]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_ch8.adb
[Ada] Implement AI12-0269 No_Return for functions
[thirdparty/gcc.git] / gcc / ada / sem_ch8.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Elab; use Sem_Elab;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Util; use Sem_Util;
65 with Sem_Type; use Sem_Type;
66 with Stand; use Stand;
67 with Sinfo; use Sinfo;
68 with Sinfo.CN; use Sinfo.CN;
69 with Snames; use Snames;
70 with Style;
71 with Table;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
74
75 package body Sem_Ch8 is
76
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
80
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
83
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
90
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
98
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
104
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
110
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
117
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
126
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
135
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
141
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
172
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
175
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
183 --
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
190
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
196
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
201
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
208
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
212
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
216
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
225
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
233
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
237
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
254
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
258
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
266
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
271
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
278
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
283
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
287
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
305
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
309
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
317
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
323
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
328
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
331
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
337
338 end record;
339
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
347
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
353
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
357
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
363
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
374
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
381
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
389
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
396
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
406
407 procedure Attribute_Renaming (N : Node_Id);
408 -- Analyze renaming of attribute as subprogram. The renaming declaration N
409 -- is rewritten as a subprogram body that returns the attribute reference
410 -- applied to the formals of the function.
411
412 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
413 -- Set Entity, with style check if need be. For a discriminant reference,
414 -- replace by the corresponding discriminal, i.e. the parameter of the
415 -- initialization procedure that corresponds to the discriminant.
416
417 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
418 -- A renaming_as_body may occur after the entity of the original decla-
419 -- ration has been frozen. In that case, the body of the new entity must
420 -- be built now, because the usual mechanism of building the renamed
421 -- body at the point of freezing will not work. Subp is the subprogram
422 -- for which N provides the Renaming_As_Body.
423
424 procedure Check_In_Previous_With_Clause
425 (N : Node_Id;
426 Nam : Node_Id);
427 -- N is a use_package clause and Nam the package name, or N is a use_type
428 -- clause and Nam is the prefix of the type name. In either case, verify
429 -- that the package is visible at that point in the context: either it
430 -- appears in a previous with_clause, or because it is a fully qualified
431 -- name and the root ancestor appears in a previous with_clause.
432
433 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
434 -- Verify that the entity in a renaming declaration that is a library unit
435 -- is itself a library unit and not a nested unit or subunit. Also check
436 -- that if the renaming is a child unit of a generic parent, then the
437 -- renamed unit must also be a child unit of that parent. Finally, verify
438 -- that a renamed generic unit is not an implicit child declared within
439 -- an instance of the parent.
440
441 procedure Chain_Use_Clause (N : Node_Id);
442 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
443 -- the proper scope table entry. This is usually the current scope, but it
444 -- will be an inner scope when installing the use clauses of the private
445 -- declarations of a parent unit prior to compiling the private part of a
446 -- child unit. This chain is traversed when installing/removing use clauses
447 -- when compiling a subunit or instantiating a generic body on the fly,
448 -- when it is necessary to save and restore full environments.
449
450 function Enclosing_Instance return Entity_Id;
451 -- In an instance nested within another one, several semantic checks are
452 -- unnecessary because the legality of the nested instance has been checked
453 -- in the enclosing generic unit. This applies in particular to legality
454 -- checks on actuals for formal subprograms of the inner instance, which
455 -- are checked as subprogram renamings, and may be complicated by confusion
456 -- in private/full views. This function returns the instance enclosing the
457 -- current one if there is such, else it returns Empty.
458 --
459 -- If the renaming determines the entity for the default of a formal
460 -- subprogram nested within another instance, choose the innermost
461 -- candidate. This is because if the formal has a box, and we are within
462 -- an enclosing instance where some candidate interpretations are local
463 -- to this enclosing instance, we know that the default was properly
464 -- resolved when analyzing the generic, so we prefer the local
465 -- candidates to those that are external. This is not always the case
466 -- but is a reasonable heuristic on the use of nested generics. The
467 -- proper solution requires a full renaming model.
468
469 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
470 -- Return the appropriate entity for determining which unit has a deeper
471 -- scope: the defining entity for U, unless U is a package instance, in
472 -- which case we retrieve the entity of the instance spec.
473
474 procedure Find_Expanded_Name (N : Node_Id);
475 -- The input is a selected component known to be an expanded name. Verify
476 -- legality of selector given the scope denoted by prefix, and change node
477 -- N into a expanded name with a properly set Entity field.
478
479 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id;
480 -- Find the most previous use clause (that is, the first one to appear in
481 -- the source) by traversing the previous clause chain that exists in both
482 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
483 -- ??? a better subprogram name is in order
484
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
495
496 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
497 -- Find a type derived from Character or Wide_Character in the prefix of N.
498 -- Used to resolved qualified names whose selector is a character literal.
499
500 function Has_Private_With (E : Entity_Id) return Boolean;
501 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
502 -- private with on E.
503
504 function Has_Components (Typ : Entity_Id) return Boolean;
505 -- Determine if given type has components, i.e. is either a record type or
506 -- type or a type that has discriminants.
507
508 function Has_Implicit_Operator (N : Node_Id) return Boolean;
509 -- N is an expanded name whose selector is an operator name (e.g. P."+").
510 -- declarative part contains an implicit declaration of an operator if it
511 -- has a declaration of a type to which one of the predefined operators
512 -- apply. The existence of this routine is an implementation artifact. A
513 -- more straightforward but more space-consuming choice would be to make
514 -- all inherited operators explicit in the symbol table.
515
516 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
517 -- A subprogram defined by a renaming declaration inherits the parameter
518 -- profile of the renamed entity. The subtypes given in the subprogram
519 -- specification are discarded and replaced with those of the renamed
520 -- subprogram, which are then used to recheck the default values.
521
522 function Most_Descendant_Use_Clause
523 (Clause1 : Entity_Id;
524 Clause2 : Entity_Id) return Entity_Id;
525 -- Determine which use clause parameter is the most descendant in terms of
526 -- scope.
527 -- ??? a better subprogram name is in order
528
529 procedure Premature_Usage (N : Node_Id);
530 -- Diagnose usage of an entity before it is visible
531
532 procedure Use_One_Package
533 (N : Node_Id;
534 Pack_Name : Entity_Id := Empty;
535 Force : Boolean := False);
536 -- Make visible entities declared in package P potentially use-visible
537 -- in the current context. Also used in the analysis of subunits, when
538 -- re-installing use clauses of parent units. N is the use_clause that
539 -- names P (and possibly other packages).
540
541 procedure Use_One_Type
542 (Id : Node_Id;
543 Installed : Boolean := False;
544 Force : Boolean := False);
545 -- Id is the subtype mark from a use_type_clause. This procedure makes
546 -- the primitive operators of the type potentially use-visible. The
547 -- boolean flag Installed indicates that the clause is being reinstalled
548 -- after previous analysis, and primitive operations are already chained
549 -- on the Used_Operations list of the clause.
550
551 procedure Write_Info;
552 -- Write debugging information on entities declared in current scope
553
554 --------------------------------
555 -- Analyze_Exception_Renaming --
556 --------------------------------
557
558 -- The language only allows a single identifier, but the tree holds an
559 -- identifier list. The parser has already issued an error message if
560 -- there is more than one element in the list.
561
562 procedure Analyze_Exception_Renaming (N : Node_Id) is
563 Id : constant Entity_Id := Defining_Entity (N);
564 Nam : constant Node_Id := Name (N);
565
566 begin
567 Enter_Name (Id);
568 Analyze (Nam);
569
570 Set_Ekind (Id, E_Exception);
571 Set_Etype (Id, Standard_Exception_Type);
572 Set_Is_Pure (Id, Is_Pure (Current_Scope));
573
574 if Is_Entity_Name (Nam)
575 and then Present (Entity (Nam))
576 and then Ekind (Entity (Nam)) = E_Exception
577 then
578 if Present (Renamed_Object (Entity (Nam))) then
579 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
580 else
581 Set_Renamed_Object (Id, Entity (Nam));
582 end if;
583
584 -- The exception renaming declaration may become Ghost if it renames
585 -- a Ghost entity.
586
587 Mark_Ghost_Renaming (N, Entity (Nam));
588 else
589 Error_Msg_N ("invalid exception name in renaming", Nam);
590 end if;
591
592 -- Implementation-defined aspect specifications can appear in a renaming
593 -- declaration, but not language-defined ones. The call to procedure
594 -- Analyze_Aspect_Specifications will take care of this error check.
595
596 if Has_Aspects (N) then
597 Analyze_Aspect_Specifications (N, Id);
598 end if;
599 end Analyze_Exception_Renaming;
600
601 ---------------------------
602 -- Analyze_Expanded_Name --
603 ---------------------------
604
605 procedure Analyze_Expanded_Name (N : Node_Id) is
606 begin
607 -- If the entity pointer is already set, this is an internal node, or a
608 -- node that is analyzed more than once, after a tree modification. In
609 -- such a case there is no resolution to perform, just set the type. In
610 -- either case, start by analyzing the prefix.
611
612 Analyze (Prefix (N));
613
614 if Present (Entity (N)) then
615 if Is_Type (Entity (N)) then
616 Set_Etype (N, Entity (N));
617 else
618 Set_Etype (N, Etype (Entity (N)));
619 end if;
620
621 else
622 Find_Expanded_Name (N);
623 end if;
624
625 -- In either case, propagate dimension of entity to expanded name
626
627 Analyze_Dimension (N);
628 end Analyze_Expanded_Name;
629
630 ---------------------------------------
631 -- Analyze_Generic_Function_Renaming --
632 ---------------------------------------
633
634 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
635 begin
636 Analyze_Generic_Renaming (N, E_Generic_Function);
637 end Analyze_Generic_Function_Renaming;
638
639 --------------------------------------
640 -- Analyze_Generic_Package_Renaming --
641 --------------------------------------
642
643 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
644 begin
645 -- Test for the Text_IO special unit case here, since we may be renaming
646 -- one of the subpackages of Text_IO, then join common routine.
647
648 Check_Text_IO_Special_Unit (Name (N));
649
650 Analyze_Generic_Renaming (N, E_Generic_Package);
651 end Analyze_Generic_Package_Renaming;
652
653 ----------------------------------------
654 -- Analyze_Generic_Procedure_Renaming --
655 ----------------------------------------
656
657 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
658 begin
659 Analyze_Generic_Renaming (N, E_Generic_Procedure);
660 end Analyze_Generic_Procedure_Renaming;
661
662 ------------------------------
663 -- Analyze_Generic_Renaming --
664 ------------------------------
665
666 procedure Analyze_Generic_Renaming
667 (N : Node_Id;
668 K : Entity_Kind)
669 is
670 New_P : constant Entity_Id := Defining_Entity (N);
671 Inst : Boolean := False;
672 Old_P : Entity_Id;
673
674 begin
675 if Name (N) = Error then
676 return;
677 end if;
678
679 Generate_Definition (New_P);
680
681 if Current_Scope /= Standard_Standard then
682 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
683 end if;
684
685 if Nkind (Name (N)) = N_Selected_Component then
686 Check_Generic_Child_Unit (Name (N), Inst);
687 else
688 Analyze (Name (N));
689 end if;
690
691 if not Is_Entity_Name (Name (N)) then
692 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
693 Old_P := Any_Id;
694 else
695 Old_P := Entity (Name (N));
696 end if;
697
698 Enter_Name (New_P);
699 Set_Ekind (New_P, K);
700
701 if Etype (Old_P) = Any_Type then
702 null;
703
704 elsif Ekind (Old_P) /= K then
705 Error_Msg_N ("invalid generic unit name", Name (N));
706
707 else
708 if Present (Renamed_Object (Old_P)) then
709 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
710 else
711 Set_Renamed_Object (New_P, Old_P);
712 end if;
713
714 -- The generic renaming declaration may become Ghost if it renames a
715 -- Ghost entity.
716
717 Mark_Ghost_Renaming (N, Old_P);
718
719 Set_Is_Pure (New_P, Is_Pure (Old_P));
720 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
721
722 Set_Etype (New_P, Etype (Old_P));
723 Set_Has_Completion (New_P);
724
725 if In_Open_Scopes (Old_P) then
726 Error_Msg_N ("within its scope, generic denotes its instance", N);
727 end if;
728
729 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
730 -- renamings and subsequent instantiations of Unchecked_Conversion.
731
732 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
733 Set_Is_Intrinsic_Subprogram
734 (New_P, Is_Intrinsic_Subprogram (Old_P));
735 end if;
736
737 Check_Library_Unit_Renaming (N, Old_P);
738 end if;
739
740 -- Implementation-defined aspect specifications can appear in a renaming
741 -- declaration, but not language-defined ones. The call to procedure
742 -- Analyze_Aspect_Specifications will take care of this error check.
743
744 if Has_Aspects (N) then
745 Analyze_Aspect_Specifications (N, New_P);
746 end if;
747 end Analyze_Generic_Renaming;
748
749 -----------------------------
750 -- Analyze_Object_Renaming --
751 -----------------------------
752
753 procedure Analyze_Object_Renaming (N : Node_Id) is
754 Id : constant Entity_Id := Defining_Identifier (N);
755 Loc : constant Source_Ptr := Sloc (N);
756 Nam : constant Node_Id := Name (N);
757 Is_Object_Ref : Boolean := False;
758 Dec : Node_Id;
759 T : Entity_Id;
760 T2 : Entity_Id;
761
762 procedure Check_Constrained_Object;
763 -- If the nominal type is unconstrained but the renamed object is
764 -- constrained, as can happen with renaming an explicit dereference or
765 -- a function return, build a constrained subtype from the object. If
766 -- the renaming is for a formal in an accept statement, the analysis
767 -- has already established its actual subtype. This is only relevant
768 -- if the renamed object is an explicit dereference.
769
770 function Get_Object_Name (Nod : Node_Id) return Node_Id;
771 -- Obtain the name of the object from node Nod which is being renamed by
772 -- the object renaming declaration N.
773
774 ------------------------------
775 -- Check_Constrained_Object --
776 ------------------------------
777
778 procedure Check_Constrained_Object is
779 Typ : constant Entity_Id := Etype (Nam);
780 Subt : Entity_Id;
781
782 begin
783 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
784 and then Is_Composite_Type (Typ)
785 and then not Is_Constrained (Typ)
786 and then not Has_Unknown_Discriminants (Typ)
787 and then Expander_Active
788 then
789 -- If Actual_Subtype is already set, nothing to do
790
791 if Ekind_In (Id, E_Variable, E_Constant)
792 and then Present (Actual_Subtype (Id))
793 then
794 null;
795
796 -- A renaming of an unchecked union has no actual subtype
797
798 elsif Is_Unchecked_Union (Typ) then
799 null;
800
801 -- If a record is limited its size is invariant. This is the case
802 -- in particular with record types with an access discriminant
803 -- that are used in iterators. This is an optimization, but it
804 -- also prevents typing anomalies when the prefix is further
805 -- expanded.
806 -- Note that we cannot just use the Is_Limited_Record flag because
807 -- it does not apply to records with limited components, for which
808 -- this syntactic flag is not set, but whose size is also fixed.
809
810 elsif Is_Limited_Type (Typ) then
811 null;
812
813 else
814 Subt := Make_Temporary (Loc, 'T');
815 Remove_Side_Effects (Nam);
816 Insert_Action (N,
817 Make_Subtype_Declaration (Loc,
818 Defining_Identifier => Subt,
819 Subtype_Indication =>
820 Make_Subtype_From_Expr (Nam, Typ)));
821 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
822 Set_Etype (Nam, Subt);
823
824 -- Freeze subtype at once, to prevent order of elaboration
825 -- issues in the backend. The renamed object exists, so its
826 -- type is already frozen in any case.
827
828 Freeze_Before (N, Subt);
829 end if;
830 end if;
831 end Check_Constrained_Object;
832
833 ---------------------
834 -- Get_Object_Name --
835 ---------------------
836
837 function Get_Object_Name (Nod : Node_Id) return Node_Id is
838 Obj_Nam : Node_Id;
839
840 begin
841 Obj_Nam := Nod;
842 while Present (Obj_Nam) loop
843 case Nkind (Obj_Nam) is
844 when N_Attribute_Reference
845 | N_Explicit_Dereference
846 | N_Indexed_Component
847 | N_Slice
848 =>
849 Obj_Nam := Prefix (Obj_Nam);
850
851 when N_Selected_Component =>
852 Obj_Nam := Selector_Name (Obj_Nam);
853
854 when N_Qualified_Expression | N_Type_Conversion =>
855 Obj_Nam := Expression (Obj_Nam);
856
857 when others =>
858 exit;
859 end case;
860 end loop;
861
862 return Obj_Nam;
863 end Get_Object_Name;
864
865 -- Start of processing for Analyze_Object_Renaming
866
867 begin
868 if Nam = Error then
869 return;
870 end if;
871
872 Set_Is_Pure (Id, Is_Pure (Current_Scope));
873 Enter_Name (Id);
874
875 -- The renaming of a component that depends on a discriminant requires
876 -- an actual subtype, because in subsequent use of the object Gigi will
877 -- be unable to locate the actual bounds. This explicit step is required
878 -- when the renaming is generated in removing side effects of an
879 -- already-analyzed expression.
880
881 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
882
883 -- The object renaming declaration may become Ghost if it renames a
884 -- Ghost entity.
885
886 if Is_Entity_Name (Nam) then
887 Mark_Ghost_Renaming (N, Entity (Nam));
888 end if;
889
890 T := Etype (Nam);
891 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
892
893 if Present (Dec) then
894 Insert_Action (N, Dec);
895 T := Defining_Identifier (Dec);
896 Set_Etype (Nam, T);
897 end if;
898 elsif Present (Subtype_Mark (N))
899 or else not Present (Access_Definition (N))
900 then
901 if Present (Subtype_Mark (N)) then
902 Find_Type (Subtype_Mark (N));
903 T := Entity (Subtype_Mark (N));
904 Analyze (Nam);
905
906 -- AI12-0275: Case of object renaming without a subtype_mark
907
908 else
909 Analyze (Nam);
910
911 -- Normal case of no overloading in object name
912
913 if not Is_Overloaded (Nam) then
914
915 -- Catch error cases (such as attempting to rename a procedure
916 -- or package) using the shorthand form.
917
918 if No (Etype (Nam))
919 or else Etype (Nam) = Standard_Void_Type
920 then
921 Error_Msg_N ("object name expected in renaming", Nam);
922
923 Set_Ekind (Id, E_Variable);
924 Set_Etype (Id, Any_Type);
925
926 return;
927
928 else
929 T := Etype (Nam);
930 end if;
931
932 -- Case of overloaded name, which will be illegal if there's more
933 -- than one acceptable interpretation (such as overloaded function
934 -- calls).
935
936 else
937 declare
938 I : Interp_Index;
939 I1 : Interp_Index;
940 It : Interp;
941 It1 : Interp;
942 Nam1 : Entity_Id;
943
944 begin
945 -- More than one candidate interpretation is available
946
947 -- Remove procedure calls, which syntactically cannot appear
948 -- in this context, but which cannot be removed by type
949 -- checking, because the context does not impose a type.
950
951 Get_First_Interp (Nam, I, It);
952 while Present (It.Typ) loop
953 if It.Typ = Standard_Void_Type then
954 Remove_Interp (I);
955 end if;
956
957 Get_Next_Interp (I, It);
958 end loop;
959
960 Get_First_Interp (Nam, I, It);
961 I1 := I;
962 It1 := It;
963
964 -- If there's no type present, we have an error case (such
965 -- as overloaded procedures named in the object renaming).
966
967 if No (It.Typ) then
968 Error_Msg_N ("object name expected in renaming", Nam);
969
970 Set_Ekind (Id, E_Variable);
971 Set_Etype (Id, Any_Type);
972
973 return;
974 end if;
975
976 Get_Next_Interp (I, It);
977
978 if Present (It.Typ) then
979 Nam1 := It1.Nam;
980 It1 := Disambiguate (Nam, I1, I, Any_Type);
981
982 if It1 = No_Interp then
983 Error_Msg_N ("ambiguous name in object renaming", Nam);
984
985 Error_Msg_Sloc := Sloc (It.Nam);
986 Error_Msg_N ("\\possible interpretation#!", Nam);
987
988 Error_Msg_Sloc := Sloc (Nam1);
989 Error_Msg_N ("\\possible interpretation#!", Nam);
990
991 return;
992 end if;
993 end if;
994
995 Set_Etype (Nam, It1.Typ);
996 T := It1.Typ;
997 end;
998 end if;
999 end if;
1000
1001 -- The object renaming declaration may become Ghost if it renames a
1002 -- Ghost entity.
1003
1004 if Is_Entity_Name (Nam) then
1005 Mark_Ghost_Renaming (N, Entity (Nam));
1006 end if;
1007
1008 Resolve (Nam, T);
1009
1010 -- If the renamed object is a function call of a limited type,
1011 -- the expansion of the renaming is complicated by the presence
1012 -- of various temporaries and subtypes that capture constraints
1013 -- of the renamed object. Rewrite node as an object declaration,
1014 -- whose expansion is simpler. Given that the object is limited
1015 -- there is no copy involved and no performance hit.
1016
1017 if Nkind (Nam) = N_Function_Call
1018 and then Is_Limited_View (Etype (Nam))
1019 and then not Is_Constrained (Etype (Nam))
1020 and then Comes_From_Source (N)
1021 then
1022 Set_Etype (Id, T);
1023 Set_Ekind (Id, E_Constant);
1024 Rewrite (N,
1025 Make_Object_Declaration (Loc,
1026 Defining_Identifier => Id,
1027 Constant_Present => True,
1028 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
1029 Expression => Relocate_Node (Nam)));
1030 return;
1031 end if;
1032
1033 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
1034 -- when renaming declaration has a named access type. The Ada 2012
1035 -- coverage rules allow an anonymous access type in the context of
1036 -- an expected named general access type, but the renaming rules
1037 -- require the types to be the same. (An exception is when the type
1038 -- of the renaming is also an anonymous access type, which can only
1039 -- happen due to a renaming created by the expander.)
1040
1041 if Nkind (Nam) = N_Type_Conversion
1042 and then not Comes_From_Source (Nam)
1043 and then Ekind (Etype (Expression (Nam))) in Anonymous_Access_Kind
1044 and then Ekind (T) not in Anonymous_Access_Kind
1045 then
1046 Wrong_Type (Expression (Nam), T); -- Should we give better error???
1047 end if;
1048
1049 -- Check that a class-wide object is not being renamed as an object
1050 -- of a specific type. The test for access types is needed to exclude
1051 -- cases where the renamed object is a dynamically tagged access
1052 -- result, such as occurs in certain expansions.
1053
1054 if Is_Tagged_Type (T) then
1055 Check_Dynamically_Tagged_Expression
1056 (Expr => Nam,
1057 Typ => T,
1058 Related_Nod => N);
1059 end if;
1060
1061 -- Ada 2005 (AI-230/AI-254): Access renaming
1062
1063 else pragma Assert (Present (Access_Definition (N)));
1064 T :=
1065 Access_Definition
1066 (Related_Nod => N,
1067 N => Access_Definition (N));
1068
1069 Analyze (Nam);
1070
1071 -- The object renaming declaration may become Ghost if it renames a
1072 -- Ghost entity.
1073
1074 if Is_Entity_Name (Nam) then
1075 Mark_Ghost_Renaming (N, Entity (Nam));
1076 end if;
1077
1078 -- Ada 2005 AI05-105: if the declaration has an anonymous access
1079 -- type, the renamed object must also have an anonymous type, and
1080 -- this is a name resolution rule. This was implicit in the last part
1081 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
1082 -- recent AI.
1083
1084 if not Is_Overloaded (Nam) then
1085 if Ekind (Etype (Nam)) /= Ekind (T) then
1086 Error_Msg_N
1087 ("expect anonymous access type in object renaming", N);
1088 end if;
1089
1090 else
1091 declare
1092 I : Interp_Index;
1093 It : Interp;
1094 Typ : Entity_Id := Empty;
1095 Seen : Boolean := False;
1096
1097 begin
1098 Get_First_Interp (Nam, I, It);
1099 while Present (It.Typ) loop
1100
1101 -- Renaming is ambiguous if more than one candidate
1102 -- interpretation is type-conformant with the context.
1103
1104 if Ekind (It.Typ) = Ekind (T) then
1105 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1106 and then
1107 Type_Conformant
1108 (Designated_Type (T), Designated_Type (It.Typ))
1109 then
1110 if not Seen then
1111 Seen := True;
1112 else
1113 Error_Msg_N
1114 ("ambiguous expression in renaming", Nam);
1115 end if;
1116
1117 elsif Ekind (T) = E_Anonymous_Access_Type
1118 and then
1119 Covers (Designated_Type (T), Designated_Type (It.Typ))
1120 then
1121 if not Seen then
1122 Seen := True;
1123 else
1124 Error_Msg_N
1125 ("ambiguous expression in renaming", Nam);
1126 end if;
1127 end if;
1128
1129 if Covers (T, It.Typ) then
1130 Typ := It.Typ;
1131 Set_Etype (Nam, Typ);
1132 Set_Is_Overloaded (Nam, False);
1133 end if;
1134 end if;
1135
1136 Get_Next_Interp (I, It);
1137 end loop;
1138 end;
1139 end if;
1140
1141 Resolve (Nam, T);
1142
1143 -- Do not perform the legality checks below when the resolution of
1144 -- the renaming name failed because the associated type is Any_Type.
1145
1146 if Etype (Nam) = Any_Type then
1147 null;
1148
1149 -- Ada 2005 (AI-231): In the case where the type is defined by an
1150 -- access_definition, the renamed entity shall be of an access-to-
1151 -- constant type if and only if the access_definition defines an
1152 -- access-to-constant type. ARM 8.5.1(4)
1153
1154 elsif Constant_Present (Access_Definition (N))
1155 and then not Is_Access_Constant (Etype (Nam))
1156 then
1157 Error_Msg_N
1158 ("(Ada 2005): the renamed object is not access-to-constant "
1159 & "(RM 8.5.1(6))", N);
1160
1161 elsif not Constant_Present (Access_Definition (N))
1162 and then Is_Access_Constant (Etype (Nam))
1163 then
1164 Error_Msg_N
1165 ("(Ada 2005): the renamed object is not access-to-variable "
1166 & "(RM 8.5.1(6))", N);
1167 end if;
1168
1169 if Is_Access_Subprogram_Type (Etype (Nam)) then
1170 Check_Subtype_Conformant
1171 (Designated_Type (T), Designated_Type (Etype (Nam)));
1172
1173 elsif not Subtypes_Statically_Match
1174 (Designated_Type (T),
1175 Available_View (Designated_Type (Etype (Nam))))
1176 then
1177 Error_Msg_N
1178 ("subtype of renamed object does not statically match", N);
1179 end if;
1180 end if;
1181
1182 -- Special processing for renaming function return object. Some errors
1183 -- and warnings are produced only for calls that come from source.
1184
1185 if Nkind (Nam) = N_Function_Call then
1186 case Ada_Version is
1187
1188 -- Usage is illegal in Ada 83, but renamings are also introduced
1189 -- during expansion, and error does not apply to those.
1190
1191 when Ada_83 =>
1192 if Comes_From_Source (N) then
1193 Error_Msg_N
1194 ("(Ada 83) cannot rename function return object", Nam);
1195 end if;
1196
1197 -- In Ada 95, warn for odd case of renaming parameterless function
1198 -- call if this is not a limited type (where this is useful).
1199
1200 when others =>
1201 if Warn_On_Object_Renames_Function
1202 and then No (Parameter_Associations (Nam))
1203 and then not Is_Limited_Type (Etype (Nam))
1204 and then Comes_From_Source (Nam)
1205 then
1206 Error_Msg_N
1207 ("renaming function result object is suspicious?R?", Nam);
1208 Error_Msg_NE
1209 ("\function & will be called only once?R?", Nam,
1210 Entity (Name (Nam)));
1211 Error_Msg_N -- CODEFIX
1212 ("\suggest using an initialized constant object "
1213 & "instead?R?", Nam);
1214 end if;
1215 end case;
1216 end if;
1217
1218 Check_Constrained_Object;
1219
1220 -- An object renaming requires an exact match of the type. Class-wide
1221 -- matching is not allowed.
1222
1223 if Is_Class_Wide_Type (T)
1224 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1225 then
1226 Wrong_Type (Nam, T);
1227 end if;
1228
1229 -- We must search for an actual subtype here so that the bounds of
1230 -- objects of unconstrained types don't get dropped on the floor - such
1231 -- as with renamings of formal parameters.
1232
1233 T2 := Get_Actual_Subtype_If_Available (Nam);
1234
1235 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1236
1237 if Nkind (Nam) = N_Explicit_Dereference
1238 and then Ekind (Etype (T2)) = E_Incomplete_Type
1239 then
1240 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1241 return;
1242
1243 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1244 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1245 return;
1246 end if;
1247
1248 if Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1249 declare
1250 Nam_Ent : constant Entity_Id := Entity (Get_Object_Name (Nam));
1251 Nam_Decl : constant Node_Id := Declaration_Node (Nam_Ent);
1252
1253 begin
1254 if Has_Null_Exclusion (N)
1255 and then not Has_Null_Exclusion (Nam_Decl)
1256 then
1257 -- Ada 2005 (AI-423): If the object name denotes a generic
1258 -- formal object of a generic unit G, and the object renaming
1259 -- declaration occurs within the body of G or within the body
1260 -- of a generic unit declared within the declarative region
1261 -- of G, then the declaration of the formal object of G must
1262 -- have a null exclusion or a null-excluding subtype.
1263
1264 if Is_Formal_Object (Nam_Ent)
1265 and then In_Generic_Scope (Id)
1266 then
1267 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1268 Error_Msg_N
1269 ("object does not exclude `NULL` "
1270 & "(RM 8.5.1(4.6/2))", N);
1271
1272 elsif In_Package_Body (Scope (Id)) then
1273 Error_Msg_N
1274 ("formal object does not have a null exclusion"
1275 & "(RM 8.5.1(4.6/2))", N);
1276 end if;
1277
1278 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1279 -- shall exclude null.
1280
1281 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1282 Error_Msg_N
1283 ("object does not exclude `NULL` "
1284 & "(RM 8.5.1(4.6/2))", N);
1285
1286 -- An instance is illegal if it contains a renaming that
1287 -- excludes null, and the actual does not. The renaming
1288 -- declaration has already indicated that the declaration
1289 -- of the renamed actual in the instance will raise
1290 -- constraint_error.
1291
1292 elsif Nkind (Nam_Decl) = N_Object_Declaration
1293 and then In_Instance
1294 and then
1295 Present (Corresponding_Generic_Association (Nam_Decl))
1296 and then Nkind (Expression (Nam_Decl)) =
1297 N_Raise_Constraint_Error
1298 then
1299 Error_Msg_N
1300 ("actual does not exclude `NULL` (RM 8.5.1(4.6/2))", N);
1301
1302 -- Finally, if there is a null exclusion, the subtype mark
1303 -- must not be null-excluding.
1304
1305 elsif No (Access_Definition (N))
1306 and then Can_Never_Be_Null (T)
1307 then
1308 Error_Msg_NE
1309 ("`NOT NULL` not allowed (& already excludes null)",
1310 N, T);
1311
1312 end if;
1313
1314 elsif Can_Never_Be_Null (T)
1315 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1316 then
1317 Error_Msg_N
1318 ("object does not exclude `NULL` (RM 8.5.1(4.6/2))", N);
1319
1320 elsif Has_Null_Exclusion (N)
1321 and then No (Access_Definition (N))
1322 and then Can_Never_Be_Null (T)
1323 then
1324 Error_Msg_NE
1325 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1326 end if;
1327 end;
1328 end if;
1329
1330 -- Set the Ekind of the entity, unless it has been set already, as is
1331 -- the case for the iteration object over a container with no variable
1332 -- indexing. In that case it's been marked as a constant, and we do not
1333 -- want to change it to a variable.
1334
1335 if Ekind (Id) /= E_Constant then
1336 Set_Ekind (Id, E_Variable);
1337 end if;
1338
1339 -- Initialize the object size and alignment. Note that we used to call
1340 -- Init_Size_Align here, but that's wrong for objects which have only
1341 -- an Esize, not an RM_Size field.
1342
1343 Init_Object_Size_Align (Id);
1344
1345 -- If N comes from source then check that the original node is an
1346 -- object reference since there may have been several rewritting and
1347 -- folding. Do not do this for N_Function_Call or N_Explicit_Dereference
1348 -- which might correspond to rewrites of e.g. N_Selected_Component
1349 -- (for example Object.Method rewriting).
1350 -- If N does not come from source then assume the tree is properly
1351 -- formed and accept any object reference. In such cases we do support
1352 -- more cases of renamings anyway, so the actual check on which renaming
1353 -- is valid is better left to the code generator as a last sanity
1354 -- check.
1355
1356 if Comes_From_Source (N) then
1357 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference) then
1358 Is_Object_Ref := Is_Object_Reference (Nam);
1359 else
1360 Is_Object_Ref := Is_Object_Reference (Original_Node (Nam));
1361 end if;
1362 else
1363 Is_Object_Ref := True;
1364 end if;
1365
1366 if T = Any_Type or else Etype (Nam) = Any_Type then
1367 return;
1368
1369 -- Verify that the renamed entity is an object or function call.
1370
1371 elsif Is_Object_Ref then
1372 if Comes_From_Source (N) then
1373 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1374 Error_Msg_N
1375 ("illegal renaming of discriminant-dependent component", Nam);
1376 end if;
1377
1378 -- If the renaming comes from source and the renamed object is a
1379 -- dereference, then mark the prefix as needing debug information,
1380 -- since it might have been rewritten hence internally generated
1381 -- and Debug_Renaming_Declaration will link the renaming to it.
1382
1383 if Nkind (Nam) = N_Explicit_Dereference
1384 and then Is_Entity_Name (Prefix (Nam))
1385 then
1386 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1387 end if;
1388 end if;
1389
1390 -- Weird but legal, equivalent to renaming a function call. Illegal
1391 -- if the literal is the result of constant-folding an attribute
1392 -- reference that is not a function.
1393
1394 elsif Is_Entity_Name (Nam)
1395 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1396 and then Nkind (Original_Node (Nam)) /= N_Attribute_Reference
1397 then
1398 null;
1399 else
1400 Error_Msg_N ("expect object name in renaming", Nam);
1401 end if;
1402
1403 Set_Etype (Id, T2);
1404
1405 if not Is_Variable (Nam) then
1406 Set_Ekind (Id, E_Constant);
1407 Set_Never_Set_In_Source (Id, True);
1408 Set_Is_True_Constant (Id, True);
1409 end if;
1410
1411 -- The entity of the renaming declaration needs to reflect whether the
1412 -- renamed object is atomic, independent, volatile or VFA. These flags
1413 -- are set on the renamed object in the RM legality sense.
1414
1415 Set_Is_Atomic (Id, Is_Atomic_Object (Nam));
1416 Set_Is_Independent (Id, Is_Independent_Object (Nam));
1417 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1418 Set_Is_Volatile_Full_Access (Id, Is_Volatile_Full_Access_Object (Nam));
1419
1420 -- Treat as volatile if we just set the Volatile flag
1421
1422 if Is_Volatile (Id)
1423
1424 -- Or if we are renaming an entity which was marked this way
1425
1426 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1427
1428 or else (Is_Entity_Name (Nam)
1429 and then Treat_As_Volatile (Entity (Nam)))
1430 then
1431 Set_Treat_As_Volatile (Id, True);
1432 end if;
1433
1434 -- Now make the link to the renamed object
1435
1436 Set_Renamed_Object (Id, Nam);
1437
1438 -- Implementation-defined aspect specifications can appear in a renaming
1439 -- declaration, but not language-defined ones. The call to procedure
1440 -- Analyze_Aspect_Specifications will take care of this error check.
1441
1442 if Has_Aspects (N) then
1443 Analyze_Aspect_Specifications (N, Id);
1444 end if;
1445
1446 -- Deal with dimensions
1447
1448 Analyze_Dimension (N);
1449 end Analyze_Object_Renaming;
1450
1451 ------------------------------
1452 -- Analyze_Package_Renaming --
1453 ------------------------------
1454
1455 procedure Analyze_Package_Renaming (N : Node_Id) is
1456 New_P : constant Entity_Id := Defining_Entity (N);
1457 Old_P : Entity_Id;
1458 Spec : Node_Id;
1459
1460 begin
1461 if Name (N) = Error then
1462 return;
1463 end if;
1464
1465 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1466
1467 Check_Text_IO_Special_Unit (Name (N));
1468
1469 if Current_Scope /= Standard_Standard then
1470 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1471 end if;
1472
1473 Enter_Name (New_P);
1474 Analyze (Name (N));
1475
1476 if Is_Entity_Name (Name (N)) then
1477 Old_P := Entity (Name (N));
1478 else
1479 Old_P := Any_Id;
1480 end if;
1481
1482 if Etype (Old_P) = Any_Type then
1483 Error_Msg_N ("expect package name in renaming", Name (N));
1484
1485 elsif Ekind (Old_P) /= E_Package
1486 and then not (Ekind (Old_P) = E_Generic_Package
1487 and then In_Open_Scopes (Old_P))
1488 then
1489 if Ekind (Old_P) = E_Generic_Package then
1490 Error_Msg_N
1491 ("generic package cannot be renamed as a package", Name (N));
1492 else
1493 Error_Msg_Sloc := Sloc (Old_P);
1494 Error_Msg_NE
1495 ("expect package name in renaming, found& declared#",
1496 Name (N), Old_P);
1497 end if;
1498
1499 -- Set basic attributes to minimize cascaded errors
1500
1501 Set_Ekind (New_P, E_Package);
1502 Set_Etype (New_P, Standard_Void_Type);
1503
1504 -- Here for OK package renaming
1505
1506 else
1507 -- Entities in the old package are accessible through the renaming
1508 -- entity. The simplest implementation is to have both packages share
1509 -- the entity list.
1510
1511 Set_Ekind (New_P, E_Package);
1512 Set_Etype (New_P, Standard_Void_Type);
1513
1514 if Present (Renamed_Object (Old_P)) then
1515 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1516 else
1517 Set_Renamed_Object (New_P, Old_P);
1518 end if;
1519
1520 -- The package renaming declaration may become Ghost if it renames a
1521 -- Ghost entity.
1522
1523 Mark_Ghost_Renaming (N, Old_P);
1524
1525 Set_Has_Completion (New_P);
1526 Set_First_Entity (New_P, First_Entity (Old_P));
1527 Set_Last_Entity (New_P, Last_Entity (Old_P));
1528 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1529 Check_Library_Unit_Renaming (N, Old_P);
1530 Generate_Reference (Old_P, Name (N));
1531
1532 -- If the renaming is in the visible part of a package, then we set
1533 -- Renamed_In_Spec for the renamed package, to prevent giving
1534 -- warnings about no entities referenced. Such a warning would be
1535 -- overenthusiastic, since clients can see entities in the renamed
1536 -- package via the visible package renaming.
1537
1538 declare
1539 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1540 begin
1541 if Ekind (Ent) = E_Package
1542 and then not In_Private_Part (Ent)
1543 and then In_Extended_Main_Source_Unit (N)
1544 and then Ekind (Old_P) = E_Package
1545 then
1546 Set_Renamed_In_Spec (Old_P);
1547 end if;
1548 end;
1549
1550 -- If this is the renaming declaration of a package instantiation
1551 -- within itself, it is the declaration that ends the list of actuals
1552 -- for the instantiation. At this point, the subtypes that rename
1553 -- the actuals are flagged as generic, to avoid spurious ambiguities
1554 -- if the actuals for two distinct formals happen to coincide. If
1555 -- the actual is a private type, the subtype has a private completion
1556 -- that is flagged in the same fashion.
1557
1558 -- Resolution is identical to what is was in the original generic.
1559 -- On exit from the generic instance, these are turned into regular
1560 -- subtypes again, so they are compatible with types in their class.
1561
1562 if not Is_Generic_Instance (Old_P) then
1563 return;
1564 else
1565 Spec := Specification (Unit_Declaration_Node (Old_P));
1566 end if;
1567
1568 if Nkind (Spec) = N_Package_Specification
1569 and then Present (Generic_Parent (Spec))
1570 and then Old_P = Current_Scope
1571 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1572 then
1573 declare
1574 E : Entity_Id;
1575
1576 begin
1577 E := First_Entity (Old_P);
1578 while Present (E) and then E /= New_P loop
1579 if Is_Type (E)
1580 and then Nkind (Parent (E)) = N_Subtype_Declaration
1581 then
1582 Set_Is_Generic_Actual_Type (E);
1583
1584 if Is_Private_Type (E)
1585 and then Present (Full_View (E))
1586 then
1587 Set_Is_Generic_Actual_Type (Full_View (E));
1588 end if;
1589 end if;
1590
1591 Next_Entity (E);
1592 end loop;
1593 end;
1594 end if;
1595 end if;
1596
1597 -- Implementation-defined aspect specifications can appear in a renaming
1598 -- declaration, but not language-defined ones. The call to procedure
1599 -- Analyze_Aspect_Specifications will take care of this error check.
1600
1601 if Has_Aspects (N) then
1602 Analyze_Aspect_Specifications (N, New_P);
1603 end if;
1604 end Analyze_Package_Renaming;
1605
1606 -------------------------------
1607 -- Analyze_Renamed_Character --
1608 -------------------------------
1609
1610 procedure Analyze_Renamed_Character
1611 (N : Node_Id;
1612 New_S : Entity_Id;
1613 Is_Body : Boolean)
1614 is
1615 C : constant Node_Id := Name (N);
1616
1617 begin
1618 if Ekind (New_S) = E_Function then
1619 Resolve (C, Etype (New_S));
1620
1621 if Is_Body then
1622 Check_Frozen_Renaming (N, New_S);
1623 end if;
1624
1625 else
1626 Error_Msg_N ("character literal can only be renamed as function", N);
1627 end if;
1628 end Analyze_Renamed_Character;
1629
1630 ---------------------------------
1631 -- Analyze_Renamed_Dereference --
1632 ---------------------------------
1633
1634 procedure Analyze_Renamed_Dereference
1635 (N : Node_Id;
1636 New_S : Entity_Id;
1637 Is_Body : Boolean)
1638 is
1639 Nam : constant Node_Id := Name (N);
1640 P : constant Node_Id := Prefix (Nam);
1641 Typ : Entity_Id;
1642 Ind : Interp_Index;
1643 It : Interp;
1644
1645 begin
1646 if not Is_Overloaded (P) then
1647 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1648 or else not Type_Conformant (Etype (Nam), New_S)
1649 then
1650 Error_Msg_N ("designated type does not match specification", P);
1651 else
1652 Resolve (P);
1653 end if;
1654
1655 return;
1656
1657 else
1658 Typ := Any_Type;
1659 Get_First_Interp (Nam, Ind, It);
1660
1661 while Present (It.Nam) loop
1662
1663 if Ekind (It.Nam) = E_Subprogram_Type
1664 and then Type_Conformant (It.Nam, New_S)
1665 then
1666 if Typ /= Any_Id then
1667 Error_Msg_N ("ambiguous renaming", P);
1668 return;
1669 else
1670 Typ := It.Nam;
1671 end if;
1672 end if;
1673
1674 Get_Next_Interp (Ind, It);
1675 end loop;
1676
1677 if Typ = Any_Type then
1678 Error_Msg_N ("designated type does not match specification", P);
1679 else
1680 Resolve (N, Typ);
1681
1682 if Is_Body then
1683 Check_Frozen_Renaming (N, New_S);
1684 end if;
1685 end if;
1686 end if;
1687 end Analyze_Renamed_Dereference;
1688
1689 ---------------------------
1690 -- Analyze_Renamed_Entry --
1691 ---------------------------
1692
1693 procedure Analyze_Renamed_Entry
1694 (N : Node_Id;
1695 New_S : Entity_Id;
1696 Is_Body : Boolean)
1697 is
1698 Nam : constant Node_Id := Name (N);
1699 Sel : constant Node_Id := Selector_Name (Nam);
1700 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1701 Old_S : Entity_Id;
1702
1703 begin
1704 if Entity (Sel) = Any_Id then
1705
1706 -- Selector is undefined on prefix. Error emitted already
1707
1708 Set_Has_Completion (New_S);
1709 return;
1710 end if;
1711
1712 -- Otherwise find renamed entity and build body of New_S as a call to it
1713
1714 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1715
1716 if Old_S = Any_Id then
1717 Error_Msg_N (" no subprogram or entry matches specification", N);
1718 else
1719 if Is_Body then
1720 Check_Subtype_Conformant (New_S, Old_S, N);
1721 Generate_Reference (New_S, Defining_Entity (N), 'b');
1722 Style.Check_Identifier (Defining_Entity (N), New_S);
1723
1724 else
1725 -- Only mode conformance required for a renaming_as_declaration
1726
1727 Check_Mode_Conformant (New_S, Old_S, N);
1728 end if;
1729
1730 Inherit_Renamed_Profile (New_S, Old_S);
1731
1732 -- The prefix can be an arbitrary expression that yields a task or
1733 -- protected object, so it must be resolved.
1734
1735 if Is_Access_Type (Etype (Prefix (Nam))) then
1736 Insert_Explicit_Dereference (Prefix (Nam));
1737 end if;
1738 Resolve (Prefix (Nam), Scope (Old_S));
1739 end if;
1740
1741 Set_Convention (New_S, Convention (Old_S));
1742 Set_Has_Completion (New_S, Inside_A_Generic);
1743
1744 -- AI05-0225: If the renamed entity is a procedure or entry of a
1745 -- protected object, the target object must be a variable.
1746
1747 if Is_Protected_Type (Scope (Old_S))
1748 and then Ekind (New_S) = E_Procedure
1749 and then not Is_Variable (Prefix (Nam))
1750 then
1751 if Is_Actual then
1752 Error_Msg_N
1753 ("target object of protected operation used as actual for "
1754 & "formal procedure must be a variable", Nam);
1755 else
1756 Error_Msg_N
1757 ("target object of protected operation renamed as procedure, "
1758 & "must be a variable", Nam);
1759 end if;
1760 end if;
1761
1762 if Is_Body then
1763 Check_Frozen_Renaming (N, New_S);
1764 end if;
1765 end Analyze_Renamed_Entry;
1766
1767 -----------------------------------
1768 -- Analyze_Renamed_Family_Member --
1769 -----------------------------------
1770
1771 procedure Analyze_Renamed_Family_Member
1772 (N : Node_Id;
1773 New_S : Entity_Id;
1774 Is_Body : Boolean)
1775 is
1776 Nam : constant Node_Id := Name (N);
1777 P : constant Node_Id := Prefix (Nam);
1778 Old_S : Entity_Id;
1779
1780 begin
1781 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1782 or else (Nkind (P) = N_Selected_Component
1783 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1784 then
1785 if Is_Entity_Name (P) then
1786 Old_S := Entity (P);
1787 else
1788 Old_S := Entity (Selector_Name (P));
1789 end if;
1790
1791 if not Entity_Matches_Spec (Old_S, New_S) then
1792 Error_Msg_N ("entry family does not match specification", N);
1793
1794 elsif Is_Body then
1795 Check_Subtype_Conformant (New_S, Old_S, N);
1796 Generate_Reference (New_S, Defining_Entity (N), 'b');
1797 Style.Check_Identifier (Defining_Entity (N), New_S);
1798 end if;
1799
1800 else
1801 Error_Msg_N ("no entry family matches specification", N);
1802 end if;
1803
1804 Set_Has_Completion (New_S, Inside_A_Generic);
1805
1806 if Is_Body then
1807 Check_Frozen_Renaming (N, New_S);
1808 end if;
1809 end Analyze_Renamed_Family_Member;
1810
1811 -----------------------------------------
1812 -- Analyze_Renamed_Primitive_Operation --
1813 -----------------------------------------
1814
1815 procedure Analyze_Renamed_Primitive_Operation
1816 (N : Node_Id;
1817 New_S : Entity_Id;
1818 Is_Body : Boolean)
1819 is
1820 Old_S : Entity_Id;
1821 Nam : Entity_Id;
1822
1823 function Conforms
1824 (Subp : Entity_Id;
1825 Ctyp : Conformance_Type) return Boolean;
1826 -- Verify that the signatures of the renamed entity and the new entity
1827 -- match. The first formal of the renamed entity is skipped because it
1828 -- is the target object in any subsequent call.
1829
1830 --------------
1831 -- Conforms --
1832 --------------
1833
1834 function Conforms
1835 (Subp : Entity_Id;
1836 Ctyp : Conformance_Type) return Boolean
1837 is
1838 Old_F : Entity_Id;
1839 New_F : Entity_Id;
1840
1841 begin
1842 if Ekind (Subp) /= Ekind (New_S) then
1843 return False;
1844 end if;
1845
1846 Old_F := Next_Formal (First_Formal (Subp));
1847 New_F := First_Formal (New_S);
1848 while Present (Old_F) and then Present (New_F) loop
1849 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1850 return False;
1851 end if;
1852
1853 if Ctyp >= Mode_Conformant
1854 and then Ekind (Old_F) /= Ekind (New_F)
1855 then
1856 return False;
1857 end if;
1858
1859 Next_Formal (New_F);
1860 Next_Formal (Old_F);
1861 end loop;
1862
1863 return True;
1864 end Conforms;
1865
1866 -- Start of processing for Analyze_Renamed_Primitive_Operation
1867
1868 begin
1869 if not Is_Overloaded (Selector_Name (Name (N))) then
1870 Old_S := Entity (Selector_Name (Name (N)));
1871
1872 if not Conforms (Old_S, Type_Conformant) then
1873 Old_S := Any_Id;
1874 end if;
1875
1876 else
1877 -- Find the operation that matches the given signature
1878
1879 declare
1880 It : Interp;
1881 Ind : Interp_Index;
1882
1883 begin
1884 Old_S := Any_Id;
1885 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1886
1887 while Present (It.Nam) loop
1888 if Conforms (It.Nam, Type_Conformant) then
1889 Old_S := It.Nam;
1890 end if;
1891
1892 Get_Next_Interp (Ind, It);
1893 end loop;
1894 end;
1895 end if;
1896
1897 if Old_S = Any_Id then
1898 Error_Msg_N ("no subprogram or entry matches specification", N);
1899
1900 else
1901 if Is_Body then
1902 if not Conforms (Old_S, Subtype_Conformant) then
1903 Error_Msg_N ("subtype conformance error in renaming", N);
1904 end if;
1905
1906 Generate_Reference (New_S, Defining_Entity (N), 'b');
1907 Style.Check_Identifier (Defining_Entity (N), New_S);
1908
1909 else
1910 -- Only mode conformance required for a renaming_as_declaration
1911
1912 if not Conforms (Old_S, Mode_Conformant) then
1913 Error_Msg_N ("mode conformance error in renaming", N);
1914 end if;
1915
1916 -- AI12-0204: The prefix of a prefixed view that is renamed or
1917 -- passed as a formal subprogram must be renamable as an object.
1918
1919 Nam := Prefix (Name (N));
1920
1921 if Is_Object_Reference (Nam) then
1922 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1923 Error_Msg_N
1924 ("illegal renaming of discriminant-dependent component",
1925 Nam);
1926 end if;
1927 else
1928 Error_Msg_N ("expect object name in renaming", Nam);
1929 end if;
1930
1931 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1932 -- view of a subprogram is intrinsic, because the compiler has
1933 -- to generate a wrapper for any call to it. If the name in a
1934 -- subprogram renaming is a prefixed view, the entity is thus
1935 -- intrinsic, and 'Access cannot be applied to it.
1936
1937 Set_Convention (New_S, Convention_Intrinsic);
1938 end if;
1939
1940 -- Inherit_Renamed_Profile (New_S, Old_S);
1941
1942 -- The prefix can be an arbitrary expression that yields an
1943 -- object, so it must be resolved.
1944
1945 Resolve (Prefix (Name (N)));
1946 end if;
1947 end Analyze_Renamed_Primitive_Operation;
1948
1949 ---------------------------------
1950 -- Analyze_Subprogram_Renaming --
1951 ---------------------------------
1952
1953 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1954 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1955 Is_Actual : constant Boolean := Present (Formal_Spec);
1956 Nam : constant Node_Id := Name (N);
1957 Save_AV : constant Ada_Version_Type := Ada_Version;
1958 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1959 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1960 Spec : constant Node_Id := Specification (N);
1961
1962 Old_S : Entity_Id := Empty;
1963 Rename_Spec : Entity_Id;
1964
1965 procedure Build_Class_Wide_Wrapper
1966 (Ren_Id : out Entity_Id;
1967 Wrap_Id : out Entity_Id);
1968 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1969 -- type with unknown discriminants and a generic primitive operation of
1970 -- the said type with a box require special processing when the actual
1971 -- is a class-wide type:
1972 --
1973 -- generic
1974 -- type Formal_Typ (<>) is private;
1975 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1976 -- package Gen is ...
1977 --
1978 -- package Inst is new Gen (Actual_Typ'Class);
1979 --
1980 -- In this case the general renaming mechanism used in the prologue of
1981 -- an instance no longer applies:
1982 --
1983 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1984 --
1985 -- The above is replaced the following wrapper/renaming combination:
1986 --
1987 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1988 -- begin
1989 -- Prim_Op (Param); -- primitive
1990 -- end Wrapper;
1991 --
1992 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1993 --
1994 -- This transformation applies only if there is no explicit visible
1995 -- class-wide operation at the point of the instantiation. Ren_Id is
1996 -- the entity of the renaming declaration. When the transformation
1997 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1998 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1999 -- operation.
2000
2001 procedure Check_Null_Exclusion
2002 (Ren : Entity_Id;
2003 Sub : Entity_Id);
2004 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
2005 -- following AI rules:
2006 --
2007 -- If Ren is a renaming of a formal subprogram and one of its
2008 -- parameters has a null exclusion, then the corresponding formal
2009 -- in Sub must also have one. Otherwise the subtype of the Sub's
2010 -- formal parameter must exclude null.
2011 --
2012 -- If Ren is a renaming of a formal function and its return
2013 -- profile has a null exclusion, then Sub's return profile must
2014 -- have one. Otherwise the subtype of Sub's return profile must
2015 -- exclude null.
2016
2017 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id);
2018 -- Ensure that a SPARK renaming denoted by its entity Subp_Id does not
2019 -- declare a primitive operation of a tagged type (SPARK RM 6.1.1(3)).
2020
2021 procedure Freeze_Actual_Profile;
2022 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
2023 -- types: a callable entity freezes its profile, unless it has an
2024 -- incomplete untagged formal (RM 13.14(10.2/3)).
2025
2026 function Has_Class_Wide_Actual return Boolean;
2027 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
2028 -- defaulted formal subprogram where the actual for the controlling
2029 -- formal type is class-wide.
2030
2031 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
2032 -- Find renamed entity when the declaration is a renaming_as_body and
2033 -- the renamed entity may itself be a renaming_as_body. Used to enforce
2034 -- rule that a renaming_as_body is illegal if the declaration occurs
2035 -- before the subprogram it completes is frozen, and renaming indirectly
2036 -- renames the subprogram itself.(Defect Report 8652/0027).
2037
2038 ------------------------------
2039 -- Build_Class_Wide_Wrapper --
2040 ------------------------------
2041
2042 procedure Build_Class_Wide_Wrapper
2043 (Ren_Id : out Entity_Id;
2044 Wrap_Id : out Entity_Id)
2045 is
2046 Loc : constant Source_Ptr := Sloc (N);
2047
2048 function Build_Call
2049 (Subp_Id : Entity_Id;
2050 Params : List_Id) return Node_Id;
2051 -- Create a dispatching call to invoke routine Subp_Id with actuals
2052 -- built from the parameter specifications of list Params.
2053
2054 function Build_Expr_Fun_Call
2055 (Subp_Id : Entity_Id;
2056 Params : List_Id) return Node_Id;
2057 -- Create a dispatching call to invoke function Subp_Id with actuals
2058 -- built from the parameter specifications of list Params. Return
2059 -- directly the call, so that it can be used inside an expression
2060 -- function. This is a specificity of the GNATprove mode.
2061
2062 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
2063 -- Create a subprogram specification based on the subprogram profile
2064 -- of Subp_Id.
2065
2066 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
2067 -- Find a primitive subprogram of type Typ which matches the profile
2068 -- of the renaming declaration.
2069
2070 procedure Interpretation_Error (Subp_Id : Entity_Id);
2071 -- Emit a continuation error message suggesting subprogram Subp_Id as
2072 -- a possible interpretation.
2073
2074 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
2075 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
2076 -- operator.
2077
2078 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
2079 -- Determine whether subprogram Subp_Id is a suitable candidate for
2080 -- the role of a wrapped subprogram.
2081
2082 ----------------
2083 -- Build_Call --
2084 ----------------
2085
2086 function Build_Call
2087 (Subp_Id : Entity_Id;
2088 Params : List_Id) return Node_Id
2089 is
2090 Actuals : constant List_Id := New_List;
2091 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2092 Formal : Node_Id;
2093
2094 begin
2095 -- Build the actual parameters of the call
2096
2097 Formal := First (Params);
2098 while Present (Formal) loop
2099 Append_To (Actuals,
2100 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2101 Next (Formal);
2102 end loop;
2103
2104 -- Generate:
2105 -- return Subp_Id (Actuals);
2106
2107 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2108 return
2109 Make_Simple_Return_Statement (Loc,
2110 Expression =>
2111 Make_Function_Call (Loc,
2112 Name => Call_Ref,
2113 Parameter_Associations => Actuals));
2114
2115 -- Generate:
2116 -- Subp_Id (Actuals);
2117
2118 else
2119 return
2120 Make_Procedure_Call_Statement (Loc,
2121 Name => Call_Ref,
2122 Parameter_Associations => Actuals);
2123 end if;
2124 end Build_Call;
2125
2126 -------------------------
2127 -- Build_Expr_Fun_Call --
2128 -------------------------
2129
2130 function Build_Expr_Fun_Call
2131 (Subp_Id : Entity_Id;
2132 Params : List_Id) return Node_Id
2133 is
2134 Actuals : constant List_Id := New_List;
2135 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2136 Formal : Node_Id;
2137
2138 begin
2139 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2140
2141 -- Build the actual parameters of the call
2142
2143 Formal := First (Params);
2144 while Present (Formal) loop
2145 Append_To (Actuals,
2146 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2147 Next (Formal);
2148 end loop;
2149
2150 -- Generate:
2151 -- Subp_Id (Actuals);
2152
2153 return
2154 Make_Function_Call (Loc,
2155 Name => Call_Ref,
2156 Parameter_Associations => Actuals);
2157 end Build_Expr_Fun_Call;
2158
2159 ----------------
2160 -- Build_Spec --
2161 ----------------
2162
2163 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2164 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2165 Spec_Id : constant Entity_Id :=
2166 Make_Defining_Identifier (Loc,
2167 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2168
2169 begin
2170 if Ekind (Formal_Spec) = E_Procedure then
2171 return
2172 Make_Procedure_Specification (Loc,
2173 Defining_Unit_Name => Spec_Id,
2174 Parameter_Specifications => Params);
2175 else
2176 return
2177 Make_Function_Specification (Loc,
2178 Defining_Unit_Name => Spec_Id,
2179 Parameter_Specifications => Params,
2180 Result_Definition =>
2181 New_Copy_Tree (Result_Definition (Spec)));
2182 end if;
2183 end Build_Spec;
2184
2185 --------------------
2186 -- Find_Primitive --
2187 --------------------
2188
2189 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2190 procedure Replace_Parameter_Types (Spec : Node_Id);
2191 -- Given a specification Spec, replace all class-wide parameter
2192 -- types with reference to type Typ.
2193
2194 -----------------------------
2195 -- Replace_Parameter_Types --
2196 -----------------------------
2197
2198 procedure Replace_Parameter_Types (Spec : Node_Id) is
2199 Formal : Node_Id;
2200 Formal_Id : Entity_Id;
2201 Formal_Typ : Node_Id;
2202
2203 begin
2204 Formal := First (Parameter_Specifications (Spec));
2205 while Present (Formal) loop
2206 Formal_Id := Defining_Identifier (Formal);
2207 Formal_Typ := Parameter_Type (Formal);
2208
2209 -- Create a new entity for each class-wide formal to prevent
2210 -- aliasing with the original renaming. Replace the type of
2211 -- such a parameter with the candidate type.
2212
2213 if Nkind (Formal_Typ) = N_Identifier
2214 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2215 then
2216 Set_Defining_Identifier (Formal,
2217 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2218
2219 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2220 end if;
2221
2222 Next (Formal);
2223 end loop;
2224 end Replace_Parameter_Types;
2225
2226 -- Local variables
2227
2228 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2229 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2230 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2231 Subp_Id : Entity_Id;
2232
2233 -- Start of processing for Find_Primitive
2234
2235 begin
2236 -- Each attempt to find a suitable primitive of a particular type
2237 -- operates on its own copy of the original renaming. As a result
2238 -- the original renaming is kept decoration and side-effect free.
2239
2240 -- Inherit the overloaded status of the renamed subprogram name
2241
2242 if Is_Overloaded (Nam) then
2243 Set_Is_Overloaded (Alt_Nam);
2244 Save_Interps (Nam, Alt_Nam);
2245 end if;
2246
2247 -- The copied renaming is hidden from visibility to prevent the
2248 -- pollution of the enclosing context.
2249
2250 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2251
2252 -- The types of all class-wide parameters must be changed to the
2253 -- candidate type.
2254
2255 Replace_Parameter_Types (Alt_Spec);
2256
2257 -- Try to find a suitable primitive which matches the altered
2258 -- profile of the renaming specification.
2259
2260 Subp_Id :=
2261 Find_Renamed_Entity
2262 (N => Alt_Ren,
2263 Nam => Name (Alt_Ren),
2264 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2265 Is_Actual => Is_Actual);
2266
2267 -- Do not return Any_Id if the resolion of the altered profile
2268 -- failed as this complicates further checks on the caller side,
2269 -- return Empty instead.
2270
2271 if Subp_Id = Any_Id then
2272 return Empty;
2273 else
2274 return Subp_Id;
2275 end if;
2276 end Find_Primitive;
2277
2278 --------------------------
2279 -- Interpretation_Error --
2280 --------------------------
2281
2282 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2283 begin
2284 Error_Msg_Sloc := Sloc (Subp_Id);
2285
2286 if Is_Internal (Subp_Id) then
2287 Error_Msg_NE
2288 ("\\possible interpretation: predefined & #",
2289 Spec, Formal_Spec);
2290 else
2291 Error_Msg_NE
2292 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2293 end if;
2294 end Interpretation_Error;
2295
2296 ---------------------------
2297 -- Is_Intrinsic_Equality --
2298 ---------------------------
2299
2300 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2301 begin
2302 return
2303 Ekind (Subp_Id) = E_Operator
2304 and then Chars (Subp_Id) = Name_Op_Eq
2305 and then Is_Intrinsic_Subprogram (Subp_Id);
2306 end Is_Intrinsic_Equality;
2307
2308 ---------------------------
2309 -- Is_Suitable_Candidate --
2310 ---------------------------
2311
2312 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2313 begin
2314 if No (Subp_Id) then
2315 return False;
2316
2317 -- An intrinsic subprogram is never a good candidate. This is an
2318 -- indication of a missing primitive, either defined directly or
2319 -- inherited from a parent tagged type.
2320
2321 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2322 return False;
2323
2324 else
2325 return True;
2326 end if;
2327 end Is_Suitable_Candidate;
2328
2329 -- Local variables
2330
2331 Actual_Typ : Entity_Id := Empty;
2332 -- The actual class-wide type for Formal_Typ
2333
2334 CW_Prim_OK : Boolean;
2335 CW_Prim_Op : Entity_Id;
2336 -- The class-wide subprogram (if available) which corresponds to the
2337 -- renamed generic formal subprogram.
2338
2339 Formal_Typ : Entity_Id := Empty;
2340 -- The generic formal type with unknown discriminants
2341
2342 Root_Prim_OK : Boolean;
2343 Root_Prim_Op : Entity_Id;
2344 -- The root type primitive (if available) which corresponds to the
2345 -- renamed generic formal subprogram.
2346
2347 Root_Typ : Entity_Id := Empty;
2348 -- The root type of Actual_Typ
2349
2350 Body_Decl : Node_Id;
2351 Formal : Node_Id;
2352 Prim_Op : Entity_Id;
2353 Spec_Decl : Node_Id;
2354 New_Spec : Node_Id;
2355
2356 -- Start of processing for Build_Class_Wide_Wrapper
2357
2358 begin
2359 -- Analyze the specification of the renaming in case the generation
2360 -- of the class-wide wrapper fails.
2361
2362 Ren_Id := Analyze_Subprogram_Specification (Spec);
2363 Wrap_Id := Any_Id;
2364
2365 -- Do not attempt to build a wrapper if the renaming is in error
2366
2367 if Error_Posted (Nam) then
2368 return;
2369 end if;
2370
2371 -- Analyze the renamed name, but do not resolve it. The resolution is
2372 -- completed once a suitable subprogram is found.
2373
2374 Analyze (Nam);
2375
2376 -- When the renamed name denotes the intrinsic operator equals, the
2377 -- name must be treated as overloaded. This allows for a potential
2378 -- match against the root type's predefined equality function.
2379
2380 if Is_Intrinsic_Equality (Entity (Nam)) then
2381 Set_Is_Overloaded (Nam);
2382 Collect_Interps (Nam);
2383 end if;
2384
2385 -- Step 1: Find the generic formal type with unknown discriminants
2386 -- and its corresponding class-wide actual type from the renamed
2387 -- generic formal subprogram.
2388
2389 Formal := First_Formal (Formal_Spec);
2390 while Present (Formal) loop
2391 if Has_Unknown_Discriminants (Etype (Formal))
2392 and then not Is_Class_Wide_Type (Etype (Formal))
2393 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2394 then
2395 Formal_Typ := Etype (Formal);
2396 Actual_Typ := Get_Instance_Of (Formal_Typ);
2397 Root_Typ := Etype (Actual_Typ);
2398 exit;
2399 end if;
2400
2401 Next_Formal (Formal);
2402 end loop;
2403
2404 -- The specification of the generic formal subprogram should always
2405 -- contain a formal type with unknown discriminants whose actual is
2406 -- a class-wide type, otherwise this indicates a failure in routine
2407 -- Has_Class_Wide_Actual.
2408
2409 pragma Assert (Present (Formal_Typ));
2410
2411 -- Step 2: Find the proper class-wide subprogram or primitive which
2412 -- corresponds to the renamed generic formal subprogram.
2413
2414 CW_Prim_Op := Find_Primitive (Actual_Typ);
2415 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2416 Root_Prim_Op := Find_Primitive (Root_Typ);
2417 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2418
2419 -- The class-wide actual type has two subprograms which correspond to
2420 -- the renamed generic formal subprogram:
2421
2422 -- with procedure Prim_Op (Param : Formal_Typ);
2423
2424 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2425 -- procedure Prim_Op (Param : Actual_Typ'Class);
2426
2427 -- Even though the declaration of the two subprograms is legal, a
2428 -- call to either one is ambiguous and therefore illegal.
2429
2430 if CW_Prim_OK and Root_Prim_OK then
2431
2432 -- A user-defined primitive has precedence over a predefined one
2433
2434 if Is_Internal (CW_Prim_Op)
2435 and then not Is_Internal (Root_Prim_Op)
2436 then
2437 Prim_Op := Root_Prim_Op;
2438
2439 elsif Is_Internal (Root_Prim_Op)
2440 and then not Is_Internal (CW_Prim_Op)
2441 then
2442 Prim_Op := CW_Prim_Op;
2443
2444 elsif CW_Prim_Op = Root_Prim_Op then
2445 Prim_Op := Root_Prim_Op;
2446
2447 -- Otherwise both candidate subprograms are user-defined and
2448 -- ambiguous.
2449
2450 else
2451 Error_Msg_NE
2452 ("ambiguous actual for generic subprogram &",
2453 Spec, Formal_Spec);
2454 Interpretation_Error (Root_Prim_Op);
2455 Interpretation_Error (CW_Prim_Op);
2456 return;
2457 end if;
2458
2459 elsif CW_Prim_OK and not Root_Prim_OK then
2460 Prim_Op := CW_Prim_Op;
2461
2462 elsif not CW_Prim_OK and Root_Prim_OK then
2463 Prim_Op := Root_Prim_Op;
2464
2465 -- An intrinsic equality may act as a suitable candidate in the case
2466 -- of a null type extension where the parent's equality is hidden. A
2467 -- call to an intrinsic equality is expanded as dispatching.
2468
2469 elsif Present (Root_Prim_Op)
2470 and then Is_Intrinsic_Equality (Root_Prim_Op)
2471 then
2472 Prim_Op := Root_Prim_Op;
2473
2474 -- Otherwise there are no candidate subprograms. Let the caller
2475 -- diagnose the error.
2476
2477 else
2478 return;
2479 end if;
2480
2481 -- At this point resolution has taken place and the name is no longer
2482 -- overloaded. Mark the primitive as referenced.
2483
2484 Set_Is_Overloaded (Name (N), False);
2485 Set_Referenced (Prim_Op);
2486
2487 -- Do not generate a wrapper when the only candidate is a class-wide
2488 -- subprogram. Instead modify the renaming to directly map the actual
2489 -- to the generic formal.
2490
2491 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2492 Wrap_Id := Prim_Op;
2493 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2494 return;
2495 end if;
2496
2497 -- Step 3: Create the declaration and the body of the wrapper, insert
2498 -- all the pieces into the tree.
2499
2500 -- In GNATprove mode, create a function wrapper in the form of an
2501 -- expression function, so that an implicit postcondition relating
2502 -- the result of calling the wrapper function and the result of the
2503 -- dispatching call to the wrapped function is known during proof.
2504
2505 if GNATprove_Mode
2506 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2507 then
2508 New_Spec := Build_Spec (Ren_Id);
2509 Body_Decl :=
2510 Make_Expression_Function (Loc,
2511 Specification => New_Spec,
2512 Expression =>
2513 Build_Expr_Fun_Call
2514 (Subp_Id => Prim_Op,
2515 Params => Parameter_Specifications (New_Spec)));
2516
2517 Wrap_Id := Defining_Entity (Body_Decl);
2518
2519 -- Otherwise, create separate spec and body for the subprogram
2520
2521 else
2522 Spec_Decl :=
2523 Make_Subprogram_Declaration (Loc,
2524 Specification => Build_Spec (Ren_Id));
2525 Insert_Before_And_Analyze (N, Spec_Decl);
2526
2527 Wrap_Id := Defining_Entity (Spec_Decl);
2528
2529 Body_Decl :=
2530 Make_Subprogram_Body (Loc,
2531 Specification => Build_Spec (Ren_Id),
2532 Declarations => New_List,
2533 Handled_Statement_Sequence =>
2534 Make_Handled_Sequence_Of_Statements (Loc,
2535 Statements => New_List (
2536 Build_Call
2537 (Subp_Id => Prim_Op,
2538 Params =>
2539 Parameter_Specifications
2540 (Specification (Spec_Decl))))));
2541
2542 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2543 end if;
2544
2545 -- If the operator carries an Eliminated pragma, indicate that the
2546 -- wrapper is also to be eliminated, to prevent spurious error when
2547 -- using gnatelim on programs that include box-initialization of
2548 -- equality operators.
2549
2550 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2551
2552 -- In GNATprove mode, insert the body in the tree for analysis
2553
2554 if GNATprove_Mode then
2555 Insert_Before_And_Analyze (N, Body_Decl);
2556 end if;
2557
2558 -- The generated body does not freeze and must be analyzed when the
2559 -- class-wide wrapper is frozen. The body is only needed if expansion
2560 -- is enabled.
2561
2562 if Expander_Active then
2563 Append_Freeze_Action (Wrap_Id, Body_Decl);
2564 end if;
2565
2566 -- Step 4: The subprogram renaming aliases the wrapper
2567
2568 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2569 end Build_Class_Wide_Wrapper;
2570
2571 --------------------------
2572 -- Check_Null_Exclusion --
2573 --------------------------
2574
2575 procedure Check_Null_Exclusion
2576 (Ren : Entity_Id;
2577 Sub : Entity_Id)
2578 is
2579 Ren_Formal : Entity_Id;
2580 Sub_Formal : Entity_Id;
2581
2582 begin
2583 -- Parameter check
2584
2585 Ren_Formal := First_Formal (Ren);
2586 Sub_Formal := First_Formal (Sub);
2587 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2588 if Has_Null_Exclusion (Parent (Ren_Formal))
2589 and then
2590 not (Has_Null_Exclusion (Parent (Sub_Formal))
2591 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2592 then
2593 Error_Msg_NE
2594 ("`NOT NULL` required for parameter &",
2595 Parent (Sub_Formal), Sub_Formal);
2596 end if;
2597
2598 Next_Formal (Ren_Formal);
2599 Next_Formal (Sub_Formal);
2600 end loop;
2601
2602 -- Return profile check
2603
2604 if Nkind (Parent (Ren)) = N_Function_Specification
2605 and then Nkind (Parent (Sub)) = N_Function_Specification
2606 and then Has_Null_Exclusion (Parent (Ren))
2607 and then not (Has_Null_Exclusion (Parent (Sub))
2608 or else Can_Never_Be_Null (Etype (Sub)))
2609 then
2610 Error_Msg_N
2611 ("return must specify `NOT NULL`",
2612 Result_Definition (Parent (Sub)));
2613 end if;
2614 end Check_Null_Exclusion;
2615
2616 -------------------------------------
2617 -- Check_SPARK_Primitive_Operation --
2618 -------------------------------------
2619
2620 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id) is
2621 Prag : constant Node_Id := SPARK_Pragma (Subp_Id);
2622 Typ : Entity_Id;
2623
2624 begin
2625 -- Nothing to do when the subprogram is not subject to SPARK_Mode On
2626 -- because this check applies to SPARK code only.
2627
2628 if not (Present (Prag)
2629 and then Get_SPARK_Mode_From_Annotation (Prag) = On)
2630 then
2631 return;
2632
2633 -- Nothing to do when the subprogram is not a primitive operation
2634
2635 elsif not Is_Primitive (Subp_Id) then
2636 return;
2637 end if;
2638
2639 Typ := Find_Dispatching_Type (Subp_Id);
2640
2641 -- Nothing to do when the subprogram is a primitive operation of an
2642 -- untagged type.
2643
2644 if No (Typ) then
2645 return;
2646 end if;
2647
2648 -- At this point a renaming declaration introduces a new primitive
2649 -- operation for a tagged type.
2650
2651 Error_Msg_Node_2 := Typ;
2652 Error_Msg_NE
2653 ("subprogram renaming & cannot declare primitive for type & "
2654 & "(SPARK RM 6.1.1(3))", N, Subp_Id);
2655 end Check_SPARK_Primitive_Operation;
2656
2657 ---------------------------
2658 -- Freeze_Actual_Profile --
2659 ---------------------------
2660
2661 procedure Freeze_Actual_Profile is
2662 F : Entity_Id;
2663 Has_Untagged_Inc : Boolean;
2664 Instantiation_Node : constant Node_Id := Parent (N);
2665
2666 begin
2667 if Ada_Version >= Ada_2012 then
2668 F := First_Formal (Formal_Spec);
2669 Has_Untagged_Inc := False;
2670 while Present (F) loop
2671 if Ekind (Etype (F)) = E_Incomplete_Type
2672 and then not Is_Tagged_Type (Etype (F))
2673 then
2674 Has_Untagged_Inc := True;
2675 exit;
2676 end if;
2677
2678 Next_Formal (F);
2679 end loop;
2680
2681 if Ekind (Formal_Spec) = E_Function
2682 and then not Is_Tagged_Type (Etype (Formal_Spec))
2683 then
2684 Has_Untagged_Inc := True;
2685 end if;
2686
2687 if not Has_Untagged_Inc then
2688 F := First_Formal (Old_S);
2689 while Present (F) loop
2690 Freeze_Before (Instantiation_Node, Etype (F));
2691
2692 if Is_Incomplete_Or_Private_Type (Etype (F))
2693 and then No (Underlying_Type (Etype (F)))
2694 then
2695 -- Exclude generic types, or types derived from them.
2696 -- They will be frozen in the enclosing instance.
2697
2698 if Is_Generic_Type (Etype (F))
2699 or else Is_Generic_Type (Root_Type (Etype (F)))
2700 then
2701 null;
2702
2703 -- A limited view of a type declared elsewhere needs no
2704 -- freezing actions.
2705
2706 elsif From_Limited_With (Etype (F)) then
2707 null;
2708
2709 else
2710 Error_Msg_NE
2711 ("type& must be frozen before this point",
2712 Instantiation_Node, Etype (F));
2713 end if;
2714 end if;
2715
2716 Next_Formal (F);
2717 end loop;
2718 end if;
2719 end if;
2720 end Freeze_Actual_Profile;
2721
2722 ---------------------------
2723 -- Has_Class_Wide_Actual --
2724 ---------------------------
2725
2726 function Has_Class_Wide_Actual return Boolean is
2727 Formal : Entity_Id;
2728 Formal_Typ : Entity_Id;
2729
2730 begin
2731 if Is_Actual then
2732 Formal := First_Formal (Formal_Spec);
2733 while Present (Formal) loop
2734 Formal_Typ := Etype (Formal);
2735
2736 if Has_Unknown_Discriminants (Formal_Typ)
2737 and then not Is_Class_Wide_Type (Formal_Typ)
2738 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2739 then
2740 return True;
2741 end if;
2742
2743 Next_Formal (Formal);
2744 end loop;
2745 end if;
2746
2747 return False;
2748 end Has_Class_Wide_Actual;
2749
2750 -------------------------
2751 -- Original_Subprogram --
2752 -------------------------
2753
2754 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2755 Orig_Decl : Node_Id;
2756 Orig_Subp : Entity_Id;
2757
2758 begin
2759 -- First case: renamed entity is itself a renaming
2760
2761 if Present (Alias (Subp)) then
2762 return Alias (Subp);
2763
2764 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2765 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2766 then
2767 -- Check if renamed entity is a renaming_as_body
2768
2769 Orig_Decl :=
2770 Unit_Declaration_Node
2771 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2772
2773 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2774 Orig_Subp := Entity (Name (Orig_Decl));
2775
2776 if Orig_Subp = Rename_Spec then
2777
2778 -- Circularity detected
2779
2780 return Orig_Subp;
2781
2782 else
2783 return (Original_Subprogram (Orig_Subp));
2784 end if;
2785 else
2786 return Subp;
2787 end if;
2788 else
2789 return Subp;
2790 end if;
2791 end Original_Subprogram;
2792
2793 -- Local variables
2794
2795 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2796 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2797 -- defaulted formal subprogram when the actual for a related formal
2798 -- type is class-wide.
2799
2800 Inst_Node : Node_Id := Empty;
2801 New_S : Entity_Id;
2802
2803 -- Start of processing for Analyze_Subprogram_Renaming
2804
2805 begin
2806 -- We must test for the attribute renaming case before the Analyze
2807 -- call because otherwise Sem_Attr will complain that the attribute
2808 -- is missing an argument when it is analyzed.
2809
2810 if Nkind (Nam) = N_Attribute_Reference then
2811
2812 -- In the case of an abstract formal subprogram association, rewrite
2813 -- an actual given by a stream or Put_Image attribute as the name of
2814 -- the corresponding stream or Put_Image primitive of the type.
2815
2816 -- In a generic context the stream and Put_Image operations are not
2817 -- generated, and this must be treated as a normal attribute
2818 -- reference, to be expanded in subsequent instantiations.
2819
2820 if Is_Actual
2821 and then Is_Abstract_Subprogram (Formal_Spec)
2822 and then Expander_Active
2823 then
2824 declare
2825 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2826 Prim : Entity_Id;
2827
2828 begin
2829 -- The class-wide forms of the stream and Put_Image attributes
2830 -- are not primitive dispatching operations (even though they
2831 -- internally dispatch).
2832
2833 if Is_Class_Wide_Type (Prefix_Type) then
2834 Error_Msg_N
2835 ("attribute must be a primitive dispatching operation",
2836 Nam);
2837 return;
2838 end if;
2839
2840 -- Retrieve the primitive subprogram associated with the
2841 -- attribute. This can only be a stream attribute, since those
2842 -- are the only ones that are dispatching (and the actual for
2843 -- an abstract formal subprogram must be dispatching
2844 -- operation).
2845
2846 case Attribute_Name (Nam) is
2847 when Name_Input =>
2848 Prim :=
2849 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2850
2851 when Name_Output =>
2852 Prim :=
2853 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2854
2855 when Name_Read =>
2856 Prim :=
2857 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2858
2859 when Name_Write =>
2860 Prim :=
2861 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2862
2863 when Name_Put_Image =>
2864 Prim :=
2865 Find_Optional_Prim_Op (Prefix_Type, TSS_Put_Image);
2866
2867 when others =>
2868 Error_Msg_N
2869 ("attribute must be a primitive dispatching operation",
2870 Nam);
2871 return;
2872 end case;
2873
2874 -- If no stream operation was found, and the type is limited,
2875 -- the user should have defined one. This rule does not apply
2876 -- to Put_Image.
2877
2878 if No (Prim)
2879 and then Attribute_Name (Nam) /= Name_Put_Image
2880 then
2881 if Is_Limited_Type (Prefix_Type) then
2882 Error_Msg_NE
2883 ("stream operation not defined for type&",
2884 N, Prefix_Type);
2885 return;
2886
2887 -- Otherwise, compiler should have generated default
2888
2889 else
2890 raise Program_Error;
2891 end if;
2892 end if;
2893
2894 -- Rewrite the attribute into the name of its corresponding
2895 -- primitive dispatching subprogram. We can then proceed with
2896 -- the usual processing for subprogram renamings.
2897
2898 declare
2899 Prim_Name : constant Node_Id :=
2900 Make_Identifier (Sloc (Nam),
2901 Chars => Chars (Prim));
2902 begin
2903 Set_Entity (Prim_Name, Prim);
2904 Rewrite (Nam, Prim_Name);
2905 Analyze (Nam);
2906 end;
2907 end;
2908
2909 -- Normal processing for a renaming of an attribute
2910
2911 else
2912 Attribute_Renaming (N);
2913 return;
2914 end if;
2915 end if;
2916
2917 -- Check whether this declaration corresponds to the instantiation of a
2918 -- formal subprogram.
2919
2920 -- If this is an instantiation, the corresponding actual is frozen and
2921 -- error messages can be made more precise. If this is a default
2922 -- subprogram, the entity is already established in the generic, and is
2923 -- not retrieved by visibility. If it is a default with a box, the
2924 -- candidate interpretations, if any, have been collected when building
2925 -- the renaming declaration. If overloaded, the proper interpretation is
2926 -- determined in Find_Renamed_Entity. If the entity is an operator,
2927 -- Find_Renamed_Entity applies additional visibility checks.
2928
2929 if Is_Actual then
2930 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2931
2932 -- Check whether the renaming is for a defaulted actual subprogram
2933 -- with a class-wide actual.
2934
2935 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2936 -- is an external axiomatization on the package.
2937
2938 if CW_Actual
2939 and then Box_Present (Inst_Node)
2940 and then not
2941 (GNATprove_Mode
2942 and then
2943 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2944 then
2945 Build_Class_Wide_Wrapper (New_S, Old_S);
2946
2947 elsif Is_Entity_Name (Nam)
2948 and then Present (Entity (Nam))
2949 and then not Comes_From_Source (Nam)
2950 and then not Is_Overloaded (Nam)
2951 then
2952 Old_S := Entity (Nam);
2953
2954 -- The subprogram renaming declaration may become Ghost if it
2955 -- renames a Ghost entity.
2956
2957 Mark_Ghost_Renaming (N, Old_S);
2958
2959 New_S := Analyze_Subprogram_Specification (Spec);
2960
2961 -- Operator case
2962
2963 if Ekind (Old_S) = E_Operator then
2964
2965 -- Box present
2966
2967 if Box_Present (Inst_Node) then
2968 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2969
2970 -- If there is an immediately visible homonym of the operator
2971 -- and the declaration has a default, this is worth a warning
2972 -- because the user probably did not intend to get the pre-
2973 -- defined operator, visible in the generic declaration. To
2974 -- find if there is an intended candidate, analyze the renaming
2975 -- again in the current context.
2976
2977 elsif Scope (Old_S) = Standard_Standard
2978 and then Present (Default_Name (Inst_Node))
2979 then
2980 declare
2981 Decl : constant Node_Id := New_Copy_Tree (N);
2982 Hidden : Entity_Id;
2983
2984 begin
2985 Set_Entity (Name (Decl), Empty);
2986 Analyze (Name (Decl));
2987 Hidden :=
2988 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2989
2990 if Present (Hidden)
2991 and then In_Open_Scopes (Scope (Hidden))
2992 and then Is_Immediately_Visible (Hidden)
2993 and then Comes_From_Source (Hidden)
2994 and then Hidden /= Old_S
2995 then
2996 Error_Msg_Sloc := Sloc (Hidden);
2997 Error_Msg_N
2998 ("default subprogram is resolved in the generic "
2999 & "declaration (RM 12.6(17))??", N);
3000 Error_Msg_NE ("\and will not use & #??", N, Hidden);
3001 end if;
3002 end;
3003 end if;
3004 end if;
3005
3006 else
3007 Analyze (Nam);
3008
3009 -- The subprogram renaming declaration may become Ghost if it
3010 -- renames a Ghost entity.
3011
3012 if Is_Entity_Name (Nam) then
3013 Mark_Ghost_Renaming (N, Entity (Nam));
3014 end if;
3015
3016 New_S := Analyze_Subprogram_Specification (Spec);
3017 end if;
3018
3019 else
3020 -- Renamed entity must be analyzed first, to avoid being hidden by
3021 -- new name (which might be the same in a generic instance).
3022
3023 Analyze (Nam);
3024
3025 -- The subprogram renaming declaration may become Ghost if it renames
3026 -- a Ghost entity.
3027
3028 if Is_Entity_Name (Nam) then
3029 Mark_Ghost_Renaming (N, Entity (Nam));
3030 end if;
3031
3032 -- The renaming defines a new overloaded entity, which is analyzed
3033 -- like a subprogram declaration.
3034
3035 New_S := Analyze_Subprogram_Specification (Spec);
3036 end if;
3037
3038 if Current_Scope /= Standard_Standard then
3039 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
3040 end if;
3041
3042 -- Set SPARK mode from current context
3043
3044 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
3045 Set_SPARK_Pragma_Inherited (New_S);
3046
3047 Rename_Spec := Find_Corresponding_Spec (N);
3048
3049 -- Case of Renaming_As_Body
3050
3051 if Present (Rename_Spec) then
3052 Check_Previous_Null_Procedure (N, Rename_Spec);
3053
3054 -- Renaming declaration is the completion of the declaration of
3055 -- Rename_Spec. We build an actual body for it at the freezing point.
3056
3057 Set_Corresponding_Spec (N, Rename_Spec);
3058
3059 -- Deal with special case of stream functions of abstract types
3060 -- and interfaces.
3061
3062 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
3063 N_Abstract_Subprogram_Declaration
3064 then
3065 -- Input stream functions are abstract if the object type is
3066 -- abstract. Similarly, all default stream functions for an
3067 -- interface type are abstract. However, these subprograms may
3068 -- receive explicit declarations in representation clauses, making
3069 -- the attribute subprograms usable as defaults in subsequent
3070 -- type extensions.
3071 -- In this case we rewrite the declaration to make the subprogram
3072 -- non-abstract. We remove the previous declaration, and insert
3073 -- the new one at the point of the renaming, to prevent premature
3074 -- access to unfrozen types. The new declaration reuses the
3075 -- specification of the previous one, and must not be analyzed.
3076
3077 pragma Assert
3078 (Is_Primitive (Entity (Nam))
3079 and then
3080 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
3081 declare
3082 Old_Decl : constant Node_Id :=
3083 Unit_Declaration_Node (Rename_Spec);
3084 New_Decl : constant Node_Id :=
3085 Make_Subprogram_Declaration (Sloc (N),
3086 Specification =>
3087 Relocate_Node (Specification (Old_Decl)));
3088 begin
3089 Remove (Old_Decl);
3090 Insert_After (N, New_Decl);
3091 Set_Is_Abstract_Subprogram (Rename_Spec, False);
3092 Set_Analyzed (New_Decl);
3093 end;
3094 end if;
3095
3096 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
3097
3098 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3099 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
3100 end if;
3101
3102 Set_Convention (New_S, Convention (Rename_Spec));
3103 Check_Fully_Conformant (New_S, Rename_Spec);
3104 Set_Public_Status (New_S);
3105
3106 if No_Return (Rename_Spec)
3107 and then not No_Return (Entity (Nam))
3108 then
3109 Error_Msg_NE
3110 ("renamed subprogram & must be No_Return", N, Entity (Nam));
3111 Error_Msg_N
3112 ("\since renaming subprogram is No_Return (RM 6.5.1(7/2))", N);
3113 end if;
3114
3115 -- The specification does not introduce new formals, but only
3116 -- repeats the formals of the original subprogram declaration.
3117 -- For cross-reference purposes, and for refactoring tools, we
3118 -- treat the formals of the renaming declaration as body formals.
3119
3120 Reference_Body_Formals (Rename_Spec, New_S);
3121
3122 -- Indicate that the entity in the declaration functions like the
3123 -- corresponding body, and is not a new entity. The body will be
3124 -- constructed later at the freeze point, so indicate that the
3125 -- completion has not been seen yet.
3126
3127 Set_Ekind (New_S, E_Subprogram_Body);
3128 New_S := Rename_Spec;
3129 Set_Has_Completion (Rename_Spec, False);
3130
3131 -- Ada 2005: check overriding indicator
3132
3133 if Present (Overridden_Operation (Rename_Spec)) then
3134 if Must_Not_Override (Specification (N)) then
3135 Error_Msg_NE
3136 ("subprogram& overrides inherited operation",
3137 N, Rename_Spec);
3138
3139 elsif Style_Check
3140 and then not Must_Override (Specification (N))
3141 then
3142 Style.Missing_Overriding (N, Rename_Spec);
3143 end if;
3144
3145 elsif Must_Override (Specification (N)) then
3146 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3147 end if;
3148
3149 -- Normal subprogram renaming (not renaming as body)
3150
3151 else
3152 Generate_Definition (New_S);
3153 New_Overloaded_Entity (New_S);
3154
3155 if not (Is_Entity_Name (Nam)
3156 and then Is_Intrinsic_Subprogram (Entity (Nam)))
3157 then
3158 Check_Delayed_Subprogram (New_S);
3159 end if;
3160
3161 -- Verify that a SPARK renaming does not declare a primitive
3162 -- operation of a tagged type.
3163
3164 Check_SPARK_Primitive_Operation (New_S);
3165 end if;
3166
3167 -- There is no need for elaboration checks on the new entity, which may
3168 -- be called before the next freezing point where the body will appear.
3169 -- Elaboration checks refer to the real entity, not the one created by
3170 -- the renaming declaration.
3171
3172 Set_Kill_Elaboration_Checks (New_S, True);
3173
3174 -- If we had a previous error, indicate a completely is present to stop
3175 -- junk cascaded messages, but don't take any further action.
3176
3177 if Etype (Nam) = Any_Type then
3178 Set_Has_Completion (New_S);
3179 return;
3180
3181 -- Case where name has the form of a selected component
3182
3183 elsif Nkind (Nam) = N_Selected_Component then
3184
3185 -- A name which has the form A.B can designate an entry of task A, a
3186 -- protected operation of protected object A, or finally a primitive
3187 -- operation of object A. In the later case, A is an object of some
3188 -- tagged type, or an access type that denotes one such. To further
3189 -- distinguish these cases, note that the scope of a task entry or
3190 -- protected operation is type of the prefix.
3191
3192 -- The prefix could be an overloaded function call that returns both
3193 -- kinds of operations. This overloading pathology is left to the
3194 -- dedicated reader ???
3195
3196 declare
3197 T : constant Entity_Id := Etype (Prefix (Nam));
3198
3199 begin
3200 if Present (T)
3201 and then
3202 (Is_Tagged_Type (T)
3203 or else
3204 (Is_Access_Type (T)
3205 and then Is_Tagged_Type (Designated_Type (T))))
3206 and then Scope (Entity (Selector_Name (Nam))) /= T
3207 then
3208 Analyze_Renamed_Primitive_Operation
3209 (N, New_S, Present (Rename_Spec));
3210 return;
3211
3212 else
3213 -- Renamed entity is an entry or protected operation. For those
3214 -- cases an explicit body is built (at the point of freezing of
3215 -- this entity) that contains a call to the renamed entity.
3216
3217 -- This is not allowed for renaming as body if the renamed
3218 -- spec is already frozen (see RM 8.5.4(5) for details).
3219
3220 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3221 Error_Msg_N
3222 ("renaming-as-body cannot rename entry as subprogram", N);
3223 Error_Msg_NE
3224 ("\since & is already frozen (RM 8.5.4(5))",
3225 N, Rename_Spec);
3226 else
3227 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3228 end if;
3229
3230 return;
3231 end if;
3232 end;
3233
3234 -- Case where name is an explicit dereference X.all
3235
3236 elsif Nkind (Nam) = N_Explicit_Dereference then
3237
3238 -- Renamed entity is designated by access_to_subprogram expression.
3239 -- Must build body to encapsulate call, as in the entry case.
3240
3241 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3242 return;
3243
3244 -- Indexed component
3245
3246 elsif Nkind (Nam) = N_Indexed_Component then
3247 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3248 return;
3249
3250 -- Character literal
3251
3252 elsif Nkind (Nam) = N_Character_Literal then
3253 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3254 return;
3255
3256 -- Only remaining case is where we have a non-entity name, or a renaming
3257 -- of some other non-overloadable entity.
3258
3259 elsif not Is_Entity_Name (Nam)
3260 or else not Is_Overloadable (Entity (Nam))
3261 then
3262 -- Do not mention the renaming if it comes from an instance
3263
3264 if not Is_Actual then
3265 Error_Msg_N ("expect valid subprogram name in renaming", N);
3266 else
3267 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3268 end if;
3269
3270 return;
3271 end if;
3272
3273 -- Find the renamed entity that matches the given specification. Disable
3274 -- Ada_83 because there is no requirement of full conformance between
3275 -- renamed entity and new entity, even though the same circuit is used.
3276
3277 -- This is a bit of an odd case, which introduces a really irregular use
3278 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3279 -- this. ???
3280
3281 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3282 Ada_Version_Pragma := Empty;
3283 Ada_Version_Explicit := Ada_Version;
3284
3285 if No (Old_S) then
3286 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3287
3288 -- The visible operation may be an inherited abstract operation that
3289 -- was overridden in the private part, in which case a call will
3290 -- dispatch to the overriding operation. Use the overriding one in
3291 -- the renaming declaration, to prevent spurious errors below.
3292
3293 if Is_Overloadable (Old_S)
3294 and then Is_Abstract_Subprogram (Old_S)
3295 and then No (DTC_Entity (Old_S))
3296 and then Present (Alias (Old_S))
3297 and then not Is_Abstract_Subprogram (Alias (Old_S))
3298 and then Present (Overridden_Operation (Alias (Old_S)))
3299 then
3300 Old_S := Alias (Old_S);
3301 end if;
3302
3303 -- When the renamed subprogram is overloaded and used as an actual
3304 -- of a generic, its entity is set to the first available homonym.
3305 -- We must first disambiguate the name, then set the proper entity.
3306
3307 if Is_Actual and then Is_Overloaded (Nam) then
3308 Set_Entity (Nam, Old_S);
3309 end if;
3310 end if;
3311
3312 -- Most common case: subprogram renames subprogram. No body is generated
3313 -- in this case, so we must indicate the declaration is complete as is.
3314 -- and inherit various attributes of the renamed subprogram.
3315
3316 if No (Rename_Spec) then
3317 Set_Has_Completion (New_S);
3318 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3319 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3320 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3321
3322 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3323 -- between a subprogram and its correct renaming.
3324
3325 -- Note: the Any_Id check is a guard that prevents compiler crashes
3326 -- when performing a null exclusion check between a renaming and a
3327 -- renamed subprogram that has been found to be illegal.
3328
3329 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3330 Check_Null_Exclusion
3331 (Ren => New_S,
3332 Sub => Entity (Nam));
3333 end if;
3334
3335 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3336 -- overriding. The flag Requires_Overriding is set very selectively
3337 -- and misses some other illegal cases. The additional conditions
3338 -- checked below are sufficient but not necessary ???
3339
3340 -- The rule does not apply to the renaming generated for an actual
3341 -- subprogram in an instance.
3342
3343 if Is_Actual then
3344 null;
3345
3346 -- Guard against previous errors, and omit renamings of predefined
3347 -- operators.
3348
3349 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3350 null;
3351
3352 elsif Requires_Overriding (Old_S)
3353 or else
3354 (Is_Abstract_Subprogram (Old_S)
3355 and then Present (Find_Dispatching_Type (Old_S))
3356 and then not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3357 then
3358 Error_Msg_N
3359 ("renamed entity cannot be subprogram that requires overriding "
3360 & "(RM 8.5.4 (5.1))", N);
3361 end if;
3362
3363 declare
3364 Prev : constant Entity_Id := Overridden_Operation (New_S);
3365 begin
3366 if Present (Prev)
3367 and then
3368 (Has_Non_Trivial_Precondition (Prev)
3369 or else Has_Non_Trivial_Precondition (Old_S))
3370 then
3371 Error_Msg_NE
3372 ("conflicting inherited classwide preconditions in renaming "
3373 & "of& (RM 6.1.1 (17)", N, Old_S);
3374 end if;
3375 end;
3376 end if;
3377
3378 if Old_S /= Any_Id then
3379 if Is_Actual and then From_Default (N) then
3380
3381 -- This is an implicit reference to the default actual
3382
3383 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3384
3385 else
3386 Generate_Reference (Old_S, Nam);
3387 end if;
3388
3389 Check_Internal_Protected_Use (N, Old_S);
3390
3391 -- For a renaming-as-body, require subtype conformance, but if the
3392 -- declaration being completed has not been frozen, then inherit the
3393 -- convention of the renamed subprogram prior to checking conformance
3394 -- (unless the renaming has an explicit convention established; the
3395 -- rule stated in the RM doesn't seem to address this ???).
3396
3397 if Present (Rename_Spec) then
3398 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3399 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3400
3401 if not Is_Frozen (Rename_Spec) then
3402 if not Has_Convention_Pragma (Rename_Spec) then
3403 Set_Convention (New_S, Convention (Old_S));
3404 end if;
3405
3406 if Ekind (Old_S) /= E_Operator then
3407 Check_Mode_Conformant (New_S, Old_S, Spec);
3408 end if;
3409
3410 if Original_Subprogram (Old_S) = Rename_Spec then
3411 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3412 end if;
3413 else
3414 Check_Subtype_Conformant (New_S, Old_S, Spec);
3415 end if;
3416
3417 Check_Frozen_Renaming (N, Rename_Spec);
3418
3419 -- Check explicitly that renamed entity is not intrinsic, because
3420 -- in a generic the renamed body is not built. In this case,
3421 -- the renaming_as_body is a completion.
3422
3423 if Inside_A_Generic then
3424 if Is_Frozen (Rename_Spec)
3425 and then Is_Intrinsic_Subprogram (Old_S)
3426 then
3427 Error_Msg_N
3428 ("subprogram in renaming_as_body cannot be intrinsic",
3429 Name (N));
3430 end if;
3431
3432 Set_Has_Completion (Rename_Spec);
3433 end if;
3434
3435 elsif Ekind (Old_S) /= E_Operator then
3436
3437 -- If this a defaulted subprogram for a class-wide actual there is
3438 -- no check for mode conformance, given that the signatures don't
3439 -- match (the source mentions T but the actual mentions T'Class).
3440
3441 if CW_Actual then
3442 null;
3443
3444 -- No need for a redundant error message if this is a nested
3445 -- instance, unless the current instantiation (of a child unit)
3446 -- is a compilation unit, which is not analyzed when the parent
3447 -- generic is analyzed.
3448
3449 elsif not Is_Actual
3450 or else No (Enclosing_Instance)
3451 or else Is_Compilation_Unit (Current_Scope)
3452 then
3453 Check_Mode_Conformant (New_S, Old_S);
3454 end if;
3455
3456 if Is_Actual and then Error_Posted (New_S) then
3457 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3458 end if;
3459 end if;
3460
3461 if No (Rename_Spec) then
3462
3463 -- The parameter profile of the new entity is that of the renamed
3464 -- entity: the subtypes given in the specification are irrelevant.
3465
3466 Inherit_Renamed_Profile (New_S, Old_S);
3467
3468 -- A call to the subprogram is transformed into a call to the
3469 -- renamed entity. This is transitive if the renamed entity is
3470 -- itself a renaming.
3471
3472 if Present (Alias (Old_S)) then
3473 Set_Alias (New_S, Alias (Old_S));
3474 else
3475 Set_Alias (New_S, Old_S);
3476 end if;
3477
3478 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3479 -- renaming as body, since the entity in this case is not an
3480 -- intrinsic (it calls an intrinsic, but we have a real body for
3481 -- this call, and it is in this body that the required intrinsic
3482 -- processing will take place).
3483
3484 -- Also, if this is a renaming of inequality, the renamed operator
3485 -- is intrinsic, but what matters is the corresponding equality
3486 -- operator, which may be user-defined.
3487
3488 Set_Is_Intrinsic_Subprogram
3489 (New_S,
3490 Is_Intrinsic_Subprogram (Old_S)
3491 and then
3492 (Chars (Old_S) /= Name_Op_Ne
3493 or else Ekind (Old_S) = E_Operator
3494 or else Is_Intrinsic_Subprogram
3495 (Corresponding_Equality (Old_S))));
3496
3497 if Ekind (Alias (New_S)) = E_Operator then
3498 Set_Has_Delayed_Freeze (New_S, False);
3499 end if;
3500
3501 -- If the renaming corresponds to an association for an abstract
3502 -- formal subprogram, then various attributes must be set to
3503 -- indicate that the renaming is an abstract dispatching operation
3504 -- with a controlling type.
3505
3506 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3507
3508 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3509 -- see it as corresponding to a generic association for a
3510 -- formal abstract subprogram
3511
3512 Set_Is_Abstract_Subprogram (New_S);
3513
3514 declare
3515 New_S_Ctrl_Type : constant Entity_Id :=
3516 Find_Dispatching_Type (New_S);
3517 Old_S_Ctrl_Type : constant Entity_Id :=
3518 Find_Dispatching_Type (Old_S);
3519
3520 begin
3521
3522 -- The actual must match the (instance of the) formal,
3523 -- and must be a controlling type.
3524
3525 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3526 or else No (New_S_Ctrl_Type)
3527 then
3528 if No (New_S_Ctrl_Type) then
3529 Error_Msg_N
3530 ("actual must be dispatching subprogram", Nam);
3531 else
3532 Error_Msg_NE
3533 ("actual must be dispatching subprogram for type&",
3534 Nam, New_S_Ctrl_Type);
3535 end if;
3536
3537 else
3538 Set_Is_Dispatching_Operation (New_S);
3539 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3540
3541 -- If the actual in the formal subprogram is itself a
3542 -- formal abstract subprogram association, there's no
3543 -- dispatch table component or position to inherit.
3544
3545 if Present (DTC_Entity (Old_S)) then
3546 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3547 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3548 end if;
3549 end if;
3550 end;
3551 end if;
3552 end if;
3553
3554 if Is_Actual then
3555 null;
3556
3557 -- The following is illegal, because F hides whatever other F may
3558 -- be around:
3559 -- function F (...) renames F;
3560
3561 elsif Old_S = New_S
3562 or else (Nkind (Nam) /= N_Expanded_Name
3563 and then Chars (Old_S) = Chars (New_S))
3564 then
3565 Error_Msg_N ("subprogram cannot rename itself", N);
3566
3567 -- This is illegal even if we use a selector:
3568 -- function F (...) renames Pkg.F;
3569 -- because F is still hidden.
3570
3571 elsif Nkind (Nam) = N_Expanded_Name
3572 and then Entity (Prefix (Nam)) = Current_Scope
3573 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3574 then
3575 -- This is an error, but we overlook the error and accept the
3576 -- renaming if the special Overriding_Renamings mode is in effect.
3577
3578 if not Overriding_Renamings then
3579 Error_Msg_NE
3580 ("implicit operation& is not visible (RM 8.3 (15))",
3581 Nam, Old_S);
3582 end if;
3583 end if;
3584
3585 Set_Convention (New_S, Convention (Old_S));
3586
3587 if Is_Abstract_Subprogram (Old_S) then
3588 if Present (Rename_Spec) then
3589 Error_Msg_N
3590 ("a renaming-as-body cannot rename an abstract subprogram",
3591 N);
3592 Set_Has_Completion (Rename_Spec);
3593 else
3594 Set_Is_Abstract_Subprogram (New_S);
3595 end if;
3596 end if;
3597
3598 Check_Library_Unit_Renaming (N, Old_S);
3599
3600 -- Pathological case: procedure renames entry in the scope of its
3601 -- task. Entry is given by simple name, but body must be built for
3602 -- procedure. Of course if called it will deadlock.
3603
3604 if Ekind (Old_S) = E_Entry then
3605 Set_Has_Completion (New_S, False);
3606 Set_Alias (New_S, Empty);
3607 end if;
3608
3609 -- Do not freeze the renaming nor the renamed entity when the context
3610 -- is an enclosing generic. Freezing is an expansion activity, and in
3611 -- addition the renamed entity may depend on the generic formals of
3612 -- the enclosing generic.
3613
3614 if Is_Actual and not Inside_A_Generic then
3615 Freeze_Before (N, Old_S);
3616 Freeze_Actual_Profile;
3617 Set_Has_Delayed_Freeze (New_S, False);
3618 Freeze_Before (N, New_S);
3619
3620 -- An abstract subprogram is only allowed as an actual in the case
3621 -- where the formal subprogram is also abstract.
3622
3623 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3624 and then Is_Abstract_Subprogram (Old_S)
3625 and then not Is_Abstract_Subprogram (Formal_Spec)
3626 then
3627 Error_Msg_N
3628 ("abstract subprogram not allowed as generic actual", Nam);
3629 end if;
3630 end if;
3631
3632 else
3633 -- A common error is to assume that implicit operators for types are
3634 -- defined in Standard, or in the scope of a subtype. In those cases
3635 -- where the renamed entity is given with an expanded name, it is
3636 -- worth mentioning that operators for the type are not declared in
3637 -- the scope given by the prefix.
3638
3639 if Nkind (Nam) = N_Expanded_Name
3640 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3641 and then Scope (Entity (Nam)) = Standard_Standard
3642 then
3643 declare
3644 T : constant Entity_Id :=
3645 Base_Type (Etype (First_Formal (New_S)));
3646 begin
3647 Error_Msg_Node_2 := Prefix (Nam);
3648 Error_Msg_NE
3649 ("operator for type& is not declared in&", Prefix (Nam), T);
3650 end;
3651
3652 else
3653 Error_Msg_NE
3654 ("no visible subprogram matches the specification for&",
3655 Spec, New_S);
3656 end if;
3657
3658 if Present (Candidate_Renaming) then
3659 declare
3660 F1 : Entity_Id;
3661 F2 : Entity_Id;
3662 T1 : Entity_Id;
3663
3664 begin
3665 F1 := First_Formal (Candidate_Renaming);
3666 F2 := First_Formal (New_S);
3667 T1 := First_Subtype (Etype (F1));
3668 while Present (F1) and then Present (F2) loop
3669 Next_Formal (F1);
3670 Next_Formal (F2);
3671 end loop;
3672
3673 if Present (F1) and then Present (Default_Value (F1)) then
3674 if Present (Next_Formal (F1)) then
3675 Error_Msg_NE
3676 ("\missing specification for & and other formals with "
3677 & "defaults", Spec, F1);
3678 else
3679 Error_Msg_NE ("\missing specification for &", Spec, F1);
3680 end if;
3681 end if;
3682
3683 if Nkind (Nam) = N_Operator_Symbol
3684 and then From_Default (N)
3685 then
3686 Error_Msg_Node_2 := T1;
3687 Error_Msg_NE
3688 ("default & on & is not directly visible", Nam, Nam);
3689 end if;
3690 end;
3691 end if;
3692 end if;
3693
3694 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3695 -- controlling access parameters are known non-null for the renamed
3696 -- subprogram. Test also applies to a subprogram instantiation that
3697 -- is dispatching. Test is skipped if some previous error was detected
3698 -- that set Old_S to Any_Id.
3699
3700 if Ada_Version >= Ada_2005
3701 and then Old_S /= Any_Id
3702 and then not Is_Dispatching_Operation (Old_S)
3703 and then Is_Dispatching_Operation (New_S)
3704 then
3705 declare
3706 Old_F : Entity_Id;
3707 New_F : Entity_Id;
3708
3709 begin
3710 Old_F := First_Formal (Old_S);
3711 New_F := First_Formal (New_S);
3712 while Present (Old_F) loop
3713 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3714 and then Is_Controlling_Formal (New_F)
3715 and then not Can_Never_Be_Null (Old_F)
3716 then
3717 Error_Msg_N ("access parameter is controlling,", New_F);
3718 Error_Msg_NE
3719 ("\corresponding parameter of& must be explicitly null "
3720 & "excluding", New_F, Old_S);
3721 end if;
3722
3723 Next_Formal (Old_F);
3724 Next_Formal (New_F);
3725 end loop;
3726 end;
3727 end if;
3728
3729 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3730 -- is to warn if an operator is being renamed as a different operator.
3731 -- If the operator is predefined, examine the kind of the entity, not
3732 -- the abbreviated declaration in Standard.
3733
3734 if Comes_From_Source (N)
3735 and then Present (Old_S)
3736 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3737 or else Ekind (Old_S) = E_Operator)
3738 and then Nkind (New_S) = N_Defining_Operator_Symbol
3739 and then Chars (Old_S) /= Chars (New_S)
3740 then
3741 Error_Msg_NE
3742 ("& is being renamed as a different operator??", N, Old_S);
3743 end if;
3744
3745 -- Check for renaming of obsolescent subprogram
3746
3747 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3748
3749 -- Another warning or some utility: if the new subprogram as the same
3750 -- name as the old one, the old one is not hidden by an outer homograph,
3751 -- the new one is not a public symbol, and the old one is otherwise
3752 -- directly visible, the renaming is superfluous.
3753
3754 if Chars (Old_S) = Chars (New_S)
3755 and then Comes_From_Source (N)
3756 and then Scope (Old_S) /= Standard_Standard
3757 and then Warn_On_Redundant_Constructs
3758 and then (Is_Immediately_Visible (Old_S)
3759 or else Is_Potentially_Use_Visible (Old_S))
3760 and then Is_Overloadable (Current_Scope)
3761 and then Chars (Current_Scope) /= Chars (Old_S)
3762 then
3763 Error_Msg_N
3764 ("redundant renaming, entity is directly visible?r?", Name (N));
3765 end if;
3766
3767 -- Implementation-defined aspect specifications can appear in a renaming
3768 -- declaration, but not language-defined ones. The call to procedure
3769 -- Analyze_Aspect_Specifications will take care of this error check.
3770
3771 if Has_Aspects (N) then
3772 Analyze_Aspect_Specifications (N, New_S);
3773 end if;
3774
3775 Ada_Version := Save_AV;
3776 Ada_Version_Pragma := Save_AVP;
3777 Ada_Version_Explicit := Save_AV_Exp;
3778
3779 -- In GNATprove mode, the renamings of actual subprograms are replaced
3780 -- with wrapper functions that make it easier to propagate axioms to the
3781 -- points of call within an instance. Wrappers are generated if formal
3782 -- subprogram is subject to axiomatization.
3783
3784 -- The types in the wrapper profiles are obtained from (instances of)
3785 -- the types of the formal subprogram.
3786
3787 if Is_Actual
3788 and then GNATprove_Mode
3789 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3790 and then not Inside_A_Generic
3791 then
3792 if Ekind (Old_S) = E_Function then
3793 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3794 Analyze (N);
3795
3796 elsif Ekind (Old_S) = E_Operator then
3797 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3798 Analyze (N);
3799 end if;
3800 end if;
3801
3802 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3803 -- and mark any use_package_clauses that affect the visibility of the
3804 -- implicit generic actual.
3805
3806 -- Also, we may be looking at an internal renaming of a user-defined
3807 -- subprogram created for a generic formal subprogram association,
3808 -- which will also have to be marked here. This can occur when the
3809 -- corresponding formal subprogram contains references to other generic
3810 -- formals.
3811
3812 if Is_Generic_Actual_Subprogram (New_S)
3813 and then (Is_Intrinsic_Subprogram (New_S)
3814 or else From_Default (N)
3815 or else Nkind (N) = N_Subprogram_Renaming_Declaration)
3816 then
3817 Mark_Use_Clauses (New_S);
3818
3819 -- Handle overloaded subprograms
3820
3821 if Present (Alias (New_S)) then
3822 Mark_Use_Clauses (Alias (New_S));
3823 end if;
3824 end if;
3825 end Analyze_Subprogram_Renaming;
3826
3827 -------------------------
3828 -- Analyze_Use_Package --
3829 -------------------------
3830
3831 -- Resolve the package names in the use clause, and make all the visible
3832 -- entities defined in the package potentially use-visible. If the package
3833 -- is already in use from a previous use clause, its visible entities are
3834 -- already use-visible. In that case, mark the occurrence as a redundant
3835 -- use. If the package is an open scope, i.e. if the use clause occurs
3836 -- within the package itself, ignore it.
3837
3838 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
3839 procedure Analyze_Package_Name (Clause : Node_Id);
3840 -- Perform analysis on a package name from a use_package_clause
3841
3842 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
3843 -- Similar to Analyze_Package_Name but iterates over all the names
3844 -- in a use clause.
3845
3846 --------------------------
3847 -- Analyze_Package_Name --
3848 --------------------------
3849
3850 procedure Analyze_Package_Name (Clause : Node_Id) is
3851 Pack : constant Node_Id := Name (Clause);
3852 Pref : Node_Id;
3853
3854 begin
3855 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
3856 Analyze (Pack);
3857
3858 -- Verify that the package standard is not directly named in a
3859 -- use_package_clause.
3860
3861 if Nkind (Parent (Clause)) = N_Compilation_Unit
3862 and then Nkind (Pack) = N_Expanded_Name
3863 then
3864 Pref := Prefix (Pack);
3865
3866 while Nkind (Pref) = N_Expanded_Name loop
3867 Pref := Prefix (Pref);
3868 end loop;
3869
3870 if Entity (Pref) = Standard_Standard then
3871 Error_Msg_N
3872 ("predefined package Standard cannot appear in a context "
3873 & "clause", Pref);
3874 end if;
3875 end if;
3876 end Analyze_Package_Name;
3877
3878 -------------------------------
3879 -- Analyze_Package_Name_List --
3880 -------------------------------
3881
3882 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
3883 Curr : Node_Id;
3884
3885 begin
3886 -- Due to the way source use clauses are split during parsing we are
3887 -- forced to simply iterate through all entities in scope until the
3888 -- clause representing the last name in the list is found.
3889
3890 Curr := Head_Clause;
3891 while Present (Curr) loop
3892 Analyze_Package_Name (Curr);
3893
3894 -- Stop iterating over the names in the use clause when we are at
3895 -- the last one.
3896
3897 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
3898 Next (Curr);
3899 end loop;
3900 end Analyze_Package_Name_List;
3901
3902 -- Local variables
3903
3904 Pack : Entity_Id;
3905
3906 -- Start of processing for Analyze_Use_Package
3907
3908 begin
3909 Set_Hidden_By_Use_Clause (N, No_Elist);
3910
3911 -- Use clause not allowed in a spec of a predefined package declaration
3912 -- except that packages whose file name starts a-n are OK (these are
3913 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3914
3915 if Is_Predefined_Unit (Current_Sem_Unit)
3916 and then Get_Name_String
3917 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3918 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3919 N_Package_Declaration
3920 then
3921 Error_Msg_N ("use clause not allowed in predefined spec", N);
3922 end if;
3923
3924 -- Loop through all package names from the original use clause in
3925 -- order to analyze referenced packages. A use_package_clause with only
3926 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3927 -- More_Ids only starts the chain produced by the parser.
3928
3929 if not More_Ids (N) and then not Prev_Ids (N) then
3930 Analyze_Package_Name (N);
3931
3932 elsif More_Ids (N) and then not Prev_Ids (N) then
3933 Analyze_Package_Name_List (N);
3934 end if;
3935
3936 if not Is_Entity_Name (Name (N)) then
3937 Error_Msg_N ("& is not a package", Name (N));
3938
3939 return;
3940 end if;
3941
3942 if Chain then
3943 Chain_Use_Clause (N);
3944 end if;
3945
3946 Pack := Entity (Name (N));
3947
3948 -- There are many cases where scopes are manipulated during analysis, so
3949 -- check that Pack's current use clause has not already been chained
3950 -- before setting its previous use clause.
3951
3952 if Ekind (Pack) = E_Package
3953 and then Present (Current_Use_Clause (Pack))
3954 and then Current_Use_Clause (Pack) /= N
3955 and then No (Prev_Use_Clause (N))
3956 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
3957 then
3958 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
3959 end if;
3960
3961 -- Mark all entities as potentially use visible.
3962
3963 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3964 if Ekind (Pack) = E_Generic_Package then
3965 Error_Msg_N -- CODEFIX
3966 ("a generic package is not allowed in a use clause", Name (N));
3967
3968 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3969 then
3970 Error_Msg_N -- CODEFIX
3971 ("a generic subprogram is not allowed in a use clause",
3972 Name (N));
3973
3974 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3975 Error_Msg_N -- CODEFIX
3976 ("a subprogram is not allowed in a use clause", Name (N));
3977
3978 else
3979 Error_Msg_N ("& is not allowed in a use clause", Name (N));
3980 end if;
3981
3982 else
3983 if Nkind (Parent (N)) = N_Compilation_Unit then
3984 Check_In_Previous_With_Clause (N, Name (N));
3985 end if;
3986
3987 Use_One_Package (N, Name (N));
3988 end if;
3989
3990 Mark_Ghost_Clause (N);
3991 end Analyze_Use_Package;
3992
3993 ----------------------
3994 -- Analyze_Use_Type --
3995 ----------------------
3996
3997 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
3998 E : Entity_Id;
3999 Id : Node_Id;
4000
4001 begin
4002 Set_Hidden_By_Use_Clause (N, No_Elist);
4003
4004 -- Chain clause to list of use clauses in current scope when flagged
4005
4006 if Chain then
4007 Chain_Use_Clause (N);
4008 end if;
4009
4010 -- Obtain the base type of the type denoted within the use_type_clause's
4011 -- subtype mark.
4012
4013 Id := Subtype_Mark (N);
4014 Find_Type (Id);
4015 E := Base_Type (Entity (Id));
4016
4017 -- There are many cases where a use_type_clause may be reanalyzed due to
4018 -- manipulation of the scope stack so we much guard against those cases
4019 -- here, otherwise, we must add the new use_type_clause to the previous
4020 -- use_type_clause chain in order to mark redundant use_type_clauses as
4021 -- used. When the redundant use-type clauses appear in a parent unit and
4022 -- a child unit we must prevent a circularity in the chain that would
4023 -- otherwise result from the separate steps of analysis and installation
4024 -- of the parent context.
4025
4026 if Present (Current_Use_Clause (E))
4027 and then Current_Use_Clause (E) /= N
4028 and then Prev_Use_Clause (Current_Use_Clause (E)) /= N
4029 and then No (Prev_Use_Clause (N))
4030 then
4031 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
4032 end if;
4033
4034 -- If the Used_Operations list is already initialized, the clause has
4035 -- been analyzed previously, and it is being reinstalled, for example
4036 -- when the clause appears in a package spec and we are compiling the
4037 -- corresponding package body. In that case, make the entities on the
4038 -- existing list use_visible, and mark the corresponding types In_Use.
4039
4040 if Present (Used_Operations (N)) then
4041 declare
4042 Elmt : Elmt_Id;
4043
4044 begin
4045 Use_One_Type (Subtype_Mark (N), Installed => True);
4046
4047 Elmt := First_Elmt (Used_Operations (N));
4048 while Present (Elmt) loop
4049 Set_Is_Potentially_Use_Visible (Node (Elmt));
4050 Next_Elmt (Elmt);
4051 end loop;
4052 end;
4053
4054 return;
4055 end if;
4056
4057 -- Otherwise, create new list and attach to it the operations that are
4058 -- made use-visible by the clause.
4059
4060 Set_Used_Operations (N, New_Elmt_List);
4061 E := Entity (Id);
4062
4063 if E /= Any_Type then
4064 Use_One_Type (Id);
4065
4066 if Nkind (Parent (N)) = N_Compilation_Unit then
4067 if Nkind (Id) = N_Identifier then
4068 Error_Msg_N ("type is not directly visible", Id);
4069
4070 elsif Is_Child_Unit (Scope (E))
4071 and then Scope (E) /= System_Aux_Id
4072 then
4073 Check_In_Previous_With_Clause (N, Prefix (Id));
4074 end if;
4075 end if;
4076
4077 else
4078 -- If the use_type_clause appears in a compilation unit context,
4079 -- check whether it comes from a unit that may appear in a
4080 -- limited_with_clause, for a better error message.
4081
4082 if Nkind (Parent (N)) = N_Compilation_Unit
4083 and then Nkind (Id) /= N_Identifier
4084 then
4085 declare
4086 Item : Node_Id;
4087 Pref : Node_Id;
4088
4089 function Mentioned (Nam : Node_Id) return Boolean;
4090 -- Check whether the prefix of expanded name for the type
4091 -- appears in the prefix of some limited_with_clause.
4092
4093 ---------------
4094 -- Mentioned --
4095 ---------------
4096
4097 function Mentioned (Nam : Node_Id) return Boolean is
4098 begin
4099 return Nkind (Name (Item)) = N_Selected_Component
4100 and then Chars (Prefix (Name (Item))) = Chars (Nam);
4101 end Mentioned;
4102
4103 begin
4104 Pref := Prefix (Id);
4105 Item := First (Context_Items (Parent (N)));
4106 while Present (Item) and then Item /= N loop
4107 if Nkind (Item) = N_With_Clause
4108 and then Limited_Present (Item)
4109 and then Mentioned (Pref)
4110 then
4111 Change_Error_Text
4112 (Get_Msg_Id, "premature usage of incomplete type");
4113 end if;
4114
4115 Next (Item);
4116 end loop;
4117 end;
4118 end if;
4119 end if;
4120
4121 Mark_Ghost_Clause (N);
4122 end Analyze_Use_Type;
4123
4124 ------------------------
4125 -- Attribute_Renaming --
4126 ------------------------
4127
4128 procedure Attribute_Renaming (N : Node_Id) is
4129 Loc : constant Source_Ptr := Sloc (N);
4130 Nam : constant Node_Id := Name (N);
4131 Spec : constant Node_Id := Specification (N);
4132 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
4133 Aname : constant Name_Id := Attribute_Name (Nam);
4134
4135 Form_Num : Nat := 0;
4136 Expr_List : List_Id := No_List;
4137
4138 Attr_Node : Node_Id;
4139 Body_Node : Node_Id;
4140 Param_Spec : Node_Id;
4141
4142 begin
4143 Generate_Definition (New_S);
4144
4145 -- This procedure is called in the context of subprogram renaming, and
4146 -- thus the attribute must be one that is a subprogram. All of those
4147 -- have at least one formal parameter, with the exceptions of the GNAT
4148 -- attribute 'Img, which GNAT treats as renameable.
4149
4150 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
4151 if Aname /= Name_Img then
4152 Error_Msg_N
4153 ("subprogram renaming an attribute must have formals", N);
4154 return;
4155 end if;
4156
4157 else
4158 Param_Spec := First (Parameter_Specifications (Spec));
4159 while Present (Param_Spec) loop
4160 Form_Num := Form_Num + 1;
4161
4162 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4163 Find_Type (Parameter_Type (Param_Spec));
4164
4165 -- The profile of the new entity denotes the base type (s) of
4166 -- the types given in the specification. For access parameters
4167 -- there are no subtypes involved.
4168
4169 Rewrite (Parameter_Type (Param_Spec),
4170 New_Occurrence_Of
4171 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4172 end if;
4173
4174 if No (Expr_List) then
4175 Expr_List := New_List;
4176 end if;
4177
4178 Append_To (Expr_List,
4179 Make_Identifier (Loc,
4180 Chars => Chars (Defining_Identifier (Param_Spec))));
4181
4182 -- The expressions in the attribute reference are not freeze
4183 -- points. Neither is the attribute as a whole, see below.
4184
4185 Set_Must_Not_Freeze (Last (Expr_List));
4186 Next (Param_Spec);
4187 end loop;
4188 end if;
4189
4190 -- Immediate error if too many formals. Other mismatches in number or
4191 -- types of parameters are detected when we analyze the body of the
4192 -- subprogram that we construct.
4193
4194 if Form_Num > 2 then
4195 Error_Msg_N ("too many formals for attribute", N);
4196
4197 -- Error if the attribute reference has expressions that look like
4198 -- formal parameters.
4199
4200 elsif Present (Expressions (Nam)) then
4201 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4202
4203 elsif
4204 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4205 Name_Pos, Name_Round, Name_Scaling,
4206 Name_Val)
4207 then
4208 if Nkind (N) = N_Subprogram_Renaming_Declaration
4209 and then Present (Corresponding_Formal_Spec (N))
4210 then
4211 Error_Msg_N
4212 ("generic actual cannot be attribute involving universal type",
4213 Nam);
4214 else
4215 Error_Msg_N
4216 ("attribute involving a universal type cannot be renamed",
4217 Nam);
4218 end if;
4219 end if;
4220
4221 -- Rewrite attribute node to have a list of expressions corresponding to
4222 -- the subprogram formals. A renaming declaration is not a freeze point,
4223 -- and the analysis of the attribute reference should not freeze the
4224 -- type of the prefix. We use the original node in the renaming so that
4225 -- its source location is preserved, and checks on stream attributes are
4226 -- properly applied.
4227
4228 Attr_Node := Relocate_Node (Nam);
4229 Set_Expressions (Attr_Node, Expr_List);
4230
4231 Set_Must_Not_Freeze (Attr_Node);
4232 Set_Must_Not_Freeze (Prefix (Nam));
4233
4234 -- Case of renaming a function
4235
4236 if Nkind (Spec) = N_Function_Specification then
4237 if Is_Procedure_Attribute_Name (Aname) then
4238 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4239 return;
4240 end if;
4241
4242 Find_Type (Result_Definition (Spec));
4243 Rewrite (Result_Definition (Spec),
4244 New_Occurrence_Of
4245 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4246
4247 Body_Node :=
4248 Make_Subprogram_Body (Loc,
4249 Specification => Spec,
4250 Declarations => New_List,
4251 Handled_Statement_Sequence =>
4252 Make_Handled_Sequence_Of_Statements (Loc,
4253 Statements => New_List (
4254 Make_Simple_Return_Statement (Loc,
4255 Expression => Attr_Node))));
4256
4257 -- Case of renaming a procedure
4258
4259 else
4260 if not Is_Procedure_Attribute_Name (Aname) then
4261 Error_Msg_N ("attribute can only be renamed as function", Nam);
4262 return;
4263 end if;
4264
4265 Body_Node :=
4266 Make_Subprogram_Body (Loc,
4267 Specification => Spec,
4268 Declarations => New_List,
4269 Handled_Statement_Sequence =>
4270 Make_Handled_Sequence_Of_Statements (Loc,
4271 Statements => New_List (Attr_Node)));
4272 end if;
4273
4274 -- Signal the ABE mechanism that the generated subprogram body has not
4275 -- ABE ramifications.
4276
4277 Set_Was_Attribute_Reference (Body_Node);
4278
4279 -- In case of tagged types we add the body of the generated function to
4280 -- the freezing actions of the type (because in the general case such
4281 -- type is still not frozen). We exclude from this processing generic
4282 -- formal subprograms found in instantiations.
4283
4284 -- We must exclude restricted run-time libraries because
4285 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4286 -- available in those platforms. Note that we cannot use the function
4287 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4288 -- the ZFP run-time library is not defined as a profile, and we do not
4289 -- want to deal with AST_Handler in ZFP mode.
4290
4291 if not Configurable_Run_Time_Mode
4292 and then not Present (Corresponding_Formal_Spec (N))
4293 and then Etype (Nam) /= RTE (RE_AST_Handler)
4294 then
4295 declare
4296 P : constant Node_Id := Prefix (Nam);
4297
4298 begin
4299 -- The prefix of 'Img is an object that is evaluated for each call
4300 -- of the function that renames it.
4301
4302 if Aname = Name_Img then
4303 Preanalyze_And_Resolve (P);
4304
4305 -- For all other attribute renamings, the prefix is a subtype
4306
4307 else
4308 Find_Type (P);
4309 end if;
4310
4311 -- If the target type is not yet frozen, add the body to the
4312 -- actions to be elaborated at freeze time.
4313
4314 if Is_Tagged_Type (Etype (P))
4315 and then In_Open_Scopes (Scope (Etype (P)))
4316 then
4317 Ensure_Freeze_Node (Etype (P));
4318 Append_Freeze_Action (Etype (P), Body_Node);
4319 else
4320 Rewrite (N, Body_Node);
4321 Analyze (N);
4322 Set_Etype (New_S, Base_Type (Etype (New_S)));
4323 end if;
4324 end;
4325
4326 -- Generic formal subprograms or AST_Handler renaming
4327
4328 else
4329 Rewrite (N, Body_Node);
4330 Analyze (N);
4331 Set_Etype (New_S, Base_Type (Etype (New_S)));
4332 end if;
4333
4334 if Is_Compilation_Unit (New_S) then
4335 Error_Msg_N
4336 ("a library unit can only rename another library unit", N);
4337 end if;
4338
4339 -- We suppress elaboration warnings for the resulting entity, since
4340 -- clearly they are not needed, and more particularly, in the case
4341 -- of a generic formal subprogram, the resulting entity can appear
4342 -- after the instantiation itself, and thus look like a bogus case
4343 -- of access before elaboration.
4344
4345 if Legacy_Elaboration_Checks then
4346 Set_Suppress_Elaboration_Warnings (New_S);
4347 end if;
4348 end Attribute_Renaming;
4349
4350 ----------------------
4351 -- Chain_Use_Clause --
4352 ----------------------
4353
4354 procedure Chain_Use_Clause (N : Node_Id) is
4355 Level : Int := Scope_Stack.Last;
4356 Pack : Entity_Id;
4357
4358 begin
4359 -- Common case
4360
4361 if not Is_Compilation_Unit (Current_Scope)
4362 or else not Is_Child_Unit (Current_Scope)
4363 then
4364 null;
4365
4366 -- Common case for compilation unit
4367
4368 elsif Defining_Entity (Parent (N)) = Current_Scope then
4369 null;
4370
4371 else
4372 -- If declaration appears in some other scope, it must be in some
4373 -- parent unit when compiling a child.
4374
4375 Pack := Defining_Entity (Parent (N));
4376
4377 if not In_Open_Scopes (Pack) then
4378 null;
4379
4380 -- If the use clause appears in an ancestor and we are in the
4381 -- private part of the immediate parent, the use clauses are
4382 -- already installed.
4383
4384 elsif Pack /= Scope (Current_Scope)
4385 and then In_Private_Part (Scope (Current_Scope))
4386 then
4387 null;
4388
4389 else
4390 -- Find entry for parent unit in scope stack
4391
4392 while Scope_Stack.Table (Level).Entity /= Pack loop
4393 Level := Level - 1;
4394 end loop;
4395 end if;
4396 end if;
4397
4398 Set_Next_Use_Clause (N,
4399 Scope_Stack.Table (Level).First_Use_Clause);
4400 Scope_Stack.Table (Level).First_Use_Clause := N;
4401 end Chain_Use_Clause;
4402
4403 ---------------------------
4404 -- Check_Frozen_Renaming --
4405 ---------------------------
4406
4407 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4408 B_Node : Node_Id;
4409 Old_S : Entity_Id;
4410
4411 begin
4412 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4413 B_Node :=
4414 Build_Renamed_Body
4415 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4416
4417 if Is_Entity_Name (Name (N)) then
4418 Old_S := Entity (Name (N));
4419
4420 if not Is_Frozen (Old_S)
4421 and then Operating_Mode /= Check_Semantics
4422 then
4423 Append_Freeze_Action (Old_S, B_Node);
4424 else
4425 Insert_After (N, B_Node);
4426 Analyze (B_Node);
4427 end if;
4428
4429 if Is_Intrinsic_Subprogram (Old_S)
4430 and then not In_Instance
4431 and then not Relaxed_RM_Semantics
4432 then
4433 Error_Msg_N
4434 ("subprogram used in renaming_as_body cannot be intrinsic",
4435 Name (N));
4436 end if;
4437
4438 else
4439 Insert_After (N, B_Node);
4440 Analyze (B_Node);
4441 end if;
4442 end if;
4443 end Check_Frozen_Renaming;
4444
4445 -------------------------------
4446 -- Set_Entity_Or_Discriminal --
4447 -------------------------------
4448
4449 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4450 P : Node_Id;
4451
4452 begin
4453 -- If the entity is not a discriminant, or else expansion is disabled,
4454 -- simply set the entity.
4455
4456 if not In_Spec_Expression
4457 or else Ekind (E) /= E_Discriminant
4458 or else Inside_A_Generic
4459 then
4460 Set_Entity_With_Checks (N, E);
4461
4462 -- The replacement of a discriminant by the corresponding discriminal
4463 -- is not done for a task discriminant that appears in a default
4464 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4465 -- for details on their handling.
4466
4467 elsif Is_Concurrent_Type (Scope (E)) then
4468 P := Parent (N);
4469 while Present (P)
4470 and then not Nkind_In (P, N_Parameter_Specification,
4471 N_Component_Declaration)
4472 loop
4473 P := Parent (P);
4474 end loop;
4475
4476 if Present (P)
4477 and then Nkind (P) = N_Parameter_Specification
4478 then
4479 null;
4480
4481 else
4482 Set_Entity (N, Discriminal (E));
4483 end if;
4484
4485 -- Otherwise, this is a discriminant in a context in which
4486 -- it is a reference to the corresponding parameter of the
4487 -- init proc for the enclosing type.
4488
4489 else
4490 Set_Entity (N, Discriminal (E));
4491 end if;
4492 end Set_Entity_Or_Discriminal;
4493
4494 -----------------------------------
4495 -- Check_In_Previous_With_Clause --
4496 -----------------------------------
4497
4498 procedure Check_In_Previous_With_Clause
4499 (N : Node_Id;
4500 Nam : Entity_Id)
4501 is
4502 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4503 Item : Node_Id;
4504 Par : Node_Id;
4505
4506 begin
4507 Item := First (Context_Items (Parent (N)));
4508 while Present (Item) and then Item /= N loop
4509 if Nkind (Item) = N_With_Clause
4510
4511 -- Protect the frontend against previous critical errors
4512
4513 and then Nkind (Name (Item)) /= N_Selected_Component
4514 and then Entity (Name (Item)) = Pack
4515 then
4516 Par := Nam;
4517
4518 -- Find root library unit in with_clause
4519
4520 while Nkind (Par) = N_Expanded_Name loop
4521 Par := Prefix (Par);
4522 end loop;
4523
4524 if Is_Child_Unit (Entity (Original_Node (Par))) then
4525 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4526 else
4527 return;
4528 end if;
4529 end if;
4530
4531 Next (Item);
4532 end loop;
4533
4534 -- On exit, package is not mentioned in a previous with_clause.
4535 -- Check if its prefix is.
4536
4537 if Nkind (Nam) = N_Expanded_Name then
4538 Check_In_Previous_With_Clause (N, Prefix (Nam));
4539
4540 elsif Pack /= Any_Id then
4541 Error_Msg_NE ("& is not visible", Nam, Pack);
4542 end if;
4543 end Check_In_Previous_With_Clause;
4544
4545 ---------------------------------
4546 -- Check_Library_Unit_Renaming --
4547 ---------------------------------
4548
4549 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4550 New_E : Entity_Id;
4551
4552 begin
4553 if Nkind (Parent (N)) /= N_Compilation_Unit then
4554 return;
4555
4556 -- Check for library unit. Note that we used to check for the scope
4557 -- being Standard here, but that was wrong for Standard itself.
4558
4559 elsif not Is_Compilation_Unit (Old_E)
4560 and then not Is_Child_Unit (Old_E)
4561 then
4562 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4563
4564 -- Entities defined in Standard (operators and boolean literals) cannot
4565 -- be renamed as library units.
4566
4567 elsif Scope (Old_E) = Standard_Standard
4568 and then Sloc (Old_E) = Standard_Location
4569 then
4570 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4571
4572 elsif Present (Parent_Spec (N))
4573 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4574 and then not Is_Child_Unit (Old_E)
4575 then
4576 Error_Msg_N
4577 ("renamed unit must be a child unit of generic parent", Name (N));
4578
4579 elsif Nkind (N) in N_Generic_Renaming_Declaration
4580 and then Nkind (Name (N)) = N_Expanded_Name
4581 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4582 and then Is_Generic_Unit (Old_E)
4583 then
4584 Error_Msg_N
4585 ("renamed generic unit must be a library unit", Name (N));
4586
4587 elsif Is_Package_Or_Generic_Package (Old_E) then
4588
4589 -- Inherit categorization flags
4590
4591 New_E := Defining_Entity (N);
4592 Set_Is_Pure (New_E, Is_Pure (Old_E));
4593 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4594 Set_Is_Remote_Call_Interface (New_E,
4595 Is_Remote_Call_Interface (Old_E));
4596 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4597 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4598 end if;
4599 end Check_Library_Unit_Renaming;
4600
4601 ------------------------
4602 -- Enclosing_Instance --
4603 ------------------------
4604
4605 function Enclosing_Instance return Entity_Id is
4606 S : Entity_Id;
4607
4608 begin
4609 if not Is_Generic_Instance (Current_Scope) then
4610 return Empty;
4611 end if;
4612
4613 S := Scope (Current_Scope);
4614 while S /= Standard_Standard loop
4615 if Is_Generic_Instance (S) then
4616 return S;
4617 end if;
4618
4619 S := Scope (S);
4620 end loop;
4621
4622 return Empty;
4623 end Enclosing_Instance;
4624
4625 ---------------
4626 -- End_Scope --
4627 ---------------
4628
4629 procedure End_Scope is
4630 Id : Entity_Id;
4631 Prev : Entity_Id;
4632 Outer : Entity_Id;
4633
4634 begin
4635 Id := First_Entity (Current_Scope);
4636 while Present (Id) loop
4637 -- An entity in the current scope is not necessarily the first one
4638 -- on its homonym chain. Find its predecessor if any,
4639 -- If it is an internal entity, it will not be in the visibility
4640 -- chain altogether, and there is nothing to unchain.
4641
4642 if Id /= Current_Entity (Id) then
4643 Prev := Current_Entity (Id);
4644 while Present (Prev)
4645 and then Present (Homonym (Prev))
4646 and then Homonym (Prev) /= Id
4647 loop
4648 Prev := Homonym (Prev);
4649 end loop;
4650
4651 -- Skip to end of loop if Id is not in the visibility chain
4652
4653 if No (Prev) or else Homonym (Prev) /= Id then
4654 goto Next_Ent;
4655 end if;
4656
4657 else
4658 Prev := Empty;
4659 end if;
4660
4661 Set_Is_Immediately_Visible (Id, False);
4662
4663 Outer := Homonym (Id);
4664 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4665 Outer := Homonym (Outer);
4666 end loop;
4667
4668 -- Reset homonym link of other entities, but do not modify link
4669 -- between entities in current scope, so that the back-end can have
4670 -- a proper count of local overloadings.
4671
4672 if No (Prev) then
4673 Set_Name_Entity_Id (Chars (Id), Outer);
4674
4675 elsif Scope (Prev) /= Scope (Id) then
4676 Set_Homonym (Prev, Outer);
4677 end if;
4678
4679 <<Next_Ent>>
4680 Next_Entity (Id);
4681 end loop;
4682
4683 -- If the scope generated freeze actions, place them before the
4684 -- current declaration and analyze them. Type declarations and
4685 -- the bodies of initialization procedures can generate such nodes.
4686 -- We follow the parent chain until we reach a list node, which is
4687 -- the enclosing list of declarations. If the list appears within
4688 -- a protected definition, move freeze nodes outside the protected
4689 -- type altogether.
4690
4691 if Present
4692 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4693 then
4694 declare
4695 Decl : Node_Id;
4696 L : constant List_Id := Scope_Stack.Table
4697 (Scope_Stack.Last).Pending_Freeze_Actions;
4698
4699 begin
4700 if Is_Itype (Current_Scope) then
4701 Decl := Associated_Node_For_Itype (Current_Scope);
4702 else
4703 Decl := Parent (Current_Scope);
4704 end if;
4705
4706 Pop_Scope;
4707
4708 while not (Is_List_Member (Decl))
4709 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4710 N_Task_Definition)
4711 loop
4712 Decl := Parent (Decl);
4713 end loop;
4714
4715 Insert_List_Before_And_Analyze (Decl, L);
4716 end;
4717
4718 else
4719 Pop_Scope;
4720 end if;
4721 end End_Scope;
4722
4723 ---------------------
4724 -- End_Use_Clauses --
4725 ---------------------
4726
4727 procedure End_Use_Clauses (Clause : Node_Id) is
4728 U : Node_Id;
4729
4730 begin
4731 -- Remove use_type_clauses first, because they affect the visibility of
4732 -- operators in subsequent used packages.
4733
4734 U := Clause;
4735 while Present (U) loop
4736 if Nkind (U) = N_Use_Type_Clause then
4737 End_Use_Type (U);
4738 end if;
4739
4740 Next_Use_Clause (U);
4741 end loop;
4742
4743 U := Clause;
4744 while Present (U) loop
4745 if Nkind (U) = N_Use_Package_Clause then
4746 End_Use_Package (U);
4747 end if;
4748
4749 Next_Use_Clause (U);
4750 end loop;
4751 end End_Use_Clauses;
4752
4753 ---------------------
4754 -- End_Use_Package --
4755 ---------------------
4756
4757 procedure End_Use_Package (N : Node_Id) is
4758 Pack : Entity_Id;
4759 Pack_Name : Node_Id;
4760 Id : Entity_Id;
4761 Elmt : Elmt_Id;
4762
4763 function Is_Primitive_Operator_In_Use
4764 (Op : Entity_Id;
4765 F : Entity_Id) return Boolean;
4766 -- Check whether Op is a primitive operator of a use-visible type
4767
4768 ----------------------------------
4769 -- Is_Primitive_Operator_In_Use --
4770 ----------------------------------
4771
4772 function Is_Primitive_Operator_In_Use
4773 (Op : Entity_Id;
4774 F : Entity_Id) return Boolean
4775 is
4776 T : constant Entity_Id := Base_Type (Etype (F));
4777 begin
4778 return In_Use (T) and then Scope (T) = Scope (Op);
4779 end Is_Primitive_Operator_In_Use;
4780
4781 -- Start of processing for End_Use_Package
4782
4783 begin
4784 Pack_Name := Name (N);
4785
4786 -- Test that Pack_Name actually denotes a package before processing
4787
4788 if Is_Entity_Name (Pack_Name)
4789 and then Ekind (Entity (Pack_Name)) = E_Package
4790 then
4791 Pack := Entity (Pack_Name);
4792
4793 if In_Open_Scopes (Pack) then
4794 null;
4795
4796 elsif not Redundant_Use (Pack_Name) then
4797 Set_In_Use (Pack, False);
4798 Set_Current_Use_Clause (Pack, Empty);
4799
4800 Id := First_Entity (Pack);
4801 while Present (Id) loop
4802
4803 -- Preserve use-visibility of operators that are primitive
4804 -- operators of a type that is use-visible through an active
4805 -- use_type_clause.
4806
4807 if Nkind (Id) = N_Defining_Operator_Symbol
4808 and then
4809 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4810 or else
4811 (Present (Next_Formal (First_Formal (Id)))
4812 and then
4813 Is_Primitive_Operator_In_Use
4814 (Id, Next_Formal (First_Formal (Id)))))
4815 then
4816 null;
4817 else
4818 Set_Is_Potentially_Use_Visible (Id, False);
4819 end if;
4820
4821 if Is_Private_Type (Id)
4822 and then Present (Full_View (Id))
4823 then
4824 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4825 end if;
4826
4827 Next_Entity (Id);
4828 end loop;
4829
4830 if Present (Renamed_Object (Pack)) then
4831 Set_In_Use (Renamed_Object (Pack), False);
4832 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4833 end if;
4834
4835 if Chars (Pack) = Name_System
4836 and then Scope (Pack) = Standard_Standard
4837 and then Present_System_Aux
4838 then
4839 Id := First_Entity (System_Aux_Id);
4840 while Present (Id) loop
4841 Set_Is_Potentially_Use_Visible (Id, False);
4842
4843 if Is_Private_Type (Id)
4844 and then Present (Full_View (Id))
4845 then
4846 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4847 end if;
4848
4849 Next_Entity (Id);
4850 end loop;
4851
4852 Set_In_Use (System_Aux_Id, False);
4853 end if;
4854 else
4855 Set_Redundant_Use (Pack_Name, False);
4856 end if;
4857 end if;
4858
4859 if Present (Hidden_By_Use_Clause (N)) then
4860 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4861 while Present (Elmt) loop
4862 declare
4863 E : constant Entity_Id := Node (Elmt);
4864
4865 begin
4866 -- Reset either Use_Visibility or Direct_Visibility, depending
4867 -- on how the entity was hidden by the use clause.
4868
4869 if In_Use (Scope (E))
4870 and then Used_As_Generic_Actual (Scope (E))
4871 then
4872 Set_Is_Potentially_Use_Visible (Node (Elmt));
4873 else
4874 Set_Is_Immediately_Visible (Node (Elmt));
4875 end if;
4876
4877 Next_Elmt (Elmt);
4878 end;
4879 end loop;
4880
4881 Set_Hidden_By_Use_Clause (N, No_Elist);
4882 end if;
4883 end End_Use_Package;
4884
4885 ------------------
4886 -- End_Use_Type --
4887 ------------------
4888
4889 procedure End_Use_Type (N : Node_Id) is
4890 Elmt : Elmt_Id;
4891 Id : Entity_Id;
4892 T : Entity_Id;
4893
4894 -- Start of processing for End_Use_Type
4895
4896 begin
4897 Id := Subtype_Mark (N);
4898
4899 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4900 -- which case the type marks are not resolved yet, so guard against that
4901 -- here.
4902
4903 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
4904 T := Entity (Id);
4905
4906 if T = Any_Type or else From_Limited_With (T) then
4907 null;
4908
4909 -- Note that the use_type_clause may mention a subtype of the type
4910 -- whose primitive operations have been made visible. Here as
4911 -- elsewhere, it is the base type that matters for visibility.
4912
4913 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4914 null;
4915
4916 elsif not Redundant_Use (Id) then
4917 Set_In_Use (T, False);
4918 Set_In_Use (Base_Type (T), False);
4919 Set_Current_Use_Clause (T, Empty);
4920 Set_Current_Use_Clause (Base_Type (T), Empty);
4921
4922 -- See Use_One_Type for the rationale. This is a bit on the naive
4923 -- side, but should be good enough in practice.
4924
4925 if Is_Tagged_Type (T) then
4926 Set_In_Use (Class_Wide_Type (T), False);
4927 end if;
4928 end if;
4929 end if;
4930
4931 if Is_Empty_Elmt_List (Used_Operations (N)) then
4932 return;
4933
4934 else
4935 Elmt := First_Elmt (Used_Operations (N));
4936 while Present (Elmt) loop
4937 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4938 Next_Elmt (Elmt);
4939 end loop;
4940 end if;
4941 end End_Use_Type;
4942
4943 --------------------
4944 -- Entity_Of_Unit --
4945 --------------------
4946
4947 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
4948 begin
4949 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
4950 return Defining_Entity (Instance_Spec (U));
4951 else
4952 return Defining_Entity (U);
4953 end if;
4954 end Entity_Of_Unit;
4955
4956 ----------------------
4957 -- Find_Direct_Name --
4958 ----------------------
4959
4960 procedure Find_Direct_Name
4961 (N : Node_Id;
4962 Errors_OK : Boolean := True;
4963 Marker_OK : Boolean := True;
4964 Reference_OK : Boolean := True)
4965 is
4966 E : Entity_Id;
4967 E2 : Entity_Id;
4968 Msg : Boolean;
4969
4970 Homonyms : Entity_Id;
4971 -- Saves start of homonym chain
4972
4973 Inst : Entity_Id := Empty;
4974 -- Enclosing instance, if any
4975
4976 Nvis_Entity : Boolean;
4977 -- Set True to indicate that there is at least one entity on the homonym
4978 -- chain which, while not visible, is visible enough from the user point
4979 -- of view to warrant an error message of "not visible" rather than
4980 -- undefined.
4981
4982 Nvis_Is_Private_Subprg : Boolean := False;
4983 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4984 -- effect concerning library subprograms has been detected. Used to
4985 -- generate the precise error message.
4986
4987 function From_Actual_Package (E : Entity_Id) return Boolean;
4988 -- Returns true if the entity is an actual for a package that is itself
4989 -- an actual for a formal package of the current instance. Such an
4990 -- entity requires special handling because it may be use-visible but
4991 -- hides directly visible entities defined outside the instance, because
4992 -- the corresponding formal did so in the generic.
4993
4994 function Is_Actual_Parameter return Boolean;
4995 -- This function checks if the node N is an identifier that is an actual
4996 -- parameter of a procedure call. If so it returns True, otherwise it
4997 -- return False. The reason for this check is that at this stage we do
4998 -- not know what procedure is being called if the procedure might be
4999 -- overloaded, so it is premature to go setting referenced flags or
5000 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
5001 -- for that processing
5002
5003 function Known_But_Invisible (E : Entity_Id) return Boolean;
5004 -- This function determines whether a reference to the entity E, which
5005 -- is not visible, can reasonably be considered to be known to the
5006 -- writer of the reference. This is a heuristic test, used only for
5007 -- the purposes of figuring out whether we prefer to complain that an
5008 -- entity is undefined or invisible (and identify the declaration of
5009 -- the invisible entity in the latter case). The point here is that we
5010 -- don't want to complain that something is invisible and then point to
5011 -- something entirely mysterious to the writer.
5012
5013 procedure Nvis_Messages;
5014 -- Called if there are no visible entries for N, but there is at least
5015 -- one non-directly visible, or hidden declaration. This procedure
5016 -- outputs an appropriate set of error messages.
5017
5018 procedure Undefined (Nvis : Boolean);
5019 -- This function is called if the current node has no corresponding
5020 -- visible entity or entities. The value set in Msg indicates whether
5021 -- an error message was generated (multiple error messages for the
5022 -- same variable are generally suppressed, see body for details).
5023 -- Msg is True if an error message was generated, False if not. This
5024 -- value is used by the caller to determine whether or not to output
5025 -- additional messages where appropriate. The parameter is set False
5026 -- to get the message "X is undefined", and True to get the message
5027 -- "X is not visible".
5028
5029 -------------------------
5030 -- From_Actual_Package --
5031 -------------------------
5032
5033 function From_Actual_Package (E : Entity_Id) return Boolean is
5034 Scop : constant Entity_Id := Scope (E);
5035 -- Declared scope of candidate entity
5036
5037 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
5038 -- Recursive function that does the work and examines actuals of
5039 -- actual packages of current instance.
5040
5041 ------------------------
5042 -- Declared_In_Actual --
5043 ------------------------
5044
5045 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
5046 Act : Entity_Id;
5047
5048 begin
5049 if No (Associated_Formal_Package (Pack)) then
5050 return False;
5051
5052 else
5053 Act := First_Entity (Pack);
5054 while Present (Act) loop
5055 if Renamed_Object (Pack) = Scop then
5056 return True;
5057
5058 -- Check for end of list of actuals
5059
5060 elsif Ekind (Act) = E_Package
5061 and then Renamed_Object (Act) = Pack
5062 then
5063 return False;
5064
5065 elsif Ekind (Act) = E_Package
5066 and then Declared_In_Actual (Act)
5067 then
5068 return True;
5069 end if;
5070
5071 Next_Entity (Act);
5072 end loop;
5073
5074 return False;
5075 end if;
5076 end Declared_In_Actual;
5077
5078 -- Local variables
5079
5080 Act : Entity_Id;
5081
5082 -- Start of processing for From_Actual_Package
5083
5084 begin
5085 if not In_Instance then
5086 return False;
5087
5088 else
5089 Inst := Current_Scope;
5090 while Present (Inst)
5091 and then Ekind (Inst) /= E_Package
5092 and then not Is_Generic_Instance (Inst)
5093 loop
5094 Inst := Scope (Inst);
5095 end loop;
5096
5097 if No (Inst) then
5098 return False;
5099 end if;
5100
5101 Act := First_Entity (Inst);
5102 while Present (Act) loop
5103 if Ekind (Act) = E_Package
5104 and then Declared_In_Actual (Act)
5105 then
5106 return True;
5107 end if;
5108
5109 Next_Entity (Act);
5110 end loop;
5111
5112 return False;
5113 end if;
5114 end From_Actual_Package;
5115
5116 -------------------------
5117 -- Is_Actual_Parameter --
5118 -------------------------
5119
5120 function Is_Actual_Parameter return Boolean is
5121 begin
5122 return
5123 Nkind (N) = N_Identifier
5124 and then
5125 (Nkind (Parent (N)) = N_Procedure_Call_Statement
5126 or else
5127 (Nkind (Parent (N)) = N_Parameter_Association
5128 and then N = Explicit_Actual_Parameter (Parent (N))
5129 and then Nkind (Parent (Parent (N))) =
5130 N_Procedure_Call_Statement));
5131 end Is_Actual_Parameter;
5132
5133 -------------------------
5134 -- Known_But_Invisible --
5135 -------------------------
5136
5137 function Known_But_Invisible (E : Entity_Id) return Boolean is
5138 Fname : File_Name_Type;
5139
5140 begin
5141 -- Entities in Standard are always considered to be known
5142
5143 if Sloc (E) <= Standard_Location then
5144 return True;
5145
5146 -- An entity that does not come from source is always considered
5147 -- to be unknown, since it is an artifact of code expansion.
5148
5149 elsif not Comes_From_Source (E) then
5150 return False;
5151
5152 -- In gnat internal mode, we consider all entities known. The
5153 -- historical reason behind this discrepancy is not known??? But the
5154 -- only effect is to modify the error message given, so it is not
5155 -- critical. Since it only affects the exact wording of error
5156 -- messages in illegal programs, we do not mention this as an
5157 -- effect of -gnatg, since it is not a language modification.
5158
5159 elsif GNAT_Mode then
5160 return True;
5161 end if;
5162
5163 -- Here we have an entity that is not from package Standard, and
5164 -- which comes from Source. See if it comes from an internal file.
5165
5166 Fname := Unit_File_Name (Get_Source_Unit (E));
5167
5168 -- Case of from internal file
5169
5170 if In_Internal_Unit (E) then
5171
5172 -- Private part entities in internal files are never considered
5173 -- to be known to the writer of normal application code.
5174
5175 if Is_Hidden (E) then
5176 return False;
5177 end if;
5178
5179 -- Entities from System packages other than System and
5180 -- System.Storage_Elements are not considered to be known.
5181 -- System.Auxxxx files are also considered known to the user.
5182
5183 -- Should refine this at some point to generally distinguish
5184 -- between known and unknown internal files ???
5185
5186 Get_Name_String (Fname);
5187
5188 return
5189 Name_Len < 2
5190 or else
5191 Name_Buffer (1 .. 2) /= "s-"
5192 or else
5193 Name_Buffer (3 .. 8) = "stoele"
5194 or else
5195 Name_Buffer (3 .. 5) = "aux";
5196
5197 -- If not an internal file, then entity is definitely known, even if
5198 -- it is in a private part (the message generated will note that it
5199 -- is in a private part).
5200
5201 else
5202 return True;
5203 end if;
5204 end Known_But_Invisible;
5205
5206 -------------------
5207 -- Nvis_Messages --
5208 -------------------
5209
5210 procedure Nvis_Messages is
5211 Comp_Unit : Node_Id;
5212 Ent : Entity_Id;
5213 Found : Boolean := False;
5214 Hidden : Boolean := False;
5215 Item : Node_Id;
5216
5217 begin
5218 if not Errors_OK then
5219 return;
5220 end if;
5221
5222 -- Ada 2005 (AI-262): Generate a precise error concerning the
5223 -- Beaujolais effect that was previously detected
5224
5225 if Nvis_Is_Private_Subprg then
5226
5227 pragma Assert (Nkind (E2) = N_Defining_Identifier
5228 and then Ekind (E2) = E_Function
5229 and then Scope (E2) = Standard_Standard
5230 and then Has_Private_With (E2));
5231
5232 -- Find the sloc corresponding to the private with'ed unit
5233
5234 Comp_Unit := Cunit (Current_Sem_Unit);
5235 Error_Msg_Sloc := No_Location;
5236
5237 Item := First (Context_Items (Comp_Unit));
5238 while Present (Item) loop
5239 if Nkind (Item) = N_With_Clause
5240 and then Private_Present (Item)
5241 and then Entity (Name (Item)) = E2
5242 then
5243 Error_Msg_Sloc := Sloc (Item);
5244 exit;
5245 end if;
5246
5247 Next (Item);
5248 end loop;
5249
5250 pragma Assert (Error_Msg_Sloc /= No_Location);
5251
5252 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5253 return;
5254 end if;
5255
5256 Undefined (Nvis => True);
5257
5258 if Msg then
5259
5260 -- First loop does hidden declarations
5261
5262 Ent := Homonyms;
5263 while Present (Ent) loop
5264 if Is_Potentially_Use_Visible (Ent) then
5265 if not Hidden then
5266 Error_Msg_N -- CODEFIX
5267 ("multiple use clauses cause hiding!", N);
5268 Hidden := True;
5269 end if;
5270
5271 Error_Msg_Sloc := Sloc (Ent);
5272 Error_Msg_N -- CODEFIX
5273 ("hidden declaration#!", N);
5274 end if;
5275
5276 Ent := Homonym (Ent);
5277 end loop;
5278
5279 -- If we found hidden declarations, then that's enough, don't
5280 -- bother looking for non-visible declarations as well.
5281
5282 if Hidden then
5283 return;
5284 end if;
5285
5286 -- Second loop does non-directly visible declarations
5287
5288 Ent := Homonyms;
5289 while Present (Ent) loop
5290 if not Is_Potentially_Use_Visible (Ent) then
5291
5292 -- Do not bother the user with unknown entities
5293
5294 if not Known_But_Invisible (Ent) then
5295 goto Continue;
5296 end if;
5297
5298 Error_Msg_Sloc := Sloc (Ent);
5299
5300 -- Output message noting that there is a non-visible
5301 -- declaration, distinguishing the private part case.
5302
5303 if Is_Hidden (Ent) then
5304 Error_Msg_N ("non-visible (private) declaration#!", N);
5305
5306 -- If the entity is declared in a generic package, it
5307 -- cannot be visible, so there is no point in adding it
5308 -- to the list of candidates if another homograph from a
5309 -- non-generic package has been seen.
5310
5311 elsif Ekind (Scope (Ent)) = E_Generic_Package
5312 and then Found
5313 then
5314 null;
5315
5316 else
5317 Error_Msg_N -- CODEFIX
5318 ("non-visible declaration#!", N);
5319
5320 if Ekind (Scope (Ent)) /= E_Generic_Package then
5321 Found := True;
5322 end if;
5323
5324 if Is_Compilation_Unit (Ent)
5325 and then
5326 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5327 then
5328 Error_Msg_Qual_Level := 99;
5329 Error_Msg_NE -- CODEFIX
5330 ("\\missing `WITH &;`", N, Ent);
5331 Error_Msg_Qual_Level := 0;
5332 end if;
5333
5334 if Ekind (Ent) = E_Discriminant
5335 and then Present (Corresponding_Discriminant (Ent))
5336 and then Scope (Corresponding_Discriminant (Ent)) =
5337 Etype (Scope (Ent))
5338 then
5339 Error_Msg_N
5340 ("inherited discriminant not allowed here" &
5341 " (RM 3.8 (12), 3.8.1 (6))!", N);
5342 end if;
5343 end if;
5344
5345 -- Set entity and its containing package as referenced. We
5346 -- can't be sure of this, but this seems a better choice
5347 -- to avoid unused entity messages.
5348
5349 if Comes_From_Source (Ent) then
5350 Set_Referenced (Ent);
5351 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5352 end if;
5353 end if;
5354
5355 <<Continue>>
5356 Ent := Homonym (Ent);
5357 end loop;
5358 end if;
5359 end Nvis_Messages;
5360
5361 ---------------
5362 -- Undefined --
5363 ---------------
5364
5365 procedure Undefined (Nvis : Boolean) is
5366 Emsg : Error_Msg_Id;
5367
5368 begin
5369 -- We should never find an undefined internal name. If we do, then
5370 -- see if we have previous errors. If so, ignore on the grounds that
5371 -- it is probably a cascaded message (e.g. a block label from a badly
5372 -- formed block). If no previous errors, then we have a real internal
5373 -- error of some kind so raise an exception.
5374
5375 if Is_Internal_Name (Chars (N)) then
5376 if Total_Errors_Detected /= 0 then
5377 return;
5378 else
5379 raise Program_Error;
5380 end if;
5381 end if;
5382
5383 -- A very specialized error check, if the undefined variable is
5384 -- a case tag, and the case type is an enumeration type, check
5385 -- for a possible misspelling, and if so, modify the identifier
5386
5387 -- Named aggregate should also be handled similarly ???
5388
5389 if Errors_OK
5390 and then Nkind (N) = N_Identifier
5391 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5392 then
5393 declare
5394 Case_Stm : constant Node_Id := Parent (Parent (N));
5395 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5396
5397 Lit : Node_Id;
5398
5399 begin
5400 if Is_Enumeration_Type (Case_Typ)
5401 and then not Is_Standard_Character_Type (Case_Typ)
5402 then
5403 Lit := First_Literal (Case_Typ);
5404 Get_Name_String (Chars (Lit));
5405
5406 if Chars (Lit) /= Chars (N)
5407 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5408 then
5409 Error_Msg_Node_2 := Lit;
5410 Error_Msg_N -- CODEFIX
5411 ("& is undefined, assume misspelling of &", N);
5412 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5413 return;
5414 end if;
5415
5416 Next_Literal (Lit);
5417 end if;
5418 end;
5419 end if;
5420
5421 -- Normal processing
5422
5423 Set_Entity (N, Any_Id);
5424 Set_Etype (N, Any_Type);
5425
5426 if Errors_OK then
5427
5428 -- We use the table Urefs to keep track of entities for which we
5429 -- have issued errors for undefined references. Multiple errors
5430 -- for a single name are normally suppressed, however we modify
5431 -- the error message to alert the programmer to this effect.
5432
5433 for J in Urefs.First .. Urefs.Last loop
5434 if Chars (N) = Chars (Urefs.Table (J).Node) then
5435 if Urefs.Table (J).Err /= No_Error_Msg
5436 and then Sloc (N) /= Urefs.Table (J).Loc
5437 then
5438 Error_Msg_Node_1 := Urefs.Table (J).Node;
5439
5440 if Urefs.Table (J).Nvis then
5441 Change_Error_Text (Urefs.Table (J).Err,
5442 "& is not visible (more references follow)");
5443 else
5444 Change_Error_Text (Urefs.Table (J).Err,
5445 "& is undefined (more references follow)");
5446 end if;
5447
5448 Urefs.Table (J).Err := No_Error_Msg;
5449 end if;
5450
5451 -- Although we will set Msg False, and thus suppress the
5452 -- message, we also set Error_Posted True, to avoid any
5453 -- cascaded messages resulting from the undefined reference.
5454
5455 Msg := False;
5456 Set_Error_Posted (N);
5457 return;
5458 end if;
5459 end loop;
5460
5461 -- If entry not found, this is first undefined occurrence
5462
5463 if Nvis then
5464 Error_Msg_N ("& is not visible!", N);
5465 Emsg := Get_Msg_Id;
5466
5467 else
5468 Error_Msg_N ("& is undefined!", N);
5469 Emsg := Get_Msg_Id;
5470
5471 -- A very bizarre special check, if the undefined identifier
5472 -- is Put or Put_Line, then add a special error message (since
5473 -- this is a very common error for beginners to make).
5474
5475 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5476 Error_Msg_N -- CODEFIX
5477 ("\\possible missing `WITH Ada.Text_'I'O; " &
5478 "USE Ada.Text_'I'O`!", N);
5479
5480 -- Another special check if N is the prefix of a selected
5481 -- component which is a known unit: add message complaining
5482 -- about missing with for this unit.
5483
5484 elsif Nkind (Parent (N)) = N_Selected_Component
5485 and then N = Prefix (Parent (N))
5486 and then Is_Known_Unit (Parent (N))
5487 then
5488 Error_Msg_Node_2 := Selector_Name (Parent (N));
5489 Error_Msg_N -- CODEFIX
5490 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5491 end if;
5492
5493 -- Now check for possible misspellings
5494
5495 declare
5496 E : Entity_Id;
5497 Ematch : Entity_Id := Empty;
5498
5499 Last_Name_Id : constant Name_Id :=
5500 Name_Id (Nat (First_Name_Id) +
5501 Name_Entries_Count - 1);
5502
5503 begin
5504 for Nam in First_Name_Id .. Last_Name_Id loop
5505 E := Get_Name_Entity_Id (Nam);
5506
5507 if Present (E)
5508 and then (Is_Immediately_Visible (E)
5509 or else
5510 Is_Potentially_Use_Visible (E))
5511 then
5512 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5513 Ematch := E;
5514 exit;
5515 end if;
5516 end if;
5517 end loop;
5518
5519 if Present (Ematch) then
5520 Error_Msg_NE -- CODEFIX
5521 ("\possible misspelling of&", N, Ematch);
5522 end if;
5523 end;
5524 end if;
5525
5526 -- Make entry in undefined references table unless the full errors
5527 -- switch is set, in which case by refraining from generating the
5528 -- table entry we guarantee that we get an error message for every
5529 -- undefined reference. The entry is not added if we are ignoring
5530 -- errors.
5531
5532 if not All_Errors_Mode and then Ignore_Errors_Enable = 0 then
5533 Urefs.Append (
5534 (Node => N,
5535 Err => Emsg,
5536 Nvis => Nvis,
5537 Loc => Sloc (N)));
5538 end if;
5539
5540 Msg := True;
5541 end if;
5542 end Undefined;
5543
5544 -- Local variables
5545
5546 Nested_Inst : Entity_Id := Empty;
5547 -- The entity of a nested instance which appears within Inst (if any)
5548
5549 -- Start of processing for Find_Direct_Name
5550
5551 begin
5552 -- If the entity pointer is already set, this is an internal node, or
5553 -- a node that is analyzed more than once, after a tree modification.
5554 -- In such a case there is no resolution to perform, just set the type.
5555
5556 if Present (Entity (N)) then
5557 if Is_Type (Entity (N)) then
5558 Set_Etype (N, Entity (N));
5559
5560 else
5561 declare
5562 Entyp : constant Entity_Id := Etype (Entity (N));
5563
5564 begin
5565 -- One special case here. If the Etype field is already set,
5566 -- and references the packed array type corresponding to the
5567 -- etype of the referenced entity, then leave it alone. This
5568 -- happens for trees generated from Exp_Pakd, where expressions
5569 -- can be deliberately "mis-typed" to the packed array type.
5570
5571 if Is_Array_Type (Entyp)
5572 and then Is_Packed (Entyp)
5573 and then Present (Etype (N))
5574 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5575 then
5576 null;
5577
5578 -- If not that special case, then just reset the Etype
5579
5580 else
5581 Set_Etype (N, Etype (Entity (N)));
5582 end if;
5583 end;
5584 end if;
5585
5586 -- Although the marking of use clauses happens at the end of
5587 -- Find_Direct_Name, a certain case where a generic actual satisfies
5588 -- a use clause must be checked here due to how the generic machinery
5589 -- handles the analysis of said actuals.
5590
5591 if In_Instance
5592 and then Nkind (Parent (N)) = N_Generic_Association
5593 then
5594 Mark_Use_Clauses (Entity (N));
5595 end if;
5596
5597 return;
5598 end if;
5599
5600 -- Preserve relevant elaboration-related attributes of the context which
5601 -- are no longer available or very expensive to recompute once analysis,
5602 -- resolution, and expansion are over.
5603
5604 if Nkind (N) = N_Identifier then
5605 Mark_Elaboration_Attributes
5606 (N_Id => N,
5607 Checks => True,
5608 Modes => True,
5609 Warnings => True);
5610 end if;
5611
5612 -- Here if Entity pointer was not set, we need full visibility analysis
5613 -- First we generate debugging output if the debug E flag is set.
5614
5615 if Debug_Flag_E then
5616 Write_Str ("Looking for ");
5617 Write_Name (Chars (N));
5618 Write_Eol;
5619 end if;
5620
5621 Homonyms := Current_Entity (N);
5622 Nvis_Entity := False;
5623
5624 E := Homonyms;
5625 while Present (E) loop
5626
5627 -- If entity is immediately visible or potentially use visible, then
5628 -- process the entity and we are done.
5629
5630 if Is_Immediately_Visible (E) then
5631 goto Immediately_Visible_Entity;
5632
5633 elsif Is_Potentially_Use_Visible (E) then
5634 goto Potentially_Use_Visible_Entity;
5635
5636 -- Note if a known but invisible entity encountered
5637
5638 elsif Known_But_Invisible (E) then
5639 Nvis_Entity := True;
5640 end if;
5641
5642 -- Move to next entity in chain and continue search
5643
5644 E := Homonym (E);
5645 end loop;
5646
5647 -- If no entries on homonym chain that were potentially visible,
5648 -- and no entities reasonably considered as non-visible, then
5649 -- we have a plain undefined reference, with no additional
5650 -- explanation required.
5651
5652 if not Nvis_Entity then
5653 Undefined (Nvis => False);
5654
5655 -- Otherwise there is at least one entry on the homonym chain that
5656 -- is reasonably considered as being known and non-visible.
5657
5658 else
5659 Nvis_Messages;
5660 end if;
5661
5662 goto Done;
5663
5664 -- Processing for a potentially use visible entry found. We must search
5665 -- the rest of the homonym chain for two reasons. First, if there is a
5666 -- directly visible entry, then none of the potentially use-visible
5667 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5668 -- for the case of multiple potentially use-visible entries hiding one
5669 -- another and as a result being non-directly visible (RM 8.4(11)).
5670
5671 <<Potentially_Use_Visible_Entity>> declare
5672 Only_One_Visible : Boolean := True;
5673 All_Overloadable : Boolean := Is_Overloadable (E);
5674
5675 begin
5676 E2 := Homonym (E);
5677 while Present (E2) loop
5678 if Is_Immediately_Visible (E2) then
5679
5680 -- If the use-visible entity comes from the actual for a
5681 -- formal package, it hides a directly visible entity from
5682 -- outside the instance.
5683
5684 if From_Actual_Package (E)
5685 and then Scope_Depth (E2) < Scope_Depth (Inst)
5686 then
5687 goto Found;
5688 else
5689 E := E2;
5690 goto Immediately_Visible_Entity;
5691 end if;
5692
5693 elsif Is_Potentially_Use_Visible (E2) then
5694 Only_One_Visible := False;
5695 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5696
5697 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5698 -- that can occur in private_with clauses. Example:
5699
5700 -- with A;
5701 -- private with B; package A is
5702 -- package C is function B return Integer;
5703 -- use A; end A;
5704 -- V1 : Integer := B;
5705 -- private function B return Integer;
5706 -- V2 : Integer := B;
5707 -- end C;
5708
5709 -- V1 resolves to A.B, but V2 resolves to library unit B
5710
5711 elsif Ekind (E2) = E_Function
5712 and then Scope (E2) = Standard_Standard
5713 and then Has_Private_With (E2)
5714 then
5715 Only_One_Visible := False;
5716 All_Overloadable := False;
5717 Nvis_Is_Private_Subprg := True;
5718 exit;
5719 end if;
5720
5721 E2 := Homonym (E2);
5722 end loop;
5723
5724 -- On falling through this loop, we have checked that there are no
5725 -- immediately visible entities. Only_One_Visible is set if exactly
5726 -- one potentially use visible entity exists. All_Overloadable is
5727 -- set if all the potentially use visible entities are overloadable.
5728 -- The condition for legality is that either there is one potentially
5729 -- use visible entity, or if there is more than one, then all of them
5730 -- are overloadable.
5731
5732 if Only_One_Visible or All_Overloadable then
5733 goto Found;
5734
5735 -- If there is more than one potentially use-visible entity and at
5736 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5737 -- Note that E points to the first such entity on the homonym list.
5738
5739 else
5740 -- If one of the entities is declared in an actual package, it
5741 -- was visible in the generic, and takes precedence over other
5742 -- entities that are potentially use-visible. The same applies
5743 -- if the entity is declared in a local instantiation of the
5744 -- current instance.
5745
5746 if In_Instance then
5747
5748 -- Find the current instance
5749
5750 Inst := Current_Scope;
5751 while Present (Inst) and then Inst /= Standard_Standard loop
5752 if Is_Generic_Instance (Inst) then
5753 exit;
5754 end if;
5755
5756 Inst := Scope (Inst);
5757 end loop;
5758
5759 -- Reexamine the candidate entities, giving priority to those
5760 -- that were visible within the generic.
5761
5762 E2 := E;
5763 while Present (E2) loop
5764 Nested_Inst := Nearest_Enclosing_Instance (E2);
5765
5766 -- The entity is declared within an actual package, or in a
5767 -- nested instance. The ">=" accounts for the case where the
5768 -- current instance and the nested instance are the same.
5769
5770 if From_Actual_Package (E2)
5771 or else (Present (Nested_Inst)
5772 and then Scope_Depth (Nested_Inst) >=
5773 Scope_Depth (Inst))
5774 then
5775 E := E2;
5776 goto Found;
5777 end if;
5778
5779 E2 := Homonym (E2);
5780 end loop;
5781
5782 Nvis_Messages;
5783 goto Done;
5784
5785 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5786 -- A use clause in the body of a system file creates conflict
5787 -- with some entity in a user scope, while rtsfind is active.
5788 -- Keep only the entity coming from another predefined unit.
5789
5790 E2 := E;
5791 while Present (E2) loop
5792 if In_Predefined_Unit (E2) then
5793 E := E2;
5794 goto Found;
5795 end if;
5796
5797 E2 := Homonym (E2);
5798 end loop;
5799
5800 -- Entity must exist because predefined unit is correct
5801
5802 raise Program_Error;
5803
5804 else
5805 Nvis_Messages;
5806 goto Done;
5807 end if;
5808 end if;
5809 end;
5810
5811 -- Come here with E set to the first immediately visible entity on
5812 -- the homonym chain. This is the one we want unless there is another
5813 -- immediately visible entity further on in the chain for an inner
5814 -- scope (RM 8.3(8)).
5815
5816 <<Immediately_Visible_Entity>> declare
5817 Level : Int;
5818 Scop : Entity_Id;
5819
5820 begin
5821 -- Find scope level of initial entity. When compiling through
5822 -- Rtsfind, the previous context is not completely invisible, and
5823 -- an outer entity may appear on the chain, whose scope is below
5824 -- the entry for Standard that delimits the current scope stack.
5825 -- Indicate that the level for this spurious entry is outside of
5826 -- the current scope stack.
5827
5828 Level := Scope_Stack.Last;
5829 loop
5830 Scop := Scope_Stack.Table (Level).Entity;
5831 exit when Scop = Scope (E);
5832 Level := Level - 1;
5833 exit when Scop = Standard_Standard;
5834 end loop;
5835
5836 -- Now search remainder of homonym chain for more inner entry
5837 -- If the entity is Standard itself, it has no scope, and we
5838 -- compare it with the stack entry directly.
5839
5840 E2 := Homonym (E);
5841 while Present (E2) loop
5842 if Is_Immediately_Visible (E2) then
5843
5844 -- If a generic package contains a local declaration that
5845 -- has the same name as the generic, there may be a visibility
5846 -- conflict in an instance, where the local declaration must
5847 -- also hide the name of the corresponding package renaming.
5848 -- We check explicitly for a package declared by a renaming,
5849 -- whose renamed entity is an instance that is on the scope
5850 -- stack, and that contains a homonym in the same scope. Once
5851 -- we have found it, we know that the package renaming is not
5852 -- immediately visible, and that the identifier denotes the
5853 -- other entity (and its homonyms if overloaded).
5854
5855 if Scope (E) = Scope (E2)
5856 and then Ekind (E) = E_Package
5857 and then Present (Renamed_Object (E))
5858 and then Is_Generic_Instance (Renamed_Object (E))
5859 and then In_Open_Scopes (Renamed_Object (E))
5860 and then Comes_From_Source (N)
5861 then
5862 Set_Is_Immediately_Visible (E, False);
5863 E := E2;
5864
5865 else
5866 for J in Level + 1 .. Scope_Stack.Last loop
5867 if Scope_Stack.Table (J).Entity = Scope (E2)
5868 or else Scope_Stack.Table (J).Entity = E2
5869 then
5870 Level := J;
5871 E := E2;
5872 exit;
5873 end if;
5874 end loop;
5875 end if;
5876 end if;
5877
5878 E2 := Homonym (E2);
5879 end loop;
5880
5881 -- At the end of that loop, E is the innermost immediately
5882 -- visible entity, so we are all set.
5883 end;
5884
5885 -- Come here with entity found, and stored in E
5886
5887 <<Found>> begin
5888
5889 -- Check violation of No_Wide_Characters restriction
5890
5891 Check_Wide_Character_Restriction (E, N);
5892
5893 -- When distribution features are available (Get_PCS_Name /=
5894 -- Name_No_DSA), a remote access-to-subprogram type is converted
5895 -- into a record type holding whatever information is needed to
5896 -- perform a remote call on an RCI subprogram. In that case we
5897 -- rewrite any occurrence of the RAS type into the equivalent record
5898 -- type here. 'Access attribute references and RAS dereferences are
5899 -- then implemented using specific TSSs. However when distribution is
5900 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5901 -- generation of these TSSs, and we must keep the RAS type in its
5902 -- original access-to-subprogram form (since all calls through a
5903 -- value of such type will be local anyway in the absence of a PCS).
5904
5905 if Comes_From_Source (N)
5906 and then Is_Remote_Access_To_Subprogram_Type (E)
5907 and then Ekind (E) = E_Access_Subprogram_Type
5908 and then Expander_Active
5909 and then Get_PCS_Name /= Name_No_DSA
5910 then
5911 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5912 goto Done;
5913 end if;
5914
5915 -- Set the entity. Note that the reason we call Set_Entity for the
5916 -- overloadable case, as opposed to Set_Entity_With_Checks is
5917 -- that in the overloaded case, the initial call can set the wrong
5918 -- homonym. The call that sets the right homonym is in Sem_Res and
5919 -- that call does use Set_Entity_With_Checks, so we don't miss
5920 -- a style check.
5921
5922 if Is_Overloadable (E) then
5923 Set_Entity (N, E);
5924 else
5925 Set_Entity_With_Checks (N, E);
5926 end if;
5927
5928 if Is_Type (E) then
5929 Set_Etype (N, E);
5930 else
5931 Set_Etype (N, Get_Full_View (Etype (E)));
5932 end if;
5933
5934 if Debug_Flag_E then
5935 Write_Str (" found ");
5936 Write_Entity_Info (E, " ");
5937 end if;
5938
5939 -- If the Ekind of the entity is Void, it means that all homonyms
5940 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5941 -- test is skipped if the current scope is a record and the name is
5942 -- a pragma argument expression (case of Atomic and Volatile pragmas
5943 -- and possibly other similar pragmas added later, which are allowed
5944 -- to reference components in the current record).
5945
5946 if Ekind (E) = E_Void
5947 and then
5948 (not Is_Record_Type (Current_Scope)
5949 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5950 then
5951 Premature_Usage (N);
5952
5953 -- If the entity is overloadable, collect all interpretations of the
5954 -- name for subsequent overload resolution. We optimize a bit here to
5955 -- do this only if we have an overloadable entity that is not on its
5956 -- own on the homonym chain.
5957
5958 elsif Is_Overloadable (E)
5959 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5960 then
5961 Collect_Interps (N);
5962
5963 -- If no homonyms were visible, the entity is unambiguous
5964
5965 if not Is_Overloaded (N) then
5966 if Reference_OK and then not Is_Actual_Parameter then
5967 Generate_Reference (E, N);
5968 end if;
5969 end if;
5970
5971 -- Case of non-overloadable entity, set the entity providing that
5972 -- we do not have the case of a discriminant reference within a
5973 -- default expression. Such references are replaced with the
5974 -- corresponding discriminal, which is the formal corresponding to
5975 -- to the discriminant in the initialization procedure.
5976
5977 else
5978 -- Entity is unambiguous, indicate that it is referenced here
5979
5980 -- For a renaming of an object, always generate simple reference,
5981 -- we don't try to keep track of assignments in this case, except
5982 -- in SPARK mode where renamings are traversed for generating
5983 -- local effects of subprograms.
5984
5985 if Reference_OK
5986 and then Is_Object (E)
5987 and then Present (Renamed_Object (E))
5988 and then not GNATprove_Mode
5989 then
5990 Generate_Reference (E, N);
5991
5992 -- If the renamed entity is a private protected component,
5993 -- reference the original component as well. This needs to be
5994 -- done because the private renamings are installed before any
5995 -- analysis has occurred. Reference to a private component will
5996 -- resolve to the renaming and the original component will be
5997 -- left unreferenced, hence the following.
5998
5999 if Is_Prival (E) then
6000 Generate_Reference (Prival_Link (E), N);
6001 end if;
6002
6003 -- One odd case is that we do not want to set the Referenced flag
6004 -- if the entity is a label, and the identifier is the label in
6005 -- the source, since this is not a reference from the point of
6006 -- view of the user.
6007
6008 elsif Nkind (Parent (N)) = N_Label then
6009 declare
6010 R : constant Boolean := Referenced (E);
6011
6012 begin
6013 -- Generate reference unless this is an actual parameter
6014 -- (see comment below)
6015
6016 if Reference_OK and then Is_Actual_Parameter then
6017 Generate_Reference (E, N);
6018 Set_Referenced (E, R);
6019 end if;
6020 end;
6021
6022 -- Normal case, not a label: generate reference
6023
6024 else
6025 if Reference_OK and then not Is_Actual_Parameter then
6026
6027 -- Package or generic package is always a simple reference
6028
6029 if Is_Package_Or_Generic_Package (E) then
6030 Generate_Reference (E, N, 'r');
6031
6032 -- Else see if we have a left hand side
6033
6034 else
6035 case Is_LHS (N) is
6036 when Yes =>
6037 Generate_Reference (E, N, 'm');
6038
6039 when No =>
6040 Generate_Reference (E, N, 'r');
6041
6042 -- If we don't know now, generate reference later
6043
6044 when Unknown =>
6045 Deferred_References.Append ((E, N));
6046 end case;
6047 end if;
6048 end if;
6049 end if;
6050
6051 Set_Entity_Or_Discriminal (N, E);
6052
6053 -- The name may designate a generalized reference, in which case
6054 -- the dereference interpretation will be included. Context is
6055 -- one in which a name is legal.
6056
6057 if Ada_Version >= Ada_2012
6058 and then
6059 (Nkind (Parent (N)) in N_Subexpr
6060 or else Nkind_In (Parent (N), N_Assignment_Statement,
6061 N_Object_Declaration,
6062 N_Parameter_Association))
6063 then
6064 Check_Implicit_Dereference (N, Etype (E));
6065 end if;
6066 end if;
6067 end;
6068
6069 -- Mark relevant use-type and use-package clauses as effective if the
6070 -- node in question is not overloaded and therefore does not require
6071 -- resolution.
6072 --
6073 -- Note: Generic actual subprograms do not follow the normal resolution
6074 -- path, so ignore the fact that they are overloaded and mark them
6075 -- anyway.
6076
6077 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6078 Mark_Use_Clauses (N);
6079 end if;
6080
6081 -- Come here with entity set
6082
6083 <<Done>>
6084 Check_Restriction_No_Use_Of_Entity (N);
6085
6086 -- Annotate the tree by creating a variable reference marker in case the
6087 -- original variable reference is folded or optimized away. The variable
6088 -- reference marker is automatically saved for later examination by the
6089 -- ABE Processing phase. Variable references which act as actuals in a
6090 -- call require special processing and are left to Resolve_Actuals. The
6091 -- reference is a write when it appears on the left hand side of an
6092 -- assignment.
6093
6094 if Marker_OK
6095 and then Needs_Variable_Reference_Marker
6096 (N => N,
6097 Calls_OK => False)
6098 then
6099 declare
6100 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
6101
6102 begin
6103 Build_Variable_Reference_Marker
6104 (N => N,
6105 Read => not Is_Assignment_LHS,
6106 Write => Is_Assignment_LHS);
6107 end;
6108 end if;
6109 end Find_Direct_Name;
6110
6111 ------------------------
6112 -- Find_Expanded_Name --
6113 ------------------------
6114
6115 -- This routine searches the homonym chain of the entity until it finds
6116 -- an entity declared in the scope denoted by the prefix. If the entity
6117 -- is private, it may nevertheless be immediately visible, if we are in
6118 -- the scope of its declaration.
6119
6120 procedure Find_Expanded_Name (N : Node_Id) is
6121 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
6122 -- Determine whether expanded name Nod appears within a pragma which is
6123 -- a suitable context for an abstract view of a state or variable. The
6124 -- following pragmas fall in this category:
6125 -- Depends
6126 -- Global
6127 -- Initializes
6128 -- Refined_Depends
6129 -- Refined_Global
6130 --
6131 -- In addition, pragma Abstract_State is also considered suitable even
6132 -- though it is an illegal context for an abstract view as this allows
6133 -- for proper resolution of abstract views of variables. This illegal
6134 -- context is later flagged in the analysis of indicator Part_Of.
6135
6136 -----------------------------
6137 -- In_Abstract_View_Pragma --
6138 -----------------------------
6139
6140 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
6141 Par : Node_Id;
6142
6143 begin
6144 -- Climb the parent chain looking for a pragma
6145
6146 Par := Nod;
6147 while Present (Par) loop
6148 if Nkind (Par) = N_Pragma then
6149 if Nam_In (Pragma_Name_Unmapped (Par),
6150 Name_Abstract_State,
6151 Name_Depends,
6152 Name_Global,
6153 Name_Initializes,
6154 Name_Refined_Depends,
6155 Name_Refined_Global)
6156 then
6157 return True;
6158
6159 -- Otherwise the pragma is not a legal context for an abstract
6160 -- view.
6161
6162 else
6163 exit;
6164 end if;
6165
6166 -- Prevent the search from going too far
6167
6168 elsif Is_Body_Or_Package_Declaration (Par) then
6169 exit;
6170 end if;
6171
6172 Par := Parent (Par);
6173 end loop;
6174
6175 return False;
6176 end In_Abstract_View_Pragma;
6177
6178 -- Local variables
6179
6180 Selector : constant Node_Id := Selector_Name (N);
6181
6182 Candidate : Entity_Id := Empty;
6183 P_Name : Entity_Id;
6184 Id : Entity_Id;
6185
6186 -- Start of processing for Find_Expanded_Name
6187
6188 begin
6189 P_Name := Entity (Prefix (N));
6190
6191 -- If the prefix is a renamed package, look for the entity in the
6192 -- original package.
6193
6194 if Ekind (P_Name) = E_Package
6195 and then Present (Renamed_Object (P_Name))
6196 then
6197 P_Name := Renamed_Object (P_Name);
6198
6199 -- Rewrite node with entity field pointing to renamed object
6200
6201 Rewrite (Prefix (N), New_Copy (Prefix (N)));
6202 Set_Entity (Prefix (N), P_Name);
6203
6204 -- If the prefix is an object of a concurrent type, look for
6205 -- the entity in the associated task or protected type.
6206
6207 elsif Is_Concurrent_Type (Etype (P_Name)) then
6208 P_Name := Etype (P_Name);
6209 end if;
6210
6211 Id := Current_Entity (Selector);
6212
6213 declare
6214 Is_New_Candidate : Boolean;
6215
6216 begin
6217 while Present (Id) loop
6218 if Scope (Id) = P_Name then
6219 Candidate := Id;
6220 Is_New_Candidate := True;
6221
6222 -- Handle abstract views of states and variables. These are
6223 -- acceptable candidates only when the reference to the view
6224 -- appears in certain pragmas.
6225
6226 if Ekind (Id) = E_Abstract_State
6227 and then From_Limited_With (Id)
6228 and then Present (Non_Limited_View (Id))
6229 then
6230 if In_Abstract_View_Pragma (N) then
6231 Candidate := Non_Limited_View (Id);
6232 Is_New_Candidate := True;
6233
6234 -- Hide the candidate because it is not used in a proper
6235 -- context.
6236
6237 else
6238 Candidate := Empty;
6239 Is_New_Candidate := False;
6240 end if;
6241 end if;
6242
6243 -- Ada 2005 (AI-217): Handle shadow entities associated with
6244 -- types declared in limited-withed nested packages. We don't need
6245 -- to handle E_Incomplete_Subtype entities because the entities
6246 -- in the limited view are always E_Incomplete_Type and
6247 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6248
6249 -- Regarding the expression used to evaluate the scope, it
6250 -- is important to note that the limited view also has shadow
6251 -- entities associated nested packages. For this reason the
6252 -- correct scope of the entity is the scope of the real entity.
6253 -- The non-limited view may itself be incomplete, in which case
6254 -- get the full view if available.
6255
6256 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
6257 and then From_Limited_With (Id)
6258 and then Present (Non_Limited_View (Id))
6259 and then Scope (Non_Limited_View (Id)) = P_Name
6260 then
6261 Candidate := Get_Full_View (Non_Limited_View (Id));
6262 Is_New_Candidate := True;
6263
6264 -- An unusual case arises with a fully qualified name for an
6265 -- entity local to a generic child unit package, within an
6266 -- instantiation of that package. The name of the unit now
6267 -- denotes the renaming created within the instance. This is
6268 -- only relevant in an instance body, see below.
6269
6270 elsif Is_Generic_Instance (Scope (Id))
6271 and then In_Open_Scopes (Scope (Id))
6272 and then In_Instance_Body
6273 and then Ekind (Scope (Id)) = E_Package
6274 and then Ekind (Id) = E_Package
6275 and then Renamed_Entity (Id) = Scope (Id)
6276 and then Is_Immediately_Visible (P_Name)
6277 then
6278 Is_New_Candidate := True;
6279
6280 else
6281 Is_New_Candidate := False;
6282 end if;
6283
6284 if Is_New_Candidate then
6285
6286 -- If entity is a child unit, either it is a visible child of
6287 -- the prefix, or we are in the body of a generic prefix, as
6288 -- will happen when a child unit is instantiated in the body
6289 -- of a generic parent. This is because the instance body does
6290 -- not restore the full compilation context, given that all
6291 -- non-local references have been captured.
6292
6293 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6294 exit when Is_Visible_Lib_Unit (Id)
6295 or else (Is_Child_Unit (Id)
6296 and then In_Open_Scopes (Scope (Id))
6297 and then In_Instance_Body);
6298 else
6299 exit when not Is_Hidden (Id);
6300 end if;
6301
6302 exit when Is_Immediately_Visible (Id);
6303 end if;
6304
6305 Id := Homonym (Id);
6306 end loop;
6307 end;
6308
6309 if No (Id)
6310 and then Ekind_In (P_Name, E_Procedure, E_Function)
6311 and then Is_Generic_Instance (P_Name)
6312 then
6313 -- Expanded name denotes entity in (instance of) generic subprogram.
6314 -- The entity may be in the subprogram instance, or may denote one of
6315 -- the formals, which is declared in the enclosing wrapper package.
6316
6317 P_Name := Scope (P_Name);
6318
6319 Id := Current_Entity (Selector);
6320 while Present (Id) loop
6321 exit when Scope (Id) = P_Name;
6322 Id := Homonym (Id);
6323 end loop;
6324 end if;
6325
6326 if No (Id) or else Chars (Id) /= Chars (Selector) then
6327 Set_Etype (N, Any_Type);
6328
6329 -- If we are looking for an entity defined in System, try to find it
6330 -- in the child package that may have been provided as an extension
6331 -- to System. The Extend_System pragma will have supplied the name of
6332 -- the extension, which may have to be loaded.
6333
6334 if Chars (P_Name) = Name_System
6335 and then Scope (P_Name) = Standard_Standard
6336 and then Present (System_Extend_Unit)
6337 and then Present_System_Aux (N)
6338 then
6339 Set_Entity (Prefix (N), System_Aux_Id);
6340 Find_Expanded_Name (N);
6341 return;
6342
6343 -- There is an implicit instance of the predefined operator in
6344 -- the given scope. The operator entity is defined in Standard.
6345 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6346
6347 elsif Nkind (Selector) = N_Operator_Symbol
6348 and then Has_Implicit_Operator (N)
6349 then
6350 return;
6351
6352 -- If there is no literal defined in the scope denoted by the
6353 -- prefix, the literal may belong to (a type derived from)
6354 -- Standard_Character, for which we have no explicit literals.
6355
6356 elsif Nkind (Selector) = N_Character_Literal
6357 and then Has_Implicit_Character_Literal (N)
6358 then
6359 return;
6360
6361 else
6362 -- If the prefix is a single concurrent object, use its name in
6363 -- the error message, rather than that of the anonymous type.
6364
6365 if Is_Concurrent_Type (P_Name)
6366 and then Is_Internal_Name (Chars (P_Name))
6367 then
6368 Error_Msg_Node_2 := Entity (Prefix (N));
6369 else
6370 Error_Msg_Node_2 := P_Name;
6371 end if;
6372
6373 if P_Name = System_Aux_Id then
6374 P_Name := Scope (P_Name);
6375 Set_Entity (Prefix (N), P_Name);
6376 end if;
6377
6378 if Present (Candidate) then
6379
6380 -- If we know that the unit is a child unit we can give a more
6381 -- accurate error message.
6382
6383 if Is_Child_Unit (Candidate) then
6384
6385 -- If the candidate is a private child unit and we are in
6386 -- the visible part of a public unit, specialize the error
6387 -- message. There might be a private with_clause for it,
6388 -- but it is not currently active.
6389
6390 if Is_Private_Descendant (Candidate)
6391 and then Ekind (Current_Scope) = E_Package
6392 and then not In_Private_Part (Current_Scope)
6393 and then not Is_Private_Descendant (Current_Scope)
6394 then
6395 Error_Msg_N
6396 ("private child unit& is not visible here", Selector);
6397
6398 -- Normal case where we have a missing with for a child unit
6399
6400 else
6401 Error_Msg_Qual_Level := 99;
6402 Error_Msg_NE -- CODEFIX
6403 ("missing `WITH &;`", Selector, Candidate);
6404 Error_Msg_Qual_Level := 0;
6405 end if;
6406
6407 -- Here we don't know that this is a child unit
6408
6409 else
6410 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6411 end if;
6412
6413 else
6414 -- Within the instantiation of a child unit, the prefix may
6415 -- denote the parent instance, but the selector has the name
6416 -- of the original child. That is to say, when A.B appears
6417 -- within an instantiation of generic child unit B, the scope
6418 -- stack includes an instance of A (P_Name) and an instance
6419 -- of B under some other name. We scan the scope to find this
6420 -- child instance, which is the desired entity.
6421 -- Note that the parent may itself be a child instance, if
6422 -- the reference is of the form A.B.C, in which case A.B has
6423 -- already been rewritten with the proper entity.
6424
6425 if In_Open_Scopes (P_Name)
6426 and then Is_Generic_Instance (P_Name)
6427 then
6428 declare
6429 Gen_Par : constant Entity_Id :=
6430 Generic_Parent (Specification
6431 (Unit_Declaration_Node (P_Name)));
6432 S : Entity_Id := Current_Scope;
6433 P : Entity_Id;
6434
6435 begin
6436 for J in reverse 0 .. Scope_Stack.Last loop
6437 S := Scope_Stack.Table (J).Entity;
6438
6439 exit when S = Standard_Standard;
6440
6441 if Ekind_In (S, E_Function,
6442 E_Package,
6443 E_Procedure)
6444 then
6445 P :=
6446 Generic_Parent (Specification
6447 (Unit_Declaration_Node (S)));
6448
6449 -- Check that P is a generic child of the generic
6450 -- parent of the prefix.
6451
6452 if Present (P)
6453 and then Chars (P) = Chars (Selector)
6454 and then Scope (P) = Gen_Par
6455 then
6456 Id := S;
6457 goto Found;
6458 end if;
6459 end if;
6460
6461 end loop;
6462 end;
6463 end if;
6464
6465 -- If this is a selection from Ada, System or Interfaces, then
6466 -- we assume a missing with for the corresponding package.
6467
6468 if Is_Known_Unit (N)
6469 and then not (Present (Entity (Prefix (N)))
6470 and then Scope (Entity (Prefix (N))) /=
6471 Standard_Standard)
6472 then
6473 if not Error_Posted (N) then
6474 Error_Msg_Node_2 := Selector;
6475 Error_Msg_N -- CODEFIX
6476 ("missing `WITH &.&;`", Prefix (N));
6477 end if;
6478
6479 -- If this is a selection from a dummy package, then suppress
6480 -- the error message, of course the entity is missing if the
6481 -- package is missing.
6482
6483 elsif Sloc (Error_Msg_Node_2) = No_Location then
6484 null;
6485
6486 -- Here we have the case of an undefined component
6487
6488 else
6489 -- The prefix may hide a homonym in the context that
6490 -- declares the desired entity. This error can use a
6491 -- specialized message.
6492
6493 if In_Open_Scopes (P_Name) then
6494 declare
6495 H : constant Entity_Id := Homonym (P_Name);
6496
6497 begin
6498 if Present (H)
6499 and then Is_Compilation_Unit (H)
6500 and then
6501 (Is_Immediately_Visible (H)
6502 or else Is_Visible_Lib_Unit (H))
6503 then
6504 Id := First_Entity (H);
6505 while Present (Id) loop
6506 if Chars (Id) = Chars (Selector) then
6507 Error_Msg_Qual_Level := 99;
6508 Error_Msg_Name_1 := Chars (Selector);
6509 Error_Msg_NE
6510 ("% not declared in&", N, P_Name);
6511 Error_Msg_NE
6512 ("\use fully qualified name starting with "
6513 & "Standard to make& visible", N, H);
6514 Error_Msg_Qual_Level := 0;
6515 goto Done;
6516 end if;
6517
6518 Next_Entity (Id);
6519 end loop;
6520 end if;
6521
6522 -- If not found, standard error message
6523
6524 Error_Msg_NE ("& not declared in&", N, Selector);
6525
6526 <<Done>> null;
6527 end;
6528
6529 else
6530 -- Might be worth specializing the case when the prefix
6531 -- is a limited view.
6532 -- ... not declared in limited view of...
6533
6534 Error_Msg_NE ("& not declared in&", N, Selector);
6535 end if;
6536
6537 -- Check for misspelling of some entity in prefix
6538
6539 Id := First_Entity (P_Name);
6540 while Present (Id) loop
6541 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6542 and then not Is_Internal_Name (Chars (Id))
6543 then
6544 Error_Msg_NE -- CODEFIX
6545 ("possible misspelling of&", Selector, Id);
6546 exit;
6547 end if;
6548
6549 Next_Entity (Id);
6550 end loop;
6551
6552 -- Specialize the message if this may be an instantiation
6553 -- of a child unit that was not mentioned in the context.
6554
6555 if Nkind (Parent (N)) = N_Package_Instantiation
6556 and then Is_Generic_Instance (Entity (Prefix (N)))
6557 and then Is_Compilation_Unit
6558 (Generic_Parent (Parent (Entity (Prefix (N)))))
6559 then
6560 Error_Msg_Node_2 := Selector;
6561 Error_Msg_N -- CODEFIX
6562 ("\missing `WITH &.&;`", Prefix (N));
6563 end if;
6564 end if;
6565 end if;
6566
6567 Id := Any_Id;
6568 end if;
6569 end if;
6570
6571 <<Found>>
6572 if Comes_From_Source (N)
6573 and then Is_Remote_Access_To_Subprogram_Type (Id)
6574 and then Ekind (Id) = E_Access_Subprogram_Type
6575 and then Present (Equivalent_Type (Id))
6576 then
6577 -- If we are not actually generating distribution code (i.e. the
6578 -- current PCS is the dummy non-distributed version), then the
6579 -- Equivalent_Type will be missing, and Id should be treated as
6580 -- a regular access-to-subprogram type.
6581
6582 Id := Equivalent_Type (Id);
6583 Set_Chars (Selector, Chars (Id));
6584 end if;
6585
6586 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6587
6588 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6589 if From_Limited_With (Id)
6590 or else Is_Type (Id)
6591 or else Ekind (Id) = E_Package
6592 then
6593 null;
6594 else
6595 Error_Msg_N
6596 ("limited withed package can only be used to access incomplete "
6597 & "types", N);
6598 end if;
6599 end if;
6600
6601 if Is_Task_Type (P_Name)
6602 and then ((Ekind (Id) = E_Entry
6603 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6604 or else
6605 (Ekind (Id) = E_Entry_Family
6606 and then
6607 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6608 then
6609 -- If both the task type and the entry are in scope, this may still
6610 -- be the expanded name of an entry formal.
6611
6612 if In_Open_Scopes (Id)
6613 and then Nkind (Parent (N)) = N_Selected_Component
6614 then
6615 null;
6616
6617 else
6618 -- It is an entry call after all, either to the current task
6619 -- (which will deadlock) or to an enclosing task.
6620
6621 Analyze_Selected_Component (N);
6622 return;
6623 end if;
6624 end if;
6625
6626 Change_Selected_Component_To_Expanded_Name (N);
6627
6628 -- Preserve relevant elaboration-related attributes of the context which
6629 -- are no longer available or very expensive to recompute once analysis,
6630 -- resolution, and expansion are over.
6631
6632 Mark_Elaboration_Attributes
6633 (N_Id => N,
6634 Checks => True,
6635 Modes => True,
6636 Warnings => True);
6637
6638 -- Set appropriate type
6639
6640 if Is_Type (Id) then
6641 Set_Etype (N, Id);
6642 else
6643 Set_Etype (N, Get_Full_View (Etype (Id)));
6644 end if;
6645
6646 -- Do style check and generate reference, but skip both steps if this
6647 -- entity has homonyms, since we may not have the right homonym set yet.
6648 -- The proper homonym will be set during the resolve phase.
6649
6650 if Has_Homonym (Id) then
6651 Set_Entity (N, Id);
6652
6653 else
6654 Set_Entity_Or_Discriminal (N, Id);
6655
6656 case Is_LHS (N) is
6657 when Yes =>
6658 Generate_Reference (Id, N, 'm');
6659
6660 when No =>
6661 Generate_Reference (Id, N, 'r');
6662
6663 when Unknown =>
6664 Deferred_References.Append ((Id, N));
6665 end case;
6666 end if;
6667
6668 -- Check for violation of No_Wide_Characters
6669
6670 Check_Wide_Character_Restriction (Id, N);
6671
6672 -- If the Ekind of the entity is Void, it means that all homonyms are
6673 -- hidden from all visibility (RM 8.3(5,14-20)).
6674
6675 if Ekind (Id) = E_Void then
6676 Premature_Usage (N);
6677
6678 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6679 declare
6680 H : Entity_Id := Homonym (Id);
6681
6682 begin
6683 while Present (H) loop
6684 if Scope (H) = Scope (Id)
6685 and then (not Is_Hidden (H)
6686 or else Is_Immediately_Visible (H))
6687 then
6688 Collect_Interps (N);
6689 exit;
6690 end if;
6691
6692 H := Homonym (H);
6693 end loop;
6694
6695 -- If an extension of System is present, collect possible explicit
6696 -- overloadings declared in the extension.
6697
6698 if Chars (P_Name) = Name_System
6699 and then Scope (P_Name) = Standard_Standard
6700 and then Present (System_Extend_Unit)
6701 and then Present_System_Aux (N)
6702 then
6703 H := Current_Entity (Id);
6704
6705 while Present (H) loop
6706 if Scope (H) = System_Aux_Id then
6707 Add_One_Interp (N, H, Etype (H));
6708 end if;
6709
6710 H := Homonym (H);
6711 end loop;
6712 end if;
6713 end;
6714 end if;
6715
6716 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6717 and then Scope (Id) /= Standard_Standard
6718 then
6719 -- In addition to user-defined operators in the given scope, there
6720 -- may be an implicit instance of the predefined operator. The
6721 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6722 -- and added to the interpretations. Procedure Add_One_Interp will
6723 -- determine which hides which.
6724
6725 if Has_Implicit_Operator (N) then
6726 null;
6727 end if;
6728 end if;
6729
6730 -- If there is a single interpretation for N we can generate a
6731 -- reference to the unique entity found.
6732
6733 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6734 Generate_Reference (Id, N);
6735 end if;
6736
6737 -- Mark relevant use-type and use-package clauses as effective if the
6738 -- node in question is not overloaded and therefore does not require
6739 -- resolution.
6740
6741 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6742 Mark_Use_Clauses (N);
6743 end if;
6744
6745 Check_Restriction_No_Use_Of_Entity (N);
6746
6747 -- Annotate the tree by creating a variable reference marker in case the
6748 -- original variable reference is folded or optimized away. The variable
6749 -- reference marker is automatically saved for later examination by the
6750 -- ABE Processing phase. Variable references which act as actuals in a
6751 -- call require special processing and are left to Resolve_Actuals. The
6752 -- reference is a write when it appears on the left hand side of an
6753 -- assignment.
6754
6755 if Needs_Variable_Reference_Marker
6756 (N => N,
6757 Calls_OK => False)
6758 then
6759 declare
6760 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
6761
6762 begin
6763 Build_Variable_Reference_Marker
6764 (N => N,
6765 Read => not Is_Assignment_LHS,
6766 Write => Is_Assignment_LHS);
6767 end;
6768 end if;
6769 end Find_Expanded_Name;
6770
6771 --------------------
6772 -- Find_Most_Prev --
6773 --------------------
6774
6775 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id is
6776 Curr : Node_Id;
6777
6778 begin
6779 -- Loop through the Prev_Use_Clause chain
6780
6781 Curr := Use_Clause;
6782 while Present (Prev_Use_Clause (Curr)) loop
6783 Curr := Prev_Use_Clause (Curr);
6784 end loop;
6785
6786 return Curr;
6787 end Find_Most_Prev;
6788
6789 -------------------------
6790 -- Find_Renamed_Entity --
6791 -------------------------
6792
6793 function Find_Renamed_Entity
6794 (N : Node_Id;
6795 Nam : Node_Id;
6796 New_S : Entity_Id;
6797 Is_Actual : Boolean := False) return Entity_Id
6798 is
6799 Ind : Interp_Index;
6800 I1 : Interp_Index := 0; -- Suppress junk warnings
6801 It : Interp;
6802 It1 : Interp;
6803 Old_S : Entity_Id;
6804 Inst : Entity_Id;
6805
6806 function Find_Nearer_Entity
6807 (New_S : Entity_Id;
6808 Old1_S : Entity_Id;
6809 Old2_S : Entity_Id) return Entity_Id;
6810 -- Determine whether one of Old_S1 and Old_S2 is nearer to New_S than
6811 -- the other, and return it if so. Return Empty otherwise. We use this
6812 -- in conjunction with Inherit_Renamed_Profile to simplify later type
6813 -- disambiguation for actual subprograms in instances.
6814
6815 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6816 -- If the renamed entity is an implicit operator, check whether it is
6817 -- visible because its operand type is properly visible. This check
6818 -- applies to explicit renamed entities that appear in the source in a
6819 -- renaming declaration or a formal subprogram instance, but not to
6820 -- default generic actuals with a name.
6821
6822 function Report_Overload return Entity_Id;
6823 -- List possible interpretations, and specialize message in the
6824 -- case of a generic actual.
6825
6826 function Within (Inner, Outer : Entity_Id) return Boolean;
6827 -- Determine whether a candidate subprogram is defined within the
6828 -- enclosing instance. If yes, it has precedence over outer candidates.
6829
6830 --------------------------
6831 -- Find_Nearer_Entity --
6832 --------------------------
6833
6834 function Find_Nearer_Entity
6835 (New_S : Entity_Id;
6836 Old1_S : Entity_Id;
6837 Old2_S : Entity_Id) return Entity_Id
6838 is
6839 New_F : Entity_Id;
6840 Old1_F : Entity_Id;
6841 Old2_F : Entity_Id;
6842 Anc_T : Entity_Id;
6843
6844 begin
6845 New_F := First_Formal (New_S);
6846 Old1_F := First_Formal (Old1_S);
6847 Old2_F := First_Formal (Old2_S);
6848
6849 -- The criterion is whether the type of the formals of one of Old1_S
6850 -- and Old2_S is an ancestor subtype of the type of the corresponding
6851 -- formals of New_S while the other is not (we already know that they
6852 -- are all subtypes of the same base type).
6853
6854 -- This makes it possible to find the more correct renamed entity in
6855 -- the case of a generic instantiation nested in an enclosing one for
6856 -- which different formal types get the same actual type, which will
6857 -- in turn make it possible for Inherit_Renamed_Profile to preserve
6858 -- types on formal parameters and ultimately simplify disambiguation.
6859
6860 -- Consider the follow package G:
6861
6862 -- generic
6863 -- type Item_T is private;
6864 -- with function Compare (L, R: Item_T) return Boolean is <>;
6865
6866 -- type Bound_T is private;
6867 -- with function Compare (L, R : Bound_T) return Boolean is <>;
6868 -- package G is
6869 -- ...
6870 -- end G;
6871
6872 -- package body G is
6873 -- package My_Inner is Inner_G (Bound_T);
6874 -- ...
6875 -- end G;
6876
6877 -- with the following package Inner_G:
6878
6879 -- generic
6880 -- type T is private;
6881 -- with function Compare (L, R: T) return Boolean is <>;
6882 -- package Inner_G is
6883 -- function "<" (L, R: T) return Boolean is (Compare (L, R));
6884 -- end Inner_G;
6885
6886 -- If G is instantiated on the same actual type with a single Compare
6887 -- function:
6888
6889 -- type T is ...
6890 -- function Compare (L, R : T) return Boolean;
6891 -- package My_G is new (T, T);
6892
6893 -- then the renaming generated for Compare in the inner instantiation
6894 -- is ambiguous: it can rename either of the renamings generated for
6895 -- the outer instantiation. Now if the first one is picked up, then
6896 -- the subtypes of the formal parameters of the renaming will not be
6897 -- preserved in Inherit_Renamed_Profile because they are subtypes of
6898 -- the Bound_T formal type and not of the Item_T formal type, so we
6899 -- need to arrange for the second one to be picked up instead.
6900
6901 while Present (New_F) loop
6902 if Etype (Old1_F) /= Etype (Old2_F) then
6903 Anc_T := Ancestor_Subtype (Etype (New_F));
6904
6905 if Etype (Old1_F) = Anc_T then
6906 return Old1_S;
6907 elsif Etype (Old2_F) = Anc_T then
6908 return Old2_S;
6909 end if;
6910 end if;
6911
6912 Next_Formal (New_F);
6913 Next_Formal (Old1_F);
6914 Next_Formal (Old2_F);
6915 end loop;
6916
6917 pragma Assert (No (Old1_F));
6918 pragma Assert (No (Old2_F));
6919
6920 return Empty;
6921 end Find_Nearer_Entity;
6922
6923 --------------------------
6924 -- Is_Visible_Operation --
6925 --------------------------
6926
6927 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6928 Scop : Entity_Id;
6929 Typ : Entity_Id;
6930 Btyp : Entity_Id;
6931
6932 begin
6933 if Ekind (Op) /= E_Operator
6934 or else Scope (Op) /= Standard_Standard
6935 or else (In_Instance
6936 and then (not Is_Actual
6937 or else Present (Enclosing_Instance)))
6938 then
6939 return True;
6940
6941 else
6942 -- For a fixed point type operator, check the resulting type,
6943 -- because it may be a mixed mode integer * fixed operation.
6944
6945 if Present (Next_Formal (First_Formal (New_S)))
6946 and then Is_Fixed_Point_Type (Etype (New_S))
6947 then
6948 Typ := Etype (New_S);
6949 else
6950 Typ := Etype (First_Formal (New_S));
6951 end if;
6952
6953 Btyp := Base_Type (Typ);
6954
6955 if Nkind (Nam) /= N_Expanded_Name then
6956 return (In_Open_Scopes (Scope (Btyp))
6957 or else Is_Potentially_Use_Visible (Btyp)
6958 or else In_Use (Btyp)
6959 or else In_Use (Scope (Btyp)));
6960
6961 else
6962 Scop := Entity (Prefix (Nam));
6963
6964 if Ekind (Scop) = E_Package
6965 and then Present (Renamed_Object (Scop))
6966 then
6967 Scop := Renamed_Object (Scop);
6968 end if;
6969
6970 -- Operator is visible if prefix of expanded name denotes
6971 -- scope of type, or else type is defined in System_Aux
6972 -- and the prefix denotes System.
6973
6974 return Scope (Btyp) = Scop
6975 or else (Scope (Btyp) = System_Aux_Id
6976 and then Scope (Scope (Btyp)) = Scop);
6977 end if;
6978 end if;
6979 end Is_Visible_Operation;
6980
6981 ------------
6982 -- Within --
6983 ------------
6984
6985 function Within (Inner, Outer : Entity_Id) return Boolean is
6986 Sc : Entity_Id;
6987
6988 begin
6989 Sc := Scope (Inner);
6990 while Sc /= Standard_Standard loop
6991 if Sc = Outer then
6992 return True;
6993 else
6994 Sc := Scope (Sc);
6995 end if;
6996 end loop;
6997
6998 return False;
6999 end Within;
7000
7001 ---------------------
7002 -- Report_Overload --
7003 ---------------------
7004
7005 function Report_Overload return Entity_Id is
7006 begin
7007 if Is_Actual then
7008 Error_Msg_NE -- CODEFIX
7009 ("ambiguous actual subprogram&, " &
7010 "possible interpretations:", N, Nam);
7011 else
7012 Error_Msg_N -- CODEFIX
7013 ("ambiguous subprogram, " &
7014 "possible interpretations:", N);
7015 end if;
7016
7017 List_Interps (Nam, N);
7018 return Old_S;
7019 end Report_Overload;
7020
7021 -- Start of processing for Find_Renamed_Entity
7022
7023 begin
7024 Old_S := Any_Id;
7025 Candidate_Renaming := Empty;
7026
7027 if Is_Overloaded (Nam) then
7028 Get_First_Interp (Nam, Ind, It);
7029 while Present (It.Nam) loop
7030 if Entity_Matches_Spec (It.Nam, New_S)
7031 and then Is_Visible_Operation (It.Nam)
7032 then
7033 if Old_S /= Any_Id then
7034
7035 -- Note: The call to Disambiguate only happens if a
7036 -- previous interpretation was found, in which case I1
7037 -- has received a value.
7038
7039 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
7040
7041 if It1 = No_Interp then
7042 Inst := Enclosing_Instance;
7043
7044 if Present (Inst) then
7045 if Within (It.Nam, Inst) then
7046 if Within (Old_S, Inst) then
7047 declare
7048 It_D : constant Uint := Scope_Depth (It.Nam);
7049 Old_D : constant Uint := Scope_Depth (Old_S);
7050 N_Ent : Entity_Id;
7051 begin
7052 -- Choose the innermost subprogram, which
7053 -- would hide the outer one in the generic.
7054
7055 if Old_D > It_D then
7056 return Old_S;
7057 elsif It_D > Old_D then
7058 return It.Nam;
7059 end if;
7060
7061 -- Otherwise, if we can determine that one
7062 -- of the entities is nearer to the renaming
7063 -- than the other, choose it. If not, then
7064 -- return the newer one as done historically.
7065
7066 N_Ent :=
7067 Find_Nearer_Entity (New_S, Old_S, It.Nam);
7068 if Present (N_Ent) then
7069 return N_Ent;
7070 else
7071 return It.Nam;
7072 end if;
7073 end;
7074 end if;
7075
7076 elsif Within (Old_S, Inst) then
7077 return Old_S;
7078
7079 else
7080 return Report_Overload;
7081 end if;
7082
7083 -- If not within an instance, ambiguity is real
7084
7085 else
7086 return Report_Overload;
7087 end if;
7088
7089 else
7090 Old_S := It1.Nam;
7091 exit;
7092 end if;
7093
7094 else
7095 I1 := Ind;
7096 Old_S := It.Nam;
7097 end if;
7098
7099 elsif
7100 Present (First_Formal (It.Nam))
7101 and then Present (First_Formal (New_S))
7102 and then (Base_Type (Etype (First_Formal (It.Nam))) =
7103 Base_Type (Etype (First_Formal (New_S))))
7104 then
7105 Candidate_Renaming := It.Nam;
7106 end if;
7107
7108 Get_Next_Interp (Ind, It);
7109 end loop;
7110
7111 Set_Entity (Nam, Old_S);
7112
7113 if Old_S /= Any_Id then
7114 Set_Is_Overloaded (Nam, False);
7115 end if;
7116
7117 -- Non-overloaded case
7118
7119 else
7120 if Is_Actual
7121 and then Present (Enclosing_Instance)
7122 and then Entity_Matches_Spec (Entity (Nam), New_S)
7123 then
7124 Old_S := Entity (Nam);
7125
7126 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
7127 Candidate_Renaming := New_S;
7128
7129 if Is_Visible_Operation (Entity (Nam)) then
7130 Old_S := Entity (Nam);
7131 end if;
7132
7133 elsif Present (First_Formal (Entity (Nam)))
7134 and then Present (First_Formal (New_S))
7135 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
7136 Base_Type (Etype (First_Formal (New_S))))
7137 then
7138 Candidate_Renaming := Entity (Nam);
7139 end if;
7140 end if;
7141
7142 return Old_S;
7143 end Find_Renamed_Entity;
7144
7145 -----------------------------
7146 -- Find_Selected_Component --
7147 -----------------------------
7148
7149 procedure Find_Selected_Component (N : Node_Id) is
7150 P : constant Node_Id := Prefix (N);
7151
7152 P_Name : Entity_Id;
7153 -- Entity denoted by prefix
7154
7155 P_Type : Entity_Id;
7156 -- and its type
7157
7158 Nam : Node_Id;
7159
7160 function Available_Subtype return Boolean;
7161 -- A small optimization: if the prefix is constrained and the component
7162 -- is an array type we may already have a usable subtype for it, so we
7163 -- can use it rather than generating a new one, because the bounds
7164 -- will be the values of the discriminants and not discriminant refs.
7165 -- This simplifies value tracing in GNATProve. For consistency, both
7166 -- the entity name and the subtype come from the constrained component.
7167
7168 -- This is only used in GNATProve mode: when generating code it may be
7169 -- necessary to create an itype in the scope of use of the selected
7170 -- component, e.g. in the context of a expanded record equality.
7171
7172 function Is_Reference_In_Subunit return Boolean;
7173 -- In a subunit, the scope depth is not a proper measure of hiding,
7174 -- because the context of the proper body may itself hide entities in
7175 -- parent units. This rare case requires inspecting the tree directly
7176 -- because the proper body is inserted in the main unit and its context
7177 -- is simply added to that of the parent.
7178
7179 -----------------------
7180 -- Available_Subtype --
7181 -----------------------
7182
7183 function Available_Subtype return Boolean is
7184 Comp : Entity_Id;
7185
7186 begin
7187 if GNATprove_Mode then
7188 Comp := First_Entity (Etype (P));
7189 while Present (Comp) loop
7190 if Chars (Comp) = Chars (Selector_Name (N)) then
7191 Set_Etype (N, Etype (Comp));
7192 Set_Entity (Selector_Name (N), Comp);
7193 Set_Etype (Selector_Name (N), Etype (Comp));
7194 return True;
7195 end if;
7196
7197 Next_Component (Comp);
7198 end loop;
7199 end if;
7200
7201 return False;
7202 end Available_Subtype;
7203
7204 -----------------------------
7205 -- Is_Reference_In_Subunit --
7206 -----------------------------
7207
7208 function Is_Reference_In_Subunit return Boolean is
7209 Clause : Node_Id;
7210 Comp_Unit : Node_Id;
7211
7212 begin
7213 Comp_Unit := N;
7214 while Present (Comp_Unit)
7215 and then Nkind (Comp_Unit) /= N_Compilation_Unit
7216 loop
7217 Comp_Unit := Parent (Comp_Unit);
7218 end loop;
7219
7220 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
7221 return False;
7222 end if;
7223
7224 -- Now check whether the package is in the context of the subunit
7225
7226 Clause := First (Context_Items (Comp_Unit));
7227 while Present (Clause) loop
7228 if Nkind (Clause) = N_With_Clause
7229 and then Entity (Name (Clause)) = P_Name
7230 then
7231 return True;
7232 end if;
7233
7234 Next (Clause);
7235 end loop;
7236
7237 return False;
7238 end Is_Reference_In_Subunit;
7239
7240 -- Start of processing for Find_Selected_Component
7241
7242 begin
7243 Analyze (P);
7244
7245 if Nkind (P) = N_Error then
7246 return;
7247 end if;
7248
7249 -- If the selector already has an entity, the node has been constructed
7250 -- in the course of expansion, and is known to be valid. Do not verify
7251 -- that it is defined for the type (it may be a private component used
7252 -- in the expansion of record equality).
7253
7254 if Present (Entity (Selector_Name (N))) then
7255 if No (Etype (N)) or else Etype (N) = Any_Type then
7256 declare
7257 Sel_Name : constant Node_Id := Selector_Name (N);
7258 Selector : constant Entity_Id := Entity (Sel_Name);
7259 C_Etype : Node_Id;
7260
7261 begin
7262 Set_Etype (Sel_Name, Etype (Selector));
7263
7264 if not Is_Entity_Name (P) then
7265 Resolve (P);
7266 end if;
7267
7268 -- Build an actual subtype except for the first parameter
7269 -- of an init proc, where this actual subtype is by
7270 -- definition incorrect, since the object is uninitialized
7271 -- (and does not even have defined discriminants etc.)
7272
7273 if Is_Entity_Name (P)
7274 and then Ekind (Entity (P)) = E_Function
7275 then
7276 Nam := New_Copy (P);
7277
7278 if Is_Overloaded (P) then
7279 Save_Interps (P, Nam);
7280 end if;
7281
7282 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
7283 Analyze_Call (P);
7284 Analyze_Selected_Component (N);
7285 return;
7286
7287 elsif Ekind (Selector) = E_Component
7288 and then (not Is_Entity_Name (P)
7289 or else Chars (Entity (P)) /= Name_uInit)
7290 then
7291 -- Check if we already have an available subtype we can use
7292
7293 if Ekind (Etype (P)) = E_Record_Subtype
7294 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
7295 and then Is_Array_Type (Etype (Selector))
7296 and then not Is_Packed (Etype (Selector))
7297 and then Available_Subtype
7298 then
7299 return;
7300
7301 -- Do not build the subtype when referencing components of
7302 -- dispatch table wrappers. Required to avoid generating
7303 -- elaboration code with HI runtimes.
7304
7305 elsif RTU_Loaded (Ada_Tags)
7306 and then
7307 ((RTE_Available (RE_Dispatch_Table_Wrapper)
7308 and then Scope (Selector) =
7309 RTE (RE_Dispatch_Table_Wrapper))
7310 or else
7311 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
7312 and then Scope (Selector) =
7313 RTE (RE_No_Dispatch_Table_Wrapper)))
7314 then
7315 C_Etype := Empty;
7316 else
7317 C_Etype :=
7318 Build_Actual_Subtype_Of_Component
7319 (Etype (Selector), N);
7320 end if;
7321
7322 else
7323 C_Etype := Empty;
7324 end if;
7325
7326 if No (C_Etype) then
7327 C_Etype := Etype (Selector);
7328 else
7329 Insert_Action (N, C_Etype);
7330 C_Etype := Defining_Identifier (C_Etype);
7331 end if;
7332
7333 Set_Etype (N, C_Etype);
7334 end;
7335
7336 -- If the selected component appears within a default expression
7337 -- and it has an actual subtype, the preanalysis has not yet
7338 -- completed its analysis, because Insert_Actions is disabled in
7339 -- that context. Within the init proc of the enclosing type we
7340 -- must complete this analysis, if an actual subtype was created.
7341
7342 elsif Inside_Init_Proc then
7343 declare
7344 Typ : constant Entity_Id := Etype (N);
7345 Decl : constant Node_Id := Declaration_Node (Typ);
7346 begin
7347 if Nkind (Decl) = N_Subtype_Declaration
7348 and then not Analyzed (Decl)
7349 and then Is_List_Member (Decl)
7350 and then No (Parent (Decl))
7351 then
7352 Remove (Decl);
7353 Insert_Action (N, Decl);
7354 end if;
7355 end;
7356 end if;
7357
7358 return;
7359
7360 elsif Is_Entity_Name (P) then
7361 P_Name := Entity (P);
7362
7363 -- The prefix may denote an enclosing type which is the completion
7364 -- of an incomplete type declaration.
7365
7366 if Is_Type (P_Name) then
7367 Set_Entity (P, Get_Full_View (P_Name));
7368 Set_Etype (P, Entity (P));
7369 P_Name := Entity (P);
7370 end if;
7371
7372 P_Type := Base_Type (Etype (P));
7373
7374 if Debug_Flag_E then
7375 Write_Str ("Found prefix type to be ");
7376 Write_Entity_Info (P_Type, " "); Write_Eol;
7377 end if;
7378
7379 -- If the prefix's type is an access type, get to the record type
7380
7381 if Is_Access_Type (P_Type) then
7382 P_Type := Implicitly_Designated_Type (P_Type);
7383 end if;
7384
7385 -- First check for components of a record object (not the
7386 -- result of a call, which is handled below).
7387
7388 if Has_Components (P_Type)
7389 and then not Is_Overloadable (P_Name)
7390 and then not Is_Type (P_Name)
7391 then
7392 -- Selected component of record. Type checking will validate
7393 -- name of selector.
7394
7395 -- ??? Could we rewrite an implicit dereference into an explicit
7396 -- one here?
7397
7398 Analyze_Selected_Component (N);
7399
7400 -- Reference to type name in predicate/invariant expression
7401
7402 elsif (Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type))
7403 and then not In_Open_Scopes (P_Name)
7404 and then (not Is_Concurrent_Type (Etype (P_Name))
7405 or else not In_Open_Scopes (Etype (P_Name)))
7406 then
7407 -- Call to protected operation or entry. Type checking is
7408 -- needed on the prefix.
7409
7410 Analyze_Selected_Component (N);
7411
7412 elsif (In_Open_Scopes (P_Name)
7413 and then Ekind (P_Name) /= E_Void
7414 and then not Is_Overloadable (P_Name))
7415 or else (Is_Concurrent_Type (Etype (P_Name))
7416 and then In_Open_Scopes (Etype (P_Name)))
7417 then
7418 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7419 -- enclosing construct that is not a subprogram or accept.
7420
7421 -- A special case: a protected body may call an operation
7422 -- on an external object of the same type, in which case it
7423 -- is not an expanded name. If the prefix is the type itself,
7424 -- or the context is a single synchronized object it can only
7425 -- be interpreted as an expanded name.
7426
7427 if Is_Concurrent_Type (Etype (P_Name)) then
7428 if Is_Type (P_Name)
7429 or else Present (Anonymous_Object (Etype (P_Name)))
7430 then
7431 Find_Expanded_Name (N);
7432
7433 else
7434 Analyze_Selected_Component (N);
7435 return;
7436 end if;
7437
7438 else
7439 Find_Expanded_Name (N);
7440 end if;
7441
7442 elsif Ekind (P_Name) = E_Package then
7443 Find_Expanded_Name (N);
7444
7445 elsif Is_Overloadable (P_Name) then
7446
7447 -- The subprogram may be a renaming (of an enclosing scope) as
7448 -- in the case of the name of the generic within an instantiation.
7449
7450 if Ekind_In (P_Name, E_Procedure, E_Function)
7451 and then Present (Alias (P_Name))
7452 and then Is_Generic_Instance (Alias (P_Name))
7453 then
7454 P_Name := Alias (P_Name);
7455 end if;
7456
7457 if Is_Overloaded (P) then
7458
7459 -- The prefix must resolve to a unique enclosing construct
7460
7461 declare
7462 Found : Boolean := False;
7463 Ind : Interp_Index;
7464 It : Interp;
7465
7466 begin
7467 Get_First_Interp (P, Ind, It);
7468 while Present (It.Nam) loop
7469 if In_Open_Scopes (It.Nam) then
7470 if Found then
7471 Error_Msg_N (
7472 "prefix must be unique enclosing scope", N);
7473 Set_Entity (N, Any_Id);
7474 Set_Etype (N, Any_Type);
7475 return;
7476
7477 else
7478 Found := True;
7479 P_Name := It.Nam;
7480 end if;
7481 end if;
7482
7483 Get_Next_Interp (Ind, It);
7484 end loop;
7485 end;
7486 end if;
7487
7488 if In_Open_Scopes (P_Name) then
7489 Set_Entity (P, P_Name);
7490 Set_Is_Overloaded (P, False);
7491 Find_Expanded_Name (N);
7492
7493 else
7494 -- If no interpretation as an expanded name is possible, it
7495 -- must be a selected component of a record returned by a
7496 -- function call. Reformat prefix as a function call, the rest
7497 -- is done by type resolution.
7498
7499 -- Error if the prefix is procedure or entry, as is P.X
7500
7501 if Ekind (P_Name) /= E_Function
7502 and then
7503 (not Is_Overloaded (P)
7504 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7505 then
7506 -- Prefix may mention a package that is hidden by a local
7507 -- declaration: let the user know. Scan the full homonym
7508 -- chain, the candidate package may be anywhere on it.
7509
7510 if Present (Homonym (Current_Entity (P_Name))) then
7511 P_Name := Current_Entity (P_Name);
7512
7513 while Present (P_Name) loop
7514 exit when Ekind (P_Name) = E_Package;
7515 P_Name := Homonym (P_Name);
7516 end loop;
7517
7518 if Present (P_Name) then
7519 if not Is_Reference_In_Subunit then
7520 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7521 Error_Msg_NE
7522 ("package& is hidden by declaration#", N, P_Name);
7523 end if;
7524
7525 Set_Entity (Prefix (N), P_Name);
7526 Find_Expanded_Name (N);
7527 return;
7528
7529 else
7530 P_Name := Entity (Prefix (N));
7531 end if;
7532 end if;
7533
7534 Error_Msg_NE
7535 ("invalid prefix in selected component&", N, P_Name);
7536 Change_Selected_Component_To_Expanded_Name (N);
7537 Set_Entity (N, Any_Id);
7538 Set_Etype (N, Any_Type);
7539
7540 -- Here we have a function call, so do the reformatting
7541
7542 else
7543 Nam := New_Copy (P);
7544 Save_Interps (P, Nam);
7545
7546 -- We use Replace here because this is one of those cases
7547 -- where the parser has missclassified the node, and we fix
7548 -- things up and then do the semantic analysis on the fixed
7549 -- up node. Normally we do this using one of the Sinfo.CN
7550 -- routines, but this is too tricky for that.
7551
7552 -- Note that using Rewrite would be wrong, because we would
7553 -- have a tree where the original node is unanalyzed.
7554
7555 Replace (P,
7556 Make_Function_Call (Sloc (P), Name => Nam));
7557
7558 -- Now analyze the reformatted node
7559
7560 Analyze_Call (P);
7561
7562 -- If the prefix is illegal after this transformation, there
7563 -- may be visibility errors on the prefix. The safest is to
7564 -- treat the selected component as an error.
7565
7566 if Error_Posted (P) then
7567 Set_Etype (N, Any_Type);
7568 return;
7569
7570 else
7571 Analyze_Selected_Component (N);
7572 end if;
7573 end if;
7574 end if;
7575
7576 -- Remaining cases generate various error messages
7577
7578 else
7579 -- Format node as expanded name, to avoid cascaded errors
7580
7581 Change_Selected_Component_To_Expanded_Name (N);
7582 Set_Entity (N, Any_Id);
7583 Set_Etype (N, Any_Type);
7584
7585 -- Issue error message, but avoid this if error issued already.
7586 -- Use identifier of prefix if one is available.
7587
7588 if P_Name = Any_Id then
7589 null;
7590
7591 -- It is not an error if the prefix is the current instance of
7592 -- type name, e.g. the expression of a type aspect, when it is
7593 -- analyzed within a generic unit. We still have to verify that a
7594 -- component of that name exists, and decorate the node
7595 -- accordingly.
7596
7597 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7598 declare
7599 Comp : Entity_Id;
7600
7601 begin
7602 Comp := First_Entity (Entity (P));
7603 while Present (Comp) loop
7604 if Chars (Comp) = Chars (Selector_Name (N)) then
7605 Set_Entity (N, Comp);
7606 Set_Etype (N, Etype (Comp));
7607 Set_Entity (Selector_Name (N), Comp);
7608 Set_Etype (Selector_Name (N), Etype (Comp));
7609 return;
7610 end if;
7611
7612 Next_Entity (Comp);
7613 end loop;
7614 end;
7615
7616 elsif Ekind (P_Name) = E_Void then
7617 Premature_Usage (P);
7618
7619 elsif Nkind (P) /= N_Attribute_Reference then
7620
7621 -- This may have been meant as a prefixed call to a primitive
7622 -- of an untagged type. If it is a function call check type of
7623 -- its first formal and add explanation.
7624
7625 declare
7626 F : constant Entity_Id :=
7627 Current_Entity (Selector_Name (N));
7628 begin
7629 if Present (F)
7630 and then Is_Overloadable (F)
7631 and then Present (First_Entity (F))
7632 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7633 then
7634 Error_Msg_N
7635 ("prefixed call is only allowed for objects of a "
7636 & "tagged type", N);
7637 end if;
7638 end;
7639
7640 Error_Msg_N ("invalid prefix in selected component&", P);
7641
7642 if Is_Incomplete_Type (P_Type)
7643 and then Is_Access_Type (Etype (P))
7644 then
7645 Error_Msg_N
7646 ("\dereference must not be of an incomplete type "
7647 & "(RM 3.10.1)", P);
7648 end if;
7649
7650 else
7651 Error_Msg_N ("invalid prefix in selected component", P);
7652 end if;
7653 end if;
7654 else
7655 -- If prefix is not the name of an entity, it must be an expression,
7656 -- whose type is appropriate for a record. This is determined by
7657 -- type resolution.
7658
7659 Analyze_Selected_Component (N);
7660 end if;
7661
7662 Analyze_Dimension (N);
7663 end Find_Selected_Component;
7664
7665 ---------------
7666 -- Find_Type --
7667 ---------------
7668
7669 procedure Find_Type (N : Node_Id) is
7670 C : Entity_Id;
7671 Typ : Entity_Id;
7672 T : Entity_Id;
7673 T_Name : Entity_Id;
7674
7675 begin
7676 if N = Error then
7677 return;
7678
7679 elsif Nkind (N) = N_Attribute_Reference then
7680
7681 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7682 -- need to enforce that at this point, since the declaration of the
7683 -- tagged type in the prefix would have been flagged already.
7684
7685 if Attribute_Name (N) = Name_Class then
7686 Check_Restriction (No_Dispatch, N);
7687 Find_Type (Prefix (N));
7688
7689 -- Propagate error from bad prefix
7690
7691 if Etype (Prefix (N)) = Any_Type then
7692 Set_Entity (N, Any_Type);
7693 Set_Etype (N, Any_Type);
7694 return;
7695 end if;
7696
7697 T := Base_Type (Entity (Prefix (N)));
7698
7699 -- Case where type is not known to be tagged. Its appearance in
7700 -- the prefix of the 'Class attribute indicates that the full view
7701 -- will be tagged.
7702
7703 if not Is_Tagged_Type (T) then
7704 if Ekind (T) = E_Incomplete_Type then
7705
7706 -- It is legal to denote the class type of an incomplete
7707 -- type. The full type will have to be tagged, of course.
7708 -- In Ada 2005 this usage is declared obsolescent, so we
7709 -- warn accordingly. This usage is only legal if the type
7710 -- is completed in the current scope, and not for a limited
7711 -- view of a type.
7712
7713 if Ada_Version >= Ada_2005 then
7714
7715 -- Test whether the Available_View of a limited type view
7716 -- is tagged, since the limited view may not be marked as
7717 -- tagged if the type itself has an untagged incomplete
7718 -- type view in its package.
7719
7720 if From_Limited_With (T)
7721 and then not Is_Tagged_Type (Available_View (T))
7722 then
7723 Error_Msg_N
7724 ("prefix of Class attribute must be tagged", N);
7725 Set_Etype (N, Any_Type);
7726 Set_Entity (N, Any_Type);
7727 return;
7728
7729 -- ??? This test is temporarily disabled (always
7730 -- False) because it causes an unwanted warning on
7731 -- GNAT sources (built with -gnatg, which includes
7732 -- Warn_On_Obsolescent_ Feature). Once this issue
7733 -- is cleared in the sources, it can be enabled.
7734
7735 elsif Warn_On_Obsolescent_Feature and then False then
7736 Error_Msg_N
7737 ("applying 'Class to an untagged incomplete type"
7738 & " is an obsolescent feature (RM J.11)?r?", N);
7739 end if;
7740 end if;
7741
7742 Set_Is_Tagged_Type (T);
7743 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7744 Make_Class_Wide_Type (T);
7745 Set_Entity (N, Class_Wide_Type (T));
7746 Set_Etype (N, Class_Wide_Type (T));
7747
7748 elsif Ekind (T) = E_Private_Type
7749 and then not Is_Generic_Type (T)
7750 and then In_Private_Part (Scope (T))
7751 then
7752 -- The Class attribute can be applied to an untagged private
7753 -- type fulfilled by a tagged type prior to the full type
7754 -- declaration (but only within the parent package's private
7755 -- part). Create the class-wide type now and check that the
7756 -- full type is tagged later during its analysis. Note that
7757 -- we do not mark the private type as tagged, unlike the
7758 -- case of incomplete types, because the type must still
7759 -- appear untagged to outside units.
7760
7761 if No (Class_Wide_Type (T)) then
7762 Make_Class_Wide_Type (T);
7763 end if;
7764
7765 Set_Entity (N, Class_Wide_Type (T));
7766 Set_Etype (N, Class_Wide_Type (T));
7767
7768 else
7769 -- Should we introduce a type Any_Tagged and use Wrong_Type
7770 -- here, it would be a bit more consistent???
7771
7772 Error_Msg_NE
7773 ("tagged type required, found}",
7774 Prefix (N), First_Subtype (T));
7775 Set_Entity (N, Any_Type);
7776 return;
7777 end if;
7778
7779 -- Case of tagged type
7780
7781 else
7782 if Is_Concurrent_Type (T) then
7783 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7784
7785 -- Previous error. Create a class-wide type for the
7786 -- synchronized type itself, with minimal semantic
7787 -- attributes, to catch other errors in some ACATS tests.
7788
7789 pragma Assert (Serious_Errors_Detected /= 0);
7790 Make_Class_Wide_Type (T);
7791 C := Class_Wide_Type (T);
7792 Set_First_Entity (C, First_Entity (T));
7793
7794 else
7795 C := Class_Wide_Type
7796 (Corresponding_Record_Type (Entity (Prefix (N))));
7797 end if;
7798
7799 else
7800 C := Class_Wide_Type (Entity (Prefix (N)));
7801 end if;
7802
7803 Set_Entity_With_Checks (N, C);
7804 Generate_Reference (C, N);
7805 Set_Etype (N, C);
7806 end if;
7807
7808 -- Base attribute, not allowed in Ada 83
7809
7810 elsif Attribute_Name (N) = Name_Base then
7811 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7812 Error_Msg_N
7813 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7814
7815 else
7816 Find_Type (Prefix (N));
7817 Typ := Entity (Prefix (N));
7818
7819 if Ada_Version >= Ada_95
7820 and then not Is_Scalar_Type (Typ)
7821 and then not Is_Generic_Type (Typ)
7822 then
7823 Error_Msg_N
7824 ("prefix of Base attribute must be scalar type",
7825 Prefix (N));
7826
7827 elsif Warn_On_Redundant_Constructs
7828 and then Base_Type (Typ) = Typ
7829 then
7830 Error_Msg_NE -- CODEFIX
7831 ("redundant attribute, & is its own base type?r?", N, Typ);
7832 end if;
7833
7834 T := Base_Type (Typ);
7835
7836 -- Rewrite attribute reference with type itself (see similar
7837 -- processing in Analyze_Attribute, case Base). Preserve prefix
7838 -- if present, for other legality checks.
7839
7840 if Nkind (Prefix (N)) = N_Expanded_Name then
7841 Rewrite (N,
7842 Make_Expanded_Name (Sloc (N),
7843 Chars => Chars (T),
7844 Prefix => New_Copy (Prefix (Prefix (N))),
7845 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7846
7847 else
7848 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7849 end if;
7850
7851 Set_Entity (N, T);
7852 Set_Etype (N, T);
7853 end if;
7854
7855 elsif Attribute_Name (N) = Name_Stub_Type then
7856
7857 -- This is handled in Analyze_Attribute
7858
7859 Analyze (N);
7860
7861 -- All other attributes are invalid in a subtype mark
7862
7863 else
7864 Error_Msg_N ("invalid attribute in subtype mark", N);
7865 end if;
7866
7867 else
7868 Analyze (N);
7869
7870 if Is_Entity_Name (N) then
7871 T_Name := Entity (N);
7872 else
7873 Error_Msg_N ("subtype mark required in this context", N);
7874 Set_Etype (N, Any_Type);
7875 return;
7876 end if;
7877
7878 if T_Name = Any_Id or else Etype (N) = Any_Type then
7879
7880 -- Undefined id. Make it into a valid type
7881
7882 Set_Entity (N, Any_Type);
7883
7884 elsif not Is_Type (T_Name)
7885 and then T_Name /= Standard_Void_Type
7886 then
7887 Error_Msg_Sloc := Sloc (T_Name);
7888 Error_Msg_N ("subtype mark required in this context", N);
7889 Error_Msg_NE ("\\found & declared#", N, T_Name);
7890 Set_Entity (N, Any_Type);
7891
7892 else
7893 -- If the type is an incomplete type created to handle
7894 -- anonymous access components of a record type, then the
7895 -- incomplete type is the visible entity and subsequent
7896 -- references will point to it. Mark the original full
7897 -- type as referenced, to prevent spurious warnings.
7898
7899 if Is_Incomplete_Type (T_Name)
7900 and then Present (Full_View (T_Name))
7901 and then not Comes_From_Source (T_Name)
7902 then
7903 Set_Referenced (Full_View (T_Name));
7904 end if;
7905
7906 T_Name := Get_Full_View (T_Name);
7907
7908 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7909 -- limited-with clauses
7910
7911 if From_Limited_With (T_Name)
7912 and then Is_Incomplete_Type (T_Name)
7913 and then Present (Non_Limited_View (T_Name))
7914 and then Is_Interface (Non_Limited_View (T_Name))
7915 then
7916 T_Name := Non_Limited_View (T_Name);
7917 end if;
7918
7919 if In_Open_Scopes (T_Name) then
7920 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7921
7922 -- In Ada 2005, a task name can be used in an access
7923 -- definition within its own body. It cannot be used
7924 -- in the discriminant part of the task declaration,
7925 -- nor anywhere else in the declaration because entries
7926 -- cannot have access parameters.
7927
7928 if Ada_Version >= Ada_2005
7929 and then Nkind (Parent (N)) = N_Access_Definition
7930 then
7931 Set_Entity (N, T_Name);
7932 Set_Etype (N, T_Name);
7933
7934 if Has_Completion (T_Name) then
7935 return;
7936
7937 else
7938 Error_Msg_N
7939 ("task type cannot be used as type mark " &
7940 "within its own declaration", N);
7941 end if;
7942
7943 else
7944 Error_Msg_N
7945 ("task type cannot be used as type mark " &
7946 "within its own spec or body", N);
7947 end if;
7948
7949 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7950
7951 -- In Ada 2005, a protected name can be used in an access
7952 -- definition within its own body.
7953
7954 if Ada_Version >= Ada_2005
7955 and then Nkind (Parent (N)) = N_Access_Definition
7956 then
7957 Set_Entity (N, T_Name);
7958 Set_Etype (N, T_Name);
7959 return;
7960
7961 else
7962 Error_Msg_N
7963 ("protected type cannot be used as type mark " &
7964 "within its own spec or body", N);
7965 end if;
7966
7967 else
7968 Error_Msg_N ("type declaration cannot refer to itself", N);
7969 end if;
7970
7971 Set_Etype (N, Any_Type);
7972 Set_Entity (N, Any_Type);
7973 Set_Error_Posted (T_Name);
7974 return;
7975 end if;
7976
7977 Set_Entity (N, T_Name);
7978 Set_Etype (N, T_Name);
7979 end if;
7980 end if;
7981
7982 if Present (Etype (N)) and then Comes_From_Source (N) then
7983 if Is_Fixed_Point_Type (Etype (N)) then
7984 Check_Restriction (No_Fixed_Point, N);
7985 elsif Is_Floating_Point_Type (Etype (N)) then
7986 Check_Restriction (No_Floating_Point, N);
7987 end if;
7988
7989 -- A Ghost type must appear in a specific context
7990
7991 if Is_Ghost_Entity (Etype (N)) then
7992 Check_Ghost_Context (Etype (N), N);
7993 end if;
7994 end if;
7995 end Find_Type;
7996
7997 --------------------
7998 -- Has_Components --
7999 --------------------
8000
8001 function Has_Components (Typ : Entity_Id) return Boolean is
8002 begin
8003 return Is_Record_Type (Typ)
8004 or else (Is_Private_Type (Typ) and then Has_Discriminants (Typ))
8005 or else (Is_Task_Type (Typ) and then Has_Discriminants (Typ))
8006 or else (Is_Incomplete_Type (Typ)
8007 and then From_Limited_With (Typ)
8008 and then Is_Record_Type (Available_View (Typ)));
8009 end Has_Components;
8010
8011 ------------------------------------
8012 -- Has_Implicit_Character_Literal --
8013 ------------------------------------
8014
8015 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
8016 Id : Entity_Id;
8017 Found : Boolean := False;
8018 P : constant Entity_Id := Entity (Prefix (N));
8019 Priv_Id : Entity_Id := Empty;
8020
8021 begin
8022 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
8023 Priv_Id := First_Private_Entity (P);
8024 end if;
8025
8026 if P = Standard_Standard then
8027 Change_Selected_Component_To_Expanded_Name (N);
8028 Rewrite (N, Selector_Name (N));
8029 Analyze (N);
8030 Set_Etype (Original_Node (N), Standard_Character);
8031 return True;
8032 end if;
8033
8034 Id := First_Entity (P);
8035 while Present (Id) and then Id /= Priv_Id loop
8036 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
8037
8038 -- We replace the node with the literal itself, resolve as a
8039 -- character, and set the type correctly.
8040
8041 if not Found then
8042 Change_Selected_Component_To_Expanded_Name (N);
8043 Rewrite (N, Selector_Name (N));
8044 Analyze (N);
8045 Set_Etype (N, Id);
8046 Set_Etype (Original_Node (N), Id);
8047 Found := True;
8048
8049 else
8050 -- More than one type derived from Character in given scope.
8051 -- Collect all possible interpretations.
8052
8053 Add_One_Interp (N, Id, Id);
8054 end if;
8055 end if;
8056
8057 Next_Entity (Id);
8058 end loop;
8059
8060 return Found;
8061 end Has_Implicit_Character_Literal;
8062
8063 ----------------------
8064 -- Has_Private_With --
8065 ----------------------
8066
8067 function Has_Private_With (E : Entity_Id) return Boolean is
8068 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
8069 Item : Node_Id;
8070
8071 begin
8072 Item := First (Context_Items (Comp_Unit));
8073 while Present (Item) loop
8074 if Nkind (Item) = N_With_Clause
8075 and then Private_Present (Item)
8076 and then Entity (Name (Item)) = E
8077 then
8078 return True;
8079 end if;
8080
8081 Next (Item);
8082 end loop;
8083
8084 return False;
8085 end Has_Private_With;
8086
8087 ---------------------------
8088 -- Has_Implicit_Operator --
8089 ---------------------------
8090
8091 function Has_Implicit_Operator (N : Node_Id) return Boolean is
8092 Op_Id : constant Name_Id := Chars (Selector_Name (N));
8093 P : constant Entity_Id := Entity (Prefix (N));
8094 Id : Entity_Id;
8095 Priv_Id : Entity_Id := Empty;
8096
8097 procedure Add_Implicit_Operator
8098 (T : Entity_Id;
8099 Op_Type : Entity_Id := Empty);
8100 -- Add implicit interpretation to node N, using the type for which a
8101 -- predefined operator exists. If the operator yields a boolean type,
8102 -- the Operand_Type is implicitly referenced by the operator, and a
8103 -- reference to it must be generated.
8104
8105 ---------------------------
8106 -- Add_Implicit_Operator --
8107 ---------------------------
8108
8109 procedure Add_Implicit_Operator
8110 (T : Entity_Id;
8111 Op_Type : Entity_Id := Empty)
8112 is
8113 Predef_Op : Entity_Id;
8114
8115 begin
8116 Predef_Op := Current_Entity (Selector_Name (N));
8117 while Present (Predef_Op)
8118 and then Scope (Predef_Op) /= Standard_Standard
8119 loop
8120 Predef_Op := Homonym (Predef_Op);
8121 end loop;
8122
8123 if Nkind (N) = N_Selected_Component then
8124 Change_Selected_Component_To_Expanded_Name (N);
8125 end if;
8126
8127 -- If the context is an unanalyzed function call, determine whether
8128 -- a binary or unary interpretation is required.
8129
8130 if Nkind (Parent (N)) = N_Indexed_Component then
8131 declare
8132 Is_Binary_Call : constant Boolean :=
8133 Present
8134 (Next (First (Expressions (Parent (N)))));
8135 Is_Binary_Op : constant Boolean :=
8136 First_Entity
8137 (Predef_Op) /= Last_Entity (Predef_Op);
8138 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
8139
8140 begin
8141 if Is_Binary_Call then
8142 if Is_Binary_Op then
8143 Add_One_Interp (N, Predef_Op, T);
8144 else
8145 Add_One_Interp (N, Predef_Op2, T);
8146 end if;
8147
8148 else
8149 if not Is_Binary_Op then
8150 Add_One_Interp (N, Predef_Op, T);
8151 else
8152 Add_One_Interp (N, Predef_Op2, T);
8153 end if;
8154 end if;
8155 end;
8156
8157 else
8158 Add_One_Interp (N, Predef_Op, T);
8159
8160 -- For operators with unary and binary interpretations, if
8161 -- context is not a call, add both
8162
8163 if Present (Homonym (Predef_Op)) then
8164 Add_One_Interp (N, Homonym (Predef_Op), T);
8165 end if;
8166 end if;
8167
8168 -- The node is a reference to a predefined operator, and
8169 -- an implicit reference to the type of its operands.
8170
8171 if Present (Op_Type) then
8172 Generate_Operator_Reference (N, Op_Type);
8173 else
8174 Generate_Operator_Reference (N, T);
8175 end if;
8176 end Add_Implicit_Operator;
8177
8178 -- Start of processing for Has_Implicit_Operator
8179
8180 begin
8181 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
8182 Priv_Id := First_Private_Entity (P);
8183 end if;
8184
8185 Id := First_Entity (P);
8186
8187 case Op_Id is
8188
8189 -- Boolean operators: an implicit declaration exists if the scope
8190 -- contains a declaration for a derived Boolean type, or for an
8191 -- array of Boolean type.
8192
8193 when Name_Op_And
8194 | Name_Op_Not
8195 | Name_Op_Or
8196 | Name_Op_Xor
8197 =>
8198 while Id /= Priv_Id loop
8199 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
8200 Add_Implicit_Operator (Id);
8201 return True;
8202 end if;
8203
8204 Next_Entity (Id);
8205 end loop;
8206
8207 -- Equality: look for any non-limited type (result is Boolean)
8208
8209 when Name_Op_Eq
8210 | Name_Op_Ne
8211 =>
8212 while Id /= Priv_Id loop
8213 if Is_Type (Id)
8214 and then not Is_Limited_Type (Id)
8215 and then Is_Base_Type (Id)
8216 then
8217 Add_Implicit_Operator (Standard_Boolean, Id);
8218 return True;
8219 end if;
8220
8221 Next_Entity (Id);
8222 end loop;
8223
8224 -- Comparison operators: scalar type, or array of scalar
8225
8226 when Name_Op_Ge
8227 | Name_Op_Gt
8228 | Name_Op_Le
8229 | Name_Op_Lt
8230 =>
8231 while Id /= Priv_Id loop
8232 if (Is_Scalar_Type (Id)
8233 or else (Is_Array_Type (Id)
8234 and then Is_Scalar_Type (Component_Type (Id))))
8235 and then Is_Base_Type (Id)
8236 then
8237 Add_Implicit_Operator (Standard_Boolean, Id);
8238 return True;
8239 end if;
8240
8241 Next_Entity (Id);
8242 end loop;
8243
8244 -- Arithmetic operators: any numeric type
8245
8246 when Name_Op_Abs
8247 | Name_Op_Add
8248 | Name_Op_Divide
8249 | Name_Op_Expon
8250 | Name_Op_Mod
8251 | Name_Op_Multiply
8252 | Name_Op_Rem
8253 | Name_Op_Subtract
8254 =>
8255 while Id /= Priv_Id loop
8256 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
8257 Add_Implicit_Operator (Id);
8258 return True;
8259 end if;
8260
8261 Next_Entity (Id);
8262 end loop;
8263
8264 -- Concatenation: any one-dimensional array type
8265
8266 when Name_Op_Concat =>
8267 while Id /= Priv_Id loop
8268 if Is_Array_Type (Id)
8269 and then Number_Dimensions (Id) = 1
8270 and then Is_Base_Type (Id)
8271 then
8272 Add_Implicit_Operator (Id);
8273 return True;
8274 end if;
8275
8276 Next_Entity (Id);
8277 end loop;
8278
8279 -- What is the others condition here? Should we be using a
8280 -- subtype of Name_Id that would restrict to operators ???
8281
8282 when others =>
8283 null;
8284 end case;
8285
8286 -- If we fall through, then we do not have an implicit operator
8287
8288 return False;
8289 end Has_Implicit_Operator;
8290
8291 -----------------------------------
8292 -- Has_Loop_In_Inner_Open_Scopes --
8293 -----------------------------------
8294
8295 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
8296 begin
8297 -- Several scope stacks are maintained by Scope_Stack. The base of the
8298 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8299 -- flag in the scope stack entry. Note that the scope stacks used to
8300 -- simply be delimited implicitly by the presence of Standard_Standard
8301 -- at their base, but there now are cases where this is not sufficient
8302 -- because Standard_Standard actually may appear in the middle of the
8303 -- active set of scopes.
8304
8305 for J in reverse 0 .. Scope_Stack.Last loop
8306
8307 -- S was reached without seing a loop scope first
8308
8309 if Scope_Stack.Table (J).Entity = S then
8310 return False;
8311
8312 -- S was not yet reached, so it contains at least one inner loop
8313
8314 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
8315 return True;
8316 end if;
8317
8318 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8319 -- cases where Standard_Standard appears in the middle of the active
8320 -- set of scopes. This affects the declaration and overriding of
8321 -- private inherited operations in instantiations of generic child
8322 -- units.
8323
8324 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
8325 end loop;
8326
8327 raise Program_Error; -- unreachable
8328 end Has_Loop_In_Inner_Open_Scopes;
8329
8330 --------------------
8331 -- In_Open_Scopes --
8332 --------------------
8333
8334 function In_Open_Scopes (S : Entity_Id) return Boolean is
8335 begin
8336 -- Several scope stacks are maintained by Scope_Stack. The base of the
8337 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8338 -- flag in the scope stack entry. Note that the scope stacks used to
8339 -- simply be delimited implicitly by the presence of Standard_Standard
8340 -- at their base, but there now are cases where this is not sufficient
8341 -- because Standard_Standard actually may appear in the middle of the
8342 -- active set of scopes.
8343
8344 for J in reverse 0 .. Scope_Stack.Last loop
8345 if Scope_Stack.Table (J).Entity = S then
8346 return True;
8347 end if;
8348
8349 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8350 -- cases where Standard_Standard appears in the middle of the active
8351 -- set of scopes. This affects the declaration and overriding of
8352 -- private inherited operations in instantiations of generic child
8353 -- units.
8354
8355 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
8356 end loop;
8357
8358 return False;
8359 end In_Open_Scopes;
8360
8361 -----------------------------
8362 -- Inherit_Renamed_Profile --
8363 -----------------------------
8364
8365 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
8366 New_F : Entity_Id;
8367 Old_F : Entity_Id;
8368 Old_T : Entity_Id;
8369 New_T : Entity_Id;
8370
8371 begin
8372 if Ekind (Old_S) = E_Operator then
8373 New_F := First_Formal (New_S);
8374
8375 while Present (New_F) loop
8376 Set_Etype (New_F, Base_Type (Etype (New_F)));
8377 Next_Formal (New_F);
8378 end loop;
8379
8380 Set_Etype (New_S, Base_Type (Etype (New_S)));
8381
8382 else
8383 New_F := First_Formal (New_S);
8384 Old_F := First_Formal (Old_S);
8385
8386 while Present (New_F) loop
8387 New_T := Etype (New_F);
8388 Old_T := Etype (Old_F);
8389
8390 -- If the new type is a renaming of the old one, as is the case
8391 -- for actuals in instances, retain its name, to simplify later
8392 -- disambiguation.
8393
8394 if Nkind (Parent (New_T)) = N_Subtype_Declaration
8395 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
8396 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
8397 then
8398 null;
8399 else
8400 Set_Etype (New_F, Old_T);
8401 end if;
8402
8403 Next_Formal (New_F);
8404 Next_Formal (Old_F);
8405 end loop;
8406
8407 pragma Assert (No (Old_F));
8408
8409 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
8410 Set_Etype (New_S, Etype (Old_S));
8411 end if;
8412 end if;
8413 end Inherit_Renamed_Profile;
8414
8415 ----------------
8416 -- Initialize --
8417 ----------------
8418
8419 procedure Initialize is
8420 begin
8421 Urefs.Init;
8422 end Initialize;
8423
8424 -------------------------
8425 -- Install_Use_Clauses --
8426 -------------------------
8427
8428 procedure Install_Use_Clauses
8429 (Clause : Node_Id;
8430 Force_Installation : Boolean := False)
8431 is
8432 U : Node_Id;
8433
8434 begin
8435 U := Clause;
8436 while Present (U) loop
8437
8438 -- Case of USE package
8439
8440 if Nkind (U) = N_Use_Package_Clause then
8441 Use_One_Package (U, Name (U), True);
8442
8443 -- Case of USE TYPE
8444
8445 else
8446 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
8447
8448 end if;
8449
8450 Next_Use_Clause (U);
8451 end loop;
8452 end Install_Use_Clauses;
8453
8454 ----------------------
8455 -- Mark_Use_Clauses --
8456 ----------------------
8457
8458 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
8459 procedure Mark_Parameters (Call : Entity_Id);
8460 -- Perform use_type_clause marking for all parameters in a subprogram
8461 -- or operator call.
8462
8463 procedure Mark_Use_Package (Pak : Entity_Id);
8464 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8465 -- marking each clause in the chain as effective in the process.
8466
8467 procedure Mark_Use_Type (E : Entity_Id);
8468 -- Similar to Do_Use_Package_Marking except we move up the
8469 -- Prev_Use_Clause chain for the type denoted by E.
8470
8471 ---------------------
8472 -- Mark_Parameters --
8473 ---------------------
8474
8475 procedure Mark_Parameters (Call : Entity_Id) is
8476 Curr : Node_Id;
8477
8478 begin
8479 -- Move through all of the formals
8480
8481 Curr := First_Formal (Call);
8482 while Present (Curr) loop
8483 Mark_Use_Type (Curr);
8484
8485 Next_Formal (Curr);
8486 end loop;
8487
8488 -- Handle the return type
8489
8490 Mark_Use_Type (Call);
8491 end Mark_Parameters;
8492
8493 ----------------------
8494 -- Mark_Use_Package --
8495 ----------------------
8496
8497 procedure Mark_Use_Package (Pak : Entity_Id) is
8498 Curr : Node_Id;
8499
8500 begin
8501 -- Ignore cases where the scope of the type is not a package (e.g.
8502 -- Standard_Standard).
8503
8504 if Ekind (Pak) /= E_Package then
8505 return;
8506 end if;
8507
8508 Curr := Current_Use_Clause (Pak);
8509 while Present (Curr)
8510 and then not Is_Effective_Use_Clause (Curr)
8511 loop
8512 -- We need to mark the previous use clauses as effective, but
8513 -- each use clause may in turn render other use_package_clauses
8514 -- effective. Additionally, it is possible to have a parent
8515 -- package renamed as a child of itself so we must check the
8516 -- prefix entity is not the same as the package we are marking.
8517
8518 if Nkind (Name (Curr)) /= N_Identifier
8519 and then Present (Prefix (Name (Curr)))
8520 and then Entity (Prefix (Name (Curr))) /= Pak
8521 then
8522 Mark_Use_Package (Entity (Prefix (Name (Curr))));
8523
8524 -- It is also possible to have a child package without a prefix
8525 -- that relies on a previous use_package_clause.
8526
8527 elsif Nkind (Name (Curr)) = N_Identifier
8528 and then Is_Child_Unit (Entity (Name (Curr)))
8529 then
8530 Mark_Use_Package (Scope (Entity (Name (Curr))));
8531 end if;
8532
8533 -- Mark the use_package_clause as effective and move up the chain
8534
8535 Set_Is_Effective_Use_Clause (Curr);
8536
8537 Curr := Prev_Use_Clause (Curr);
8538 end loop;
8539 end Mark_Use_Package;
8540
8541 -------------------
8542 -- Mark_Use_Type --
8543 -------------------
8544
8545 procedure Mark_Use_Type (E : Entity_Id) is
8546 Curr : Node_Id;
8547 Base : Entity_Id;
8548
8549 begin
8550 -- Ignore void types and unresolved string literals and primitives
8551
8552 if Nkind (E) = N_String_Literal
8553 or else Nkind (Etype (E)) not in N_Entity
8554 or else not Is_Type (Etype (E))
8555 then
8556 return;
8557 end if;
8558
8559 -- Primitives with class-wide operands might additionally render
8560 -- their base type's use_clauses effective - so do a recursive check
8561 -- here.
8562
8563 Base := Base_Type (Etype (E));
8564
8565 if Ekind (Base) = E_Class_Wide_Type then
8566 Mark_Use_Type (Base);
8567 end if;
8568
8569 -- The package containing the type or operator function being used
8570 -- may be in use as well, so mark any use_package_clauses for it as
8571 -- effective. There are also additional sanity checks performed here
8572 -- for ignoring previous errors.
8573
8574 Mark_Use_Package (Scope (Base));
8575
8576 if Nkind (E) in N_Op
8577 and then Present (Entity (E))
8578 and then Present (Scope (Entity (E)))
8579 then
8580 Mark_Use_Package (Scope (Entity (E)));
8581 end if;
8582
8583 Curr := Current_Use_Clause (Base);
8584 while Present (Curr)
8585 and then not Is_Effective_Use_Clause (Curr)
8586 loop
8587 -- Current use_type_clause may render other use_package_clauses
8588 -- effective.
8589
8590 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
8591 and then Present (Prefix (Subtype_Mark (Curr)))
8592 then
8593 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
8594 end if;
8595
8596 -- Mark the use_type_clause as effective and move up the chain
8597
8598 Set_Is_Effective_Use_Clause (Curr);
8599
8600 Curr := Prev_Use_Clause (Curr);
8601 end loop;
8602 end Mark_Use_Type;
8603
8604 -- Start of processing for Mark_Use_Clauses
8605
8606 begin
8607 -- Use clauses in and of themselves do not count as a "use" of a
8608 -- package.
8609
8610 if Nkind_In (Parent (Id), N_Use_Package_Clause, N_Use_Type_Clause) then
8611 return;
8612 end if;
8613
8614 -- Handle entities
8615
8616 if Nkind (Id) in N_Entity then
8617
8618 -- Mark the entity's package
8619
8620 if Is_Potentially_Use_Visible (Id) then
8621 Mark_Use_Package (Scope (Id));
8622 end if;
8623
8624 -- Mark enumeration literals
8625
8626 if Ekind (Id) = E_Enumeration_Literal then
8627 Mark_Use_Type (Id);
8628
8629 -- Mark primitives
8630
8631 elsif (Ekind (Id) in Overloadable_Kind
8632 or else Ekind_In (Id, E_Generic_Function,
8633 E_Generic_Procedure))
8634 and then (Is_Potentially_Use_Visible (Id)
8635 or else Is_Intrinsic_Subprogram (Id)
8636 or else (Ekind_In (Id, E_Function, E_Procedure)
8637 and then Is_Generic_Actual_Subprogram (Id)))
8638 then
8639 Mark_Parameters (Id);
8640 end if;
8641
8642 -- Handle nodes
8643
8644 else
8645 -- Mark operators
8646
8647 if Nkind (Id) in N_Op then
8648
8649 -- At this point the left operand may not be resolved if we are
8650 -- encountering multiple operators next to eachother in an
8651 -- expression.
8652
8653 if Nkind (Id) in N_Binary_Op
8654 and then not (Nkind (Left_Opnd (Id)) in N_Op)
8655 then
8656 Mark_Use_Type (Left_Opnd (Id));
8657 end if;
8658
8659 Mark_Use_Type (Right_Opnd (Id));
8660 Mark_Use_Type (Id);
8661
8662 -- Mark entity identifiers
8663
8664 elsif Nkind (Id) in N_Has_Entity
8665 and then (Is_Potentially_Use_Visible (Entity (Id))
8666 or else (Is_Generic_Instance (Entity (Id))
8667 and then Is_Immediately_Visible (Entity (Id))))
8668 then
8669 -- Ignore fully qualified names as they do not count as a "use" of
8670 -- a package.
8671
8672 if Nkind_In (Id, N_Identifier, N_Operator_Symbol)
8673 or else (Present (Prefix (Id))
8674 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
8675 then
8676 Mark_Use_Clauses (Entity (Id));
8677 end if;
8678 end if;
8679 end if;
8680 end Mark_Use_Clauses;
8681
8682 --------------------------------
8683 -- Most_Descendant_Use_Clause --
8684 --------------------------------
8685
8686 function Most_Descendant_Use_Clause
8687 (Clause1 : Entity_Id;
8688 Clause2 : Entity_Id) return Entity_Id
8689 is
8690 Scope1 : Entity_Id;
8691 Scope2 : Entity_Id;
8692
8693 begin
8694 if Clause1 = Clause2 then
8695 return Clause1;
8696 end if;
8697
8698 -- We determine which one is the most descendant by the scope distance
8699 -- to the ultimate parent unit.
8700
8701 Scope1 := Entity_Of_Unit (Unit (Parent (Clause1)));
8702 Scope2 := Entity_Of_Unit (Unit (Parent (Clause2)));
8703 while Scope1 /= Standard_Standard
8704 and then Scope2 /= Standard_Standard
8705 loop
8706 Scope1 := Scope (Scope1);
8707 Scope2 := Scope (Scope2);
8708
8709 if not Present (Scope1) then
8710 return Clause1;
8711 elsif not Present (Scope2) then
8712 return Clause2;
8713 end if;
8714 end loop;
8715
8716 if Scope1 = Standard_Standard then
8717 return Clause1;
8718 end if;
8719
8720 return Clause2;
8721 end Most_Descendant_Use_Clause;
8722
8723 ---------------
8724 -- Pop_Scope --
8725 ---------------
8726
8727 procedure Pop_Scope is
8728 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8729 S : constant Entity_Id := SST.Entity;
8730
8731 begin
8732 if Debug_Flag_E then
8733 Write_Info;
8734 end if;
8735
8736 -- Set Default_Storage_Pool field of the library unit if necessary
8737
8738 if Is_Package_Or_Generic_Package (S)
8739 and then
8740 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8741 then
8742 declare
8743 Aux : constant Node_Id :=
8744 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8745 begin
8746 if No (Default_Storage_Pool (Aux)) then
8747 Set_Default_Storage_Pool (Aux, Default_Pool);
8748 end if;
8749 end;
8750 end if;
8751
8752 Scope_Suppress := SST.Save_Scope_Suppress;
8753 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8754 Check_Policy_List := SST.Save_Check_Policy_List;
8755 Default_Pool := SST.Save_Default_Storage_Pool;
8756 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8757 SPARK_Mode := SST.Save_SPARK_Mode;
8758 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8759 Default_SSO := SST.Save_Default_SSO;
8760 Uneval_Old := SST.Save_Uneval_Old;
8761
8762 if Debug_Flag_W then
8763 Write_Str ("<-- exiting scope: ");
8764 Write_Name (Chars (Current_Scope));
8765 Write_Str (", Depth=");
8766 Write_Int (Int (Scope_Stack.Last));
8767 Write_Eol;
8768 end if;
8769
8770 End_Use_Clauses (SST.First_Use_Clause);
8771
8772 -- If the actions to be wrapped are still there they will get lost
8773 -- causing incomplete code to be generated. It is better to abort in
8774 -- this case (and we do the abort even with assertions off since the
8775 -- penalty is incorrect code generation).
8776
8777 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8778 raise Program_Error;
8779 end if;
8780
8781 -- Free last subprogram name if allocated, and pop scope
8782
8783 Free (SST.Last_Subprogram_Name);
8784 Scope_Stack.Decrement_Last;
8785 end Pop_Scope;
8786
8787 ----------------
8788 -- Push_Scope --
8789 ----------------
8790
8791 procedure Push_Scope (S : Entity_Id) is
8792 E : constant Entity_Id := Scope (S);
8793
8794 begin
8795 if Ekind (S) = E_Void then
8796 null;
8797
8798 -- Set scope depth if not a non-concurrent type, and we have not yet set
8799 -- the scope depth. This means that we have the first occurrence of the
8800 -- scope, and this is where the depth is set.
8801
8802 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8803 and then not Scope_Depth_Set (S)
8804 then
8805 if S = Standard_Standard then
8806 Set_Scope_Depth_Value (S, Uint_0);
8807
8808 elsif Is_Child_Unit (S) then
8809 Set_Scope_Depth_Value (S, Uint_1);
8810
8811 elsif not Is_Record_Type (Current_Scope) then
8812 if Ekind (S) = E_Loop then
8813 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8814 else
8815 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8816 end if;
8817 end if;
8818 end if;
8819
8820 Scope_Stack.Increment_Last;
8821
8822 declare
8823 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8824
8825 begin
8826 SST.Entity := S;
8827 SST.Save_Scope_Suppress := Scope_Suppress;
8828 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8829 SST.Save_Check_Policy_List := Check_Policy_List;
8830 SST.Save_Default_Storage_Pool := Default_Pool;
8831 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8832 SST.Save_SPARK_Mode := SPARK_Mode;
8833 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8834 SST.Save_Default_SSO := Default_SSO;
8835 SST.Save_Uneval_Old := Uneval_Old;
8836
8837 -- Each new scope pushed onto the scope stack inherits the component
8838 -- alignment of the previous scope. This emulates the "visibility"
8839 -- semantics of pragma Component_Alignment.
8840
8841 if Scope_Stack.Last > Scope_Stack.First then
8842 SST.Component_Alignment_Default :=
8843 Scope_Stack.Table
8844 (Scope_Stack.Last - 1).Component_Alignment_Default;
8845
8846 -- Otherwise, this is the first scope being pushed on the scope
8847 -- stack. Inherit the component alignment from the configuration
8848 -- form of pragma Component_Alignment (if any).
8849
8850 else
8851 SST.Component_Alignment_Default :=
8852 Configuration_Component_Alignment;
8853 end if;
8854
8855 SST.Last_Subprogram_Name := null;
8856 SST.Is_Transient := False;
8857 SST.Node_To_Be_Wrapped := Empty;
8858 SST.Pending_Freeze_Actions := No_List;
8859 SST.Actions_To_Be_Wrapped := (others => No_List);
8860 SST.First_Use_Clause := Empty;
8861 SST.Is_Active_Stack_Base := False;
8862 SST.Previous_Visibility := False;
8863 SST.Locked_Shared_Objects := No_Elist;
8864 end;
8865
8866 if Debug_Flag_W then
8867 Write_Str ("--> new scope: ");
8868 Write_Name (Chars (Current_Scope));
8869 Write_Str (", Id=");
8870 Write_Int (Int (Current_Scope));
8871 Write_Str (", Depth=");
8872 Write_Int (Int (Scope_Stack.Last));
8873 Write_Eol;
8874 end if;
8875
8876 -- Deal with copying flags from the previous scope to this one. This is
8877 -- not necessary if either scope is standard, or if the new scope is a
8878 -- child unit.
8879
8880 if S /= Standard_Standard
8881 and then Scope (S) /= Standard_Standard
8882 and then not Is_Child_Unit (S)
8883 then
8884 if Nkind (E) not in N_Entity then
8885 return;
8886 end if;
8887
8888 -- Copy categorization flags from Scope (S) to S, this is not done
8889 -- when Scope (S) is Standard_Standard since propagation is from
8890 -- library unit entity inwards. Copy other relevant attributes as
8891 -- well (Discard_Names in particular).
8892
8893 -- We only propagate inwards for library level entities,
8894 -- inner level subprograms do not inherit the categorization.
8895
8896 if Is_Library_Level_Entity (S) then
8897 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8898 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8899 Set_Discard_Names (S, Discard_Names (E));
8900 Set_Suppress_Value_Tracking_On_Call
8901 (S, Suppress_Value_Tracking_On_Call (E));
8902 Set_Categorization_From_Scope (E => S, Scop => E);
8903 end if;
8904 end if;
8905
8906 if Is_Child_Unit (S)
8907 and then Present (E)
8908 and then Is_Package_Or_Generic_Package (E)
8909 and then
8910 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8911 then
8912 declare
8913 Aux : constant Node_Id :=
8914 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8915 begin
8916 if Present (Default_Storage_Pool (Aux)) then
8917 Default_Pool := Default_Storage_Pool (Aux);
8918 end if;
8919 end;
8920 end if;
8921 end Push_Scope;
8922
8923 ---------------------
8924 -- Premature_Usage --
8925 ---------------------
8926
8927 procedure Premature_Usage (N : Node_Id) is
8928 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8929 E : Entity_Id := Entity (N);
8930
8931 begin
8932 -- Within an instance, the analysis of the actual for a formal object
8933 -- does not see the name of the object itself. This is significant only
8934 -- if the object is an aggregate, where its analysis does not do any
8935 -- name resolution on component associations. (see 4717-008). In such a
8936 -- case, look for the visible homonym on the chain.
8937
8938 if In_Instance and then Present (Homonym (E)) then
8939 E := Homonym (E);
8940 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8941 E := Homonym (E);
8942 end loop;
8943
8944 if Present (E) then
8945 Set_Entity (N, E);
8946 Set_Etype (N, Etype (E));
8947 return;
8948 end if;
8949 end if;
8950
8951 if Kind = N_Component_Declaration then
8952 Error_Msg_N
8953 ("component&! cannot be used before end of record declaration", N);
8954
8955 elsif Kind = N_Parameter_Specification then
8956 Error_Msg_N
8957 ("formal parameter&! cannot be used before end of specification",
8958 N);
8959
8960 elsif Kind = N_Discriminant_Specification then
8961 Error_Msg_N
8962 ("discriminant&! cannot be used before end of discriminant part",
8963 N);
8964
8965 elsif Kind = N_Procedure_Specification
8966 or else Kind = N_Function_Specification
8967 then
8968 Error_Msg_N
8969 ("subprogram&! cannot be used before end of its declaration",
8970 N);
8971
8972 elsif Kind = N_Full_Type_Declaration then
8973 Error_Msg_N
8974 ("type& cannot be used before end of its declaration!", N);
8975
8976 else
8977 Error_Msg_N
8978 ("object& cannot be used before end of its declaration!", N);
8979
8980 -- If the premature reference appears as the expression in its own
8981 -- declaration, rewrite it to prevent compiler loops in subsequent
8982 -- uses of this mangled declaration in address clauses.
8983
8984 if Nkind (Parent (N)) = N_Object_Declaration then
8985 Set_Entity (N, Any_Id);
8986 end if;
8987 end if;
8988 end Premature_Usage;
8989
8990 ------------------------
8991 -- Present_System_Aux --
8992 ------------------------
8993
8994 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8995 Loc : Source_Ptr;
8996 Aux_Name : Unit_Name_Type;
8997 Unum : Unit_Number_Type;
8998 Withn : Node_Id;
8999 With_Sys : Node_Id;
9000 The_Unit : Node_Id;
9001
9002 function Find_System (C_Unit : Node_Id) return Entity_Id;
9003 -- Scan context clause of compilation unit to find with_clause
9004 -- for System.
9005
9006 -----------------
9007 -- Find_System --
9008 -----------------
9009
9010 function Find_System (C_Unit : Node_Id) return Entity_Id is
9011 With_Clause : Node_Id;
9012
9013 begin
9014 With_Clause := First (Context_Items (C_Unit));
9015 while Present (With_Clause) loop
9016 if (Nkind (With_Clause) = N_With_Clause
9017 and then Chars (Name (With_Clause)) = Name_System)
9018 and then Comes_From_Source (With_Clause)
9019 then
9020 return With_Clause;
9021 end if;
9022
9023 Next (With_Clause);
9024 end loop;
9025
9026 return Empty;
9027 end Find_System;
9028
9029 -- Start of processing for Present_System_Aux
9030
9031 begin
9032 -- The child unit may have been loaded and analyzed already
9033
9034 if Present (System_Aux_Id) then
9035 return True;
9036
9037 -- If no previous pragma for System.Aux, nothing to load
9038
9039 elsif No (System_Extend_Unit) then
9040 return False;
9041
9042 -- Use the unit name given in the pragma to retrieve the unit.
9043 -- Verify that System itself appears in the context clause of the
9044 -- current compilation. If System is not present, an error will
9045 -- have been reported already.
9046
9047 else
9048 With_Sys := Find_System (Cunit (Current_Sem_Unit));
9049
9050 The_Unit := Unit (Cunit (Current_Sem_Unit));
9051
9052 if No (With_Sys)
9053 and then
9054 (Nkind (The_Unit) = N_Package_Body
9055 or else (Nkind (The_Unit) = N_Subprogram_Body
9056 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
9057 then
9058 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
9059 end if;
9060
9061 if No (With_Sys) and then Present (N) then
9062
9063 -- If we are compiling a subunit, we need to examine its
9064 -- context as well (Current_Sem_Unit is the parent unit);
9065
9066 The_Unit := Parent (N);
9067 while Nkind (The_Unit) /= N_Compilation_Unit loop
9068 The_Unit := Parent (The_Unit);
9069 end loop;
9070
9071 if Nkind (Unit (The_Unit)) = N_Subunit then
9072 With_Sys := Find_System (The_Unit);
9073 end if;
9074 end if;
9075
9076 if No (With_Sys) then
9077 return False;
9078 end if;
9079
9080 Loc := Sloc (With_Sys);
9081 Get_Name_String (Chars (Expression (System_Extend_Unit)));
9082 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
9083 Name_Buffer (1 .. 7) := "system.";
9084 Name_Buffer (Name_Len + 8) := '%';
9085 Name_Buffer (Name_Len + 9) := 's';
9086 Name_Len := Name_Len + 9;
9087 Aux_Name := Name_Find;
9088
9089 Unum :=
9090 Load_Unit
9091 (Load_Name => Aux_Name,
9092 Required => False,
9093 Subunit => False,
9094 Error_Node => With_Sys);
9095
9096 if Unum /= No_Unit then
9097 Semantics (Cunit (Unum));
9098 System_Aux_Id :=
9099 Defining_Entity (Specification (Unit (Cunit (Unum))));
9100
9101 Withn :=
9102 Make_With_Clause (Loc,
9103 Name =>
9104 Make_Expanded_Name (Loc,
9105 Chars => Chars (System_Aux_Id),
9106 Prefix =>
9107 New_Occurrence_Of (Scope (System_Aux_Id), Loc),
9108 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
9109
9110 Set_Entity (Name (Withn), System_Aux_Id);
9111
9112 Set_Corresponding_Spec (Withn, System_Aux_Id);
9113 Set_First_Name (Withn);
9114 Set_Implicit_With (Withn);
9115 Set_Library_Unit (Withn, Cunit (Unum));
9116
9117 Insert_After (With_Sys, Withn);
9118 Mark_Rewrite_Insertion (Withn);
9119 Set_Context_Installed (Withn);
9120
9121 return True;
9122
9123 -- Here if unit load failed
9124
9125 else
9126 Error_Msg_Name_1 := Name_System;
9127 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
9128 Error_Msg_N
9129 ("extension package `%.%` does not exist",
9130 Opt.System_Extend_Unit);
9131 return False;
9132 end if;
9133 end if;
9134 end Present_System_Aux;
9135
9136 -------------------------
9137 -- Restore_Scope_Stack --
9138 -------------------------
9139
9140 procedure Restore_Scope_Stack
9141 (List : Elist_Id;
9142 Handle_Use : Boolean := True)
9143 is
9144 SS_Last : constant Int := Scope_Stack.Last;
9145 Elmt : Elmt_Id;
9146
9147 begin
9148 -- Restore visibility of previous scope stack, if any, using the list
9149 -- we saved (we use Remove, since this list will not be used again).
9150
9151 loop
9152 Elmt := Last_Elmt (List);
9153 exit when Elmt = No_Elmt;
9154 Set_Is_Immediately_Visible (Node (Elmt));
9155 Remove_Last_Elmt (List);
9156 end loop;
9157
9158 -- Restore use clauses
9159
9160 if SS_Last >= Scope_Stack.First
9161 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9162 and then Handle_Use
9163 then
9164 Install_Use_Clauses
9165 (Scope_Stack.Table (SS_Last).First_Use_Clause,
9166 Force_Installation => True);
9167 end if;
9168 end Restore_Scope_Stack;
9169
9170 ----------------------
9171 -- Save_Scope_Stack --
9172 ----------------------
9173
9174 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
9175 -- consuming any memory. That is, Save_Scope_Stack took care of removing
9176 -- from immediate visibility entities and Restore_Scope_Stack took care
9177 -- of restoring their visibility analyzing the context of each entity. The
9178 -- problem of such approach is that it was fragile and caused unexpected
9179 -- visibility problems, and indeed one test was found where there was a
9180 -- real problem.
9181
9182 -- Furthermore, the following experiment was carried out:
9183
9184 -- - Save_Scope_Stack was modified to store in an Elist1 all those
9185 -- entities whose attribute Is_Immediately_Visible is modified
9186 -- from True to False.
9187
9188 -- - Restore_Scope_Stack was modified to store in another Elist2
9189 -- all the entities whose attribute Is_Immediately_Visible is
9190 -- modified from False to True.
9191
9192 -- - Extra code was added to verify that all the elements of Elist1
9193 -- are found in Elist2
9194
9195 -- This test shows that there may be more occurrences of this problem which
9196 -- have not yet been detected. As a result, we replaced that approach by
9197 -- the current one in which Save_Scope_Stack returns the list of entities
9198 -- whose visibility is changed, and that list is passed to Restore_Scope_
9199 -- Stack to undo that change. This approach is simpler and safer, although
9200 -- it consumes more memory.
9201
9202 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
9203 Result : constant Elist_Id := New_Elmt_List;
9204 E : Entity_Id;
9205 S : Entity_Id;
9206 SS_Last : constant Int := Scope_Stack.Last;
9207
9208 procedure Remove_From_Visibility (E : Entity_Id);
9209 -- If E is immediately visible then append it to the result and remove
9210 -- it temporarily from visibility.
9211
9212 ----------------------------
9213 -- Remove_From_Visibility --
9214 ----------------------------
9215
9216 procedure Remove_From_Visibility (E : Entity_Id) is
9217 begin
9218 if Is_Immediately_Visible (E) then
9219 Append_Elmt (E, Result);
9220 Set_Is_Immediately_Visible (E, False);
9221 end if;
9222 end Remove_From_Visibility;
9223
9224 -- Start of processing for Save_Scope_Stack
9225
9226 begin
9227 if SS_Last >= Scope_Stack.First
9228 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9229 then
9230 if Handle_Use then
9231 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
9232 end if;
9233
9234 -- If the call is from within a compilation unit, as when called from
9235 -- Rtsfind, make current entries in scope stack invisible while we
9236 -- analyze the new unit.
9237
9238 for J in reverse 0 .. SS_Last loop
9239 exit when Scope_Stack.Table (J).Entity = Standard_Standard
9240 or else No (Scope_Stack.Table (J).Entity);
9241
9242 S := Scope_Stack.Table (J).Entity;
9243
9244 Remove_From_Visibility (S);
9245
9246 E := First_Entity (S);
9247 while Present (E) loop
9248 Remove_From_Visibility (E);
9249 Next_Entity (E);
9250 end loop;
9251 end loop;
9252
9253 end if;
9254
9255 return Result;
9256 end Save_Scope_Stack;
9257
9258 -------------
9259 -- Set_Use --
9260 -------------
9261
9262 procedure Set_Use (L : List_Id) is
9263 Decl : Node_Id;
9264
9265 begin
9266 if Present (L) then
9267 Decl := First (L);
9268 while Present (Decl) loop
9269 if Nkind (Decl) = N_Use_Package_Clause then
9270 Chain_Use_Clause (Decl);
9271 Use_One_Package (Decl, Name (Decl));
9272
9273 elsif Nkind (Decl) = N_Use_Type_Clause then
9274 Chain_Use_Clause (Decl);
9275 Use_One_Type (Subtype_Mark (Decl));
9276
9277 end if;
9278
9279 Next (Decl);
9280 end loop;
9281 end if;
9282 end Set_Use;
9283
9284 -----------------------------
9285 -- Update_Use_Clause_Chain --
9286 -----------------------------
9287
9288 procedure Update_Use_Clause_Chain is
9289
9290 procedure Update_Chain_In_Scope (Level : Int);
9291 -- Iterate through one level in the scope stack verifying each use-type
9292 -- clause within said level is used then reset the Current_Use_Clause
9293 -- to a redundant use clause outside of the current ending scope if such
9294 -- a clause exists.
9295
9296 ---------------------------
9297 -- Update_Chain_In_Scope --
9298 ---------------------------
9299
9300 procedure Update_Chain_In_Scope (Level : Int) is
9301 Curr : Node_Id;
9302 N : Node_Id;
9303
9304 begin
9305 -- Loop through all use clauses within the scope dictated by Level
9306
9307 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9308 while Present (Curr) loop
9309
9310 -- Retrieve the subtype mark or name within the current current
9311 -- use clause.
9312
9313 if Nkind (Curr) = N_Use_Type_Clause then
9314 N := Subtype_Mark (Curr);
9315 else
9316 N := Name (Curr);
9317 end if;
9318
9319 -- If warnings for unreferenced entities are enabled and the
9320 -- current use clause has not been marked effective.
9321
9322 if Check_Unreferenced
9323 and then Comes_From_Source (Curr)
9324 and then not Is_Effective_Use_Clause (Curr)
9325 and then not In_Instance
9326 and then not In_Inlined_Body
9327 then
9328 -- We are dealing with a potentially unused use_package_clause
9329
9330 if Nkind (Curr) = N_Use_Package_Clause then
9331
9332 -- Renamings and formal subprograms may cause the associated
9333 -- node to be marked as effective instead of the original.
9334
9335 if not (Present (Associated_Node (N))
9336 and then Present
9337 (Current_Use_Clause
9338 (Associated_Node (N)))
9339 and then Is_Effective_Use_Clause
9340 (Current_Use_Clause
9341 (Associated_Node (N))))
9342 then
9343 Error_Msg_Node_1 := Entity (N);
9344 Error_Msg_NE
9345 ("use clause for package & has no effect?u?",
9346 Curr, Entity (N));
9347 end if;
9348
9349 -- We are dealing with an unused use_type_clause
9350
9351 else
9352 Error_Msg_Node_1 := Etype (N);
9353 Error_Msg_NE
9354 ("use clause for } has no effect?u?", Curr, Etype (N));
9355 end if;
9356 end if;
9357
9358 -- Verify that we haven't already processed a redundant
9359 -- use_type_clause within the same scope before we move the
9360 -- current use clause up to a previous one for type T.
9361
9362 if Present (Prev_Use_Clause (Curr)) then
9363 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9364 end if;
9365
9366 Next_Use_Clause (Curr);
9367 end loop;
9368 end Update_Chain_In_Scope;
9369
9370 -- Start of processing for Update_Use_Clause_Chain
9371
9372 begin
9373 Update_Chain_In_Scope (Scope_Stack.Last);
9374
9375 -- Deal with use clauses within the context area if the current
9376 -- scope is a compilation unit.
9377
9378 if Is_Compilation_Unit (Current_Scope)
9379 and then Sloc (Scope_Stack.Table
9380 (Scope_Stack.Last - 1).Entity) = Standard_Location
9381 then
9382 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9383 end if;
9384 end Update_Use_Clause_Chain;
9385
9386 ---------------------
9387 -- Use_One_Package --
9388 ---------------------
9389
9390 procedure Use_One_Package
9391 (N : Node_Id;
9392 Pack_Name : Entity_Id := Empty;
9393 Force : Boolean := False)
9394 is
9395 procedure Note_Redundant_Use (Clause : Node_Id);
9396 -- Mark the name in a use clause as redundant if the corresponding
9397 -- entity is already use-visible. Emit a warning if the use clause comes
9398 -- from source and the proper warnings are enabled.
9399
9400 ------------------------
9401 -- Note_Redundant_Use --
9402 ------------------------
9403
9404 procedure Note_Redundant_Use (Clause : Node_Id) is
9405 Decl : constant Node_Id := Parent (Clause);
9406 Pack_Name : constant Entity_Id := Entity (Clause);
9407
9408 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9409 Prev_Use : Node_Id := Empty;
9410 Redundant : Node_Id := Empty;
9411 -- The Use_Clause which is actually redundant. In the simplest case
9412 -- it is Pack itself, but when we compile a body we install its
9413 -- context before that of its spec, in which case it is the
9414 -- use_clause in the spec that will appear to be redundant, and we
9415 -- want the warning to be placed on the body. Similar complications
9416 -- appear when the redundancy is between a child unit and one of its
9417 -- ancestors.
9418
9419 begin
9420 -- Could be renamed...
9421
9422 if No (Cur_Use) then
9423 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9424 end if;
9425
9426 Set_Redundant_Use (Clause, True);
9427
9428 if not Comes_From_Source (Clause)
9429 or else In_Instance
9430 or else not Warn_On_Redundant_Constructs
9431 then
9432 return;
9433 end if;
9434
9435 if not Is_Compilation_Unit (Current_Scope) then
9436
9437 -- If the use_clause is in an inner scope, it is made redundant by
9438 -- some clause in the current context, with one exception: If we
9439 -- are compiling a nested package body, and the use_clause comes
9440 -- from then corresponding spec, the clause is not necessarily
9441 -- fully redundant, so we should not warn. If a warning was
9442 -- warranted, it would have been given when the spec was
9443 -- processed.
9444
9445 if Nkind (Parent (Decl)) = N_Package_Specification then
9446 declare
9447 Package_Spec_Entity : constant Entity_Id :=
9448 Defining_Unit_Name (Parent (Decl));
9449 begin
9450 if In_Package_Body (Package_Spec_Entity) then
9451 return;
9452 end if;
9453 end;
9454 end if;
9455
9456 Redundant := Clause;
9457 Prev_Use := Cur_Use;
9458
9459 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9460 declare
9461 Cur_Unit : constant Unit_Number_Type :=
9462 Get_Source_Unit (Cur_Use);
9463 New_Unit : constant Unit_Number_Type :=
9464 Get_Source_Unit (Clause);
9465
9466 Scop : Entity_Id;
9467
9468 begin
9469 if Cur_Unit = New_Unit then
9470
9471 -- Redundant clause in same body
9472
9473 Redundant := Clause;
9474 Prev_Use := Cur_Use;
9475
9476 elsif Cur_Unit = Current_Sem_Unit then
9477
9478 -- If the new clause is not in the current unit it has been
9479 -- analyzed first, and it makes the other one redundant.
9480 -- However, if the new clause appears in a subunit, Cur_Unit
9481 -- is still the parent, and in that case the redundant one
9482 -- is the one appearing in the subunit.
9483
9484 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9485 Redundant := Clause;
9486 Prev_Use := Cur_Use;
9487
9488 -- Most common case: redundant clause in body, original
9489 -- clause in spec. Current scope is spec entity.
9490
9491 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9492 Redundant := Cur_Use;
9493 Prev_Use := Clause;
9494
9495 else
9496 -- The new clause may appear in an unrelated unit, when
9497 -- the parents of a generic are being installed prior to
9498 -- instantiation. In this case there must be no warning.
9499 -- We detect this case by checking whether the current
9500 -- top of the stack is related to the current
9501 -- compilation.
9502
9503 Scop := Current_Scope;
9504 while Present (Scop)
9505 and then Scop /= Standard_Standard
9506 loop
9507 if Is_Compilation_Unit (Scop)
9508 and then not Is_Child_Unit (Scop)
9509 then
9510 return;
9511
9512 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9513 exit;
9514 end if;
9515
9516 Scop := Scope (Scop);
9517 end loop;
9518
9519 Redundant := Cur_Use;
9520 Prev_Use := Clause;
9521 end if;
9522
9523 elsif New_Unit = Current_Sem_Unit then
9524 Redundant := Clause;
9525 Prev_Use := Cur_Use;
9526
9527 else
9528 -- Neither is the current unit, so they appear in parent or
9529 -- sibling units. Warning will be emitted elsewhere.
9530
9531 return;
9532 end if;
9533 end;
9534
9535 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9536 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9537 then
9538 -- Use_clause is in child unit of current unit, and the child unit
9539 -- appears in the context of the body of the parent, so it has
9540 -- been installed first, even though it is the redundant one.
9541 -- Depending on their placement in the context, the visible or the
9542 -- private parts of the two units, either might appear as
9543 -- redundant, but the message has to be on the current unit.
9544
9545 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9546 Redundant := Cur_Use;
9547 Prev_Use := Clause;
9548 else
9549 Redundant := Clause;
9550 Prev_Use := Cur_Use;
9551 end if;
9552
9553 -- If the new use clause appears in the private part of a parent
9554 -- unit it may appear to be redundant w.r.t. a use clause in a
9555 -- child unit, but the previous use clause was needed in the
9556 -- visible part of the child, and no warning should be emitted.
9557
9558 if Nkind (Parent (Decl)) = N_Package_Specification
9559 and then List_Containing (Decl) =
9560 Private_Declarations (Parent (Decl))
9561 then
9562 declare
9563 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9564 Spec : constant Node_Id :=
9565 Specification (Unit (Cunit (Current_Sem_Unit)));
9566 Cur_List : constant List_Id := List_Containing (Cur_Use);
9567 begin
9568 if Is_Compilation_Unit (Par)
9569 and then Par /= Cunit_Entity (Current_Sem_Unit)
9570 then
9571 if Cur_List = Context_Items (Cunit (Current_Sem_Unit))
9572 or else Cur_List = Visible_Declarations (Spec)
9573 then
9574 return;
9575 end if;
9576 end if;
9577 end;
9578 end if;
9579
9580 -- Finally, if the current use clause is in the context then the
9581 -- clause is redundant when it is nested within the unit.
9582
9583 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9584 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9585 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9586 then
9587 Redundant := Clause;
9588 Prev_Use := Cur_Use;
9589 end if;
9590
9591 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9592
9593 -- Make sure we are looking at most-descendant use_package_clause
9594 -- by traversing the chain with Find_Most_Prev and then verifying
9595 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9596
9597 if Nkind (Prev_Use) = N_Use_Package_Clause
9598 and then
9599 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9600 or else Most_Descendant_Use_Clause
9601 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9602 then
9603 Prev_Use := Find_Most_Prev (Prev_Use);
9604 end if;
9605
9606 Error_Msg_Sloc := Sloc (Prev_Use);
9607 Error_Msg_NE -- CODEFIX
9608 ("& is already use-visible through previous use_clause #??",
9609 Redundant, Pack_Name);
9610 end if;
9611 end Note_Redundant_Use;
9612
9613 -- Local variables
9614
9615 Current_Instance : Entity_Id := Empty;
9616 Id : Entity_Id;
9617 P : Entity_Id;
9618 Prev : Entity_Id;
9619 Private_With_OK : Boolean := False;
9620 Real_P : Entity_Id;
9621
9622 -- Start of processing for Use_One_Package
9623
9624 begin
9625 -- Use_One_Package may have been called recursively to handle an
9626 -- implicit use for a auxiliary system package, so set P accordingly
9627 -- and skip redundancy checks.
9628
9629 if No (Pack_Name) and then Present_System_Aux (N) then
9630 P := System_Aux_Id;
9631
9632 -- Check for redundant use_package_clauses
9633
9634 else
9635 -- Ignore cases where we are dealing with a non user defined package
9636 -- like Standard_Standard or something other than a valid package.
9637
9638 if not Is_Entity_Name (Pack_Name)
9639 or else No (Entity (Pack_Name))
9640 or else Ekind (Entity (Pack_Name)) /= E_Package
9641 then
9642 return;
9643 end if;
9644
9645 -- When a renaming exists we must check it for redundancy. The
9646 -- original package would have already been seen at this point.
9647
9648 if Present (Renamed_Object (Entity (Pack_Name))) then
9649 P := Renamed_Object (Entity (Pack_Name));
9650 else
9651 P := Entity (Pack_Name);
9652 end if;
9653
9654 -- Check for redundant clauses then set the current use clause for
9655 -- P if were are not "forcing" an installation from a scope
9656 -- reinstallation that is done throughout analysis for various
9657 -- reasons.
9658
9659 if In_Use (P) then
9660 Note_Redundant_Use (Pack_Name);
9661
9662 if not Force then
9663 Set_Current_Use_Clause (P, N);
9664 end if;
9665
9666 return;
9667
9668 -- Warn about detected redundant clauses
9669
9670 elsif not Force
9671 and then In_Open_Scopes (P)
9672 and then not Is_Hidden_Open_Scope (P)
9673 then
9674 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9675 Error_Msg_NE -- CODEFIX
9676 ("& is already use-visible within itself?r?",
9677 Pack_Name, P);
9678 end if;
9679
9680 return;
9681 end if;
9682
9683 -- Set P back to the non-renamed package so that visiblilty of the
9684 -- entities within the package can be properly set below.
9685
9686 P := Entity (Pack_Name);
9687 end if;
9688
9689 Set_In_Use (P);
9690 Set_Current_Use_Clause (P, N);
9691
9692 -- Ada 2005 (AI-50217): Check restriction
9693
9694 if From_Limited_With (P) then
9695 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9696 end if;
9697
9698 -- Find enclosing instance, if any
9699
9700 if In_Instance then
9701 Current_Instance := Current_Scope;
9702 while not Is_Generic_Instance (Current_Instance) loop
9703 Current_Instance := Scope (Current_Instance);
9704 end loop;
9705
9706 if No (Hidden_By_Use_Clause (N)) then
9707 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9708 end if;
9709 end if;
9710
9711 -- If unit is a package renaming, indicate that the renamed package is
9712 -- also in use (the flags on both entities must remain consistent, and a
9713 -- subsequent use of either of them should be recognized as redundant).
9714
9715 if Present (Renamed_Object (P)) then
9716 Set_In_Use (Renamed_Object (P));
9717 Set_Current_Use_Clause (Renamed_Object (P), N);
9718 Real_P := Renamed_Object (P);
9719 else
9720 Real_P := P;
9721 end if;
9722
9723 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9724 -- found in the private part of a package specification
9725
9726 if In_Private_Part (Current_Scope)
9727 and then Has_Private_With (P)
9728 and then Is_Child_Unit (Current_Scope)
9729 and then Is_Child_Unit (P)
9730 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9731 then
9732 Private_With_OK := True;
9733 end if;
9734
9735 -- Loop through entities in one package making them potentially
9736 -- use-visible.
9737
9738 Id := First_Entity (P);
9739 while Present (Id)
9740 and then (Id /= First_Private_Entity (P)
9741 or else Private_With_OK) -- Ada 2005 (AI-262)
9742 loop
9743 Prev := Current_Entity (Id);
9744 while Present (Prev) loop
9745 if Is_Immediately_Visible (Prev)
9746 and then (not Is_Overloadable (Prev)
9747 or else not Is_Overloadable (Id)
9748 or else (Type_Conformant (Id, Prev)))
9749 then
9750 if No (Current_Instance) then
9751
9752 -- Potentially use-visible entity remains hidden
9753
9754 goto Next_Usable_Entity;
9755
9756 -- A use clause within an instance hides outer global entities,
9757 -- which are not used to resolve local entities in the
9758 -- instance. Note that the predefined entities in Standard
9759 -- could not have been hidden in the generic by a use clause,
9760 -- and therefore remain visible. Other compilation units whose
9761 -- entities appear in Standard must be hidden in an instance.
9762
9763 -- To determine whether an entity is external to the instance
9764 -- we compare the scope depth of its scope with that of the
9765 -- current instance. However, a generic actual of a subprogram
9766 -- instance is declared in the wrapper package but will not be
9767 -- hidden by a use-visible entity. similarly, an entity that is
9768 -- declared in an enclosing instance will not be hidden by an
9769 -- an entity declared in a generic actual, which can only have
9770 -- been use-visible in the generic and will not have hidden the
9771 -- entity in the generic parent.
9772
9773 -- If Id is called Standard, the predefined package with the
9774 -- same name is in the homonym chain. It has to be ignored
9775 -- because it has no defined scope (being the only entity in
9776 -- the system with this mandated behavior).
9777
9778 elsif not Is_Hidden (Id)
9779 and then Present (Scope (Prev))
9780 and then not Is_Wrapper_Package (Scope (Prev))
9781 and then Scope_Depth (Scope (Prev)) <
9782 Scope_Depth (Current_Instance)
9783 and then (Scope (Prev) /= Standard_Standard
9784 or else Sloc (Prev) > Standard_Location)
9785 then
9786 if In_Open_Scopes (Scope (Prev))
9787 and then Is_Generic_Instance (Scope (Prev))
9788 and then Present (Associated_Formal_Package (P))
9789 then
9790 null;
9791
9792 else
9793 Set_Is_Potentially_Use_Visible (Id);
9794 Set_Is_Immediately_Visible (Prev, False);
9795 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9796 end if;
9797 end if;
9798
9799 -- A user-defined operator is not use-visible if the predefined
9800 -- operator for the type is immediately visible, which is the case
9801 -- if the type of the operand is in an open scope. This does not
9802 -- apply to user-defined operators that have operands of different
9803 -- types, because the predefined mixed mode operations (multiply
9804 -- and divide) apply to universal types and do not hide anything.
9805
9806 elsif Ekind (Prev) = E_Operator
9807 and then Operator_Matches_Spec (Prev, Id)
9808 and then In_Open_Scopes
9809 (Scope (Base_Type (Etype (First_Formal (Id)))))
9810 and then (No (Next_Formal (First_Formal (Id)))
9811 or else Etype (First_Formal (Id)) =
9812 Etype (Next_Formal (First_Formal (Id)))
9813 or else Chars (Prev) = Name_Op_Expon)
9814 then
9815 goto Next_Usable_Entity;
9816
9817 -- In an instance, two homonyms may become use_visible through the
9818 -- actuals of distinct formal packages. In the generic, only the
9819 -- current one would have been visible, so make the other one
9820 -- not use_visible.
9821
9822 -- In certain pathological cases it is possible that unrelated
9823 -- homonyms from distinct formal packages may exist in an
9824 -- uninstalled scope. We must test for that here.
9825
9826 elsif Present (Current_Instance)
9827 and then Is_Potentially_Use_Visible (Prev)
9828 and then not Is_Overloadable (Prev)
9829 and then Scope (Id) /= Scope (Prev)
9830 and then Used_As_Generic_Actual (Scope (Prev))
9831 and then Used_As_Generic_Actual (Scope (Id))
9832 and then Is_List_Member (Scope (Prev))
9833 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9834 Current_Use_Clause (Scope (Id)))
9835 then
9836 Set_Is_Potentially_Use_Visible (Prev, False);
9837 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9838 end if;
9839
9840 Prev := Homonym (Prev);
9841 end loop;
9842
9843 -- On exit, we know entity is not hidden, unless it is private
9844
9845 if not Is_Hidden (Id)
9846 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9847 then
9848 Set_Is_Potentially_Use_Visible (Id);
9849
9850 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9851 Set_Is_Potentially_Use_Visible (Full_View (Id));
9852 end if;
9853 end if;
9854
9855 <<Next_Usable_Entity>>
9856 Next_Entity (Id);
9857 end loop;
9858
9859 -- Child units are also made use-visible by a use clause, but they may
9860 -- appear after all visible declarations in the parent entity list.
9861
9862 while Present (Id) loop
9863 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9864 Set_Is_Potentially_Use_Visible (Id);
9865 end if;
9866
9867 Next_Entity (Id);
9868 end loop;
9869
9870 if Chars (Real_P) = Name_System
9871 and then Scope (Real_P) = Standard_Standard
9872 and then Present_System_Aux (N)
9873 then
9874 Use_One_Package (N);
9875 end if;
9876 end Use_One_Package;
9877
9878 ------------------
9879 -- Use_One_Type --
9880 ------------------
9881
9882 procedure Use_One_Type
9883 (Id : Node_Id;
9884 Installed : Boolean := False;
9885 Force : Boolean := False)
9886 is
9887 function Spec_Reloaded_For_Body return Boolean;
9888 -- Determine whether the compilation unit is a package body and the use
9889 -- type clause is in the spec of the same package. Even though the spec
9890 -- was analyzed first, its context is reloaded when analysing the body.
9891
9892 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9893 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9894 -- class-wide operations of ancestor types are use-visible if the
9895 -- ancestor type is visible.
9896
9897 ----------------------------
9898 -- Spec_Reloaded_For_Body --
9899 ----------------------------
9900
9901 function Spec_Reloaded_For_Body return Boolean is
9902 begin
9903 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9904 declare
9905 Spec : constant Node_Id :=
9906 Parent (List_Containing (Parent (Id)));
9907
9908 begin
9909 -- Check whether type is declared in a package specification,
9910 -- and current unit is the corresponding package body. The
9911 -- use clauses themselves may be within a nested package.
9912
9913 return
9914 Nkind (Spec) = N_Package_Specification
9915 and then In_Same_Source_Unit
9916 (Corresponding_Body (Parent (Spec)),
9917 Cunit_Entity (Current_Sem_Unit));
9918 end;
9919 end if;
9920
9921 return False;
9922 end Spec_Reloaded_For_Body;
9923
9924 -------------------------------
9925 -- Use_Class_Wide_Operations --
9926 -------------------------------
9927
9928 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9929 function Is_Class_Wide_Operation_Of
9930 (Op : Entity_Id;
9931 T : Entity_Id) return Boolean;
9932 -- Determine whether a subprogram has a class-wide parameter or
9933 -- result that is T'Class.
9934
9935 ---------------------------------
9936 -- Is_Class_Wide_Operation_Of --
9937 ---------------------------------
9938
9939 function Is_Class_Wide_Operation_Of
9940 (Op : Entity_Id;
9941 T : Entity_Id) return Boolean
9942 is
9943 Formal : Entity_Id;
9944
9945 begin
9946 Formal := First_Formal (Op);
9947 while Present (Formal) loop
9948 if Etype (Formal) = Class_Wide_Type (T) then
9949 return True;
9950 end if;
9951
9952 Next_Formal (Formal);
9953 end loop;
9954
9955 if Etype (Op) = Class_Wide_Type (T) then
9956 return True;
9957 end if;
9958
9959 return False;
9960 end Is_Class_Wide_Operation_Of;
9961
9962 -- Local variables
9963
9964 Ent : Entity_Id;
9965 Scop : Entity_Id;
9966
9967 -- Start of processing for Use_Class_Wide_Operations
9968
9969 begin
9970 Scop := Scope (Typ);
9971 if not Is_Hidden (Scop) then
9972 Ent := First_Entity (Scop);
9973 while Present (Ent) loop
9974 if Is_Overloadable (Ent)
9975 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9976 and then not Is_Potentially_Use_Visible (Ent)
9977 then
9978 Set_Is_Potentially_Use_Visible (Ent);
9979 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9980 end if;
9981
9982 Next_Entity (Ent);
9983 end loop;
9984 end if;
9985
9986 if Is_Derived_Type (Typ) then
9987 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9988 end if;
9989 end Use_Class_Wide_Operations;
9990
9991 -- Local variables
9992
9993 Elmt : Elmt_Id;
9994 Is_Known_Used : Boolean;
9995 Op_List : Elist_Id;
9996 T : Entity_Id;
9997
9998 -- Start of processing for Use_One_Type
9999
10000 begin
10001 if Entity (Id) = Any_Type then
10002 return;
10003 end if;
10004
10005 -- It is the type determined by the subtype mark (8.4(8)) whose
10006 -- operations become potentially use-visible.
10007
10008 T := Base_Type (Entity (Id));
10009
10010 -- Either the type itself is used, the package where it is declared is
10011 -- in use or the entity is declared in the current package, thus
10012 -- use-visible.
10013
10014 Is_Known_Used :=
10015 (In_Use (T)
10016 and then ((Present (Current_Use_Clause (T))
10017 and then All_Present (Current_Use_Clause (T)))
10018 or else not All_Present (Parent (Id))))
10019 or else In_Use (Scope (T))
10020 or else Scope (T) = Current_Scope;
10021
10022 Set_Redundant_Use (Id,
10023 Is_Known_Used or else Is_Potentially_Use_Visible (T));
10024
10025 if Ekind (T) = E_Incomplete_Type then
10026 Error_Msg_N ("premature usage of incomplete type", Id);
10027
10028 elsif In_Open_Scopes (Scope (T)) then
10029 null;
10030
10031 -- A limited view cannot appear in a use_type_clause. However, an access
10032 -- type whose designated type is limited has the flag but is not itself
10033 -- a limited view unless we only have a limited view of its enclosing
10034 -- package.
10035
10036 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
10037 Error_Msg_N
10038 ("incomplete type from limited view cannot appear in use clause",
10039 Id);
10040
10041 -- If the use clause is redundant, Used_Operations will usually be
10042 -- empty, but we need to set it to empty here in one case: If we are
10043 -- instantiating a generic library unit, then we install the ancestors
10044 -- of that unit in the scope stack, which involves reprocessing use
10045 -- clauses in those ancestors. Such a use clause will typically have a
10046 -- nonempty Used_Operations unless it was redundant in the generic unit,
10047 -- even if it is redundant at the place of the instantiation.
10048
10049 elsif Redundant_Use (Id) then
10050
10051 -- We must avoid incorrectly setting the Current_Use_Clause when we
10052 -- are working with a redundant clause that has already been linked
10053 -- in the Prev_Use_Clause chain, otherwise the chain will break.
10054
10055 if Present (Current_Use_Clause (T))
10056 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
10057 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
10058 then
10059 null;
10060 else
10061 Set_Current_Use_Clause (T, Parent (Id));
10062 end if;
10063
10064 Set_Used_Operations (Parent (Id), New_Elmt_List);
10065
10066 -- If the subtype mark designates a subtype in a different package,
10067 -- we have to check that the parent type is visible, otherwise the
10068 -- use_type_clause is a no-op. Not clear how to do that???
10069
10070 else
10071 Set_Current_Use_Clause (T, Parent (Id));
10072 Set_In_Use (T);
10073
10074 -- If T is tagged, primitive operators on class-wide operands are
10075 -- also deemed available. Note that this is really necessary only
10076 -- in semantics-only mode, because the primitive operators are not
10077 -- fully constructed in this mode, but we do it in all modes for the
10078 -- sake of uniformity, as this should not matter in practice.
10079
10080 if Is_Tagged_Type (T) then
10081 Set_In_Use (Class_Wide_Type (T));
10082 end if;
10083
10084 -- Iterate over primitive operations of the type. If an operation is
10085 -- already use_visible, it is the result of a previous use_clause,
10086 -- and already appears on the corresponding entity chain. If the
10087 -- clause is being reinstalled, operations are already use-visible.
10088
10089 if Installed then
10090 null;
10091
10092 else
10093 Op_List := Collect_Primitive_Operations (T);
10094 Elmt := First_Elmt (Op_List);
10095 while Present (Elmt) loop
10096 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
10097 or else Chars (Node (Elmt)) in Any_Operator_Name)
10098 and then not Is_Hidden (Node (Elmt))
10099 and then not Is_Potentially_Use_Visible (Node (Elmt))
10100 then
10101 Set_Is_Potentially_Use_Visible (Node (Elmt));
10102 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
10103
10104 elsif Ada_Version >= Ada_2012
10105 and then All_Present (Parent (Id))
10106 and then not Is_Hidden (Node (Elmt))
10107 and then not Is_Potentially_Use_Visible (Node (Elmt))
10108 then
10109 Set_Is_Potentially_Use_Visible (Node (Elmt));
10110 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
10111 end if;
10112
10113 Next_Elmt (Elmt);
10114 end loop;
10115 end if;
10116
10117 if Ada_Version >= Ada_2012
10118 and then All_Present (Parent (Id))
10119 and then Is_Tagged_Type (T)
10120 then
10121 Use_Class_Wide_Operations (T);
10122 end if;
10123 end if;
10124
10125 -- If warning on redundant constructs, check for unnecessary WITH
10126
10127 if not Force
10128 and then Warn_On_Redundant_Constructs
10129 and then Is_Known_Used
10130
10131 -- with P; with P; use P;
10132 -- package P is package X is package body X is
10133 -- type T ... use P.T;
10134
10135 -- The compilation unit is the body of X. GNAT first compiles the
10136 -- spec of X, then proceeds to the body. At that point P is marked
10137 -- as use visible. The analysis then reinstalls the spec along with
10138 -- its context. The use clause P.T is now recognized as redundant,
10139 -- but in the wrong context. Do not emit a warning in such cases.
10140 -- Do not emit a warning either if we are in an instance, there is
10141 -- no redundancy between an outer use_clause and one that appears
10142 -- within the generic.
10143
10144 and then not Spec_Reloaded_For_Body
10145 and then not In_Instance
10146 and then not In_Inlined_Body
10147 then
10148 -- The type already has a use clause
10149
10150 if In_Use (T) then
10151
10152 -- Case where we know the current use clause for the type
10153
10154 if Present (Current_Use_Clause (T)) then
10155 Use_Clause_Known : declare
10156 Clause1 : constant Node_Id :=
10157 Find_Most_Prev (Current_Use_Clause (T));
10158 Clause2 : constant Node_Id := Parent (Id);
10159 Ent1 : Entity_Id;
10160 Ent2 : Entity_Id;
10161 Err_No : Node_Id;
10162 Unit1 : Node_Id;
10163 Unit2 : Node_Id;
10164
10165 -- Start of processing for Use_Clause_Known
10166
10167 begin
10168 -- If both current use_type_clause and the use_type_clause
10169 -- for the type are at the compilation unit level, one of
10170 -- the units must be an ancestor of the other, and the
10171 -- warning belongs on the descendant.
10172
10173 if Nkind (Parent (Clause1)) = N_Compilation_Unit
10174 and then
10175 Nkind (Parent (Clause2)) = N_Compilation_Unit
10176 then
10177 -- If the unit is a subprogram body that acts as spec,
10178 -- the context clause is shared with the constructed
10179 -- subprogram spec. Clearly there is no redundancy.
10180
10181 if Clause1 = Clause2 then
10182 return;
10183 end if;
10184
10185 Unit1 := Unit (Parent (Clause1));
10186 Unit2 := Unit (Parent (Clause2));
10187
10188 -- If both clauses are on same unit, or one is the body
10189 -- of the other, or one of them is in a subunit, report
10190 -- redundancy on the later one.
10191
10192 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
10193 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10194 Error_Msg_NE -- CODEFIX
10195 ("& is already use-visible through previous "
10196 & "use_type_clause #??", Clause1, T);
10197 return;
10198
10199 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
10200 and then Nkind (Unit1) /= Nkind (Unit2)
10201 and then Nkind (Unit1) /= N_Subunit
10202 then
10203 Error_Msg_Sloc := Sloc (Clause1);
10204 Error_Msg_NE -- CODEFIX
10205 ("& is already use-visible through previous "
10206 & "use_type_clause #??", Current_Use_Clause (T), T);
10207 return;
10208 end if;
10209
10210 -- There is a redundant use_type_clause in a child unit.
10211 -- Determine which of the units is more deeply nested.
10212 -- If a unit is a package instance, retrieve the entity
10213 -- and its scope from the instance spec.
10214
10215 Ent1 := Entity_Of_Unit (Unit1);
10216 Ent2 := Entity_Of_Unit (Unit2);
10217
10218 if Scope (Ent2) = Standard_Standard then
10219 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10220 Err_No := Clause1;
10221
10222 elsif Scope (Ent1) = Standard_Standard then
10223 Error_Msg_Sloc := Sloc (Id);
10224 Err_No := Clause2;
10225
10226 -- If both units are child units, we determine which one
10227 -- is the descendant by the scope distance to the
10228 -- ultimate parent unit.
10229
10230 else
10231 declare
10232 S1 : Entity_Id;
10233 S2 : Entity_Id;
10234
10235 begin
10236 S1 := Scope (Ent1);
10237 S2 := Scope (Ent2);
10238 while Present (S1)
10239 and then Present (S2)
10240 and then S1 /= Standard_Standard
10241 and then S2 /= Standard_Standard
10242 loop
10243 S1 := Scope (S1);
10244 S2 := Scope (S2);
10245 end loop;
10246
10247 if S1 = Standard_Standard then
10248 Error_Msg_Sloc := Sloc (Id);
10249 Err_No := Clause2;
10250 else
10251 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10252 Err_No := Clause1;
10253 end if;
10254 end;
10255 end if;
10256
10257 if Parent (Id) /= Err_No then
10258 if Most_Descendant_Use_Clause
10259 (Err_No, Parent (Id)) = Parent (Id)
10260 then
10261 Error_Msg_Sloc := Sloc (Err_No);
10262 Err_No := Parent (Id);
10263 end if;
10264
10265 Error_Msg_NE -- CODEFIX
10266 ("& is already use-visible through previous "
10267 & "use_type_clause #??", Err_No, Id);
10268 end if;
10269
10270 -- Case where current use_type_clause and use_type_clause
10271 -- for the type are not both at the compilation unit level.
10272 -- In this case we don't have location information.
10273
10274 else
10275 Error_Msg_NE -- CODEFIX
10276 ("& is already use-visible through previous "
10277 & "use_type_clause??", Id, T);
10278 end if;
10279 end Use_Clause_Known;
10280
10281 -- Here if Current_Use_Clause is not set for T, another case where
10282 -- we do not have the location information available.
10283
10284 else
10285 Error_Msg_NE -- CODEFIX
10286 ("& is already use-visible through previous "
10287 & "use_type_clause??", Id, T);
10288 end if;
10289
10290 -- The package where T is declared is already used
10291
10292 elsif In_Use (Scope (T)) then
10293 -- Due to expansion of contracts we could be attempting to issue
10294 -- a spurious warning - so verify there is a previous use clause.
10295
10296 if Current_Use_Clause (Scope (T)) /=
10297 Find_Most_Prev (Current_Use_Clause (Scope (T)))
10298 then
10299 Error_Msg_Sloc :=
10300 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10301 Error_Msg_NE -- CODEFIX
10302 ("& is already use-visible through package use clause #??",
10303 Id, T);
10304 end if;
10305
10306 -- The current scope is the package where T is declared
10307
10308 else
10309 Error_Msg_Node_2 := Scope (T);
10310 Error_Msg_NE -- CODEFIX
10311 ("& is already use-visible inside package &??", Id, T);
10312 end if;
10313 end if;
10314 end Use_One_Type;
10315
10316 ----------------
10317 -- Write_Info --
10318 ----------------
10319
10320 procedure Write_Info is
10321 Id : Entity_Id := First_Entity (Current_Scope);
10322
10323 begin
10324 -- No point in dumping standard entities
10325
10326 if Current_Scope = Standard_Standard then
10327 return;
10328 end if;
10329
10330 Write_Str ("========================================================");
10331 Write_Eol;
10332 Write_Str (" Defined Entities in ");
10333 Write_Name (Chars (Current_Scope));
10334 Write_Eol;
10335 Write_Str ("========================================================");
10336 Write_Eol;
10337
10338 if No (Id) then
10339 Write_Str ("-- none --");
10340 Write_Eol;
10341
10342 else
10343 while Present (Id) loop
10344 Write_Entity_Info (Id, " ");
10345 Next_Entity (Id);
10346 end loop;
10347 end if;
10348
10349 if Scope (Current_Scope) = Standard_Standard then
10350
10351 -- Print information on the current unit itself
10352
10353 Write_Entity_Info (Current_Scope, " ");
10354 end if;
10355
10356 Write_Eol;
10357 end Write_Info;
10358
10359 --------
10360 -- ws --
10361 --------
10362
10363 procedure ws is
10364 S : Entity_Id;
10365 begin
10366 for J in reverse 1 .. Scope_Stack.Last loop
10367 S := Scope_Stack.Table (J).Entity;
10368 Write_Int (Int (S));
10369 Write_Str (" === ");
10370 Write_Name (Chars (S));
10371 Write_Eol;
10372 end loop;
10373 end ws;
10374
10375 --------
10376 -- we --
10377 --------
10378
10379 procedure we (S : Entity_Id) is
10380 E : Entity_Id;
10381 begin
10382 E := First_Entity (S);
10383 while Present (E) loop
10384 Write_Int (Int (E));
10385 Write_Str (" === ");
10386 Write_Name (Chars (E));
10387 Write_Eol;
10388 Next_Entity (E);
10389 end loop;
10390 end we;
10391 end Sem_Ch8;