]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_ch8.adb
[Ada] Spurious ineffective use_clause warning
[thirdparty/gcc.git] / gcc / ada / sem_ch8.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Elab; use Sem_Elab;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Util; use Sem_Util;
65 with Sem_Type; use Sem_Type;
66 with Stand; use Stand;
67 with Sinfo; use Sinfo;
68 with Sinfo.CN; use Sinfo.CN;
69 with Snames; use Snames;
70 with Style;
71 with Table;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
74
75 package body Sem_Ch8 is
76
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
80
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
83
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
90
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
98
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
104
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
110
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
117
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
126
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
135
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
141
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
172
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
175
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
183 --
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
190
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
196
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
201
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
208
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
212
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
216
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
225
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
233
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
237
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
254
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
258
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
266
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
271
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
278
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
283
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
287
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
305
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
309
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
317
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
323
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
328
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
331
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
337
338 end record;
339
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
347
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
353
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
357
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
363
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
374
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
381
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
389
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
396
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
406
407 procedure Attribute_Renaming (N : Node_Id);
408 -- Analyze renaming of attribute as subprogram. The renaming declaration N
409 -- is rewritten as a subprogram body that returns the attribute reference
410 -- applied to the formals of the function.
411
412 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
413 -- Set Entity, with style check if need be. For a discriminant reference,
414 -- replace by the corresponding discriminal, i.e. the parameter of the
415 -- initialization procedure that corresponds to the discriminant.
416
417 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
418 -- A renaming_as_body may occur after the entity of the original decla-
419 -- ration has been frozen. In that case, the body of the new entity must
420 -- be built now, because the usual mechanism of building the renamed
421 -- body at the point of freezing will not work. Subp is the subprogram
422 -- for which N provides the Renaming_As_Body.
423
424 procedure Check_In_Previous_With_Clause
425 (N : Node_Id;
426 Nam : Node_Id);
427 -- N is a use_package clause and Nam the package name, or N is a use_type
428 -- clause and Nam is the prefix of the type name. In either case, verify
429 -- that the package is visible at that point in the context: either it
430 -- appears in a previous with_clause, or because it is a fully qualified
431 -- name and the root ancestor appears in a previous with_clause.
432
433 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
434 -- Verify that the entity in a renaming declaration that is a library unit
435 -- is itself a library unit and not a nested unit or subunit. Also check
436 -- that if the renaming is a child unit of a generic parent, then the
437 -- renamed unit must also be a child unit of that parent. Finally, verify
438 -- that a renamed generic unit is not an implicit child declared within
439 -- an instance of the parent.
440
441 procedure Chain_Use_Clause (N : Node_Id);
442 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
443 -- the proper scope table entry. This is usually the current scope, but it
444 -- will be an inner scope when installing the use clauses of the private
445 -- declarations of a parent unit prior to compiling the private part of a
446 -- child unit. This chain is traversed when installing/removing use clauses
447 -- when compiling a subunit or instantiating a generic body on the fly,
448 -- when it is necessary to save and restore full environments.
449
450 function Enclosing_Instance return Entity_Id;
451 -- In an instance nested within another one, several semantic checks are
452 -- unnecessary because the legality of the nested instance has been checked
453 -- in the enclosing generic unit. This applies in particular to legality
454 -- checks on actuals for formal subprograms of the inner instance, which
455 -- are checked as subprogram renamings, and may be complicated by confusion
456 -- in private/full views. This function returns the instance enclosing the
457 -- current one if there is such, else it returns Empty.
458 --
459 -- If the renaming determines the entity for the default of a formal
460 -- subprogram nested within another instance, choose the innermost
461 -- candidate. This is because if the formal has a box, and we are within
462 -- an enclosing instance where some candidate interpretations are local
463 -- to this enclosing instance, we know that the default was properly
464 -- resolved when analyzing the generic, so we prefer the local
465 -- candidates to those that are external. This is not always the case
466 -- but is a reasonable heuristic on the use of nested generics. The
467 -- proper solution requires a full renaming model.
468
469 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
470 -- Return the appropriate entity for determining which unit has a deeper
471 -- scope: the defining entity for U, unless U is a package instance, in
472 -- which case we retrieve the entity of the instance spec.
473
474 procedure Find_Expanded_Name (N : Node_Id);
475 -- The input is a selected component known to be an expanded name. Verify
476 -- legality of selector given the scope denoted by prefix, and change node
477 -- N into a expanded name with a properly set Entity field.
478
479 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id;
480 -- Find the most previous use clause (that is, the first one to appear in
481 -- the source) by traversing the previous clause chain that exists in both
482 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
483 -- ??? a better subprogram name is in order
484
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
495
496 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
497 -- Find a type derived from Character or Wide_Character in the prefix of N.
498 -- Used to resolved qualified names whose selector is a character literal.
499
500 function Has_Private_With (E : Entity_Id) return Boolean;
501 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
502 -- private with on E.
503
504 function Has_Implicit_Operator (N : Node_Id) return Boolean;
505 -- N is an expanded name whose selector is an operator name (e.g. P."+").
506 -- declarative part contains an implicit declaration of an operator if it
507 -- has a declaration of a type to which one of the predefined operators
508 -- apply. The existence of this routine is an implementation artifact. A
509 -- more straightforward but more space-consuming choice would be to make
510 -- all inherited operators explicit in the symbol table.
511
512 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
513 -- A subprogram defined by a renaming declaration inherits the parameter
514 -- profile of the renamed entity. The subtypes given in the subprogram
515 -- specification are discarded and replaced with those of the renamed
516 -- subprogram, which are then used to recheck the default values.
517
518 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
519 -- True if it is of a task type, a protected type, or else an access to one
520 -- of these types.
521
522 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
523 -- Prefix is appropriate for record if it is of a record type, or an access
524 -- to such.
525
526 function Most_Descendant_Use_Clause
527 (Clause1 : Entity_Id;
528 Clause2 : Entity_Id) return Entity_Id;
529 -- Determine which use clause parameter is the most descendant in terms of
530 -- scope.
531 -- ??? a better subprogram name is in order
532
533 procedure Premature_Usage (N : Node_Id);
534 -- Diagnose usage of an entity before it is visible
535
536 procedure Use_One_Package
537 (N : Node_Id;
538 Pack_Name : Entity_Id := Empty;
539 Force : Boolean := False);
540 -- Make visible entities declared in package P potentially use-visible
541 -- in the current context. Also used in the analysis of subunits, when
542 -- re-installing use clauses of parent units. N is the use_clause that
543 -- names P (and possibly other packages).
544
545 procedure Use_One_Type
546 (Id : Node_Id;
547 Installed : Boolean := False;
548 Force : Boolean := False);
549 -- Id is the subtype mark from a use_type_clause. This procedure makes
550 -- the primitive operators of the type potentially use-visible. The
551 -- boolean flag Installed indicates that the clause is being reinstalled
552 -- after previous analysis, and primitive operations are already chained
553 -- on the Used_Operations list of the clause.
554
555 procedure Write_Info;
556 -- Write debugging information on entities declared in current scope
557
558 --------------------------------
559 -- Analyze_Exception_Renaming --
560 --------------------------------
561
562 -- The language only allows a single identifier, but the tree holds an
563 -- identifier list. The parser has already issued an error message if
564 -- there is more than one element in the list.
565
566 procedure Analyze_Exception_Renaming (N : Node_Id) is
567 Id : constant Entity_Id := Defining_Entity (N);
568 Nam : constant Node_Id := Name (N);
569
570 begin
571 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
572
573 Enter_Name (Id);
574 Analyze (Nam);
575
576 Set_Ekind (Id, E_Exception);
577 Set_Etype (Id, Standard_Exception_Type);
578 Set_Is_Pure (Id, Is_Pure (Current_Scope));
579
580 if Is_Entity_Name (Nam)
581 and then Present (Entity (Nam))
582 and then Ekind (Entity (Nam)) = E_Exception
583 then
584 if Present (Renamed_Object (Entity (Nam))) then
585 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
586 else
587 Set_Renamed_Object (Id, Entity (Nam));
588 end if;
589
590 -- The exception renaming declaration may become Ghost if it renames
591 -- a Ghost entity.
592
593 Mark_Ghost_Renaming (N, Entity (Nam));
594 else
595 Error_Msg_N ("invalid exception name in renaming", Nam);
596 end if;
597
598 -- Implementation-defined aspect specifications can appear in a renaming
599 -- declaration, but not language-defined ones. The call to procedure
600 -- Analyze_Aspect_Specifications will take care of this error check.
601
602 if Has_Aspects (N) then
603 Analyze_Aspect_Specifications (N, Id);
604 end if;
605 end Analyze_Exception_Renaming;
606
607 ---------------------------
608 -- Analyze_Expanded_Name --
609 ---------------------------
610
611 procedure Analyze_Expanded_Name (N : Node_Id) is
612 begin
613 -- If the entity pointer is already set, this is an internal node, or a
614 -- node that is analyzed more than once, after a tree modification. In
615 -- such a case there is no resolution to perform, just set the type. In
616 -- either case, start by analyzing the prefix.
617
618 Analyze (Prefix (N));
619
620 if Present (Entity (N)) then
621 if Is_Type (Entity (N)) then
622 Set_Etype (N, Entity (N));
623 else
624 Set_Etype (N, Etype (Entity (N)));
625 end if;
626
627 else
628 Find_Expanded_Name (N);
629 end if;
630
631 -- In either case, propagate dimension of entity to expanded name
632
633 Analyze_Dimension (N);
634 end Analyze_Expanded_Name;
635
636 ---------------------------------------
637 -- Analyze_Generic_Function_Renaming --
638 ---------------------------------------
639
640 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
641 begin
642 Analyze_Generic_Renaming (N, E_Generic_Function);
643 end Analyze_Generic_Function_Renaming;
644
645 --------------------------------------
646 -- Analyze_Generic_Package_Renaming --
647 --------------------------------------
648
649 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
650 begin
651 -- Test for the Text_IO special unit case here, since we may be renaming
652 -- one of the subpackages of Text_IO, then join common routine.
653
654 Check_Text_IO_Special_Unit (Name (N));
655
656 Analyze_Generic_Renaming (N, E_Generic_Package);
657 end Analyze_Generic_Package_Renaming;
658
659 ----------------------------------------
660 -- Analyze_Generic_Procedure_Renaming --
661 ----------------------------------------
662
663 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
664 begin
665 Analyze_Generic_Renaming (N, E_Generic_Procedure);
666 end Analyze_Generic_Procedure_Renaming;
667
668 ------------------------------
669 -- Analyze_Generic_Renaming --
670 ------------------------------
671
672 procedure Analyze_Generic_Renaming
673 (N : Node_Id;
674 K : Entity_Kind)
675 is
676 New_P : constant Entity_Id := Defining_Entity (N);
677 Inst : Boolean := False;
678 Old_P : Entity_Id;
679
680 begin
681 if Name (N) = Error then
682 return;
683 end if;
684
685 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
686
687 Generate_Definition (New_P);
688
689 if Current_Scope /= Standard_Standard then
690 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
691 end if;
692
693 if Nkind (Name (N)) = N_Selected_Component then
694 Check_Generic_Child_Unit (Name (N), Inst);
695 else
696 Analyze (Name (N));
697 end if;
698
699 if not Is_Entity_Name (Name (N)) then
700 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
701 Old_P := Any_Id;
702 else
703 Old_P := Entity (Name (N));
704 end if;
705
706 Enter_Name (New_P);
707 Set_Ekind (New_P, K);
708
709 if Etype (Old_P) = Any_Type then
710 null;
711
712 elsif Ekind (Old_P) /= K then
713 Error_Msg_N ("invalid generic unit name", Name (N));
714
715 else
716 if Present (Renamed_Object (Old_P)) then
717 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
718 else
719 Set_Renamed_Object (New_P, Old_P);
720 end if;
721
722 -- The generic renaming declaration may become Ghost if it renames a
723 -- Ghost entity.
724
725 Mark_Ghost_Renaming (N, Old_P);
726
727 Set_Is_Pure (New_P, Is_Pure (Old_P));
728 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
729
730 Set_Etype (New_P, Etype (Old_P));
731 Set_Has_Completion (New_P);
732
733 if In_Open_Scopes (Old_P) then
734 Error_Msg_N ("within its scope, generic denotes its instance", N);
735 end if;
736
737 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
738 -- renamings and subsequent instantiations of Unchecked_Conversion.
739
740 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
741 Set_Is_Intrinsic_Subprogram
742 (New_P, Is_Intrinsic_Subprogram (Old_P));
743 end if;
744
745 Check_Library_Unit_Renaming (N, Old_P);
746 end if;
747
748 -- Implementation-defined aspect specifications can appear in a renaming
749 -- declaration, but not language-defined ones. The call to procedure
750 -- Analyze_Aspect_Specifications will take care of this error check.
751
752 if Has_Aspects (N) then
753 Analyze_Aspect_Specifications (N, New_P);
754 end if;
755 end Analyze_Generic_Renaming;
756
757 -----------------------------
758 -- Analyze_Object_Renaming --
759 -----------------------------
760
761 procedure Analyze_Object_Renaming (N : Node_Id) is
762 Id : constant Entity_Id := Defining_Identifier (N);
763 Loc : constant Source_Ptr := Sloc (N);
764 Nam : constant Node_Id := Name (N);
765 Dec : Node_Id;
766 T : Entity_Id;
767 T2 : Entity_Id;
768
769 procedure Check_Constrained_Object;
770 -- If the nominal type is unconstrained but the renamed object is
771 -- constrained, as can happen with renaming an explicit dereference or
772 -- a function return, build a constrained subtype from the object. If
773 -- the renaming is for a formal in an accept statement, the analysis
774 -- has already established its actual subtype. This is only relevant
775 -- if the renamed object is an explicit dereference.
776
777 ------------------------------
778 -- Check_Constrained_Object --
779 ------------------------------
780
781 procedure Check_Constrained_Object is
782 Typ : constant Entity_Id := Etype (Nam);
783 Subt : Entity_Id;
784
785 begin
786 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
787 and then Is_Composite_Type (Etype (Nam))
788 and then not Is_Constrained (Etype (Nam))
789 and then not Has_Unknown_Discriminants (Etype (Nam))
790 and then Expander_Active
791 then
792 -- If Actual_Subtype is already set, nothing to do
793
794 if Ekind_In (Id, E_Variable, E_Constant)
795 and then Present (Actual_Subtype (Id))
796 then
797 null;
798
799 -- A renaming of an unchecked union has no actual subtype
800
801 elsif Is_Unchecked_Union (Typ) then
802 null;
803
804 -- If a record is limited its size is invariant. This is the case
805 -- in particular with record types with an access discirminant
806 -- that are used in iterators. This is an optimization, but it
807 -- also prevents typing anomalies when the prefix is further
808 -- expanded. Limited types with discriminants are included.
809
810 elsif Is_Limited_Record (Typ)
811 or else
812 (Ekind (Typ) = E_Limited_Private_Type
813 and then Has_Discriminants (Typ)
814 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
815 then
816 null;
817
818 else
819 Subt := Make_Temporary (Loc, 'T');
820 Remove_Side_Effects (Nam);
821 Insert_Action (N,
822 Make_Subtype_Declaration (Loc,
823 Defining_Identifier => Subt,
824 Subtype_Indication =>
825 Make_Subtype_From_Expr (Nam, Typ)));
826 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
827 Set_Etype (Nam, Subt);
828
829 -- Freeze subtype at once, to prevent order of elaboration
830 -- issues in the backend. The renamed object exists, so its
831 -- type is already frozen in any case.
832
833 Freeze_Before (N, Subt);
834 end if;
835 end if;
836 end Check_Constrained_Object;
837
838 -- Start of processing for Analyze_Object_Renaming
839
840 begin
841 if Nam = Error then
842 return;
843 end if;
844
845 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
846
847 Set_Is_Pure (Id, Is_Pure (Current_Scope));
848 Enter_Name (Id);
849
850 -- The renaming of a component that depends on a discriminant requires
851 -- an actual subtype, because in subsequent use of the object Gigi will
852 -- be unable to locate the actual bounds. This explicit step is required
853 -- when the renaming is generated in removing side effects of an
854 -- already-analyzed expression.
855
856 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
857
858 -- The object renaming declaration may become Ghost if it renames a
859 -- Ghost entity.
860
861 if Is_Entity_Name (Nam) then
862 Mark_Ghost_Renaming (N, Entity (Nam));
863 end if;
864
865 T := Etype (Nam);
866 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
867
868 if Present (Dec) then
869 Insert_Action (N, Dec);
870 T := Defining_Identifier (Dec);
871 Set_Etype (Nam, T);
872 end if;
873
874 -- Complete analysis of the subtype mark in any case, for ASIS use
875
876 if Present (Subtype_Mark (N)) then
877 Find_Type (Subtype_Mark (N));
878 end if;
879
880 elsif Present (Subtype_Mark (N)) then
881 Find_Type (Subtype_Mark (N));
882 T := Entity (Subtype_Mark (N));
883 Analyze (Nam);
884
885 -- The object renaming declaration may become Ghost if it renames a
886 -- Ghost entity.
887
888 if Is_Entity_Name (Nam) then
889 Mark_Ghost_Renaming (N, Entity (Nam));
890 end if;
891
892 -- Reject renamings of conversions unless the type is tagged, or
893 -- the conversion is implicit (which can occur for cases of anonymous
894 -- access types in Ada 2012).
895
896 if Nkind (Nam) = N_Type_Conversion
897 and then Comes_From_Source (Nam)
898 and then not Is_Tagged_Type (T)
899 then
900 Error_Msg_N
901 ("renaming of conversion only allowed for tagged types", Nam);
902 end if;
903
904 Resolve (Nam, T);
905
906 -- If the renamed object is a function call of a limited type,
907 -- the expansion of the renaming is complicated by the presence
908 -- of various temporaries and subtypes that capture constraints
909 -- of the renamed object. Rewrite node as an object declaration,
910 -- whose expansion is simpler. Given that the object is limited
911 -- there is no copy involved and no performance hit.
912
913 if Nkind (Nam) = N_Function_Call
914 and then Is_Limited_View (Etype (Nam))
915 and then not Is_Constrained (Etype (Nam))
916 and then Comes_From_Source (N)
917 then
918 Set_Etype (Id, T);
919 Set_Ekind (Id, E_Constant);
920 Rewrite (N,
921 Make_Object_Declaration (Loc,
922 Defining_Identifier => Id,
923 Constant_Present => True,
924 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
925 Expression => Relocate_Node (Nam)));
926 return;
927 end if;
928
929 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
930 -- when renaming declaration has a named access type. The Ada 2012
931 -- coverage rules allow an anonymous access type in the context of
932 -- an expected named general access type, but the renaming rules
933 -- require the types to be the same. (An exception is when the type
934 -- of the renaming is also an anonymous access type, which can only
935 -- happen due to a renaming created by the expander.)
936
937 if Nkind (Nam) = N_Type_Conversion
938 and then not Comes_From_Source (Nam)
939 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
940 and then Ekind (T) /= E_Anonymous_Access_Type
941 then
942 Wrong_Type (Expression (Nam), T); -- Should we give better error???
943 end if;
944
945 -- Check that a class-wide object is not being renamed as an object
946 -- of a specific type. The test for access types is needed to exclude
947 -- cases where the renamed object is a dynamically tagged access
948 -- result, such as occurs in certain expansions.
949
950 if Is_Tagged_Type (T) then
951 Check_Dynamically_Tagged_Expression
952 (Expr => Nam,
953 Typ => T,
954 Related_Nod => N);
955 end if;
956
957 -- Ada 2005 (AI-230/AI-254): Access renaming
958
959 else pragma Assert (Present (Access_Definition (N)));
960 T :=
961 Access_Definition
962 (Related_Nod => N,
963 N => Access_Definition (N));
964
965 Analyze (Nam);
966
967 -- The object renaming declaration may become Ghost if it renames a
968 -- Ghost entity.
969
970 if Is_Entity_Name (Nam) then
971 Mark_Ghost_Renaming (N, Entity (Nam));
972 end if;
973
974 -- Ada 2005 AI05-105: if the declaration has an anonymous access
975 -- type, the renamed object must also have an anonymous type, and
976 -- this is a name resolution rule. This was implicit in the last part
977 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
978 -- recent AI.
979
980 if not Is_Overloaded (Nam) then
981 if Ekind (Etype (Nam)) /= Ekind (T) then
982 Error_Msg_N
983 ("expect anonymous access type in object renaming", N);
984 end if;
985
986 else
987 declare
988 I : Interp_Index;
989 It : Interp;
990 Typ : Entity_Id := Empty;
991 Seen : Boolean := False;
992
993 begin
994 Get_First_Interp (Nam, I, It);
995 while Present (It.Typ) loop
996
997 -- Renaming is ambiguous if more than one candidate
998 -- interpretation is type-conformant with the context.
999
1000 if Ekind (It.Typ) = Ekind (T) then
1001 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1002 and then
1003 Type_Conformant
1004 (Designated_Type (T), Designated_Type (It.Typ))
1005 then
1006 if not Seen then
1007 Seen := True;
1008 else
1009 Error_Msg_N
1010 ("ambiguous expression in renaming", Nam);
1011 end if;
1012
1013 elsif Ekind (T) = E_Anonymous_Access_Type
1014 and then
1015 Covers (Designated_Type (T), Designated_Type (It.Typ))
1016 then
1017 if not Seen then
1018 Seen := True;
1019 else
1020 Error_Msg_N
1021 ("ambiguous expression in renaming", Nam);
1022 end if;
1023 end if;
1024
1025 if Covers (T, It.Typ) then
1026 Typ := It.Typ;
1027 Set_Etype (Nam, Typ);
1028 Set_Is_Overloaded (Nam, False);
1029 end if;
1030 end if;
1031
1032 Get_Next_Interp (I, It);
1033 end loop;
1034 end;
1035 end if;
1036
1037 Resolve (Nam, T);
1038
1039 -- Do not perform the legality checks below when the resolution of
1040 -- the renaming name failed because the associated type is Any_Type.
1041
1042 if Etype (Nam) = Any_Type then
1043 null;
1044
1045 -- Ada 2005 (AI-231): In the case where the type is defined by an
1046 -- access_definition, the renamed entity shall be of an access-to-
1047 -- constant type if and only if the access_definition defines an
1048 -- access-to-constant type. ARM 8.5.1(4)
1049
1050 elsif Constant_Present (Access_Definition (N))
1051 and then not Is_Access_Constant (Etype (Nam))
1052 then
1053 Error_Msg_N
1054 ("(Ada 2005): the renamed object is not access-to-constant "
1055 & "(RM 8.5.1(6))", N);
1056
1057 elsif not Constant_Present (Access_Definition (N))
1058 and then Is_Access_Constant (Etype (Nam))
1059 then
1060 Error_Msg_N
1061 ("(Ada 2005): the renamed object is not access-to-variable "
1062 & "(RM 8.5.1(6))", N);
1063 end if;
1064
1065 if Is_Access_Subprogram_Type (Etype (Nam)) then
1066 Check_Subtype_Conformant
1067 (Designated_Type (T), Designated_Type (Etype (Nam)));
1068
1069 elsif not Subtypes_Statically_Match
1070 (Designated_Type (T),
1071 Available_View (Designated_Type (Etype (Nam))))
1072 then
1073 Error_Msg_N
1074 ("subtype of renamed object does not statically match", N);
1075 end if;
1076 end if;
1077
1078 -- Special processing for renaming function return object. Some errors
1079 -- and warnings are produced only for calls that come from source.
1080
1081 if Nkind (Nam) = N_Function_Call then
1082 case Ada_Version is
1083
1084 -- Usage is illegal in Ada 83, but renamings are also introduced
1085 -- during expansion, and error does not apply to those.
1086
1087 when Ada_83 =>
1088 if Comes_From_Source (N) then
1089 Error_Msg_N
1090 ("(Ada 83) cannot rename function return object", Nam);
1091 end if;
1092
1093 -- In Ada 95, warn for odd case of renaming parameterless function
1094 -- call if this is not a limited type (where this is useful).
1095
1096 when others =>
1097 if Warn_On_Object_Renames_Function
1098 and then No (Parameter_Associations (Nam))
1099 and then not Is_Limited_Type (Etype (Nam))
1100 and then Comes_From_Source (Nam)
1101 then
1102 Error_Msg_N
1103 ("renaming function result object is suspicious?R?", Nam);
1104 Error_Msg_NE
1105 ("\function & will be called only once?R?", Nam,
1106 Entity (Name (Nam)));
1107 Error_Msg_N -- CODEFIX
1108 ("\suggest using an initialized constant object "
1109 & "instead?R?", Nam);
1110 end if;
1111 end case;
1112 end if;
1113
1114 Check_Constrained_Object;
1115
1116 -- An object renaming requires an exact match of the type. Class-wide
1117 -- matching is not allowed.
1118
1119 if Is_Class_Wide_Type (T)
1120 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1121 then
1122 Wrong_Type (Nam, T);
1123 end if;
1124
1125 T2 := Etype (Nam);
1126
1127 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1128
1129 if Nkind (Nam) = N_Explicit_Dereference
1130 and then Ekind (Etype (T2)) = E_Incomplete_Type
1131 then
1132 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1133 return;
1134
1135 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1136 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1137 return;
1138 end if;
1139
1140 -- Ada 2005 (AI-327)
1141
1142 if Ada_Version >= Ada_2005
1143 and then Nkind (Nam) = N_Attribute_Reference
1144 and then Attribute_Name (Nam) = Name_Priority
1145 then
1146 null;
1147
1148 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1149 declare
1150 Nam_Decl : Node_Id;
1151 Nam_Ent : Entity_Id;
1152
1153 begin
1154 if Nkind (Nam) = N_Attribute_Reference then
1155 Nam_Ent := Entity (Prefix (Nam));
1156 else
1157 Nam_Ent := Entity (Nam);
1158 end if;
1159
1160 Nam_Decl := Parent (Nam_Ent);
1161
1162 if Has_Null_Exclusion (N)
1163 and then not Has_Null_Exclusion (Nam_Decl)
1164 then
1165 -- Ada 2005 (AI-423): If the object name denotes a generic
1166 -- formal object of a generic unit G, and the object renaming
1167 -- declaration occurs within the body of G or within the body
1168 -- of a generic unit declared within the declarative region
1169 -- of G, then the declaration of the formal object of G must
1170 -- have a null exclusion or a null-excluding subtype.
1171
1172 if Is_Formal_Object (Nam_Ent)
1173 and then In_Generic_Scope (Id)
1174 then
1175 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1176 Error_Msg_N
1177 ("renamed formal does not exclude `NULL` "
1178 & "(RM 8.5.1(4.6/2))", N);
1179
1180 elsif In_Package_Body (Scope (Id)) then
1181 Error_Msg_N
1182 ("formal object does not have a null exclusion"
1183 & "(RM 8.5.1(4.6/2))", N);
1184 end if;
1185
1186 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1187 -- shall exclude null.
1188
1189 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1190 Error_Msg_N
1191 ("renamed object does not exclude `NULL` "
1192 & "(RM 8.5.1(4.6/2))", N);
1193
1194 -- An instance is illegal if it contains a renaming that
1195 -- excludes null, and the actual does not. The renaming
1196 -- declaration has already indicated that the declaration
1197 -- of the renamed actual in the instance will raise
1198 -- constraint_error.
1199
1200 elsif Nkind (Nam_Decl) = N_Object_Declaration
1201 and then In_Instance
1202 and then
1203 Present (Corresponding_Generic_Association (Nam_Decl))
1204 and then Nkind (Expression (Nam_Decl)) =
1205 N_Raise_Constraint_Error
1206 then
1207 Error_Msg_N
1208 ("renamed actual does not exclude `NULL` "
1209 & "(RM 8.5.1(4.6/2))", N);
1210
1211 -- Finally, if there is a null exclusion, the subtype mark
1212 -- must not be null-excluding.
1213
1214 elsif No (Access_Definition (N))
1215 and then Can_Never_Be_Null (T)
1216 then
1217 Error_Msg_NE
1218 ("`NOT NULL` not allowed (& already excludes null)",
1219 N, T);
1220
1221 end if;
1222
1223 elsif Can_Never_Be_Null (T)
1224 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1225 then
1226 Error_Msg_N
1227 ("renamed object does not exclude `NULL` "
1228 & "(RM 8.5.1(4.6/2))", N);
1229
1230 elsif Has_Null_Exclusion (N)
1231 and then No (Access_Definition (N))
1232 and then Can_Never_Be_Null (T)
1233 then
1234 Error_Msg_NE
1235 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1236 end if;
1237 end;
1238 end if;
1239
1240 -- Set the Ekind of the entity, unless it has been set already, as is
1241 -- the case for the iteration object over a container with no variable
1242 -- indexing. In that case it's been marked as a constant, and we do not
1243 -- want to change it to a variable.
1244
1245 if Ekind (Id) /= E_Constant then
1246 Set_Ekind (Id, E_Variable);
1247 end if;
1248
1249 -- Initialize the object size and alignment. Note that we used to call
1250 -- Init_Size_Align here, but that's wrong for objects which have only
1251 -- an Esize, not an RM_Size field.
1252
1253 Init_Object_Size_Align (Id);
1254
1255 if T = Any_Type or else Etype (Nam) = Any_Type then
1256 return;
1257
1258 -- Verify that the renamed entity is an object or a function call. It
1259 -- may have been rewritten in several ways.
1260
1261 elsif Is_Object_Reference (Nam) then
1262 if Comes_From_Source (N) then
1263 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1264 Error_Msg_N
1265 ("illegal renaming of discriminant-dependent component", Nam);
1266 end if;
1267
1268 -- If the renaming comes from source and the renamed object is a
1269 -- dereference, then mark the prefix as needing debug information,
1270 -- since it might have been rewritten hence internally generated
1271 -- and Debug_Renaming_Declaration will link the renaming to it.
1272
1273 if Nkind (Nam) = N_Explicit_Dereference
1274 and then Is_Entity_Name (Prefix (Nam))
1275 then
1276 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1277 end if;
1278 end if;
1279
1280 -- A static function call may have been folded into a literal
1281
1282 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1283
1284 -- When expansion is disabled, attribute reference is not rewritten
1285 -- as function call. Otherwise it may be rewritten as a conversion,
1286 -- so check original node.
1287
1288 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1289 and then Is_Function_Attribute_Name
1290 (Attribute_Name (Original_Node (Nam))))
1291
1292 -- Weird but legal, equivalent to renaming a function call. Illegal
1293 -- if the literal is the result of constant-folding an attribute
1294 -- reference that is not a function.
1295
1296 or else (Is_Entity_Name (Nam)
1297 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1298 and then
1299 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1300
1301 or else (Nkind (Nam) = N_Type_Conversion
1302 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1303 then
1304 null;
1305
1306 elsif Nkind (Nam) = N_Type_Conversion then
1307 Error_Msg_N
1308 ("renaming of conversion only allowed for tagged types", Nam);
1309
1310 -- Ada 2005 (AI-327)
1311
1312 elsif Ada_Version >= Ada_2005
1313 and then Nkind (Nam) = N_Attribute_Reference
1314 and then Attribute_Name (Nam) = Name_Priority
1315 then
1316 null;
1317
1318 -- Allow internally generated x'Ref resulting in N_Reference node
1319
1320 elsif Nkind (Nam) = N_Reference then
1321 null;
1322
1323 else
1324 Error_Msg_N ("expect object name in renaming", Nam);
1325 end if;
1326
1327 Set_Etype (Id, T2);
1328
1329 if not Is_Variable (Nam) then
1330 Set_Ekind (Id, E_Constant);
1331 Set_Never_Set_In_Source (Id, True);
1332 Set_Is_True_Constant (Id, True);
1333 end if;
1334
1335 -- The entity of the renaming declaration needs to reflect whether the
1336 -- renamed object is volatile. Is_Volatile is set if the renamed object
1337 -- is volatile in the RM legality sense.
1338
1339 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1340
1341 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1342
1343 if Is_Entity_Name (Nam) then
1344 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1345 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1346 Set_Is_Volatile_Full_Access (Id,
1347 Is_Volatile_Full_Access (Entity (Nam)));
1348 end if;
1349
1350 -- Treat as volatile if we just set the Volatile flag
1351
1352 if Is_Volatile (Id)
1353
1354 -- Or if we are renaming an entity which was marked this way
1355
1356 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1357
1358 or else (Is_Entity_Name (Nam)
1359 and then Treat_As_Volatile (Entity (Nam)))
1360 then
1361 Set_Treat_As_Volatile (Id, True);
1362 end if;
1363
1364 -- Now make the link to the renamed object
1365
1366 Set_Renamed_Object (Id, Nam);
1367
1368 -- Implementation-defined aspect specifications can appear in a renaming
1369 -- declaration, but not language-defined ones. The call to procedure
1370 -- Analyze_Aspect_Specifications will take care of this error check.
1371
1372 if Has_Aspects (N) then
1373 Analyze_Aspect_Specifications (N, Id);
1374 end if;
1375
1376 -- Deal with dimensions
1377
1378 Analyze_Dimension (N);
1379 end Analyze_Object_Renaming;
1380
1381 ------------------------------
1382 -- Analyze_Package_Renaming --
1383 ------------------------------
1384
1385 procedure Analyze_Package_Renaming (N : Node_Id) is
1386 New_P : constant Entity_Id := Defining_Entity (N);
1387 Old_P : Entity_Id;
1388 Spec : Node_Id;
1389
1390 begin
1391 if Name (N) = Error then
1392 return;
1393 end if;
1394
1395 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1396
1397 Check_Text_IO_Special_Unit (Name (N));
1398
1399 if Current_Scope /= Standard_Standard then
1400 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1401 end if;
1402
1403 Enter_Name (New_P);
1404 Analyze (Name (N));
1405
1406 if Is_Entity_Name (Name (N)) then
1407 Old_P := Entity (Name (N));
1408 else
1409 Old_P := Any_Id;
1410 end if;
1411
1412 if Etype (Old_P) = Any_Type then
1413 Error_Msg_N ("expect package name in renaming", Name (N));
1414
1415 elsif Ekind (Old_P) /= E_Package
1416 and then not (Ekind (Old_P) = E_Generic_Package
1417 and then In_Open_Scopes (Old_P))
1418 then
1419 if Ekind (Old_P) = E_Generic_Package then
1420 Error_Msg_N
1421 ("generic package cannot be renamed as a package", Name (N));
1422 else
1423 Error_Msg_Sloc := Sloc (Old_P);
1424 Error_Msg_NE
1425 ("expect package name in renaming, found& declared#",
1426 Name (N), Old_P);
1427 end if;
1428
1429 -- Set basic attributes to minimize cascaded errors
1430
1431 Set_Ekind (New_P, E_Package);
1432 Set_Etype (New_P, Standard_Void_Type);
1433
1434 -- Here for OK package renaming
1435
1436 else
1437 -- Entities in the old package are accessible through the renaming
1438 -- entity. The simplest implementation is to have both packages share
1439 -- the entity list.
1440
1441 Set_Ekind (New_P, E_Package);
1442 Set_Etype (New_P, Standard_Void_Type);
1443
1444 if Present (Renamed_Object (Old_P)) then
1445 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1446 else
1447 Set_Renamed_Object (New_P, Old_P);
1448 end if;
1449
1450 -- The package renaming declaration may become Ghost if it renames a
1451 -- Ghost entity.
1452
1453 Mark_Ghost_Renaming (N, Old_P);
1454
1455 Set_Has_Completion (New_P);
1456 Set_First_Entity (New_P, First_Entity (Old_P));
1457 Set_Last_Entity (New_P, Last_Entity (Old_P));
1458 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1459 Check_Library_Unit_Renaming (N, Old_P);
1460 Generate_Reference (Old_P, Name (N));
1461
1462 -- If the renaming is in the visible part of a package, then we set
1463 -- Renamed_In_Spec for the renamed package, to prevent giving
1464 -- warnings about no entities referenced. Such a warning would be
1465 -- overenthusiastic, since clients can see entities in the renamed
1466 -- package via the visible package renaming.
1467
1468 declare
1469 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1470 begin
1471 if Ekind (Ent) = E_Package
1472 and then not In_Private_Part (Ent)
1473 and then In_Extended_Main_Source_Unit (N)
1474 and then Ekind (Old_P) = E_Package
1475 then
1476 Set_Renamed_In_Spec (Old_P);
1477 end if;
1478 end;
1479
1480 -- If this is the renaming declaration of a package instantiation
1481 -- within itself, it is the declaration that ends the list of actuals
1482 -- for the instantiation. At this point, the subtypes that rename
1483 -- the actuals are flagged as generic, to avoid spurious ambiguities
1484 -- if the actuals for two distinct formals happen to coincide. If
1485 -- the actual is a private type, the subtype has a private completion
1486 -- that is flagged in the same fashion.
1487
1488 -- Resolution is identical to what is was in the original generic.
1489 -- On exit from the generic instance, these are turned into regular
1490 -- subtypes again, so they are compatible with types in their class.
1491
1492 if not Is_Generic_Instance (Old_P) then
1493 return;
1494 else
1495 Spec := Specification (Unit_Declaration_Node (Old_P));
1496 end if;
1497
1498 if Nkind (Spec) = N_Package_Specification
1499 and then Present (Generic_Parent (Spec))
1500 and then Old_P = Current_Scope
1501 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1502 then
1503 declare
1504 E : Entity_Id;
1505
1506 begin
1507 E := First_Entity (Old_P);
1508 while Present (E) and then E /= New_P loop
1509 if Is_Type (E)
1510 and then Nkind (Parent (E)) = N_Subtype_Declaration
1511 then
1512 Set_Is_Generic_Actual_Type (E);
1513
1514 if Is_Private_Type (E)
1515 and then Present (Full_View (E))
1516 then
1517 Set_Is_Generic_Actual_Type (Full_View (E));
1518 end if;
1519 end if;
1520
1521 Next_Entity (E);
1522 end loop;
1523 end;
1524 end if;
1525 end if;
1526
1527 -- Implementation-defined aspect specifications can appear in a renaming
1528 -- declaration, but not language-defined ones. The call to procedure
1529 -- Analyze_Aspect_Specifications will take care of this error check.
1530
1531 if Has_Aspects (N) then
1532 Analyze_Aspect_Specifications (N, New_P);
1533 end if;
1534 end Analyze_Package_Renaming;
1535
1536 -------------------------------
1537 -- Analyze_Renamed_Character --
1538 -------------------------------
1539
1540 procedure Analyze_Renamed_Character
1541 (N : Node_Id;
1542 New_S : Entity_Id;
1543 Is_Body : Boolean)
1544 is
1545 C : constant Node_Id := Name (N);
1546
1547 begin
1548 if Ekind (New_S) = E_Function then
1549 Resolve (C, Etype (New_S));
1550
1551 if Is_Body then
1552 Check_Frozen_Renaming (N, New_S);
1553 end if;
1554
1555 else
1556 Error_Msg_N ("character literal can only be renamed as function", N);
1557 end if;
1558 end Analyze_Renamed_Character;
1559
1560 ---------------------------------
1561 -- Analyze_Renamed_Dereference --
1562 ---------------------------------
1563
1564 procedure Analyze_Renamed_Dereference
1565 (N : Node_Id;
1566 New_S : Entity_Id;
1567 Is_Body : Boolean)
1568 is
1569 Nam : constant Node_Id := Name (N);
1570 P : constant Node_Id := Prefix (Nam);
1571 Typ : Entity_Id;
1572 Ind : Interp_Index;
1573 It : Interp;
1574
1575 begin
1576 if not Is_Overloaded (P) then
1577 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1578 or else not Type_Conformant (Etype (Nam), New_S)
1579 then
1580 Error_Msg_N ("designated type does not match specification", P);
1581 else
1582 Resolve (P);
1583 end if;
1584
1585 return;
1586
1587 else
1588 Typ := Any_Type;
1589 Get_First_Interp (Nam, Ind, It);
1590
1591 while Present (It.Nam) loop
1592
1593 if Ekind (It.Nam) = E_Subprogram_Type
1594 and then Type_Conformant (It.Nam, New_S)
1595 then
1596 if Typ /= Any_Id then
1597 Error_Msg_N ("ambiguous renaming", P);
1598 return;
1599 else
1600 Typ := It.Nam;
1601 end if;
1602 end if;
1603
1604 Get_Next_Interp (Ind, It);
1605 end loop;
1606
1607 if Typ = Any_Type then
1608 Error_Msg_N ("designated type does not match specification", P);
1609 else
1610 Resolve (N, Typ);
1611
1612 if Is_Body then
1613 Check_Frozen_Renaming (N, New_S);
1614 end if;
1615 end if;
1616 end if;
1617 end Analyze_Renamed_Dereference;
1618
1619 ---------------------------
1620 -- Analyze_Renamed_Entry --
1621 ---------------------------
1622
1623 procedure Analyze_Renamed_Entry
1624 (N : Node_Id;
1625 New_S : Entity_Id;
1626 Is_Body : Boolean)
1627 is
1628 Nam : constant Node_Id := Name (N);
1629 Sel : constant Node_Id := Selector_Name (Nam);
1630 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1631 Old_S : Entity_Id;
1632
1633 begin
1634 if Entity (Sel) = Any_Id then
1635
1636 -- Selector is undefined on prefix. Error emitted already
1637
1638 Set_Has_Completion (New_S);
1639 return;
1640 end if;
1641
1642 -- Otherwise find renamed entity and build body of New_S as a call to it
1643
1644 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1645
1646 if Old_S = Any_Id then
1647 Error_Msg_N (" no subprogram or entry matches specification", N);
1648 else
1649 if Is_Body then
1650 Check_Subtype_Conformant (New_S, Old_S, N);
1651 Generate_Reference (New_S, Defining_Entity (N), 'b');
1652 Style.Check_Identifier (Defining_Entity (N), New_S);
1653
1654 else
1655 -- Only mode conformance required for a renaming_as_declaration
1656
1657 Check_Mode_Conformant (New_S, Old_S, N);
1658 end if;
1659
1660 Inherit_Renamed_Profile (New_S, Old_S);
1661
1662 -- The prefix can be an arbitrary expression that yields a task or
1663 -- protected object, so it must be resolved.
1664
1665 Resolve (Prefix (Nam), Scope (Old_S));
1666 end if;
1667
1668 Set_Convention (New_S, Convention (Old_S));
1669 Set_Has_Completion (New_S, Inside_A_Generic);
1670
1671 -- AI05-0225: If the renamed entity is a procedure or entry of a
1672 -- protected object, the target object must be a variable.
1673
1674 if Ekind (Scope (Old_S)) in Protected_Kind
1675 and then Ekind (New_S) = E_Procedure
1676 and then not Is_Variable (Prefix (Nam))
1677 then
1678 if Is_Actual then
1679 Error_Msg_N
1680 ("target object of protected operation used as actual for "
1681 & "formal procedure must be a variable", Nam);
1682 else
1683 Error_Msg_N
1684 ("target object of protected operation renamed as procedure, "
1685 & "must be a variable", Nam);
1686 end if;
1687 end if;
1688
1689 if Is_Body then
1690 Check_Frozen_Renaming (N, New_S);
1691 end if;
1692 end Analyze_Renamed_Entry;
1693
1694 -----------------------------------
1695 -- Analyze_Renamed_Family_Member --
1696 -----------------------------------
1697
1698 procedure Analyze_Renamed_Family_Member
1699 (N : Node_Id;
1700 New_S : Entity_Id;
1701 Is_Body : Boolean)
1702 is
1703 Nam : constant Node_Id := Name (N);
1704 P : constant Node_Id := Prefix (Nam);
1705 Old_S : Entity_Id;
1706
1707 begin
1708 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1709 or else (Nkind (P) = N_Selected_Component
1710 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1711 then
1712 if Is_Entity_Name (P) then
1713 Old_S := Entity (P);
1714 else
1715 Old_S := Entity (Selector_Name (P));
1716 end if;
1717
1718 if not Entity_Matches_Spec (Old_S, New_S) then
1719 Error_Msg_N ("entry family does not match specification", N);
1720
1721 elsif Is_Body then
1722 Check_Subtype_Conformant (New_S, Old_S, N);
1723 Generate_Reference (New_S, Defining_Entity (N), 'b');
1724 Style.Check_Identifier (Defining_Entity (N), New_S);
1725 end if;
1726
1727 else
1728 Error_Msg_N ("no entry family matches specification", N);
1729 end if;
1730
1731 Set_Has_Completion (New_S, Inside_A_Generic);
1732
1733 if Is_Body then
1734 Check_Frozen_Renaming (N, New_S);
1735 end if;
1736 end Analyze_Renamed_Family_Member;
1737
1738 -----------------------------------------
1739 -- Analyze_Renamed_Primitive_Operation --
1740 -----------------------------------------
1741
1742 procedure Analyze_Renamed_Primitive_Operation
1743 (N : Node_Id;
1744 New_S : Entity_Id;
1745 Is_Body : Boolean)
1746 is
1747 Old_S : Entity_Id;
1748
1749 function Conforms
1750 (Subp : Entity_Id;
1751 Ctyp : Conformance_Type) return Boolean;
1752 -- Verify that the signatures of the renamed entity and the new entity
1753 -- match. The first formal of the renamed entity is skipped because it
1754 -- is the target object in any subsequent call.
1755
1756 --------------
1757 -- Conforms --
1758 --------------
1759
1760 function Conforms
1761 (Subp : Entity_Id;
1762 Ctyp : Conformance_Type) return Boolean
1763 is
1764 Old_F : Entity_Id;
1765 New_F : Entity_Id;
1766
1767 begin
1768 if Ekind (Subp) /= Ekind (New_S) then
1769 return False;
1770 end if;
1771
1772 Old_F := Next_Formal (First_Formal (Subp));
1773 New_F := First_Formal (New_S);
1774 while Present (Old_F) and then Present (New_F) loop
1775 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1776 return False;
1777 end if;
1778
1779 if Ctyp >= Mode_Conformant
1780 and then Ekind (Old_F) /= Ekind (New_F)
1781 then
1782 return False;
1783 end if;
1784
1785 Next_Formal (New_F);
1786 Next_Formal (Old_F);
1787 end loop;
1788
1789 return True;
1790 end Conforms;
1791
1792 -- Start of processing for Analyze_Renamed_Primitive_Operation
1793
1794 begin
1795 if not Is_Overloaded (Selector_Name (Name (N))) then
1796 Old_S := Entity (Selector_Name (Name (N)));
1797
1798 if not Conforms (Old_S, Type_Conformant) then
1799 Old_S := Any_Id;
1800 end if;
1801
1802 else
1803 -- Find the operation that matches the given signature
1804
1805 declare
1806 It : Interp;
1807 Ind : Interp_Index;
1808
1809 begin
1810 Old_S := Any_Id;
1811 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1812
1813 while Present (It.Nam) loop
1814 if Conforms (It.Nam, Type_Conformant) then
1815 Old_S := It.Nam;
1816 end if;
1817
1818 Get_Next_Interp (Ind, It);
1819 end loop;
1820 end;
1821 end if;
1822
1823 if Old_S = Any_Id then
1824 Error_Msg_N (" no subprogram or entry matches specification", N);
1825
1826 else
1827 if Is_Body then
1828 if not Conforms (Old_S, Subtype_Conformant) then
1829 Error_Msg_N ("subtype conformance error in renaming", N);
1830 end if;
1831
1832 Generate_Reference (New_S, Defining_Entity (N), 'b');
1833 Style.Check_Identifier (Defining_Entity (N), New_S);
1834
1835 else
1836 -- Only mode conformance required for a renaming_as_declaration
1837
1838 if not Conforms (Old_S, Mode_Conformant) then
1839 Error_Msg_N ("mode conformance error in renaming", N);
1840 end if;
1841
1842 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1843 -- view of a subprogram is intrinsic, because the compiler has
1844 -- to generate a wrapper for any call to it. If the name in a
1845 -- subprogram renaming is a prefixed view, the entity is thus
1846 -- intrinsic, and 'Access cannot be applied to it.
1847
1848 Set_Convention (New_S, Convention_Intrinsic);
1849 end if;
1850
1851 -- Inherit_Renamed_Profile (New_S, Old_S);
1852
1853 -- The prefix can be an arbitrary expression that yields an
1854 -- object, so it must be resolved.
1855
1856 Resolve (Prefix (Name (N)));
1857 end if;
1858 end Analyze_Renamed_Primitive_Operation;
1859
1860 ---------------------------------
1861 -- Analyze_Subprogram_Renaming --
1862 ---------------------------------
1863
1864 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1865 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1866 Is_Actual : constant Boolean := Present (Formal_Spec);
1867 Nam : constant Node_Id := Name (N);
1868 Save_AV : constant Ada_Version_Type := Ada_Version;
1869 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1870 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1871 Spec : constant Node_Id := Specification (N);
1872
1873 Old_S : Entity_Id := Empty;
1874 Rename_Spec : Entity_Id;
1875
1876 procedure Build_Class_Wide_Wrapper
1877 (Ren_Id : out Entity_Id;
1878 Wrap_Id : out Entity_Id);
1879 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1880 -- type with unknown discriminants and a generic primitive operation of
1881 -- the said type with a box require special processing when the actual
1882 -- is a class-wide type:
1883 --
1884 -- generic
1885 -- type Formal_Typ (<>) is private;
1886 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1887 -- package Gen is ...
1888 --
1889 -- package Inst is new Gen (Actual_Typ'Class);
1890 --
1891 -- In this case the general renaming mechanism used in the prologue of
1892 -- an instance no longer applies:
1893 --
1894 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1895 --
1896 -- The above is replaced the following wrapper/renaming combination:
1897 --
1898 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1899 -- begin
1900 -- Prim_Op (Param); -- primitive
1901 -- end Wrapper;
1902 --
1903 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1904 --
1905 -- This transformation applies only if there is no explicit visible
1906 -- class-wide operation at the point of the instantiation. Ren_Id is
1907 -- the entity of the renaming declaration. When the transformation
1908 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1909 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1910 -- operation.
1911
1912 procedure Check_Null_Exclusion
1913 (Ren : Entity_Id;
1914 Sub : Entity_Id);
1915 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1916 -- following AI rules:
1917 --
1918 -- If Ren is a renaming of a formal subprogram and one of its
1919 -- parameters has a null exclusion, then the corresponding formal
1920 -- in Sub must also have one. Otherwise the subtype of the Sub's
1921 -- formal parameter must exclude null.
1922 --
1923 -- If Ren is a renaming of a formal function and its return
1924 -- profile has a null exclusion, then Sub's return profile must
1925 -- have one. Otherwise the subtype of Sub's return profile must
1926 -- exclude null.
1927
1928 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id);
1929 -- Ensure that a SPARK renaming denoted by its entity Subp_Id does not
1930 -- declare a primitive operation of a tagged type (SPARK RM 6.1.1(3)).
1931
1932 procedure Freeze_Actual_Profile;
1933 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1934 -- types: a callable entity freezes its profile, unless it has an
1935 -- incomplete untagged formal (RM 13.14(10.2/3)).
1936
1937 function Has_Class_Wide_Actual return Boolean;
1938 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1939 -- defaulted formal subprogram where the actual for the controlling
1940 -- formal type is class-wide.
1941
1942 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1943 -- Find renamed entity when the declaration is a renaming_as_body and
1944 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1945 -- rule that a renaming_as_body is illegal if the declaration occurs
1946 -- before the subprogram it completes is frozen, and renaming indirectly
1947 -- renames the subprogram itself.(Defect Report 8652/0027).
1948
1949 ------------------------------
1950 -- Build_Class_Wide_Wrapper --
1951 ------------------------------
1952
1953 procedure Build_Class_Wide_Wrapper
1954 (Ren_Id : out Entity_Id;
1955 Wrap_Id : out Entity_Id)
1956 is
1957 Loc : constant Source_Ptr := Sloc (N);
1958
1959 function Build_Call
1960 (Subp_Id : Entity_Id;
1961 Params : List_Id) return Node_Id;
1962 -- Create a dispatching call to invoke routine Subp_Id with actuals
1963 -- built from the parameter specifications of list Params.
1964
1965 function Build_Expr_Fun_Call
1966 (Subp_Id : Entity_Id;
1967 Params : List_Id) return Node_Id;
1968 -- Create a dispatching call to invoke function Subp_Id with actuals
1969 -- built from the parameter specifications of list Params. Return
1970 -- directly the call, so that it can be used inside an expression
1971 -- function. This is a specificity of the GNATprove mode.
1972
1973 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1974 -- Create a subprogram specification based on the subprogram profile
1975 -- of Subp_Id.
1976
1977 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1978 -- Find a primitive subprogram of type Typ which matches the profile
1979 -- of the renaming declaration.
1980
1981 procedure Interpretation_Error (Subp_Id : Entity_Id);
1982 -- Emit a continuation error message suggesting subprogram Subp_Id as
1983 -- a possible interpretation.
1984
1985 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1986 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1987 -- operator.
1988
1989 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1990 -- Determine whether subprogram Subp_Id is a suitable candidate for
1991 -- the role of a wrapped subprogram.
1992
1993 ----------------
1994 -- Build_Call --
1995 ----------------
1996
1997 function Build_Call
1998 (Subp_Id : Entity_Id;
1999 Params : List_Id) return Node_Id
2000 is
2001 Actuals : constant List_Id := New_List;
2002 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2003 Formal : Node_Id;
2004
2005 begin
2006 -- Build the actual parameters of the call
2007
2008 Formal := First (Params);
2009 while Present (Formal) loop
2010 Append_To (Actuals,
2011 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2012 Next (Formal);
2013 end loop;
2014
2015 -- Generate:
2016 -- return Subp_Id (Actuals);
2017
2018 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2019 return
2020 Make_Simple_Return_Statement (Loc,
2021 Expression =>
2022 Make_Function_Call (Loc,
2023 Name => Call_Ref,
2024 Parameter_Associations => Actuals));
2025
2026 -- Generate:
2027 -- Subp_Id (Actuals);
2028
2029 else
2030 return
2031 Make_Procedure_Call_Statement (Loc,
2032 Name => Call_Ref,
2033 Parameter_Associations => Actuals);
2034 end if;
2035 end Build_Call;
2036
2037 -------------------------
2038 -- Build_Expr_Fun_Call --
2039 -------------------------
2040
2041 function Build_Expr_Fun_Call
2042 (Subp_Id : Entity_Id;
2043 Params : List_Id) return Node_Id
2044 is
2045 Actuals : constant List_Id := New_List;
2046 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2047 Formal : Node_Id;
2048
2049 begin
2050 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2051
2052 -- Build the actual parameters of the call
2053
2054 Formal := First (Params);
2055 while Present (Formal) loop
2056 Append_To (Actuals,
2057 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2058 Next (Formal);
2059 end loop;
2060
2061 -- Generate:
2062 -- Subp_Id (Actuals);
2063
2064 return
2065 Make_Function_Call (Loc,
2066 Name => Call_Ref,
2067 Parameter_Associations => Actuals);
2068 end Build_Expr_Fun_Call;
2069
2070 ----------------
2071 -- Build_Spec --
2072 ----------------
2073
2074 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2075 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2076 Spec_Id : constant Entity_Id :=
2077 Make_Defining_Identifier (Loc,
2078 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2079
2080 begin
2081 if Ekind (Formal_Spec) = E_Procedure then
2082 return
2083 Make_Procedure_Specification (Loc,
2084 Defining_Unit_Name => Spec_Id,
2085 Parameter_Specifications => Params);
2086 else
2087 return
2088 Make_Function_Specification (Loc,
2089 Defining_Unit_Name => Spec_Id,
2090 Parameter_Specifications => Params,
2091 Result_Definition =>
2092 New_Copy_Tree (Result_Definition (Spec)));
2093 end if;
2094 end Build_Spec;
2095
2096 --------------------
2097 -- Find_Primitive --
2098 --------------------
2099
2100 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2101 procedure Replace_Parameter_Types (Spec : Node_Id);
2102 -- Given a specification Spec, replace all class-wide parameter
2103 -- types with reference to type Typ.
2104
2105 -----------------------------
2106 -- Replace_Parameter_Types --
2107 -----------------------------
2108
2109 procedure Replace_Parameter_Types (Spec : Node_Id) is
2110 Formal : Node_Id;
2111 Formal_Id : Entity_Id;
2112 Formal_Typ : Node_Id;
2113
2114 begin
2115 Formal := First (Parameter_Specifications (Spec));
2116 while Present (Formal) loop
2117 Formal_Id := Defining_Identifier (Formal);
2118 Formal_Typ := Parameter_Type (Formal);
2119
2120 -- Create a new entity for each class-wide formal to prevent
2121 -- aliasing with the original renaming. Replace the type of
2122 -- such a parameter with the candidate type.
2123
2124 if Nkind (Formal_Typ) = N_Identifier
2125 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2126 then
2127 Set_Defining_Identifier (Formal,
2128 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2129
2130 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2131 end if;
2132
2133 Next (Formal);
2134 end loop;
2135 end Replace_Parameter_Types;
2136
2137 -- Local variables
2138
2139 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2140 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2141 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2142 Subp_Id : Entity_Id;
2143
2144 -- Start of processing for Find_Primitive
2145
2146 begin
2147 -- Each attempt to find a suitable primitive of a particular type
2148 -- operates on its own copy of the original renaming. As a result
2149 -- the original renaming is kept decoration and side-effect free.
2150
2151 -- Inherit the overloaded status of the renamed subprogram name
2152
2153 if Is_Overloaded (Nam) then
2154 Set_Is_Overloaded (Alt_Nam);
2155 Save_Interps (Nam, Alt_Nam);
2156 end if;
2157
2158 -- The copied renaming is hidden from visibility to prevent the
2159 -- pollution of the enclosing context.
2160
2161 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2162
2163 -- The types of all class-wide parameters must be changed to the
2164 -- candidate type.
2165
2166 Replace_Parameter_Types (Alt_Spec);
2167
2168 -- Try to find a suitable primitive which matches the altered
2169 -- profile of the renaming specification.
2170
2171 Subp_Id :=
2172 Find_Renamed_Entity
2173 (N => Alt_Ren,
2174 Nam => Name (Alt_Ren),
2175 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2176 Is_Actual => Is_Actual);
2177
2178 -- Do not return Any_Id if the resolion of the altered profile
2179 -- failed as this complicates further checks on the caller side,
2180 -- return Empty instead.
2181
2182 if Subp_Id = Any_Id then
2183 return Empty;
2184 else
2185 return Subp_Id;
2186 end if;
2187 end Find_Primitive;
2188
2189 --------------------------
2190 -- Interpretation_Error --
2191 --------------------------
2192
2193 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2194 begin
2195 Error_Msg_Sloc := Sloc (Subp_Id);
2196
2197 if Is_Internal (Subp_Id) then
2198 Error_Msg_NE
2199 ("\\possible interpretation: predefined & #",
2200 Spec, Formal_Spec);
2201 else
2202 Error_Msg_NE
2203 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2204 end if;
2205 end Interpretation_Error;
2206
2207 ---------------------------
2208 -- Is_Intrinsic_Equality --
2209 ---------------------------
2210
2211 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2212 begin
2213 return
2214 Ekind (Subp_Id) = E_Operator
2215 and then Chars (Subp_Id) = Name_Op_Eq
2216 and then Is_Intrinsic_Subprogram (Subp_Id);
2217 end Is_Intrinsic_Equality;
2218
2219 ---------------------------
2220 -- Is_Suitable_Candidate --
2221 ---------------------------
2222
2223 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2224 begin
2225 if No (Subp_Id) then
2226 return False;
2227
2228 -- An intrinsic subprogram is never a good candidate. This is an
2229 -- indication of a missing primitive, either defined directly or
2230 -- inherited from a parent tagged type.
2231
2232 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2233 return False;
2234
2235 else
2236 return True;
2237 end if;
2238 end Is_Suitable_Candidate;
2239
2240 -- Local variables
2241
2242 Actual_Typ : Entity_Id := Empty;
2243 -- The actual class-wide type for Formal_Typ
2244
2245 CW_Prim_OK : Boolean;
2246 CW_Prim_Op : Entity_Id;
2247 -- The class-wide subprogram (if available) which corresponds to the
2248 -- renamed generic formal subprogram.
2249
2250 Formal_Typ : Entity_Id := Empty;
2251 -- The generic formal type with unknown discriminants
2252
2253 Root_Prim_OK : Boolean;
2254 Root_Prim_Op : Entity_Id;
2255 -- The root type primitive (if available) which corresponds to the
2256 -- renamed generic formal subprogram.
2257
2258 Root_Typ : Entity_Id := Empty;
2259 -- The root type of Actual_Typ
2260
2261 Body_Decl : Node_Id;
2262 Formal : Node_Id;
2263 Prim_Op : Entity_Id;
2264 Spec_Decl : Node_Id;
2265 New_Spec : Node_Id;
2266
2267 -- Start of processing for Build_Class_Wide_Wrapper
2268
2269 begin
2270 -- Analyze the specification of the renaming in case the generation
2271 -- of the class-wide wrapper fails.
2272
2273 Ren_Id := Analyze_Subprogram_Specification (Spec);
2274 Wrap_Id := Any_Id;
2275
2276 -- Do not attempt to build a wrapper if the renaming is in error
2277
2278 if Error_Posted (Nam) then
2279 return;
2280 end if;
2281
2282 -- Analyze the renamed name, but do not resolve it. The resolution is
2283 -- completed once a suitable subprogram is found.
2284
2285 Analyze (Nam);
2286
2287 -- When the renamed name denotes the intrinsic operator equals, the
2288 -- name must be treated as overloaded. This allows for a potential
2289 -- match against the root type's predefined equality function.
2290
2291 if Is_Intrinsic_Equality (Entity (Nam)) then
2292 Set_Is_Overloaded (Nam);
2293 Collect_Interps (Nam);
2294 end if;
2295
2296 -- Step 1: Find the generic formal type with unknown discriminants
2297 -- and its corresponding class-wide actual type from the renamed
2298 -- generic formal subprogram.
2299
2300 Formal := First_Formal (Formal_Spec);
2301 while Present (Formal) loop
2302 if Has_Unknown_Discriminants (Etype (Formal))
2303 and then not Is_Class_Wide_Type (Etype (Formal))
2304 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2305 then
2306 Formal_Typ := Etype (Formal);
2307 Actual_Typ := Get_Instance_Of (Formal_Typ);
2308 Root_Typ := Etype (Actual_Typ);
2309 exit;
2310 end if;
2311
2312 Next_Formal (Formal);
2313 end loop;
2314
2315 -- The specification of the generic formal subprogram should always
2316 -- contain a formal type with unknown discriminants whose actual is
2317 -- a class-wide type, otherwise this indicates a failure in routine
2318 -- Has_Class_Wide_Actual.
2319
2320 pragma Assert (Present (Formal_Typ));
2321
2322 -- Step 2: Find the proper class-wide subprogram or primitive which
2323 -- corresponds to the renamed generic formal subprogram.
2324
2325 CW_Prim_Op := Find_Primitive (Actual_Typ);
2326 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2327 Root_Prim_Op := Find_Primitive (Root_Typ);
2328 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2329
2330 -- The class-wide actual type has two subprograms which correspond to
2331 -- the renamed generic formal subprogram:
2332
2333 -- with procedure Prim_Op (Param : Formal_Typ);
2334
2335 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2336 -- procedure Prim_Op (Param : Actual_Typ'Class);
2337
2338 -- Even though the declaration of the two subprograms is legal, a
2339 -- call to either one is ambiguous and therefore illegal.
2340
2341 if CW_Prim_OK and Root_Prim_OK then
2342
2343 -- A user-defined primitive has precedence over a predefined one
2344
2345 if Is_Internal (CW_Prim_Op)
2346 and then not Is_Internal (Root_Prim_Op)
2347 then
2348 Prim_Op := Root_Prim_Op;
2349
2350 elsif Is_Internal (Root_Prim_Op)
2351 and then not Is_Internal (CW_Prim_Op)
2352 then
2353 Prim_Op := CW_Prim_Op;
2354
2355 elsif CW_Prim_Op = Root_Prim_Op then
2356 Prim_Op := Root_Prim_Op;
2357
2358 -- Otherwise both candidate subprograms are user-defined and
2359 -- ambiguous.
2360
2361 else
2362 Error_Msg_NE
2363 ("ambiguous actual for generic subprogram &",
2364 Spec, Formal_Spec);
2365 Interpretation_Error (Root_Prim_Op);
2366 Interpretation_Error (CW_Prim_Op);
2367 return;
2368 end if;
2369
2370 elsif CW_Prim_OK and not Root_Prim_OK then
2371 Prim_Op := CW_Prim_Op;
2372
2373 elsif not CW_Prim_OK and Root_Prim_OK then
2374 Prim_Op := Root_Prim_Op;
2375
2376 -- An intrinsic equality may act as a suitable candidate in the case
2377 -- of a null type extension where the parent's equality is hidden. A
2378 -- call to an intrinsic equality is expanded as dispatching.
2379
2380 elsif Present (Root_Prim_Op)
2381 and then Is_Intrinsic_Equality (Root_Prim_Op)
2382 then
2383 Prim_Op := Root_Prim_Op;
2384
2385 -- Otherwise there are no candidate subprograms. Let the caller
2386 -- diagnose the error.
2387
2388 else
2389 return;
2390 end if;
2391
2392 -- At this point resolution has taken place and the name is no longer
2393 -- overloaded. Mark the primitive as referenced.
2394
2395 Set_Is_Overloaded (Name (N), False);
2396 Set_Referenced (Prim_Op);
2397
2398 -- Do not generate a wrapper when the only candidate is a class-wide
2399 -- subprogram. Instead modify the renaming to directly map the actual
2400 -- to the generic formal.
2401
2402 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2403 Wrap_Id := Prim_Op;
2404 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2405 return;
2406 end if;
2407
2408 -- Step 3: Create the declaration and the body of the wrapper, insert
2409 -- all the pieces into the tree.
2410
2411 -- In GNATprove mode, create a function wrapper in the form of an
2412 -- expression function, so that an implicit postcondition relating
2413 -- the result of calling the wrapper function and the result of the
2414 -- dispatching call to the wrapped function is known during proof.
2415
2416 if GNATprove_Mode
2417 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2418 then
2419 New_Spec := Build_Spec (Ren_Id);
2420 Body_Decl :=
2421 Make_Expression_Function (Loc,
2422 Specification => New_Spec,
2423 Expression =>
2424 Build_Expr_Fun_Call
2425 (Subp_Id => Prim_Op,
2426 Params => Parameter_Specifications (New_Spec)));
2427
2428 Wrap_Id := Defining_Entity (Body_Decl);
2429
2430 -- Otherwise, create separate spec and body for the subprogram
2431
2432 else
2433 Spec_Decl :=
2434 Make_Subprogram_Declaration (Loc,
2435 Specification => Build_Spec (Ren_Id));
2436 Insert_Before_And_Analyze (N, Spec_Decl);
2437
2438 Wrap_Id := Defining_Entity (Spec_Decl);
2439
2440 Body_Decl :=
2441 Make_Subprogram_Body (Loc,
2442 Specification => Build_Spec (Ren_Id),
2443 Declarations => New_List,
2444 Handled_Statement_Sequence =>
2445 Make_Handled_Sequence_Of_Statements (Loc,
2446 Statements => New_List (
2447 Build_Call
2448 (Subp_Id => Prim_Op,
2449 Params =>
2450 Parameter_Specifications
2451 (Specification (Spec_Decl))))));
2452
2453 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2454 end if;
2455
2456 -- If the operator carries an Eliminated pragma, indicate that the
2457 -- wrapper is also to be eliminated, to prevent spurious error when
2458 -- using gnatelim on programs that include box-initialization of
2459 -- equality operators.
2460
2461 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2462
2463 -- In GNATprove mode, insert the body in the tree for analysis
2464
2465 if GNATprove_Mode then
2466 Insert_Before_And_Analyze (N, Body_Decl);
2467 end if;
2468
2469 -- The generated body does not freeze and must be analyzed when the
2470 -- class-wide wrapper is frozen. The body is only needed if expansion
2471 -- is enabled.
2472
2473 if Expander_Active then
2474 Append_Freeze_Action (Wrap_Id, Body_Decl);
2475 end if;
2476
2477 -- Step 4: The subprogram renaming aliases the wrapper
2478
2479 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2480 end Build_Class_Wide_Wrapper;
2481
2482 --------------------------
2483 -- Check_Null_Exclusion --
2484 --------------------------
2485
2486 procedure Check_Null_Exclusion
2487 (Ren : Entity_Id;
2488 Sub : Entity_Id)
2489 is
2490 Ren_Formal : Entity_Id;
2491 Sub_Formal : Entity_Id;
2492
2493 begin
2494 -- Parameter check
2495
2496 Ren_Formal := First_Formal (Ren);
2497 Sub_Formal := First_Formal (Sub);
2498 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2499 if Has_Null_Exclusion (Parent (Ren_Formal))
2500 and then
2501 not (Has_Null_Exclusion (Parent (Sub_Formal))
2502 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2503 then
2504 Error_Msg_NE
2505 ("`NOT NULL` required for parameter &",
2506 Parent (Sub_Formal), Sub_Formal);
2507 end if;
2508
2509 Next_Formal (Ren_Formal);
2510 Next_Formal (Sub_Formal);
2511 end loop;
2512
2513 -- Return profile check
2514
2515 if Nkind (Parent (Ren)) = N_Function_Specification
2516 and then Nkind (Parent (Sub)) = N_Function_Specification
2517 and then Has_Null_Exclusion (Parent (Ren))
2518 and then not (Has_Null_Exclusion (Parent (Sub))
2519 or else Can_Never_Be_Null (Etype (Sub)))
2520 then
2521 Error_Msg_N
2522 ("return must specify `NOT NULL`",
2523 Result_Definition (Parent (Sub)));
2524 end if;
2525 end Check_Null_Exclusion;
2526
2527 -------------------------------------
2528 -- Check_SPARK_Primitive_Operation --
2529 -------------------------------------
2530
2531 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id) is
2532 Prag : constant Node_Id := SPARK_Pragma (Subp_Id);
2533 Typ : Entity_Id;
2534
2535 begin
2536 -- Nothing to do when the subprogram is not subject to SPARK_Mode On
2537 -- because this check applies to SPARK code only.
2538
2539 if not (Present (Prag)
2540 and then Get_SPARK_Mode_From_Annotation (Prag) = On)
2541 then
2542 return;
2543
2544 -- Nothing to do when the subprogram is not a primitive operation
2545
2546 elsif not Is_Primitive (Subp_Id) then
2547 return;
2548 end if;
2549
2550 Typ := Find_Dispatching_Type (Subp_Id);
2551
2552 -- Nothing to do when the subprogram is a primitive operation of an
2553 -- untagged type.
2554
2555 if No (Typ) then
2556 return;
2557 end if;
2558
2559 -- At this point a renaming declaration introduces a new primitive
2560 -- operation for a tagged type.
2561
2562 Error_Msg_Node_2 := Typ;
2563 Error_Msg_NE
2564 ("subprogram renaming & cannot declare primitive for type & "
2565 & "(SPARK RM 6.1.1(3))", N, Subp_Id);
2566 end Check_SPARK_Primitive_Operation;
2567
2568 ---------------------------
2569 -- Freeze_Actual_Profile --
2570 ---------------------------
2571
2572 procedure Freeze_Actual_Profile is
2573 F : Entity_Id;
2574 Has_Untagged_Inc : Boolean;
2575 Instantiation_Node : constant Node_Id := Parent (N);
2576
2577 begin
2578 if Ada_Version >= Ada_2012 then
2579 F := First_Formal (Formal_Spec);
2580 Has_Untagged_Inc := False;
2581 while Present (F) loop
2582 if Ekind (Etype (F)) = E_Incomplete_Type
2583 and then not Is_Tagged_Type (Etype (F))
2584 then
2585 Has_Untagged_Inc := True;
2586 exit;
2587 end if;
2588
2589 F := Next_Formal (F);
2590 end loop;
2591
2592 if Ekind (Formal_Spec) = E_Function
2593 and then not Is_Tagged_Type (Etype (Formal_Spec))
2594 then
2595 Has_Untagged_Inc := True;
2596 end if;
2597
2598 if not Has_Untagged_Inc then
2599 F := First_Formal (Old_S);
2600 while Present (F) loop
2601 Freeze_Before (Instantiation_Node, Etype (F));
2602
2603 if Is_Incomplete_Or_Private_Type (Etype (F))
2604 and then No (Underlying_Type (Etype (F)))
2605 then
2606 -- Exclude generic types, or types derived from them.
2607 -- They will be frozen in the enclosing instance.
2608
2609 if Is_Generic_Type (Etype (F))
2610 or else Is_Generic_Type (Root_Type (Etype (F)))
2611 then
2612 null;
2613
2614 -- A limited view of a type declared elsewhere needs no
2615 -- freezing actions.
2616
2617 elsif From_Limited_With (Etype (F)) then
2618 null;
2619
2620 else
2621 Error_Msg_NE
2622 ("type& must be frozen before this point",
2623 Instantiation_Node, Etype (F));
2624 end if;
2625 end if;
2626
2627 F := Next_Formal (F);
2628 end loop;
2629 end if;
2630 end if;
2631 end Freeze_Actual_Profile;
2632
2633 ---------------------------
2634 -- Has_Class_Wide_Actual --
2635 ---------------------------
2636
2637 function Has_Class_Wide_Actual return Boolean is
2638 Formal : Entity_Id;
2639 Formal_Typ : Entity_Id;
2640
2641 begin
2642 if Is_Actual then
2643 Formal := First_Formal (Formal_Spec);
2644 while Present (Formal) loop
2645 Formal_Typ := Etype (Formal);
2646
2647 if Has_Unknown_Discriminants (Formal_Typ)
2648 and then not Is_Class_Wide_Type (Formal_Typ)
2649 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2650 then
2651 return True;
2652 end if;
2653
2654 Next_Formal (Formal);
2655 end loop;
2656 end if;
2657
2658 return False;
2659 end Has_Class_Wide_Actual;
2660
2661 -------------------------
2662 -- Original_Subprogram --
2663 -------------------------
2664
2665 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2666 Orig_Decl : Node_Id;
2667 Orig_Subp : Entity_Id;
2668
2669 begin
2670 -- First case: renamed entity is itself a renaming
2671
2672 if Present (Alias (Subp)) then
2673 return Alias (Subp);
2674
2675 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2676 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2677 then
2678 -- Check if renamed entity is a renaming_as_body
2679
2680 Orig_Decl :=
2681 Unit_Declaration_Node
2682 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2683
2684 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2685 Orig_Subp := Entity (Name (Orig_Decl));
2686
2687 if Orig_Subp = Rename_Spec then
2688
2689 -- Circularity detected
2690
2691 return Orig_Subp;
2692
2693 else
2694 return (Original_Subprogram (Orig_Subp));
2695 end if;
2696 else
2697 return Subp;
2698 end if;
2699 else
2700 return Subp;
2701 end if;
2702 end Original_Subprogram;
2703
2704 -- Local variables
2705
2706 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2707 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2708 -- defaulted formal subprogram when the actual for a related formal
2709 -- type is class-wide.
2710
2711 Inst_Node : Node_Id := Empty;
2712 New_S : Entity_Id;
2713
2714 -- Start of processing for Analyze_Subprogram_Renaming
2715
2716 begin
2717 -- We must test for the attribute renaming case before the Analyze
2718 -- call because otherwise Sem_Attr will complain that the attribute
2719 -- is missing an argument when it is analyzed.
2720
2721 if Nkind (Nam) = N_Attribute_Reference then
2722
2723 -- In the case of an abstract formal subprogram association, rewrite
2724 -- an actual given by a stream attribute as the name of the
2725 -- corresponding stream primitive of the type.
2726
2727 -- In a generic context the stream operations are not generated, and
2728 -- this must be treated as a normal attribute reference, to be
2729 -- expanded in subsequent instantiations.
2730
2731 if Is_Actual
2732 and then Is_Abstract_Subprogram (Formal_Spec)
2733 and then Expander_Active
2734 then
2735 declare
2736 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2737 Stream_Prim : Entity_Id;
2738
2739 begin
2740 -- The class-wide forms of the stream attributes are not
2741 -- primitive dispatching operations (even though they
2742 -- internally dispatch to a stream attribute).
2743
2744 if Is_Class_Wide_Type (Prefix_Type) then
2745 Error_Msg_N
2746 ("attribute must be a primitive dispatching operation",
2747 Nam);
2748 return;
2749 end if;
2750
2751 -- Retrieve the primitive subprogram associated with the
2752 -- attribute. This can only be a stream attribute, since those
2753 -- are the only ones that are dispatching (and the actual for
2754 -- an abstract formal subprogram must be dispatching
2755 -- operation).
2756
2757 case Attribute_Name (Nam) is
2758 when Name_Input =>
2759 Stream_Prim :=
2760 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2761
2762 when Name_Output =>
2763 Stream_Prim :=
2764 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2765
2766 when Name_Read =>
2767 Stream_Prim :=
2768 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2769
2770 when Name_Write =>
2771 Stream_Prim :=
2772 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2773
2774 when others =>
2775 Error_Msg_N
2776 ("attribute must be a primitive dispatching operation",
2777 Nam);
2778 return;
2779 end case;
2780
2781 -- If no operation was found, and the type is limited, the user
2782 -- should have defined one.
2783
2784 if No (Stream_Prim) then
2785 if Is_Limited_Type (Prefix_Type) then
2786 Error_Msg_NE
2787 ("stream operation not defined for type&",
2788 N, Prefix_Type);
2789 return;
2790
2791 -- Otherwise, compiler should have generated default
2792
2793 else
2794 raise Program_Error;
2795 end if;
2796 end if;
2797
2798 -- Rewrite the attribute into the name of its corresponding
2799 -- primitive dispatching subprogram. We can then proceed with
2800 -- the usual processing for subprogram renamings.
2801
2802 declare
2803 Prim_Name : constant Node_Id :=
2804 Make_Identifier (Sloc (Nam),
2805 Chars => Chars (Stream_Prim));
2806 begin
2807 Set_Entity (Prim_Name, Stream_Prim);
2808 Rewrite (Nam, Prim_Name);
2809 Analyze (Nam);
2810 end;
2811 end;
2812
2813 -- Normal processing for a renaming of an attribute
2814
2815 else
2816 Attribute_Renaming (N);
2817 return;
2818 end if;
2819 end if;
2820
2821 -- Check whether this declaration corresponds to the instantiation of a
2822 -- formal subprogram.
2823
2824 -- If this is an instantiation, the corresponding actual is frozen and
2825 -- error messages can be made more precise. If this is a default
2826 -- subprogram, the entity is already established in the generic, and is
2827 -- not retrieved by visibility. If it is a default with a box, the
2828 -- candidate interpretations, if any, have been collected when building
2829 -- the renaming declaration. If overloaded, the proper interpretation is
2830 -- determined in Find_Renamed_Entity. If the entity is an operator,
2831 -- Find_Renamed_Entity applies additional visibility checks.
2832
2833 if Is_Actual then
2834 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2835
2836 -- Check whether the renaming is for a defaulted actual subprogram
2837 -- with a class-wide actual.
2838
2839 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2840 -- is an external axiomatization on the package.
2841
2842 if CW_Actual
2843 and then Box_Present (Inst_Node)
2844 and then not
2845 (GNATprove_Mode
2846 and then
2847 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2848 then
2849 Build_Class_Wide_Wrapper (New_S, Old_S);
2850
2851 elsif Is_Entity_Name (Nam)
2852 and then Present (Entity (Nam))
2853 and then not Comes_From_Source (Nam)
2854 and then not Is_Overloaded (Nam)
2855 then
2856 Old_S := Entity (Nam);
2857
2858 -- The subprogram renaming declaration may become Ghost if it
2859 -- renames a Ghost entity.
2860
2861 Mark_Ghost_Renaming (N, Old_S);
2862
2863 New_S := Analyze_Subprogram_Specification (Spec);
2864
2865 -- Operator case
2866
2867 if Ekind (Old_S) = E_Operator then
2868
2869 -- Box present
2870
2871 if Box_Present (Inst_Node) then
2872 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2873
2874 -- If there is an immediately visible homonym of the operator
2875 -- and the declaration has a default, this is worth a warning
2876 -- because the user probably did not intend to get the pre-
2877 -- defined operator, visible in the generic declaration. To
2878 -- find if there is an intended candidate, analyze the renaming
2879 -- again in the current context.
2880
2881 elsif Scope (Old_S) = Standard_Standard
2882 and then Present (Default_Name (Inst_Node))
2883 then
2884 declare
2885 Decl : constant Node_Id := New_Copy_Tree (N);
2886 Hidden : Entity_Id;
2887
2888 begin
2889 Set_Entity (Name (Decl), Empty);
2890 Analyze (Name (Decl));
2891 Hidden :=
2892 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2893
2894 if Present (Hidden)
2895 and then In_Open_Scopes (Scope (Hidden))
2896 and then Is_Immediately_Visible (Hidden)
2897 and then Comes_From_Source (Hidden)
2898 and then Hidden /= Old_S
2899 then
2900 Error_Msg_Sloc := Sloc (Hidden);
2901 Error_Msg_N
2902 ("default subprogram is resolved in the generic "
2903 & "declaration (RM 12.6(17))??", N);
2904 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2905 end if;
2906 end;
2907 end if;
2908 end if;
2909
2910 else
2911 Analyze (Nam);
2912
2913 -- The subprogram renaming declaration may become Ghost if it
2914 -- renames a Ghost entity.
2915
2916 if Is_Entity_Name (Nam) then
2917 Mark_Ghost_Renaming (N, Entity (Nam));
2918 end if;
2919
2920 New_S := Analyze_Subprogram_Specification (Spec);
2921 end if;
2922
2923 else
2924 -- Renamed entity must be analyzed first, to avoid being hidden by
2925 -- new name (which might be the same in a generic instance).
2926
2927 Analyze (Nam);
2928
2929 -- The subprogram renaming declaration may become Ghost if it renames
2930 -- a Ghost entity.
2931
2932 if Is_Entity_Name (Nam) then
2933 Mark_Ghost_Renaming (N, Entity (Nam));
2934 end if;
2935
2936 -- The renaming defines a new overloaded entity, which is analyzed
2937 -- like a subprogram declaration.
2938
2939 New_S := Analyze_Subprogram_Specification (Spec);
2940 end if;
2941
2942 if Current_Scope /= Standard_Standard then
2943 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2944 end if;
2945
2946 -- Set SPARK mode from current context
2947
2948 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2949 Set_SPARK_Pragma_Inherited (New_S);
2950
2951 Rename_Spec := Find_Corresponding_Spec (N);
2952
2953 -- Case of Renaming_As_Body
2954
2955 if Present (Rename_Spec) then
2956 Check_Previous_Null_Procedure (N, Rename_Spec);
2957
2958 -- Renaming declaration is the completion of the declaration of
2959 -- Rename_Spec. We build an actual body for it at the freezing point.
2960
2961 Set_Corresponding_Spec (N, Rename_Spec);
2962
2963 -- Deal with special case of stream functions of abstract types
2964 -- and interfaces.
2965
2966 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2967 N_Abstract_Subprogram_Declaration
2968 then
2969 -- Input stream functions are abstract if the object type is
2970 -- abstract. Similarly, all default stream functions for an
2971 -- interface type are abstract. However, these subprograms may
2972 -- receive explicit declarations in representation clauses, making
2973 -- the attribute subprograms usable as defaults in subsequent
2974 -- type extensions.
2975 -- In this case we rewrite the declaration to make the subprogram
2976 -- non-abstract. We remove the previous declaration, and insert
2977 -- the new one at the point of the renaming, to prevent premature
2978 -- access to unfrozen types. The new declaration reuses the
2979 -- specification of the previous one, and must not be analyzed.
2980
2981 pragma Assert
2982 (Is_Primitive (Entity (Nam))
2983 and then
2984 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2985 declare
2986 Old_Decl : constant Node_Id :=
2987 Unit_Declaration_Node (Rename_Spec);
2988 New_Decl : constant Node_Id :=
2989 Make_Subprogram_Declaration (Sloc (N),
2990 Specification =>
2991 Relocate_Node (Specification (Old_Decl)));
2992 begin
2993 Remove (Old_Decl);
2994 Insert_After (N, New_Decl);
2995 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2996 Set_Analyzed (New_Decl);
2997 end;
2998 end if;
2999
3000 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
3001
3002 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3003 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
3004 end if;
3005
3006 Set_Convention (New_S, Convention (Rename_Spec));
3007 Check_Fully_Conformant (New_S, Rename_Spec);
3008 Set_Public_Status (New_S);
3009
3010 if No_Return (Rename_Spec)
3011 and then not No_Return (Entity (Nam))
3012 then
3013 Error_Msg_N ("renaming completes a No_Return procedure", N);
3014 Error_Msg_N
3015 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N);
3016 end if;
3017
3018 -- The specification does not introduce new formals, but only
3019 -- repeats the formals of the original subprogram declaration.
3020 -- For cross-reference purposes, and for refactoring tools, we
3021 -- treat the formals of the renaming declaration as body formals.
3022
3023 Reference_Body_Formals (Rename_Spec, New_S);
3024
3025 -- Indicate that the entity in the declaration functions like the
3026 -- corresponding body, and is not a new entity. The body will be
3027 -- constructed later at the freeze point, so indicate that the
3028 -- completion has not been seen yet.
3029
3030 Set_Ekind (New_S, E_Subprogram_Body);
3031 New_S := Rename_Spec;
3032 Set_Has_Completion (Rename_Spec, False);
3033
3034 -- Ada 2005: check overriding indicator
3035
3036 if Present (Overridden_Operation (Rename_Spec)) then
3037 if Must_Not_Override (Specification (N)) then
3038 Error_Msg_NE
3039 ("subprogram& overrides inherited operation",
3040 N, Rename_Spec);
3041
3042 elsif Style_Check
3043 and then not Must_Override (Specification (N))
3044 then
3045 Style.Missing_Overriding (N, Rename_Spec);
3046 end if;
3047
3048 elsif Must_Override (Specification (N)) then
3049 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3050 end if;
3051
3052 -- Normal subprogram renaming (not renaming as body)
3053
3054 else
3055 Generate_Definition (New_S);
3056 New_Overloaded_Entity (New_S);
3057
3058 if not (Is_Entity_Name (Nam)
3059 and then Is_Intrinsic_Subprogram (Entity (Nam)))
3060 then
3061 Check_Delayed_Subprogram (New_S);
3062 end if;
3063
3064 -- Verify that a SPARK renaming does not declare a primitive
3065 -- operation of a tagged type.
3066
3067 Check_SPARK_Primitive_Operation (New_S);
3068 end if;
3069
3070 -- There is no need for elaboration checks on the new entity, which may
3071 -- be called before the next freezing point where the body will appear.
3072 -- Elaboration checks refer to the real entity, not the one created by
3073 -- the renaming declaration.
3074
3075 Set_Kill_Elaboration_Checks (New_S, True);
3076
3077 -- If we had a previous error, indicate a completely is present to stop
3078 -- junk cascaded messages, but don't take any further action.
3079
3080 if Etype (Nam) = Any_Type then
3081 Set_Has_Completion (New_S);
3082 return;
3083
3084 -- Case where name has the form of a selected component
3085
3086 elsif Nkind (Nam) = N_Selected_Component then
3087
3088 -- A name which has the form A.B can designate an entry of task A, a
3089 -- protected operation of protected object A, or finally a primitive
3090 -- operation of object A. In the later case, A is an object of some
3091 -- tagged type, or an access type that denotes one such. To further
3092 -- distinguish these cases, note that the scope of a task entry or
3093 -- protected operation is type of the prefix.
3094
3095 -- The prefix could be an overloaded function call that returns both
3096 -- kinds of operations. This overloading pathology is left to the
3097 -- dedicated reader ???
3098
3099 declare
3100 T : constant Entity_Id := Etype (Prefix (Nam));
3101
3102 begin
3103 if Present (T)
3104 and then
3105 (Is_Tagged_Type (T)
3106 or else
3107 (Is_Access_Type (T)
3108 and then Is_Tagged_Type (Designated_Type (T))))
3109 and then Scope (Entity (Selector_Name (Nam))) /= T
3110 then
3111 Analyze_Renamed_Primitive_Operation
3112 (N, New_S, Present (Rename_Spec));
3113 return;
3114
3115 else
3116 -- Renamed entity is an entry or protected operation. For those
3117 -- cases an explicit body is built (at the point of freezing of
3118 -- this entity) that contains a call to the renamed entity.
3119
3120 -- This is not allowed for renaming as body if the renamed
3121 -- spec is already frozen (see RM 8.5.4(5) for details).
3122
3123 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3124 Error_Msg_N
3125 ("renaming-as-body cannot rename entry as subprogram", N);
3126 Error_Msg_NE
3127 ("\since & is already frozen (RM 8.5.4(5))",
3128 N, Rename_Spec);
3129 else
3130 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3131 end if;
3132
3133 return;
3134 end if;
3135 end;
3136
3137 -- Case where name is an explicit dereference X.all
3138
3139 elsif Nkind (Nam) = N_Explicit_Dereference then
3140
3141 -- Renamed entity is designated by access_to_subprogram expression.
3142 -- Must build body to encapsulate call, as in the entry case.
3143
3144 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3145 return;
3146
3147 -- Indexed component
3148
3149 elsif Nkind (Nam) = N_Indexed_Component then
3150 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3151 return;
3152
3153 -- Character literal
3154
3155 elsif Nkind (Nam) = N_Character_Literal then
3156 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3157 return;
3158
3159 -- Only remaining case is where we have a non-entity name, or a renaming
3160 -- of some other non-overloadable entity.
3161
3162 elsif not Is_Entity_Name (Nam)
3163 or else not Is_Overloadable (Entity (Nam))
3164 then
3165 -- Do not mention the renaming if it comes from an instance
3166
3167 if not Is_Actual then
3168 Error_Msg_N ("expect valid subprogram name in renaming", N);
3169 else
3170 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3171 end if;
3172
3173 return;
3174 end if;
3175
3176 -- Find the renamed entity that matches the given specification. Disable
3177 -- Ada_83 because there is no requirement of full conformance between
3178 -- renamed entity and new entity, even though the same circuit is used.
3179
3180 -- This is a bit of an odd case, which introduces a really irregular use
3181 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3182 -- this. ???
3183
3184 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3185 Ada_Version_Pragma := Empty;
3186 Ada_Version_Explicit := Ada_Version;
3187
3188 if No (Old_S) then
3189 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3190
3191 -- The visible operation may be an inherited abstract operation that
3192 -- was overridden in the private part, in which case a call will
3193 -- dispatch to the overriding operation. Use the overriding one in
3194 -- the renaming declaration, to prevent spurious errors below.
3195
3196 if Is_Overloadable (Old_S)
3197 and then Is_Abstract_Subprogram (Old_S)
3198 and then No (DTC_Entity (Old_S))
3199 and then Present (Alias (Old_S))
3200 and then not Is_Abstract_Subprogram (Alias (Old_S))
3201 and then Present (Overridden_Operation (Alias (Old_S)))
3202 then
3203 Old_S := Alias (Old_S);
3204 end if;
3205
3206 -- When the renamed subprogram is overloaded and used as an actual
3207 -- of a generic, its entity is set to the first available homonym.
3208 -- We must first disambiguate the name, then set the proper entity.
3209
3210 if Is_Actual and then Is_Overloaded (Nam) then
3211 Set_Entity (Nam, Old_S);
3212 end if;
3213 end if;
3214
3215 -- Most common case: subprogram renames subprogram. No body is generated
3216 -- in this case, so we must indicate the declaration is complete as is.
3217 -- and inherit various attributes of the renamed subprogram.
3218
3219 if No (Rename_Spec) then
3220 Set_Has_Completion (New_S);
3221 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3222 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3223 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3224
3225 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3226 -- between a subprogram and its correct renaming.
3227
3228 -- Note: the Any_Id check is a guard that prevents compiler crashes
3229 -- when performing a null exclusion check between a renaming and a
3230 -- renamed subprogram that has been found to be illegal.
3231
3232 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3233 Check_Null_Exclusion
3234 (Ren => New_S,
3235 Sub => Entity (Nam));
3236 end if;
3237
3238 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3239 -- overriding. The flag Requires_Overriding is set very selectively
3240 -- and misses some other illegal cases. The additional conditions
3241 -- checked below are sufficient but not necessary ???
3242
3243 -- The rule does not apply to the renaming generated for an actual
3244 -- subprogram in an instance.
3245
3246 if Is_Actual then
3247 null;
3248
3249 -- Guard against previous errors, and omit renamings of predefined
3250 -- operators.
3251
3252 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3253 null;
3254
3255 elsif Requires_Overriding (Old_S)
3256 or else
3257 (Is_Abstract_Subprogram (Old_S)
3258 and then Present (Find_Dispatching_Type (Old_S))
3259 and then not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3260 then
3261 Error_Msg_N
3262 ("renamed entity cannot be subprogram that requires overriding "
3263 & "(RM 8.5.4 (5.1))", N);
3264 end if;
3265
3266 declare
3267 Prev : constant Entity_Id := Overridden_Operation (New_S);
3268 begin
3269 if Present (Prev)
3270 and then
3271 (Has_Non_Trivial_Precondition (Prev)
3272 or else Has_Non_Trivial_Precondition (Old_S))
3273 then
3274 Error_Msg_NE
3275 ("conflicting inherited classwide preconditions in renaming "
3276 & "of& (RM 6.1.1 (17)", N, Old_S);
3277 end if;
3278 end;
3279 end if;
3280
3281 if Old_S /= Any_Id then
3282 if Is_Actual and then From_Default (N) then
3283
3284 -- This is an implicit reference to the default actual
3285
3286 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3287
3288 else
3289 Generate_Reference (Old_S, Nam);
3290 end if;
3291
3292 Check_Internal_Protected_Use (N, Old_S);
3293
3294 -- For a renaming-as-body, require subtype conformance, but if the
3295 -- declaration being completed has not been frozen, then inherit the
3296 -- convention of the renamed subprogram prior to checking conformance
3297 -- (unless the renaming has an explicit convention established; the
3298 -- rule stated in the RM doesn't seem to address this ???).
3299
3300 if Present (Rename_Spec) then
3301 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3302 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3303
3304 if not Is_Frozen (Rename_Spec) then
3305 if not Has_Convention_Pragma (Rename_Spec) then
3306 Set_Convention (New_S, Convention (Old_S));
3307 end if;
3308
3309 if Ekind (Old_S) /= E_Operator then
3310 Check_Mode_Conformant (New_S, Old_S, Spec);
3311 end if;
3312
3313 if Original_Subprogram (Old_S) = Rename_Spec then
3314 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3315 end if;
3316 else
3317 Check_Subtype_Conformant (New_S, Old_S, Spec);
3318 end if;
3319
3320 Check_Frozen_Renaming (N, Rename_Spec);
3321
3322 -- Check explicitly that renamed entity is not intrinsic, because
3323 -- in a generic the renamed body is not built. In this case,
3324 -- the renaming_as_body is a completion.
3325
3326 if Inside_A_Generic then
3327 if Is_Frozen (Rename_Spec)
3328 and then Is_Intrinsic_Subprogram (Old_S)
3329 then
3330 Error_Msg_N
3331 ("subprogram in renaming_as_body cannot be intrinsic",
3332 Name (N));
3333 end if;
3334
3335 Set_Has_Completion (Rename_Spec);
3336 end if;
3337
3338 elsif Ekind (Old_S) /= E_Operator then
3339
3340 -- If this a defaulted subprogram for a class-wide actual there is
3341 -- no check for mode conformance, given that the signatures don't
3342 -- match (the source mentions T but the actual mentions T'Class).
3343
3344 if CW_Actual then
3345 null;
3346 elsif not Is_Actual or else No (Enclosing_Instance) then
3347 Check_Mode_Conformant (New_S, Old_S);
3348 end if;
3349
3350 if Is_Actual and then Error_Posted (New_S) then
3351 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3352 end if;
3353 end if;
3354
3355 if No (Rename_Spec) then
3356
3357 -- The parameter profile of the new entity is that of the renamed
3358 -- entity: the subtypes given in the specification are irrelevant.
3359
3360 Inherit_Renamed_Profile (New_S, Old_S);
3361
3362 -- A call to the subprogram is transformed into a call to the
3363 -- renamed entity. This is transitive if the renamed entity is
3364 -- itself a renaming.
3365
3366 if Present (Alias (Old_S)) then
3367 Set_Alias (New_S, Alias (Old_S));
3368 else
3369 Set_Alias (New_S, Old_S);
3370 end if;
3371
3372 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3373 -- renaming as body, since the entity in this case is not an
3374 -- intrinsic (it calls an intrinsic, but we have a real body for
3375 -- this call, and it is in this body that the required intrinsic
3376 -- processing will take place).
3377
3378 -- Also, if this is a renaming of inequality, the renamed operator
3379 -- is intrinsic, but what matters is the corresponding equality
3380 -- operator, which may be user-defined.
3381
3382 Set_Is_Intrinsic_Subprogram
3383 (New_S,
3384 Is_Intrinsic_Subprogram (Old_S)
3385 and then
3386 (Chars (Old_S) /= Name_Op_Ne
3387 or else Ekind (Old_S) = E_Operator
3388 or else Is_Intrinsic_Subprogram
3389 (Corresponding_Equality (Old_S))));
3390
3391 if Ekind (Alias (New_S)) = E_Operator then
3392 Set_Has_Delayed_Freeze (New_S, False);
3393 end if;
3394
3395 -- If the renaming corresponds to an association for an abstract
3396 -- formal subprogram, then various attributes must be set to
3397 -- indicate that the renaming is an abstract dispatching operation
3398 -- with a controlling type.
3399
3400 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3401
3402 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3403 -- see it as corresponding to a generic association for a
3404 -- formal abstract subprogram
3405
3406 Set_Is_Abstract_Subprogram (New_S);
3407
3408 declare
3409 New_S_Ctrl_Type : constant Entity_Id :=
3410 Find_Dispatching_Type (New_S);
3411 Old_S_Ctrl_Type : constant Entity_Id :=
3412 Find_Dispatching_Type (Old_S);
3413
3414 begin
3415
3416 -- The actual must match the (instance of the) formal,
3417 -- and must be a controlling type.
3418
3419 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3420 or else No (New_S_Ctrl_Type)
3421 then
3422 Error_Msg_NE
3423 ("actual must be dispatching subprogram for type&",
3424 Nam, New_S_Ctrl_Type);
3425
3426 else
3427 Set_Is_Dispatching_Operation (New_S);
3428 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3429
3430 -- If the actual in the formal subprogram is itself a
3431 -- formal abstract subprogram association, there's no
3432 -- dispatch table component or position to inherit.
3433
3434 if Present (DTC_Entity (Old_S)) then
3435 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3436 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3437 end if;
3438 end if;
3439 end;
3440 end if;
3441 end if;
3442
3443 if Is_Actual then
3444 null;
3445
3446 -- The following is illegal, because F hides whatever other F may
3447 -- be around:
3448 -- function F (...) renames F;
3449
3450 elsif Old_S = New_S
3451 or else (Nkind (Nam) /= N_Expanded_Name
3452 and then Chars (Old_S) = Chars (New_S))
3453 then
3454 Error_Msg_N ("subprogram cannot rename itself", N);
3455
3456 -- This is illegal even if we use a selector:
3457 -- function F (...) renames Pkg.F;
3458 -- because F is still hidden.
3459
3460 elsif Nkind (Nam) = N_Expanded_Name
3461 and then Entity (Prefix (Nam)) = Current_Scope
3462 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3463 then
3464 -- This is an error, but we overlook the error and accept the
3465 -- renaming if the special Overriding_Renamings mode is in effect.
3466
3467 if not Overriding_Renamings then
3468 Error_Msg_NE
3469 ("implicit operation& is not visible (RM 8.3 (15))",
3470 Nam, Old_S);
3471 end if;
3472 end if;
3473
3474 Set_Convention (New_S, Convention (Old_S));
3475
3476 if Is_Abstract_Subprogram (Old_S) then
3477 if Present (Rename_Spec) then
3478 Error_Msg_N
3479 ("a renaming-as-body cannot rename an abstract subprogram",
3480 N);
3481 Set_Has_Completion (Rename_Spec);
3482 else
3483 Set_Is_Abstract_Subprogram (New_S);
3484 end if;
3485 end if;
3486
3487 Check_Library_Unit_Renaming (N, Old_S);
3488
3489 -- Pathological case: procedure renames entry in the scope of its
3490 -- task. Entry is given by simple name, but body must be built for
3491 -- procedure. Of course if called it will deadlock.
3492
3493 if Ekind (Old_S) = E_Entry then
3494 Set_Has_Completion (New_S, False);
3495 Set_Alias (New_S, Empty);
3496 end if;
3497
3498 -- Do not freeze the renaming nor the renamed entity when the context
3499 -- is an enclosing generic. Freezing is an expansion activity, and in
3500 -- addition the renamed entity may depend on the generic formals of
3501 -- the enclosing generic.
3502
3503 if Is_Actual and not Inside_A_Generic then
3504 Freeze_Before (N, Old_S);
3505 Freeze_Actual_Profile;
3506 Set_Has_Delayed_Freeze (New_S, False);
3507 Freeze_Before (N, New_S);
3508
3509 -- An abstract subprogram is only allowed as an actual in the case
3510 -- where the formal subprogram is also abstract.
3511
3512 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3513 and then Is_Abstract_Subprogram (Old_S)
3514 and then not Is_Abstract_Subprogram (Formal_Spec)
3515 then
3516 Error_Msg_N
3517 ("abstract subprogram not allowed as generic actual", Nam);
3518 end if;
3519 end if;
3520
3521 else
3522 -- A common error is to assume that implicit operators for types are
3523 -- defined in Standard, or in the scope of a subtype. In those cases
3524 -- where the renamed entity is given with an expanded name, it is
3525 -- worth mentioning that operators for the type are not declared in
3526 -- the scope given by the prefix.
3527
3528 if Nkind (Nam) = N_Expanded_Name
3529 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3530 and then Scope (Entity (Nam)) = Standard_Standard
3531 then
3532 declare
3533 T : constant Entity_Id :=
3534 Base_Type (Etype (First_Formal (New_S)));
3535 begin
3536 Error_Msg_Node_2 := Prefix (Nam);
3537 Error_Msg_NE
3538 ("operator for type& is not declared in&", Prefix (Nam), T);
3539 end;
3540
3541 else
3542 Error_Msg_NE
3543 ("no visible subprogram matches the specification for&",
3544 Spec, New_S);
3545 end if;
3546
3547 if Present (Candidate_Renaming) then
3548 declare
3549 F1 : Entity_Id;
3550 F2 : Entity_Id;
3551 T1 : Entity_Id;
3552
3553 begin
3554 F1 := First_Formal (Candidate_Renaming);
3555 F2 := First_Formal (New_S);
3556 T1 := First_Subtype (Etype (F1));
3557 while Present (F1) and then Present (F2) loop
3558 Next_Formal (F1);
3559 Next_Formal (F2);
3560 end loop;
3561
3562 if Present (F1) and then Present (Default_Value (F1)) then
3563 if Present (Next_Formal (F1)) then
3564 Error_Msg_NE
3565 ("\missing specification for & and other formals with "
3566 & "defaults", Spec, F1);
3567 else
3568 Error_Msg_NE ("\missing specification for &", Spec, F1);
3569 end if;
3570 end if;
3571
3572 if Nkind (Nam) = N_Operator_Symbol
3573 and then From_Default (N)
3574 then
3575 Error_Msg_Node_2 := T1;
3576 Error_Msg_NE
3577 ("default & on & is not directly visible", Nam, Nam);
3578 end if;
3579 end;
3580 end if;
3581 end if;
3582
3583 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3584 -- controlling access parameters are known non-null for the renamed
3585 -- subprogram. Test also applies to a subprogram instantiation that
3586 -- is dispatching. Test is skipped if some previous error was detected
3587 -- that set Old_S to Any_Id.
3588
3589 if Ada_Version >= Ada_2005
3590 and then Old_S /= Any_Id
3591 and then not Is_Dispatching_Operation (Old_S)
3592 and then Is_Dispatching_Operation (New_S)
3593 then
3594 declare
3595 Old_F : Entity_Id;
3596 New_F : Entity_Id;
3597
3598 begin
3599 Old_F := First_Formal (Old_S);
3600 New_F := First_Formal (New_S);
3601 while Present (Old_F) loop
3602 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3603 and then Is_Controlling_Formal (New_F)
3604 and then not Can_Never_Be_Null (Old_F)
3605 then
3606 Error_Msg_N ("access parameter is controlling,", New_F);
3607 Error_Msg_NE
3608 ("\corresponding parameter of& must be explicitly null "
3609 & "excluding", New_F, Old_S);
3610 end if;
3611
3612 Next_Formal (Old_F);
3613 Next_Formal (New_F);
3614 end loop;
3615 end;
3616 end if;
3617
3618 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3619 -- is to warn if an operator is being renamed as a different operator.
3620 -- If the operator is predefined, examine the kind of the entity, not
3621 -- the abbreviated declaration in Standard.
3622
3623 if Comes_From_Source (N)
3624 and then Present (Old_S)
3625 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3626 or else Ekind (Old_S) = E_Operator)
3627 and then Nkind (New_S) = N_Defining_Operator_Symbol
3628 and then Chars (Old_S) /= Chars (New_S)
3629 then
3630 Error_Msg_NE
3631 ("& is being renamed as a different operator??", N, Old_S);
3632 end if;
3633
3634 -- Check for renaming of obsolescent subprogram
3635
3636 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3637
3638 -- Another warning or some utility: if the new subprogram as the same
3639 -- name as the old one, the old one is not hidden by an outer homograph,
3640 -- the new one is not a public symbol, and the old one is otherwise
3641 -- directly visible, the renaming is superfluous.
3642
3643 if Chars (Old_S) = Chars (New_S)
3644 and then Comes_From_Source (N)
3645 and then Scope (Old_S) /= Standard_Standard
3646 and then Warn_On_Redundant_Constructs
3647 and then (Is_Immediately_Visible (Old_S)
3648 or else Is_Potentially_Use_Visible (Old_S))
3649 and then Is_Overloadable (Current_Scope)
3650 and then Chars (Current_Scope) /= Chars (Old_S)
3651 then
3652 Error_Msg_N
3653 ("redundant renaming, entity is directly visible?r?", Name (N));
3654 end if;
3655
3656 -- Implementation-defined aspect specifications can appear in a renaming
3657 -- declaration, but not language-defined ones. The call to procedure
3658 -- Analyze_Aspect_Specifications will take care of this error check.
3659
3660 if Has_Aspects (N) then
3661 Analyze_Aspect_Specifications (N, New_S);
3662 end if;
3663
3664 Ada_Version := Save_AV;
3665 Ada_Version_Pragma := Save_AVP;
3666 Ada_Version_Explicit := Save_AV_Exp;
3667
3668 -- In GNATprove mode, the renamings of actual subprograms are replaced
3669 -- with wrapper functions that make it easier to propagate axioms to the
3670 -- points of call within an instance. Wrappers are generated if formal
3671 -- subprogram is subject to axiomatization.
3672
3673 -- The types in the wrapper profiles are obtained from (instances of)
3674 -- the types of the formal subprogram.
3675
3676 if Is_Actual
3677 and then GNATprove_Mode
3678 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3679 and then not Inside_A_Generic
3680 then
3681 if Ekind (Old_S) = E_Function then
3682 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3683 Analyze (N);
3684
3685 elsif Ekind (Old_S) = E_Operator then
3686 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3687 Analyze (N);
3688 end if;
3689 end if;
3690
3691 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3692 -- and mark any use_package_clauses that affect the visibility of the
3693 -- implicit generic actual.
3694
3695 -- Also, we may be looking at an internal renaming of a user-defined
3696 -- subprogram created for a generic formal subprogram association,
3697 -- which will also have to be marked here. This can occur when the
3698 -- corresponding formal subprogram contains references to other generic
3699 -- formals.
3700
3701 if Is_Generic_Actual_Subprogram (New_S)
3702 and then (Is_Intrinsic_Subprogram (New_S)
3703 or else From_Default (N)
3704 or else Nkind (N) = N_Subprogram_Renaming_Declaration)
3705 then
3706 Mark_Use_Clauses (New_S);
3707
3708 -- Handle overloaded subprograms
3709
3710 if Present (Alias (New_S)) then
3711 Mark_Use_Clauses (Alias (New_S));
3712 end if;
3713 end if;
3714 end Analyze_Subprogram_Renaming;
3715
3716 -------------------------
3717 -- Analyze_Use_Package --
3718 -------------------------
3719
3720 -- Resolve the package names in the use clause, and make all the visible
3721 -- entities defined in the package potentially use-visible. If the package
3722 -- is already in use from a previous use clause, its visible entities are
3723 -- already use-visible. In that case, mark the occurrence as a redundant
3724 -- use. If the package is an open scope, i.e. if the use clause occurs
3725 -- within the package itself, ignore it.
3726
3727 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
3728 procedure Analyze_Package_Name (Clause : Node_Id);
3729 -- Perform analysis on a package name from a use_package_clause
3730
3731 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
3732 -- Similar to Analyze_Package_Name but iterates over all the names
3733 -- in a use clause.
3734
3735 --------------------------
3736 -- Analyze_Package_Name --
3737 --------------------------
3738
3739 procedure Analyze_Package_Name (Clause : Node_Id) is
3740 Pack : constant Node_Id := Name (Clause);
3741 Pref : Node_Id;
3742
3743 begin
3744 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
3745 Analyze (Pack);
3746
3747 -- Verify that the package standard is not directly named in a
3748 -- use_package_clause.
3749
3750 if Nkind (Parent (Clause)) = N_Compilation_Unit
3751 and then Nkind (Pack) = N_Expanded_Name
3752 then
3753 Pref := Prefix (Pack);
3754
3755 while Nkind (Pref) = N_Expanded_Name loop
3756 Pref := Prefix (Pref);
3757 end loop;
3758
3759 if Entity (Pref) = Standard_Standard then
3760 Error_Msg_N
3761 ("predefined package Standard cannot appear in a context "
3762 & "clause", Pref);
3763 end if;
3764 end if;
3765 end Analyze_Package_Name;
3766
3767 -------------------------------
3768 -- Analyze_Package_Name_List --
3769 -------------------------------
3770
3771 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
3772 Curr : Node_Id;
3773
3774 begin
3775 -- Due to the way source use clauses are split during parsing we are
3776 -- forced to simply iterate through all entities in scope until the
3777 -- clause representing the last name in the list is found.
3778
3779 Curr := Head_Clause;
3780 while Present (Curr) loop
3781 Analyze_Package_Name (Curr);
3782
3783 -- Stop iterating over the names in the use clause when we are at
3784 -- the last one.
3785
3786 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
3787 Next (Curr);
3788 end loop;
3789 end Analyze_Package_Name_List;
3790
3791 -- Local variables
3792
3793 Pack : Entity_Id;
3794
3795 -- Start of processing for Analyze_Use_Package
3796
3797 begin
3798 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3799
3800 Set_Hidden_By_Use_Clause (N, No_Elist);
3801
3802 -- Use clause not allowed in a spec of a predefined package declaration
3803 -- except that packages whose file name starts a-n are OK (these are
3804 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3805
3806 if Is_Predefined_Unit (Current_Sem_Unit)
3807 and then Get_Name_String
3808 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3809 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3810 N_Package_Declaration
3811 then
3812 Error_Msg_N ("use clause not allowed in predefined spec", N);
3813 end if;
3814
3815 -- Loop through all package names from the original use clause in
3816 -- order to analyze referenced packages. A use_package_clause with only
3817 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3818 -- More_Ids only starts the chain produced by the parser.
3819
3820 if not More_Ids (N) and then not Prev_Ids (N) then
3821 Analyze_Package_Name (N);
3822
3823 elsif More_Ids (N) and then not Prev_Ids (N) then
3824 Analyze_Package_Name_List (N);
3825 end if;
3826
3827 if not Is_Entity_Name (Name (N)) then
3828 Error_Msg_N ("& is not a package", Name (N));
3829
3830 return;
3831 end if;
3832
3833 if Chain then
3834 Chain_Use_Clause (N);
3835 end if;
3836
3837 Pack := Entity (Name (N));
3838
3839 -- There are many cases where scopes are manipulated during analysis, so
3840 -- check that Pack's current use clause has not already been chained
3841 -- before setting its previous use clause.
3842
3843 if Ekind (Pack) = E_Package
3844 and then Present (Current_Use_Clause (Pack))
3845 and then Current_Use_Clause (Pack) /= N
3846 and then No (Prev_Use_Clause (N))
3847 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
3848 then
3849 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
3850 end if;
3851
3852 -- Mark all entities as potentially use visible.
3853
3854 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3855 if Ekind (Pack) = E_Generic_Package then
3856 Error_Msg_N -- CODEFIX
3857 ("a generic package is not allowed in a use clause", Name (N));
3858
3859 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3860 then
3861 Error_Msg_N -- CODEFIX
3862 ("a generic subprogram is not allowed in a use clause",
3863 Name (N));
3864
3865 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3866 Error_Msg_N -- CODEFIX
3867 ("a subprogram is not allowed in a use clause", Name (N));
3868
3869 else
3870 Error_Msg_N ("& is not allowed in a use clause", Name (N));
3871 end if;
3872
3873 else
3874 if Nkind (Parent (N)) = N_Compilation_Unit then
3875 Check_In_Previous_With_Clause (N, Name (N));
3876 end if;
3877
3878 Use_One_Package (N, Name (N));
3879 end if;
3880
3881 Mark_Ghost_Clause (N);
3882 end Analyze_Use_Package;
3883
3884 ----------------------
3885 -- Analyze_Use_Type --
3886 ----------------------
3887
3888 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
3889 E : Entity_Id;
3890 Id : Node_Id;
3891
3892 begin
3893 Set_Hidden_By_Use_Clause (N, No_Elist);
3894
3895 -- Chain clause to list of use clauses in current scope when flagged
3896
3897 if Chain then
3898 Chain_Use_Clause (N);
3899 end if;
3900
3901 -- Obtain the base type of the type denoted within the use_type_clause's
3902 -- subtype mark.
3903
3904 Id := Subtype_Mark (N);
3905 Find_Type (Id);
3906 E := Base_Type (Entity (Id));
3907
3908 -- There are many cases where a use_type_clause may be reanalyzed due to
3909 -- manipulation of the scope stack so we much guard against those cases
3910 -- here, otherwise, we must add the new use_type_clause to the previous
3911 -- use_type_clause chain in order to mark redundant use_type_clauses as
3912 -- used. When the redundant use-type clauses appear in a parent unit and
3913 -- a child unit we must prevent a circularity in the chain that would
3914 -- otherwise result from the separate steps of analysis and installation
3915 -- of the parent context.
3916
3917 if Present (Current_Use_Clause (E))
3918 and then Current_Use_Clause (E) /= N
3919 and then Prev_Use_Clause (Current_Use_Clause (E)) /= N
3920 and then No (Prev_Use_Clause (N))
3921 then
3922 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
3923 end if;
3924
3925 -- If the Used_Operations list is already initialized, the clause has
3926 -- been analyzed previously, and it is being reinstalled, for example
3927 -- when the clause appears in a package spec and we are compiling the
3928 -- corresponding package body. In that case, make the entities on the
3929 -- existing list use_visible, and mark the corresponding types In_Use.
3930
3931 if Present (Used_Operations (N)) then
3932 declare
3933 Elmt : Elmt_Id;
3934
3935 begin
3936 Use_One_Type (Subtype_Mark (N), Installed => True);
3937
3938 Elmt := First_Elmt (Used_Operations (N));
3939 while Present (Elmt) loop
3940 Set_Is_Potentially_Use_Visible (Node (Elmt));
3941 Next_Elmt (Elmt);
3942 end loop;
3943 end;
3944
3945 return;
3946 end if;
3947
3948 -- Otherwise, create new list and attach to it the operations that are
3949 -- made use-visible by the clause.
3950
3951 Set_Used_Operations (N, New_Elmt_List);
3952 E := Entity (Id);
3953
3954 if E /= Any_Type then
3955 Use_One_Type (Id);
3956
3957 if Nkind (Parent (N)) = N_Compilation_Unit then
3958 if Nkind (Id) = N_Identifier then
3959 Error_Msg_N ("type is not directly visible", Id);
3960
3961 elsif Is_Child_Unit (Scope (E))
3962 and then Scope (E) /= System_Aux_Id
3963 then
3964 Check_In_Previous_With_Clause (N, Prefix (Id));
3965 end if;
3966 end if;
3967
3968 else
3969 -- If the use_type_clause appears in a compilation unit context,
3970 -- check whether it comes from a unit that may appear in a
3971 -- limited_with_clause, for a better error message.
3972
3973 if Nkind (Parent (N)) = N_Compilation_Unit
3974 and then Nkind (Id) /= N_Identifier
3975 then
3976 declare
3977 Item : Node_Id;
3978 Pref : Node_Id;
3979
3980 function Mentioned (Nam : Node_Id) return Boolean;
3981 -- Check whether the prefix of expanded name for the type
3982 -- appears in the prefix of some limited_with_clause.
3983
3984 ---------------
3985 -- Mentioned --
3986 ---------------
3987
3988 function Mentioned (Nam : Node_Id) return Boolean is
3989 begin
3990 return Nkind (Name (Item)) = N_Selected_Component
3991 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3992 end Mentioned;
3993
3994 begin
3995 Pref := Prefix (Id);
3996 Item := First (Context_Items (Parent (N)));
3997 while Present (Item) and then Item /= N loop
3998 if Nkind (Item) = N_With_Clause
3999 and then Limited_Present (Item)
4000 and then Mentioned (Pref)
4001 then
4002 Change_Error_Text
4003 (Get_Msg_Id, "premature usage of incomplete type");
4004 end if;
4005
4006 Next (Item);
4007 end loop;
4008 end;
4009 end if;
4010 end if;
4011
4012 Mark_Ghost_Clause (N);
4013 end Analyze_Use_Type;
4014
4015 ------------------------
4016 -- Attribute_Renaming --
4017 ------------------------
4018
4019 procedure Attribute_Renaming (N : Node_Id) is
4020 Loc : constant Source_Ptr := Sloc (N);
4021 Nam : constant Node_Id := Name (N);
4022 Spec : constant Node_Id := Specification (N);
4023 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
4024 Aname : constant Name_Id := Attribute_Name (Nam);
4025
4026 Form_Num : Nat := 0;
4027 Expr_List : List_Id := No_List;
4028
4029 Attr_Node : Node_Id;
4030 Body_Node : Node_Id;
4031 Param_Spec : Node_Id;
4032
4033 begin
4034 Generate_Definition (New_S);
4035
4036 -- This procedure is called in the context of subprogram renaming, and
4037 -- thus the attribute must be one that is a subprogram. All of those
4038 -- have at least one formal parameter, with the exceptions of the GNAT
4039 -- attribute 'Img, which GNAT treats as renameable.
4040
4041 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
4042 if Aname /= Name_Img then
4043 Error_Msg_N
4044 ("subprogram renaming an attribute must have formals", N);
4045 return;
4046 end if;
4047
4048 else
4049 Param_Spec := First (Parameter_Specifications (Spec));
4050 while Present (Param_Spec) loop
4051 Form_Num := Form_Num + 1;
4052
4053 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4054 Find_Type (Parameter_Type (Param_Spec));
4055
4056 -- The profile of the new entity denotes the base type (s) of
4057 -- the types given in the specification. For access parameters
4058 -- there are no subtypes involved.
4059
4060 Rewrite (Parameter_Type (Param_Spec),
4061 New_Occurrence_Of
4062 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4063 end if;
4064
4065 if No (Expr_List) then
4066 Expr_List := New_List;
4067 end if;
4068
4069 Append_To (Expr_List,
4070 Make_Identifier (Loc,
4071 Chars => Chars (Defining_Identifier (Param_Spec))));
4072
4073 -- The expressions in the attribute reference are not freeze
4074 -- points. Neither is the attribute as a whole, see below.
4075
4076 Set_Must_Not_Freeze (Last (Expr_List));
4077 Next (Param_Spec);
4078 end loop;
4079 end if;
4080
4081 -- Immediate error if too many formals. Other mismatches in number or
4082 -- types of parameters are detected when we analyze the body of the
4083 -- subprogram that we construct.
4084
4085 if Form_Num > 2 then
4086 Error_Msg_N ("too many formals for attribute", N);
4087
4088 -- Error if the attribute reference has expressions that look like
4089 -- formal parameters.
4090
4091 elsif Present (Expressions (Nam)) then
4092 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4093
4094 elsif
4095 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4096 Name_Pos, Name_Round, Name_Scaling,
4097 Name_Val)
4098 then
4099 if Nkind (N) = N_Subprogram_Renaming_Declaration
4100 and then Present (Corresponding_Formal_Spec (N))
4101 then
4102 Error_Msg_N
4103 ("generic actual cannot be attribute involving universal type",
4104 Nam);
4105 else
4106 Error_Msg_N
4107 ("attribute involving a universal type cannot be renamed",
4108 Nam);
4109 end if;
4110 end if;
4111
4112 -- Rewrite attribute node to have a list of expressions corresponding to
4113 -- the subprogram formals. A renaming declaration is not a freeze point,
4114 -- and the analysis of the attribute reference should not freeze the
4115 -- type of the prefix. We use the original node in the renaming so that
4116 -- its source location is preserved, and checks on stream attributes are
4117 -- properly applied.
4118
4119 Attr_Node := Relocate_Node (Nam);
4120 Set_Expressions (Attr_Node, Expr_List);
4121
4122 Set_Must_Not_Freeze (Attr_Node);
4123 Set_Must_Not_Freeze (Prefix (Nam));
4124
4125 -- Case of renaming a function
4126
4127 if Nkind (Spec) = N_Function_Specification then
4128 if Is_Procedure_Attribute_Name (Aname) then
4129 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4130 return;
4131 end if;
4132
4133 Find_Type (Result_Definition (Spec));
4134 Rewrite (Result_Definition (Spec),
4135 New_Occurrence_Of
4136 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4137
4138 Body_Node :=
4139 Make_Subprogram_Body (Loc,
4140 Specification => Spec,
4141 Declarations => New_List,
4142 Handled_Statement_Sequence =>
4143 Make_Handled_Sequence_Of_Statements (Loc,
4144 Statements => New_List (
4145 Make_Simple_Return_Statement (Loc,
4146 Expression => Attr_Node))));
4147
4148 -- Case of renaming a procedure
4149
4150 else
4151 if not Is_Procedure_Attribute_Name (Aname) then
4152 Error_Msg_N ("attribute can only be renamed as function", Nam);
4153 return;
4154 end if;
4155
4156 Body_Node :=
4157 Make_Subprogram_Body (Loc,
4158 Specification => Spec,
4159 Declarations => New_List,
4160 Handled_Statement_Sequence =>
4161 Make_Handled_Sequence_Of_Statements (Loc,
4162 Statements => New_List (Attr_Node)));
4163 end if;
4164
4165 -- Signal the ABE mechanism that the generated subprogram body has not
4166 -- ABE ramifications.
4167
4168 Set_Was_Attribute_Reference (Body_Node);
4169
4170 -- In case of tagged types we add the body of the generated function to
4171 -- the freezing actions of the type (because in the general case such
4172 -- type is still not frozen). We exclude from this processing generic
4173 -- formal subprograms found in instantiations.
4174
4175 -- We must exclude restricted run-time libraries because
4176 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4177 -- available in those platforms. Note that we cannot use the function
4178 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4179 -- the ZFP run-time library is not defined as a profile, and we do not
4180 -- want to deal with AST_Handler in ZFP mode.
4181
4182 if not Configurable_Run_Time_Mode
4183 and then not Present (Corresponding_Formal_Spec (N))
4184 and then Etype (Nam) /= RTE (RE_AST_Handler)
4185 then
4186 declare
4187 P : constant Node_Id := Prefix (Nam);
4188
4189 begin
4190 -- The prefix of 'Img is an object that is evaluated for each call
4191 -- of the function that renames it.
4192
4193 if Aname = Name_Img then
4194 Preanalyze_And_Resolve (P);
4195
4196 -- For all other attribute renamings, the prefix is a subtype
4197
4198 else
4199 Find_Type (P);
4200 end if;
4201
4202 -- If the target type is not yet frozen, add the body to the
4203 -- actions to be elaborated at freeze time.
4204
4205 if Is_Tagged_Type (Etype (P))
4206 and then In_Open_Scopes (Scope (Etype (P)))
4207 then
4208 Ensure_Freeze_Node (Etype (P));
4209 Append_Freeze_Action (Etype (P), Body_Node);
4210 else
4211 Rewrite (N, Body_Node);
4212 Analyze (N);
4213 Set_Etype (New_S, Base_Type (Etype (New_S)));
4214 end if;
4215 end;
4216
4217 -- Generic formal subprograms or AST_Handler renaming
4218
4219 else
4220 Rewrite (N, Body_Node);
4221 Analyze (N);
4222 Set_Etype (New_S, Base_Type (Etype (New_S)));
4223 end if;
4224
4225 if Is_Compilation_Unit (New_S) then
4226 Error_Msg_N
4227 ("a library unit can only rename another library unit", N);
4228 end if;
4229
4230 -- We suppress elaboration warnings for the resulting entity, since
4231 -- clearly they are not needed, and more particularly, in the case
4232 -- of a generic formal subprogram, the resulting entity can appear
4233 -- after the instantiation itself, and thus look like a bogus case
4234 -- of access before elaboration.
4235
4236 if Legacy_Elaboration_Checks then
4237 Set_Suppress_Elaboration_Warnings (New_S);
4238 end if;
4239 end Attribute_Renaming;
4240
4241 ----------------------
4242 -- Chain_Use_Clause --
4243 ----------------------
4244
4245 procedure Chain_Use_Clause (N : Node_Id) is
4246 Level : Int := Scope_Stack.Last;
4247 Pack : Entity_Id;
4248
4249 begin
4250 -- Common case
4251
4252 if not Is_Compilation_Unit (Current_Scope)
4253 or else not Is_Child_Unit (Current_Scope)
4254 then
4255 null;
4256
4257 -- Common case for compilation unit
4258
4259 elsif Defining_Entity (N => Parent (N),
4260 Empty_On_Errors => True) = Current_Scope
4261 then
4262 null;
4263
4264 else
4265 -- If declaration appears in some other scope, it must be in some
4266 -- parent unit when compiling a child.
4267
4268 Pack := Defining_Entity (Parent (N), Empty_On_Errors => True);
4269
4270 if not In_Open_Scopes (Pack) then
4271 null;
4272
4273 -- If the use clause appears in an ancestor and we are in the
4274 -- private part of the immediate parent, the use clauses are
4275 -- already installed.
4276
4277 elsif Pack /= Scope (Current_Scope)
4278 and then In_Private_Part (Scope (Current_Scope))
4279 then
4280 null;
4281
4282 else
4283 -- Find entry for parent unit in scope stack
4284
4285 while Scope_Stack.Table (Level).Entity /= Pack loop
4286 Level := Level - 1;
4287 end loop;
4288 end if;
4289 end if;
4290
4291 Set_Next_Use_Clause (N,
4292 Scope_Stack.Table (Level).First_Use_Clause);
4293 Scope_Stack.Table (Level).First_Use_Clause := N;
4294 end Chain_Use_Clause;
4295
4296 ---------------------------
4297 -- Check_Frozen_Renaming --
4298 ---------------------------
4299
4300 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4301 B_Node : Node_Id;
4302 Old_S : Entity_Id;
4303
4304 begin
4305 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4306 B_Node :=
4307 Build_Renamed_Body
4308 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4309
4310 if Is_Entity_Name (Name (N)) then
4311 Old_S := Entity (Name (N));
4312
4313 if not Is_Frozen (Old_S)
4314 and then Operating_Mode /= Check_Semantics
4315 then
4316 Append_Freeze_Action (Old_S, B_Node);
4317 else
4318 Insert_After (N, B_Node);
4319 Analyze (B_Node);
4320 end if;
4321
4322 if Is_Intrinsic_Subprogram (Old_S)
4323 and then not In_Instance
4324 and then not Relaxed_RM_Semantics
4325 then
4326 Error_Msg_N
4327 ("subprogram used in renaming_as_body cannot be intrinsic",
4328 Name (N));
4329 end if;
4330
4331 else
4332 Insert_After (N, B_Node);
4333 Analyze (B_Node);
4334 end if;
4335 end if;
4336 end Check_Frozen_Renaming;
4337
4338 -------------------------------
4339 -- Set_Entity_Or_Discriminal --
4340 -------------------------------
4341
4342 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4343 P : Node_Id;
4344
4345 begin
4346 -- If the entity is not a discriminant, or else expansion is disabled,
4347 -- simply set the entity.
4348
4349 if not In_Spec_Expression
4350 or else Ekind (E) /= E_Discriminant
4351 or else Inside_A_Generic
4352 then
4353 Set_Entity_With_Checks (N, E);
4354
4355 -- The replacement of a discriminant by the corresponding discriminal
4356 -- is not done for a task discriminant that appears in a default
4357 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4358 -- for details on their handling.
4359
4360 elsif Is_Concurrent_Type (Scope (E)) then
4361 P := Parent (N);
4362 while Present (P)
4363 and then not Nkind_In (P, N_Parameter_Specification,
4364 N_Component_Declaration)
4365 loop
4366 P := Parent (P);
4367 end loop;
4368
4369 if Present (P)
4370 and then Nkind (P) = N_Parameter_Specification
4371 then
4372 null;
4373
4374 else
4375 Set_Entity (N, Discriminal (E));
4376 end if;
4377
4378 -- Otherwise, this is a discriminant in a context in which
4379 -- it is a reference to the corresponding parameter of the
4380 -- init proc for the enclosing type.
4381
4382 else
4383 Set_Entity (N, Discriminal (E));
4384 end if;
4385 end Set_Entity_Or_Discriminal;
4386
4387 -----------------------------------
4388 -- Check_In_Previous_With_Clause --
4389 -----------------------------------
4390
4391 procedure Check_In_Previous_With_Clause
4392 (N : Node_Id;
4393 Nam : Entity_Id)
4394 is
4395 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4396 Item : Node_Id;
4397 Par : Node_Id;
4398
4399 begin
4400 Item := First (Context_Items (Parent (N)));
4401 while Present (Item) and then Item /= N loop
4402 if Nkind (Item) = N_With_Clause
4403
4404 -- Protect the frontend against previous critical errors
4405
4406 and then Nkind (Name (Item)) /= N_Selected_Component
4407 and then Entity (Name (Item)) = Pack
4408 then
4409 Par := Nam;
4410
4411 -- Find root library unit in with_clause
4412
4413 while Nkind (Par) = N_Expanded_Name loop
4414 Par := Prefix (Par);
4415 end loop;
4416
4417 if Is_Child_Unit (Entity (Original_Node (Par))) then
4418 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4419 else
4420 return;
4421 end if;
4422 end if;
4423
4424 Next (Item);
4425 end loop;
4426
4427 -- On exit, package is not mentioned in a previous with_clause.
4428 -- Check if its prefix is.
4429
4430 if Nkind (Nam) = N_Expanded_Name then
4431 Check_In_Previous_With_Clause (N, Prefix (Nam));
4432
4433 elsif Pack /= Any_Id then
4434 Error_Msg_NE ("& is not visible", Nam, Pack);
4435 end if;
4436 end Check_In_Previous_With_Clause;
4437
4438 ---------------------------------
4439 -- Check_Library_Unit_Renaming --
4440 ---------------------------------
4441
4442 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4443 New_E : Entity_Id;
4444
4445 begin
4446 if Nkind (Parent (N)) /= N_Compilation_Unit then
4447 return;
4448
4449 -- Check for library unit. Note that we used to check for the scope
4450 -- being Standard here, but that was wrong for Standard itself.
4451
4452 elsif not Is_Compilation_Unit (Old_E)
4453 and then not Is_Child_Unit (Old_E)
4454 then
4455 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4456
4457 -- Entities defined in Standard (operators and boolean literals) cannot
4458 -- be renamed as library units.
4459
4460 elsif Scope (Old_E) = Standard_Standard
4461 and then Sloc (Old_E) = Standard_Location
4462 then
4463 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4464
4465 elsif Present (Parent_Spec (N))
4466 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4467 and then not Is_Child_Unit (Old_E)
4468 then
4469 Error_Msg_N
4470 ("renamed unit must be a child unit of generic parent", Name (N));
4471
4472 elsif Nkind (N) in N_Generic_Renaming_Declaration
4473 and then Nkind (Name (N)) = N_Expanded_Name
4474 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4475 and then Is_Generic_Unit (Old_E)
4476 then
4477 Error_Msg_N
4478 ("renamed generic unit must be a library unit", Name (N));
4479
4480 elsif Is_Package_Or_Generic_Package (Old_E) then
4481
4482 -- Inherit categorization flags
4483
4484 New_E := Defining_Entity (N);
4485 Set_Is_Pure (New_E, Is_Pure (Old_E));
4486 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4487 Set_Is_Remote_Call_Interface (New_E,
4488 Is_Remote_Call_Interface (Old_E));
4489 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4490 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4491 end if;
4492 end Check_Library_Unit_Renaming;
4493
4494 ------------------------
4495 -- Enclosing_Instance --
4496 ------------------------
4497
4498 function Enclosing_Instance return Entity_Id is
4499 S : Entity_Id;
4500
4501 begin
4502 if not Is_Generic_Instance (Current_Scope) then
4503 return Empty;
4504 end if;
4505
4506 S := Scope (Current_Scope);
4507 while S /= Standard_Standard loop
4508 if Is_Generic_Instance (S) then
4509 return S;
4510 end if;
4511
4512 S := Scope (S);
4513 end loop;
4514
4515 return Empty;
4516 end Enclosing_Instance;
4517
4518 ---------------
4519 -- End_Scope --
4520 ---------------
4521
4522 procedure End_Scope is
4523 Id : Entity_Id;
4524 Prev : Entity_Id;
4525 Outer : Entity_Id;
4526
4527 begin
4528 Id := First_Entity (Current_Scope);
4529 while Present (Id) loop
4530 -- An entity in the current scope is not necessarily the first one
4531 -- on its homonym chain. Find its predecessor if any,
4532 -- If it is an internal entity, it will not be in the visibility
4533 -- chain altogether, and there is nothing to unchain.
4534
4535 if Id /= Current_Entity (Id) then
4536 Prev := Current_Entity (Id);
4537 while Present (Prev)
4538 and then Present (Homonym (Prev))
4539 and then Homonym (Prev) /= Id
4540 loop
4541 Prev := Homonym (Prev);
4542 end loop;
4543
4544 -- Skip to end of loop if Id is not in the visibility chain
4545
4546 if No (Prev) or else Homonym (Prev) /= Id then
4547 goto Next_Ent;
4548 end if;
4549
4550 else
4551 Prev := Empty;
4552 end if;
4553
4554 Set_Is_Immediately_Visible (Id, False);
4555
4556 Outer := Homonym (Id);
4557 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4558 Outer := Homonym (Outer);
4559 end loop;
4560
4561 -- Reset homonym link of other entities, but do not modify link
4562 -- between entities in current scope, so that the back-end can have
4563 -- a proper count of local overloadings.
4564
4565 if No (Prev) then
4566 Set_Name_Entity_Id (Chars (Id), Outer);
4567
4568 elsif Scope (Prev) /= Scope (Id) then
4569 Set_Homonym (Prev, Outer);
4570 end if;
4571
4572 <<Next_Ent>>
4573 Next_Entity (Id);
4574 end loop;
4575
4576 -- If the scope generated freeze actions, place them before the
4577 -- current declaration and analyze them. Type declarations and
4578 -- the bodies of initialization procedures can generate such nodes.
4579 -- We follow the parent chain until we reach a list node, which is
4580 -- the enclosing list of declarations. If the list appears within
4581 -- a protected definition, move freeze nodes outside the protected
4582 -- type altogether.
4583
4584 if Present
4585 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4586 then
4587 declare
4588 Decl : Node_Id;
4589 L : constant List_Id := Scope_Stack.Table
4590 (Scope_Stack.Last).Pending_Freeze_Actions;
4591
4592 begin
4593 if Is_Itype (Current_Scope) then
4594 Decl := Associated_Node_For_Itype (Current_Scope);
4595 else
4596 Decl := Parent (Current_Scope);
4597 end if;
4598
4599 Pop_Scope;
4600
4601 while not (Is_List_Member (Decl))
4602 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4603 N_Task_Definition)
4604 loop
4605 Decl := Parent (Decl);
4606 end loop;
4607
4608 Insert_List_Before_And_Analyze (Decl, L);
4609 end;
4610
4611 else
4612 Pop_Scope;
4613 end if;
4614 end End_Scope;
4615
4616 ---------------------
4617 -- End_Use_Clauses --
4618 ---------------------
4619
4620 procedure End_Use_Clauses (Clause : Node_Id) is
4621 U : Node_Id;
4622
4623 begin
4624 -- Remove use_type_clauses first, because they affect the visibility of
4625 -- operators in subsequent used packages.
4626
4627 U := Clause;
4628 while Present (U) loop
4629 if Nkind (U) = N_Use_Type_Clause then
4630 End_Use_Type (U);
4631 end if;
4632
4633 Next_Use_Clause (U);
4634 end loop;
4635
4636 U := Clause;
4637 while Present (U) loop
4638 if Nkind (U) = N_Use_Package_Clause then
4639 End_Use_Package (U);
4640 end if;
4641
4642 Next_Use_Clause (U);
4643 end loop;
4644 end End_Use_Clauses;
4645
4646 ---------------------
4647 -- End_Use_Package --
4648 ---------------------
4649
4650 procedure End_Use_Package (N : Node_Id) is
4651 Pack : Entity_Id;
4652 Pack_Name : Node_Id;
4653 Id : Entity_Id;
4654 Elmt : Elmt_Id;
4655
4656 function Is_Primitive_Operator_In_Use
4657 (Op : Entity_Id;
4658 F : Entity_Id) return Boolean;
4659 -- Check whether Op is a primitive operator of a use-visible type
4660
4661 ----------------------------------
4662 -- Is_Primitive_Operator_In_Use --
4663 ----------------------------------
4664
4665 function Is_Primitive_Operator_In_Use
4666 (Op : Entity_Id;
4667 F : Entity_Id) return Boolean
4668 is
4669 T : constant Entity_Id := Base_Type (Etype (F));
4670 begin
4671 return In_Use (T) and then Scope (T) = Scope (Op);
4672 end Is_Primitive_Operator_In_Use;
4673
4674 -- Start of processing for End_Use_Package
4675
4676 begin
4677 Pack_Name := Name (N);
4678
4679 -- Test that Pack_Name actually denotes a package before processing
4680
4681 if Is_Entity_Name (Pack_Name)
4682 and then Ekind (Entity (Pack_Name)) = E_Package
4683 then
4684 Pack := Entity (Pack_Name);
4685
4686 if In_Open_Scopes (Pack) then
4687 null;
4688
4689 elsif not Redundant_Use (Pack_Name) then
4690 Set_In_Use (Pack, False);
4691 Set_Current_Use_Clause (Pack, Empty);
4692
4693 Id := First_Entity (Pack);
4694 while Present (Id) loop
4695
4696 -- Preserve use-visibility of operators that are primitive
4697 -- operators of a type that is use-visible through an active
4698 -- use_type_clause.
4699
4700 if Nkind (Id) = N_Defining_Operator_Symbol
4701 and then
4702 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4703 or else
4704 (Present (Next_Formal (First_Formal (Id)))
4705 and then
4706 Is_Primitive_Operator_In_Use
4707 (Id, Next_Formal (First_Formal (Id)))))
4708 then
4709 null;
4710 else
4711 Set_Is_Potentially_Use_Visible (Id, False);
4712 end if;
4713
4714 if Is_Private_Type (Id)
4715 and then Present (Full_View (Id))
4716 then
4717 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4718 end if;
4719
4720 Next_Entity (Id);
4721 end loop;
4722
4723 if Present (Renamed_Object (Pack)) then
4724 Set_In_Use (Renamed_Object (Pack), False);
4725 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4726 end if;
4727
4728 if Chars (Pack) = Name_System
4729 and then Scope (Pack) = Standard_Standard
4730 and then Present_System_Aux
4731 then
4732 Id := First_Entity (System_Aux_Id);
4733 while Present (Id) loop
4734 Set_Is_Potentially_Use_Visible (Id, False);
4735
4736 if Is_Private_Type (Id)
4737 and then Present (Full_View (Id))
4738 then
4739 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4740 end if;
4741
4742 Next_Entity (Id);
4743 end loop;
4744
4745 Set_In_Use (System_Aux_Id, False);
4746 end if;
4747 else
4748 Set_Redundant_Use (Pack_Name, False);
4749 end if;
4750 end if;
4751
4752 if Present (Hidden_By_Use_Clause (N)) then
4753 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4754 while Present (Elmt) loop
4755 declare
4756 E : constant Entity_Id := Node (Elmt);
4757
4758 begin
4759 -- Reset either Use_Visibility or Direct_Visibility, depending
4760 -- on how the entity was hidden by the use clause.
4761
4762 if In_Use (Scope (E))
4763 and then Used_As_Generic_Actual (Scope (E))
4764 then
4765 Set_Is_Potentially_Use_Visible (Node (Elmt));
4766 else
4767 Set_Is_Immediately_Visible (Node (Elmt));
4768 end if;
4769
4770 Next_Elmt (Elmt);
4771 end;
4772 end loop;
4773
4774 Set_Hidden_By_Use_Clause (N, No_Elist);
4775 end if;
4776 end End_Use_Package;
4777
4778 ------------------
4779 -- End_Use_Type --
4780 ------------------
4781
4782 procedure End_Use_Type (N : Node_Id) is
4783 Elmt : Elmt_Id;
4784 Id : Entity_Id;
4785 T : Entity_Id;
4786
4787 -- Start of processing for End_Use_Type
4788
4789 begin
4790 Id := Subtype_Mark (N);
4791
4792 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4793 -- which case the type marks are not resolved yet, so guard against that
4794 -- here.
4795
4796 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
4797 T := Entity (Id);
4798
4799 if T = Any_Type or else From_Limited_With (T) then
4800 null;
4801
4802 -- Note that the use_type_clause may mention a subtype of the type
4803 -- whose primitive operations have been made visible. Here as
4804 -- elsewhere, it is the base type that matters for visibility.
4805
4806 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4807 null;
4808
4809 elsif not Redundant_Use (Id) then
4810 Set_In_Use (T, False);
4811 Set_In_Use (Base_Type (T), False);
4812 Set_Current_Use_Clause (T, Empty);
4813 Set_Current_Use_Clause (Base_Type (T), Empty);
4814 end if;
4815 end if;
4816
4817 if Is_Empty_Elmt_List (Used_Operations (N)) then
4818 return;
4819
4820 else
4821 Elmt := First_Elmt (Used_Operations (N));
4822 while Present (Elmt) loop
4823 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4824 Next_Elmt (Elmt);
4825 end loop;
4826 end if;
4827 end End_Use_Type;
4828
4829 --------------------
4830 -- Entity_Of_Unit --
4831 --------------------
4832
4833 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
4834 begin
4835 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
4836 return Defining_Entity (Instance_Spec (U));
4837 else
4838 return Defining_Entity (U);
4839 end if;
4840 end Entity_Of_Unit;
4841
4842 ----------------------
4843 -- Find_Direct_Name --
4844 ----------------------
4845
4846 procedure Find_Direct_Name (N : Node_Id) is
4847 E : Entity_Id;
4848 E2 : Entity_Id;
4849 Msg : Boolean;
4850
4851 Homonyms : Entity_Id;
4852 -- Saves start of homonym chain
4853
4854 Inst : Entity_Id := Empty;
4855 -- Enclosing instance, if any
4856
4857 Nvis_Entity : Boolean;
4858 -- Set True to indicate that there is at least one entity on the homonym
4859 -- chain which, while not visible, is visible enough from the user point
4860 -- of view to warrant an error message of "not visible" rather than
4861 -- undefined.
4862
4863 Nvis_Is_Private_Subprg : Boolean := False;
4864 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4865 -- effect concerning library subprograms has been detected. Used to
4866 -- generate the precise error message.
4867
4868 function From_Actual_Package (E : Entity_Id) return Boolean;
4869 -- Returns true if the entity is an actual for a package that is itself
4870 -- an actual for a formal package of the current instance. Such an
4871 -- entity requires special handling because it may be use-visible but
4872 -- hides directly visible entities defined outside the instance, because
4873 -- the corresponding formal did so in the generic.
4874
4875 function Is_Actual_Parameter return Boolean;
4876 -- This function checks if the node N is an identifier that is an actual
4877 -- parameter of a procedure call. If so it returns True, otherwise it
4878 -- return False. The reason for this check is that at this stage we do
4879 -- not know what procedure is being called if the procedure might be
4880 -- overloaded, so it is premature to go setting referenced flags or
4881 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4882 -- for that processing
4883
4884 function Known_But_Invisible (E : Entity_Id) return Boolean;
4885 -- This function determines whether a reference to the entity E, which
4886 -- is not visible, can reasonably be considered to be known to the
4887 -- writer of the reference. This is a heuristic test, used only for
4888 -- the purposes of figuring out whether we prefer to complain that an
4889 -- entity is undefined or invisible (and identify the declaration of
4890 -- the invisible entity in the latter case). The point here is that we
4891 -- don't want to complain that something is invisible and then point to
4892 -- something entirely mysterious to the writer.
4893
4894 procedure Nvis_Messages;
4895 -- Called if there are no visible entries for N, but there is at least
4896 -- one non-directly visible, or hidden declaration. This procedure
4897 -- outputs an appropriate set of error messages.
4898
4899 procedure Undefined (Nvis : Boolean);
4900 -- This function is called if the current node has no corresponding
4901 -- visible entity or entities. The value set in Msg indicates whether
4902 -- an error message was generated (multiple error messages for the
4903 -- same variable are generally suppressed, see body for details).
4904 -- Msg is True if an error message was generated, False if not. This
4905 -- value is used by the caller to determine whether or not to output
4906 -- additional messages where appropriate. The parameter is set False
4907 -- to get the message "X is undefined", and True to get the message
4908 -- "X is not visible".
4909
4910 -------------------------
4911 -- From_Actual_Package --
4912 -------------------------
4913
4914 function From_Actual_Package (E : Entity_Id) return Boolean is
4915 Scop : constant Entity_Id := Scope (E);
4916 -- Declared scope of candidate entity
4917
4918 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4919 -- Recursive function that does the work and examines actuals of
4920 -- actual packages of current instance.
4921
4922 ------------------------
4923 -- Declared_In_Actual --
4924 ------------------------
4925
4926 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4927 Act : Entity_Id;
4928
4929 begin
4930 if No (Associated_Formal_Package (Pack)) then
4931 return False;
4932
4933 else
4934 Act := First_Entity (Pack);
4935 while Present (Act) loop
4936 if Renamed_Object (Pack) = Scop then
4937 return True;
4938
4939 -- Check for end of list of actuals
4940
4941 elsif Ekind (Act) = E_Package
4942 and then Renamed_Object (Act) = Pack
4943 then
4944 return False;
4945
4946 elsif Ekind (Act) = E_Package
4947 and then Declared_In_Actual (Act)
4948 then
4949 return True;
4950 end if;
4951
4952 Next_Entity (Act);
4953 end loop;
4954
4955 return False;
4956 end if;
4957 end Declared_In_Actual;
4958
4959 -- Local variables
4960
4961 Act : Entity_Id;
4962
4963 -- Start of processing for From_Actual_Package
4964
4965 begin
4966 if not In_Instance then
4967 return False;
4968
4969 else
4970 Inst := Current_Scope;
4971 while Present (Inst)
4972 and then Ekind (Inst) /= E_Package
4973 and then not Is_Generic_Instance (Inst)
4974 loop
4975 Inst := Scope (Inst);
4976 end loop;
4977
4978 if No (Inst) then
4979 return False;
4980 end if;
4981
4982 Act := First_Entity (Inst);
4983 while Present (Act) loop
4984 if Ekind (Act) = E_Package
4985 and then Declared_In_Actual (Act)
4986 then
4987 return True;
4988 end if;
4989
4990 Next_Entity (Act);
4991 end loop;
4992
4993 return False;
4994 end if;
4995 end From_Actual_Package;
4996
4997 -------------------------
4998 -- Is_Actual_Parameter --
4999 -------------------------
5000
5001 function Is_Actual_Parameter return Boolean is
5002 begin
5003 return
5004 Nkind (N) = N_Identifier
5005 and then
5006 (Nkind (Parent (N)) = N_Procedure_Call_Statement
5007 or else
5008 (Nkind (Parent (N)) = N_Parameter_Association
5009 and then N = Explicit_Actual_Parameter (Parent (N))
5010 and then Nkind (Parent (Parent (N))) =
5011 N_Procedure_Call_Statement));
5012 end Is_Actual_Parameter;
5013
5014 -------------------------
5015 -- Known_But_Invisible --
5016 -------------------------
5017
5018 function Known_But_Invisible (E : Entity_Id) return Boolean is
5019 Fname : File_Name_Type;
5020
5021 begin
5022 -- Entities in Standard are always considered to be known
5023
5024 if Sloc (E) <= Standard_Location then
5025 return True;
5026
5027 -- An entity that does not come from source is always considered
5028 -- to be unknown, since it is an artifact of code expansion.
5029
5030 elsif not Comes_From_Source (E) then
5031 return False;
5032
5033 -- In gnat internal mode, we consider all entities known. The
5034 -- historical reason behind this discrepancy is not known??? But the
5035 -- only effect is to modify the error message given, so it is not
5036 -- critical. Since it only affects the exact wording of error
5037 -- messages in illegal programs, we do not mention this as an
5038 -- effect of -gnatg, since it is not a language modification.
5039
5040 elsif GNAT_Mode then
5041 return True;
5042 end if;
5043
5044 -- Here we have an entity that is not from package Standard, and
5045 -- which comes from Source. See if it comes from an internal file.
5046
5047 Fname := Unit_File_Name (Get_Source_Unit (E));
5048
5049 -- Case of from internal file
5050
5051 if In_Internal_Unit (E) then
5052
5053 -- Private part entities in internal files are never considered
5054 -- to be known to the writer of normal application code.
5055
5056 if Is_Hidden (E) then
5057 return False;
5058 end if;
5059
5060 -- Entities from System packages other than System and
5061 -- System.Storage_Elements are not considered to be known.
5062 -- System.Auxxxx files are also considered known to the user.
5063
5064 -- Should refine this at some point to generally distinguish
5065 -- between known and unknown internal files ???
5066
5067 Get_Name_String (Fname);
5068
5069 return
5070 Name_Len < 2
5071 or else
5072 Name_Buffer (1 .. 2) /= "s-"
5073 or else
5074 Name_Buffer (3 .. 8) = "stoele"
5075 or else
5076 Name_Buffer (3 .. 5) = "aux";
5077
5078 -- If not an internal file, then entity is definitely known, even if
5079 -- it is in a private part (the message generated will note that it
5080 -- is in a private part).
5081
5082 else
5083 return True;
5084 end if;
5085 end Known_But_Invisible;
5086
5087 -------------------
5088 -- Nvis_Messages --
5089 -------------------
5090
5091 procedure Nvis_Messages is
5092 Comp_Unit : Node_Id;
5093 Ent : Entity_Id;
5094 Found : Boolean := False;
5095 Hidden : Boolean := False;
5096 Item : Node_Id;
5097
5098 begin
5099 -- Ada 2005 (AI-262): Generate a precise error concerning the
5100 -- Beaujolais effect that was previously detected
5101
5102 if Nvis_Is_Private_Subprg then
5103
5104 pragma Assert (Nkind (E2) = N_Defining_Identifier
5105 and then Ekind (E2) = E_Function
5106 and then Scope (E2) = Standard_Standard
5107 and then Has_Private_With (E2));
5108
5109 -- Find the sloc corresponding to the private with'ed unit
5110
5111 Comp_Unit := Cunit (Current_Sem_Unit);
5112 Error_Msg_Sloc := No_Location;
5113
5114 Item := First (Context_Items (Comp_Unit));
5115 while Present (Item) loop
5116 if Nkind (Item) = N_With_Clause
5117 and then Private_Present (Item)
5118 and then Entity (Name (Item)) = E2
5119 then
5120 Error_Msg_Sloc := Sloc (Item);
5121 exit;
5122 end if;
5123
5124 Next (Item);
5125 end loop;
5126
5127 pragma Assert (Error_Msg_Sloc /= No_Location);
5128
5129 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5130 return;
5131 end if;
5132
5133 Undefined (Nvis => True);
5134
5135 if Msg then
5136
5137 -- First loop does hidden declarations
5138
5139 Ent := Homonyms;
5140 while Present (Ent) loop
5141 if Is_Potentially_Use_Visible (Ent) then
5142 if not Hidden then
5143 Error_Msg_N -- CODEFIX
5144 ("multiple use clauses cause hiding!", N);
5145 Hidden := True;
5146 end if;
5147
5148 Error_Msg_Sloc := Sloc (Ent);
5149 Error_Msg_N -- CODEFIX
5150 ("hidden declaration#!", N);
5151 end if;
5152
5153 Ent := Homonym (Ent);
5154 end loop;
5155
5156 -- If we found hidden declarations, then that's enough, don't
5157 -- bother looking for non-visible declarations as well.
5158
5159 if Hidden then
5160 return;
5161 end if;
5162
5163 -- Second loop does non-directly visible declarations
5164
5165 Ent := Homonyms;
5166 while Present (Ent) loop
5167 if not Is_Potentially_Use_Visible (Ent) then
5168
5169 -- Do not bother the user with unknown entities
5170
5171 if not Known_But_Invisible (Ent) then
5172 goto Continue;
5173 end if;
5174
5175 Error_Msg_Sloc := Sloc (Ent);
5176
5177 -- Output message noting that there is a non-visible
5178 -- declaration, distinguishing the private part case.
5179
5180 if Is_Hidden (Ent) then
5181 Error_Msg_N ("non-visible (private) declaration#!", N);
5182
5183 -- If the entity is declared in a generic package, it
5184 -- cannot be visible, so there is no point in adding it
5185 -- to the list of candidates if another homograph from a
5186 -- non-generic package has been seen.
5187
5188 elsif Ekind (Scope (Ent)) = E_Generic_Package
5189 and then Found
5190 then
5191 null;
5192
5193 else
5194 Error_Msg_N -- CODEFIX
5195 ("non-visible declaration#!", N);
5196
5197 if Ekind (Scope (Ent)) /= E_Generic_Package then
5198 Found := True;
5199 end if;
5200
5201 if Is_Compilation_Unit (Ent)
5202 and then
5203 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5204 then
5205 Error_Msg_Qual_Level := 99;
5206 Error_Msg_NE -- CODEFIX
5207 ("\\missing `WITH &;`", N, Ent);
5208 Error_Msg_Qual_Level := 0;
5209 end if;
5210
5211 if Ekind (Ent) = E_Discriminant
5212 and then Present (Corresponding_Discriminant (Ent))
5213 and then Scope (Corresponding_Discriminant (Ent)) =
5214 Etype (Scope (Ent))
5215 then
5216 Error_Msg_N
5217 ("inherited discriminant not allowed here" &
5218 " (RM 3.8 (12), 3.8.1 (6))!", N);
5219 end if;
5220 end if;
5221
5222 -- Set entity and its containing package as referenced. We
5223 -- can't be sure of this, but this seems a better choice
5224 -- to avoid unused entity messages.
5225
5226 if Comes_From_Source (Ent) then
5227 Set_Referenced (Ent);
5228 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5229 end if;
5230 end if;
5231
5232 <<Continue>>
5233 Ent := Homonym (Ent);
5234 end loop;
5235 end if;
5236 end Nvis_Messages;
5237
5238 ---------------
5239 -- Undefined --
5240 ---------------
5241
5242 procedure Undefined (Nvis : Boolean) is
5243 Emsg : Error_Msg_Id;
5244
5245 begin
5246 -- We should never find an undefined internal name. If we do, then
5247 -- see if we have previous errors. If so, ignore on the grounds that
5248 -- it is probably a cascaded message (e.g. a block label from a badly
5249 -- formed block). If no previous errors, then we have a real internal
5250 -- error of some kind so raise an exception.
5251
5252 if Is_Internal_Name (Chars (N)) then
5253 if Total_Errors_Detected /= 0 then
5254 return;
5255 else
5256 raise Program_Error;
5257 end if;
5258 end if;
5259
5260 -- A very specialized error check, if the undefined variable is
5261 -- a case tag, and the case type is an enumeration type, check
5262 -- for a possible misspelling, and if so, modify the identifier
5263
5264 -- Named aggregate should also be handled similarly ???
5265
5266 if Nkind (N) = N_Identifier
5267 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5268 then
5269 declare
5270 Case_Stm : constant Node_Id := Parent (Parent (N));
5271 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5272
5273 Lit : Node_Id;
5274
5275 begin
5276 if Is_Enumeration_Type (Case_Typ)
5277 and then not Is_Standard_Character_Type (Case_Typ)
5278 then
5279 Lit := First_Literal (Case_Typ);
5280 Get_Name_String (Chars (Lit));
5281
5282 if Chars (Lit) /= Chars (N)
5283 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5284 then
5285 Error_Msg_Node_2 := Lit;
5286 Error_Msg_N -- CODEFIX
5287 ("& is undefined, assume misspelling of &", N);
5288 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5289 return;
5290 end if;
5291
5292 Lit := Next_Literal (Lit);
5293 end if;
5294 end;
5295 end if;
5296
5297 -- Normal processing
5298
5299 Set_Entity (N, Any_Id);
5300 Set_Etype (N, Any_Type);
5301
5302 -- We use the table Urefs to keep track of entities for which we
5303 -- have issued errors for undefined references. Multiple errors
5304 -- for a single name are normally suppressed, however we modify
5305 -- the error message to alert the programmer to this effect.
5306
5307 for J in Urefs.First .. Urefs.Last loop
5308 if Chars (N) = Chars (Urefs.Table (J).Node) then
5309 if Urefs.Table (J).Err /= No_Error_Msg
5310 and then Sloc (N) /= Urefs.Table (J).Loc
5311 then
5312 Error_Msg_Node_1 := Urefs.Table (J).Node;
5313
5314 if Urefs.Table (J).Nvis then
5315 Change_Error_Text (Urefs.Table (J).Err,
5316 "& is not visible (more references follow)");
5317 else
5318 Change_Error_Text (Urefs.Table (J).Err,
5319 "& is undefined (more references follow)");
5320 end if;
5321
5322 Urefs.Table (J).Err := No_Error_Msg;
5323 end if;
5324
5325 -- Although we will set Msg False, and thus suppress the
5326 -- message, we also set Error_Posted True, to avoid any
5327 -- cascaded messages resulting from the undefined reference.
5328
5329 Msg := False;
5330 Set_Error_Posted (N, True);
5331 return;
5332 end if;
5333 end loop;
5334
5335 -- If entry not found, this is first undefined occurrence
5336
5337 if Nvis then
5338 Error_Msg_N ("& is not visible!", N);
5339 Emsg := Get_Msg_Id;
5340
5341 else
5342 Error_Msg_N ("& is undefined!", N);
5343 Emsg := Get_Msg_Id;
5344
5345 -- A very bizarre special check, if the undefined identifier
5346 -- is put or put_line, then add a special error message (since
5347 -- this is a very common error for beginners to make).
5348
5349 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5350 Error_Msg_N -- CODEFIX
5351 ("\\possible missing `WITH Ada.Text_'I'O; " &
5352 "USE Ada.Text_'I'O`!", N);
5353
5354 -- Another special check if N is the prefix of a selected
5355 -- component which is a known unit, add message complaining
5356 -- about missing with for this unit.
5357
5358 elsif Nkind (Parent (N)) = N_Selected_Component
5359 and then N = Prefix (Parent (N))
5360 and then Is_Known_Unit (Parent (N))
5361 then
5362 Error_Msg_Node_2 := Selector_Name (Parent (N));
5363 Error_Msg_N -- CODEFIX
5364 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5365 end if;
5366
5367 -- Now check for possible misspellings
5368
5369 declare
5370 E : Entity_Id;
5371 Ematch : Entity_Id := Empty;
5372
5373 Last_Name_Id : constant Name_Id :=
5374 Name_Id (Nat (First_Name_Id) +
5375 Name_Entries_Count - 1);
5376
5377 begin
5378 for Nam in First_Name_Id .. Last_Name_Id loop
5379 E := Get_Name_Entity_Id (Nam);
5380
5381 if Present (E)
5382 and then (Is_Immediately_Visible (E)
5383 or else
5384 Is_Potentially_Use_Visible (E))
5385 then
5386 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5387 Ematch := E;
5388 exit;
5389 end if;
5390 end if;
5391 end loop;
5392
5393 if Present (Ematch) then
5394 Error_Msg_NE -- CODEFIX
5395 ("\possible misspelling of&", N, Ematch);
5396 end if;
5397 end;
5398 end if;
5399
5400 -- Make entry in undefined references table unless the full errors
5401 -- switch is set, in which case by refraining from generating the
5402 -- table entry, we guarantee that we get an error message for every
5403 -- undefined reference. The entry is not added if we are ignoring
5404 -- errors.
5405
5406 if not All_Errors_Mode and then Ignore_Errors_Enable = 0 then
5407 Urefs.Append (
5408 (Node => N,
5409 Err => Emsg,
5410 Nvis => Nvis,
5411 Loc => Sloc (N)));
5412 end if;
5413
5414 Msg := True;
5415 end Undefined;
5416
5417 -- Local variables
5418
5419 Nested_Inst : Entity_Id := Empty;
5420 -- The entity of a nested instance which appears within Inst (if any)
5421
5422 -- Start of processing for Find_Direct_Name
5423
5424 begin
5425 -- If the entity pointer is already set, this is an internal node, or
5426 -- a node that is analyzed more than once, after a tree modification.
5427 -- In such a case there is no resolution to perform, just set the type.
5428
5429 if Present (Entity (N)) then
5430 if Is_Type (Entity (N)) then
5431 Set_Etype (N, Entity (N));
5432
5433 else
5434 declare
5435 Entyp : constant Entity_Id := Etype (Entity (N));
5436
5437 begin
5438 -- One special case here. If the Etype field is already set,
5439 -- and references the packed array type corresponding to the
5440 -- etype of the referenced entity, then leave it alone. This
5441 -- happens for trees generated from Exp_Pakd, where expressions
5442 -- can be deliberately "mis-typed" to the packed array type.
5443
5444 if Is_Array_Type (Entyp)
5445 and then Is_Packed (Entyp)
5446 and then Present (Etype (N))
5447 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5448 then
5449 null;
5450
5451 -- If not that special case, then just reset the Etype
5452
5453 else
5454 Set_Etype (N, Etype (Entity (N)));
5455 end if;
5456 end;
5457 end if;
5458
5459 -- Although the marking of use clauses happens at the end of
5460 -- Find_Direct_Name, a certain case where a generic actual satisfies
5461 -- a use clause must be checked here due to how the generic machinery
5462 -- handles the analysis of said actuals.
5463
5464 if In_Instance
5465 and then Nkind (Parent (N)) = N_Generic_Association
5466 then
5467 Mark_Use_Clauses (Entity (N));
5468 end if;
5469
5470 return;
5471 end if;
5472
5473 -- Preserve relevant elaboration-related attributes of the context which
5474 -- are no longer available or very expensive to recompute once analysis,
5475 -- resolution, and expansion are over.
5476
5477 if Nkind (N) = N_Identifier then
5478 Mark_Elaboration_Attributes
5479 (N_Id => N,
5480 Modes => True);
5481 end if;
5482
5483 -- Here if Entity pointer was not set, we need full visibility analysis
5484 -- First we generate debugging output if the debug E flag is set.
5485
5486 if Debug_Flag_E then
5487 Write_Str ("Looking for ");
5488 Write_Name (Chars (N));
5489 Write_Eol;
5490 end if;
5491
5492 Homonyms := Current_Entity (N);
5493 Nvis_Entity := False;
5494
5495 E := Homonyms;
5496 while Present (E) loop
5497
5498 -- If entity is immediately visible or potentially use visible, then
5499 -- process the entity and we are done.
5500
5501 if Is_Immediately_Visible (E) then
5502 goto Immediately_Visible_Entity;
5503
5504 elsif Is_Potentially_Use_Visible (E) then
5505 goto Potentially_Use_Visible_Entity;
5506
5507 -- Note if a known but invisible entity encountered
5508
5509 elsif Known_But_Invisible (E) then
5510 Nvis_Entity := True;
5511 end if;
5512
5513 -- Move to next entity in chain and continue search
5514
5515 E := Homonym (E);
5516 end loop;
5517
5518 -- If no entries on homonym chain that were potentially visible,
5519 -- and no entities reasonably considered as non-visible, then
5520 -- we have a plain undefined reference, with no additional
5521 -- explanation required.
5522
5523 if not Nvis_Entity then
5524 Undefined (Nvis => False);
5525
5526 -- Otherwise there is at least one entry on the homonym chain that
5527 -- is reasonably considered as being known and non-visible.
5528
5529 else
5530 Nvis_Messages;
5531 end if;
5532
5533 goto Done;
5534
5535 -- Processing for a potentially use visible entry found. We must search
5536 -- the rest of the homonym chain for two reasons. First, if there is a
5537 -- directly visible entry, then none of the potentially use-visible
5538 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5539 -- for the case of multiple potentially use-visible entries hiding one
5540 -- another and as a result being non-directly visible (RM 8.4(11)).
5541
5542 <<Potentially_Use_Visible_Entity>> declare
5543 Only_One_Visible : Boolean := True;
5544 All_Overloadable : Boolean := Is_Overloadable (E);
5545
5546 begin
5547 E2 := Homonym (E);
5548 while Present (E2) loop
5549 if Is_Immediately_Visible (E2) then
5550
5551 -- If the use-visible entity comes from the actual for a
5552 -- formal package, it hides a directly visible entity from
5553 -- outside the instance.
5554
5555 if From_Actual_Package (E)
5556 and then Scope_Depth (E2) < Scope_Depth (Inst)
5557 then
5558 goto Found;
5559 else
5560 E := E2;
5561 goto Immediately_Visible_Entity;
5562 end if;
5563
5564 elsif Is_Potentially_Use_Visible (E2) then
5565 Only_One_Visible := False;
5566 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5567
5568 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5569 -- that can occur in private_with clauses. Example:
5570
5571 -- with A;
5572 -- private with B; package A is
5573 -- package C is function B return Integer;
5574 -- use A; end A;
5575 -- V1 : Integer := B;
5576 -- private function B return Integer;
5577 -- V2 : Integer := B;
5578 -- end C;
5579
5580 -- V1 resolves to A.B, but V2 resolves to library unit B
5581
5582 elsif Ekind (E2) = E_Function
5583 and then Scope (E2) = Standard_Standard
5584 and then Has_Private_With (E2)
5585 then
5586 Only_One_Visible := False;
5587 All_Overloadable := False;
5588 Nvis_Is_Private_Subprg := True;
5589 exit;
5590 end if;
5591
5592 E2 := Homonym (E2);
5593 end loop;
5594
5595 -- On falling through this loop, we have checked that there are no
5596 -- immediately visible entities. Only_One_Visible is set if exactly
5597 -- one potentially use visible entity exists. All_Overloadable is
5598 -- set if all the potentially use visible entities are overloadable.
5599 -- The condition for legality is that either there is one potentially
5600 -- use visible entity, or if there is more than one, then all of them
5601 -- are overloadable.
5602
5603 if Only_One_Visible or All_Overloadable then
5604 goto Found;
5605
5606 -- If there is more than one potentially use-visible entity and at
5607 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5608 -- Note that E points to the first such entity on the homonym list.
5609
5610 else
5611 -- If one of the entities is declared in an actual package, it
5612 -- was visible in the generic, and takes precedence over other
5613 -- entities that are potentially use-visible. The same applies
5614 -- if the entity is declared in a local instantiation of the
5615 -- current instance.
5616
5617 if In_Instance then
5618
5619 -- Find the current instance
5620
5621 Inst := Current_Scope;
5622 while Present (Inst) and then Inst /= Standard_Standard loop
5623 if Is_Generic_Instance (Inst) then
5624 exit;
5625 end if;
5626
5627 Inst := Scope (Inst);
5628 end loop;
5629
5630 -- Reexamine the candidate entities, giving priority to those
5631 -- that were visible within the generic.
5632
5633 E2 := E;
5634 while Present (E2) loop
5635 Nested_Inst := Nearest_Enclosing_Instance (E2);
5636
5637 -- The entity is declared within an actual package, or in a
5638 -- nested instance. The ">=" accounts for the case where the
5639 -- current instance and the nested instance are the same.
5640
5641 if From_Actual_Package (E2)
5642 or else (Present (Nested_Inst)
5643 and then Scope_Depth (Nested_Inst) >=
5644 Scope_Depth (Inst))
5645 then
5646 E := E2;
5647 goto Found;
5648 end if;
5649
5650 E2 := Homonym (E2);
5651 end loop;
5652
5653 Nvis_Messages;
5654 goto Done;
5655
5656 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5657 -- A use clause in the body of a system file creates conflict
5658 -- with some entity in a user scope, while rtsfind is active.
5659 -- Keep only the entity coming from another predefined unit.
5660
5661 E2 := E;
5662 while Present (E2) loop
5663 if In_Predefined_Unit (E2) then
5664 E := E2;
5665 goto Found;
5666 end if;
5667
5668 E2 := Homonym (E2);
5669 end loop;
5670
5671 -- Entity must exist because predefined unit is correct
5672
5673 raise Program_Error;
5674
5675 else
5676 Nvis_Messages;
5677 goto Done;
5678 end if;
5679 end if;
5680 end;
5681
5682 -- Come here with E set to the first immediately visible entity on
5683 -- the homonym chain. This is the one we want unless there is another
5684 -- immediately visible entity further on in the chain for an inner
5685 -- scope (RM 8.3(8)).
5686
5687 <<Immediately_Visible_Entity>> declare
5688 Level : Int;
5689 Scop : Entity_Id;
5690
5691 begin
5692 -- Find scope level of initial entity. When compiling through
5693 -- Rtsfind, the previous context is not completely invisible, and
5694 -- an outer entity may appear on the chain, whose scope is below
5695 -- the entry for Standard that delimits the current scope stack.
5696 -- Indicate that the level for this spurious entry is outside of
5697 -- the current scope stack.
5698
5699 Level := Scope_Stack.Last;
5700 loop
5701 Scop := Scope_Stack.Table (Level).Entity;
5702 exit when Scop = Scope (E);
5703 Level := Level - 1;
5704 exit when Scop = Standard_Standard;
5705 end loop;
5706
5707 -- Now search remainder of homonym chain for more inner entry
5708 -- If the entity is Standard itself, it has no scope, and we
5709 -- compare it with the stack entry directly.
5710
5711 E2 := Homonym (E);
5712 while Present (E2) loop
5713 if Is_Immediately_Visible (E2) then
5714
5715 -- If a generic package contains a local declaration that
5716 -- has the same name as the generic, there may be a visibility
5717 -- conflict in an instance, where the local declaration must
5718 -- also hide the name of the corresponding package renaming.
5719 -- We check explicitly for a package declared by a renaming,
5720 -- whose renamed entity is an instance that is on the scope
5721 -- stack, and that contains a homonym in the same scope. Once
5722 -- we have found it, we know that the package renaming is not
5723 -- immediately visible, and that the identifier denotes the
5724 -- other entity (and its homonyms if overloaded).
5725
5726 if Scope (E) = Scope (E2)
5727 and then Ekind (E) = E_Package
5728 and then Present (Renamed_Object (E))
5729 and then Is_Generic_Instance (Renamed_Object (E))
5730 and then In_Open_Scopes (Renamed_Object (E))
5731 and then Comes_From_Source (N)
5732 then
5733 Set_Is_Immediately_Visible (E, False);
5734 E := E2;
5735
5736 else
5737 for J in Level + 1 .. Scope_Stack.Last loop
5738 if Scope_Stack.Table (J).Entity = Scope (E2)
5739 or else Scope_Stack.Table (J).Entity = E2
5740 then
5741 Level := J;
5742 E := E2;
5743 exit;
5744 end if;
5745 end loop;
5746 end if;
5747 end if;
5748
5749 E2 := Homonym (E2);
5750 end loop;
5751
5752 -- At the end of that loop, E is the innermost immediately
5753 -- visible entity, so we are all set.
5754 end;
5755
5756 -- Come here with entity found, and stored in E
5757
5758 <<Found>> begin
5759
5760 -- Check violation of No_Wide_Characters restriction
5761
5762 Check_Wide_Character_Restriction (E, N);
5763
5764 -- When distribution features are available (Get_PCS_Name /=
5765 -- Name_No_DSA), a remote access-to-subprogram type is converted
5766 -- into a record type holding whatever information is needed to
5767 -- perform a remote call on an RCI subprogram. In that case we
5768 -- rewrite any occurrence of the RAS type into the equivalent record
5769 -- type here. 'Access attribute references and RAS dereferences are
5770 -- then implemented using specific TSSs. However when distribution is
5771 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5772 -- generation of these TSSs, and we must keep the RAS type in its
5773 -- original access-to-subprogram form (since all calls through a
5774 -- value of such type will be local anyway in the absence of a PCS).
5775
5776 if Comes_From_Source (N)
5777 and then Is_Remote_Access_To_Subprogram_Type (E)
5778 and then Ekind (E) = E_Access_Subprogram_Type
5779 and then Expander_Active
5780 and then Get_PCS_Name /= Name_No_DSA
5781 then
5782 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5783 goto Done;
5784 end if;
5785
5786 -- Set the entity. Note that the reason we call Set_Entity for the
5787 -- overloadable case, as opposed to Set_Entity_With_Checks is
5788 -- that in the overloaded case, the initial call can set the wrong
5789 -- homonym. The call that sets the right homonym is in Sem_Res and
5790 -- that call does use Set_Entity_With_Checks, so we don't miss
5791 -- a style check.
5792
5793 if Is_Overloadable (E) then
5794 Set_Entity (N, E);
5795 else
5796 Set_Entity_With_Checks (N, E);
5797 end if;
5798
5799 if Is_Type (E) then
5800 Set_Etype (N, E);
5801 else
5802 Set_Etype (N, Get_Full_View (Etype (E)));
5803 end if;
5804
5805 if Debug_Flag_E then
5806 Write_Str (" found ");
5807 Write_Entity_Info (E, " ");
5808 end if;
5809
5810 -- If the Ekind of the entity is Void, it means that all homonyms
5811 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5812 -- test is skipped if the current scope is a record and the name is
5813 -- a pragma argument expression (case of Atomic and Volatile pragmas
5814 -- and possibly other similar pragmas added later, which are allowed
5815 -- to reference components in the current record).
5816
5817 if Ekind (E) = E_Void
5818 and then
5819 (not Is_Record_Type (Current_Scope)
5820 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5821 then
5822 Premature_Usage (N);
5823
5824 -- If the entity is overloadable, collect all interpretations of the
5825 -- name for subsequent overload resolution. We optimize a bit here to
5826 -- do this only if we have an overloadable entity that is not on its
5827 -- own on the homonym chain.
5828
5829 elsif Is_Overloadable (E)
5830 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5831 then
5832 Collect_Interps (N);
5833
5834 -- If no homonyms were visible, the entity is unambiguous
5835
5836 if not Is_Overloaded (N) then
5837 if not Is_Actual_Parameter then
5838 Generate_Reference (E, N);
5839 end if;
5840 end if;
5841
5842 -- Case of non-overloadable entity, set the entity providing that
5843 -- we do not have the case of a discriminant reference within a
5844 -- default expression. Such references are replaced with the
5845 -- corresponding discriminal, which is the formal corresponding to
5846 -- to the discriminant in the initialization procedure.
5847
5848 else
5849 -- Entity is unambiguous, indicate that it is referenced here
5850
5851 -- For a renaming of an object, always generate simple reference,
5852 -- we don't try to keep track of assignments in this case, except
5853 -- in SPARK mode where renamings are traversed for generating
5854 -- local effects of subprograms.
5855
5856 if Is_Object (E)
5857 and then Present (Renamed_Object (E))
5858 and then not GNATprove_Mode
5859 then
5860 Generate_Reference (E, N);
5861
5862 -- If the renamed entity is a private protected component,
5863 -- reference the original component as well. This needs to be
5864 -- done because the private renamings are installed before any
5865 -- analysis has occurred. Reference to a private component will
5866 -- resolve to the renaming and the original component will be
5867 -- left unreferenced, hence the following.
5868
5869 if Is_Prival (E) then
5870 Generate_Reference (Prival_Link (E), N);
5871 end if;
5872
5873 -- One odd case is that we do not want to set the Referenced flag
5874 -- if the entity is a label, and the identifier is the label in
5875 -- the source, since this is not a reference from the point of
5876 -- view of the user.
5877
5878 elsif Nkind (Parent (N)) = N_Label then
5879 declare
5880 R : constant Boolean := Referenced (E);
5881
5882 begin
5883 -- Generate reference unless this is an actual parameter
5884 -- (see comment below)
5885
5886 if Is_Actual_Parameter then
5887 Generate_Reference (E, N);
5888 Set_Referenced (E, R);
5889 end if;
5890 end;
5891
5892 -- Normal case, not a label: generate reference
5893
5894 else
5895 if not Is_Actual_Parameter then
5896
5897 -- Package or generic package is always a simple reference
5898
5899 if Ekind_In (E, E_Package, E_Generic_Package) then
5900 Generate_Reference (E, N, 'r');
5901
5902 -- Else see if we have a left hand side
5903
5904 else
5905 case Is_LHS (N) is
5906 when Yes =>
5907 Generate_Reference (E, N, 'm');
5908
5909 when No =>
5910 Generate_Reference (E, N, 'r');
5911
5912 -- If we don't know now, generate reference later
5913
5914 when Unknown =>
5915 Deferred_References.Append ((E, N));
5916 end case;
5917 end if;
5918 end if;
5919 end if;
5920
5921 Set_Entity_Or_Discriminal (N, E);
5922
5923 -- The name may designate a generalized reference, in which case
5924 -- the dereference interpretation will be included. Context is
5925 -- one in which a name is legal.
5926
5927 if Ada_Version >= Ada_2012
5928 and then
5929 (Nkind (Parent (N)) in N_Subexpr
5930 or else Nkind_In (Parent (N), N_Assignment_Statement,
5931 N_Object_Declaration,
5932 N_Parameter_Association))
5933 then
5934 Check_Implicit_Dereference (N, Etype (E));
5935 end if;
5936 end if;
5937 end;
5938
5939 -- Mark relevant use-type and use-package clauses as effective if the
5940 -- node in question is not overloaded and therefore does not require
5941 -- resolution.
5942 --
5943 -- Note: Generic actual subprograms do not follow the normal resolution
5944 -- path, so ignore the fact that they are overloaded and mark them
5945 -- anyway.
5946
5947 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
5948 Mark_Use_Clauses (N);
5949 end if;
5950
5951 -- Come here with entity set
5952
5953 <<Done>>
5954 Check_Restriction_No_Use_Of_Entity (N);
5955
5956 -- Annotate the tree by creating a variable reference marker in case the
5957 -- original variable reference is folded or optimized away. The variable
5958 -- reference marker is automatically saved for later examination by the
5959 -- ABE Processing phase. Variable references which act as actuals in a
5960 -- call require special processing and are left to Resolve_Actuals. The
5961 -- reference is a write when it appears on the left hand side of an
5962 -- assignment.
5963
5964 if Needs_Variable_Reference_Marker
5965 (N => N,
5966 Calls_OK => False)
5967 then
5968 declare
5969 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
5970
5971 begin
5972 Build_Variable_Reference_Marker
5973 (N => N,
5974 Read => not Is_Assignment_LHS,
5975 Write => Is_Assignment_LHS);
5976 end;
5977 end if;
5978 end Find_Direct_Name;
5979
5980 ------------------------
5981 -- Find_Expanded_Name --
5982 ------------------------
5983
5984 -- This routine searches the homonym chain of the entity until it finds
5985 -- an entity declared in the scope denoted by the prefix. If the entity
5986 -- is private, it may nevertheless be immediately visible, if we are in
5987 -- the scope of its declaration.
5988
5989 procedure Find_Expanded_Name (N : Node_Id) is
5990 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
5991 -- Determine whether expanded name Nod appears within a pragma which is
5992 -- a suitable context for an abstract view of a state or variable. The
5993 -- following pragmas fall in this category:
5994 -- Depends
5995 -- Global
5996 -- Initializes
5997 -- Refined_Depends
5998 -- Refined_Global
5999 --
6000 -- In addition, pragma Abstract_State is also considered suitable even
6001 -- though it is an illegal context for an abstract view as this allows
6002 -- for proper resolution of abstract views of variables. This illegal
6003 -- context is later flagged in the analysis of indicator Part_Of.
6004
6005 -----------------------------
6006 -- In_Abstract_View_Pragma --
6007 -----------------------------
6008
6009 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
6010 Par : Node_Id;
6011
6012 begin
6013 -- Climb the parent chain looking for a pragma
6014
6015 Par := Nod;
6016 while Present (Par) loop
6017 if Nkind (Par) = N_Pragma then
6018 if Nam_In (Pragma_Name_Unmapped (Par),
6019 Name_Abstract_State,
6020 Name_Depends,
6021 Name_Global,
6022 Name_Initializes,
6023 Name_Refined_Depends,
6024 Name_Refined_Global)
6025 then
6026 return True;
6027
6028 -- Otherwise the pragma is not a legal context for an abstract
6029 -- view.
6030
6031 else
6032 exit;
6033 end if;
6034
6035 -- Prevent the search from going too far
6036
6037 elsif Is_Body_Or_Package_Declaration (Par) then
6038 exit;
6039 end if;
6040
6041 Par := Parent (Par);
6042 end loop;
6043
6044 return False;
6045 end In_Abstract_View_Pragma;
6046
6047 -- Local variables
6048
6049 Selector : constant Node_Id := Selector_Name (N);
6050
6051 Candidate : Entity_Id := Empty;
6052 P_Name : Entity_Id;
6053 Id : Entity_Id;
6054
6055 -- Start of processing for Find_Expanded_Name
6056
6057 begin
6058 P_Name := Entity (Prefix (N));
6059
6060 -- If the prefix is a renamed package, look for the entity in the
6061 -- original package.
6062
6063 if Ekind (P_Name) = E_Package
6064 and then Present (Renamed_Object (P_Name))
6065 then
6066 P_Name := Renamed_Object (P_Name);
6067
6068 -- Rewrite node with entity field pointing to renamed object
6069
6070 Rewrite (Prefix (N), New_Copy (Prefix (N)));
6071 Set_Entity (Prefix (N), P_Name);
6072
6073 -- If the prefix is an object of a concurrent type, look for
6074 -- the entity in the associated task or protected type.
6075
6076 elsif Is_Concurrent_Type (Etype (P_Name)) then
6077 P_Name := Etype (P_Name);
6078 end if;
6079
6080 Id := Current_Entity (Selector);
6081
6082 declare
6083 Is_New_Candidate : Boolean;
6084
6085 begin
6086 while Present (Id) loop
6087 if Scope (Id) = P_Name then
6088 Candidate := Id;
6089 Is_New_Candidate := True;
6090
6091 -- Handle abstract views of states and variables. These are
6092 -- acceptable candidates only when the reference to the view
6093 -- appears in certain pragmas.
6094
6095 if Ekind (Id) = E_Abstract_State
6096 and then From_Limited_With (Id)
6097 and then Present (Non_Limited_View (Id))
6098 then
6099 if In_Abstract_View_Pragma (N) then
6100 Candidate := Non_Limited_View (Id);
6101 Is_New_Candidate := True;
6102
6103 -- Hide the candidate because it is not used in a proper
6104 -- context.
6105
6106 else
6107 Candidate := Empty;
6108 Is_New_Candidate := False;
6109 end if;
6110 end if;
6111
6112 -- Ada 2005 (AI-217): Handle shadow entities associated with
6113 -- types declared in limited-withed nested packages. We don't need
6114 -- to handle E_Incomplete_Subtype entities because the entities
6115 -- in the limited view are always E_Incomplete_Type and
6116 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6117
6118 -- Regarding the expression used to evaluate the scope, it
6119 -- is important to note that the limited view also has shadow
6120 -- entities associated nested packages. For this reason the
6121 -- correct scope of the entity is the scope of the real entity.
6122 -- The non-limited view may itself be incomplete, in which case
6123 -- get the full view if available.
6124
6125 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
6126 and then From_Limited_With (Id)
6127 and then Present (Non_Limited_View (Id))
6128 and then Scope (Non_Limited_View (Id)) = P_Name
6129 then
6130 Candidate := Get_Full_View (Non_Limited_View (Id));
6131 Is_New_Candidate := True;
6132
6133 -- An unusual case arises with a fully qualified name for an
6134 -- entity local to a generic child unit package, within an
6135 -- instantiation of that package. The name of the unit now
6136 -- denotes the renaming created within the instance. This is
6137 -- only relevant in an instance body, see below.
6138
6139 elsif Is_Generic_Instance (Scope (Id))
6140 and then In_Open_Scopes (Scope (Id))
6141 and then In_Instance_Body
6142 and then Ekind (Scope (Id)) = E_Package
6143 and then Ekind (Id) = E_Package
6144 and then Renamed_Entity (Id) = Scope (Id)
6145 and then Is_Immediately_Visible (P_Name)
6146 then
6147 Is_New_Candidate := True;
6148
6149 else
6150 Is_New_Candidate := False;
6151 end if;
6152
6153 if Is_New_Candidate then
6154
6155 -- If entity is a child unit, either it is a visible child of
6156 -- the prefix, or we are in the body of a generic prefix, as
6157 -- will happen when a child unit is instantiated in the body
6158 -- of a generic parent. This is because the instance body does
6159 -- not restore the full compilation context, given that all
6160 -- non-local references have been captured.
6161
6162 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6163 exit when Is_Visible_Lib_Unit (Id)
6164 or else (Is_Child_Unit (Id)
6165 and then In_Open_Scopes (Scope (Id))
6166 and then In_Instance_Body);
6167 else
6168 exit when not Is_Hidden (Id);
6169 end if;
6170
6171 exit when Is_Immediately_Visible (Id);
6172 end if;
6173
6174 Id := Homonym (Id);
6175 end loop;
6176 end;
6177
6178 if No (Id)
6179 and then Ekind_In (P_Name, E_Procedure, E_Function)
6180 and then Is_Generic_Instance (P_Name)
6181 then
6182 -- Expanded name denotes entity in (instance of) generic subprogram.
6183 -- The entity may be in the subprogram instance, or may denote one of
6184 -- the formals, which is declared in the enclosing wrapper package.
6185
6186 P_Name := Scope (P_Name);
6187
6188 Id := Current_Entity (Selector);
6189 while Present (Id) loop
6190 exit when Scope (Id) = P_Name;
6191 Id := Homonym (Id);
6192 end loop;
6193 end if;
6194
6195 if No (Id) or else Chars (Id) /= Chars (Selector) then
6196 Set_Etype (N, Any_Type);
6197
6198 -- If we are looking for an entity defined in System, try to find it
6199 -- in the child package that may have been provided as an extension
6200 -- to System. The Extend_System pragma will have supplied the name of
6201 -- the extension, which may have to be loaded.
6202
6203 if Chars (P_Name) = Name_System
6204 and then Scope (P_Name) = Standard_Standard
6205 and then Present (System_Extend_Unit)
6206 and then Present_System_Aux (N)
6207 then
6208 Set_Entity (Prefix (N), System_Aux_Id);
6209 Find_Expanded_Name (N);
6210 return;
6211
6212 -- There is an implicit instance of the predefined operator in
6213 -- the given scope. The operator entity is defined in Standard.
6214 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6215
6216 elsif Nkind (Selector) = N_Operator_Symbol
6217 and then Has_Implicit_Operator (N)
6218 then
6219 return;
6220
6221 -- If there is no literal defined in the scope denoted by the
6222 -- prefix, the literal may belong to (a type derived from)
6223 -- Standard_Character, for which we have no explicit literals.
6224
6225 elsif Nkind (Selector) = N_Character_Literal
6226 and then Has_Implicit_Character_Literal (N)
6227 then
6228 return;
6229
6230 else
6231 -- If the prefix is a single concurrent object, use its name in
6232 -- the error message, rather than that of the anonymous type.
6233
6234 if Is_Concurrent_Type (P_Name)
6235 and then Is_Internal_Name (Chars (P_Name))
6236 then
6237 Error_Msg_Node_2 := Entity (Prefix (N));
6238 else
6239 Error_Msg_Node_2 := P_Name;
6240 end if;
6241
6242 if P_Name = System_Aux_Id then
6243 P_Name := Scope (P_Name);
6244 Set_Entity (Prefix (N), P_Name);
6245 end if;
6246
6247 if Present (Candidate) then
6248
6249 -- If we know that the unit is a child unit we can give a more
6250 -- accurate error message.
6251
6252 if Is_Child_Unit (Candidate) then
6253
6254 -- If the candidate is a private child unit and we are in
6255 -- the visible part of a public unit, specialize the error
6256 -- message. There might be a private with_clause for it,
6257 -- but it is not currently active.
6258
6259 if Is_Private_Descendant (Candidate)
6260 and then Ekind (Current_Scope) = E_Package
6261 and then not In_Private_Part (Current_Scope)
6262 and then not Is_Private_Descendant (Current_Scope)
6263 then
6264 Error_Msg_N
6265 ("private child unit& is not visible here", Selector);
6266
6267 -- Normal case where we have a missing with for a child unit
6268
6269 else
6270 Error_Msg_Qual_Level := 99;
6271 Error_Msg_NE -- CODEFIX
6272 ("missing `WITH &;`", Selector, Candidate);
6273 Error_Msg_Qual_Level := 0;
6274 end if;
6275
6276 -- Here we don't know that this is a child unit
6277
6278 else
6279 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6280 end if;
6281
6282 else
6283 -- Within the instantiation of a child unit, the prefix may
6284 -- denote the parent instance, but the selector has the name
6285 -- of the original child. That is to say, when A.B appears
6286 -- within an instantiation of generic child unit B, the scope
6287 -- stack includes an instance of A (P_Name) and an instance
6288 -- of B under some other name. We scan the scope to find this
6289 -- child instance, which is the desired entity.
6290 -- Note that the parent may itself be a child instance, if
6291 -- the reference is of the form A.B.C, in which case A.B has
6292 -- already been rewritten with the proper entity.
6293
6294 if In_Open_Scopes (P_Name)
6295 and then Is_Generic_Instance (P_Name)
6296 then
6297 declare
6298 Gen_Par : constant Entity_Id :=
6299 Generic_Parent (Specification
6300 (Unit_Declaration_Node (P_Name)));
6301 S : Entity_Id := Current_Scope;
6302 P : Entity_Id;
6303
6304 begin
6305 for J in reverse 0 .. Scope_Stack.Last loop
6306 S := Scope_Stack.Table (J).Entity;
6307
6308 exit when S = Standard_Standard;
6309
6310 if Ekind_In (S, E_Function,
6311 E_Package,
6312 E_Procedure)
6313 then
6314 P :=
6315 Generic_Parent (Specification
6316 (Unit_Declaration_Node (S)));
6317
6318 -- Check that P is a generic child of the generic
6319 -- parent of the prefix.
6320
6321 if Present (P)
6322 and then Chars (P) = Chars (Selector)
6323 and then Scope (P) = Gen_Par
6324 then
6325 Id := S;
6326 goto Found;
6327 end if;
6328 end if;
6329
6330 end loop;
6331 end;
6332 end if;
6333
6334 -- If this is a selection from Ada, System or Interfaces, then
6335 -- we assume a missing with for the corresponding package.
6336
6337 if Is_Known_Unit (N)
6338 and then not (Present (Entity (Prefix (N)))
6339 and then Scope (Entity (Prefix (N))) /=
6340 Standard_Standard)
6341 then
6342 if not Error_Posted (N) then
6343 Error_Msg_Node_2 := Selector;
6344 Error_Msg_N -- CODEFIX
6345 ("missing `WITH &.&;`", Prefix (N));
6346 end if;
6347
6348 -- If this is a selection from a dummy package, then suppress
6349 -- the error message, of course the entity is missing if the
6350 -- package is missing.
6351
6352 elsif Sloc (Error_Msg_Node_2) = No_Location then
6353 null;
6354
6355 -- Here we have the case of an undefined component
6356
6357 else
6358 -- The prefix may hide a homonym in the context that
6359 -- declares the desired entity. This error can use a
6360 -- specialized message.
6361
6362 if In_Open_Scopes (P_Name) then
6363 declare
6364 H : constant Entity_Id := Homonym (P_Name);
6365
6366 begin
6367 if Present (H)
6368 and then Is_Compilation_Unit (H)
6369 and then
6370 (Is_Immediately_Visible (H)
6371 or else Is_Visible_Lib_Unit (H))
6372 then
6373 Id := First_Entity (H);
6374 while Present (Id) loop
6375 if Chars (Id) = Chars (Selector) then
6376 Error_Msg_Qual_Level := 99;
6377 Error_Msg_Name_1 := Chars (Selector);
6378 Error_Msg_NE
6379 ("% not declared in&", N, P_Name);
6380 Error_Msg_NE
6381 ("\use fully qualified name starting with "
6382 & "Standard to make& visible", N, H);
6383 Error_Msg_Qual_Level := 0;
6384 goto Done;
6385 end if;
6386
6387 Next_Entity (Id);
6388 end loop;
6389 end if;
6390
6391 -- If not found, standard error message
6392
6393 Error_Msg_NE ("& not declared in&", N, Selector);
6394
6395 <<Done>> null;
6396 end;
6397
6398 else
6399 -- Might be worth specializing the case when the prefix
6400 -- is a limited view.
6401 -- ... not declared in limited view of...
6402
6403 Error_Msg_NE ("& not declared in&", N, Selector);
6404 end if;
6405
6406 -- Check for misspelling of some entity in prefix
6407
6408 Id := First_Entity (P_Name);
6409 while Present (Id) loop
6410 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6411 and then not Is_Internal_Name (Chars (Id))
6412 then
6413 Error_Msg_NE -- CODEFIX
6414 ("possible misspelling of&", Selector, Id);
6415 exit;
6416 end if;
6417
6418 Next_Entity (Id);
6419 end loop;
6420
6421 -- Specialize the message if this may be an instantiation
6422 -- of a child unit that was not mentioned in the context.
6423
6424 if Nkind (Parent (N)) = N_Package_Instantiation
6425 and then Is_Generic_Instance (Entity (Prefix (N)))
6426 and then Is_Compilation_Unit
6427 (Generic_Parent (Parent (Entity (Prefix (N)))))
6428 then
6429 Error_Msg_Node_2 := Selector;
6430 Error_Msg_N -- CODEFIX
6431 ("\missing `WITH &.&;`", Prefix (N));
6432 end if;
6433 end if;
6434 end if;
6435
6436 Id := Any_Id;
6437 end if;
6438 end if;
6439
6440 <<Found>>
6441 if Comes_From_Source (N)
6442 and then Is_Remote_Access_To_Subprogram_Type (Id)
6443 and then Ekind (Id) = E_Access_Subprogram_Type
6444 and then Present (Equivalent_Type (Id))
6445 then
6446 -- If we are not actually generating distribution code (i.e. the
6447 -- current PCS is the dummy non-distributed version), then the
6448 -- Equivalent_Type will be missing, and Id should be treated as
6449 -- a regular access-to-subprogram type.
6450
6451 Id := Equivalent_Type (Id);
6452 Set_Chars (Selector, Chars (Id));
6453 end if;
6454
6455 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6456
6457 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6458 if From_Limited_With (Id)
6459 or else Is_Type (Id)
6460 or else Ekind (Id) = E_Package
6461 then
6462 null;
6463 else
6464 Error_Msg_N
6465 ("limited withed package can only be used to access incomplete "
6466 & "types", N);
6467 end if;
6468 end if;
6469
6470 if Is_Task_Type (P_Name)
6471 and then ((Ekind (Id) = E_Entry
6472 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6473 or else
6474 (Ekind (Id) = E_Entry_Family
6475 and then
6476 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6477 then
6478 -- If both the task type and the entry are in scope, this may still
6479 -- be the expanded name of an entry formal.
6480
6481 if In_Open_Scopes (Id)
6482 and then Nkind (Parent (N)) = N_Selected_Component
6483 then
6484 null;
6485
6486 else
6487 -- It is an entry call after all, either to the current task
6488 -- (which will deadlock) or to an enclosing task.
6489
6490 Analyze_Selected_Component (N);
6491 return;
6492 end if;
6493 end if;
6494
6495 Change_Selected_Component_To_Expanded_Name (N);
6496
6497 -- Preserve relevant elaboration-related attributes of the context which
6498 -- are no longer available or very expensive to recompute once analysis,
6499 -- resolution, and expansion are over.
6500
6501 Mark_Elaboration_Attributes
6502 (N_Id => N,
6503 Modes => True);
6504
6505 -- Set appropriate type
6506
6507 if Is_Type (Id) then
6508 Set_Etype (N, Id);
6509 else
6510 Set_Etype (N, Get_Full_View (Etype (Id)));
6511 end if;
6512
6513 -- Do style check and generate reference, but skip both steps if this
6514 -- entity has homonyms, since we may not have the right homonym set yet.
6515 -- The proper homonym will be set during the resolve phase.
6516
6517 if Has_Homonym (Id) then
6518 Set_Entity (N, Id);
6519
6520 else
6521 Set_Entity_Or_Discriminal (N, Id);
6522
6523 case Is_LHS (N) is
6524 when Yes =>
6525 Generate_Reference (Id, N, 'm');
6526
6527 when No =>
6528 Generate_Reference (Id, N, 'r');
6529
6530 when Unknown =>
6531 Deferred_References.Append ((Id, N));
6532 end case;
6533 end if;
6534
6535 -- Check for violation of No_Wide_Characters
6536
6537 Check_Wide_Character_Restriction (Id, N);
6538
6539 -- If the Ekind of the entity is Void, it means that all homonyms are
6540 -- hidden from all visibility (RM 8.3(5,14-20)).
6541
6542 if Ekind (Id) = E_Void then
6543 Premature_Usage (N);
6544
6545 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6546 declare
6547 H : Entity_Id := Homonym (Id);
6548
6549 begin
6550 while Present (H) loop
6551 if Scope (H) = Scope (Id)
6552 and then (not Is_Hidden (H)
6553 or else Is_Immediately_Visible (H))
6554 then
6555 Collect_Interps (N);
6556 exit;
6557 end if;
6558
6559 H := Homonym (H);
6560 end loop;
6561
6562 -- If an extension of System is present, collect possible explicit
6563 -- overloadings declared in the extension.
6564
6565 if Chars (P_Name) = Name_System
6566 and then Scope (P_Name) = Standard_Standard
6567 and then Present (System_Extend_Unit)
6568 and then Present_System_Aux (N)
6569 then
6570 H := Current_Entity (Id);
6571
6572 while Present (H) loop
6573 if Scope (H) = System_Aux_Id then
6574 Add_One_Interp (N, H, Etype (H));
6575 end if;
6576
6577 H := Homonym (H);
6578 end loop;
6579 end if;
6580 end;
6581 end if;
6582
6583 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6584 and then Scope (Id) /= Standard_Standard
6585 then
6586 -- In addition to user-defined operators in the given scope, there
6587 -- may be an implicit instance of the predefined operator. The
6588 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6589 -- and added to the interpretations. Procedure Add_One_Interp will
6590 -- determine which hides which.
6591
6592 if Has_Implicit_Operator (N) then
6593 null;
6594 end if;
6595 end if;
6596
6597 -- If there is a single interpretation for N we can generate a
6598 -- reference to the unique entity found.
6599
6600 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6601 Generate_Reference (Id, N);
6602 end if;
6603
6604 -- Mark relevant use-type and use-package clauses as effective if the
6605 -- node in question is not overloaded and therefore does not require
6606 -- resolution.
6607
6608 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6609 Mark_Use_Clauses (N);
6610 end if;
6611
6612 Check_Restriction_No_Use_Of_Entity (N);
6613
6614 -- Annotate the tree by creating a variable reference marker in case the
6615 -- original variable reference is folded or optimized away. The variable
6616 -- reference marker is automatically saved for later examination by the
6617 -- ABE Processing phase. Variable references which act as actuals in a
6618 -- call require special processing and are left to Resolve_Actuals. The
6619 -- reference is a write when it appears on the left hand side of an
6620 -- assignment.
6621
6622 if Needs_Variable_Reference_Marker
6623 (N => N,
6624 Calls_OK => False)
6625 then
6626 declare
6627 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
6628
6629 begin
6630 Build_Variable_Reference_Marker
6631 (N => N,
6632 Read => not Is_Assignment_LHS,
6633 Write => Is_Assignment_LHS);
6634 end;
6635 end if;
6636 end Find_Expanded_Name;
6637
6638 --------------------
6639 -- Find_Most_Prev --
6640 --------------------
6641
6642 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id is
6643 Curr : Node_Id;
6644
6645 begin
6646 -- Loop through the Prev_Use_Clause chain
6647
6648 Curr := Use_Clause;
6649 while Present (Prev_Use_Clause (Curr)) loop
6650 Curr := Prev_Use_Clause (Curr);
6651 end loop;
6652
6653 return Curr;
6654 end Find_Most_Prev;
6655
6656 -------------------------
6657 -- Find_Renamed_Entity --
6658 -------------------------
6659
6660 function Find_Renamed_Entity
6661 (N : Node_Id;
6662 Nam : Node_Id;
6663 New_S : Entity_Id;
6664 Is_Actual : Boolean := False) return Entity_Id
6665 is
6666 Ind : Interp_Index;
6667 I1 : Interp_Index := 0; -- Suppress junk warnings
6668 It : Interp;
6669 It1 : Interp;
6670 Old_S : Entity_Id;
6671 Inst : Entity_Id;
6672
6673 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6674 -- If the renamed entity is an implicit operator, check whether it is
6675 -- visible because its operand type is properly visible. This check
6676 -- applies to explicit renamed entities that appear in the source in a
6677 -- renaming declaration or a formal subprogram instance, but not to
6678 -- default generic actuals with a name.
6679
6680 function Report_Overload return Entity_Id;
6681 -- List possible interpretations, and specialize message in the
6682 -- case of a generic actual.
6683
6684 function Within (Inner, Outer : Entity_Id) return Boolean;
6685 -- Determine whether a candidate subprogram is defined within the
6686 -- enclosing instance. If yes, it has precedence over outer candidates.
6687
6688 --------------------------
6689 -- Is_Visible_Operation --
6690 --------------------------
6691
6692 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6693 Scop : Entity_Id;
6694 Typ : Entity_Id;
6695 Btyp : Entity_Id;
6696
6697 begin
6698 if Ekind (Op) /= E_Operator
6699 or else Scope (Op) /= Standard_Standard
6700 or else (In_Instance
6701 and then (not Is_Actual
6702 or else Present (Enclosing_Instance)))
6703 then
6704 return True;
6705
6706 else
6707 -- For a fixed point type operator, check the resulting type,
6708 -- because it may be a mixed mode integer * fixed operation.
6709
6710 if Present (Next_Formal (First_Formal (New_S)))
6711 and then Is_Fixed_Point_Type (Etype (New_S))
6712 then
6713 Typ := Etype (New_S);
6714 else
6715 Typ := Etype (First_Formal (New_S));
6716 end if;
6717
6718 Btyp := Base_Type (Typ);
6719
6720 if Nkind (Nam) /= N_Expanded_Name then
6721 return (In_Open_Scopes (Scope (Btyp))
6722 or else Is_Potentially_Use_Visible (Btyp)
6723 or else In_Use (Btyp)
6724 or else In_Use (Scope (Btyp)));
6725
6726 else
6727 Scop := Entity (Prefix (Nam));
6728
6729 if Ekind (Scop) = E_Package
6730 and then Present (Renamed_Object (Scop))
6731 then
6732 Scop := Renamed_Object (Scop);
6733 end if;
6734
6735 -- Operator is visible if prefix of expanded name denotes
6736 -- scope of type, or else type is defined in System_Aux
6737 -- and the prefix denotes System.
6738
6739 return Scope (Btyp) = Scop
6740 or else (Scope (Btyp) = System_Aux_Id
6741 and then Scope (Scope (Btyp)) = Scop);
6742 end if;
6743 end if;
6744 end Is_Visible_Operation;
6745
6746 ------------
6747 -- Within --
6748 ------------
6749
6750 function Within (Inner, Outer : Entity_Id) return Boolean is
6751 Sc : Entity_Id;
6752
6753 begin
6754 Sc := Scope (Inner);
6755 while Sc /= Standard_Standard loop
6756 if Sc = Outer then
6757 return True;
6758 else
6759 Sc := Scope (Sc);
6760 end if;
6761 end loop;
6762
6763 return False;
6764 end Within;
6765
6766 ---------------------
6767 -- Report_Overload --
6768 ---------------------
6769
6770 function Report_Overload return Entity_Id is
6771 begin
6772 if Is_Actual then
6773 Error_Msg_NE -- CODEFIX
6774 ("ambiguous actual subprogram&, " &
6775 "possible interpretations:", N, Nam);
6776 else
6777 Error_Msg_N -- CODEFIX
6778 ("ambiguous subprogram, " &
6779 "possible interpretations:", N);
6780 end if;
6781
6782 List_Interps (Nam, N);
6783 return Old_S;
6784 end Report_Overload;
6785
6786 -- Start of processing for Find_Renamed_Entity
6787
6788 begin
6789 Old_S := Any_Id;
6790 Candidate_Renaming := Empty;
6791
6792 if Is_Overloaded (Nam) then
6793 Get_First_Interp (Nam, Ind, It);
6794 while Present (It.Nam) loop
6795 if Entity_Matches_Spec (It.Nam, New_S)
6796 and then Is_Visible_Operation (It.Nam)
6797 then
6798 if Old_S /= Any_Id then
6799
6800 -- Note: The call to Disambiguate only happens if a
6801 -- previous interpretation was found, in which case I1
6802 -- has received a value.
6803
6804 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6805
6806 if It1 = No_Interp then
6807 Inst := Enclosing_Instance;
6808
6809 if Present (Inst) then
6810 if Within (It.Nam, Inst) then
6811 if Within (Old_S, Inst) then
6812
6813 -- Choose the innermost subprogram, which would
6814 -- have hidden the outer one in the generic.
6815
6816 if Scope_Depth (It.Nam) <
6817 Scope_Depth (Old_S)
6818 then
6819 return Old_S;
6820 else
6821 return It.Nam;
6822 end if;
6823 end if;
6824
6825 elsif Within (Old_S, Inst) then
6826 return (Old_S);
6827
6828 else
6829 return Report_Overload;
6830 end if;
6831
6832 -- If not within an instance, ambiguity is real
6833
6834 else
6835 return Report_Overload;
6836 end if;
6837
6838 else
6839 Old_S := It1.Nam;
6840 exit;
6841 end if;
6842
6843 else
6844 I1 := Ind;
6845 Old_S := It.Nam;
6846 end if;
6847
6848 elsif
6849 Present (First_Formal (It.Nam))
6850 and then Present (First_Formal (New_S))
6851 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6852 Base_Type (Etype (First_Formal (New_S))))
6853 then
6854 Candidate_Renaming := It.Nam;
6855 end if;
6856
6857 Get_Next_Interp (Ind, It);
6858 end loop;
6859
6860 Set_Entity (Nam, Old_S);
6861
6862 if Old_S /= Any_Id then
6863 Set_Is_Overloaded (Nam, False);
6864 end if;
6865
6866 -- Non-overloaded case
6867
6868 else
6869 if Is_Actual
6870 and then Present (Enclosing_Instance)
6871 and then Entity_Matches_Spec (Entity (Nam), New_S)
6872 then
6873 Old_S := Entity (Nam);
6874
6875 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6876 Candidate_Renaming := New_S;
6877
6878 if Is_Visible_Operation (Entity (Nam)) then
6879 Old_S := Entity (Nam);
6880 end if;
6881
6882 elsif Present (First_Formal (Entity (Nam)))
6883 and then Present (First_Formal (New_S))
6884 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6885 Base_Type (Etype (First_Formal (New_S))))
6886 then
6887 Candidate_Renaming := Entity (Nam);
6888 end if;
6889 end if;
6890
6891 return Old_S;
6892 end Find_Renamed_Entity;
6893
6894 -----------------------------
6895 -- Find_Selected_Component --
6896 -----------------------------
6897
6898 procedure Find_Selected_Component (N : Node_Id) is
6899 P : constant Node_Id := Prefix (N);
6900
6901 P_Name : Entity_Id;
6902 -- Entity denoted by prefix
6903
6904 P_Type : Entity_Id;
6905 -- and its type
6906
6907 Nam : Node_Id;
6908
6909 function Available_Subtype return Boolean;
6910 -- A small optimization: if the prefix is constrained and the component
6911 -- is an array type we may already have a usable subtype for it, so we
6912 -- can use it rather than generating a new one, because the bounds
6913 -- will be the values of the discriminants and not discriminant refs.
6914 -- This simplifies value tracing in GNATProve. For consistency, both
6915 -- the entity name and the subtype come from the constrained component.
6916
6917 -- This is only used in GNATProve mode: when generating code it may be
6918 -- necessary to create an itype in the scope of use of the selected
6919 -- component, e.g. in the context of a expanded record equality.
6920
6921 function Is_Reference_In_Subunit return Boolean;
6922 -- In a subunit, the scope depth is not a proper measure of hiding,
6923 -- because the context of the proper body may itself hide entities in
6924 -- parent units. This rare case requires inspecting the tree directly
6925 -- because the proper body is inserted in the main unit and its context
6926 -- is simply added to that of the parent.
6927
6928 -----------------------
6929 -- Available_Subtype --
6930 -----------------------
6931
6932 function Available_Subtype return Boolean is
6933 Comp : Entity_Id;
6934
6935 begin
6936 if GNATprove_Mode then
6937 Comp := First_Entity (Etype (P));
6938 while Present (Comp) loop
6939 if Chars (Comp) = Chars (Selector_Name (N)) then
6940 Set_Etype (N, Etype (Comp));
6941 Set_Entity (Selector_Name (N), Comp);
6942 Set_Etype (Selector_Name (N), Etype (Comp));
6943 return True;
6944 end if;
6945
6946 Next_Component (Comp);
6947 end loop;
6948 end if;
6949
6950 return False;
6951 end Available_Subtype;
6952
6953 -----------------------------
6954 -- Is_Reference_In_Subunit --
6955 -----------------------------
6956
6957 function Is_Reference_In_Subunit return Boolean is
6958 Clause : Node_Id;
6959 Comp_Unit : Node_Id;
6960
6961 begin
6962 Comp_Unit := N;
6963 while Present (Comp_Unit)
6964 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6965 loop
6966 Comp_Unit := Parent (Comp_Unit);
6967 end loop;
6968
6969 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6970 return False;
6971 end if;
6972
6973 -- Now check whether the package is in the context of the subunit
6974
6975 Clause := First (Context_Items (Comp_Unit));
6976 while Present (Clause) loop
6977 if Nkind (Clause) = N_With_Clause
6978 and then Entity (Name (Clause)) = P_Name
6979 then
6980 return True;
6981 end if;
6982
6983 Clause := Next (Clause);
6984 end loop;
6985
6986 return False;
6987 end Is_Reference_In_Subunit;
6988
6989 -- Start of processing for Find_Selected_Component
6990
6991 begin
6992 Analyze (P);
6993
6994 if Nkind (P) = N_Error then
6995 return;
6996 end if;
6997
6998 -- Selector name cannot be a character literal or an operator symbol in
6999 -- SPARK, except for the operator symbol in a renaming.
7000
7001 if Restriction_Check_Required (SPARK_05) then
7002 if Nkind (Selector_Name (N)) = N_Character_Literal then
7003 Check_SPARK_05_Restriction
7004 ("character literal cannot be prefixed", N);
7005 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
7006 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
7007 then
7008 Check_SPARK_05_Restriction
7009 ("operator symbol cannot be prefixed", N);
7010 end if;
7011 end if;
7012
7013 -- If the selector already has an entity, the node has been constructed
7014 -- in the course of expansion, and is known to be valid. Do not verify
7015 -- that it is defined for the type (it may be a private component used
7016 -- in the expansion of record equality).
7017
7018 if Present (Entity (Selector_Name (N))) then
7019 if No (Etype (N)) or else Etype (N) = Any_Type then
7020 declare
7021 Sel_Name : constant Node_Id := Selector_Name (N);
7022 Selector : constant Entity_Id := Entity (Sel_Name);
7023 C_Etype : Node_Id;
7024
7025 begin
7026 Set_Etype (Sel_Name, Etype (Selector));
7027
7028 if not Is_Entity_Name (P) then
7029 Resolve (P);
7030 end if;
7031
7032 -- Build an actual subtype except for the first parameter
7033 -- of an init proc, where this actual subtype is by
7034 -- definition incorrect, since the object is uninitialized
7035 -- (and does not even have defined discriminants etc.)
7036
7037 if Is_Entity_Name (P)
7038 and then Ekind (Entity (P)) = E_Function
7039 then
7040 Nam := New_Copy (P);
7041
7042 if Is_Overloaded (P) then
7043 Save_Interps (P, Nam);
7044 end if;
7045
7046 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
7047 Analyze_Call (P);
7048 Analyze_Selected_Component (N);
7049 return;
7050
7051 elsif Ekind (Selector) = E_Component
7052 and then (not Is_Entity_Name (P)
7053 or else Chars (Entity (P)) /= Name_uInit)
7054 then
7055 -- Check if we already have an available subtype we can use
7056
7057 if Ekind (Etype (P)) = E_Record_Subtype
7058 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
7059 and then Is_Array_Type (Etype (Selector))
7060 and then not Is_Packed (Etype (Selector))
7061 and then Available_Subtype
7062 then
7063 return;
7064
7065 -- Do not build the subtype when referencing components of
7066 -- dispatch table wrappers. Required to avoid generating
7067 -- elaboration code with HI runtimes.
7068
7069 elsif RTU_Loaded (Ada_Tags)
7070 and then
7071 ((RTE_Available (RE_Dispatch_Table_Wrapper)
7072 and then Scope (Selector) =
7073 RTE (RE_Dispatch_Table_Wrapper))
7074 or else
7075 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
7076 and then Scope (Selector) =
7077 RTE (RE_No_Dispatch_Table_Wrapper)))
7078 then
7079 C_Etype := Empty;
7080 else
7081 C_Etype :=
7082 Build_Actual_Subtype_Of_Component
7083 (Etype (Selector), N);
7084 end if;
7085
7086 else
7087 C_Etype := Empty;
7088 end if;
7089
7090 if No (C_Etype) then
7091 C_Etype := Etype (Selector);
7092 else
7093 Insert_Action (N, C_Etype);
7094 C_Etype := Defining_Identifier (C_Etype);
7095 end if;
7096
7097 Set_Etype (N, C_Etype);
7098 end;
7099
7100 -- If this is the name of an entry or protected operation, and
7101 -- the prefix is an access type, insert an explicit dereference,
7102 -- so that entry calls are treated uniformly.
7103
7104 if Is_Access_Type (Etype (P))
7105 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
7106 then
7107 declare
7108 New_P : constant Node_Id :=
7109 Make_Explicit_Dereference (Sloc (P),
7110 Prefix => Relocate_Node (P));
7111 begin
7112 Rewrite (P, New_P);
7113 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
7114 end;
7115 end if;
7116
7117 -- If the selected component appears within a default expression
7118 -- and it has an actual subtype, the preanalysis has not yet
7119 -- completed its analysis, because Insert_Actions is disabled in
7120 -- that context. Within the init proc of the enclosing type we
7121 -- must complete this analysis, if an actual subtype was created.
7122
7123 elsif Inside_Init_Proc then
7124 declare
7125 Typ : constant Entity_Id := Etype (N);
7126 Decl : constant Node_Id := Declaration_Node (Typ);
7127 begin
7128 if Nkind (Decl) = N_Subtype_Declaration
7129 and then not Analyzed (Decl)
7130 and then Is_List_Member (Decl)
7131 and then No (Parent (Decl))
7132 then
7133 Remove (Decl);
7134 Insert_Action (N, Decl);
7135 end if;
7136 end;
7137 end if;
7138
7139 return;
7140
7141 elsif Is_Entity_Name (P) then
7142 P_Name := Entity (P);
7143
7144 -- The prefix may denote an enclosing type which is the completion
7145 -- of an incomplete type declaration.
7146
7147 if Is_Type (P_Name) then
7148 Set_Entity (P, Get_Full_View (P_Name));
7149 Set_Etype (P, Entity (P));
7150 P_Name := Entity (P);
7151 end if;
7152
7153 P_Type := Base_Type (Etype (P));
7154
7155 if Debug_Flag_E then
7156 Write_Str ("Found prefix type to be ");
7157 Write_Entity_Info (P_Type, " "); Write_Eol;
7158 end if;
7159
7160 -- The designated type may be a limited view with no components.
7161 -- Check whether the non-limited view is available, because in some
7162 -- cases this will not be set when installing the context. Rewrite
7163 -- the node by introducing an explicit dereference at once, and
7164 -- setting the type of the rewritten prefix to the non-limited view
7165 -- of the original designated type.
7166
7167 if Is_Access_Type (P_Type) then
7168 declare
7169 Desig_Typ : constant Entity_Id :=
7170 Directly_Designated_Type (P_Type);
7171
7172 begin
7173 if Is_Incomplete_Type (Desig_Typ)
7174 and then From_Limited_With (Desig_Typ)
7175 and then Present (Non_Limited_View (Desig_Typ))
7176 then
7177 Rewrite (P,
7178 Make_Explicit_Dereference (Sloc (P),
7179 Prefix => Relocate_Node (P)));
7180
7181 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
7182 P_Type := Etype (P);
7183 end if;
7184 end;
7185 end if;
7186
7187 -- First check for components of a record object (not the
7188 -- result of a call, which is handled below).
7189
7190 if Is_Appropriate_For_Record (P_Type)
7191 and then not Is_Overloadable (P_Name)
7192 and then not Is_Type (P_Name)
7193 then
7194 -- Selected component of record. Type checking will validate
7195 -- name of selector.
7196
7197 -- ??? Could we rewrite an implicit dereference into an explicit
7198 -- one here?
7199
7200 Analyze_Selected_Component (N);
7201
7202 -- Reference to type name in predicate/invariant expression
7203
7204 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
7205 and then not In_Open_Scopes (P_Name)
7206 and then (not Is_Concurrent_Type (Etype (P_Name))
7207 or else not In_Open_Scopes (Etype (P_Name)))
7208 then
7209 -- Call to protected operation or entry. Type checking is
7210 -- needed on the prefix.
7211
7212 Analyze_Selected_Component (N);
7213
7214 elsif (In_Open_Scopes (P_Name)
7215 and then Ekind (P_Name) /= E_Void
7216 and then not Is_Overloadable (P_Name))
7217 or else (Is_Concurrent_Type (Etype (P_Name))
7218 and then In_Open_Scopes (Etype (P_Name)))
7219 then
7220 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7221 -- enclosing construct that is not a subprogram or accept.
7222
7223 -- A special case: a protected body may call an operation
7224 -- on an external object of the same type, in which case it
7225 -- is not an expanded name. If the prefix is the type itself,
7226 -- or the context is a single synchronized object it can only
7227 -- be interpreted as an expanded name.
7228
7229 if Is_Concurrent_Type (Etype (P_Name)) then
7230 if Is_Type (P_Name)
7231 or else Present (Anonymous_Object (Etype (P_Name)))
7232 then
7233 Find_Expanded_Name (N);
7234
7235 else
7236 Analyze_Selected_Component (N);
7237 return;
7238 end if;
7239
7240 else
7241 Find_Expanded_Name (N);
7242 end if;
7243
7244 elsif Ekind (P_Name) = E_Package then
7245 Find_Expanded_Name (N);
7246
7247 elsif Is_Overloadable (P_Name) then
7248
7249 -- The subprogram may be a renaming (of an enclosing scope) as
7250 -- in the case of the name of the generic within an instantiation.
7251
7252 if Ekind_In (P_Name, E_Procedure, E_Function)
7253 and then Present (Alias (P_Name))
7254 and then Is_Generic_Instance (Alias (P_Name))
7255 then
7256 P_Name := Alias (P_Name);
7257 end if;
7258
7259 if Is_Overloaded (P) then
7260
7261 -- The prefix must resolve to a unique enclosing construct
7262
7263 declare
7264 Found : Boolean := False;
7265 Ind : Interp_Index;
7266 It : Interp;
7267
7268 begin
7269 Get_First_Interp (P, Ind, It);
7270 while Present (It.Nam) loop
7271 if In_Open_Scopes (It.Nam) then
7272 if Found then
7273 Error_Msg_N (
7274 "prefix must be unique enclosing scope", N);
7275 Set_Entity (N, Any_Id);
7276 Set_Etype (N, Any_Type);
7277 return;
7278
7279 else
7280 Found := True;
7281 P_Name := It.Nam;
7282 end if;
7283 end if;
7284
7285 Get_Next_Interp (Ind, It);
7286 end loop;
7287 end;
7288 end if;
7289
7290 if In_Open_Scopes (P_Name) then
7291 Set_Entity (P, P_Name);
7292 Set_Is_Overloaded (P, False);
7293 Find_Expanded_Name (N);
7294
7295 else
7296 -- If no interpretation as an expanded name is possible, it
7297 -- must be a selected component of a record returned by a
7298 -- function call. Reformat prefix as a function call, the rest
7299 -- is done by type resolution.
7300
7301 -- Error if the prefix is procedure or entry, as is P.X
7302
7303 if Ekind (P_Name) /= E_Function
7304 and then
7305 (not Is_Overloaded (P)
7306 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7307 then
7308 -- Prefix may mention a package that is hidden by a local
7309 -- declaration: let the user know. Scan the full homonym
7310 -- chain, the candidate package may be anywhere on it.
7311
7312 if Present (Homonym (Current_Entity (P_Name))) then
7313 P_Name := Current_Entity (P_Name);
7314
7315 while Present (P_Name) loop
7316 exit when Ekind (P_Name) = E_Package;
7317 P_Name := Homonym (P_Name);
7318 end loop;
7319
7320 if Present (P_Name) then
7321 if not Is_Reference_In_Subunit then
7322 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7323 Error_Msg_NE
7324 ("package& is hidden by declaration#", N, P_Name);
7325 end if;
7326
7327 Set_Entity (Prefix (N), P_Name);
7328 Find_Expanded_Name (N);
7329 return;
7330
7331 else
7332 P_Name := Entity (Prefix (N));
7333 end if;
7334 end if;
7335
7336 Error_Msg_NE
7337 ("invalid prefix in selected component&", N, P_Name);
7338 Change_Selected_Component_To_Expanded_Name (N);
7339 Set_Entity (N, Any_Id);
7340 Set_Etype (N, Any_Type);
7341
7342 -- Here we have a function call, so do the reformatting
7343
7344 else
7345 Nam := New_Copy (P);
7346 Save_Interps (P, Nam);
7347
7348 -- We use Replace here because this is one of those cases
7349 -- where the parser has missclassified the node, and we fix
7350 -- things up and then do the semantic analysis on the fixed
7351 -- up node. Normally we do this using one of the Sinfo.CN
7352 -- routines, but this is too tricky for that.
7353
7354 -- Note that using Rewrite would be wrong, because we would
7355 -- have a tree where the original node is unanalyzed, and
7356 -- this violates the required interface for ASIS.
7357
7358 Replace (P,
7359 Make_Function_Call (Sloc (P), Name => Nam));
7360
7361 -- Now analyze the reformatted node
7362
7363 Analyze_Call (P);
7364
7365 -- If the prefix is illegal after this transformation, there
7366 -- may be visibility errors on the prefix. The safest is to
7367 -- treat the selected component as an error.
7368
7369 if Error_Posted (P) then
7370 Set_Etype (N, Any_Type);
7371 return;
7372
7373 else
7374 Analyze_Selected_Component (N);
7375 end if;
7376 end if;
7377 end if;
7378
7379 -- Remaining cases generate various error messages
7380
7381 else
7382 -- Format node as expanded name, to avoid cascaded errors
7383
7384 -- If the limited_with transformation was applied earlier, restore
7385 -- source for proper error reporting.
7386
7387 if not Comes_From_Source (P)
7388 and then Nkind (P) = N_Explicit_Dereference
7389 then
7390 Rewrite (P, Prefix (P));
7391 P_Type := Etype (P);
7392 end if;
7393
7394 Change_Selected_Component_To_Expanded_Name (N);
7395 Set_Entity (N, Any_Id);
7396 Set_Etype (N, Any_Type);
7397
7398 -- Issue error message, but avoid this if error issued already.
7399 -- Use identifier of prefix if one is available.
7400
7401 if P_Name = Any_Id then
7402 null;
7403
7404 -- It is not an error if the prefix is the current instance of
7405 -- type name, e.g. the expression of a type aspect, when it is
7406 -- analyzed for ASIS use.
7407
7408 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7409 null;
7410
7411 elsif Ekind (P_Name) = E_Void then
7412 Premature_Usage (P);
7413
7414 elsif Nkind (P) /= N_Attribute_Reference then
7415
7416 -- This may have been meant as a prefixed call to a primitive
7417 -- of an untagged type. If it is a function call check type of
7418 -- its first formal and add explanation.
7419
7420 declare
7421 F : constant Entity_Id :=
7422 Current_Entity (Selector_Name (N));
7423 begin
7424 if Present (F)
7425 and then Is_Overloadable (F)
7426 and then Present (First_Entity (F))
7427 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7428 then
7429 Error_Msg_N
7430 ("prefixed call is only allowed for objects of a "
7431 & "tagged type", N);
7432 end if;
7433 end;
7434
7435 Error_Msg_N ("invalid prefix in selected component&", P);
7436
7437 if Is_Access_Type (P_Type)
7438 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7439 then
7440 Error_Msg_N
7441 ("\dereference must not be of an incomplete type "
7442 & "(RM 3.10.1)", P);
7443 end if;
7444
7445 else
7446 Error_Msg_N ("invalid prefix in selected component", P);
7447 end if;
7448 end if;
7449
7450 -- Selector name is restricted in SPARK
7451
7452 if Nkind (N) = N_Expanded_Name
7453 and then Restriction_Check_Required (SPARK_05)
7454 then
7455 if Is_Subprogram (P_Name) then
7456 Check_SPARK_05_Restriction
7457 ("prefix of expanded name cannot be a subprogram", P);
7458 elsif Ekind (P_Name) = E_Loop then
7459 Check_SPARK_05_Restriction
7460 ("prefix of expanded name cannot be a loop statement", P);
7461 end if;
7462 end if;
7463
7464 else
7465 -- If prefix is not the name of an entity, it must be an expression,
7466 -- whose type is appropriate for a record. This is determined by
7467 -- type resolution.
7468
7469 Analyze_Selected_Component (N);
7470 end if;
7471
7472 Analyze_Dimension (N);
7473 end Find_Selected_Component;
7474
7475 ---------------
7476 -- Find_Type --
7477 ---------------
7478
7479 procedure Find_Type (N : Node_Id) is
7480 C : Entity_Id;
7481 Typ : Entity_Id;
7482 T : Entity_Id;
7483 T_Name : Entity_Id;
7484
7485 begin
7486 if N = Error then
7487 return;
7488
7489 elsif Nkind (N) = N_Attribute_Reference then
7490
7491 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7492 -- need to enforce that at this point, since the declaration of the
7493 -- tagged type in the prefix would have been flagged already.
7494
7495 if Attribute_Name (N) = Name_Class then
7496 Check_Restriction (No_Dispatch, N);
7497 Find_Type (Prefix (N));
7498
7499 -- Propagate error from bad prefix
7500
7501 if Etype (Prefix (N)) = Any_Type then
7502 Set_Entity (N, Any_Type);
7503 Set_Etype (N, Any_Type);
7504 return;
7505 end if;
7506
7507 T := Base_Type (Entity (Prefix (N)));
7508
7509 -- Case where type is not known to be tagged. Its appearance in
7510 -- the prefix of the 'Class attribute indicates that the full view
7511 -- will be tagged.
7512
7513 if not Is_Tagged_Type (T) then
7514 if Ekind (T) = E_Incomplete_Type then
7515
7516 -- It is legal to denote the class type of an incomplete
7517 -- type. The full type will have to be tagged, of course.
7518 -- In Ada 2005 this usage is declared obsolescent, so we
7519 -- warn accordingly. This usage is only legal if the type
7520 -- is completed in the current scope, and not for a limited
7521 -- view of a type.
7522
7523 if Ada_Version >= Ada_2005 then
7524
7525 -- Test whether the Available_View of a limited type view
7526 -- is tagged, since the limited view may not be marked as
7527 -- tagged if the type itself has an untagged incomplete
7528 -- type view in its package.
7529
7530 if From_Limited_With (T)
7531 and then not Is_Tagged_Type (Available_View (T))
7532 then
7533 Error_Msg_N
7534 ("prefix of Class attribute must be tagged", N);
7535 Set_Etype (N, Any_Type);
7536 Set_Entity (N, Any_Type);
7537 return;
7538
7539 -- ??? This test is temporarily disabled (always
7540 -- False) because it causes an unwanted warning on
7541 -- GNAT sources (built with -gnatg, which includes
7542 -- Warn_On_Obsolescent_ Feature). Once this issue
7543 -- is cleared in the sources, it can be enabled.
7544
7545 elsif Warn_On_Obsolescent_Feature and then False then
7546 Error_Msg_N
7547 ("applying 'Class to an untagged incomplete type"
7548 & " is an obsolescent feature (RM J.11)?r?", N);
7549 end if;
7550 end if;
7551
7552 Set_Is_Tagged_Type (T);
7553 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7554 Make_Class_Wide_Type (T);
7555 Set_Entity (N, Class_Wide_Type (T));
7556 Set_Etype (N, Class_Wide_Type (T));
7557
7558 elsif Ekind (T) = E_Private_Type
7559 and then not Is_Generic_Type (T)
7560 and then In_Private_Part (Scope (T))
7561 then
7562 -- The Class attribute can be applied to an untagged private
7563 -- type fulfilled by a tagged type prior to the full type
7564 -- declaration (but only within the parent package's private
7565 -- part). Create the class-wide type now and check that the
7566 -- full type is tagged later during its analysis. Note that
7567 -- we do not mark the private type as tagged, unlike the
7568 -- case of incomplete types, because the type must still
7569 -- appear untagged to outside units.
7570
7571 if No (Class_Wide_Type (T)) then
7572 Make_Class_Wide_Type (T);
7573 end if;
7574
7575 Set_Entity (N, Class_Wide_Type (T));
7576 Set_Etype (N, Class_Wide_Type (T));
7577
7578 else
7579 -- Should we introduce a type Any_Tagged and use Wrong_Type
7580 -- here, it would be a bit more consistent???
7581
7582 Error_Msg_NE
7583 ("tagged type required, found}",
7584 Prefix (N), First_Subtype (T));
7585 Set_Entity (N, Any_Type);
7586 return;
7587 end if;
7588
7589 -- Case of tagged type
7590
7591 else
7592 if Is_Concurrent_Type (T) then
7593 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7594
7595 -- Previous error. Create a class-wide type for the
7596 -- synchronized type itself, with minimal semantic
7597 -- attributes, to catch other errors in some ACATS tests.
7598
7599 pragma Assert (Serious_Errors_Detected /= 0);
7600 Make_Class_Wide_Type (T);
7601 C := Class_Wide_Type (T);
7602 Set_First_Entity (C, First_Entity (T));
7603
7604 else
7605 C := Class_Wide_Type
7606 (Corresponding_Record_Type (Entity (Prefix (N))));
7607 end if;
7608
7609 else
7610 C := Class_Wide_Type (Entity (Prefix (N)));
7611 end if;
7612
7613 Set_Entity_With_Checks (N, C);
7614 Generate_Reference (C, N);
7615 Set_Etype (N, C);
7616 end if;
7617
7618 -- Base attribute, not allowed in Ada 83
7619
7620 elsif Attribute_Name (N) = Name_Base then
7621 Error_Msg_Name_1 := Name_Base;
7622 Check_SPARK_05_Restriction
7623 ("attribute% is only allowed as prefix of another attribute", N);
7624
7625 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7626 Error_Msg_N
7627 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7628
7629 else
7630 Find_Type (Prefix (N));
7631 Typ := Entity (Prefix (N));
7632
7633 if Ada_Version >= Ada_95
7634 and then not Is_Scalar_Type (Typ)
7635 and then not Is_Generic_Type (Typ)
7636 then
7637 Error_Msg_N
7638 ("prefix of Base attribute must be scalar type",
7639 Prefix (N));
7640
7641 elsif Warn_On_Redundant_Constructs
7642 and then Base_Type (Typ) = Typ
7643 then
7644 Error_Msg_NE -- CODEFIX
7645 ("redundant attribute, & is its own base type?r?", N, Typ);
7646 end if;
7647
7648 T := Base_Type (Typ);
7649
7650 -- Rewrite attribute reference with type itself (see similar
7651 -- processing in Analyze_Attribute, case Base). Preserve prefix
7652 -- if present, for other legality checks.
7653
7654 if Nkind (Prefix (N)) = N_Expanded_Name then
7655 Rewrite (N,
7656 Make_Expanded_Name (Sloc (N),
7657 Chars => Chars (T),
7658 Prefix => New_Copy (Prefix (Prefix (N))),
7659 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7660
7661 else
7662 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7663 end if;
7664
7665 Set_Entity (N, T);
7666 Set_Etype (N, T);
7667 end if;
7668
7669 elsif Attribute_Name (N) = Name_Stub_Type then
7670
7671 -- This is handled in Analyze_Attribute
7672
7673 Analyze (N);
7674
7675 -- All other attributes are invalid in a subtype mark
7676
7677 else
7678 Error_Msg_N ("invalid attribute in subtype mark", N);
7679 end if;
7680
7681 else
7682 Analyze (N);
7683
7684 if Is_Entity_Name (N) then
7685 T_Name := Entity (N);
7686 else
7687 Error_Msg_N ("subtype mark required in this context", N);
7688 Set_Etype (N, Any_Type);
7689 return;
7690 end if;
7691
7692 if T_Name = Any_Id or else Etype (N) = Any_Type then
7693
7694 -- Undefined id. Make it into a valid type
7695
7696 Set_Entity (N, Any_Type);
7697
7698 elsif not Is_Type (T_Name)
7699 and then T_Name /= Standard_Void_Type
7700 then
7701 Error_Msg_Sloc := Sloc (T_Name);
7702 Error_Msg_N ("subtype mark required in this context", N);
7703 Error_Msg_NE ("\\found & declared#", N, T_Name);
7704 Set_Entity (N, Any_Type);
7705
7706 else
7707 -- If the type is an incomplete type created to handle
7708 -- anonymous access components of a record type, then the
7709 -- incomplete type is the visible entity and subsequent
7710 -- references will point to it. Mark the original full
7711 -- type as referenced, to prevent spurious warnings.
7712
7713 if Is_Incomplete_Type (T_Name)
7714 and then Present (Full_View (T_Name))
7715 and then not Comes_From_Source (T_Name)
7716 then
7717 Set_Referenced (Full_View (T_Name));
7718 end if;
7719
7720 T_Name := Get_Full_View (T_Name);
7721
7722 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7723 -- limited-with clauses
7724
7725 if From_Limited_With (T_Name)
7726 and then Ekind (T_Name) in Incomplete_Kind
7727 and then Present (Non_Limited_View (T_Name))
7728 and then Is_Interface (Non_Limited_View (T_Name))
7729 then
7730 T_Name := Non_Limited_View (T_Name);
7731 end if;
7732
7733 if In_Open_Scopes (T_Name) then
7734 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7735
7736 -- In Ada 2005, a task name can be used in an access
7737 -- definition within its own body. It cannot be used
7738 -- in the discriminant part of the task declaration,
7739 -- nor anywhere else in the declaration because entries
7740 -- cannot have access parameters.
7741
7742 if Ada_Version >= Ada_2005
7743 and then Nkind (Parent (N)) = N_Access_Definition
7744 then
7745 Set_Entity (N, T_Name);
7746 Set_Etype (N, T_Name);
7747
7748 if Has_Completion (T_Name) then
7749 return;
7750
7751 else
7752 Error_Msg_N
7753 ("task type cannot be used as type mark " &
7754 "within its own declaration", N);
7755 end if;
7756
7757 else
7758 Error_Msg_N
7759 ("task type cannot be used as type mark " &
7760 "within its own spec or body", N);
7761 end if;
7762
7763 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7764
7765 -- In Ada 2005, a protected name can be used in an access
7766 -- definition within its own body.
7767
7768 if Ada_Version >= Ada_2005
7769 and then Nkind (Parent (N)) = N_Access_Definition
7770 then
7771 Set_Entity (N, T_Name);
7772 Set_Etype (N, T_Name);
7773 return;
7774
7775 else
7776 Error_Msg_N
7777 ("protected type cannot be used as type mark " &
7778 "within its own spec or body", N);
7779 end if;
7780
7781 else
7782 Error_Msg_N ("type declaration cannot refer to itself", N);
7783 end if;
7784
7785 Set_Etype (N, Any_Type);
7786 Set_Entity (N, Any_Type);
7787 Set_Error_Posted (T_Name);
7788 return;
7789 end if;
7790
7791 Set_Entity (N, T_Name);
7792 Set_Etype (N, T_Name);
7793 end if;
7794 end if;
7795
7796 if Present (Etype (N)) and then Comes_From_Source (N) then
7797 if Is_Fixed_Point_Type (Etype (N)) then
7798 Check_Restriction (No_Fixed_Point, N);
7799 elsif Is_Floating_Point_Type (Etype (N)) then
7800 Check_Restriction (No_Floating_Point, N);
7801 end if;
7802
7803 -- A Ghost type must appear in a specific context
7804
7805 if Is_Ghost_Entity (Etype (N)) then
7806 Check_Ghost_Context (Etype (N), N);
7807 end if;
7808 end if;
7809 end Find_Type;
7810
7811 ------------------------------------
7812 -- Has_Implicit_Character_Literal --
7813 ------------------------------------
7814
7815 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7816 Id : Entity_Id;
7817 Found : Boolean := False;
7818 P : constant Entity_Id := Entity (Prefix (N));
7819 Priv_Id : Entity_Id := Empty;
7820
7821 begin
7822 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7823 Priv_Id := First_Private_Entity (P);
7824 end if;
7825
7826 if P = Standard_Standard then
7827 Change_Selected_Component_To_Expanded_Name (N);
7828 Rewrite (N, Selector_Name (N));
7829 Analyze (N);
7830 Set_Etype (Original_Node (N), Standard_Character);
7831 return True;
7832 end if;
7833
7834 Id := First_Entity (P);
7835 while Present (Id) and then Id /= Priv_Id loop
7836 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7837
7838 -- We replace the node with the literal itself, resolve as a
7839 -- character, and set the type correctly.
7840
7841 if not Found then
7842 Change_Selected_Component_To_Expanded_Name (N);
7843 Rewrite (N, Selector_Name (N));
7844 Analyze (N);
7845 Set_Etype (N, Id);
7846 Set_Etype (Original_Node (N), Id);
7847 Found := True;
7848
7849 else
7850 -- More than one type derived from Character in given scope.
7851 -- Collect all possible interpretations.
7852
7853 Add_One_Interp (N, Id, Id);
7854 end if;
7855 end if;
7856
7857 Next_Entity (Id);
7858 end loop;
7859
7860 return Found;
7861 end Has_Implicit_Character_Literal;
7862
7863 ----------------------
7864 -- Has_Private_With --
7865 ----------------------
7866
7867 function Has_Private_With (E : Entity_Id) return Boolean is
7868 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7869 Item : Node_Id;
7870
7871 begin
7872 Item := First (Context_Items (Comp_Unit));
7873 while Present (Item) loop
7874 if Nkind (Item) = N_With_Clause
7875 and then Private_Present (Item)
7876 and then Entity (Name (Item)) = E
7877 then
7878 return True;
7879 end if;
7880
7881 Next (Item);
7882 end loop;
7883
7884 return False;
7885 end Has_Private_With;
7886
7887 ---------------------------
7888 -- Has_Implicit_Operator --
7889 ---------------------------
7890
7891 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7892 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7893 P : constant Entity_Id := Entity (Prefix (N));
7894 Id : Entity_Id;
7895 Priv_Id : Entity_Id := Empty;
7896
7897 procedure Add_Implicit_Operator
7898 (T : Entity_Id;
7899 Op_Type : Entity_Id := Empty);
7900 -- Add implicit interpretation to node N, using the type for which a
7901 -- predefined operator exists. If the operator yields a boolean type,
7902 -- the Operand_Type is implicitly referenced by the operator, and a
7903 -- reference to it must be generated.
7904
7905 ---------------------------
7906 -- Add_Implicit_Operator --
7907 ---------------------------
7908
7909 procedure Add_Implicit_Operator
7910 (T : Entity_Id;
7911 Op_Type : Entity_Id := Empty)
7912 is
7913 Predef_Op : Entity_Id;
7914
7915 begin
7916 Predef_Op := Current_Entity (Selector_Name (N));
7917 while Present (Predef_Op)
7918 and then Scope (Predef_Op) /= Standard_Standard
7919 loop
7920 Predef_Op := Homonym (Predef_Op);
7921 end loop;
7922
7923 if Nkind (N) = N_Selected_Component then
7924 Change_Selected_Component_To_Expanded_Name (N);
7925 end if;
7926
7927 -- If the context is an unanalyzed function call, determine whether
7928 -- a binary or unary interpretation is required.
7929
7930 if Nkind (Parent (N)) = N_Indexed_Component then
7931 declare
7932 Is_Binary_Call : constant Boolean :=
7933 Present
7934 (Next (First (Expressions (Parent (N)))));
7935 Is_Binary_Op : constant Boolean :=
7936 First_Entity
7937 (Predef_Op) /= Last_Entity (Predef_Op);
7938 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7939
7940 begin
7941 if Is_Binary_Call then
7942 if Is_Binary_Op then
7943 Add_One_Interp (N, Predef_Op, T);
7944 else
7945 Add_One_Interp (N, Predef_Op2, T);
7946 end if;
7947
7948 else
7949 if not Is_Binary_Op then
7950 Add_One_Interp (N, Predef_Op, T);
7951 else
7952 Add_One_Interp (N, Predef_Op2, T);
7953 end if;
7954 end if;
7955 end;
7956
7957 else
7958 Add_One_Interp (N, Predef_Op, T);
7959
7960 -- For operators with unary and binary interpretations, if
7961 -- context is not a call, add both
7962
7963 if Present (Homonym (Predef_Op)) then
7964 Add_One_Interp (N, Homonym (Predef_Op), T);
7965 end if;
7966 end if;
7967
7968 -- The node is a reference to a predefined operator, and
7969 -- an implicit reference to the type of its operands.
7970
7971 if Present (Op_Type) then
7972 Generate_Operator_Reference (N, Op_Type);
7973 else
7974 Generate_Operator_Reference (N, T);
7975 end if;
7976 end Add_Implicit_Operator;
7977
7978 -- Start of processing for Has_Implicit_Operator
7979
7980 begin
7981 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7982 Priv_Id := First_Private_Entity (P);
7983 end if;
7984
7985 Id := First_Entity (P);
7986
7987 case Op_Id is
7988
7989 -- Boolean operators: an implicit declaration exists if the scope
7990 -- contains a declaration for a derived Boolean type, or for an
7991 -- array of Boolean type.
7992
7993 when Name_Op_And
7994 | Name_Op_Not
7995 | Name_Op_Or
7996 | Name_Op_Xor
7997 =>
7998 while Id /= Priv_Id loop
7999 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
8000 Add_Implicit_Operator (Id);
8001 return True;
8002 end if;
8003
8004 Next_Entity (Id);
8005 end loop;
8006
8007 -- Equality: look for any non-limited type (result is Boolean)
8008
8009 when Name_Op_Eq
8010 | Name_Op_Ne
8011 =>
8012 while Id /= Priv_Id loop
8013 if Is_Type (Id)
8014 and then not Is_Limited_Type (Id)
8015 and then Is_Base_Type (Id)
8016 then
8017 Add_Implicit_Operator (Standard_Boolean, Id);
8018 return True;
8019 end if;
8020
8021 Next_Entity (Id);
8022 end loop;
8023
8024 -- Comparison operators: scalar type, or array of scalar
8025
8026 when Name_Op_Ge
8027 | Name_Op_Gt
8028 | Name_Op_Le
8029 | Name_Op_Lt
8030 =>
8031 while Id /= Priv_Id loop
8032 if (Is_Scalar_Type (Id)
8033 or else (Is_Array_Type (Id)
8034 and then Is_Scalar_Type (Component_Type (Id))))
8035 and then Is_Base_Type (Id)
8036 then
8037 Add_Implicit_Operator (Standard_Boolean, Id);
8038 return True;
8039 end if;
8040
8041 Next_Entity (Id);
8042 end loop;
8043
8044 -- Arithmetic operators: any numeric type
8045
8046 when Name_Op_Abs
8047 | Name_Op_Add
8048 | Name_Op_Divide
8049 | Name_Op_Expon
8050 | Name_Op_Mod
8051 | Name_Op_Multiply
8052 | Name_Op_Rem
8053 | Name_Op_Subtract
8054 =>
8055 while Id /= Priv_Id loop
8056 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
8057 Add_Implicit_Operator (Id);
8058 return True;
8059 end if;
8060
8061 Next_Entity (Id);
8062 end loop;
8063
8064 -- Concatenation: any one-dimensional array type
8065
8066 when Name_Op_Concat =>
8067 while Id /= Priv_Id loop
8068 if Is_Array_Type (Id)
8069 and then Number_Dimensions (Id) = 1
8070 and then Is_Base_Type (Id)
8071 then
8072 Add_Implicit_Operator (Id);
8073 return True;
8074 end if;
8075
8076 Next_Entity (Id);
8077 end loop;
8078
8079 -- What is the others condition here? Should we be using a
8080 -- subtype of Name_Id that would restrict to operators ???
8081
8082 when others =>
8083 null;
8084 end case;
8085
8086 -- If we fall through, then we do not have an implicit operator
8087
8088 return False;
8089 end Has_Implicit_Operator;
8090
8091 -----------------------------------
8092 -- Has_Loop_In_Inner_Open_Scopes --
8093 -----------------------------------
8094
8095 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
8096 begin
8097 -- Several scope stacks are maintained by Scope_Stack. The base of the
8098 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8099 -- flag in the scope stack entry. Note that the scope stacks used to
8100 -- simply be delimited implicitly by the presence of Standard_Standard
8101 -- at their base, but there now are cases where this is not sufficient
8102 -- because Standard_Standard actually may appear in the middle of the
8103 -- active set of scopes.
8104
8105 for J in reverse 0 .. Scope_Stack.Last loop
8106
8107 -- S was reached without seing a loop scope first
8108
8109 if Scope_Stack.Table (J).Entity = S then
8110 return False;
8111
8112 -- S was not yet reached, so it contains at least one inner loop
8113
8114 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
8115 return True;
8116 end if;
8117
8118 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8119 -- cases where Standard_Standard appears in the middle of the active
8120 -- set of scopes. This affects the declaration and overriding of
8121 -- private inherited operations in instantiations of generic child
8122 -- units.
8123
8124 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
8125 end loop;
8126
8127 raise Program_Error; -- unreachable
8128 end Has_Loop_In_Inner_Open_Scopes;
8129
8130 --------------------
8131 -- In_Open_Scopes --
8132 --------------------
8133
8134 function In_Open_Scopes (S : Entity_Id) return Boolean is
8135 begin
8136 -- Several scope stacks are maintained by Scope_Stack. The base of the
8137 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8138 -- flag in the scope stack entry. Note that the scope stacks used to
8139 -- simply be delimited implicitly by the presence of Standard_Standard
8140 -- at their base, but there now are cases where this is not sufficient
8141 -- because Standard_Standard actually may appear in the middle of the
8142 -- active set of scopes.
8143
8144 for J in reverse 0 .. Scope_Stack.Last loop
8145 if Scope_Stack.Table (J).Entity = S then
8146 return True;
8147 end if;
8148
8149 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8150 -- cases where Standard_Standard appears in the middle of the active
8151 -- set of scopes. This affects the declaration and overriding of
8152 -- private inherited operations in instantiations of generic child
8153 -- units.
8154
8155 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
8156 end loop;
8157
8158 return False;
8159 end In_Open_Scopes;
8160
8161 -----------------------------
8162 -- Inherit_Renamed_Profile --
8163 -----------------------------
8164
8165 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
8166 New_F : Entity_Id;
8167 Old_F : Entity_Id;
8168 Old_T : Entity_Id;
8169 New_T : Entity_Id;
8170
8171 begin
8172 if Ekind (Old_S) = E_Operator then
8173 New_F := First_Formal (New_S);
8174
8175 while Present (New_F) loop
8176 Set_Etype (New_F, Base_Type (Etype (New_F)));
8177 Next_Formal (New_F);
8178 end loop;
8179
8180 Set_Etype (New_S, Base_Type (Etype (New_S)));
8181
8182 else
8183 New_F := First_Formal (New_S);
8184 Old_F := First_Formal (Old_S);
8185
8186 while Present (New_F) loop
8187 New_T := Etype (New_F);
8188 Old_T := Etype (Old_F);
8189
8190 -- If the new type is a renaming of the old one, as is the case
8191 -- for actuals in instances, retain its name, to simplify later
8192 -- disambiguation.
8193
8194 if Nkind (Parent (New_T)) = N_Subtype_Declaration
8195 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
8196 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
8197 then
8198 null;
8199 else
8200 Set_Etype (New_F, Old_T);
8201 end if;
8202
8203 Next_Formal (New_F);
8204 Next_Formal (Old_F);
8205 end loop;
8206
8207 pragma Assert (No (Old_F));
8208
8209 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
8210 Set_Etype (New_S, Etype (Old_S));
8211 end if;
8212 end if;
8213 end Inherit_Renamed_Profile;
8214
8215 ----------------
8216 -- Initialize --
8217 ----------------
8218
8219 procedure Initialize is
8220 begin
8221 Urefs.Init;
8222 end Initialize;
8223
8224 -------------------------
8225 -- Install_Use_Clauses --
8226 -------------------------
8227
8228 procedure Install_Use_Clauses
8229 (Clause : Node_Id;
8230 Force_Installation : Boolean := False)
8231 is
8232 U : Node_Id;
8233
8234 begin
8235 U := Clause;
8236 while Present (U) loop
8237
8238 -- Case of USE package
8239
8240 if Nkind (U) = N_Use_Package_Clause then
8241 Use_One_Package (U, Name (U), True);
8242
8243 -- Case of USE TYPE
8244
8245 else
8246 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
8247
8248 end if;
8249
8250 Next_Use_Clause (U);
8251 end loop;
8252 end Install_Use_Clauses;
8253
8254 -------------------------------------
8255 -- Is_Appropriate_For_Entry_Prefix --
8256 -------------------------------------
8257
8258 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8259 P_Type : Entity_Id := T;
8260
8261 begin
8262 if Is_Access_Type (P_Type) then
8263 P_Type := Designated_Type (P_Type);
8264 end if;
8265
8266 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8267 end Is_Appropriate_For_Entry_Prefix;
8268
8269 -------------------------------
8270 -- Is_Appropriate_For_Record --
8271 -------------------------------
8272
8273 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8274
8275 function Has_Components (T1 : Entity_Id) return Boolean;
8276 -- Determine if given type has components (i.e. is either a record
8277 -- type or a type that has discriminants).
8278
8279 --------------------
8280 -- Has_Components --
8281 --------------------
8282
8283 function Has_Components (T1 : Entity_Id) return Boolean is
8284 begin
8285 return Is_Record_Type (T1)
8286 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8287 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8288 or else (Is_Incomplete_Type (T1)
8289 and then From_Limited_With (T1)
8290 and then Present (Non_Limited_View (T1))
8291 and then Is_Record_Type
8292 (Get_Full_View (Non_Limited_View (T1))));
8293 end Has_Components;
8294
8295 -- Start of processing for Is_Appropriate_For_Record
8296
8297 begin
8298 return
8299 Present (T)
8300 and then (Has_Components (T)
8301 or else (Is_Access_Type (T)
8302 and then Has_Components (Designated_Type (T))));
8303 end Is_Appropriate_For_Record;
8304
8305 ----------------------
8306 -- Mark_Use_Clauses --
8307 ----------------------
8308
8309 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
8310 procedure Mark_Parameters (Call : Entity_Id);
8311 -- Perform use_type_clause marking for all parameters in a subprogram
8312 -- or operator call.
8313
8314 procedure Mark_Use_Package (Pak : Entity_Id);
8315 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8316 -- marking each clause in the chain as effective in the process.
8317
8318 procedure Mark_Use_Type (E : Entity_Id);
8319 -- Similar to Do_Use_Package_Marking except we move up the
8320 -- Prev_Use_Clause chain for the type denoted by E.
8321
8322 ---------------------
8323 -- Mark_Parameters --
8324 ---------------------
8325
8326 procedure Mark_Parameters (Call : Entity_Id) is
8327 Curr : Node_Id;
8328
8329 begin
8330 -- Move through all of the formals
8331
8332 Curr := First_Formal (Call);
8333 while Present (Curr) loop
8334 Mark_Use_Type (Curr);
8335
8336 Curr := Next_Formal (Curr);
8337 end loop;
8338
8339 -- Handle the return type
8340
8341 Mark_Use_Type (Call);
8342 end Mark_Parameters;
8343
8344 ----------------------
8345 -- Mark_Use_Package --
8346 ----------------------
8347
8348 procedure Mark_Use_Package (Pak : Entity_Id) is
8349 Curr : Node_Id;
8350
8351 begin
8352 -- Ignore cases where the scope of the type is not a package (e.g.
8353 -- Standard_Standard).
8354
8355 if Ekind (Pak) /= E_Package then
8356 return;
8357 end if;
8358
8359 Curr := Current_Use_Clause (Pak);
8360 while Present (Curr)
8361 and then not Is_Effective_Use_Clause (Curr)
8362 loop
8363 -- We need to mark the previous use clauses as effective, but
8364 -- each use clause may in turn render other use_package_clauses
8365 -- effective. Additionally, it is possible to have a parent
8366 -- package renamed as a child of itself so we must check the
8367 -- prefix entity is not the same as the package we are marking.
8368
8369 if Nkind (Name (Curr)) /= N_Identifier
8370 and then Present (Prefix (Name (Curr)))
8371 and then Entity (Prefix (Name (Curr))) /= Pak
8372 then
8373 Mark_Use_Package (Entity (Prefix (Name (Curr))));
8374
8375 -- It is also possible to have a child package without a prefix
8376 -- that relies on a previous use_package_clause.
8377
8378 elsif Nkind (Name (Curr)) = N_Identifier
8379 and then Is_Child_Unit (Entity (Name (Curr)))
8380 then
8381 Mark_Use_Package (Scope (Entity (Name (Curr))));
8382 end if;
8383
8384 -- Mark the use_package_clause as effective and move up the chain
8385
8386 Set_Is_Effective_Use_Clause (Curr);
8387
8388 Curr := Prev_Use_Clause (Curr);
8389 end loop;
8390 end Mark_Use_Package;
8391
8392 -------------------
8393 -- Mark_Use_Type --
8394 -------------------
8395
8396 procedure Mark_Use_Type (E : Entity_Id) is
8397 Curr : Node_Id;
8398 Base : Entity_Id;
8399
8400 begin
8401 -- Ignore void types and unresolved string literals and primitives
8402
8403 if Nkind (E) = N_String_Literal
8404 or else Nkind (Etype (E)) not in N_Entity
8405 or else not Is_Type (Etype (E))
8406 then
8407 return;
8408 end if;
8409
8410 -- Primitives with class-wide operands might additionally render
8411 -- their base type's use_clauses effective - so do a recursive check
8412 -- here.
8413
8414 Base := Base_Type (Etype (E));
8415
8416 if Ekind (Base) = E_Class_Wide_Type then
8417 Mark_Use_Type (Base);
8418 end if;
8419
8420 -- The package containing the type or operator function being used
8421 -- may be in use as well, so mark any use_package_clauses for it as
8422 -- effective. There are also additional sanity checks performed here
8423 -- for ignoring previous errors.
8424
8425 Mark_Use_Package (Scope (Base));
8426
8427 if Nkind (E) in N_Op
8428 and then Present (Entity (E))
8429 and then Present (Scope (Entity (E)))
8430 then
8431 Mark_Use_Package (Scope (Entity (E)));
8432 end if;
8433
8434 Curr := Current_Use_Clause (Base);
8435 while Present (Curr)
8436 and then not Is_Effective_Use_Clause (Curr)
8437 loop
8438 -- Current use_type_clause may render other use_package_clauses
8439 -- effective.
8440
8441 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
8442 and then Present (Prefix (Subtype_Mark (Curr)))
8443 then
8444 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
8445 end if;
8446
8447 -- Mark the use_type_clause as effective and move up the chain
8448
8449 Set_Is_Effective_Use_Clause (Curr);
8450
8451 Curr := Prev_Use_Clause (Curr);
8452 end loop;
8453 end Mark_Use_Type;
8454
8455 -- Start of processing for Mark_Use_Clauses
8456
8457 begin
8458 -- Use clauses in and of themselves do not count as a "use" of a
8459 -- package.
8460
8461 if Nkind_In (Parent (Id), N_Use_Package_Clause, N_Use_Type_Clause) then
8462 return;
8463 end if;
8464
8465 -- Handle entities
8466
8467 if Nkind (Id) in N_Entity then
8468
8469 -- Mark the entity's package
8470
8471 if Is_Potentially_Use_Visible (Id) then
8472 Mark_Use_Package (Scope (Id));
8473 end if;
8474
8475 -- Mark enumeration literals
8476
8477 if Ekind (Id) = E_Enumeration_Literal then
8478 Mark_Use_Type (Id);
8479
8480 -- Mark primitives
8481
8482 elsif (Ekind (Id) in Overloadable_Kind
8483 or else Ekind_In (Id, E_Generic_Function,
8484 E_Generic_Procedure))
8485 and then (Is_Potentially_Use_Visible (Id)
8486 or else Is_Intrinsic_Subprogram (Id)
8487 or else (Ekind_In (Id, E_Function, E_Procedure)
8488 and then Is_Generic_Actual_Subprogram (Id)))
8489 then
8490 Mark_Parameters (Id);
8491 end if;
8492
8493 -- Handle nodes
8494
8495 else
8496 -- Mark operators
8497
8498 if Nkind (Id) in N_Op then
8499
8500 -- At this point the left operand may not be resolved if we are
8501 -- encountering multiple operators next to eachother in an
8502 -- expression.
8503
8504 if Nkind (Id) in N_Binary_Op
8505 and then not (Nkind (Left_Opnd (Id)) in N_Op)
8506 then
8507 Mark_Use_Type (Left_Opnd (Id));
8508 end if;
8509
8510 Mark_Use_Type (Right_Opnd (Id));
8511 Mark_Use_Type (Id);
8512
8513 -- Mark entity identifiers
8514
8515 elsif Nkind (Id) in N_Has_Entity
8516 and then (Is_Potentially_Use_Visible (Entity (Id))
8517 or else (Is_Generic_Instance (Entity (Id))
8518 and then Is_Immediately_Visible (Entity (Id))))
8519 then
8520 -- Ignore fully qualified names as they do not count as a "use" of
8521 -- a package.
8522
8523 if Nkind_In (Id, N_Identifier, N_Operator_Symbol)
8524 or else (Present (Prefix (Id))
8525 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
8526 then
8527 Mark_Use_Clauses (Entity (Id));
8528 end if;
8529 end if;
8530 end if;
8531 end Mark_Use_Clauses;
8532
8533 --------------------------------
8534 -- Most_Descendant_Use_Clause --
8535 --------------------------------
8536
8537 function Most_Descendant_Use_Clause
8538 (Clause1 : Entity_Id;
8539 Clause2 : Entity_Id) return Entity_Id
8540 is
8541 Scope1 : Entity_Id;
8542 Scope2 : Entity_Id;
8543
8544 begin
8545 if Clause1 = Clause2 then
8546 return Clause1;
8547 end if;
8548
8549 -- We determine which one is the most descendant by the scope distance
8550 -- to the ultimate parent unit.
8551
8552 Scope1 := Entity_Of_Unit (Unit (Parent (Clause1)));
8553 Scope2 := Entity_Of_Unit (Unit (Parent (Clause2)));
8554 while Scope1 /= Standard_Standard
8555 and then Scope2 /= Standard_Standard
8556 loop
8557 Scope1 := Scope (Scope1);
8558 Scope2 := Scope (Scope2);
8559
8560 if not Present (Scope1) then
8561 return Clause1;
8562 elsif not Present (Scope2) then
8563 return Clause2;
8564 end if;
8565 end loop;
8566
8567 if Scope1 = Standard_Standard then
8568 return Clause1;
8569 end if;
8570
8571 return Clause2;
8572 end Most_Descendant_Use_Clause;
8573
8574 ---------------
8575 -- Pop_Scope --
8576 ---------------
8577
8578 procedure Pop_Scope is
8579 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8580 S : constant Entity_Id := SST.Entity;
8581
8582 begin
8583 if Debug_Flag_E then
8584 Write_Info;
8585 end if;
8586
8587 -- Set Default_Storage_Pool field of the library unit if necessary
8588
8589 if Ekind_In (S, E_Package, E_Generic_Package)
8590 and then
8591 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8592 then
8593 declare
8594 Aux : constant Node_Id :=
8595 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8596 begin
8597 if No (Default_Storage_Pool (Aux)) then
8598 Set_Default_Storage_Pool (Aux, Default_Pool);
8599 end if;
8600 end;
8601 end if;
8602
8603 Scope_Suppress := SST.Save_Scope_Suppress;
8604 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8605 Check_Policy_List := SST.Save_Check_Policy_List;
8606 Default_Pool := SST.Save_Default_Storage_Pool;
8607 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8608 SPARK_Mode := SST.Save_SPARK_Mode;
8609 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8610 Default_SSO := SST.Save_Default_SSO;
8611 Uneval_Old := SST.Save_Uneval_Old;
8612
8613 if Debug_Flag_W then
8614 Write_Str ("<-- exiting scope: ");
8615 Write_Name (Chars (Current_Scope));
8616 Write_Str (", Depth=");
8617 Write_Int (Int (Scope_Stack.Last));
8618 Write_Eol;
8619 end if;
8620
8621 End_Use_Clauses (SST.First_Use_Clause);
8622
8623 -- If the actions to be wrapped are still there they will get lost
8624 -- causing incomplete code to be generated. It is better to abort in
8625 -- this case (and we do the abort even with assertions off since the
8626 -- penalty is incorrect code generation).
8627
8628 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8629 raise Program_Error;
8630 end if;
8631
8632 -- Free last subprogram name if allocated, and pop scope
8633
8634 Free (SST.Last_Subprogram_Name);
8635 Scope_Stack.Decrement_Last;
8636 end Pop_Scope;
8637
8638 ----------------
8639 -- Push_Scope --
8640 ----------------
8641
8642 procedure Push_Scope (S : Entity_Id) is
8643 E : constant Entity_Id := Scope (S);
8644
8645 begin
8646 if Ekind (S) = E_Void then
8647 null;
8648
8649 -- Set scope depth if not a non-concurrent type, and we have not yet set
8650 -- the scope depth. This means that we have the first occurrence of the
8651 -- scope, and this is where the depth is set.
8652
8653 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8654 and then not Scope_Depth_Set (S)
8655 then
8656 if S = Standard_Standard then
8657 Set_Scope_Depth_Value (S, Uint_0);
8658
8659 elsif Is_Child_Unit (S) then
8660 Set_Scope_Depth_Value (S, Uint_1);
8661
8662 elsif not Is_Record_Type (Current_Scope) then
8663 if Ekind (S) = E_Loop then
8664 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8665 else
8666 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8667 end if;
8668 end if;
8669 end if;
8670
8671 Scope_Stack.Increment_Last;
8672
8673 declare
8674 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8675
8676 begin
8677 SST.Entity := S;
8678 SST.Save_Scope_Suppress := Scope_Suppress;
8679 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8680 SST.Save_Check_Policy_List := Check_Policy_List;
8681 SST.Save_Default_Storage_Pool := Default_Pool;
8682 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8683 SST.Save_SPARK_Mode := SPARK_Mode;
8684 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8685 SST.Save_Default_SSO := Default_SSO;
8686 SST.Save_Uneval_Old := Uneval_Old;
8687
8688 -- Each new scope pushed onto the scope stack inherits the component
8689 -- alignment of the previous scope. This emulates the "visibility"
8690 -- semantics of pragma Component_Alignment.
8691
8692 if Scope_Stack.Last > Scope_Stack.First then
8693 SST.Component_Alignment_Default :=
8694 Scope_Stack.Table
8695 (Scope_Stack.Last - 1). Component_Alignment_Default;
8696
8697 -- Otherwise, this is the first scope being pushed on the scope
8698 -- stack. Inherit the component alignment from the configuration
8699 -- form of pragma Component_Alignment (if any).
8700
8701 else
8702 SST.Component_Alignment_Default :=
8703 Configuration_Component_Alignment;
8704 end if;
8705
8706 SST.Last_Subprogram_Name := null;
8707 SST.Is_Transient := False;
8708 SST.Node_To_Be_Wrapped := Empty;
8709 SST.Pending_Freeze_Actions := No_List;
8710 SST.Actions_To_Be_Wrapped := (others => No_List);
8711 SST.First_Use_Clause := Empty;
8712 SST.Is_Active_Stack_Base := False;
8713 SST.Previous_Visibility := False;
8714 SST.Locked_Shared_Objects := No_Elist;
8715 end;
8716
8717 if Debug_Flag_W then
8718 Write_Str ("--> new scope: ");
8719 Write_Name (Chars (Current_Scope));
8720 Write_Str (", Id=");
8721 Write_Int (Int (Current_Scope));
8722 Write_Str (", Depth=");
8723 Write_Int (Int (Scope_Stack.Last));
8724 Write_Eol;
8725 end if;
8726
8727 -- Deal with copying flags from the previous scope to this one. This is
8728 -- not necessary if either scope is standard, or if the new scope is a
8729 -- child unit.
8730
8731 if S /= Standard_Standard
8732 and then Scope (S) /= Standard_Standard
8733 and then not Is_Child_Unit (S)
8734 then
8735 if Nkind (E) not in N_Entity then
8736 return;
8737 end if;
8738
8739 -- Copy categorization flags from Scope (S) to S, this is not done
8740 -- when Scope (S) is Standard_Standard since propagation is from
8741 -- library unit entity inwards. Copy other relevant attributes as
8742 -- well (Discard_Names in particular).
8743
8744 -- We only propagate inwards for library level entities,
8745 -- inner level subprograms do not inherit the categorization.
8746
8747 if Is_Library_Level_Entity (S) then
8748 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8749 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8750 Set_Discard_Names (S, Discard_Names (E));
8751 Set_Suppress_Value_Tracking_On_Call
8752 (S, Suppress_Value_Tracking_On_Call (E));
8753 Set_Categorization_From_Scope (E => S, Scop => E);
8754 end if;
8755 end if;
8756
8757 if Is_Child_Unit (S)
8758 and then Present (E)
8759 and then Ekind_In (E, E_Package, E_Generic_Package)
8760 and then
8761 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8762 then
8763 declare
8764 Aux : constant Node_Id :=
8765 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8766 begin
8767 if Present (Default_Storage_Pool (Aux)) then
8768 Default_Pool := Default_Storage_Pool (Aux);
8769 end if;
8770 end;
8771 end if;
8772 end Push_Scope;
8773
8774 ---------------------
8775 -- Premature_Usage --
8776 ---------------------
8777
8778 procedure Premature_Usage (N : Node_Id) is
8779 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8780 E : Entity_Id := Entity (N);
8781
8782 begin
8783 -- Within an instance, the analysis of the actual for a formal object
8784 -- does not see the name of the object itself. This is significant only
8785 -- if the object is an aggregate, where its analysis does not do any
8786 -- name resolution on component associations. (see 4717-008). In such a
8787 -- case, look for the visible homonym on the chain.
8788
8789 if In_Instance and then Present (Homonym (E)) then
8790 E := Homonym (E);
8791 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8792 E := Homonym (E);
8793 end loop;
8794
8795 if Present (E) then
8796 Set_Entity (N, E);
8797 Set_Etype (N, Etype (E));
8798 return;
8799 end if;
8800 end if;
8801
8802 if Kind = N_Component_Declaration then
8803 Error_Msg_N
8804 ("component&! cannot be used before end of record declaration", N);
8805
8806 elsif Kind = N_Parameter_Specification then
8807 Error_Msg_N
8808 ("formal parameter&! cannot be used before end of specification",
8809 N);
8810
8811 elsif Kind = N_Discriminant_Specification then
8812 Error_Msg_N
8813 ("discriminant&! cannot be used before end of discriminant part",
8814 N);
8815
8816 elsif Kind = N_Procedure_Specification
8817 or else Kind = N_Function_Specification
8818 then
8819 Error_Msg_N
8820 ("subprogram&! cannot be used before end of its declaration",
8821 N);
8822
8823 elsif Kind = N_Full_Type_Declaration then
8824 Error_Msg_N
8825 ("type& cannot be used before end of its declaration!", N);
8826
8827 else
8828 Error_Msg_N
8829 ("object& cannot be used before end of its declaration!", N);
8830
8831 -- If the premature reference appears as the expression in its own
8832 -- declaration, rewrite it to prevent compiler loops in subsequent
8833 -- uses of this mangled declaration in address clauses.
8834
8835 if Nkind (Parent (N)) = N_Object_Declaration then
8836 Set_Entity (N, Any_Id);
8837 end if;
8838 end if;
8839 end Premature_Usage;
8840
8841 ------------------------
8842 -- Present_System_Aux --
8843 ------------------------
8844
8845 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8846 Loc : Source_Ptr;
8847 Aux_Name : Unit_Name_Type;
8848 Unum : Unit_Number_Type;
8849 Withn : Node_Id;
8850 With_Sys : Node_Id;
8851 The_Unit : Node_Id;
8852
8853 function Find_System (C_Unit : Node_Id) return Entity_Id;
8854 -- Scan context clause of compilation unit to find with_clause
8855 -- for System.
8856
8857 -----------------
8858 -- Find_System --
8859 -----------------
8860
8861 function Find_System (C_Unit : Node_Id) return Entity_Id is
8862 With_Clause : Node_Id;
8863
8864 begin
8865 With_Clause := First (Context_Items (C_Unit));
8866 while Present (With_Clause) loop
8867 if (Nkind (With_Clause) = N_With_Clause
8868 and then Chars (Name (With_Clause)) = Name_System)
8869 and then Comes_From_Source (With_Clause)
8870 then
8871 return With_Clause;
8872 end if;
8873
8874 Next (With_Clause);
8875 end loop;
8876
8877 return Empty;
8878 end Find_System;
8879
8880 -- Start of processing for Present_System_Aux
8881
8882 begin
8883 -- The child unit may have been loaded and analyzed already
8884
8885 if Present (System_Aux_Id) then
8886 return True;
8887
8888 -- If no previous pragma for System.Aux, nothing to load
8889
8890 elsif No (System_Extend_Unit) then
8891 return False;
8892
8893 -- Use the unit name given in the pragma to retrieve the unit.
8894 -- Verify that System itself appears in the context clause of the
8895 -- current compilation. If System is not present, an error will
8896 -- have been reported already.
8897
8898 else
8899 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8900
8901 The_Unit := Unit (Cunit (Current_Sem_Unit));
8902
8903 if No (With_Sys)
8904 and then
8905 (Nkind (The_Unit) = N_Package_Body
8906 or else (Nkind (The_Unit) = N_Subprogram_Body
8907 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8908 then
8909 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8910 end if;
8911
8912 if No (With_Sys) and then Present (N) then
8913
8914 -- If we are compiling a subunit, we need to examine its
8915 -- context as well (Current_Sem_Unit is the parent unit);
8916
8917 The_Unit := Parent (N);
8918 while Nkind (The_Unit) /= N_Compilation_Unit loop
8919 The_Unit := Parent (The_Unit);
8920 end loop;
8921
8922 if Nkind (Unit (The_Unit)) = N_Subunit then
8923 With_Sys := Find_System (The_Unit);
8924 end if;
8925 end if;
8926
8927 if No (With_Sys) then
8928 return False;
8929 end if;
8930
8931 Loc := Sloc (With_Sys);
8932 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8933 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8934 Name_Buffer (1 .. 7) := "system.";
8935 Name_Buffer (Name_Len + 8) := '%';
8936 Name_Buffer (Name_Len + 9) := 's';
8937 Name_Len := Name_Len + 9;
8938 Aux_Name := Name_Find;
8939
8940 Unum :=
8941 Load_Unit
8942 (Load_Name => Aux_Name,
8943 Required => False,
8944 Subunit => False,
8945 Error_Node => With_Sys);
8946
8947 if Unum /= No_Unit then
8948 Semantics (Cunit (Unum));
8949 System_Aux_Id :=
8950 Defining_Entity (Specification (Unit (Cunit (Unum))));
8951
8952 Withn :=
8953 Make_With_Clause (Loc,
8954 Name =>
8955 Make_Expanded_Name (Loc,
8956 Chars => Chars (System_Aux_Id),
8957 Prefix =>
8958 New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8959 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8960
8961 Set_Entity (Name (Withn), System_Aux_Id);
8962
8963 Set_Corresponding_Spec (Withn, System_Aux_Id);
8964 Set_First_Name (Withn);
8965 Set_Implicit_With (Withn);
8966 Set_Library_Unit (Withn, Cunit (Unum));
8967
8968 Insert_After (With_Sys, Withn);
8969 Mark_Rewrite_Insertion (Withn);
8970 Set_Context_Installed (Withn);
8971
8972 return True;
8973
8974 -- Here if unit load failed
8975
8976 else
8977 Error_Msg_Name_1 := Name_System;
8978 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8979 Error_Msg_N
8980 ("extension package `%.%` does not exist",
8981 Opt.System_Extend_Unit);
8982 return False;
8983 end if;
8984 end if;
8985 end Present_System_Aux;
8986
8987 -------------------------
8988 -- Restore_Scope_Stack --
8989 -------------------------
8990
8991 procedure Restore_Scope_Stack
8992 (List : Elist_Id;
8993 Handle_Use : Boolean := True)
8994 is
8995 SS_Last : constant Int := Scope_Stack.Last;
8996 Elmt : Elmt_Id;
8997
8998 begin
8999 -- Restore visibility of previous scope stack, if any, using the list
9000 -- we saved (we use Remove, since this list will not be used again).
9001
9002 loop
9003 Elmt := Last_Elmt (List);
9004 exit when Elmt = No_Elmt;
9005 Set_Is_Immediately_Visible (Node (Elmt));
9006 Remove_Last_Elmt (List);
9007 end loop;
9008
9009 -- Restore use clauses
9010
9011 if SS_Last >= Scope_Stack.First
9012 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9013 and then Handle_Use
9014 then
9015 Install_Use_Clauses
9016 (Scope_Stack.Table (SS_Last).First_Use_Clause,
9017 Force_Installation => True);
9018 end if;
9019 end Restore_Scope_Stack;
9020
9021 ----------------------
9022 -- Save_Scope_Stack --
9023 ----------------------
9024
9025 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
9026 -- consuming any memory. That is, Save_Scope_Stack took care of removing
9027 -- from immediate visibility entities and Restore_Scope_Stack took care
9028 -- of restoring their visibility analyzing the context of each entity. The
9029 -- problem of such approach is that it was fragile and caused unexpected
9030 -- visibility problems, and indeed one test was found where there was a
9031 -- real problem.
9032
9033 -- Furthermore, the following experiment was carried out:
9034
9035 -- - Save_Scope_Stack was modified to store in an Elist1 all those
9036 -- entities whose attribute Is_Immediately_Visible is modified
9037 -- from True to False.
9038
9039 -- - Restore_Scope_Stack was modified to store in another Elist2
9040 -- all the entities whose attribute Is_Immediately_Visible is
9041 -- modified from False to True.
9042
9043 -- - Extra code was added to verify that all the elements of Elist1
9044 -- are found in Elist2
9045
9046 -- This test shows that there may be more occurrences of this problem which
9047 -- have not yet been detected. As a result, we replaced that approach by
9048 -- the current one in which Save_Scope_Stack returns the list of entities
9049 -- whose visibility is changed, and that list is passed to Restore_Scope_
9050 -- Stack to undo that change. This approach is simpler and safer, although
9051 -- it consumes more memory.
9052
9053 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
9054 Result : constant Elist_Id := New_Elmt_List;
9055 E : Entity_Id;
9056 S : Entity_Id;
9057 SS_Last : constant Int := Scope_Stack.Last;
9058
9059 procedure Remove_From_Visibility (E : Entity_Id);
9060 -- If E is immediately visible then append it to the result and remove
9061 -- it temporarily from visibility.
9062
9063 ----------------------------
9064 -- Remove_From_Visibility --
9065 ----------------------------
9066
9067 procedure Remove_From_Visibility (E : Entity_Id) is
9068 begin
9069 if Is_Immediately_Visible (E) then
9070 Append_Elmt (E, Result);
9071 Set_Is_Immediately_Visible (E, False);
9072 end if;
9073 end Remove_From_Visibility;
9074
9075 -- Start of processing for Save_Scope_Stack
9076
9077 begin
9078 if SS_Last >= Scope_Stack.First
9079 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9080 then
9081 if Handle_Use then
9082 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
9083 end if;
9084
9085 -- If the call is from within a compilation unit, as when called from
9086 -- Rtsfind, make current entries in scope stack invisible while we
9087 -- analyze the new unit.
9088
9089 for J in reverse 0 .. SS_Last loop
9090 exit when Scope_Stack.Table (J).Entity = Standard_Standard
9091 or else No (Scope_Stack.Table (J).Entity);
9092
9093 S := Scope_Stack.Table (J).Entity;
9094
9095 Remove_From_Visibility (S);
9096
9097 E := First_Entity (S);
9098 while Present (E) loop
9099 Remove_From_Visibility (E);
9100 Next_Entity (E);
9101 end loop;
9102 end loop;
9103
9104 end if;
9105
9106 return Result;
9107 end Save_Scope_Stack;
9108
9109 -------------
9110 -- Set_Use --
9111 -------------
9112
9113 procedure Set_Use (L : List_Id) is
9114 Decl : Node_Id;
9115
9116 begin
9117 if Present (L) then
9118 Decl := First (L);
9119 while Present (Decl) loop
9120 if Nkind (Decl) = N_Use_Package_Clause then
9121 Chain_Use_Clause (Decl);
9122 Use_One_Package (Decl, Name (Decl));
9123
9124 elsif Nkind (Decl) = N_Use_Type_Clause then
9125 Chain_Use_Clause (Decl);
9126 Use_One_Type (Subtype_Mark (Decl));
9127
9128 end if;
9129
9130 Next (Decl);
9131 end loop;
9132 end if;
9133 end Set_Use;
9134
9135 -----------------------------
9136 -- Update_Use_Clause_Chain --
9137 -----------------------------
9138
9139 procedure Update_Use_Clause_Chain is
9140
9141 procedure Update_Chain_In_Scope (Level : Int);
9142 -- Iterate through one level in the scope stack verifying each use-type
9143 -- clause within said level is used then reset the Current_Use_Clause
9144 -- to a redundant use clause outside of the current ending scope if such
9145 -- a clause exists.
9146
9147 ---------------------------
9148 -- Update_Chain_In_Scope --
9149 ---------------------------
9150
9151 procedure Update_Chain_In_Scope (Level : Int) is
9152 Curr : Node_Id;
9153 N : Node_Id;
9154
9155 begin
9156 -- Loop through all use clauses within the scope dictated by Level
9157
9158 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9159 while Present (Curr) loop
9160
9161 -- Retrieve the subtype mark or name within the current current
9162 -- use clause.
9163
9164 if Nkind (Curr) = N_Use_Type_Clause then
9165 N := Subtype_Mark (Curr);
9166 else
9167 N := Name (Curr);
9168 end if;
9169
9170 -- If warnings for unreferenced entities are enabled and the
9171 -- current use clause has not been marked effective.
9172
9173 if Check_Unreferenced
9174 and then Comes_From_Source (Curr)
9175 and then not Is_Effective_Use_Clause (Curr)
9176 and then not In_Instance
9177 and then not In_Inlined_Body
9178 then
9179 -- We are dealing with a potentially unused use_package_clause
9180
9181 if Nkind (Curr) = N_Use_Package_Clause then
9182
9183 -- Renamings and formal subprograms may cause the associated
9184 -- node to be marked as effective instead of the original.
9185
9186 if not (Present (Associated_Node (N))
9187 and then Present
9188 (Current_Use_Clause
9189 (Associated_Node (N)))
9190 and then Is_Effective_Use_Clause
9191 (Current_Use_Clause
9192 (Associated_Node (N))))
9193 then
9194 Error_Msg_Node_1 := Entity (N);
9195 Error_Msg_NE
9196 ("use clause for package & has no effect?u?",
9197 Curr, Entity (N));
9198 end if;
9199
9200 -- We are dealing with an unused use_type_clause
9201
9202 else
9203 Error_Msg_Node_1 := Etype (N);
9204 Error_Msg_NE
9205 ("use clause for } has no effect?u?", Curr, Etype (N));
9206 end if;
9207 end if;
9208
9209 -- Verify that we haven't already processed a redundant
9210 -- use_type_clause within the same scope before we move the
9211 -- current use clause up to a previous one for type T.
9212
9213 if Present (Prev_Use_Clause (Curr)) then
9214 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9215 end if;
9216
9217 Curr := Next_Use_Clause (Curr);
9218 end loop;
9219 end Update_Chain_In_Scope;
9220
9221 -- Start of processing for Update_Use_Clause_Chain
9222
9223 begin
9224 Update_Chain_In_Scope (Scope_Stack.Last);
9225
9226 -- Deal with use clauses within the context area if the current
9227 -- scope is a compilation unit.
9228
9229 if Is_Compilation_Unit (Current_Scope)
9230 and then Sloc (Scope_Stack.Table
9231 (Scope_Stack.Last - 1).Entity) = Standard_Location
9232 then
9233 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9234 end if;
9235 end Update_Use_Clause_Chain;
9236
9237 ---------------------
9238 -- Use_One_Package --
9239 ---------------------
9240
9241 procedure Use_One_Package
9242 (N : Node_Id;
9243 Pack_Name : Entity_Id := Empty;
9244 Force : Boolean := False)
9245 is
9246 procedure Note_Redundant_Use (Clause : Node_Id);
9247 -- Mark the name in a use clause as redundant if the corresponding
9248 -- entity is already use-visible. Emit a warning if the use clause comes
9249 -- from source and the proper warnings are enabled.
9250
9251 ------------------------
9252 -- Note_Redundant_Use --
9253 ------------------------
9254
9255 procedure Note_Redundant_Use (Clause : Node_Id) is
9256 Decl : constant Node_Id := Parent (Clause);
9257 Pack_Name : constant Entity_Id := Entity (Clause);
9258
9259 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9260 Prev_Use : Node_Id := Empty;
9261 Redundant : Node_Id := Empty;
9262 -- The Use_Clause which is actually redundant. In the simplest case
9263 -- it is Pack itself, but when we compile a body we install its
9264 -- context before that of its spec, in which case it is the
9265 -- use_clause in the spec that will appear to be redundant, and we
9266 -- want the warning to be placed on the body. Similar complications
9267 -- appear when the redundancy is between a child unit and one of its
9268 -- ancestors.
9269
9270 begin
9271 -- Could be renamed...
9272
9273 if No (Cur_Use) then
9274 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9275 end if;
9276
9277 Set_Redundant_Use (Clause, True);
9278
9279 if not Comes_From_Source (Clause)
9280 or else In_Instance
9281 or else not Warn_On_Redundant_Constructs
9282 then
9283 return;
9284 end if;
9285
9286 if not Is_Compilation_Unit (Current_Scope) then
9287
9288 -- If the use_clause is in an inner scope, it is made redundant by
9289 -- some clause in the current context, with one exception: If we
9290 -- are compiling a nested package body, and the use_clause comes
9291 -- from then corresponding spec, the clause is not necessarily
9292 -- fully redundant, so we should not warn. If a warning was
9293 -- warranted, it would have been given when the spec was
9294 -- processed.
9295
9296 if Nkind (Parent (Decl)) = N_Package_Specification then
9297 declare
9298 Package_Spec_Entity : constant Entity_Id :=
9299 Defining_Unit_Name (Parent (Decl));
9300 begin
9301 if In_Package_Body (Package_Spec_Entity) then
9302 return;
9303 end if;
9304 end;
9305 end if;
9306
9307 Redundant := Clause;
9308 Prev_Use := Cur_Use;
9309
9310 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9311 declare
9312 Cur_Unit : constant Unit_Number_Type :=
9313 Get_Source_Unit (Cur_Use);
9314 New_Unit : constant Unit_Number_Type :=
9315 Get_Source_Unit (Clause);
9316
9317 Scop : Entity_Id;
9318
9319 begin
9320 if Cur_Unit = New_Unit then
9321
9322 -- Redundant clause in same body
9323
9324 Redundant := Clause;
9325 Prev_Use := Cur_Use;
9326
9327 elsif Cur_Unit = Current_Sem_Unit then
9328
9329 -- If the new clause is not in the current unit it has been
9330 -- analyzed first, and it makes the other one redundant.
9331 -- However, if the new clause appears in a subunit, Cur_Unit
9332 -- is still the parent, and in that case the redundant one
9333 -- is the one appearing in the subunit.
9334
9335 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9336 Redundant := Clause;
9337 Prev_Use := Cur_Use;
9338
9339 -- Most common case: redundant clause in body, original
9340 -- clause in spec. Current scope is spec entity.
9341
9342 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9343 Redundant := Cur_Use;
9344 Prev_Use := Clause;
9345
9346 else
9347 -- The new clause may appear in an unrelated unit, when
9348 -- the parents of a generic are being installed prior to
9349 -- instantiation. In this case there must be no warning.
9350 -- We detect this case by checking whether the current
9351 -- top of the stack is related to the current
9352 -- compilation.
9353
9354 Scop := Current_Scope;
9355 while Present (Scop)
9356 and then Scop /= Standard_Standard
9357 loop
9358 if Is_Compilation_Unit (Scop)
9359 and then not Is_Child_Unit (Scop)
9360 then
9361 return;
9362
9363 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9364 exit;
9365 end if;
9366
9367 Scop := Scope (Scop);
9368 end loop;
9369
9370 Redundant := Cur_Use;
9371 Prev_Use := Clause;
9372 end if;
9373
9374 elsif New_Unit = Current_Sem_Unit then
9375 Redundant := Clause;
9376 Prev_Use := Cur_Use;
9377
9378 else
9379 -- Neither is the current unit, so they appear in parent or
9380 -- sibling units. Warning will be emitted elsewhere.
9381
9382 return;
9383 end if;
9384 end;
9385
9386 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9387 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9388 then
9389 -- Use_clause is in child unit of current unit, and the child unit
9390 -- appears in the context of the body of the parent, so it has
9391 -- been installed first, even though it is the redundant one.
9392 -- Depending on their placement in the context, the visible or the
9393 -- private parts of the two units, either might appear as
9394 -- redundant, but the message has to be on the current unit.
9395
9396 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9397 Redundant := Cur_Use;
9398 Prev_Use := Clause;
9399 else
9400 Redundant := Clause;
9401 Prev_Use := Cur_Use;
9402 end if;
9403
9404 -- If the new use clause appears in the private part of a parent
9405 -- unit it may appear to be redundant w.r.t. a use clause in a
9406 -- child unit, but the previous use clause was needed in the
9407 -- visible part of the child, and no warning should be emitted.
9408
9409 if Nkind (Parent (Decl)) = N_Package_Specification
9410 and then List_Containing (Decl) =
9411 Private_Declarations (Parent (Decl))
9412 then
9413 declare
9414 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9415 Spec : constant Node_Id :=
9416 Specification (Unit (Cunit (Current_Sem_Unit)));
9417
9418 begin
9419 if Is_Compilation_Unit (Par)
9420 and then Par /= Cunit_Entity (Current_Sem_Unit)
9421 and then Parent (Cur_Use) = Spec
9422 and then List_Containing (Cur_Use) =
9423 Visible_Declarations (Spec)
9424 then
9425 return;
9426 end if;
9427 end;
9428 end if;
9429
9430 -- Finally, if the current use clause is in the context then the
9431 -- clause is redundant when it is nested within the unit.
9432
9433 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9434 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9435 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9436 then
9437 Redundant := Clause;
9438 Prev_Use := Cur_Use;
9439
9440 end if;
9441
9442 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9443
9444 -- Make sure we are looking at most-descendant use_package_clause
9445 -- by traversing the chain with Find_Most_Prev and then verifying
9446 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9447
9448 if Nkind (Prev_Use) = N_Use_Package_Clause
9449 and then
9450 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9451 or else Most_Descendant_Use_Clause
9452 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9453 then
9454 Prev_Use := Find_Most_Prev (Prev_Use);
9455 end if;
9456
9457 Error_Msg_Sloc := Sloc (Prev_Use);
9458 Error_Msg_NE -- CODEFIX
9459 ("& is already use-visible through previous use_clause #??",
9460 Redundant, Pack_Name);
9461 end if;
9462 end Note_Redundant_Use;
9463
9464 -- Local variables
9465
9466 Current_Instance : Entity_Id := Empty;
9467 Id : Entity_Id;
9468 P : Entity_Id;
9469 Prev : Entity_Id;
9470 Private_With_OK : Boolean := False;
9471 Real_P : Entity_Id;
9472
9473 -- Start of processing for Use_One_Package
9474
9475 begin
9476 -- Use_One_Package may have been called recursively to handle an
9477 -- implicit use for a auxiliary system package, so set P accordingly
9478 -- and skip redundancy checks.
9479
9480 if No (Pack_Name) and then Present_System_Aux (N) then
9481 P := System_Aux_Id;
9482
9483 -- Check for redundant use_package_clauses
9484
9485 else
9486 -- Ignore cases where we are dealing with a non user defined package
9487 -- like Standard_Standard or something other than a valid package.
9488
9489 if not Is_Entity_Name (Pack_Name)
9490 or else No (Entity (Pack_Name))
9491 or else Ekind (Entity (Pack_Name)) /= E_Package
9492 then
9493 return;
9494 end if;
9495
9496 -- When a renaming exists we must check it for redundancy. The
9497 -- original package would have already been seen at this point.
9498
9499 if Present (Renamed_Object (Entity (Pack_Name))) then
9500 P := Renamed_Object (Entity (Pack_Name));
9501 else
9502 P := Entity (Pack_Name);
9503 end if;
9504
9505 -- Check for redundant clauses then set the current use clause for
9506 -- P if were are not "forcing" an installation from a scope
9507 -- reinstallation that is done throughout analysis for various
9508 -- reasons.
9509
9510 if In_Use (P) then
9511 Note_Redundant_Use (Pack_Name);
9512
9513 if not Force then
9514 Set_Current_Use_Clause (P, N);
9515 end if;
9516
9517 return;
9518
9519 -- Warn about detected redundant clauses
9520
9521 elsif not Force
9522 and then In_Open_Scopes (P)
9523 and then not Is_Hidden_Open_Scope (P)
9524 then
9525 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9526 Error_Msg_NE -- CODEFIX
9527 ("& is already use-visible within itself?r?",
9528 Pack_Name, P);
9529 end if;
9530
9531 return;
9532 end if;
9533
9534 -- Set P back to the non-renamed package so that visiblilty of the
9535 -- entities within the package can be properly set below.
9536
9537 P := Entity (Pack_Name);
9538 end if;
9539
9540 Set_In_Use (P);
9541 Set_Current_Use_Clause (P, N);
9542
9543 -- Ada 2005 (AI-50217): Check restriction
9544
9545 if From_Limited_With (P) then
9546 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9547 end if;
9548
9549 -- Find enclosing instance, if any
9550
9551 if In_Instance then
9552 Current_Instance := Current_Scope;
9553 while not Is_Generic_Instance (Current_Instance) loop
9554 Current_Instance := Scope (Current_Instance);
9555 end loop;
9556
9557 if No (Hidden_By_Use_Clause (N)) then
9558 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9559 end if;
9560 end if;
9561
9562 -- If unit is a package renaming, indicate that the renamed package is
9563 -- also in use (the flags on both entities must remain consistent, and a
9564 -- subsequent use of either of them should be recognized as redundant).
9565
9566 if Present (Renamed_Object (P)) then
9567 Set_In_Use (Renamed_Object (P));
9568 Set_Current_Use_Clause (Renamed_Object (P), N);
9569 Real_P := Renamed_Object (P);
9570 else
9571 Real_P := P;
9572 end if;
9573
9574 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9575 -- found in the private part of a package specification
9576
9577 if In_Private_Part (Current_Scope)
9578 and then Has_Private_With (P)
9579 and then Is_Child_Unit (Current_Scope)
9580 and then Is_Child_Unit (P)
9581 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9582 then
9583 Private_With_OK := True;
9584 end if;
9585
9586 -- Loop through entities in one package making them potentially
9587 -- use-visible.
9588
9589 Id := First_Entity (P);
9590 while Present (Id)
9591 and then (Id /= First_Private_Entity (P)
9592 or else Private_With_OK) -- Ada 2005 (AI-262)
9593 loop
9594 Prev := Current_Entity (Id);
9595 while Present (Prev) loop
9596 if Is_Immediately_Visible (Prev)
9597 and then (not Is_Overloadable (Prev)
9598 or else not Is_Overloadable (Id)
9599 or else (Type_Conformant (Id, Prev)))
9600 then
9601 if No (Current_Instance) then
9602
9603 -- Potentially use-visible entity remains hidden
9604
9605 goto Next_Usable_Entity;
9606
9607 -- A use clause within an instance hides outer global entities,
9608 -- which are not used to resolve local entities in the
9609 -- instance. Note that the predefined entities in Standard
9610 -- could not have been hidden in the generic by a use clause,
9611 -- and therefore remain visible. Other compilation units whose
9612 -- entities appear in Standard must be hidden in an instance.
9613
9614 -- To determine whether an entity is external to the instance
9615 -- we compare the scope depth of its scope with that of the
9616 -- current instance. However, a generic actual of a subprogram
9617 -- instance is declared in the wrapper package but will not be
9618 -- hidden by a use-visible entity. similarly, an entity that is
9619 -- declared in an enclosing instance will not be hidden by an
9620 -- an entity declared in a generic actual, which can only have
9621 -- been use-visible in the generic and will not have hidden the
9622 -- entity in the generic parent.
9623
9624 -- If Id is called Standard, the predefined package with the
9625 -- same name is in the homonym chain. It has to be ignored
9626 -- because it has no defined scope (being the only entity in
9627 -- the system with this mandated behavior).
9628
9629 elsif not Is_Hidden (Id)
9630 and then Present (Scope (Prev))
9631 and then not Is_Wrapper_Package (Scope (Prev))
9632 and then Scope_Depth (Scope (Prev)) <
9633 Scope_Depth (Current_Instance)
9634 and then (Scope (Prev) /= Standard_Standard
9635 or else Sloc (Prev) > Standard_Location)
9636 then
9637 if In_Open_Scopes (Scope (Prev))
9638 and then Is_Generic_Instance (Scope (Prev))
9639 and then Present (Associated_Formal_Package (P))
9640 then
9641 null;
9642
9643 else
9644 Set_Is_Potentially_Use_Visible (Id);
9645 Set_Is_Immediately_Visible (Prev, False);
9646 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9647 end if;
9648 end if;
9649
9650 -- A user-defined operator is not use-visible if the predefined
9651 -- operator for the type is immediately visible, which is the case
9652 -- if the type of the operand is in an open scope. This does not
9653 -- apply to user-defined operators that have operands of different
9654 -- types, because the predefined mixed mode operations (multiply
9655 -- and divide) apply to universal types and do not hide anything.
9656
9657 elsif Ekind (Prev) = E_Operator
9658 and then Operator_Matches_Spec (Prev, Id)
9659 and then In_Open_Scopes
9660 (Scope (Base_Type (Etype (First_Formal (Id)))))
9661 and then (No (Next_Formal (First_Formal (Id)))
9662 or else Etype (First_Formal (Id)) =
9663 Etype (Next_Formal (First_Formal (Id)))
9664 or else Chars (Prev) = Name_Op_Expon)
9665 then
9666 goto Next_Usable_Entity;
9667
9668 -- In an instance, two homonyms may become use_visible through the
9669 -- actuals of distinct formal packages. In the generic, only the
9670 -- current one would have been visible, so make the other one
9671 -- not use_visible.
9672
9673 elsif Present (Current_Instance)
9674 and then Is_Potentially_Use_Visible (Prev)
9675 and then not Is_Overloadable (Prev)
9676 and then Scope (Id) /= Scope (Prev)
9677 and then Used_As_Generic_Actual (Scope (Prev))
9678 and then Used_As_Generic_Actual (Scope (Id))
9679 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9680 Current_Use_Clause (Scope (Id)))
9681 then
9682 Set_Is_Potentially_Use_Visible (Prev, False);
9683 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9684 end if;
9685
9686 Prev := Homonym (Prev);
9687 end loop;
9688
9689 -- On exit, we know entity is not hidden, unless it is private
9690
9691 if not Is_Hidden (Id)
9692 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9693 then
9694 Set_Is_Potentially_Use_Visible (Id);
9695
9696 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9697 Set_Is_Potentially_Use_Visible (Full_View (Id));
9698 end if;
9699 end if;
9700
9701 <<Next_Usable_Entity>>
9702 Next_Entity (Id);
9703 end loop;
9704
9705 -- Child units are also made use-visible by a use clause, but they may
9706 -- appear after all visible declarations in the parent entity list.
9707
9708 while Present (Id) loop
9709 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9710 Set_Is_Potentially_Use_Visible (Id);
9711 end if;
9712
9713 Next_Entity (Id);
9714 end loop;
9715
9716 if Chars (Real_P) = Name_System
9717 and then Scope (Real_P) = Standard_Standard
9718 and then Present_System_Aux (N)
9719 then
9720 Use_One_Package (N);
9721 end if;
9722 end Use_One_Package;
9723
9724 ------------------
9725 -- Use_One_Type --
9726 ------------------
9727
9728 procedure Use_One_Type
9729 (Id : Node_Id;
9730 Installed : Boolean := False;
9731 Force : Boolean := False)
9732 is
9733 function Spec_Reloaded_For_Body return Boolean;
9734 -- Determine whether the compilation unit is a package body and the use
9735 -- type clause is in the spec of the same package. Even though the spec
9736 -- was analyzed first, its context is reloaded when analysing the body.
9737
9738 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9739 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9740 -- class-wide operations of ancestor types are use-visible if the
9741 -- ancestor type is visible.
9742
9743 ----------------------------
9744 -- Spec_Reloaded_For_Body --
9745 ----------------------------
9746
9747 function Spec_Reloaded_For_Body return Boolean is
9748 begin
9749 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9750 declare
9751 Spec : constant Node_Id :=
9752 Parent (List_Containing (Parent (Id)));
9753
9754 begin
9755 -- Check whether type is declared in a package specification,
9756 -- and current unit is the corresponding package body. The
9757 -- use clauses themselves may be within a nested package.
9758
9759 return
9760 Nkind (Spec) = N_Package_Specification
9761 and then In_Same_Source_Unit
9762 (Corresponding_Body (Parent (Spec)),
9763 Cunit_Entity (Current_Sem_Unit));
9764 end;
9765 end if;
9766
9767 return False;
9768 end Spec_Reloaded_For_Body;
9769
9770 -------------------------------
9771 -- Use_Class_Wide_Operations --
9772 -------------------------------
9773
9774 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9775 function Is_Class_Wide_Operation_Of
9776 (Op : Entity_Id;
9777 T : Entity_Id) return Boolean;
9778 -- Determine whether a subprogram has a class-wide parameter or
9779 -- result that is T'Class.
9780
9781 ---------------------------------
9782 -- Is_Class_Wide_Operation_Of --
9783 ---------------------------------
9784
9785 function Is_Class_Wide_Operation_Of
9786 (Op : Entity_Id;
9787 T : Entity_Id) return Boolean
9788 is
9789 Formal : Entity_Id;
9790
9791 begin
9792 Formal := First_Formal (Op);
9793 while Present (Formal) loop
9794 if Etype (Formal) = Class_Wide_Type (T) then
9795 return True;
9796 end if;
9797
9798 Next_Formal (Formal);
9799 end loop;
9800
9801 if Etype (Op) = Class_Wide_Type (T) then
9802 return True;
9803 end if;
9804
9805 return False;
9806 end Is_Class_Wide_Operation_Of;
9807
9808 -- Local variables
9809
9810 Ent : Entity_Id;
9811 Scop : Entity_Id;
9812
9813 -- Start of processing for Use_Class_Wide_Operations
9814
9815 begin
9816 Scop := Scope (Typ);
9817 if not Is_Hidden (Scop) then
9818 Ent := First_Entity (Scop);
9819 while Present (Ent) loop
9820 if Is_Overloadable (Ent)
9821 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9822 and then not Is_Potentially_Use_Visible (Ent)
9823 then
9824 Set_Is_Potentially_Use_Visible (Ent);
9825 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9826 end if;
9827
9828 Next_Entity (Ent);
9829 end loop;
9830 end if;
9831
9832 if Is_Derived_Type (Typ) then
9833 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9834 end if;
9835 end Use_Class_Wide_Operations;
9836
9837 -- Local variables
9838
9839 Elmt : Elmt_Id;
9840 Is_Known_Used : Boolean;
9841 Op_List : Elist_Id;
9842 T : Entity_Id;
9843
9844 -- Start of processing for Use_One_Type
9845
9846 begin
9847 if Entity (Id) = Any_Type then
9848 return;
9849 end if;
9850
9851 -- It is the type determined by the subtype mark (8.4(8)) whose
9852 -- operations become potentially use-visible.
9853
9854 T := Base_Type (Entity (Id));
9855
9856 -- Either the type itself is used, the package where it is declared is
9857 -- in use or the entity is declared in the current package, thus
9858 -- use-visible.
9859
9860 Is_Known_Used :=
9861 (In_Use (T)
9862 and then ((Present (Current_Use_Clause (T))
9863 and then All_Present (Current_Use_Clause (T)))
9864 or else not All_Present (Parent (Id))))
9865 or else In_Use (Scope (T))
9866 or else Scope (T) = Current_Scope;
9867
9868 Set_Redundant_Use (Id,
9869 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9870
9871 if Ekind (T) = E_Incomplete_Type then
9872 Error_Msg_N ("premature usage of incomplete type", Id);
9873
9874 elsif In_Open_Scopes (Scope (T)) then
9875 null;
9876
9877 -- A limited view cannot appear in a use_type_clause. However, an access
9878 -- type whose designated type is limited has the flag but is not itself
9879 -- a limited view unless we only have a limited view of its enclosing
9880 -- package.
9881
9882 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9883 Error_Msg_N
9884 ("incomplete type from limited view cannot appear in use clause",
9885 Id);
9886
9887 -- If the use clause is redundant, Used_Operations will usually be
9888 -- empty, but we need to set it to empty here in one case: If we are
9889 -- instantiating a generic library unit, then we install the ancestors
9890 -- of that unit in the scope stack, which involves reprocessing use
9891 -- clauses in those ancestors. Such a use clause will typically have a
9892 -- nonempty Used_Operations unless it was redundant in the generic unit,
9893 -- even if it is redundant at the place of the instantiation.
9894
9895 elsif Redundant_Use (Id) then
9896
9897 -- We must avoid incorrectly setting the Current_Use_Clause when we
9898 -- are working with a redundant clause that has already been linked
9899 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9900
9901 if Present (Current_Use_Clause (T))
9902 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9903 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9904 then
9905 null;
9906 else
9907 Set_Current_Use_Clause (T, Parent (Id));
9908 end if;
9909
9910 Set_Used_Operations (Parent (Id), New_Elmt_List);
9911
9912 -- If the subtype mark designates a subtype in a different package,
9913 -- we have to check that the parent type is visible, otherwise the
9914 -- use_type_clause is a no-op. Not clear how to do that???
9915
9916 else
9917 Set_Current_Use_Clause (T, Parent (Id));
9918 Set_In_Use (T);
9919
9920 -- If T is tagged, primitive operators on class-wide operands are
9921 -- also available.
9922
9923 if Is_Tagged_Type (T) then
9924 Set_In_Use (Class_Wide_Type (T));
9925 end if;
9926
9927 -- Iterate over primitive operations of the type. If an operation is
9928 -- already use_visible, it is the result of a previous use_clause,
9929 -- and already appears on the corresponding entity chain. If the
9930 -- clause is being reinstalled, operations are already use-visible.
9931
9932 if Installed then
9933 null;
9934
9935 else
9936 Op_List := Collect_Primitive_Operations (T);
9937 Elmt := First_Elmt (Op_List);
9938 while Present (Elmt) loop
9939 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9940 or else Chars (Node (Elmt)) in Any_Operator_Name)
9941 and then not Is_Hidden (Node (Elmt))
9942 and then not Is_Potentially_Use_Visible (Node (Elmt))
9943 then
9944 Set_Is_Potentially_Use_Visible (Node (Elmt));
9945 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9946
9947 elsif Ada_Version >= Ada_2012
9948 and then All_Present (Parent (Id))
9949 and then not Is_Hidden (Node (Elmt))
9950 and then not Is_Potentially_Use_Visible (Node (Elmt))
9951 then
9952 Set_Is_Potentially_Use_Visible (Node (Elmt));
9953 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9954 end if;
9955
9956 Next_Elmt (Elmt);
9957 end loop;
9958 end if;
9959
9960 if Ada_Version >= Ada_2012
9961 and then All_Present (Parent (Id))
9962 and then Is_Tagged_Type (T)
9963 then
9964 Use_Class_Wide_Operations (T);
9965 end if;
9966 end if;
9967
9968 -- If warning on redundant constructs, check for unnecessary WITH
9969
9970 if not Force
9971 and then Warn_On_Redundant_Constructs
9972 and then Is_Known_Used
9973
9974 -- with P; with P; use P;
9975 -- package P is package X is package body X is
9976 -- type T ... use P.T;
9977
9978 -- The compilation unit is the body of X. GNAT first compiles the
9979 -- spec of X, then proceeds to the body. At that point P is marked
9980 -- as use visible. The analysis then reinstalls the spec along with
9981 -- its context. The use clause P.T is now recognized as redundant,
9982 -- but in the wrong context. Do not emit a warning in such cases.
9983 -- Do not emit a warning either if we are in an instance, there is
9984 -- no redundancy between an outer use_clause and one that appears
9985 -- within the generic.
9986
9987 and then not Spec_Reloaded_For_Body
9988 and then not In_Instance
9989 and then not In_Inlined_Body
9990 then
9991 -- The type already has a use clause
9992
9993 if In_Use (T) then
9994
9995 -- Case where we know the current use clause for the type
9996
9997 if Present (Current_Use_Clause (T)) then
9998 Use_Clause_Known : declare
9999 Clause1 : constant Node_Id :=
10000 Find_Most_Prev (Current_Use_Clause (T));
10001 Clause2 : constant Node_Id := Parent (Id);
10002 Ent1 : Entity_Id;
10003 Ent2 : Entity_Id;
10004 Err_No : Node_Id;
10005 Unit1 : Node_Id;
10006 Unit2 : Node_Id;
10007
10008 -- Start of processing for Use_Clause_Known
10009
10010 begin
10011 -- If both current use_type_clause and the use_type_clause
10012 -- for the type are at the compilation unit level, one of
10013 -- the units must be an ancestor of the other, and the
10014 -- warning belongs on the descendant.
10015
10016 if Nkind (Parent (Clause1)) = N_Compilation_Unit
10017 and then
10018 Nkind (Parent (Clause2)) = N_Compilation_Unit
10019 then
10020 -- If the unit is a subprogram body that acts as spec,
10021 -- the context clause is shared with the constructed
10022 -- subprogram spec. Clearly there is no redundancy.
10023
10024 if Clause1 = Clause2 then
10025 return;
10026 end if;
10027
10028 Unit1 := Unit (Parent (Clause1));
10029 Unit2 := Unit (Parent (Clause2));
10030
10031 -- If both clauses are on same unit, or one is the body
10032 -- of the other, or one of them is in a subunit, report
10033 -- redundancy on the later one.
10034
10035 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
10036 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10037 Error_Msg_NE -- CODEFIX
10038 ("& is already use-visible through previous "
10039 & "use_type_clause #??", Clause1, T);
10040 return;
10041
10042 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
10043 and then Nkind (Unit1) /= Nkind (Unit2)
10044 and then Nkind (Unit1) /= N_Subunit
10045 then
10046 Error_Msg_Sloc := Sloc (Clause1);
10047 Error_Msg_NE -- CODEFIX
10048 ("& is already use-visible through previous "
10049 & "use_type_clause #??", Current_Use_Clause (T), T);
10050 return;
10051 end if;
10052
10053 -- There is a redundant use_type_clause in a child unit.
10054 -- Determine which of the units is more deeply nested.
10055 -- If a unit is a package instance, retrieve the entity
10056 -- and its scope from the instance spec.
10057
10058 Ent1 := Entity_Of_Unit (Unit1);
10059 Ent2 := Entity_Of_Unit (Unit2);
10060
10061 if Scope (Ent2) = Standard_Standard then
10062 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10063 Err_No := Clause1;
10064
10065 elsif Scope (Ent1) = Standard_Standard then
10066 Error_Msg_Sloc := Sloc (Id);
10067 Err_No := Clause2;
10068
10069 -- If both units are child units, we determine which one
10070 -- is the descendant by the scope distance to the
10071 -- ultimate parent unit.
10072
10073 else
10074 declare
10075 S1 : Entity_Id;
10076 S2 : Entity_Id;
10077
10078 begin
10079 S1 := Scope (Ent1);
10080 S2 := Scope (Ent2);
10081 while Present (S1)
10082 and then Present (S2)
10083 and then S1 /= Standard_Standard
10084 and then S2 /= Standard_Standard
10085 loop
10086 S1 := Scope (S1);
10087 S2 := Scope (S2);
10088 end loop;
10089
10090 if S1 = Standard_Standard then
10091 Error_Msg_Sloc := Sloc (Id);
10092 Err_No := Clause2;
10093 else
10094 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10095 Err_No := Clause1;
10096 end if;
10097 end;
10098 end if;
10099
10100 if Parent (Id) /= Err_No then
10101 if Most_Descendant_Use_Clause
10102 (Err_No, Parent (Id)) = Parent (Id)
10103 then
10104 Error_Msg_Sloc := Sloc (Err_No);
10105 Err_No := Parent (Id);
10106 end if;
10107
10108 Error_Msg_NE -- CODEFIX
10109 ("& is already use-visible through previous "
10110 & "use_type_clause #??", Err_No, Id);
10111 end if;
10112
10113 -- Case where current use_type_clause and use_type_clause
10114 -- for the type are not both at the compilation unit level.
10115 -- In this case we don't have location information.
10116
10117 else
10118 Error_Msg_NE -- CODEFIX
10119 ("& is already use-visible through previous "
10120 & "use_type_clause??", Id, T);
10121 end if;
10122 end Use_Clause_Known;
10123
10124 -- Here if Current_Use_Clause is not set for T, another case where
10125 -- we do not have the location information available.
10126
10127 else
10128 Error_Msg_NE -- CODEFIX
10129 ("& is already use-visible through previous "
10130 & "use_type_clause??", Id, T);
10131 end if;
10132
10133 -- The package where T is declared is already used
10134
10135 elsif In_Use (Scope (T)) then
10136 Error_Msg_Sloc :=
10137 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10138 Error_Msg_NE -- CODEFIX
10139 ("& is already use-visible through package use clause #??",
10140 Id, T);
10141
10142 -- The current scope is the package where T is declared
10143
10144 else
10145 Error_Msg_Node_2 := Scope (T);
10146 Error_Msg_NE -- CODEFIX
10147 ("& is already use-visible inside package &??", Id, T);
10148 end if;
10149 end if;
10150 end Use_One_Type;
10151
10152 ----------------
10153 -- Write_Info --
10154 ----------------
10155
10156 procedure Write_Info is
10157 Id : Entity_Id := First_Entity (Current_Scope);
10158
10159 begin
10160 -- No point in dumping standard entities
10161
10162 if Current_Scope = Standard_Standard then
10163 return;
10164 end if;
10165
10166 Write_Str ("========================================================");
10167 Write_Eol;
10168 Write_Str (" Defined Entities in ");
10169 Write_Name (Chars (Current_Scope));
10170 Write_Eol;
10171 Write_Str ("========================================================");
10172 Write_Eol;
10173
10174 if No (Id) then
10175 Write_Str ("-- none --");
10176 Write_Eol;
10177
10178 else
10179 while Present (Id) loop
10180 Write_Entity_Info (Id, " ");
10181 Next_Entity (Id);
10182 end loop;
10183 end if;
10184
10185 if Scope (Current_Scope) = Standard_Standard then
10186
10187 -- Print information on the current unit itself
10188
10189 Write_Entity_Info (Current_Scope, " ");
10190 end if;
10191
10192 Write_Eol;
10193 end Write_Info;
10194
10195 --------
10196 -- ws --
10197 --------
10198
10199 procedure ws is
10200 S : Entity_Id;
10201 begin
10202 for J in reverse 1 .. Scope_Stack.Last loop
10203 S := Scope_Stack.Table (J).Entity;
10204 Write_Int (Int (S));
10205 Write_Str (" === ");
10206 Write_Name (Chars (S));
10207 Write_Eol;
10208 end loop;
10209 end ws;
10210
10211 --------
10212 -- we --
10213 --------
10214
10215 procedure we (S : Entity_Id) is
10216 E : Entity_Id;
10217 begin
10218 E := First_Entity (S);
10219 while Present (E) loop
10220 Write_Int (Int (E));
10221 Write_Str (" === ");
10222 Write_Name (Chars (E));
10223 Write_Eol;
10224 Next_Entity (E);
10225 end loop;
10226 end we;
10227 end Sem_Ch8;