide_Type);
18888 Set_Is_Tagged_Type (CW_Type, True);
18889 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18890 Set_Is_Abstract_Type (CW_Type, False);
18891 Set_Is_Constrained (CW_Type, False);
18892 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18893 Set_Default_SSO (CW_Type);
18894 Set_Has_Inheritable_Invariants (CW_Type, False);
18895 Set_Has_Inherited_Invariants (CW_Type, False);
18896 Set_Has_Own_Invariants (CW_Type, False);
18897
18898 if Ekind (T) = E_Class_Wide_Subtype then
18899 Set_Etype (CW_Type, Etype (Base_Type (T)));
18900 else
18901 Set_Etype (CW_Type, T);
18902 end if;
18903
18904 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18905
18906 -- If this is the class_wide type of a constrained subtype, it does
18907 -- not have discriminants.
18908
18909 Set_Has_Discriminants (CW_Type,
18910 Has_Discriminants (T) and then not Is_Constrained (T));
18911
18912 Set_Has_Unknown_Discriminants (CW_Type, True);
18913 Set_Class_Wide_Type (T, CW_Type);
18914 Set_Equivalent_Type (CW_Type, Empty);
18915
18916 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18917
18918 Set_Class_Wide_Type (CW_Type, CW_Type);
18919 end Make_Class_Wide_Type;
18920
18921 ----------------
18922 -- Make_Index --
18923 ----------------
18924
18925 procedure Make_Index
18926 (N : Node_Id;
18927 Related_Nod : Node_Id;
18928 Related_Id : Entity_Id := Empty;
18929 Suffix_Index : Nat := 1;
18930 In_Iter_Schm : Boolean := False)
18931 is
18932 R : Node_Id;
18933 T : Entity_Id;
18934 Def_Id : Entity_Id := Empty;
18935 Found : Boolean := False;
18936
18937 begin
18938 -- For a discrete range used in a constrained array definition and
18939 -- defined by a range, an implicit conversion to the predefined type
18940 -- INTEGER is assumed if each bound is either a numeric literal, a named
18941 -- number, or an attribute, and the type of both bounds (prior to the
18942 -- implicit conversion) is the type universal_integer. Otherwise, both
18943 -- bounds must be of the same discrete type, other than universal
18944 -- integer; this type must be determinable independently of the
18945 -- context, but using the fact that the type must be discrete and that
18946 -- both bounds must have the same type.
18947
18948 -- Character literals also have a universal type in the absence of
18949 -- of additional context, and are resolved to Standard_Character.
18950
18951 if Nkind (N) = N_Range then
18952
18953 -- The index is given by a range constraint. The bounds are known
18954 -- to be of a consistent type.
18955
18956 if not Is_Overloaded (N) then
18957 T := Etype (N);
18958
18959 -- For universal bounds, choose the specific predefined type
18960
18961 if T = Universal_Integer then
18962 T := Standard_Integer;
18963
18964 elsif T = Any_Character then
18965 Ambiguous_Character (Low_Bound (N));
18966
18967 T := Standard_Character;
18968 end if;
18969
18970 -- The node may be overloaded because some user-defined operators
18971 -- are available, but if a universal interpretation exists it is
18972 -- also the selected one.
18973
18974 elsif Universal_Interpretation (N) = Universal_Integer then
18975 T := Standard_Integer;
18976
18977 else
18978 T := Any_Type;
18979
18980 declare
18981 Ind : Interp_Index;
18982 It : Interp;
18983
18984 begin
18985 Get_First_Interp (N, Ind, It);
18986 while Present (It.Typ) loop
18987 if Is_Discrete_Type (It.Typ) then
18988
18989 if Found
18990 and then not Covers (It.Typ, T)
18991 and then not Covers (T, It.Typ)
18992 then
18993 Error_Msg_N ("ambiguous bounds in discrete range", N);
18994 exit;
18995 else
18996 T := It.Typ;
18997 Found := True;
18998 end if;
18999 end if;
19000
19001 Get_Next_Interp (Ind, It);
19002 end loop;
19003
19004 if T = Any_Type then
19005 Error_Msg_N ("discrete type required for range", N);
19006 Set_Etype (N, Any_Type);
19007 return;
19008
19009 elsif T = Universal_Integer then
19010 T := Standard_Integer;
19011 end if;
19012 end;
19013 end if;
19014
19015 if not Is_Discrete_Type (T) then
19016 Error_Msg_N ("discrete type required for range", N);
19017 Set_Etype (N, Any_Type);
19018 return;
19019 end if;
19020
19021 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19022 and then Attribute_Name (Low_Bound (N)) = Name_First
19023 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19024 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19025 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19026 then
19027 -- The type of the index will be the type of the prefix, as long
19028 -- as the upper bound is 'Last of the same type.
19029
19030 Def_Id := Entity (Prefix (Low_Bound (N)));
19031
19032 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19033 or else Attribute_Name (High_Bound (N)) /= Name_Last
19034 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19035 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19036 then
19037 Def_Id := Empty;
19038 end if;
19039 end if;
19040
19041 R := N;
19042 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19043
19044 elsif Nkind (N) = N_Subtype_Indication then
19045
19046 -- The index is given by a subtype with a range constraint
19047
19048 T := Base_Type (Entity (Subtype_Mark (N)));
19049
19050 if not Is_Discrete_Type (T) then
19051 Error_Msg_N ("discrete type required for range", N);
19052 Set_Etype (N, Any_Type);
19053 return;
19054 end if;
19055
19056 R := Range_Expression (Constraint (N));
19057
19058 Resolve (R, T);
19059 Process_Range_Expr_In_Decl
19060 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19061
19062 elsif Nkind (N) = N_Attribute_Reference then
19063
19064 -- Catch beginner's error (use of attribute other than 'Range)
19065
19066 if Attribute_Name (N) /= Name_Range then
19067 Error_Msg_N ("expect attribute ''Range", N);
19068 Set_Etype (N, Any_Type);
19069 return;
19070 end if;
19071
19072 -- If the node denotes the range of a type mark, that is also the
19073 -- resulting type, and we do not need to create an Itype for it.
19074
19075 if Is_Entity_Name (Prefix (N))
19076 and then Comes_From_Source (N)
19077 and then Is_Type (Entity (Prefix (N)))
19078 and then Is_Discrete_Type (Entity (Prefix (N)))
19079 then
19080 Def_Id := Entity (Prefix (N));
19081 end if;
19082
19083 Analyze_And_Resolve (N);
19084 T := Etype (N);
19085 R := N;
19086
19087 -- If none of the above, must be a subtype. We convert this to a
19088 -- range attribute reference because in the case of declared first
19089 -- named subtypes, the types in the range reference can be different
19090 -- from the type of the entity. A range attribute normalizes the
19091 -- reference and obtains the correct types for the bounds.
19092
19093 -- This transformation is in the nature of an expansion, is only
19094 -- done if expansion is active. In particular, it is not done on
19095 -- formal generic types, because we need to retain the name of the
19096 -- original index for instantiation purposes.
19097
19098 else
19099 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19100 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19101 Set_Etype (N, Any_Integer);
19102 return;
19103
19104 else
19105 -- The type mark may be that of an incomplete type. It is only
19106 -- now that we can get the full view, previous analysis does
19107 -- not look specifically for a type mark.
19108
19109 Set_Entity (N, Get_Full_View (Entity (N)));
19110 Set_Etype (N, Entity (N));
19111 Def_Id := Entity (N);
19112
19113 if not Is_Discrete_Type (Def_Id) then
19114 Error_Msg_N ("discrete type required for index", N);
19115 Set_Etype (N, Any_Type);
19116 return;
19117 end if;
19118 end if;
19119
19120 if Expander_Active then
19121 Rewrite (N,
19122 Make_Attribute_Reference (Sloc (N),
19123 Attribute_Name => Name_Range,
19124 Prefix => Relocate_Node (N)));
19125
19126 -- The original was a subtype mark that does not freeze. This
19127 -- means that the rewritten version must not freeze either.
19128
19129 Set_Must_Not_Freeze (N);
19130 Set_Must_Not_Freeze (Prefix (N));
19131 Analyze_And_Resolve (N);
19132 T := Etype (N);
19133 R := N;
19134
19135 -- If expander is inactive, type is legal, nothing else to construct
19136
19137 else
19138 return;
19139 end if;
19140 end if;
19141
19142 if not Is_Discrete_Type (T) then
19143 Error_Msg_N ("discrete type required for range", N);
19144 Set_Etype (N, Any_Type);
19145 return;
19146
19147 elsif T = Any_Type then
19148 Set_Etype (N, Any_Type);
19149 return;
19150 end if;
19151
19152 -- We will now create the appropriate Itype to describe the range, but
19153 -- first a check. If we originally had a subtype, then we just label
19154 -- the range with this subtype. Not only is there no need to construct
19155 -- a new subtype, but it is wrong to do so for two reasons:
19156
19157 -- 1. A legality concern, if we have a subtype, it must not freeze,
19158 -- and the Itype would cause freezing incorrectly
19159
19160 -- 2. An efficiency concern, if we created an Itype, it would not be
19161 -- recognized as the same type for the purposes of eliminating
19162 -- checks in some circumstances.
19163
19164 -- We signal this case by setting the subtype entity in Def_Id
19165
19166 if No (Def_Id) then
19167 Def_Id :=
19168 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19169 Set_Etype (Def_Id, Base_Type (T));
19170
19171 if Is_Signed_Integer_Type (T) then
19172 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19173
19174 elsif Is_Modular_Integer_Type (T) then
19175 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19176
19177 else
19178 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19179 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19180 Set_First_Literal (Def_Id, First_Literal (T));
19181 end if;
19182
19183 Set_Size_Info (Def_Id, (T));
19184 Set_RM_Size (Def_Id, RM_Size (T));
19185 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19186
19187 Set_Scalar_Range (Def_Id, R);
19188 Conditional_Delay (Def_Id, T);
19189
19190 if Nkind (N) = N_Subtype_Indication then
19191 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19192 end if;
19193
19194 -- In the subtype indication case, if the immediate parent of the
19195 -- new subtype is non-static, then the subtype we create is non-
19196 -- static, even if its bounds are static.
19197
19198 if Nkind (N) = N_Subtype_Indication
19199 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19200 then
19201 Set_Is_Non_Static_Subtype (Def_Id);
19202 end if;
19203 end if;
19204
19205 -- Final step is to label the index with this constructed type
19206
19207 Set_Etype (N, Def_Id);
19208 end Make_Index;
19209
19210 ------------------------------
19211 -- Modular_Type_Declaration --
19212 ------------------------------
19213
19214 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19215 Mod_Expr : constant Node_Id := Expression (Def);
19216 M_Val : Uint;
19217
19218 procedure Set_Modular_Size (Bits : Int);
19219 -- Sets RM_Size to Bits, and Esize to normal word size above this
19220
19221 ----------------------
19222 -- Set_Modular_Size --
19223 ----------------------
19224
19225 procedure Set_Modular_Size (Bits : Int) is
19226 begin
19227 Set_RM_Size (T, UI_From_Int (Bits));
19228
19229 if Bits <= 8 then
19230 Init_Esize (T, 8);
19231
19232 elsif Bits <= 16 then
19233 Init_Esize (T, 16);
19234
19235 elsif Bits <= 32 then
19236 Init_Esize (T, 32);
19237
19238 else
19239 Init_Esize (T, System_Max_Binary_Modulus_Power);
19240 end if;
19241
19242 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19243 Set_Is_Known_Valid (T);
19244 end if;
19245 end Set_Modular_Size;
19246
19247 -- Start of processing for Modular_Type_Declaration
19248
19249 begin
19250 -- If the mod expression is (exactly) 2 * literal, where literal is
19251 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19252
19253 if Warn_On_Suspicious_Modulus_Value
19254 and then Nkind (Mod_Expr) = N_Op_Multiply
19255 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19256 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19257 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19258 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19259 then
19260 Error_Msg_N
19261 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19262 end if;
19263
19264 -- Proceed with analysis of mod expression
19265
19266 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19267 Set_Etype (T, T);
19268 Set_Ekind (T, E_Modular_Integer_Type);
19269 Init_Alignment (T);
19270 Set_Is_Constrained (T);
19271
19272 if not Is_OK_Static_Expression (Mod_Expr) then
19273 Flag_Non_Static_Expr
19274 ("non-static expression used for modular type bound!", Mod_Expr);
19275 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19276 else
19277 M_Val := Expr_Value (Mod_Expr);
19278 end if;
19279
19280 if M_Val < 1 then
19281 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19282 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19283 end if;
19284
19285 if M_Val > 2 ** Standard_Long_Integer_Size then
19286 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19287 end if;
19288
19289 Set_Modulus (T, M_Val);
19290
19291 -- Create bounds for the modular type based on the modulus given in
19292 -- the type declaration and then analyze and resolve those bounds.
19293
19294 Set_Scalar_Range (T,
19295 Make_Range (Sloc (Mod_Expr),
19296 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19297 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19298
19299 -- Properly analyze the literals for the range. We do this manually
19300 -- because we can't go calling Resolve, since we are resolving these
19301 -- bounds with the type, and this type is certainly not complete yet.
19302
19303 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19304 Set_Etype (High_Bound (Scalar_Range (T)), T);
19305 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19306 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19307
19308 -- Loop through powers of two to find number of bits required
19309
19310 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19311
19312 -- Binary case
19313
19314 if M_Val = 2 ** Bits then
19315 Set_Modular_Size (Bits);
19316 return;
19317
19318 -- Nonbinary case
19319
19320 elsif M_Val < 2 ** Bits then
19321 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19322 Set_Non_Binary_Modulus (T);
19323
19324 if Bits > System_Max_Nonbinary_Modulus_Power then
19325 Error_Msg_Uint_1 :=
19326 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19327 Error_Msg_F
19328 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19329 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19330 return;
19331
19332 else
19333 -- In the nonbinary case, set size as per RM 13.3(55)
19334
19335 Set_Modular_Size (Bits);
19336 return;
19337 end if;
19338 end if;
19339
19340 end loop;
19341
19342 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19343 -- so we just signal an error and set the maximum size.
19344
19345 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19346 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19347
19348 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19349 Init_Alignment (T);
19350
19351 end Modular_Type_Declaration;
19352
19353 --------------------------
19354 -- New_Concatenation_Op --
19355 --------------------------
19356
19357 procedure New_Concatenation_Op (Typ : Entity_Id) is
19358 Loc : constant Source_Ptr := Sloc (Typ);
19359 Op : Entity_Id;
19360
19361 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19362 -- Create abbreviated declaration for the formal of a predefined
19363 -- Operator 'Op' of type 'Typ'
19364
19365 --------------------
19366 -- Make_Op_Formal --
19367 --------------------
19368
19369 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19370 Formal : Entity_Id;
19371 begin
19372 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19373 Set_Etype (Formal, Typ);
19374 Set_Mechanism (Formal, Default_Mechanism);
19375 return Formal;
19376 end Make_Op_Formal;
19377
19378 -- Start of processing for New_Concatenation_Op
19379
19380 begin
19381 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19382
19383 Set_Ekind (Op, E_Operator);
19384 Set_Scope (Op, Current_Scope);
19385 Set_Etype (Op, Typ);
19386 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19387 Set_Is_Immediately_Visible (Op);
19388 Set_Is_Intrinsic_Subprogram (Op);
19389 Set_Has_Completion (Op);
19390 Append_Entity (Op, Current_Scope);
19391
19392 Set_Name_Entity_Id (Name_Op_Concat, Op);
19393
19394 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19395 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19396 end New_Concatenation_Op;
19397
19398 -------------------------
19399 -- OK_For_Limited_Init --
19400 -------------------------
19401
19402 -- ???Check all calls of this, and compare the conditions under which it's
19403 -- called.
19404
19405 function OK_For_Limited_Init
19406 (Typ : Entity_Id;
19407 Exp : Node_Id) return Boolean
19408 is
19409 begin
19410 return Is_CPP_Constructor_Call (Exp)
19411 or else (Ada_Version >= Ada_2005
19412 and then not Debug_Flag_Dot_L
19413 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19414 end OK_For_Limited_Init;
19415
19416 -------------------------------
19417 -- OK_For_Limited_Init_In_05 --
19418 -------------------------------
19419
19420 function OK_For_Limited_Init_In_05
19421 (Typ : Entity_Id;
19422 Exp : Node_Id) return Boolean
19423 is
19424 begin
19425 -- An object of a limited interface type can be initialized with any
19426 -- expression of a nonlimited descendant type. However this does not
19427 -- apply if this is a view conversion of some other expression. This
19428 -- is checked below.
19429
19430 if Is_Class_Wide_Type (Typ)
19431 and then Is_Limited_Interface (Typ)
19432 and then not Is_Limited_Type (Etype (Exp))
19433 and then Nkind (Exp) /= N_Type_Conversion
19434 then
19435 return True;
19436 end if;
19437
19438 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19439 -- case of limited aggregates (including extension aggregates), and
19440 -- function calls. The function call may have been given in prefixed
19441 -- notation, in which case the original node is an indexed component.
19442 -- If the function is parameterless, the original node was an explicit
19443 -- dereference. The function may also be parameterless, in which case
19444 -- the source node is just an identifier.
19445
19446 -- A branch of a conditional expression may have been removed if the
19447 -- condition is statically known. This happens during expansion, and
19448 -- thus will not happen if previous errors were encountered. The check
19449 -- will have been performed on the chosen branch, which replaces the
19450 -- original conditional expression.
19451
19452 if No (Exp) then
19453 return True;
19454 end if;
19455
19456 case Nkind (Original_Node (Exp)) is
19457 when N_Aggregate
19458 | N_Extension_Aggregate
19459 | N_Function_Call
19460 | N_Op
19461 =>
19462 return True;
19463
19464 when N_Identifier =>
19465 return Present (Entity (Original_Node (Exp)))
19466 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19467
19468 when N_Qualified_Expression =>
19469 return
19470 OK_For_Limited_Init_In_05
19471 (Typ, Expression (Original_Node (Exp)));
19472
19473 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19474 -- with a function call, the expander has rewritten the call into an
19475 -- N_Type_Conversion node to force displacement of the pointer to
19476 -- reference the component containing the secondary dispatch table.
19477 -- Otherwise a type conversion is not a legal context.
19478 -- A return statement for a build-in-place function returning a
19479 -- synchronized type also introduces an unchecked conversion.
19480
19481 when N_Type_Conversion
19482 | N_Unchecked_Type_Conversion
19483 =>
19484 return not Comes_From_Source (Exp)
19485 and then
19486 OK_For_Limited_Init_In_05
19487 (Typ, Expression (Original_Node (Exp)));
19488
19489 when N_Explicit_Dereference
19490 | N_Indexed_Component
19491 | N_Selected_Component
19492 =>
19493 return Nkind (Exp) = N_Function_Call;
19494
19495 -- A use of 'Input is a function call, hence allowed. Normally the
19496 -- attribute will be changed to a call, but the attribute by itself
19497 -- can occur with -gnatc.
19498
19499 when N_Attribute_Reference =>
19500 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19501
19502 -- "return raise ..." is OK
19503
19504 when N_Raise_Expression =>
19505 return True;
19506
19507 -- For a case expression, all dependent expressions must be legal
19508
19509 when N_Case_Expression =>
19510 declare
19511 Alt : Node_Id;
19512
19513 begin
19514 Alt := First (Alternatives (Original_Node (Exp)));
19515 while Present (Alt) loop
19516 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19517 return False;
19518 end if;
19519
19520 Next (Alt);
19521 end loop;
19522
19523 return True;
19524 end;
19525
19526 -- For an if expression, all dependent expressions must be legal
19527
19528 when N_If_Expression =>
19529 declare
19530 Then_Expr : constant Node_Id :=
19531 Next (First (Expressions (Original_Node (Exp))));
19532 Else_Expr : constant Node_Id := Next (Then_Expr);
19533 begin
19534 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19535 and then
19536 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19537 end;
19538
19539 when others =>
19540 return False;
19541 end case;
19542 end OK_For_Limited_Init_In_05;
19543
19544 -------------------------------------------
19545 -- Ordinary_Fixed_Point_Type_Declaration --
19546 -------------------------------------------
19547
19548 procedure Ordinary_Fixed_Point_Type_Declaration
19549 (T : Entity_Id;
19550 Def : Node_Id)
19551 is
19552 Loc : constant Source_Ptr := Sloc (Def);
19553 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19554 RRS : constant Node_Id := Real_Range_Specification (Def);
19555 Implicit_Base : Entity_Id;
19556 Delta_Val : Ureal;
19557 Small_Val : Ureal;
19558 Low_Val : Ureal;
19559 High_Val : Ureal;
19560
19561 begin
19562 Check_Restriction (No_Fixed_Point, Def);
19563
19564 -- Create implicit base type
19565
19566 Implicit_Base :=
19567 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19568 Set_Etype (Implicit_Base, Implicit_Base);
19569
19570 -- Analyze and process delta expression
19571
19572 Analyze_And_Resolve (Delta_Expr, Any_Real);
19573
19574 Check_Delta_Expression (Delta_Expr);
19575 Delta_Val := Expr_Value_R (Delta_Expr);
19576
19577 Set_Delta_Value (Implicit_Base, Delta_Val);
19578
19579 -- Compute default small from given delta, which is the largest power
19580 -- of two that does not exceed the given delta value.
19581
19582 declare
19583 Tmp : Ureal;
19584 Scale : Int;
19585
19586 begin
19587 Tmp := Ureal_1;
19588 Scale := 0;
19589
19590 if Delta_Val < Ureal_1 then
19591 while Delta_Val < Tmp loop
19592 Tmp := Tmp / Ureal_2;
19593 Scale := Scale + 1;
19594 end loop;
19595
19596 else
19597 loop
19598 Tmp := Tmp * Ureal_2;
19599 exit when Tmp > Delta_Val;
19600 Scale := Scale - 1;
19601 end loop;
19602 end if;
19603
19604 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19605 end;
19606
19607 Set_Small_Value (Implicit_Base, Small_Val);
19608
19609 -- If no range was given, set a dummy range
19610
19611 if RRS <= Empty_Or_Error then
19612 Low_Val := -Small_Val;
19613 High_Val := Small_Val;
19614
19615 -- Otherwise analyze and process given range
19616
19617 else
19618 declare
19619 Low : constant Node_Id := Low_Bound (RRS);
19620 High : constant Node_Id := High_Bound (RRS);
19621
19622 begin
19623 Analyze_And_Resolve (Low, Any_Real);
19624 Analyze_And_Resolve (High, Any_Real);
19625 Check_Real_Bound (Low);
19626 Check_Real_Bound (High);
19627
19628 -- Obtain and set the range
19629
19630 Low_Val := Expr_Value_R (Low);
19631 High_Val := Expr_Value_R (High);
19632
19633 if Low_Val > High_Val then
19634 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19635 end if;
19636 end;
19637 end if;
19638
19639 -- The range for both the implicit base and the declared first subtype
19640 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19641 -- set a temporary range in place. Note that the bounds of the base
19642 -- type will be widened to be symmetrical and to fill the available
19643 -- bits when the type is frozen.
19644
19645 -- We could do this with all discrete types, and probably should, but
19646 -- we absolutely have to do it for fixed-point, since the end-points
19647 -- of the range and the size are determined by the small value, which
19648 -- could be reset before the freeze point.
19649
19650 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19651 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19652
19653 -- Complete definition of first subtype. The inheritance of the rep item
19654 -- chain ensures that SPARK-related pragmas are not clobbered when the
19655 -- ordinary fixed point type acts as a full view of a private type.
19656
19657 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19658 Set_Etype (T, Implicit_Base);
19659 Init_Size_Align (T);
19660 Inherit_Rep_Item_Chain (T, Implicit_Base);
19661 Set_Small_Value (T, Small_Val);
19662 Set_Delta_Value (T, Delta_Val);
19663 Set_Is_Constrained (T);
19664 end Ordinary_Fixed_Point_Type_Declaration;
19665
19666 ----------------------------------
19667 -- Preanalyze_Assert_Expression --
19668 ----------------------------------
19669
19670 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19671 begin
19672 In_Assertion_Expr := In_Assertion_Expr + 1;
19673 Preanalyze_Spec_Expression (N, T);
19674 In_Assertion_Expr := In_Assertion_Expr - 1;
19675 end Preanalyze_Assert_Expression;
19676
19677 -----------------------------------
19678 -- Preanalyze_Default_Expression --
19679 -----------------------------------
19680
19681 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19682 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19683 begin
19684 In_Default_Expr := True;
19685 Preanalyze_Spec_Expression (N, T);
19686 In_Default_Expr := Save_In_Default_Expr;
19687 end Preanalyze_Default_Expression;
19688
19689 --------------------------------
19690 -- Preanalyze_Spec_Expression --
19691 --------------------------------
19692
19693 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19694 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19695 begin
19696 In_Spec_Expression := True;
19697 Preanalyze_And_Resolve (N, T);
19698 In_Spec_Expression := Save_In_Spec_Expression;
19699 end Preanalyze_Spec_Expression;
19700
19701 ----------------------------------------
19702 -- Prepare_Private_Subtype_Completion --
19703 ----------------------------------------
19704
19705 procedure Prepare_Private_Subtype_Completion
19706 (Id : Entity_Id;
19707 Related_Nod : Node_Id)
19708 is
19709 Id_B : constant Entity_Id := Base_Type (Id);
19710 Full_B : Entity_Id := Full_View (Id_B);
19711 Full : Entity_Id;
19712
19713 begin
19714 if Present (Full_B) then
19715
19716 -- Get to the underlying full view if necessary
19717
19718 if Is_Private_Type (Full_B)
19719 and then Present (Underlying_Full_View (Full_B))
19720 then
19721 Full_B := Underlying_Full_View (Full_B);
19722 end if;
19723
19724 -- The Base_Type is already completed, we can complete the subtype
19725 -- now. We have to create a new entity with the same name, Thus we
19726 -- can't use Create_Itype.
19727
19728 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19729 Set_Is_Itype (Full);
19730 Set_Associated_Node_For_Itype (Full, Related_Nod);
19731 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19732 end if;
19733
19734 -- The parent subtype may be private, but the base might not, in some
19735 -- nested instances. In that case, the subtype does not need to be
19736 -- exchanged. It would still be nice to make private subtypes and their
19737 -- bases consistent at all times ???
19738
19739 if Is_Private_Type (Id_B) then
19740 Append_Elmt (Id, Private_Dependents (Id_B));
19741 end if;
19742 end Prepare_Private_Subtype_Completion;
19743
19744 ---------------------------
19745 -- Process_Discriminants --
19746 ---------------------------
19747
19748 procedure Process_Discriminants
19749 (N : Node_Id;
19750 Prev : Entity_Id := Empty)
19751 is
19752 Elist : constant Elist_Id := New_Elmt_List;
19753 Id : Node_Id;
19754 Discr : Node_Id;
19755 Discr_Number : Uint;
19756 Discr_Type : Entity_Id;
19757 Default_Present : Boolean := False;
19758 Default_Not_Present : Boolean := False;
19759
19760 begin
19761 -- A composite type other than an array type can have discriminants.
19762 -- On entry, the current scope is the composite type.
19763
19764 -- The discriminants are initially entered into the scope of the type
19765 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19766 -- use, as explained at the end of this procedure.
19767
19768 Discr := First (Discriminant_Specifications (N));
19769 while Present (Discr) loop
19770 Enter_Name (Defining_Identifier (Discr));
19771
19772 -- For navigation purposes we add a reference to the discriminant
19773 -- in the entity for the type. If the current declaration is a
19774 -- completion, place references on the partial view. Otherwise the
19775 -- type is the current scope.
19776
19777 if Present (Prev) then
19778
19779 -- The references go on the partial view, if present. If the
19780 -- partial view has discriminants, the references have been
19781 -- generated already.
19782
19783 if not Has_Discriminants (Prev) then
19784 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19785 end if;
19786 else
19787 Generate_Reference
19788 (Current_Scope, Defining_Identifier (Discr), 'd');
19789 end if;
19790
19791 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19792 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19793
19794 -- Ada 2005 (AI-254)
19795
19796 if Present (Access_To_Subprogram_Definition
19797 (Discriminant_Type (Discr)))
19798 and then Protected_Present (Access_To_Subprogram_Definition
19799 (Discriminant_Type (Discr)))
19800 then
19801 Discr_Type :=
19802 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19803 end if;
19804
19805 else
19806 Find_Type (Discriminant_Type (Discr));
19807 Discr_Type := Etype (Discriminant_Type (Discr));
19808
19809 if Error_Posted (Discriminant_Type (Discr)) then
19810 Discr_Type := Any_Type;
19811 end if;
19812 end if;
19813
19814 -- Handling of discriminants that are access types
19815
19816 if Is_Access_Type (Discr_Type) then
19817
19818 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19819 -- limited record types
19820
19821 if Ada_Version < Ada_2005 then
19822 Check_Access_Discriminant_Requires_Limited
19823 (Discr, Discriminant_Type (Discr));
19824 end if;
19825
19826 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19827 Error_Msg_N
19828 ("(Ada 83) access discriminant not allowed", Discr);
19829 end if;
19830
19831 -- If not access type, must be a discrete type
19832
19833 elsif not Is_Discrete_Type (Discr_Type) then
19834 Error_Msg_N
19835 ("discriminants must have a discrete or access type",
19836 Discriminant_Type (Discr));
19837 end if;
19838
19839 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19840
19841 -- If a discriminant specification includes the assignment compound
19842 -- delimiter followed by an expression, the expression is the default
19843 -- expression of the discriminant; the default expression must be of
19844 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19845 -- a default expression, we do the special preanalysis, since this
19846 -- expression does not freeze (see section "Handling of Default and
19847 -- Per-Object Expressions" in spec of package Sem).
19848
19849 if Present (Expression (Discr)) then
19850 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19851
19852 -- Legaity checks
19853
19854 if Nkind (N) = N_Formal_Type_Declaration then
19855 Error_Msg_N
19856 ("discriminant defaults not allowed for formal type",
19857 Expression (Discr));
19858
19859 -- Flag an error for a tagged type with defaulted discriminants,
19860 -- excluding limited tagged types when compiling for Ada 2012
19861 -- (see AI05-0214).
19862
19863 elsif Is_Tagged_Type (Current_Scope)
19864 and then (not Is_Limited_Type (Current_Scope)
19865 or else Ada_Version < Ada_2012)
19866 and then Comes_From_Source (N)
19867 then
19868 -- Note: see similar test in Check_Or_Process_Discriminants, to
19869 -- handle the (illegal) case of the completion of an untagged
19870 -- view with discriminants with defaults by a tagged full view.
19871 -- We skip the check if Discr does not come from source, to
19872 -- account for the case of an untagged derived type providing
19873 -- defaults for a renamed discriminant from a private untagged
19874 -- ancestor with a tagged full view (ACATS B460006).
19875
19876 if Ada_Version >= Ada_2012 then
19877 Error_Msg_N
19878 ("discriminants of nonlimited tagged type cannot have"
19879 & " defaults",
19880 Expression (Discr));
19881 else
19882 Error_Msg_N
19883 ("discriminants of tagged type cannot have defaults",
19884 Expression (Discr));
19885 end if;
19886
19887 else
19888 Default_Present := True;
19889 Append_Elmt (Expression (Discr), Elist);
19890
19891 -- Tag the defining identifiers for the discriminants with
19892 -- their corresponding default expressions from the tree.
19893
19894 Set_Discriminant_Default_Value
19895 (Defining_Identifier (Discr), Expression (Discr));
19896 end if;
19897
19898 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19899 -- gets set unless we can be sure that no range check is required.
19900
19901 if (GNATprove_Mode or not Expander_Active)
19902 and then not
19903 Is_In_Range
19904 (Expression (Discr), Discr_Type, Assume_Valid => True)
19905 then
19906 Set_Do_Range_Check (Expression (Discr));
19907 end if;
19908
19909 -- No default discriminant value given
19910
19911 else
19912 Default_Not_Present := True;
19913 end if;
19914
19915 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19916 -- Discr_Type but with the null-exclusion attribute
19917
19918 if Ada_Version >= Ada_2005 then
19919
19920 -- Ada 2005 (AI-231): Static checks
19921
19922 if Can_Never_Be_Null (Discr_Type) then
19923 Null_Exclusion_Static_Checks (Discr);
19924
19925 elsif Is_Access_Type (Discr_Type)
19926 and then Null_Exclusion_Present (Discr)
19927
19928 -- No need to check itypes because in their case this check
19929 -- was done at their point of creation
19930
19931 and then not Is_Itype (Discr_Type)
19932 then
19933 if Can_Never_Be_Null (Discr_Type) then
19934 Error_Msg_NE
19935 ("`NOT NULL` not allowed (& already excludes null)",
19936 Discr,
19937 Discr_Type);
19938 end if;
19939
19940 Set_Etype (Defining_Identifier (Discr),
19941 Create_Null_Excluding_Itype
19942 (T => Discr_Type,
19943 Related_Nod => Discr));
19944
19945 -- Check for improper null exclusion if the type is otherwise
19946 -- legal for a discriminant.
19947
19948 elsif Null_Exclusion_Present (Discr)
19949 and then Is_Discrete_Type (Discr_Type)
19950 then
19951 Error_Msg_N
19952 ("null exclusion can only apply to an access type", Discr);
19953 end if;
19954
19955 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19956 -- can't have defaults. Synchronized types, or types that are
19957 -- explicitly limited are fine, but special tests apply to derived
19958 -- types in generics: in a generic body we have to assume the
19959 -- worst, and therefore defaults are not allowed if the parent is
19960 -- a generic formal private type (see ACATS B370001).
19961
19962 if Is_Access_Type (Discr_Type) and then Default_Present then
19963 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19964 or else Is_Limited_Record (Current_Scope)
19965 or else Is_Concurrent_Type (Current_Scope)
19966 or else Is_Concurrent_Record_Type (Current_Scope)
19967 or else Ekind (Current_Scope) = E_Limited_Private_Type
19968 then
19969 if not Is_Derived_Type (Current_Scope)
19970 or else not Is_Generic_Type (Etype (Current_Scope))
19971 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19972 or else Limited_Present
19973 (Type_Definition (Parent (Current_Scope)))
19974 then
19975 null;
19976
19977 else
19978 Error_Msg_N
19979 ("access discriminants of nonlimited types cannot "
19980 & "have defaults", Expression (Discr));
19981 end if;
19982
19983 elsif Present (Expression (Discr)) then
19984 Error_Msg_N
19985 ("(Ada 2005) access discriminants of nonlimited types "
19986 & "cannot have defaults", Expression (Discr));
19987 end if;
19988 end if;
19989 end if;
19990
19991 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19992 -- This check is relevant only when SPARK_Mode is on as it is not a
19993 -- standard Ada legality rule.
19994
19995 if SPARK_Mode = On
19996 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19997 then
19998 Error_Msg_N ("discriminant cannot be volatile", Discr);
19999 end if;
20000
20001 Next (Discr);
20002 end loop;
20003
20004 -- An element list consisting of the default expressions of the
20005 -- discriminants is constructed in the above loop and used to set
20006 -- the Discriminant_Constraint attribute for the type. If an object
20007 -- is declared of this (record or task) type without any explicit
20008 -- discriminant constraint given, this element list will form the
20009 -- actual parameters for the corresponding initialization procedure
20010 -- for the type.
20011
20012 Set_Discriminant_Constraint (Current_Scope, Elist);
20013 Set_Stored_Constraint (Current_Scope, No_Elist);
20014
20015 -- Default expressions must be provided either for all or for none
20016 -- of the discriminants of a discriminant part. (RM 3.7.1)
20017
20018 if Default_Present and then Default_Not_Present then
20019 Error_Msg_N
20020 ("incomplete specification of defaults for discriminants", N);
20021 end if;
20022
20023 -- The use of the name of a discriminant is not allowed in default
20024 -- expressions of a discriminant part if the specification of the
20025 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20026
20027 -- To detect this, the discriminant names are entered initially with an
20028 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20029 -- attempt to use a void entity (for example in an expression that is
20030 -- type-checked) produces the error message: premature usage. Now after
20031 -- completing the semantic analysis of the discriminant part, we can set
20032 -- the Ekind of all the discriminants appropriately.
20033
20034 Discr := First (Discriminant_Specifications (N));
20035 Discr_Number := Uint_1;
20036 while Present (Discr) loop
20037 Id := Defining_Identifier (Discr);
20038 Set_Ekind (Id, E_Discriminant);
20039 Init_Component_Location (Id);
20040 Init_Esize (Id);
20041 Set_Discriminant_Number (Id, Discr_Number);
20042
20043 -- Make sure this is always set, even in illegal programs
20044
20045 Set_Corresponding_Discriminant (Id, Empty);
20046
20047 -- Initialize the Original_Record_Component to the entity itself.
20048 -- Inherit_Components will propagate the right value to
20049 -- discriminants in derived record types.
20050
20051 Set_Original_Record_Component (Id, Id);
20052
20053 -- Create the discriminal for the discriminant
20054
20055 Build_Discriminal (Id);
20056
20057 Next (Discr);
20058 Discr_Number := Discr_Number + 1;
20059 end loop;
20060
20061 Set_Has_Discriminants (Current_Scope);
20062 end Process_Discriminants;
20063
20064 -----------------------
20065 -- Process_Full_View --
20066 -----------------------
20067
20068 -- WARNING: This routine manages Ghost regions. Return statements must be
20069 -- replaced by gotos which jump to the end of the routine and restore the
20070 -- Ghost mode.
20071
20072 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20073 procedure Collect_Implemented_Interfaces
20074 (Typ : Entity_Id;
20075 Ifaces : Elist_Id);
20076 -- Ada 2005: Gather all the interfaces that Typ directly or
20077 -- inherently implements. Duplicate entries are not added to
20078 -- the list Ifaces.
20079
20080 ------------------------------------
20081 -- Collect_Implemented_Interfaces --
20082 ------------------------------------
20083
20084 procedure Collect_Implemented_Interfaces
20085 (Typ : Entity_Id;
20086 Ifaces : Elist_Id)
20087 is
20088 Iface : Entity_Id;
20089 Iface_Elmt : Elmt_Id;
20090
20091 begin
20092 -- Abstract interfaces are only associated with tagged record types
20093
20094 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20095 return;
20096 end if;
20097
20098 -- Recursively climb to the ancestors
20099
20100 if Etype (Typ) /= Typ
20101
20102 -- Protect the frontend against wrong cyclic declarations like:
20103
20104 -- type B is new A with private;
20105 -- type C is new A with private;
20106 -- private
20107 -- type B is new C with null record;
20108 -- type C is new B with null record;
20109
20110 and then Etype (Typ) /= Priv_T
20111 and then Etype (Typ) /= Full_T
20112 then
20113 -- Keep separate the management of private type declarations
20114
20115 if Ekind (Typ) = E_Record_Type_With_Private then
20116
20117 -- Handle the following illegal usage:
20118 -- type Private_Type is tagged private;
20119 -- private
20120 -- type Private_Type is new Type_Implementing_Iface;
20121
20122 if Present (Full_View (Typ))
20123 and then Etype (Typ) /= Full_View (Typ)
20124 then
20125 if Is_Interface (Etype (Typ)) then
20126 Append_Unique_Elmt (Etype (Typ), Ifaces);
20127 end if;
20128
20129 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20130 end if;
20131
20132 -- Non-private types
20133
20134 else
20135 if Is_Interface (Etype (Typ)) then
20136 Append_Unique_Elmt (Etype (Typ), Ifaces);
20137 end if;
20138
20139 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20140 end if;
20141 end if;
20142
20143 -- Handle entities in the list of abstract interfaces
20144
20145 if Present (Interfaces (Typ)) then
20146 Iface_Elmt := First_Elmt (Interfaces (Typ));
20147 while Present (Iface_Elmt) loop
20148 Iface := Node (Iface_Elmt);
20149
20150 pragma Assert (Is_Interface (Iface));
20151
20152 if not Contain_Interface (Iface, Ifaces) then
20153 Append_Elmt (Iface, Ifaces);
20154 Collect_Implemented_Interfaces (Iface, Ifaces);
20155 end if;
20156
20157 Next_Elmt (Iface_Elmt);
20158 end loop;
20159 end if;
20160 end Collect_Implemented_Interfaces;
20161
20162 -- Local variables
20163
20164 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20165
20166 Full_Indic : Node_Id;
20167 Full_Parent : Entity_Id;
20168 Priv_Parent : Entity_Id;
20169
20170 -- Start of processing for Process_Full_View
20171
20172 begin
20173 Mark_And_Set_Ghost_Completion (N, Priv_T);
20174
20175 -- First some sanity checks that must be done after semantic
20176 -- decoration of the full view and thus cannot be placed with other
20177 -- similar checks in Find_Type_Name
20178
20179 if not Is_Limited_Type (Priv_T)
20180 and then (Is_Limited_Type (Full_T)
20181 or else Is_Limited_Composite (Full_T))
20182 then
20183 if In_Instance then
20184 null;
20185 else
20186 Error_Msg_N
20187 ("completion of nonlimited type cannot be limited", Full_T);
20188 Explain_Limited_Type (Full_T, Full_T);
20189 end if;
20190
20191 elsif Is_Abstract_Type (Full_T)
20192 and then not Is_Abstract_Type (Priv_T)
20193 then
20194 Error_Msg_N
20195 ("completion of nonabstract type cannot be abstract", Full_T);
20196
20197 elsif Is_Tagged_Type (Priv_T)
20198 and then Is_Limited_Type (Priv_T)
20199 and then not Is_Limited_Type (Full_T)
20200 then
20201 -- If pragma CPP_Class was applied to the private declaration
20202 -- propagate the limitedness to the full-view
20203
20204 if Is_CPP_Class (Priv_T) then
20205 Set_Is_Limited_Record (Full_T);
20206
20207 -- GNAT allow its own definition of Limited_Controlled to disobey
20208 -- this rule in order in ease the implementation. This test is safe
20209 -- because Root_Controlled is defined in a child of System that
20210 -- normal programs are not supposed to use.
20211
20212 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20213 Set_Is_Limited_Composite (Full_T);
20214 else
20215 Error_Msg_N
20216 ("completion of limited tagged type must be limited", Full_T);
20217 end if;
20218
20219 elsif Is_Generic_Type (Priv_T) then
20220 Error_Msg_N ("generic type cannot have a completion", Full_T);
20221 end if;
20222
20223 -- Check that ancestor interfaces of private and full views are
20224 -- consistent. We omit this check for synchronized types because
20225 -- they are performed on the corresponding record type when frozen.
20226
20227 if Ada_Version >= Ada_2005
20228 and then Is_Tagged_Type (Priv_T)
20229 and then Is_Tagged_Type (Full_T)
20230 and then not Is_Concurrent_Type (Full_T)
20231 then
20232 declare
20233 Iface : Entity_Id;
20234 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20235 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20236
20237 begin
20238 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20239 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20240
20241 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20242 -- an interface type if and only if the full type is descendant
20243 -- of the interface type (AARM 7.3 (7.3/2)).
20244
20245 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20246
20247 if Present (Iface) then
20248 Error_Msg_NE
20249 ("interface in partial view& not implemented by full type "
20250 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20251 end if;
20252
20253 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20254
20255 if Present (Iface) then
20256 Error_Msg_NE
20257 ("interface & not implemented by partial view "
20258 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20259 end if;
20260 end;
20261 end if;
20262
20263 if Is_Tagged_Type (Priv_T)
20264 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20265 and then Is_Derived_Type (Full_T)
20266 then
20267 Priv_Parent := Etype (Priv_T);
20268
20269 -- The full view of a private extension may have been transformed
20270 -- into an unconstrained derived type declaration and a subtype
20271 -- declaration (see build_derived_record_type for details).
20272
20273 if Nkind (N) = N_Subtype_Declaration then
20274 Full_Indic := Subtype_Indication (N);
20275 Full_Parent := Etype (Base_Type (Full_T));
20276 else
20277 Full_Indic := Subtype_Indication (Type_Definition (N));
20278 Full_Parent := Etype (Full_T);
20279 end if;
20280
20281 -- Check that the parent type of the full type is a descendant of
20282 -- the ancestor subtype given in the private extension. If either
20283 -- entity has an Etype equal to Any_Type then we had some previous
20284 -- error situation [7.3(8)].
20285
20286 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20287 goto Leave;
20288
20289 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20290 -- any order. Therefore we don't have to check that its parent must
20291 -- be a descendant of the parent of the private type declaration.
20292
20293 elsif Is_Interface (Priv_Parent)
20294 and then Is_Interface (Full_Parent)
20295 then
20296 null;
20297
20298 -- Ada 2005 (AI-251): If the parent of the private type declaration
20299 -- is an interface there is no need to check that it is an ancestor
20300 -- of the associated full type declaration. The required tests for
20301 -- this case are performed by Build_Derived_Record_Type.
20302
20303 elsif not Is_Interface (Base_Type (Priv_Parent))
20304 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20305 then
20306 Error_Msg_N
20307 ("parent of full type must descend from parent of private "
20308 & "extension", Full_Indic);
20309
20310 -- First check a formal restriction, and then proceed with checking
20311 -- Ada rules. Since the formal restriction is not a serious error, we
20312 -- don't prevent further error detection for this check, hence the
20313 -- ELSE.
20314
20315 else
20316 -- In formal mode, when completing a private extension the type
20317 -- named in the private part must be exactly the same as that
20318 -- named in the visible part.
20319
20320 if Priv_Parent /= Full_Parent then
20321 Error_Msg_Name_1 := Chars (Priv_Parent);
20322 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20323 end if;
20324
20325 -- Check the rules of 7.3(10): if the private extension inherits
20326 -- known discriminants, then the full type must also inherit those
20327 -- discriminants from the same (ancestor) type, and the parent
20328 -- subtype of the full type must be constrained if and only if
20329 -- the ancestor subtype of the private extension is constrained.
20330
20331 if No (Discriminant_Specifications (Parent (Priv_T)))
20332 and then not Has_Unknown_Discriminants (Priv_T)
20333 and then Has_Discriminants (Base_Type (Priv_Parent))
20334 then
20335 declare
20336 Priv_Indic : constant Node_Id :=
20337 Subtype_Indication (Parent (Priv_T));
20338
20339 Priv_Constr : constant Boolean :=
20340 Is_Constrained (Priv_Parent)
20341 or else
20342 Nkind (Priv_Indic) = N_Subtype_Indication
20343 or else
20344 Is_Constrained (Entity (Priv_Indic));
20345
20346 Full_Constr : constant Boolean :=
20347 Is_Constrained (Full_Parent)
20348 or else
20349 Nkind (Full_Indic) = N_Subtype_Indication
20350 or else
20351 Is_Constrained (Entity (Full_Indic));
20352
20353 Priv_Discr : Entity_Id;
20354 Full_Discr : Entity_Id;
20355
20356 begin
20357 Priv_Discr := First_Discriminant (Priv_Parent);
20358 Full_Discr := First_Discriminant (Full_Parent);
20359 while Present (Priv_Discr) and then Present (Full_Discr) loop
20360 if Original_Record_Component (Priv_Discr) =
20361 Original_Record_Component (Full_Discr)
20362 or else
20363 Corresponding_Discriminant (Priv_Discr) =
20364 Corresponding_Discriminant (Full_Discr)
20365 then
20366 null;
20367 else
20368 exit;
20369 end if;
20370
20371 Next_Discriminant (Priv_Discr);
20372 Next_Discriminant (Full_Discr);
20373 end loop;
20374
20375 if Present (Priv_Discr) or else Present (Full_Discr) then
20376 Error_Msg_N
20377 ("full view must inherit discriminants of the parent "
20378 & "type used in the private extension", Full_Indic);
20379
20380 elsif Priv_Constr and then not Full_Constr then
20381 Error_Msg_N
20382 ("parent subtype of full type must be constrained",
20383 Full_Indic);
20384
20385 elsif Full_Constr and then not Priv_Constr then
20386 Error_Msg_N
20387 ("parent subtype of full type must be unconstrained",
20388 Full_Indic);
20389 end if;
20390 end;
20391
20392 -- Check the rules of 7.3(12): if a partial view has neither
20393 -- known or unknown discriminants, then the full type
20394 -- declaration shall define a definite subtype.
20395
20396 elsif not Has_Unknown_Discriminants (Priv_T)
20397 and then not Has_Discriminants (Priv_T)
20398 and then not Is_Constrained (Full_T)
20399 then
20400 Error_Msg_N
20401 ("full view must define a constrained type if partial view "
20402 & "has no discriminants", Full_T);
20403 end if;
20404
20405 -- ??????? Do we implement the following properly ?????
20406 -- If the ancestor subtype of a private extension has constrained
20407 -- discriminants, then the parent subtype of the full view shall
20408 -- impose a statically matching constraint on those discriminants
20409 -- [7.3(13)].
20410 end if;
20411
20412 else
20413 -- For untagged types, verify that a type without discriminants is
20414 -- not completed with an unconstrained type. A separate error message
20415 -- is produced if the full type has defaulted discriminants.
20416
20417 if Is_Definite_Subtype (Priv_T)
20418 and then not Is_Definite_Subtype (Full_T)
20419 then
20420 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20421 Error_Msg_NE
20422 ("full view of& not compatible with declaration#",
20423 Full_T, Priv_T);
20424
20425 if not Is_Tagged_Type (Full_T) then
20426 Error_Msg_N
20427 ("\one is constrained, the other unconstrained", Full_T);
20428 end if;
20429 end if;
20430 end if;
20431
20432 -- AI-419: verify that the use of "limited" is consistent
20433
20434 declare
20435 Orig_Decl : constant Node_Id := Original_Node (N);
20436
20437 begin
20438 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20439 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20440 and then Nkind
20441 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20442 then
20443 if not Limited_Present (Parent (Priv_T))
20444 and then not Synchronized_Present (Parent (Priv_T))
20445 and then Limited_Present (Type_Definition (Orig_Decl))
20446 then
20447 Error_Msg_N
20448 ("full view of non-limited extension cannot be limited", N);
20449
20450 -- Conversely, if the partial view carries the limited keyword,
20451 -- the full view must as well, even if it may be redundant.
20452
20453 elsif Limited_Present (Parent (Priv_T))
20454 and then not Limited_Present (Type_Definition (Orig_Decl))
20455 then
20456 Error_Msg_N
20457 ("full view of limited extension must be explicitly limited",
20458 N);
20459 end if;
20460 end if;
20461 end;
20462
20463 -- Ada 2005 (AI-443): A synchronized private extension must be
20464 -- completed by a task or protected type.
20465
20466 if Ada_Version >= Ada_2005
20467 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20468 and then Synchronized_Present (Parent (Priv_T))
20469 and then not Is_Concurrent_Type (Full_T)
20470 then
20471 Error_Msg_N ("full view of synchronized extension must " &
20472 "be synchronized type", N);
20473 end if;
20474
20475 -- Ada 2005 AI-363: if the full view has discriminants with
20476 -- defaults, it is illegal to declare constrained access subtypes
20477 -- whose designated type is the current type. This allows objects
20478 -- of the type that are declared in the heap to be unconstrained.
20479
20480 if not Has_Unknown_Discriminants (Priv_T)
20481 and then not Has_Discriminants (Priv_T)
20482 and then Has_Discriminants (Full_T)
20483 and then
20484 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20485 then
20486 Set_Has_Constrained_Partial_View (Full_T);
20487 Set_Has_Constrained_Partial_View (Priv_T);
20488 end if;
20489
20490 -- Create a full declaration for all its subtypes recorded in
20491 -- Private_Dependents and swap them similarly to the base type. These
20492 -- are subtypes that have been define before the full declaration of
20493 -- the private type. We also swap the entry in Private_Dependents list
20494 -- so we can properly restore the private view on exit from the scope.
20495
20496 declare
20497 Priv_Elmt : Elmt_Id;
20498 Priv_Scop : Entity_Id;
20499 Priv : Entity_Id;
20500 Full : Entity_Id;
20501
20502 begin
20503 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20504 while Present (Priv_Elmt) loop
20505 Priv := Node (Priv_Elmt);
20506 Priv_Scop := Scope (Priv);
20507
20508 if Ekind_In (Priv, E_Private_Subtype,
20509 E_Limited_Private_Subtype,
20510 E_Record_Subtype_With_Private)
20511 then
20512 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20513 Set_Is_Itype (Full);
20514 Set_Parent (Full, Parent (Priv));
20515 Set_Associated_Node_For_Itype (Full, N);
20516
20517 -- Now we need to complete the private subtype, but since the
20518 -- base type has already been swapped, we must also swap the
20519 -- subtypes (and thus, reverse the arguments in the call to
20520 -- Complete_Private_Subtype). Also note that we may need to
20521 -- re-establish the scope of the private subtype.
20522
20523 Copy_And_Swap (Priv, Full);
20524
20525 if not In_Open_Scopes (Priv_Scop) then
20526 Push_Scope (Priv_Scop);
20527
20528 else
20529 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20530
20531 Priv_Scop := Empty;
20532 end if;
20533
20534 Complete_Private_Subtype (Full, Priv, Full_T, N);
20535
20536 if Present (Priv_Scop) then
20537 Pop_Scope;
20538 end if;
20539
20540 Replace_Elmt (Priv_Elmt, Full);
20541 end if;
20542
20543 Next_Elmt (Priv_Elmt);
20544 end loop;
20545 end;
20546
20547 -- If the private view was tagged, copy the new primitive operations
20548 -- from the private view to the full view.
20549
20550 if Is_Tagged_Type (Full_T) then
20551 declare
20552 Disp_Typ : Entity_Id;
20553 Full_List : Elist_Id;
20554 Prim : Entity_Id;
20555 Prim_Elmt : Elmt_Id;
20556 Priv_List : Elist_Id;
20557
20558 function Contains
20559 (E : Entity_Id;
20560 L : Elist_Id) return Boolean;
20561 -- Determine whether list L contains element E
20562
20563 --------------
20564 -- Contains --
20565 --------------
20566
20567 function Contains
20568 (E : Entity_Id;
20569 L : Elist_Id) return Boolean
20570 is
20571 List_Elmt : Elmt_Id;
20572
20573 begin
20574 List_Elmt := First_Elmt (L);
20575 while Present (List_Elmt) loop
20576 if Node (List_Elmt) = E then
20577 return True;
20578 end if;
20579
20580 Next_Elmt (List_Elmt);
20581 end loop;
20582
20583 return False;
20584 end Contains;
20585
20586 -- Start of processing
20587
20588 begin
20589 if Is_Tagged_Type (Priv_T) then
20590 Priv_List := Primitive_Operations (Priv_T);
20591 Prim_Elmt := First_Elmt (Priv_List);
20592
20593 -- In the case of a concurrent type completing a private tagged
20594 -- type, primitives may have been declared in between the two
20595 -- views. These subprograms need to be wrapped the same way
20596 -- entries and protected procedures are handled because they
20597 -- cannot be directly shared by the two views.
20598
20599 if Is_Concurrent_Type (Full_T) then
20600 declare
20601 Conc_Typ : constant Entity_Id :=
20602 Corresponding_Record_Type (Full_T);
20603 Curr_Nod : Node_Id := Parent (Conc_Typ);
20604 Wrap_Spec : Node_Id;
20605
20606 begin
20607 while Present (Prim_Elmt) loop
20608 Prim := Node (Prim_Elmt);
20609
20610 if Comes_From_Source (Prim)
20611 and then not Is_Abstract_Subprogram (Prim)
20612 then
20613 Wrap_Spec :=
20614 Make_Subprogram_Declaration (Sloc (Prim),
20615 Specification =>
20616 Build_Wrapper_Spec
20617 (Subp_Id => Prim,
20618 Obj_Typ => Conc_Typ,
20619 Formals =>
20620 Parameter_Specifications
20621 (Parent (Prim))));
20622
20623 Insert_After (Curr_Nod, Wrap_Spec);
20624 Curr_Nod := Wrap_Spec;
20625
20626 Analyze (Wrap_Spec);
20627
20628 -- Remove the wrapper from visibility to avoid
20629 -- spurious conflict with the wrapped entity.
20630
20631 Set_Is_Immediately_Visible
20632 (Defining_Entity (Specification (Wrap_Spec)),
20633 False);
20634 end if;
20635
20636 Next_Elmt (Prim_Elmt);
20637 end loop;
20638
20639 goto Leave;
20640 end;
20641
20642 -- For non-concurrent types, transfer explicit primitives, but
20643 -- omit those inherited from the parent of the private view
20644 -- since they will be re-inherited later on.
20645
20646 else
20647 Full_List := Primitive_Operations (Full_T);
20648
20649 while Present (Prim_Elmt) loop
20650 Prim := Node (Prim_Elmt);
20651
20652 if Comes_From_Source (Prim)
20653 and then not Contains (Prim, Full_List)
20654 then
20655 Append_Elmt (Prim, Full_List);
20656 end if;
20657
20658 Next_Elmt (Prim_Elmt);
20659 end loop;
20660 end if;
20661
20662 -- Untagged private view
20663
20664 else
20665 Full_List := Primitive_Operations (Full_T);
20666
20667 -- In this case the partial view is untagged, so here we locate
20668 -- all of the earlier primitives that need to be treated as
20669 -- dispatching (those that appear between the two views). Note
20670 -- that these additional operations must all be new operations
20671 -- (any earlier operations that override inherited operations
20672 -- of the full view will already have been inserted in the
20673 -- primitives list, marked by Check_Operation_From_Private_View
20674 -- as dispatching. Note that implicit "/=" operators are
20675 -- excluded from being added to the primitives list since they
20676 -- shouldn't be treated as dispatching (tagged "/=" is handled
20677 -- specially).
20678
20679 Prim := Next_Entity (Full_T);
20680 while Present (Prim) and then Prim /= Priv_T loop
20681 if Ekind_In (Prim, E_Procedure, E_Function) then
20682 Disp_Typ := Find_Dispatching_Type (Prim);
20683
20684 if Disp_Typ = Full_T
20685 and then (Chars (Prim) /= Name_Op_Ne
20686 or else Comes_From_Source (Prim))
20687 then
20688 Check_Controlling_Formals (Full_T, Prim);
20689
20690 if not Is_Dispatching_Operation (Prim) then
20691 Append_Elmt (Prim, Full_List);
20692 Set_Is_Dispatching_Operation (Prim, True);
20693 Set_DT_Position_Value (Prim, No_Uint);
20694 end if;
20695
20696 elsif Is_Dispatching_Operation (Prim)
20697 and then Disp_Typ /= Full_T
20698 then
20699
20700 -- Verify that it is not otherwise controlled by a
20701 -- formal or a return value of type T.
20702
20703 Check_Controlling_Formals (Disp_Typ, Prim);
20704 end if;
20705 end if;
20706
20707 Next_Entity (Prim);
20708 end loop;
20709 end if;
20710
20711 -- For the tagged case, the two views can share the same primitive
20712 -- operations list and the same class-wide type. Update attributes
20713 -- of the class-wide type which depend on the full declaration.
20714
20715 if Is_Tagged_Type (Priv_T) then
20716 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20717 Set_Class_Wide_Type
20718 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20719
20720 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20721 end if;
20722 end;
20723 end if;
20724
20725 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20726
20727 if Known_To_Have_Preelab_Init (Priv_T) then
20728
20729 -- Case where there is a pragma Preelaborable_Initialization. We
20730 -- always allow this in predefined units, which is cheating a bit,
20731 -- but it means we don't have to struggle to meet the requirements in
20732 -- the RM for having Preelaborable Initialization. Otherwise we
20733 -- require that the type meets the RM rules. But we can't check that
20734 -- yet, because of the rule about overriding Initialize, so we simply
20735 -- set a flag that will be checked at freeze time.
20736
20737 if not In_Predefined_Unit (Full_T) then
20738 Set_Must_Have_Preelab_Init (Full_T);
20739 end if;
20740 end if;
20741
20742 -- If pragma CPP_Class was applied to the private type declaration,
20743 -- propagate it now to the full type declaration.
20744
20745 if Is_CPP_Class (Priv_T) then
20746 Set_Is_CPP_Class (Full_T);
20747 Set_Convention (Full_T, Convention_CPP);
20748
20749 -- Check that components of imported CPP types do not have default
20750 -- expressions.
20751
20752 Check_CPP_Type_Has_No_Defaults (Full_T);
20753 end if;
20754
20755 -- If the private view has user specified stream attributes, then so has
20756 -- the full view.
20757
20758 -- Why the test, how could these flags be already set in Full_T ???
20759
20760 if Has_Specified_Stream_Read (Priv_T) then
20761 Set_Has_Specified_Stream_Read (Full_T);
20762 end if;
20763
20764 if Has_Specified_Stream_Write (Priv_T) then
20765 Set_Has_Specified_Stream_Write (Full_T);
20766 end if;
20767
20768 if Has_Specified_Stream_Input (Priv_T) then
20769 Set_Has_Specified_Stream_Input (Full_T);
20770 end if;
20771
20772 if Has_Specified_Stream_Output (Priv_T) then
20773 Set_Has_Specified_Stream_Output (Full_T);
20774 end if;
20775
20776 -- Propagate Default_Initial_Condition-related attributes from the
20777 -- partial view to the full view and its base type.
20778
20779 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20780 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20781
20782 -- Propagate invariant-related attributes from the partial view to the
20783 -- full view and its base type.
20784
20785 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20786 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20787
20788 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20789 -- in the full view without advertising the inheritance in the partial
20790 -- view. This can only occur when the partial view has no parent type
20791 -- and the full view has an interface as a parent. Any other scenarios
20792 -- are illegal because implemented interfaces must match between the
20793 -- two views.
20794
20795 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20796 declare
20797 Full_Par : constant Entity_Id := Etype (Full_T);
20798 Priv_Par : constant Entity_Id := Etype (Priv_T);
20799
20800 begin
20801 if not Is_Interface (Priv_Par)
20802 and then Is_Interface (Full_Par)
20803 and then Has_Inheritable_Invariants (Full_Par)
20804 then
20805 Error_Msg_N
20806 ("hidden inheritance of class-wide type invariants not "
20807 & "allowed", N);
20808 end if;
20809 end;
20810 end if;
20811
20812 -- Propagate predicates to full type, and predicate function if already
20813 -- defined. It is not clear that this can actually happen? the partial
20814 -- view cannot be frozen yet, and the predicate function has not been
20815 -- built. Still it is a cheap check and seems safer to make it.
20816
20817 if Has_Predicates (Priv_T) then
20818 Set_Has_Predicates (Full_T);
20819
20820 if Present (Predicate_Function (Priv_T)) then
20821 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20822 end if;
20823 end if;
20824
20825 <<Leave>>
20826 Restore_Ghost_Mode (Saved_GM);
20827 end Process_Full_View;
20828
20829 -----------------------------------
20830 -- Process_Incomplete_Dependents --
20831 -----------------------------------
20832
20833 procedure Process_Incomplete_Dependents
20834 (N : Node_Id;
20835 Full_T : Entity_Id;
20836 Inc_T : Entity_Id)
20837 is
20838 Inc_Elmt : Elmt_Id;
20839 Priv_Dep : Entity_Id;
20840 New_Subt : Entity_Id;
20841
20842 Disc_Constraint : Elist_Id;
20843
20844 begin
20845 if No (Private_Dependents (Inc_T)) then
20846 return;
20847 end if;
20848
20849 -- Itypes that may be generated by the completion of an incomplete
20850 -- subtype are not used by the back-end and not attached to the tree.
20851 -- They are created only for constraint-checking purposes.
20852
20853 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20854 while Present (Inc_Elmt) loop
20855 Priv_Dep := Node (Inc_Elmt);
20856
20857 if Ekind (Priv_Dep) = E_Subprogram_Type then
20858
20859 -- An Access_To_Subprogram type may have a return type or a
20860 -- parameter type that is incomplete. Replace with the full view.
20861
20862 if Etype (Priv_Dep) = Inc_T then
20863 Set_Etype (Priv_Dep, Full_T);
20864 end if;
20865
20866 declare
20867 Formal : Entity_Id;
20868
20869 begin
20870 Formal := First_Formal (Priv_Dep);
20871 while Present (Formal) loop
20872 if Etype (Formal) = Inc_T then
20873 Set_Etype (Formal, Full_T);
20874 end if;
20875
20876 Next_Formal (Formal);
20877 end loop;
20878 end;
20879
20880 elsif Is_Overloadable (Priv_Dep) then
20881
20882 -- If a subprogram in the incomplete dependents list is primitive
20883 -- for a tagged full type then mark it as a dispatching operation,
20884 -- check whether it overrides an inherited subprogram, and check
20885 -- restrictions on its controlling formals. Note that a protected
20886 -- operation is never dispatching: only its wrapper operation
20887 -- (which has convention Ada) is.
20888
20889 if Is_Tagged_Type (Full_T)
20890 and then Is_Primitive (Priv_Dep)
20891 and then Convention (Priv_Dep) /= Convention_Protected
20892 then
20893 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20894 Set_Is_Dispatching_Operation (Priv_Dep);
20895 Check_Controlling_Formals (Full_T, Priv_Dep);
20896 end if;
20897
20898 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20899
20900 -- Can happen during processing of a body before the completion
20901 -- of a TA type. Ignore, because spec is also on dependent list.
20902
20903 return;
20904
20905 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20906 -- corresponding subtype of the full view.
20907
20908 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
20909 and then Comes_From_Source (Priv_Dep)
20910 then
20911 Set_Subtype_Indication
20912 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20913 Set_Etype (Priv_Dep, Full_T);
20914 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20915 Set_Analyzed (Parent (Priv_Dep), False);
20916
20917 -- Reanalyze the declaration, suppressing the call to Enter_Name
20918 -- to avoid duplicate names.
20919
20920 Analyze_Subtype_Declaration
20921 (N => Parent (Priv_Dep),
20922 Skip => True);
20923
20924 -- Dependent is a subtype
20925
20926 else
20927 -- We build a new subtype indication using the full view of the
20928 -- incomplete parent. The discriminant constraints have been
20929 -- elaborated already at the point of the subtype declaration.
20930
20931 New_Subt := Create_Itype (E_Void, N);
20932
20933 if Has_Discriminants (Full_T) then
20934 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20935 else
20936 Disc_Constraint := No_Elist;
20937 end if;
20938
20939 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20940 Set_Full_View (Priv_Dep, New_Subt);
20941 end if;
20942
20943 Next_Elmt (Inc_Elmt);
20944 end loop;
20945 end Process_Incomplete_Dependents;
20946
20947 --------------------------------
20948 -- Process_Range_Expr_In_Decl --
20949 --------------------------------
20950
20951 procedure Process_Range_Expr_In_Decl
20952 (R : Node_Id;
20953 T : Entity_Id;
20954 Subtyp : Entity_Id := Empty;
20955 Check_List : List_Id := Empty_List;
20956 R_Check_Off : Boolean := False;
20957 In_Iter_Schm : Boolean := False)
20958 is
20959 Lo, Hi : Node_Id;
20960 R_Checks : Check_Result;
20961 Insert_Node : Node_Id;
20962 Def_Id : Entity_Id;
20963
20964 begin
20965 Analyze_And_Resolve (R, Base_Type (T));
20966
20967 if Nkind (R) = N_Range then
20968
20969 -- In SPARK, all ranges should be static, with the exception of the
20970 -- discrete type definition of a loop parameter specification.
20971
20972 if not In_Iter_Schm
20973 and then not Is_OK_Static_Range (R)
20974 then
20975 Check_SPARK_05_Restriction ("range should be static", R);
20976 end if;
20977
20978 Lo := Low_Bound (R);
20979 Hi := High_Bound (R);
20980
20981 -- Validity checks on the range of a quantified expression are
20982 -- delayed until the construct is transformed into a loop.
20983
20984 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20985 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20986 then
20987 null;
20988
20989 -- We need to ensure validity of the bounds here, because if we
20990 -- go ahead and do the expansion, then the expanded code will get
20991 -- analyzed with range checks suppressed and we miss the check.
20992
20993 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20994 -- the temporaries generated by routine Remove_Side_Effects by means
20995 -- of validity checks must use the same names. When a range appears
20996 -- in the parent of a generic, the range is processed with checks
20997 -- disabled as part of the generic context and with checks enabled
20998 -- for code generation purposes. This leads to link issues as the
20999 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21000 -- template sees the temporaries generated by Remove_Side_Effects.
21001
21002 else
21003 Validity_Check_Range (R, Subtyp);
21004 end if;
21005
21006 -- If there were errors in the declaration, try and patch up some
21007 -- common mistakes in the bounds. The cases handled are literals
21008 -- which are Integer where the expected type is Real and vice versa.
21009 -- These corrections allow the compilation process to proceed further
21010 -- along since some basic assumptions of the format of the bounds
21011 -- are guaranteed.
21012
21013 if Etype (R) = Any_Type then
21014 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21015 Rewrite (Lo,
21016 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21017
21018 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21019 Rewrite (Hi,
21020 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21021
21022 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21023 Rewrite (Lo,
21024 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21025
21026 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21027 Rewrite (Hi,
21028 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21029 end if;
21030
21031 Set_Etype (Lo, T);
21032 Set_Etype (Hi, T);
21033 end if;
21034
21035 -- If the bounds of the range have been mistakenly given as string
21036 -- literals (perhaps in place of character literals), then an error
21037 -- has already been reported, but we rewrite the string literal as a
21038 -- bound of the range's type to avoid blowups in later processing
21039 -- that looks at static values.
21040
21041 if Nkind (Lo) = N_String_Literal then
21042 Rewrite (Lo,
21043 Make_Attribute_Reference (Sloc (Lo),
21044 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21045 Attribute_Name => Name_First));
21046 Analyze_And_Resolve (Lo);
21047 end if;
21048
21049 if Nkind (Hi) = N_String_Literal then
21050 Rewrite (Hi,
21051 Make_Attribute_Reference (Sloc (Hi),
21052 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21053 Attribute_Name => Name_First));
21054 Analyze_And_Resolve (Hi);
21055 end if;
21056
21057 -- If bounds aren't scalar at this point then exit, avoiding
21058 -- problems with further processing of the range in this procedure.
21059
21060 if not Is_Scalar_Type (Etype (Lo)) then
21061 return;
21062 end if;
21063
21064 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21065 -- then range of the base type. Here we check whether the bounds
21066 -- are in the range of the subtype itself. Note that if the bounds
21067 -- represent the null range the Constraint_Error exception should
21068 -- not be raised.
21069
21070 -- ??? The following code should be cleaned up as follows
21071
21072 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21073 -- is done in the call to Range_Check (R, T); below
21074
21075 -- 2. The use of R_Check_Off should be investigated and possibly
21076 -- removed, this would clean up things a bit.
21077
21078 if Is_Null_Range (Lo, Hi) then
21079 null;
21080
21081 else
21082 -- Capture values of bounds and generate temporaries for them
21083 -- if needed, before applying checks, since checks may cause
21084 -- duplication of the expression without forcing evaluation.
21085
21086 -- The forced evaluation removes side effects from expressions,
21087 -- which should occur also in GNATprove mode. Otherwise, we end up
21088 -- with unexpected insertions of actions at places where this is
21089 -- not supposed to occur, e.g. on default parameters of a call.
21090
21091 if Expander_Active or GNATprove_Mode then
21092
21093 -- Call Force_Evaluation to create declarations as needed to
21094 -- deal with side effects, and also create typ_FIRST/LAST
21095 -- entities for bounds if we have a subtype name.
21096
21097 -- Note: we do this transformation even if expansion is not
21098 -- active if we are in GNATprove_Mode since the transformation
21099 -- is in general required to ensure that the resulting tree has
21100 -- proper Ada semantics.
21101
21102 Force_Evaluation
21103 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21104 Force_Evaluation
21105 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21106 end if;
21107
21108 -- We use a flag here instead of suppressing checks on the type
21109 -- because the type we check against isn't necessarily the place
21110 -- where we put the check.
21111
21112 if not R_Check_Off then
21113 R_Checks := Get_Range_Checks (R, T);
21114
21115 -- Look up tree to find an appropriate insertion point. We
21116 -- can't just use insert_actions because later processing
21117 -- depends on the insertion node. Prior to Ada 2012 the
21118 -- insertion point could only be a declaration or a loop, but
21119 -- quantified expressions can appear within any context in an
21120 -- expression, and the insertion point can be any statement,
21121 -- pragma, or declaration.
21122
21123 Insert_Node := Parent (R);
21124 while Present (Insert_Node) loop
21125 exit when
21126 Nkind (Insert_Node) in N_Declaration
21127 and then
21128 not Nkind_In
21129 (Insert_Node, N_Component_Declaration,
21130 N_Loop_Parameter_Specification,
21131 N_Function_Specification,
21132 N_Procedure_Specification);
21133
21134 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21135 or else Nkind (Insert_Node) in
21136 N_Statement_Other_Than_Procedure_Call
21137 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21138 N_Pragma);
21139
21140 Insert_Node := Parent (Insert_Node);
21141 end loop;
21142
21143 -- Why would Type_Decl not be present??? Without this test,
21144 -- short regression tests fail.
21145
21146 if Present (Insert_Node) then
21147
21148 -- Case of loop statement. Verify that the range is part
21149 -- of the subtype indication of the iteration scheme.
21150
21151 if Nkind (Insert_Node) = N_Loop_Statement then
21152 declare
21153 Indic : Node_Id;
21154
21155 begin
21156 Indic := Parent (R);
21157 while Present (Indic)
21158 and then Nkind (Indic) /= N_Subtype_Indication
21159 loop
21160 Indic := Parent (Indic);
21161 end loop;
21162
21163 if Present (Indic) then
21164 Def_Id := Etype (Subtype_Mark (Indic));
21165
21166 Insert_Range_Checks
21167 (R_Checks,
21168 Insert_Node,
21169 Def_Id,
21170 Sloc (Insert_Node),
21171 R,
21172 Do_Before => True);
21173 end if;
21174 end;
21175
21176 -- Insertion before a declaration. If the declaration
21177 -- includes discriminants, the list of applicable checks
21178 -- is given by the caller.
21179
21180 elsif Nkind (Insert_Node) in N_Declaration then
21181 Def_Id := Defining_Identifier (Insert_Node);
21182
21183 if (Ekind (Def_Id) = E_Record_Type
21184 and then Depends_On_Discriminant (R))
21185 or else
21186 (Ekind (Def_Id) = E_Protected_Type
21187 and then Has_Discriminants (Def_Id))
21188 then
21189 Append_Range_Checks
21190 (R_Checks,
21191 Check_List, Def_Id, Sloc (Insert_Node), R);
21192
21193 else
21194 Insert_Range_Checks
21195 (R_Checks,
21196 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21197
21198 end if;
21199
21200 -- Insertion before a statement. Range appears in the
21201 -- context of a quantified expression. Insertion will
21202 -- take place when expression is expanded.
21203
21204 else
21205 null;
21206 end if;
21207 end if;
21208 end if;
21209 end if;
21210
21211 -- Case of other than an explicit N_Range node
21212
21213 -- The forced evaluation removes side effects from expressions, which
21214 -- should occur also in GNATprove mode. Otherwise, we end up with
21215 -- unexpected insertions of actions at places where this is not
21216 -- supposed to occur, e.g. on default parameters of a call.
21217
21218 elsif Expander_Active or GNATprove_Mode then
21219 Get_Index_Bounds (R, Lo, Hi);
21220 Force_Evaluation (Lo);
21221 Force_Evaluation (Hi);
21222 end if;
21223 end Process_Range_Expr_In_Decl;
21224
21225 --------------------------------------
21226 -- Process_Real_Range_Specification --
21227 --------------------------------------
21228
21229 procedure Process_Real_Range_Specification (Def : Node_Id) is
21230 Spec : constant Node_Id := Real_Range_Specification (Def);
21231 Lo : Node_Id;
21232 Hi : Node_Id;
21233 Err : Boolean := False;
21234
21235 procedure Analyze_Bound (N : Node_Id);
21236 -- Analyze and check one bound
21237
21238 -------------------
21239 -- Analyze_Bound --
21240 -------------------
21241
21242 procedure Analyze_Bound (N : Node_Id) is
21243 begin
21244 Analyze_And_Resolve (N, Any_Real);
21245
21246 if not Is_OK_Static_Expression (N) then
21247 Flag_Non_Static_Expr
21248 ("bound in real type definition is not static!", N);
21249 Err := True;
21250 end if;
21251 end Analyze_Bound;
21252
21253 -- Start of processing for Process_Real_Range_Specification
21254
21255 begin
21256 if Present (Spec) then
21257 Lo := Low_Bound (Spec);
21258 Hi := High_Bound (Spec);
21259 Analyze_Bound (Lo);
21260 Analyze_Bound (Hi);
21261
21262 -- If error, clear away junk range specification
21263
21264 if Err then
21265 Set_Real_Range_Specification (Def, Empty);
21266 end if;
21267 end if;
21268 end Process_Real_Range_Specification;
21269
21270 ---------------------
21271 -- Process_Subtype --
21272 ---------------------
21273
21274 function Process_Subtype
21275 (S : Node_Id;
21276 Related_Nod : Node_Id;
21277 Related_Id : Entity_Id := Empty;
21278 Suffix : Character := ' ') return Entity_Id
21279 is
21280 P : Node_Id;
21281 Def_Id : Entity_Id;
21282 Error_Node : Node_Id;
21283 Full_View_Id : Entity_Id;
21284 Subtype_Mark_Id : Entity_Id;
21285
21286 May_Have_Null_Exclusion : Boolean;
21287
21288 procedure Check_Incomplete (T : Node_Id);
21289 -- Called to verify that an incomplete type is not used prematurely
21290
21291 ----------------------
21292 -- Check_Incomplete --
21293 ----------------------
21294
21295 procedure Check_Incomplete (T : Node_Id) is
21296 begin
21297 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21298
21299 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21300 and then
21301 not (Ada_Version >= Ada_2005
21302 and then
21303 (Nkind (Parent (T)) = N_Subtype_Declaration
21304 or else (Nkind (Parent (T)) = N_Subtype_Indication
21305 and then Nkind (Parent (Parent (T))) =
21306 N_Subtype_Declaration)))
21307 then
21308 Error_Msg_N ("invalid use of type before its full declaration", T);
21309 end if;
21310 end Check_Incomplete;
21311
21312 -- Start of processing for Process_Subtype
21313
21314 begin
21315 -- Case of no constraints present
21316
21317 if Nkind (S) /= N_Subtype_Indication then
21318 Find_Type (S);
21319 Check_Incomplete (S);
21320 P := Parent (S);
21321
21322 -- Ada 2005 (AI-231): Static check
21323
21324 if Ada_Version >= Ada_2005
21325 and then Present (P)
21326 and then Null_Exclusion_Present (P)
21327 and then Nkind (P) /= N_Access_To_Object_Definition
21328 and then not Is_Access_Type (Entity (S))
21329 then
21330 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21331 end if;
21332
21333 -- The following is ugly, can't we have a range or even a flag???
21334
21335 May_Have_Null_Exclusion :=
21336 Nkind_In (P, N_Access_Definition,
21337 N_Access_Function_Definition,
21338 N_Access_Procedure_Definition,
21339 N_Access_To_Object_Definition,
21340 N_Allocator,
21341 N_Component_Definition)
21342 or else
21343 Nkind_In (P, N_Derived_Type_Definition,
21344 N_Discriminant_Specification,
21345 N_Formal_Object_Declaration,
21346 N_Object_Declaration,
21347 N_Object_Renaming_Declaration,
21348 N_Parameter_Specification,
21349 N_Subtype_Declaration);
21350
21351 -- Create an Itype that is a duplicate of Entity (S) but with the
21352 -- null-exclusion attribute.
21353
21354 if May_Have_Null_Exclusion
21355 and then Is_Access_Type (Entity (S))
21356 and then Null_Exclusion_Present (P)
21357
21358 -- No need to check the case of an access to object definition.
21359 -- It is correct to define double not-null pointers.
21360
21361 -- Example:
21362 -- type Not_Null_Int_Ptr is not null access Integer;
21363 -- type Acc is not null access Not_Null_Int_Ptr;
21364
21365 and then Nkind (P) /= N_Access_To_Object_Definition
21366 then
21367 if Can_Never_Be_Null (Entity (S)) then
21368 case Nkind (Related_Nod) is
21369 when N_Full_Type_Declaration =>
21370 if Nkind (Type_Definition (Related_Nod))
21371 in N_Array_Type_Definition
21372 then
21373 Error_Node :=
21374 Subtype_Indication
21375 (Component_Definition
21376 (Type_Definition (Related_Nod)));
21377 else
21378 Error_Node :=
21379 Subtype_Indication (Type_Definition (Related_Nod));
21380 end if;
21381
21382 when N_Subtype_Declaration =>
21383 Error_Node := Subtype_Indication (Related_Nod);
21384
21385 when N_Object_Declaration =>
21386 Error_Node := Object_Definition (Related_Nod);
21387
21388 when N_Component_Declaration =>
21389 Error_Node :=
21390 Subtype_Indication (Component_Definition (Related_Nod));
21391
21392 when N_Allocator =>
21393 Error_Node := Expression (Related_Nod);
21394
21395 when others =>
21396 pragma Assert (False);
21397 Error_Node := Related_Nod;
21398 end case;
21399
21400 Error_Msg_NE
21401 ("`NOT NULL` not allowed (& already excludes null)",
21402 Error_Node,
21403 Entity (S));
21404 end if;
21405
21406 Set_Etype (S,
21407 Create_Null_Excluding_Itype
21408 (T => Entity (S),
21409 Related_Nod => P));
21410 Set_Entity (S, Etype (S));
21411 end if;
21412
21413 return Entity (S);
21414
21415 -- Case of constraint present, so that we have an N_Subtype_Indication
21416 -- node (this node is created only if constraints are present).
21417
21418 else
21419 Find_Type (Subtype_Mark (S));
21420
21421 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21422 and then not
21423 (Nkind (Parent (S)) = N_Subtype_Declaration
21424 and then Is_Itype (Defining_Identifier (Parent (S))))
21425 then
21426 Check_Incomplete (Subtype_Mark (S));
21427 end if;
21428
21429 P := Parent (S);
21430 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21431
21432 -- Explicit subtype declaration case
21433
21434 if Nkind (P) = N_Subtype_Declaration then
21435 Def_Id := Defining_Identifier (P);
21436
21437 -- Explicit derived type definition case
21438
21439 elsif Nkind (P) = N_Derived_Type_Definition then
21440 Def_Id := Defining_Identifier (Parent (P));
21441
21442 -- Implicit case, the Def_Id must be created as an implicit type.
21443 -- The one exception arises in the case of concurrent types, array
21444 -- and access types, where other subsidiary implicit types may be
21445 -- created and must appear before the main implicit type. In these
21446 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21447 -- has not yet been called to create Def_Id.
21448
21449 else
21450 if Is_Array_Type (Subtype_Mark_Id)
21451 or else Is_Concurrent_Type (Subtype_Mark_Id)
21452 or else Is_Access_Type (Subtype_Mark_Id)
21453 then
21454 Def_Id := Empty;
21455
21456 -- For the other cases, we create a new unattached Itype,
21457 -- and set the indication to ensure it gets attached later.
21458
21459 else
21460 Def_Id :=
21461 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21462 end if;
21463 end if;
21464
21465 -- If the kind of constraint is invalid for this kind of type,
21466 -- then give an error, and then pretend no constraint was given.
21467
21468 if not Is_Valid_Constraint_Kind
21469 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21470 then
21471 Error_Msg_N
21472 ("incorrect constraint for this kind of type", Constraint (S));
21473
21474 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21475
21476 -- Set Ekind of orphan itype, to prevent cascaded errors
21477
21478 if Present (Def_Id) then
21479 Set_Ekind (Def_Id, Ekind (Any_Type));
21480 end if;
21481
21482 -- Make recursive call, having got rid of the bogus constraint
21483
21484 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21485 end if;
21486
21487 -- Remaining processing depends on type. Select on Base_Type kind to
21488 -- ensure getting to the concrete type kind in the case of a private
21489 -- subtype (needed when only doing semantic analysis).
21490
21491 case Ekind (Base_Type (Subtype_Mark_Id)) is
21492 when Access_Kind =>
21493
21494 -- If this is a constraint on a class-wide type, discard it.
21495 -- There is currently no way to express a partial discriminant
21496 -- constraint on a type with unknown discriminants. This is
21497 -- a pathology that the ACATS wisely decides not to test.
21498
21499 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21500 if Comes_From_Source (S) then
21501 Error_Msg_N
21502 ("constraint on class-wide type ignored??",
21503 Constraint (S));
21504 end if;
21505
21506 if Nkind (P) = N_Subtype_Declaration then
21507 Set_Subtype_Indication (P,
21508 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21509 end if;
21510
21511 return Subtype_Mark_Id;
21512 end if;
21513
21514 Constrain_Access (Def_Id, S, Related_Nod);
21515
21516 if Expander_Active
21517 and then Is_Itype (Designated_Type (Def_Id))
21518 and then Nkind (Related_Nod) = N_Subtype_Declaration
21519 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21520 then
21521 Build_Itype_Reference
21522 (Designated_Type (Def_Id), Related_Nod);
21523 end if;
21524
21525 when Array_Kind =>
21526 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21527
21528 when Decimal_Fixed_Point_Kind =>
21529 Constrain_Decimal (Def_Id, S);
21530
21531 when Enumeration_Kind =>
21532 Constrain_Enumeration (Def_Id, S);
21533 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21534
21535 when Ordinary_Fixed_Point_Kind =>
21536 Constrain_Ordinary_Fixed (Def_Id, S);
21537
21538 when Float_Kind =>
21539 Constrain_Float (Def_Id, S);
21540
21541 when Integer_Kind =>
21542 Constrain_Integer (Def_Id, S);
21543 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21544
21545 when Class_Wide_Kind
21546 | E_Incomplete_Type
21547 | E_Record_Subtype
21548 | E_Record_Type
21549 =>
21550 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21551
21552 if Ekind (Def_Id) = E_Incomplete_Type then
21553 Set_Private_Dependents (Def_Id, New_Elmt_List);
21554 end if;
21555
21556 when Private_Kind =>
21557 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21558
21559 -- The base type may be private but Def_Id may be a full view
21560 -- in an instance.
21561
21562 if Is_Private_Type (Def_Id) then
21563 Set_Private_Dependents (Def_Id, New_Elmt_List);
21564 end if;
21565
21566 -- In case of an invalid constraint prevent further processing
21567 -- since the type constructed is missing expected fields.
21568
21569 if Etype (Def_Id) = Any_Type then
21570 return Def_Id;
21571 end if;
21572
21573 -- If the full view is that of a task with discriminants,
21574 -- we must constrain both the concurrent type and its
21575 -- corresponding record type. Otherwise we will just propagate
21576 -- the constraint to the full view, if available.
21577
21578 if Present (Full_View (Subtype_Mark_Id))
21579 and then Has_Discriminants (Subtype_Mark_Id)
21580 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21581 then
21582 Full_View_Id :=
21583 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21584
21585 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21586 Constrain_Concurrent (Full_View_Id, S,
21587 Related_Nod, Related_Id, Suffix);
21588 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21589 Set_Full_View (Def_Id, Full_View_Id);
21590
21591 -- Introduce an explicit reference to the private subtype,
21592 -- to prevent scope anomalies in gigi if first use appears
21593 -- in a nested context, e.g. a later function body.
21594 -- Should this be generated in other contexts than a full
21595 -- type declaration?
21596
21597 if Is_Itype (Def_Id)
21598 and then
21599 Nkind (Parent (P)) = N_Full_Type_Declaration
21600 then
21601 Build_Itype_Reference (Def_Id, Parent (P));
21602 end if;
21603
21604 else
21605 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21606 end if;
21607
21608 when Concurrent_Kind =>
21609 Constrain_Concurrent (Def_Id, S,
21610 Related_Nod, Related_Id, Suffix);
21611
21612 when others =>
21613 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21614 end case;
21615
21616 -- Size, Alignment, Representation aspects and Convention are always
21617 -- inherited from the base type.
21618
21619 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21620 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21621 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21622
21623 return Def_Id;
21624 end if;
21625 end Process_Subtype;
21626
21627 -----------------------------
21628 -- Record_Type_Declaration --
21629 -----------------------------
21630
21631 procedure Record_Type_Declaration
21632 (T : Entity_Id;
21633 N : Node_Id;
21634 Prev : Entity_Id)
21635 is
21636 Def : constant Node_Id := Type_Definition (N);
21637 Is_Tagged : Boolean;
21638 Tag_Comp : Entity_Id;
21639
21640 begin
21641 -- These flags must be initialized before calling Process_Discriminants
21642 -- because this routine makes use of them.
21643
21644 Set_Ekind (T, E_Record_Type);
21645 Set_Etype (T, T);
21646 Init_Size_Align (T);
21647 Set_Interfaces (T, No_Elist);
21648 Set_Stored_Constraint (T, No_Elist);
21649 Set_Default_SSO (T);
21650 Set_No_Reordering (T, No_Component_Reordering);
21651
21652 -- Normal case
21653
21654 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21655 if Limited_Present (Def) then
21656 Check_SPARK_05_Restriction ("limited is not allowed", N);
21657 end if;
21658
21659 if Abstract_Present (Def) then
21660 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21661 end if;
21662
21663 -- The flag Is_Tagged_Type might have already been set by
21664 -- Find_Type_Name if it detected an error for declaration T. This
21665 -- arises in the case of private tagged types where the full view
21666 -- omits the word tagged.
21667
21668 Is_Tagged :=
21669 Tagged_Present (Def)
21670 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21671
21672 Set_Is_Limited_Record (T, Limited_Present (Def));
21673
21674 if Is_Tagged then
21675 Set_Is_Tagged_Type (T, True);
21676 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21677 end if;
21678
21679 -- Type is abstract if full declaration carries keyword, or if
21680 -- previous partial view did.
21681
21682 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21683 or else Abstract_Present (Def));
21684
21685 else
21686 Check_SPARK_05_Restriction ("interface is not allowed", N);
21687
21688 Is_Tagged := True;
21689 Analyze_Interface_Declaration (T, Def);
21690
21691 if Present (Discriminant_Specifications (N)) then
21692 Error_Msg_N
21693 ("interface types cannot have discriminants",
21694 Defining_Identifier
21695 (First (Discriminant_Specifications (N))));
21696 end if;
21697 end if;
21698
21699 -- First pass: if there are self-referential access components,
21700 -- create the required anonymous access type declarations, and if
21701 -- need be an incomplete type declaration for T itself.
21702
21703 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21704
21705 if Ada_Version >= Ada_2005
21706 and then Present (Interface_List (Def))
21707 then
21708 Check_Interfaces (N, Def);
21709
21710 declare
21711 Ifaces_List : Elist_Id;
21712
21713 begin
21714 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21715 -- already in the parents.
21716
21717 Collect_Interfaces
21718 (T => T,
21719 Ifaces_List => Ifaces_List,
21720 Exclude_Parents => True);
21721
21722 Set_Interfaces (T, Ifaces_List);
21723 end;
21724 end if;
21725
21726 -- Records constitute a scope for the component declarations within.
21727 -- The scope is created prior to the processing of these declarations.
21728 -- Discriminants are processed first, so that they are visible when
21729 -- processing the other components. The Ekind of the record type itself
21730 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21731
21732 -- Enter record scope
21733
21734 Push_Scope (T);
21735
21736 -- If an incomplete or private type declaration was already given for
21737 -- the type, then this scope already exists, and the discriminants have
21738 -- been declared within. We must verify that the full declaration
21739 -- matches the incomplete one.
21740
21741 Check_Or_Process_Discriminants (N, T, Prev);
21742
21743 Set_Is_Constrained (T, not Has_Discriminants (T));
21744 Set_Has_Delayed_Freeze (T, True);
21745
21746 -- For tagged types add a manually analyzed component corresponding
21747 -- to the component _tag, the corresponding piece of tree will be
21748 -- expanded as part of the freezing actions if it is not a CPP_Class.
21749
21750 if Is_Tagged then
21751
21752 -- Do not add the tag unless we are in expansion mode
21753
21754 if Expander_Active then
21755 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21756 Enter_Name (Tag_Comp);
21757
21758 Set_Ekind (Tag_Comp, E_Component);
21759 Set_Is_Tag (Tag_Comp);
21760 Set_Is_Aliased (Tag_Comp);
21761 Set_Etype (Tag_Comp, RTE (RE_Tag));
21762 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21763 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21764 Init_Component_Location (Tag_Comp);
21765
21766 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21767 -- implemented interfaces.
21768
21769 if Has_Interfaces (T) then
21770 Add_Interface_Tag_Components (N, T);
21771 end if;
21772 end if;
21773
21774 Make_Class_Wide_Type (T);
21775 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21776 end if;
21777
21778 -- We must suppress range checks when processing record components in
21779 -- the presence of discriminants, since we don't want spurious checks to
21780 -- be generated during their analysis, but Suppress_Range_Checks flags
21781 -- must be reset the after processing the record definition.
21782
21783 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21784 -- couldn't we just use the normal range check suppression method here.
21785 -- That would seem cleaner ???
21786
21787 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21788 Set_Kill_Range_Checks (T, True);
21789 Record_Type_Definition (Def, Prev);
21790 Set_Kill_Range_Checks (T, False);
21791 else
21792 Record_Type_Definition (Def, Prev);
21793 end if;
21794
21795 -- Exit from record scope
21796
21797 End_Scope;
21798
21799 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21800 -- the implemented interfaces and associate them an aliased entity.
21801
21802 if Is_Tagged
21803 and then not Is_Empty_List (Interface_List (Def))
21804 then
21805 Derive_Progenitor_Subprograms (T, T);
21806 end if;
21807
21808 Check_Function_Writable_Actuals (N);
21809 end Record_Type_Declaration;
21810
21811 ----------------------------
21812 -- Record_Type_Definition --
21813 ----------------------------
21814
21815 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21816 Component : Entity_Id;
21817 Ctrl_Components : Boolean := False;
21818 Final_Storage_Only : Boolean;
21819 T : Entity_Id;
21820
21821 begin
21822 if Ekind (Prev_T) = E_Incomplete_Type then
21823 T := Full_View (Prev_T);
21824 else
21825 T := Prev_T;
21826 end if;
21827
21828 -- In SPARK, tagged types and type extensions may only be declared in
21829 -- the specification of library unit packages.
21830
21831 if Present (Def) and then Is_Tagged_Type (T) then
21832 declare
21833 Typ : Node_Id;
21834 Ctxt : Node_Id;
21835
21836 begin
21837 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21838 Typ := Parent (Def);
21839 else
21840 pragma Assert
21841 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21842 Typ := Parent (Parent (Def));
21843 end if;
21844
21845 Ctxt := Parent (Typ);
21846
21847 if Nkind (Ctxt) = N_Package_Body
21848 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21849 then
21850 Check_SPARK_05_Restriction
21851 ("type should be defined in package specification", Typ);
21852
21853 elsif Nkind (Ctxt) /= N_Package_Specification
21854 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21855 then
21856 Check_SPARK_05_Restriction
21857 ("type should be defined in library unit package", Typ);
21858 end if;
21859 end;
21860 end if;
21861
21862 Final_Storage_Only := not Is_Controlled (T);
21863
21864 -- Ada 2005: Check whether an explicit Limited is present in a derived
21865 -- type declaration.
21866
21867 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21868 and then Limited_Present (Parent (Def))
21869 then
21870 Set_Is_Limited_Record (T);
21871 end if;
21872
21873 -- If the component list of a record type is defined by the reserved
21874 -- word null and there is no discriminant part, then the record type has
21875 -- no components and all records of the type are null records (RM 3.7)
21876 -- This procedure is also called to process the extension part of a
21877 -- record extension, in which case the current scope may have inherited
21878 -- components.
21879
21880 if No (Def)
21881 or else No (Component_List (Def))
21882 or else Null_Present (Component_List (Def))
21883 then
21884 if not Is_Tagged_Type (T) then
21885 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21886 end if;
21887
21888 else
21889 Analyze_Declarations (Component_Items (Component_List (Def)));
21890
21891 if Present (Variant_Part (Component_List (Def))) then
21892 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21893 Analyze (Variant_Part (Component_List (Def)));
21894 end if;
21895 end if;
21896
21897 -- After completing the semantic analysis of the record definition,
21898 -- record components, both new and inherited, are accessible. Set their
21899 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21900 -- whose Ekind may be void.
21901
21902 Component := First_Entity (Current_Scope);
21903 while Present (Component) loop
21904 if Ekind (Component) = E_Void
21905 and then not Is_Itype (Component)
21906 then
21907 Set_Ekind (Component, E_Component);
21908 Init_Component_Location (Component);
21909 end if;
21910
21911 Propagate_Concurrent_Flags (T, Etype (Component));
21912
21913 if Ekind (Component) /= E_Component then
21914 null;
21915
21916 -- Do not set Has_Controlled_Component on a class-wide equivalent
21917 -- type. See Make_CW_Equivalent_Type.
21918
21919 elsif not Is_Class_Wide_Equivalent_Type (T)
21920 and then (Has_Controlled_Component (Etype (Component))
21921 or else (Chars (Component) /= Name_uParent
21922 and then Is_Controlled (Etype (Component))))
21923 then
21924 Set_Has_Controlled_Component (T, True);
21925 Final_Storage_Only :=
21926 Final_Storage_Only
21927 and then Finalize_Storage_Only (Etype (Component));
21928 Ctrl_Components := True;
21929 end if;
21930
21931 Next_Entity (Component);
21932 end loop;
21933
21934 -- A Type is Finalize_Storage_Only only if all its controlled components
21935 -- are also.
21936
21937 if Ctrl_Components then
21938 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21939 end if;
21940
21941 -- Place reference to end record on the proper entity, which may
21942 -- be a partial view.
21943
21944 if Present (Def) then
21945 Process_End_Label (Def, 'e', Prev_T);
21946 end if;
21947 end Record_Type_Definition;
21948
21949 ------------------------
21950 -- Replace_Components --
21951 ------------------------
21952
21953 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21954 function Process (N : Node_Id) return Traverse_Result;
21955
21956 -------------
21957 -- Process --
21958 -------------
21959
21960 function Process (N : Node_Id) return Traverse_Result is
21961 Comp : Entity_Id;
21962
21963 begin
21964 if Nkind (N) = N_Discriminant_Specification then
21965 Comp := First_Discriminant (Typ);
21966 while Present (Comp) loop
21967 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21968 Set_Defining_Identifier (N, Comp);
21969 exit;
21970 end if;
21971
21972 Next_Discriminant (Comp);
21973 end loop;
21974
21975 elsif Nkind (N) = N_Variant_Part then
21976 Comp := First_Discriminant (Typ);
21977 while Present (Comp) loop
21978 if Chars (Comp) = Chars (Name (N)) then
21979 Set_Entity (Name (N), Comp);
21980 exit;
21981 end if;
21982
21983 Next_Component (Comp);
21984 end loop;
21985
21986 elsif Nkind (N) = N_Component_Declaration then
21987 Comp := First_Component (Typ);
21988 while Present (Comp) loop
21989 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21990 Set_Defining_Identifier (N, Comp);
21991 exit;
21992 end if;
21993
21994 Next_Component (Comp);
21995 end loop;
21996 end if;
21997
21998 return OK;
21999 end Process;
22000
22001 procedure Replace is new Traverse_Proc (Process);
22002
22003 -- Start of processing for Replace_Components
22004
22005 begin
22006 Replace (Decl);
22007 end Replace_Components;
22008
22009 -------------------------------
22010 -- Set_Completion_Referenced --
22011 -------------------------------
22012
22013 procedure Set_Completion_Referenced (E : Entity_Id) is
22014 begin
22015 -- If in main unit, mark entity that is a completion as referenced,
22016 -- warnings go on the partial view when needed.
22017
22018 if In_Extended_Main_Source_Unit (E) then
22019 Set_Referenced (E);
22020 end if;
22021 end Set_Completion_Referenced;
22022
22023 ---------------------
22024 -- Set_Default_SSO --
22025 ---------------------
22026
22027 procedure Set_Default_SSO (T : Entity_Id) is
22028 begin
22029 case Opt.Default_SSO is
22030 when ' ' =>
22031 null;
22032 when 'L' =>
22033 Set_SSO_Set_Low_By_Default (T, True);
22034 when 'H' =>
22035 Set_SSO_Set_High_By_Default (T, True);
22036 when others =>
22037 raise Program_Error;
22038 end case;
22039 end Set_Default_SSO;
22040
22041 ---------------------
22042 -- Set_Fixed_Range --
22043 ---------------------
22044
22045 -- The range for fixed-point types is complicated by the fact that we
22046 -- do not know the exact end points at the time of the declaration. This
22047 -- is true for three reasons:
22048
22049 -- A size clause may affect the fudging of the end-points.
22050 -- A small clause may affect the values of the end-points.
22051 -- We try to include the end-points if it does not affect the size.
22052
22053 -- This means that the actual end-points must be established at the
22054 -- point when the type is frozen. Meanwhile, we first narrow the range
22055 -- as permitted (so that it will fit if necessary in a small specified
22056 -- size), and then build a range subtree with these narrowed bounds.
22057 -- Set_Fixed_Range constructs the range from real literal values, and
22058 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22059
22060 -- The parent of this range is set to point to the entity so that it is
22061 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22062 -- other scalar types, which are just pointers to the range in the
22063 -- original tree, this would otherwise be an orphan).
22064
22065 -- The tree is left unanalyzed. When the type is frozen, the processing
22066 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22067 -- analyzed, and uses this as an indication that it should complete
22068 -- work on the range (it will know the final small and size values).
22069
22070 procedure Set_Fixed_Range
22071 (E : Entity_Id;
22072 Loc : Source_Ptr;
22073 Lo : Ureal;
22074 Hi : Ureal)
22075 is
22076 S : constant Node_Id :=
22077 Make_Range (Loc,
22078 Low_Bound => Make_Real_Literal (Loc, Lo),
22079 High_Bound => Make_Real_Literal (Loc, Hi));
22080 begin
22081 Set_Scalar_Range (E, S);
22082 Set_Parent (S, E);
22083
22084 -- Before the freeze point, the bounds of a fixed point are universal
22085 -- and carry the corresponding type.
22086
22087 Set_Etype (Low_Bound (S), Universal_Real);
22088 Set_Etype (High_Bound (S), Universal_Real);
22089 end Set_Fixed_Range;
22090
22091 ----------------------------------
22092 -- Set_Scalar_Range_For_Subtype --
22093 ----------------------------------
22094
22095 procedure Set_Scalar_Range_For_Subtype
22096 (Def_Id : Entity_Id;
22097 R : Node_Id;
22098 Subt : Entity_Id)
22099 is
22100 Kind : constant Entity_Kind := Ekind (Def_Id);
22101
22102 begin
22103 -- Defend against previous error
22104
22105 if Nkind (R) = N_Error then
22106 return;
22107 end if;
22108
22109 Set_Scalar_Range (Def_Id, R);
22110
22111 -- We need to link the range into the tree before resolving it so
22112 -- that types that are referenced, including importantly the subtype
22113 -- itself, are properly frozen (Freeze_Expression requires that the
22114 -- expression be properly linked into the tree). Of course if it is
22115 -- already linked in, then we do not disturb the current link.
22116
22117 if No (Parent (R)) then
22118 Set_Parent (R, Def_Id);
22119 end if;
22120
22121 -- Reset the kind of the subtype during analysis of the range, to
22122 -- catch possible premature use in the bounds themselves.
22123
22124 Set_Ekind (Def_Id, E_Void);
22125 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22126 Set_Ekind (Def_Id, Kind);
22127 end Set_Scalar_Range_For_Subtype;
22128
22129 --------------------------------------------------------
22130 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22131 --------------------------------------------------------
22132
22133 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22134 (E : Entity_Id)
22135 is
22136 begin
22137 -- Make sure set if encountered during Expand_To_Stored_Constraint
22138
22139 Set_Stored_Constraint (E, No_Elist);
22140
22141 -- Give it the right value
22142
22143 if Is_Constrained (E) and then Has_Discriminants (E) then
22144 Set_Stored_Constraint (E,
22145 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22146 end if;
22147 end Set_Stored_Constraint_From_Discriminant_Constraint;
22148
22149 -------------------------------------
22150 -- Signed_Integer_Type_Declaration --
22151 -------------------------------------
22152
22153 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22154 Implicit_Base : Entity_Id;
22155 Base_Typ : Entity_Id;
22156 Lo_Val : Uint;
22157 Hi_Val : Uint;
22158 Errs : Boolean := False;
22159 Lo : Node_Id;
22160 Hi : Node_Id;
22161
22162 function Can_Derive_From (E : Entity_Id) return Boolean;
22163 -- Determine whether given bounds allow derivation from specified type
22164
22165 procedure Check_Bound (Expr : Node_Id);
22166 -- Check bound to make sure it is integral and static. If not, post
22167 -- appropriate error message and set Errs flag
22168
22169 ---------------------
22170 -- Can_Derive_From --
22171 ---------------------
22172
22173 -- Note we check both bounds against both end values, to deal with
22174 -- strange types like ones with a range of 0 .. -12341234.
22175
22176 function Can_Derive_From (E : Entity_Id) return Boolean is
22177 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22178 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22179 begin
22180 return Lo <= Lo_Val and then Lo_Val <= Hi
22181 and then
22182 Lo <= Hi_Val and then Hi_Val <= Hi;
22183 end Can_Derive_From;
22184
22185 -----------------
22186 -- Check_Bound --
22187 -----------------
22188
22189 procedure Check_Bound (Expr : Node_Id) is
22190 begin
22191 -- If a range constraint is used as an integer type definition, each
22192 -- bound of the range must be defined by a static expression of some
22193 -- integer type, but the two bounds need not have the same integer
22194 -- type (Negative bounds are allowed.) (RM 3.5.4)
22195
22196 if not Is_Integer_Type (Etype (Expr)) then
22197 Error_Msg_N
22198 ("integer type definition bounds must be of integer type", Expr);
22199 Errs := True;
22200
22201 elsif not Is_OK_Static_Expression (Expr) then
22202 Flag_Non_Static_Expr
22203 ("non-static expression used for integer type bound!", Expr);
22204 Errs := True;
22205
22206 -- The bounds are folded into literals, and we set their type to be
22207 -- universal, to avoid typing difficulties: we cannot set the type
22208 -- of the literal to the new type, because this would be a forward
22209 -- reference for the back end, and if the original type is user-
22210 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22211
22212 else
22213 if Is_Entity_Name (Expr) then
22214 Fold_Uint (Expr, Expr_Value (Expr), True);
22215 end if;
22216
22217 Set_Etype (Expr, Universal_Integer);
22218 end if;
22219 end Check_Bound;
22220
22221 -- Start of processing for Signed_Integer_Type_Declaration
22222
22223 begin
22224 -- Create an anonymous base type
22225
22226 Implicit_Base :=
22227 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22228
22229 -- Analyze and check the bounds, they can be of any integer type
22230
22231 Lo := Low_Bound (Def);
22232 Hi := High_Bound (Def);
22233
22234 -- Arbitrarily use Integer as the type if either bound had an error
22235
22236 if Hi = Error or else Lo = Error then
22237 Base_Typ := Any_Integer;
22238 Set_Error_Posted (T, True);
22239
22240 -- Here both bounds are OK expressions
22241
22242 else
22243 Analyze_And_Resolve (Lo, Any_Integer);
22244 Analyze_And_Resolve (Hi, Any_Integer);
22245
22246 Check_Bound (Lo);
22247 Check_Bound (Hi);
22248
22249 if Errs then
22250 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22251 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22252 end if;
22253
22254 -- Find type to derive from
22255
22256 Lo_Val := Expr_Value (Lo);
22257 Hi_Val := Expr_Value (Hi);
22258
22259 if Can_Derive_From (Standard_Short_Short_Integer) then
22260 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22261
22262 elsif Can_Derive_From (Standard_Short_Integer) then
22263 Base_Typ := Base_Type (Standard_Short_Integer);
22264
22265 elsif Can_Derive_From (Standard_Integer) then
22266 Base_Typ := Base_Type (Standard_Integer);
22267
22268 elsif Can_Derive_From (Standard_Long_Integer) then
22269 Base_Typ := Base_Type (Standard_Long_Integer);
22270
22271 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22272 Check_Restriction (No_Long_Long_Integers, Def);
22273 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22274
22275 else
22276 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22277 Error_Msg_N ("integer type definition bounds out of range", Def);
22278 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22279 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22280 end if;
22281 end if;
22282
22283 -- Complete both implicit base and declared first subtype entities. The
22284 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22285 -- are not clobbered when the signed integer type acts as a full view of
22286 -- a private type.
22287
22288 Set_Etype (Implicit_Base, Base_Typ);
22289 Set_Size_Info (Implicit_Base, Base_Typ);
22290 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22291 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22292 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22293
22294 Set_Ekind (T, E_Signed_Integer_Subtype);
22295 Set_Etype (T, Implicit_Base);
22296 Set_Size_Info (T, Implicit_Base);
22297 Inherit_Rep_Item_Chain (T, Implicit_Base);
22298 Set_Scalar_Range (T, Def);
22299 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22300 Set_Is_Constrained (T);
22301 end Signed_Integer_Type_Declaration;
22302
22303 end Sem_Ch3;