]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_util.ads
exp_atag.ads, [...]: Replace headers with GPL v3 headers.
[thirdparty/gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Namet; use Namet;
30 with Nmake;
31 with Types; use Types;
32 with Uintp; use Uintp;
33 with Urealp; use Urealp;
34
35 package Sem_Util is
36
37 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
38 -- Given a type that implements interfaces look for its associated
39 -- definition node and return its list of interfaces.
40
41 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
42 -- Add A to the list of access types to process when expanding the
43 -- freeze node of E.
44
45 procedure Add_Global_Declaration (N : Node_Id);
46 -- These procedures adds a declaration N at the library level, to be
47 -- elaborated before any other code in the unit. It is used for example
48 -- for the entity that marks whether a unit has been elaborated. The
49 -- declaration is added to the Declarations list of the Aux_Decls_Node
50 -- for the current unit. The declarations are added in the current scope,
51 -- so the caller should push a new scope as required before the call.
52
53 function Alignment_In_Bits (E : Entity_Id) return Uint;
54 -- If the alignment of the type or object E is currently known to the
55 -- compiler, then this function returns the alignment value in bits.
56 -- Otherwise Uint_0 is returned, indicating that the alignment of the
57 -- entity is not yet known to the compiler.
58
59 procedure Apply_Compile_Time_Constraint_Error
60 (N : Node_Id;
61 Msg : String;
62 Reason : RT_Exception_Code;
63 Ent : Entity_Id := Empty;
64 Typ : Entity_Id := Empty;
65 Loc : Source_Ptr := No_Location;
66 Rep : Boolean := True;
67 Warn : Boolean := False);
68 -- N is a subexpression which will raise constraint error when evaluated
69 -- at runtime. Msg is a message that explains the reason for raising the
70 -- exception. The last character is ? if the message is always a warning,
71 -- even in Ada 95, and is not a ? if the message represents an illegality
72 -- (because of violation of static expression rules) in Ada 95 (but not
73 -- in Ada 83). Typically this routine posts all messages at the Sloc of
74 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
75 -- the message. After posting the appropriate message, and if the flag
76 -- Rep is set, this routine replaces the expression with an appropriate
77 -- N_Raise_Constraint_Error node using the given Reason code. This node
78 -- is then marked as being static if the original node is static, but
79 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
80 -- The error message may contain a } or & insertion character. This
81 -- normally references Etype (N), unless the Ent argument is given
82 -- explicitly, in which case it is used instead. The type of the raise
83 -- node that is built is normally Etype (N), but if the Typ parameter
84 -- is present, this is used instead. Warn is normally False. If it is
85 -- True then the message is treated as a warning even though it does
86 -- not end with a ? (this is used when the caller wants to parametrize
87 -- whether an error or warning is given.
88
89 function Build_Actual_Subtype
90 (T : Entity_Id;
91 N : Node_Or_Entity_Id) return Node_Id;
92 -- Build an anonymous subtype for an entity or expression, using the
93 -- bounds of the entity or the discriminants of the enclosing record.
94 -- T is the type for which the actual subtype is required, and N is either
95 -- a defining identifier, or any subexpression.
96
97 function Build_Actual_Subtype_Of_Component
98 (T : Entity_Id;
99 N : Node_Id) return Node_Id;
100 -- Determine whether a selected component has a type that depends on
101 -- discriminants, and build actual subtype for it if so.
102
103 function Build_Default_Subtype
104 (T : Entity_Id;
105 N : Node_Id) return Entity_Id;
106 -- If T is an unconstrained type with defaulted discriminants, build a
107 -- subtype constrained by the default values, insert the subtype
108 -- declaration in the tree before N, and return the entity of that
109 -- subtype. Otherwise, simply return T.
110
111 function Build_Discriminal_Subtype_Of_Component
112 (T : Entity_Id) return Node_Id;
113 -- Determine whether a record component has a type that depends on
114 -- discriminants, and build actual subtype for it if so.
115
116 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
117 -- Given a compilation unit node N, allocate an elaboration boolean for
118 -- the compilation unit, and install it in the Elaboration_Entity field
119 -- of Spec_Id, the entity for the compilation unit.
120
121 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
122 -- Returns True if the expression cannot possibly raise Constraint_Error.
123 -- The response is conservative in the sense that a result of False does
124 -- not necessarily mean that CE could be raised, but a response of True
125 -- means that for sure CE cannot be raised.
126
127 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
128 -- Verify that the full declaration of type T has been seen. If not,
129 -- place error message on node N. Used in object declarations, type
130 -- conversions, qualified expressions.
131
132 procedure Check_Nested_Access (Ent : Entity_Id);
133 -- Check whether Ent denotes an entity declared in an uplevel scope, which
134 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
135 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
136
137 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
138 -- N is one of the statement forms that is a potentially blocking
139 -- operation. If it appears within a protected action, emit warning.
140
141 procedure Check_VMS (Construct : Node_Id);
142 -- Check that this the target is OpenVMS, and if so, return with
143 -- no effect, otherwise post an error noting this can only be used
144 -- with OpenVMS ports. The argument is the construct in question
145 -- and is used to post the error message.
146
147 procedure Collect_Abstract_Interfaces
148 (T : Entity_Id;
149 Ifaces_List : out Elist_Id;
150 Exclude_Parent_Interfaces : Boolean := False;
151 Use_Full_View : Boolean := True);
152 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
153 -- directly or indirectly implemented by T. Exclude_Parent_Interfaces is
154 -- used to avoid addition of inherited interfaces to the generated list.
155 -- Use_Full_View is used to collect the interfaces using the full-view
156 -- (if available).
157
158 procedure Collect_Interface_Components
159 (Tagged_Type : Entity_Id;
160 Components_List : out Elist_Id);
161 -- Ada 2005 (AI-251): Collect all the tag components associated with the
162 -- secondary dispatch tables of a tagged type.
163
164 procedure Collect_Interfaces_Info
165 (T : Entity_Id;
166 Ifaces_List : out Elist_Id;
167 Components_List : out Elist_Id;
168 Tags_List : out Elist_Id);
169 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
170 -- the record component and tag associated with each of these interfaces.
171 -- On exit Ifaces_List, Components_List and Tags_List have the same number
172 -- of elements, and elements at the same position on these tables provide
173 -- information on the same interface type.
174
175 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
176 -- Called upon type derivation and extension. We scan the declarative
177 -- part in which the type appears, and collect subprograms that have
178 -- one subsidiary subtype of the type. These subprograms can only
179 -- appear after the type itself.
180
181 function Compile_Time_Constraint_Error
182 (N : Node_Id;
183 Msg : String;
184 Ent : Entity_Id := Empty;
185 Loc : Source_Ptr := No_Location;
186 Warn : Boolean := False) return Node_Id;
187 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
188 -- generates a warning (or error) message in the same manner, but it does
189 -- not replace any nodes. For convenience, the function always returns its
190 -- first argument. The message is a warning if the message ends with ?, or
191 -- we are operating in Ada 83 mode, or if the Warn parameter is set to
192 -- True.
193
194 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
195 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag
196 -- of Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false);
197
198 function Current_Entity (N : Node_Id) return Entity_Id;
199 -- Find the currently visible definition for a given identifier, that is to
200 -- say the first entry in the visibility chain for the Chars of N.
201
202 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
203 -- Find whether there is a previous definition for identifier N in the
204 -- current scope. Because declarations for a scope are not necessarily
205 -- contiguous (e.g. for packages) the first entry on the visibility chain
206 -- for N is not necessarily in the current scope.
207
208 function Current_Scope return Entity_Id;
209 -- Get entity representing current scope
210
211 function Current_Subprogram return Entity_Id;
212 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
213 -- then that is what is returned, otherwise the Enclosing_Subprogram of
214 -- the Current_Scope is returned. The returned value is Empty if this
215 -- is called from a library package which is not within any subprogram.
216
217 function Defining_Entity (N : Node_Id) return Entity_Id;
218 -- Given a declaration N, returns the associated defining entity. If
219 -- the declaration has a specification, the entity is obtained from
220 -- the specification. If the declaration has a defining unit name,
221 -- then the defining entity is obtained from the defining unit name
222 -- ignoring any child unit prefixes.
223
224 function Denotes_Discriminant
225 (N : Node_Id;
226 Check_Concurrent : Boolean := False) return Boolean;
227 -- Returns True if node N is an Entity_Name node for a discriminant.
228 -- If the flag Check_Concurrent is true, function also returns true
229 -- when N denotes the discriminal of the discriminant of a concurrent
230 -- type. This is necessary to disable some optimizations on private
231 -- components of protected types, and constraint checks on entry
232 -- families constrained by discriminants.
233
234 function Depends_On_Discriminant (N : Node_Id) return Boolean;
235 -- Returns True if N denotes a discriminant or if N is a range, a subtype
236 -- indication or a scalar subtype where one of the bounds is a
237 -- discriminant.
238
239 function Designate_Same_Unit
240 (Name1 : Node_Id;
241 Name2 : Node_Id) return Boolean;
242 -- Return true if Name1 and Name2 designate the same unit name;
243 -- each of these names is supposed to be a selected component name,
244 -- an expanded name, a defining program unit name or an identifier
245
246 function Enclosing_Generic_Body
247 (N : Node_Id) return Node_Id;
248 -- Returns the Node_Id associated with the innermost enclosing
249 -- generic body, if any. If none, then returns Empty.
250
251 function Enclosing_Generic_Unit
252 (N : Node_Id) return Node_Id;
253 -- Returns the Node_Id associated with the innermost enclosing
254 -- generic unit, if any. If none, then returns Empty.
255
256 function Enclosing_Lib_Unit_Entity return Entity_Id;
257 -- Returns the entity of enclosing N_Compilation_Unit Node which is the
258 -- root of the current scope (which must not be Standard_Standard, and
259 -- the caller is responsible for ensuring this condition).
260
261 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
262 -- Returns the enclosing N_Compilation_Unit Node that is the root
263 -- of a subtree containing N.
264
265 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
266 -- Utility function to return the Ada entity of the subprogram enclosing
267 -- the entity E, if any. Returns Empty if no enclosing subprogram.
268
269 procedure Ensure_Freeze_Node (E : Entity_Id);
270 -- Make sure a freeze node is allocated for entity E. If necessary,
271 -- build and initialize a new freeze node and set Has_Delayed_Freeze
272 -- true for entity E.
273
274 procedure Enter_Name (Def_Id : Entity_Id);
275 -- Insert new name in symbol table of current scope with check for
276 -- duplications (error message is issued if a conflict is found)
277 -- Note: Enter_Name is not used for overloadable entities, instead
278 -- these are entered using Sem_Ch6.Enter_Overloadable_Entity.
279
280 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
281 -- This procedure is called after issuing a message complaining
282 -- about an inappropriate use of limited type T. If useful, it
283 -- adds additional continuation lines to the message explaining
284 -- why type T is limited. Messages are placed at node N.
285
286 function Find_Corresponding_Discriminant
287 (Id : Node_Id;
288 Typ : Entity_Id) return Entity_Id;
289 -- Because discriminants may have different names in a generic unit
290 -- and in an instance, they are resolved positionally when possible.
291 -- A reference to a discriminant carries the discriminant that it
292 -- denotes when analyzed. Subsequent uses of this id on a different
293 -- type denote the discriminant at the same position in this new type.
294
295 function Find_Overridden_Synchronized_Primitive
296 (Def_Id : Entity_Id;
297 First_Hom : Entity_Id;
298 Ifaces_List : Elist_Id;
299 In_Scope : Boolean) return Entity_Id;
300 -- Determine whether entry or subprogram Def_Id overrides a primitive
301 -- operation that belongs to one of the interfaces in Ifaces_List. A
302 -- specific homonym chain can be specified by setting First_Hom. Flag
303 -- In_Scope is used to designate whether the entry or subprogram was
304 -- declared inside the scope of the synchronized type or after. Return
305 -- the overridden entity or Empty.
306
307 function First_Actual (Node : Node_Id) return Node_Id;
308 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
309 -- result returned is the first actual parameter in declaration order
310 -- (not the order of parameters as they appeared in the source, which
311 -- can be quite different as a result of the use of named parameters).
312 -- Empty is returned for a call with no parameters. The procedure for
313 -- iterating through the actuals in declaration order is to use this
314 -- function to find the first actual, and then use Next_Actual to obtain
315 -- the next actual in declaration order. Note that the value returned
316 -- is always the expression (not the N_Parameter_Association nodes
317 -- even if named association is used).
318
319 function Full_Qualified_Name (E : Entity_Id) return String_Id;
320 -- Generates the string literal corresponding to the E's full qualified
321 -- name in upper case. An ASCII.NUL is appended as the last character.
322 -- The names in the string are generated by Namet.Get_Decoded_Name_String.
323
324 function Find_Static_Alternative (N : Node_Id) return Node_Id;
325 -- N is a case statement whose expression is a compile-time value.
326 -- Determine the alternative chosen, so that the code of non-selected
327 -- alternatives, and the warnings that may apply to them, are removed.
328
329 procedure Gather_Components
330 (Typ : Entity_Id;
331 Comp_List : Node_Id;
332 Governed_By : List_Id;
333 Into : Elist_Id;
334 Report_Errors : out Boolean);
335 -- The purpose of this procedure is to gather the valid components in a
336 -- record type according to the values of its discriminants, in order to
337 -- validate the components of a record aggregate.
338 --
339 -- Typ is the type of the aggregate when its constrained discriminants
340 -- need to be collected, otherwise it is Empty.
341 --
342 -- Comp_List is an N_Component_List node.
343 --
344 -- Governed_By is a list of N_Component_Association nodes, where each
345 -- choice list contains the name of a discriminant and the expression
346 -- field gives its value. The values of the discriminants governing
347 -- the (possibly nested) variant parts in Comp_List are found in this
348 -- Component_Association List.
349 --
350 -- Into is the list where the valid components are appended. Note that
351 -- Into need not be an Empty list. If it's not, components are attached
352 -- to its tail.
353 --
354 -- Report_Errors is set to True if the values of the discriminants are
355 -- non-static.
356 --
357 -- This procedure is also used when building a record subtype. If the
358 -- discriminant constraint of the subtype is static, the components of the
359 -- subtype are only those of the variants selected by the values of the
360 -- discriminants. Otherwise all components of the parent must be included
361 -- in the subtype for semantic analysis.
362
363 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
364 -- Given a node for an expression, obtain the actual subtype of the
365 -- expression. In the case of a parameter where the formal is an
366 -- unconstrained array or discriminated type, this will be the
367 -- previously constructed subtype of the actual. Note that this is
368 -- not quite the "Actual Subtype" of the RM, since it is always
369 -- a constrained type, i.e. it is the subtype of the value of the
370 -- actual. The actual subtype is also returned in other cases where
371 -- it has already been constructed for an object. Otherwise the
372 -- expression type is returned unchanged, except for the case of an
373 -- unconstrained array type, where an actual subtype is created, using
374 -- Insert_Actions if necessary to insert any associated actions.
375
376 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
377 -- This is like Get_Actual_Subtype, except that it never constructs an
378 -- actual subtype. If an actual subtype is already available, i.e. the
379 -- Actual_Subtype field of the corresponding entity is set, then it is
380 -- returned. Otherwise the Etype of the node is returned.
381
382 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
383 -- This is used to construct the string literal node representing a
384 -- default external name, i.e. one that is constructed from the name
385 -- of an entity, or (in the case of extended DEC import/export pragmas,
386 -- an identifier provided as the external name. Letters in the name are
387 -- according to the setting of Opt.External_Name_Default_Casing.
388
389 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
390 -- Returns the true generic entity in an instantiation. If the name in
391 -- the instantiation is a renaming, the function returns the renamed
392 -- generic.
393
394 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
395 -- This procedure assigns to L and H respectively the values of the
396 -- low and high bounds of node N, which must be a range, subtype
397 -- indication, or the name of a scalar subtype. The result in L, H
398 -- may be set to Error if there was an earlier error in the range.
399
400 function Get_Enum_Lit_From_Pos
401 (T : Entity_Id;
402 Pos : Uint;
403 Loc : Source_Ptr) return Entity_Id;
404 -- This function obtains the E_Enumeration_Literal entity for the
405 -- specified value from the enumneration type or subtype T. The
406 -- second argument is the Pos value, which is assumed to be in range.
407 -- The third argument supplies a source location for constructed
408 -- nodes returned by this function.
409
410 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
411 -- Retrieve the fully expanded name of the library unit declared by
412 -- Decl_Node into the name buffer.
413
414 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
415 -- An entity value is associated with each name in the name table. The
416 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity,
417 -- which is the innermost visible entity with the given name. See the
418 -- body of Sem_Ch8 for further details on handling of entity visibility.
419
420 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
421 -- Given an entity for an exception, package, subprogram or generic unit,
422 -- returns the ultimately renamed entity if this is a renaming. If this is
423 -- not a renamed entity, returns its argument. It is an error to call this
424 -- with any any other kind of entity.
425
426 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
427 -- Nod is either a procedure call statement, or a function call, or
428 -- an accept statement node. This procedure finds the Entity_Id of the
429 -- related subprogram or entry and returns it, or if no subprogram can
430 -- be found, returns Empty.
431
432 function Get_Referenced_Object (N : Node_Id) return Node_Id;
433 -- Given a node, return the renamed object if the node represents
434 -- a renamed object, otherwise return the node unchanged. The node
435 -- may represent an arbitrary expression.
436
437 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
438 -- Given the entity for a subprogram (E_Function or E_Procedure),
439 -- return the corresponding N_Subprogram_Body node. If the corresponding
440 -- body of the declaration is missing (as for an imported subprogram)
441 -- return Empty.
442
443 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
444 pragma Inline (Get_Task_Body_Procedure);
445 -- Given an entity for a task type or subtype, retrieves the
446 -- Task_Body_Procedure field from the corresponding task type
447 -- declaration.
448
449 function Has_Access_Values (T : Entity_Id) return Boolean;
450 -- Returns true if type or subtype T is an access type, or has a
451 -- component (at any recursive level) that is an access type. This
452 -- is a conservative predicate, if it is not known whether or not
453 -- T contains access values (happens for generic formals in some
454 -- cases), then False is returned.
455
456 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
457 -- Result of Has_Compatible_Alignment test, description found below. Note
458 -- that the values are arranged in increasing order of problematicness.
459
460 function Has_Abstract_Interfaces
461 (Tagged_Type : Entity_Id;
462 Use_Full_View : Boolean := True) return Boolean;
463 -- Returns true if Tagged_Type implements some abstract interface. In case
464 -- private types the argument Use_Full_View controls if the check is done
465 -- using its full view (if available).
466
467 function Has_Compatible_Alignment
468 (Obj : Entity_Id;
469 Expr : Node_Id) return Alignment_Result;
470 -- Obj is an object entity, and expr is a node for an object reference. If
471 -- the alignment of the object referenced by Expr is known to be compatible
472 -- with the alignment of Obj (i.e. is larger or the same), then the result
473 -- is Known_Compatible. If the alignment of the object referenced by Expr
474 -- is known to be less than the alignment of Obj, then Known_Incompatible
475 -- is returned. If neither condition can be reliably established at compile
476 -- time, then Unknown is returned. This is used to determine if alignment
477 -- checks are required for address clauses, and also whether copies must
478 -- be made when objects are passed by reference.
479 --
480 -- Note: Known_Incompatible does not mean that at run time the alignment
481 -- of Expr is known to be wrong for Obj, just that it can be determined
482 -- that alignments have been explicitly or implicitly specified which
483 -- are incompatible (whereas Unknown means that even this is not known).
484 -- The appropriate reaction of a caller to Known_Incompatible is to treat
485 -- it as Unknown, but issue a warning that there may be an alignment error.
486
487 function Has_Declarations (N : Node_Id) return Boolean;
488 -- Determines if the node can have declarations
489
490 function Has_Discriminant_Dependent_Constraint
491 (Comp : Entity_Id) return Boolean;
492 -- Returns True if and only if Comp has a constrained subtype
493 -- that depends on a discriminant.
494
495 function Has_Infinities (E : Entity_Id) return Boolean;
496 -- Determines if the range of the floating-point type E includes
497 -- infinities. Returns False if E is not a floating-point type.
498
499 function Has_Null_Exclusion (N : Node_Id) return Boolean;
500 -- Determine whether node N has a null exclusion
501
502 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
503 -- Return True iff type E has preelaborable initialiation as defined in
504 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
505
506 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
507 -- Check if a type has a (sub)component of a private type that has not
508 -- yet received a full declaration.
509
510 function Has_Stream (T : Entity_Id) return Boolean;
511 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or
512 -- in the case of a composite type, has a component for which this
513 -- predicate is True, and if so returns True. Otherwise a result of
514 -- False means that there is no Stream type in sight. For a private
515 -- type, the test is applied to the underlying type (or returns False
516 -- if there is no underlying type).
517
518 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
519 -- Typ must be a composite type (array or record). This function is used
520 -- to check if '=' has to be expanded into a bunch component comparaisons.
521
522 function In_Instance return Boolean;
523 -- Returns True if the current scope is within a generic instance
524
525 function In_Instance_Body return Boolean;
526 -- Returns True if current scope is within the body of an instance, where
527 -- several semantic checks (e.g. accessibility checks) are relaxed.
528
529 function In_Instance_Not_Visible return Boolean;
530 -- Returns True if current scope is with the private part or the body of
531 -- an instance. Other semantic checks are suppressed in this context.
532
533 function In_Instance_Visible_Part return Boolean;
534 -- Returns True if current scope is within the visible part of a package
535 -- instance, where several additional semantic checks apply.
536
537 function In_Package_Body return Boolean;
538 -- Returns True if current scope is within a package body
539
540 function In_Subprogram_Or_Concurrent_Unit return Boolean;
541 -- Determines if the current scope is within a subprogram compilation
542 -- unit (inside a subprogram declaration, subprogram body, or generic
543 -- subprogram declaration) or within a task or protected body. The test
544 -- is for appearing anywhere within such a construct (that is it does not
545 -- need to be directly within).
546
547 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
548 -- Determine whether a declaration occurs within the visible part of a
549 -- package specification. The package must be on the scope stack, and the
550 -- corresponding private part must not.
551
552 procedure Insert_Explicit_Dereference (N : Node_Id);
553 -- In a context that requires a composite or subprogram type and
554 -- where a prefix is an access type, rewrite the access type node
555 -- N (which is the prefix, e.g. of an indexed component) as an
556 -- explicit dereference.
557
558 function Is_AAMP_Float (E : Entity_Id) return Boolean;
559 -- Defined for all type entities. Returns True only for the base type
560 -- of float types with AAMP format. The particular format is determined
561 -- by the Digits_Value value which is 6 for the 32-bit floating point type,
562 -- or 9 for the 48-bit type. This is not an attribute function (like
563 -- VAX_Float) in order to not use up an extra flag and to prevent
564 -- the dependency of Einfo on Targparm which would be required for a
565 -- synthesized attribute.
566
567 function Is_Actual_Parameter (N : Node_Id) return Boolean;
568 -- Determines if N is an actual parameter in a subprogram call
569
570 function Is_Aliased_View (Obj : Node_Id) return Boolean;
571 -- Determine if Obj is an aliased view, i.e. the name of an
572 -- object to which 'Access or 'Unchecked_Access can apply.
573
574 function Is_Ancestor_Package
575 (E1 : Entity_Id;
576 E2 : Entity_Id) return Boolean;
577 -- Determine whether package E1 is an ancestor of E2
578
579 function Is_Atomic_Object (N : Node_Id) return Boolean;
580 -- Determines if the given node denotes an atomic object in the sense
581 -- of the legality checks described in RM C.6(12).
582
583 function Is_Coextension_Root (N : Node_Id) return Boolean;
584 -- Determine whether node N is an allocator which acts as a coextension
585 -- root.
586
587 function Is_Controlling_Limited_Procedure
588 (Proc_Nam : Entity_Id) return Boolean;
589 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
590 -- of a limited interface with a controlling first parameter.
591
592 function Is_Dependent_Component_Of_Mutable_Object
593 (Object : Node_Id) return Boolean;
594 -- Returns True if Object is the name of a subcomponent that
595 -- depends on discriminants of a variable whose nominal subtype
596 -- is unconstrained and not indefinite, and the variable is
597 -- not aliased. Otherwise returns False. The nodes passed
598 -- to this function are assumed to denote objects.
599
600 function Is_Dereferenced (N : Node_Id) return Boolean;
601 -- N is a subexpression node of an access type. This function returns
602 -- true if N appears as the prefix of a node that does a dereference
603 -- of the access value (selected/indexed component, explicit dereference
604 -- or a slice), and false otherwise.
605
606 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
607 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
608 -- This is the RM definition, a type is a descendent of another type if it
609 -- is the same type or is derived from a descendent of the other type.
610
611 function Is_False (U : Uint) return Boolean;
612 -- The argument is a Uint value which is the Boolean'Pos value of a
613 -- Boolean operand (i.e. is either 0 for False, or 1 for True). This
614 -- function simply tests if it is False (i.e. zero)
615
616 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
617 -- Returns True iff the number U is a model number of the fixed-
618 -- point type T, i.e. if it is an exact multiple of Small.
619
620 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
621 -- Typ is a type entity. This function returns true if this type is
622 -- fully initialized, meaning that an object of the type is fully
623 -- initialized. Note that initialization resulting from the use of
624 -- pragma Normalized_Scalars does not count. Note that this is only
625 -- used for the purpose of issuing warnings for objects that are
626 -- potentially referenced uninitialized. This means that the result
627 -- returned is not crucial, but probably should err on the side of
628 -- thinking things are fully initialized if it does not know.
629
630 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
631 -- E is a subprogram. Return True is E is an implicit operation inherited
632 -- by a derived type declarations.
633
634 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
635 -- A library-level declaration is one that is accessible from Standard,
636 -- i.e. a library unit or an entity declared in a library package.
637
638 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
639 -- Determines whether Expr is a refeference to a variable or IN OUT
640 -- mode parameter of the current enclosing subprogram.
641 -- Why are OUT parameters not considered here ???
642
643 function Is_Object_Reference (N : Node_Id) return Boolean;
644 -- Determines if the tree referenced by N represents an object. Both
645 -- variable and constant objects return True (compare Is_Variable).
646
647 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
648 -- Used to test if AV is an acceptable formal for an OUT or IN OUT
649 -- formal. Note that the Is_Variable function is not quite the right
650 -- test because this is a case in which conversions whose expression
651 -- is a variable (in the Is_Variable sense) with a non-tagged type
652 -- target are considered view conversions and hence variables.
653
654 function Is_Parent
655 (E1 : Entity_Id;
656 E2 : Entity_Id) return Boolean;
657 -- Determine whether E1 is a parent of E2. For a concurrent type, the
658 -- parent is the first element of its list of interface types; for other
659 -- types, this function provides the same result as Is_Ancestor.
660
661 function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean;
662 -- Typ is a type entity. This function returns true if this type is
663 -- partly initialized, meaning that an object of the type is at least
664 -- partly initialized (in particular in the record case, that at least
665 -- one component has an initialization expression). Note that
666 -- initialization resulting from the use of pragma Normalized_Scalars does
667 -- not count.
668
669 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
670 -- Determines if type T is a potentially persistent type. A potentially
671 -- persistent type is defined (recursively) as a scalar type, a non-tagged
672 -- record whose components are all of a potentially persistent type, or an
673 -- array with all static constraints whose component type is potentially
674 -- persistent. A private type is potentially persistent if the full type
675 -- is potentially persistent.
676
677 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
678 -- Return True if a compilation unit is the specification or the
679 -- body of a remote call interface package.
680
681 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
682 -- Return True if E is a remote access-to-class-wide type
683
684 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
685 -- Return True if E is a remote access to subprogram type
686
687 function Is_Remote_Call (N : Node_Id) return Boolean;
688 -- Return True if N denotes a potentially remote call
689
690 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
691 -- Return True if Proc_Nam is a procedure renaming of an entry
692
693 function Is_Selector_Name (N : Node_Id) return Boolean;
694 -- Given an N_Identifier node N, determines if it is a Selector_Name.
695 -- As described in Sinfo, Selector_Names are special because they
696 -- represent use of the N_Identifier node for a true identifer, when
697 -- normally such nodes represent a direct name.
698
699 function Is_Statement (N : Node_Id) return Boolean;
700 -- Check if the node N is a statement node. Note that this includes
701 -- the case of procedure call statements (unlike the direct use of
702 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
703 -- Note that a label is *not* a statement, and will return False.
704
705 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
706 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
707
708 function Is_Transfer (N : Node_Id) return Boolean;
709 -- Returns True if the node N is a statement which is known to cause
710 -- an unconditional transfer of control at runtime, i.e. the following
711 -- statement definitely will not be executed.
712
713 function Is_True (U : Uint) return Boolean;
714 -- The argument is a Uint value which is the Boolean'Pos value of a
715 -- Boolean operand (i.e. is either 0 for False, or 1 for True). This
716 -- function simply tests if it is True (i.e. non-zero)
717
718 function Is_Value_Type (T : Entity_Id) return Boolean;
719 -- Returns true if type T represents a value type. This is only relevant to
720 -- CIL, will always return false for other targets.
721 -- What is a "value type", since this is not an Ada term, it should be
722 -- defined here ???
723
724 function Is_Variable (N : Node_Id) return Boolean;
725 -- Determines if the tree referenced by N represents a variable, i.e.
726 -- can appear on the left side of an assignment. There is one situation,
727 -- namely formal parameters, in which non-tagged type conversions are
728 -- also considered variables, but Is_Variable returns False for such
729 -- cases, since it has no knowledge of the context. Note that this is
730 -- the point at which Assignment_OK is checked, and True is returned
731 -- for any tree thus marked.
732
733 function Is_Volatile_Object (N : Node_Id) return Boolean;
734 -- Determines if the given node denotes an volatile object in the sense
735 -- of the legality checks described in RM C.6(12). Note that the test
736 -- here is for something actually declared as volatile, not for an object
737 -- that gets treated as volatile (see Einfo.Treat_As_Volatile).
738
739 procedure Kill_Current_Values;
740 -- This procedure is called to clear all constant indications from all
741 -- entities in the current scope and in any parent scopes if the current
742 -- scope is a block or a package (and that recursion continues to the top
743 -- scope that is not a block or a package). This is used when the
744 -- sequential flow-of-control assumption is violated (occurence of a label,
745 -- head of a loop, or start of an exception handler). The effect of the
746 -- call is to clear the Constant_Value field (but we do not need to clear
747 -- the Is_True_Constant flag, since that only gets reset if there really is
748 -- an assignment somewhere in the entity scope). This procedure also calls
749 -- Kill_All_Checks, since this is a special case of needing to forget saved
750 -- values. This procedure also clears Is_Known_Non_Null flags in variables,
751 -- constants or parameters since these are also not known to be valid.
752
753 procedure Kill_Current_Values (Ent : Entity_Id);
754 -- This performs the same processing as described above for the form with
755 -- no argument, but for the specific entity given. The call has no effect
756 -- if the entity Ent is not for an object.
757
758 procedure Kill_Size_Check_Code (E : Entity_Id);
759 -- Called when an address clause or pragma Import is applied to an
760 -- entity. If the entity is a variable or a constant, and size check
761 -- code is present, this size check code is killed, since the object
762 -- will not be allocated by the program.
763
764 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
765 -- The node N is an entity reference. This function determines whether the
766 -- reference is for sure an assignment of the entity, returning True if
767 -- so. This differs from May_Be_Lvalue in that it defaults in the other
768 -- direction. Cases which may possibly be assignments but are not known to
769 -- be may return True from May_Be_Lvalue, but False from this function.
770
771 function Make_Simple_Return_Statement
772 (Sloc : Source_Ptr;
773 Expression : Node_Id := Empty) return Node_Id
774 renames Nmake.Make_Return_Statement;
775 -- See Sinfo. We rename Make_Return_Statement to the correct Ada 2005
776 -- terminology here. Clients should use Make_Simple_Return_Statement.
777
778 Make_Return_Statement : constant := -2 ** 33;
779 -- Attempt to prevent accidental uses of Make_Return_Statement. If this
780 -- and the one in Nmake are both potentially use-visible, it will cause
781 -- a compilation error. Note that type and value are irrelevant.
782
783 N_Return_Statement : constant := -2**33;
784 -- Attempt to prevent accidental uses of N_Return_Statement; similar to
785 -- Make_Return_Statement above.
786
787 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
788 -- Given a node which designates the context of analysis and an origin in
789 -- the tree, traverse from Root_Nod and mark all allocators as either
790 -- dynamic or static depending on Context_Nod. Any erroneous marking is
791 -- cleaned up during resolution.
792
793 function May_Be_Lvalue (N : Node_Id) return Boolean;
794 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
795 -- An lvalue is defined as any expression which appears in a context where
796 -- a name is required by the syntax, and the identity, rather than merely
797 -- the value of the node is needed (for example, the prefix of an Access
798 -- attribute is in this category). Note that, as implied by the name, this
799 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
800 -- it returns True. It tries hard to get the answer right, but it is hard
801 -- to guarantee this in all cases. Note that it is more possible to give
802 -- correct answer if the tree is fully analyzed.
803
804 function Needs_One_Actual (E : Entity_Id) return Boolean;
805 -- Returns True if a function has defaults for all but its first
806 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
807 -- results from an indexing of a function call written in prefix form.
808
809 function New_External_Entity
810 (Kind : Entity_Kind;
811 Scope_Id : Entity_Id;
812 Sloc_Value : Source_Ptr;
813 Related_Id : Entity_Id;
814 Suffix : Character;
815 Suffix_Index : Nat := 0;
816 Prefix : Character := ' ') return Entity_Id;
817 -- This function creates an N_Defining_Identifier node for an internal
818 -- created entity, such as an implicit type or subtype, or a record
819 -- initialization procedure. The entity name is constructed with a call
820 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
821 -- that the generated name may be referenced as a public entry, and the
822 -- Is_Public flag is set if needed (using Set_Public_Status). If the
823 -- entity is for a type or subtype, the size/align fields are initialized
824 -- to unknown (Uint_0).
825
826 function New_Internal_Entity
827 (Kind : Entity_Kind;
828 Scope_Id : Entity_Id;
829 Sloc_Value : Source_Ptr;
830 Id_Char : Character) return Entity_Id;
831 -- This function is similar to New_External_Entity, except that the
832 -- name is constructed by New_Internal_Name (Id_Char). This is used
833 -- when the resulting entity does not have to be referenced as a
834 -- public entity (and in this case Is_Public is not set).
835
836 procedure Next_Actual (Actual_Id : in out Node_Id);
837 pragma Inline (Next_Actual);
838 -- Next_Actual (N) is equivalent to N := Next_Actual (N)
839
840 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
841 -- Find next actual parameter in declaration order. As described for
842 -- First_Actual, this is the next actual in the declaration order, not
843 -- the call order, so this does not correspond to simply taking the
844 -- next entry of the Parameter_Associations list. The argument is an
845 -- actual previously returned by a call to First_Actual or Next_Actual.
846 -- Note that the result produced is always an expression, not a parameter
847 -- assciation node, even if named notation was used.
848
849 procedure Normalize_Actuals
850 (N : Node_Id;
851 S : Entity_Id;
852 Report : Boolean;
853 Success : out Boolean);
854 -- Reorders lists of actuals according to names of formals, value returned
855 -- in Success indicates sucess of reordering. For more details, see body.
856 -- Errors are reported only if Report is set to True.
857
858 procedure Note_Possible_Modification (N : Node_Id);
859 -- This routine is called if the sub-expression N maybe the target of
860 -- an assignment (e.g. it is the left side of an assignment, used as
861 -- an out parameters, or used as prefixes of access attributes). It
862 -- sets May_Be_Modified in the associated entity if there is one,
863 -- taking into account the rule that in the case of renamed objects,
864 -- it is the flag in the renamed object that must be set.
865
866 function Object_Access_Level (Obj : Node_Id) return Uint;
867 -- Return the accessibility level of the view of the object Obj.
868 -- For convenience, qualified expressions applied to object names
869 -- are also allowed as actuals for this function.
870
871 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
872 -- Returns some private component (if any) of the given Type_Id.
873 -- Used to enforce the rules on visibility of operations on composite
874 -- types, that depend on the full view of the component type. For a
875 -- record type there may be several such components, we just return
876 -- the first one.
877
878 procedure Process_End_Label
879 (N : Node_Id;
880 Typ : Character;
881 Ent : Entity_Id);
882 -- N is a node whose End_Label is to be processed, generating all
883 -- appropriate cross-reference entries, and performing style checks
884 -- for any identifier references in the end label. Typ is either
885 -- 'e' or 't indicating the type of the cross-reference entity
886 -- (e for spec, t for body, see Lib.Xref spec for details). The
887 -- parameter Ent gives the entity to which the End_Label refers,
888 -- and to which cross-references are to be generated.
889
890 function Real_Convert (S : String) return Node_Id;
891 -- S is a possibly signed syntactically valid real literal. The result
892 -- returned is an N_Real_Literal node representing the literal value.
893
894 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
895 -- This is used to construct the second argument in a call to Rep_To_Pos
896 -- which is Standard_True if range checks are enabled (E is an entity to
897 -- which the Range_Checks_Suppressed test is applied), and Standard_False
898 -- if range checks are suppressed. Loc is the location for the node that
899 -- is returned (which is a New_Occurrence of the appropriate entity).
900 --
901 -- Note: one might think that it would be fine to always use True and
902 -- to ignore the suppress in this case, but it is generally better to
903 -- believe a request to suppress exceptions if possible, and further
904 -- more there is at least one case in the generated code (the code for
905 -- array assignment in a loop) that depends on this suppression.
906
907 procedure Require_Entity (N : Node_Id);
908 -- N is a node which should have an entity value if it is an entity name.
909 -- If not, then check if there were previous errors. If so, just fill
910 -- in with Any_Id and ignore. Otherwise signal a program error exception.
911 -- This is used as a defense mechanism against ill-formed trees caused by
912 -- previous errors (particularly in -gnatq mode).
913
914 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
915 -- E is a type entity. The result is True when temporaries of this
916 -- type need to be wrapped in a transient scope to be reclaimed
917 -- properly when a secondary stack is in use. Examples of types
918 -- requiring such wrapping are controlled types and variable-sized
919 -- types including unconstrained arrays
920
921 procedure Reset_Analyzed_Flags (N : Node_Id);
922 -- Reset the Analyzed flags in all nodes of the tree whose root is N
923
924 function Safe_To_Capture_Value
925 (N : Node_Id;
926 Ent : Entity_Id;
927 Cond : Boolean := False) return Boolean;
928 -- The caller is interested in capturing a value (either the current value,
929 -- or an indication that the value is non-null) for the given entity Ent.
930 -- This value can only be captured if sequential execution semantics can be
931 -- properly guaranteed so that a subsequent reference will indeed be sure
932 -- that this current value indication is correct. The node N is the
933 -- construct which resulted in the possible capture of the value (this
934 -- is used to check if we are in a conditional).
935 --
936 -- Cond is used to skip the test for being inside a conditional. It is used
937 -- in the case of capturing values from if/while tests, which already do a
938 -- proper job of handling scoping issues without this help.
939 --
940 -- The only entities whose values can be captured are OUT and IN OUT formal
941 -- parameters, and variables unless Cond is True, in which case we also
942 -- allow IN formals, loop parameters and constants, where we cannot ever
943 -- capture actual value information, but we can capture conditional tests.
944
945 function Same_Name (N1, N2 : Node_Id) return Boolean;
946 -- Determine if two (possibly expanded) names are the same name. This is
947 -- a purely syntactic test, and N1 and N2 need not be analyzed.
948
949 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
950 -- Determine if Node1 and Node2 are known to designate the same object.
951 -- This is a semantic test and both nodesmust be fully analyzed. A result
952 -- of True is decisively correct. A result of False does not necessarily
953 -- mean that different objects are designated, just that this could not
954 -- be reliably determined at compile time.
955
956 function Same_Type (T1, T2 : Entity_Id) return Boolean;
957 -- Determines if T1 and T2 represent exactly the same type. Two types
958 -- are the same if they are identical, or if one is an unconstrained
959 -- subtype of the other, or they are both common subtypes of the same
960 -- type with identical constraints. The result returned is conservative.
961 -- It is True if the types are known to be the same, but a result of
962 -- False is indecisive (e.g. the compiler may not be able to tell that
963 -- two constraints are identical).
964
965 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
966 -- Determines if Node1 and Node2 are known to be the same value, which is
967 -- true if they are both compile time known values and have the same value,
968 -- or if they are the same object (in the sense of function Same_Object).
969 -- A result of False does not necessarily mean they have different values,
970 -- just that it is not possible to determine they have the same value.
971
972 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
973 -- Determines if the entity Scope1 is the same as Scope2, or if it is
974 -- inside it, where both entities represent scopes. Note that scopes
975 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
976 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
977
978 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
979 -- Like Scope_Within_Or_Same, except that this function returns
980 -- False in the case where Scope1 and Scope2 are the same scope.
981
982 procedure Set_Current_Entity (E : Entity_Id);
983 -- Establish the entity E as the currently visible definition of its
984 -- associated name (i.e. the Node_Id associated with its name)
985
986 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
987 -- This procedure has the same calling sequence as Set_Entity, but
988 -- if Style_Check is set, then it calls a style checking routine which
989 -- can check identifier spelling style.
990
991 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
992 -- Sets the Entity_Id value associated with the given name, which is the
993 -- Id of the innermost visible entity with the given name. See the body
994 -- of package Sem_Ch8 for further details on the handling of visibility.
995
996 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
997 -- The arguments may be parameter associations, whose descendants
998 -- are the optional formal name and the actual parameter. Positional
999 -- parameters are already members of a list, and do not need to be
1000 -- chained separately. See also First_Actual and Next_Actual.
1001
1002 procedure Set_Public_Status (Id : Entity_Id);
1003 -- If an entity (visible or otherwise) is defined in a library
1004 -- package, or a package that is itself public, then this subprogram
1005 -- labels the entity public as well.
1006
1007 procedure Set_Scope_Is_Transient (V : Boolean := True);
1008 -- Set the flag Is_Transient of the current scope
1009
1010 procedure Set_Size_Info (T1, T2 : Entity_Id);
1011 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1012 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1013 -- in the fixed-point and discrete cases, and also copies the alignment
1014 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1015 -- separately set if this is required to be copied also.
1016
1017 function Scope_Is_Transient return Boolean;
1018 -- True if the current scope is transient
1019
1020 function Static_Integer (N : Node_Id) return Uint;
1021 -- This function analyzes the given expression node and then resolves it
1022 -- as any integer type. If the result is static, then the value of the
1023 -- universal expression is returned, otherwise an error message is output
1024 -- and a value of No_Uint is returned.
1025
1026 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1027 -- Return True if it can be statically determined that the Expressions
1028 -- E1 and E2 refer to different objects
1029
1030 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1031 -- Return the accessibility level of the view denoted by Subp
1032
1033 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1034 -- Print debugging information on entry to each unit being analyzed
1035
1036 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1037 -- Move a list of entities from one scope to another, and recompute
1038 -- Is_Public based upon the new scope.
1039
1040 function Type_Access_Level (Typ : Entity_Id) return Uint;
1041 -- Return the accessibility level of Typ
1042
1043 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id;
1044 -- Unit_Id is the simple name of a program unit, this function returns the
1045 -- corresponding xxx_Declaration node for the entity. Also applies to the
1046 -- body entities for subprograms, tasks and protected units, in which case
1047 -- it returns the subprogram, task or protected body node for it. The unit
1048 -- may be a child unit with any number of ancestors.
1049
1050 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1051 -- Yields universal_Integer or Universal_Real if this is a candidate
1052
1053 function Unqualify (Expr : Node_Id) return Node_Id;
1054 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)),
1055 -- this returns X. If Expr is not a qualified expression, returns Expr.
1056
1057 function Within_Init_Proc return Boolean;
1058 -- Determines if Current_Scope is within an init proc
1059
1060 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1061 -- Output error message for incorrectly typed expression. Expr is the
1062 -- node for the incorrectly typed construct (Etype (Expr) is the type
1063 -- found), and Expected_Type is the entity for the expected type. Note
1064 -- that Expr does not have to be a subexpression, anything with an
1065 -- Etype field may be used.
1066
1067 private
1068 pragma Inline (Current_Entity);
1069 pragma Inline (Get_Name_Entity_Id);
1070 pragma Inline (Is_False);
1071 pragma Inline (Is_Statement);
1072 pragma Inline (Is_True);
1073 pragma Inline (Set_Current_Entity);
1074 pragma Inline (Set_Name_Entity_Id);
1075 pragma Inline (Set_Size_Info);
1076 pragma Inline (Unqualify);
1077
1078 end Sem_Util;