]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/types.ads
[Ada] Variable-sized node types
[thirdparty/gcc.git] / gcc / ada / types.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- T Y P E S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- This package contains host independent type definitions which are used
27 -- in more than one unit in the compiler. They are gathered here for easy
28 -- reference, although in some cases the full description is found in the
29 -- relevant module which implements the definition. The main reason that they
30 -- are not in their "natural" specs is that this would cause a lot of inter-
31 -- spec dependencies, and in particular some awkward circular dependencies
32 -- would have to be dealt with.
33
34 -- WARNING: There is a C version of this package. Any changes to this source
35 -- file must be properly reflected in the C header file types.h
36
37 -- Note: the declarations in this package reflect an expectation that the host
38 -- machine has an efficient integer base type with a range at least 32 bits
39 -- 2s-complement. If there are any machines for which this is not a correct
40 -- assumption, a significant number of changes will be required.
41
42 with System;
43 with Unchecked_Conversion;
44 with Unchecked_Deallocation;
45
46 package Types is
47 pragma Preelaborate;
48
49 -------------------------------
50 -- General Use Integer Types --
51 -------------------------------
52
53 type Int is range -2 ** 31 .. +2 ** 31 - 1;
54 -- Signed 32-bit integer
55
56 subtype Nat is Int range 0 .. Int'Last;
57 -- Non-negative Int values
58
59 subtype Pos is Int range 1 .. Int'Last;
60 -- Positive Int values
61
62 type Word is mod 2 ** 32;
63 -- Unsigned 32-bit integer
64
65 type Short is range -32768 .. +32767;
66 for Short'Size use 16;
67 -- 16-bit signed integer
68
69 type Byte is mod 2 ** 8;
70 for Byte'Size use 8;
71 -- 8-bit unsigned integer
72
73 type size_t is mod 2 ** Standard'Address_Size;
74 -- Memory size value, for use in calls to C routines
75
76 --------------------------------------
77 -- 8-Bit Character and String Types --
78 --------------------------------------
79
80 -- We use Standard.Character and Standard.String freely, since we are
81 -- compiling ourselves, and we properly implement the required 8-bit
82 -- character code as required in Ada 95. This section defines a few
83 -- general use constants and subtypes.
84
85 EOF : constant Character := ASCII.SUB;
86 -- The character SUB (16#1A#) is used in DOS and other systems derived
87 -- from DOS (XP, NT etc) to signal the end of a text file. Internally
88 -- all source files are ended by an EOF character, even on Unix systems.
89 -- An EOF character acts as the end of file only as the last character
90 -- of a source buffer, in any other position, it is treated as a blank
91 -- if it appears between tokens, and as an illegal character otherwise.
92 -- This makes life easier dealing with files that originated from DOS,
93 -- including concatenated files with interspersed EOF characters.
94
95 subtype Graphic_Character is Character range ' ' .. '~';
96 -- Graphic characters, as defined in ARM
97
98 subtype Line_Terminator is Character range ASCII.LF .. ASCII.CR;
99 -- Line terminator characters (LF, VT, FF, CR). For further details, see
100 -- the extensive discussion of line termination in the Sinput spec.
101
102 subtype Upper_Half_Character is
103 Character range Character'Val (16#80#) .. Character'Val (16#FF#);
104 -- 8-bit Characters with the upper bit set
105
106 type Character_Ptr is access all Character;
107 type String_Ptr is access all String;
108 type String_Ptr_Const is access constant String;
109 -- Standard character and string pointers
110
111 procedure Free is new Unchecked_Deallocation (String, String_Ptr);
112 -- Procedure for freeing dynamically allocated String values
113
114 subtype Big_String is String (Positive);
115 type Big_String_Ptr is access all Big_String;
116 -- Virtual type for handling imported big strings. Note that we should
117 -- never have any allocators for this type, but we don't give a storage
118 -- size of zero, since there are legitimate deallocations going on.
119
120 function To_Big_String_Ptr is
121 new Unchecked_Conversion (System.Address, Big_String_Ptr);
122 -- Used to obtain Big_String_Ptr values from external addresses
123
124 subtype Word_Hex_String is String (1 .. 8);
125 -- Type used to represent Word value as 8 hex digits, with lower case
126 -- letters for the alphabetic cases.
127
128 function Get_Hex_String (W : Word) return Word_Hex_String;
129 -- Convert word value to 8-character hex string
130
131 -----------------------------------------
132 -- Types Used for Text Buffer Handling --
133 -----------------------------------------
134
135 -- We cannot use type String for text buffers, since we must use the
136 -- standard 32-bit integer as an index value, since we count on all index
137 -- values being the same size.
138
139 type Text_Ptr is new Int;
140 -- Type used for subscripts in text buffer
141
142 type Text_Buffer is array (Text_Ptr range <>) of Character;
143 -- Text buffer used to hold source file or library information file
144
145 type Text_Buffer_Ptr is access all Text_Buffer;
146 -- Text buffers for input files are allocated dynamically and this type
147 -- is used to reference these text buffers.
148
149 procedure Free is new Unchecked_Deallocation (Text_Buffer, Text_Buffer_Ptr);
150 -- Procedure for freeing dynamically allocated text buffers
151
152 ------------------------------------------
153 -- Types Used for Source Input Handling --
154 ------------------------------------------
155
156 type Logical_Line_Number is range 0 .. Int'Last;
157 for Logical_Line_Number'Size use 32;
158 -- Line number type, used for storing logical line numbers (i.e. line
159 -- numbers that include effects of any Source_Reference pragmas in the
160 -- source file). The value zero indicates a line containing a source
161 -- reference pragma.
162
163 No_Line_Number : constant Logical_Line_Number := 0;
164 -- Special value used to indicate no line number
165
166 type Physical_Line_Number is range 1 .. Int'Last;
167 for Physical_Line_Number'Size use 32;
168 -- Line number type, used for storing physical line numbers (i.e. line
169 -- numbers in the physical file being compiled, unaffected by the presence
170 -- of source reference pragmas).
171
172 type Column_Number is range 0 .. 32767;
173 for Column_Number'Size use 16;
174 -- Column number (assume that 2**15 - 1 is large enough). The range for
175 -- this type is used to compute Hostparm.Max_Line_Length. See also the
176 -- processing for -gnatyM in Stylesw).
177
178 No_Column_Number : constant Column_Number := 0;
179 -- Special value used to indicate no column number
180
181 Source_Align : constant := 2 ** 12;
182 -- Alignment requirement for source buffers (by keeping source buffers
183 -- aligned, we can optimize the implementation of Get_Source_File_Index.
184 -- See this routine in Sinput for details.
185
186 subtype Source_Buffer is Text_Buffer;
187 -- Type used to store text of a source file. The buffer for the main
188 -- source (the source specified on the command line) has a lower bound
189 -- starting at zero. Subsequent subsidiary sources have lower bounds
190 -- which are one greater than the previous upper bound, rounded up to
191 -- a multiple of Source_Align.
192
193 type Source_Buffer_Ptr_Var is access all Source_Buffer;
194 type Source_Buffer_Ptr is access constant Source_Buffer;
195 -- Pointer to source buffer. Source_Buffer_Ptr_Var is used for allocation
196 -- and deallocation; Source_Buffer_Ptr is used for all other uses of source
197 -- buffers.
198
199 function Null_Source_Buffer_Ptr (X : Source_Buffer_Ptr) return Boolean;
200 -- True if X = null
201
202 function Source_Buffer_Ptr_Equal (X, Y : Source_Buffer_Ptr) return Boolean
203 renames "=";
204 -- Squirrel away the predefined "=", for use in Null_Source_Buffer_Ptr.
205 -- Do not call this elsewhere.
206
207 function "=" (X, Y : Source_Buffer_Ptr) return Boolean is abstract;
208 -- Make "=" abstract. Note that this makes "/=" abstract as well. This is a
209 -- vestige of the zero-origin array indexing we used to use, where "=" is
210 -- always wrong (including the one in Null_Source_Buffer_Ptr). We keep this
211 -- just because we never need to compare Source_Buffer_Ptrs other than to
212 -- null.
213
214 subtype Source_Ptr is Text_Ptr;
215 -- Type used to represent a source location, which is a subscript of a
216 -- character in the source buffer. As noted above, different source buffers
217 -- have different ranges, so it is possible to tell from a Source_Ptr value
218 -- which source it refers to. Note that negative numbers are allowed to
219 -- accommodate the following special values.
220
221 type Source_Span is record
222 Ptr, First, Last : Source_Ptr;
223 end record;
224 -- Type used to represent a source span, consisting in a main location Ptr,
225 -- with a First and Last location, such that Ptr in First .. Last
226
227 function To_Span (Loc : Source_Ptr) return Source_Span is ((others => Loc));
228 function To_Span (Ptr, First, Last : Source_Ptr) return Source_Span is
229 ((Ptr, First, Last));
230
231 No_Location : constant Source_Ptr := -1;
232 -- Value used to indicate no source position set in a node. A test for a
233 -- Source_Ptr value being > No_Location is the approved way to test for a
234 -- standard value that does not include No_Location or any of the following
235 -- special definitions. One important use of No_Location is to label
236 -- generated nodes that we don't want the debugger to see in normal mode
237 -- (very often we conditionalize so that we set No_Location in normal mode
238 -- and the corresponding source line in -gnatD mode).
239
240 Standard_Location : constant Source_Ptr := -2;
241 -- Used for all nodes in the representation of package Standard other than
242 -- nodes representing the contents of Standard.ASCII. Note that testing for
243 -- a value being <= Standard_Location tests for both Standard_Location and
244 -- for Standard_ASCII_Location.
245
246 Standard_ASCII_Location : constant Source_Ptr := -3;
247 -- Used for all nodes in the presentation of package Standard.ASCII
248
249 System_Location : constant Source_Ptr := -4;
250 -- Used to identify locations of pragmas scanned by Targparm, where we know
251 -- the location is in System, but we don't know exactly what line.
252
253 First_Source_Ptr : constant Source_Ptr := 0;
254 -- Starting source pointer index value for first source program
255
256 -------------------------------------
257 -- Range Definitions for Tree Data --
258 -------------------------------------
259
260 -- The tree has fields that can hold any of the following types:
261
262 -- Pointers to other tree nodes (type Node_Id)
263 -- List pointers (type List_Id)
264 -- Element list pointers (type Elist_Id)
265 -- Names (type Name_Id)
266 -- Strings (type String_Id)
267 -- Universal integers (type Uint)
268 -- Universal reals (type Ureal)
269
270 -- These types are represented as integer indices into various tables.
271 -- However, they should be treated as private, except in a few documented
272 -- cases. In particular it is usually inappropriate to perform arithmetic
273 -- operations using these types. One exception is in computing hash
274 -- functions of these types.
275
276 -- In most contexts, the strongly typed interface determines which of these
277 -- types is present. However, there are some situations (involving untyped
278 -- traversals of the tree), where it is convenient to be easily able to
279 -- distinguish these values. The underlying representation in all cases is
280 -- an integer type Union_Id, and we ensure that the range of the various
281 -- possible values for each of the above types is disjoint (except that
282 -- List_Id and Node_Id overlap at Empty) so that this distinction is
283 -- possible.
284
285 -- Note: it is also helpful for debugging purposes to make these ranges
286 -- distinct. If a bug leads to misidentification of a value, then it will
287 -- typically result in an out of range value and a Constraint_Error.
288
289 -- The range of Node_Id is most of the nonnegative integers. The other
290 -- ranges are negative. Uint has a very large range, because a substantial
291 -- part of this range is used to store direct values; see Uintp for
292 -- details. The other types have 100 million values, which should be
293 -- plenty.
294
295 type Union_Id is new Int;
296 -- The type in the tree for a union of possible ID values
297
298 -- Following are the Low and High bounds of the various ranges.
299
300 List_Low_Bound : constant := -099_999_999;
301 -- The List_Id values are subscripts into an array of list headers which
302 -- has List_Low_Bound as its lower bound.
303
304 List_High_Bound : constant := 0;
305 -- Maximum List_Id subscript value. The ranges of List_Id and Node_Id
306 -- overlap by one element (with value zero), which is used both for the
307 -- Empty node, and for No_List. The fact that the same value is used is
308 -- convenient because it means that the default value of Empty applies to
309 -- both nodes and lists, and also is more efficient to test for.
310
311 Node_Low_Bound : constant := 0;
312 -- The tree Id values start at zero, because we use zero for Empty (to
313 -- allow a zero test for Empty).
314
315 Node_High_Bound : constant := 1_999_999_999;
316
317 Elist_Low_Bound : constant := -199_999_999;
318 -- The Elist_Id values are subscripts into an array of elist headers which
319 -- has Elist_Low_Bound as its lower bound.
320
321 Elist_High_Bound : constant := -100_000_000;
322
323 Elmt_Low_Bound : constant := -299_999_999;
324 -- Low bound of element Id values. The use of these values is internal to
325 -- the Elists package, but the definition of the range is included here
326 -- since it must be disjoint from other Id values. The Elmt_Id values are
327 -- subscripts into an array of list elements which has this as lower bound.
328
329 Elmt_High_Bound : constant := -200_000_000;
330
331 Names_Low_Bound : constant := -399_999_999;
332
333 Names_High_Bound : constant := -300_000_000;
334
335 Strings_Low_Bound : constant := -499_999_999;
336
337 Strings_High_Bound : constant := -400_000_000;
338
339 Ureal_Low_Bound : constant := -599_999_999;
340
341 Ureal_High_Bound : constant := -500_000_000;
342
343 Uint_Low_Bound : constant := -2_100_000_000;
344 -- Low bound for Uint values
345
346 Uint_Table_Start : constant := -699_999_999;
347 -- Location where table entries for universal integers start (see
348 -- Uintp spec for details of the representation of Uint values).
349
350 Uint_High_Bound : constant := -600_000_000;
351
352 -- The following subtype definitions are used to provide convenient names
353 -- for membership tests on Int values to see what data type range they
354 -- lie in. Such tests appear only in the lowest level packages.
355
356 subtype List_Range is Union_Id
357 range List_Low_Bound .. List_High_Bound;
358
359 subtype Node_Range is Union_Id
360 range Node_Low_Bound .. Node_High_Bound;
361
362 subtype Elist_Range is Union_Id
363 range Elist_Low_Bound .. Elist_High_Bound;
364
365 subtype Elmt_Range is Union_Id
366 range Elmt_Low_Bound .. Elmt_High_Bound;
367
368 subtype Names_Range is Union_Id
369 range Names_Low_Bound .. Names_High_Bound;
370
371 subtype Strings_Range is Union_Id
372 range Strings_Low_Bound .. Strings_High_Bound;
373
374 subtype Uint_Range is Union_Id
375 range Uint_Low_Bound .. Uint_High_Bound;
376
377 subtype Ureal_Range is Union_Id
378 range Ureal_Low_Bound .. Ureal_High_Bound;
379
380 -----------------------------
381 -- Types for Atree Package --
382 -----------------------------
383
384 -- Node_Id values are used to identify nodes in the tree. They are
385 -- subscripts into the Nodes table declared in package Atree. Note that
386 -- the special values Empty and Error are subscripts into this table.
387 -- See package Atree for further details.
388
389 type Node_Id is range Node_Low_Bound .. Node_High_Bound with Size => 32;
390 -- Type used to identify nodes in the tree
391
392 subtype Entity_Id is Node_Id;
393 -- A synonym for node types, used in the Einfo package to refer to nodes
394 -- that are entities (i.e. nodes with an Nkind of N_Defining_xxx). All such
395 -- nodes are extended nodes and these are the only extended nodes, so that
396 -- in practice entity and extended nodes are synonymous.
397
398 subtype Node_Or_Entity_Id is Node_Id;
399 -- A synonym for node types, used in cases where a given value may be used
400 -- to represent either a node or an entity. We like to minimize such uses
401 -- for obvious reasons of logical type consistency, but where such uses
402 -- occur, they should be documented by use of this type.
403
404 Empty : constant Node_Id := Node_Low_Bound;
405 -- Used to indicate null node. A node is actually allocated with this
406 -- Id value, so that Nkind (Empty) = N_Empty. Note that Node_Low_Bound
407 -- is zero, so Empty = No_List = zero.
408
409 Empty_List_Or_Node : constant := 0;
410 -- This constant is used in situations (e.g. initializing empty fields)
411 -- where the value set will be used to represent either an empty node or
412 -- a non-existent list, depending on the context.
413
414 Error : constant Node_Id := Node_Low_Bound + 1;
415 -- Used to indicate an error in the source program. A node is actually
416 -- allocated with this Id value, so that Nkind (Error) = N_Error.
417
418 Empty_Or_Error : constant Node_Id := Error;
419 -- Since Empty and Error are the first two Node_Id values, the test for
420 -- N <= Empty_Or_Error tests to see if N is Empty or Error. This definition
421 -- provides convenient self-documentation for such tests.
422
423 First_Node_Id : constant Node_Id := Node_Low_Bound;
424 -- Subscript of first allocated node. Note that Empty and Error are both
425 -- allocated nodes, whose Nkind fields can be accessed without error.
426
427 ------------------------------
428 -- Types for Nlists Package --
429 ------------------------------
430
431 -- List_Id values are used to identify node lists stored in the tree, so
432 -- that each node can be on at most one such list (see package Nlists for
433 -- further details). Note that the special value Error_List is a subscript
434 -- in this table, but the value No_List is *not* a valid subscript, and any
435 -- attempt to apply list operations to No_List will cause a (detected)
436 -- error.
437
438 type List_Id is range List_Low_Bound .. List_High_Bound with Size => 32;
439 -- Type used to identify a node list
440
441 No_List : constant List_Id := List_High_Bound;
442 -- Used to indicate absence of a list. Note that the value is zero, which
443 -- is the same as Empty, which is helpful in initializing nodes where a
444 -- value of zero can represent either an empty node or an empty list.
445
446 Error_List : constant List_Id := List_Low_Bound;
447 -- Used to indicate that there was an error in the source program in a
448 -- context which would normally require a list. This node appears to be
449 -- an empty list to the list operations (a null list is actually allocated
450 -- which has this Id value).
451
452 First_List_Id : constant List_Id := Error_List;
453 -- Subscript of first allocated list header
454
455 ------------------------------
456 -- Types for Elists Package --
457 ------------------------------
458
459 -- Element list Id values are used to identify element lists stored outside
460 -- of the tree, allowing nodes to be members of more than one such list
461 -- (see package Elists for further details).
462
463 type Elist_Id is range Elist_Low_Bound .. Elist_High_Bound with Size => 32;
464 -- Type used to identify an element list (Elist header table subscript)
465
466 No_Elist : constant Elist_Id := Elist_Low_Bound;
467 -- Used to indicate absence of an element list. Note that this is not an
468 -- actual Elist header, so element list operations on this value are not
469 -- valid.
470
471 First_Elist_Id : constant Elist_Id := No_Elist + 1;
472 -- Subscript of first allocated Elist header
473
474 -- Element Id values are used to identify individual elements of an element
475 -- list (see package Elists for further details).
476
477 type Elmt_Id is range Elmt_Low_Bound .. Elmt_High_Bound;
478 -- Type used to identify an element list
479
480 No_Elmt : constant Elmt_Id := Elmt_Low_Bound;
481 -- Used to represent empty element
482
483 First_Elmt_Id : constant Elmt_Id := No_Elmt + 1;
484 -- Subscript of first allocated Elmt table entry
485
486 -------------------------------
487 -- Types for Stringt Package --
488 -------------------------------
489
490 -- String_Id values are used to identify entries in the strings table. They
491 -- are subscripts into the Strings table defined in package Stringt.
492
493 type String_Id is range Strings_Low_Bound .. Strings_High_Bound
494 with Size => 32;
495 -- Type used to identify entries in the strings table
496
497 No_String : constant String_Id := Strings_Low_Bound;
498 -- Used to indicate missing string Id. Note that the value zero is used
499 -- to indicate a missing data value for all the Int types in this section.
500
501 First_String_Id : constant String_Id := No_String + 1;
502 -- First subscript allocated in string table
503
504 -------------------------
505 -- Character Code Type --
506 -------------------------
507
508 -- The type Char is used for character data internally in the compiler, but
509 -- character codes in the source are represented by the Char_Code type.
510 -- Each character literal in the source is interpreted as being one of the
511 -- 16#7FFF_FFFF# possible Wide_Wide_Character codes, and a unique Integer
512 -- value is assigned, corresponding to the UTF-32 value, which also
513 -- corresponds to the Pos value in the Wide_Wide_Character type, and also
514 -- corresponds to the Pos value in the Wide_Character and Character types
515 -- for values that are in appropriate range. String literals are similarly
516 -- interpreted as a sequence of such codes.
517
518 type Char_Code_Base is mod 2 ** 32;
519 for Char_Code_Base'Size use 32;
520
521 subtype Char_Code is Char_Code_Base range 0 .. 16#7FFF_FFFF#;
522 for Char_Code'Value_Size use 32;
523 for Char_Code'Object_Size use 32;
524
525 function Get_Char_Code (C : Character) return Char_Code;
526 pragma Inline (Get_Char_Code);
527 -- Function to obtain internal character code from source character. For
528 -- the moment, the internal character code is simply the Pos value of the
529 -- input source character, but we provide this interface for possible
530 -- later support of alternative character sets.
531
532 function In_Character_Range (C : Char_Code) return Boolean;
533 pragma Inline (In_Character_Range);
534 -- Determines if the given character code is in range of type Character,
535 -- and if so, returns True. If not, returns False.
536
537 function In_Wide_Character_Range (C : Char_Code) return Boolean;
538 pragma Inline (In_Wide_Character_Range);
539 -- Determines if the given character code is in range of the type
540 -- Wide_Character, and if so, returns True. If not, returns False.
541
542 function Get_Character (C : Char_Code) return Character;
543 pragma Inline (Get_Character);
544 -- For a character C that is in Character range (see above function), this
545 -- function returns the corresponding Character value. It is an error to
546 -- call Get_Character if C is not in Character range.
547
548 function Get_Wide_Character (C : Char_Code) return Wide_Character;
549 -- For a character C that is in Wide_Character range (see above function),
550 -- this function returns the corresponding Wide_Character value. It is an
551 -- error to call Get_Wide_Character if C is not in Wide_Character range.
552
553 ---------------------------------------
554 -- Types used for Library Management --
555 ---------------------------------------
556
557 type Unit_Number_Type is new Int range -1 .. Int'Last;
558 -- Unit number. The main source is unit 0, and subsidiary sources have
559 -- non-zero numbers starting with 1. Unit numbers are used to index the
560 -- Units table in package Lib.
561
562 Main_Unit : constant Unit_Number_Type := 0;
563 -- Unit number value for main unit
564
565 No_Unit : constant Unit_Number_Type := -1;
566 -- Special value used to signal no unit
567
568 type Source_File_Index is new Int range -1 .. Int'Last;
569 -- Type used to index the source file table (see package Sinput)
570
571 No_Source_File : constant Source_File_Index := 0;
572 -- Value used to indicate no source file present
573
574 No_Access_To_Source_File : constant Source_File_Index := -1;
575 -- Value used to indicate a source file is present but unreadable
576
577 -----------------------------------
578 -- Representation of Time Stamps --
579 -----------------------------------
580
581 -- All compiled units are marked with a time stamp which is derived from
582 -- the source file (we assume that the host system has the concept of a
583 -- file time stamp which is modified when a file is modified). These
584 -- time stamps are used to ensure consistency of the set of units that
585 -- constitutes a library. Time stamps are 14-character strings with
586 -- with the following format:
587
588 -- YYYYMMDDHHMMSS
589
590 -- YYYY year
591 -- MM month (2 digits 01-12)
592 -- DD day (2 digits 01-31)
593 -- HH hour (2 digits 00-23)
594 -- MM minutes (2 digits 00-59)
595 -- SS seconds (2 digits 00-59)
596
597 -- In the case of Unix systems (and other systems which keep the time in
598 -- GMT), the time stamp is the GMT time of the file, not the local time.
599 -- This solves problems in using libraries across networks with clients
600 -- spread across multiple time-zones.
601
602 Time_Stamp_Length : constant := 14;
603 -- Length of time stamp value
604
605 subtype Time_Stamp_Index is Natural range 1 .. Time_Stamp_Length;
606 type Time_Stamp_Type is new String (Time_Stamp_Index);
607 -- Type used to represent time stamp
608
609 Empty_Time_Stamp : constant Time_Stamp_Type := (others => ' ');
610 -- Value representing an empty or missing time stamp. Looks less than any
611 -- real time stamp if two time stamps are compared. Note that although this
612 -- is not private, clients should not rely on the exact way in which this
613 -- string is represented, and instead should use the subprograms below.
614
615 Dummy_Time_Stamp : constant Time_Stamp_Type := (others => '0');
616 -- This is used for dummy time stamp values used in the D lines for
617 -- non-existent files, and is intended to be an impossible value.
618
619 function "=" (Left, Right : Time_Stamp_Type) return Boolean;
620 function "<=" (Left, Right : Time_Stamp_Type) return Boolean;
621 function ">=" (Left, Right : Time_Stamp_Type) return Boolean;
622 function "<" (Left, Right : Time_Stamp_Type) return Boolean;
623 function ">" (Left, Right : Time_Stamp_Type) return Boolean;
624 -- Comparison functions on time stamps. Note that two time stamps are
625 -- defined as being equal if they have the same day/month/year and the
626 -- hour/minutes/seconds values are within 2 seconds of one another. This
627 -- deals with rounding effects in library file time stamps caused by
628 -- copying operations during installation. We have particularly noticed
629 -- that WinNT seems susceptible to such changes.
630 --
631 -- Note: the Empty_Time_Stamp value looks equal to itself, and less than
632 -- any non-empty time stamp value.
633
634 procedure Split_Time_Stamp
635 (TS : Time_Stamp_Type;
636 Year : out Nat;
637 Month : out Nat;
638 Day : out Nat;
639 Hour : out Nat;
640 Minutes : out Nat;
641 Seconds : out Nat);
642 -- Given a time stamp, decompose it into its components
643
644 procedure Make_Time_Stamp
645 (Year : Nat;
646 Month : Nat;
647 Day : Nat;
648 Hour : Nat;
649 Minutes : Nat;
650 Seconds : Nat;
651 TS : out Time_Stamp_Type);
652 -- Given the components of a time stamp, initialize the value
653
654 -------------------------------------
655 -- Types used for Check Management --
656 -------------------------------------
657
658 type Check_Id is new Nat;
659 -- Type used to represent a check id
660
661 No_Check_Id : constant := 0;
662 -- Check_Id value used to indicate no check
663
664 Access_Check : constant := 1;
665 Accessibility_Check : constant := 2;
666 Alignment_Check : constant := 3;
667 Allocation_Check : constant := 4;
668 Atomic_Synchronization : constant := 5;
669 Characters_Assertion_Check : constant := 6;
670 Containers_Assertion_Check : constant := 7;
671 Discriminant_Check : constant := 8;
672 Division_Check : constant := 9;
673 Duplicated_Tag_Check : constant := 10;
674 Elaboration_Check : constant := 11;
675 Index_Check : constant := 12;
676 Interfaces_Assertion_Check : constant := 13;
677 IO_Assertion_Check : constant := 14;
678 Length_Check : constant := 15;
679 Numerics_Assertion_Check : constant := 16;
680 Overflow_Check : constant := 17;
681 Predicate_Check : constant := 18;
682 Program_Error_Check : constant := 19;
683 Range_Check : constant := 20;
684 Storage_Check : constant := 21;
685 Strings_Assertion_Check : constant := 22;
686 System_Assertion_Check : constant := 23;
687 Tag_Check : constant := 24;
688 Validity_Check : constant := 25;
689 Container_Checks : constant := 26;
690 Tampering_Check : constant := 27;
691 Tasking_Check : constant := 28;
692 -- Values used to represent individual predefined checks (including the
693 -- setting of Atomic_Synchronization, which is implemented internally using
694 -- a "check" whose name is Atomic_Synchronization).
695
696 All_Checks : constant := 29;
697 -- Value used to represent All_Checks value
698
699 subtype Predefined_Check_Id is Check_Id range 1 .. All_Checks;
700 -- Subtype for predefined checks, including All_Checks
701
702 -- The following array contains an entry for each recognized check name
703 -- for pragma Suppress. It is used to represent current settings of scope
704 -- based suppress actions from pragma Suppress or command line settings.
705
706 -- Note: when Suppress_Array (All_Checks) is True, then generally all other
707 -- specific check entries are set True, except for the Elaboration_Check
708 -- entry which is set only if an explicit Suppress for this check is given.
709 -- The reason for this non-uniformity is that we do not want All_Checks to
710 -- suppress elaboration checking when using the static elaboration model.
711 -- We recognize only an explicit suppress of Elaboration_Check as a signal
712 -- that the static elaboration checking should skip a compile time check.
713
714 type Suppress_Array is array (Predefined_Check_Id) of Boolean;
715 pragma Pack (Suppress_Array);
716
717 -- To add a new check type to GNAT, the following steps are required:
718
719 -- 1. Add an entry to Snames spec for the new name
720 -- 2. Add an entry to the definition of Check_Id above (very important:
721 -- these definitions should be in the same order in Snames and here)
722 -- 3. Add a new function to Checks to handle the new check test
723 -- 4. Add a new Do_xxx_Check flag to Sinfo (if required)
724 -- 5. Add appropriate checks for the new test
725
726 -- The following provides precise details on the mode used to generate
727 -- code for intermediate operations in expressions for signed integer
728 -- arithmetic (and how to generate overflow checks if enabled). Note
729 -- that this only affects handling of intermediate results. The final
730 -- result must always fit within the target range, and if overflow
731 -- checking is enabled, the check on the final result is against this
732 -- target range.
733
734 type Overflow_Mode_Type is (
735 Not_Set,
736 -- Dummy value used during initialization process to show that the
737 -- corresponding value has not yet been initialized.
738
739 Strict,
740 -- Operations are done in the base type of the subexpression. If
741 -- overflow checks are enabled, then the check is against the range
742 -- of this base type.
743
744 Minimized,
745 -- Where appropriate, intermediate arithmetic operations are performed
746 -- with an extended range, using Long_Long_Integer if necessary. If
747 -- overflow checking is enabled, then the check is against the range
748 -- of Long_Long_Integer.
749
750 Eliminated);
751 -- In this mode arbitrary precision arithmetic is used as needed to
752 -- ensure that it is impossible for intermediate arithmetic to cause an
753 -- overflow. In this mode, intermediate expressions are not affected by
754 -- the overflow checking mode, since overflows are eliminated.
755
756 subtype Minimized_Or_Eliminated is
757 Overflow_Mode_Type range Minimized .. Eliminated;
758 -- Define subtype so that clients don't need to know ordering. Note that
759 -- Overflow_Mode_Type is not marked as an ordered enumeration type.
760
761 -- The following structure captures the state of check suppression or
762 -- activation at a particular point in the program execution.
763
764 type Suppress_Record is record
765 Suppress : Suppress_Array;
766 -- Indicates suppression status of each possible check
767
768 Overflow_Mode_General : Overflow_Mode_Type;
769 -- This field indicates the mode for handling code generation and
770 -- overflow checking (if enabled) for intermediate expression values.
771 -- This applies to general expressions outside assertions.
772
773 Overflow_Mode_Assertions : Overflow_Mode_Type;
774 -- This field indicates the mode for handling code generation and
775 -- overflow checking (if enabled) for intermediate expression values.
776 -- This applies to any expression occuring inside assertions.
777 end record;
778
779 -----------------------------------
780 -- Global Exception Declarations --
781 -----------------------------------
782
783 -- This section contains declarations of exceptions that are used
784 -- throughout the compiler or in other GNAT tools.
785
786 Unrecoverable_Error : exception;
787 -- This exception is raised to immediately terminate the compilation of the
788 -- current source program. Used in situations where things are bad enough
789 -- that it doesn't seem worth continuing (e.g. max errors reached, or a
790 -- required file is not found). Also raised when the compiler finds itself
791 -- in trouble after an error (see Comperr).
792
793 Terminate_Program : exception;
794 -- This exception is raised to immediately terminate the tool being
795 -- executed. Each tool where this exception may be raised must have a
796 -- single exception handler that contains only a null statement and that is
797 -- the last statement of the program. If needed, procedure Set_Exit_Status
798 -- is called with the appropriate exit status before raising
799 -- Terminate_Program.
800
801 ---------------------------------
802 -- Parameter Mechanism Control --
803 ---------------------------------
804
805 -- Function and parameter entities have a field that records the passing
806 -- mechanism. See specification of Sem_Mech for full details. The following
807 -- subtype is used to represent values of this type:
808
809 subtype Mechanism_Type is Int range -2 .. Int'Last;
810 -- Type used to represent a mechanism value. This is a subtype rather than
811 -- a type to avoid some annoying processing problems with certain routines
812 -- in Einfo (processing them to create the corresponding C). The values in
813 -- the range -2 .. 0 are used to represent mechanism types declared as
814 -- named constants in the spec of Sem_Mech. Positive values are used for
815 -- the case of a pragma C_Pass_By_Copy that sets a threshold value for the
816 -- mechanism to be used. For example if pragma C_Pass_By_Copy (32) is given
817 -- then Default_C_Record_Mechanism is set to 32, and the meaning is to use
818 -- By_Reference if the size is greater than 32, and By_Copy otherwise.
819
820 ---------------------------------
821 -- Component_Alignment Control --
822 ---------------------------------
823
824 -- There are four types of alignment possible for array and record
825 -- types, and a field in the type entities contains a value of the
826 -- following type indicating which alignment choice applies. For full
827 -- details of the meaning of these alignment types, see description
828 -- of the Component_Alignment pragma.
829
830 type Component_Alignment_Kind is (
831 Calign_Default, -- default alignment
832 Calign_Component_Size, -- natural alignment for component size
833 Calign_Component_Size_4, -- natural for size <= 4, 4 for size >= 4
834 Calign_Storage_Unit); -- all components byte aligned
835
836 -----------------------------------
837 -- Floating Point Representation --
838 -----------------------------------
839
840 type Float_Rep_Kind is (
841 IEEE_Binary, -- IEEE 754p conforming binary format
842 AAMP); -- AAMP format
843
844 ----------------------------
845 -- Small_Paren_Count_Type --
846 ----------------------------
847
848 -- See Paren_Count in Atree for documentation
849
850 subtype Small_Paren_Count_Type is Nat range 0 .. 3;
851
852 ------------------------------
853 -- Run-Time Exception Codes --
854 ------------------------------
855
856 -- When the code generator generates a run-time exception, it provides a
857 -- reason code which is one of the following. This reason code is used to
858 -- select the appropriate run-time routine to be called, determining both
859 -- the exception to be raised, and the message text to be added.
860
861 -- The prefix CE/PE/SE indicates the exception to be raised
862 -- CE = Constraint_Error
863 -- PE = Program_Error
864 -- SE = Storage_Error
865
866 -- The remaining part of the name indicates the message text to be added,
867 -- where all letters are lower case, and underscores are converted to
868 -- spaces (for example CE_Invalid_Data adds the text "invalid data").
869
870 -- To add a new code, you need to do the following:
871
872 -- 1. Assign a new number to the reason. Do not renumber existing codes,
873 -- since this causes compatibility/bootstrap issues, so always add the
874 -- new code at the end of the list.
875
876 -- 2. Update the contents of the array Kind
877
878 -- 3. Modify the corresponding definitions in types.h, including the
879 -- definition of last_reason_code.
880
881 -- 4. Add the name of the routines in exp_ch11.Get_RT_Exception_Name
882
883 -- 5. Add a new routine in Ada.Exceptions with the appropriate call and
884 -- static string constant. Note that there is more than one version
885 -- of a-except.adb which must be modified.
886
887 -- Note on ordering of references. For the tables in Ada.Exceptions units,
888 -- usually the ordering does not matter, and we use the same ordering as
889 -- is used here.
890
891 type RT_Exception_Code is
892 (CE_Access_Check_Failed, -- 00
893 CE_Access_Parameter_Is_Null, -- 01
894 CE_Discriminant_Check_Failed, -- 02
895 CE_Divide_By_Zero, -- 03
896 CE_Explicit_Raise, -- 04
897 CE_Index_Check_Failed, -- 05
898 CE_Invalid_Data, -- 06
899 CE_Length_Check_Failed, -- 07
900 CE_Null_Exception_Id, -- 08
901 CE_Null_Not_Allowed, -- 09
902
903 CE_Overflow_Check_Failed, -- 10
904 CE_Partition_Check_Failed, -- 11
905 CE_Range_Check_Failed, -- 12
906 CE_Tag_Check_Failed, -- 13
907 PE_Access_Before_Elaboration, -- 14
908 PE_Accessibility_Check_Failed, -- 15
909 PE_Address_Of_Intrinsic, -- 16
910 PE_Aliased_Parameters, -- 17
911 PE_All_Guards_Closed, -- 18
912 PE_Bad_Predicated_Generic_Type, -- 19
913
914 PE_Current_Task_In_Entry_Body, -- 20
915 PE_Duplicated_Entry_Address, -- 21
916 PE_Explicit_Raise, -- 22
917 PE_Finalize_Raised_Exception, -- 23
918 PE_Implicit_Return, -- 24
919 PE_Misaligned_Address_Value, -- 25
920 PE_Missing_Return, -- 26
921 PE_Overlaid_Controlled_Object, -- 27
922 PE_Potentially_Blocking_Operation, -- 28
923 PE_Stubbed_Subprogram_Called, -- 29
924
925 PE_Unchecked_Union_Restriction, -- 30
926 PE_Non_Transportable_Actual, -- 31
927 SE_Empty_Storage_Pool, -- 32
928 SE_Explicit_Raise, -- 33
929 SE_Infinite_Recursion, -- 34
930 SE_Object_Too_Large, -- 35
931 PE_Stream_Operation_Not_Allowed, -- 36
932 PE_Build_In_Place_Mismatch); -- 37
933
934 Last_Reason_Code : constant :=
935 RT_Exception_Code'Pos (RT_Exception_Code'Last);
936 -- Last reason code
937
938 type Reason_Kind is (CE_Reason, PE_Reason, SE_Reason);
939 -- Categorization of reason codes by exception raised
940
941 Rkind : constant array (RT_Exception_Code range <>) of Reason_Kind :=
942 (CE_Access_Check_Failed => CE_Reason,
943 CE_Access_Parameter_Is_Null => CE_Reason,
944 CE_Discriminant_Check_Failed => CE_Reason,
945 CE_Divide_By_Zero => CE_Reason,
946 CE_Explicit_Raise => CE_Reason,
947 CE_Index_Check_Failed => CE_Reason,
948 CE_Invalid_Data => CE_Reason,
949 CE_Length_Check_Failed => CE_Reason,
950 CE_Null_Exception_Id => CE_Reason,
951 CE_Null_Not_Allowed => CE_Reason,
952 CE_Overflow_Check_Failed => CE_Reason,
953 CE_Partition_Check_Failed => CE_Reason,
954 CE_Range_Check_Failed => CE_Reason,
955 CE_Tag_Check_Failed => CE_Reason,
956
957 PE_Access_Before_Elaboration => PE_Reason,
958 PE_Accessibility_Check_Failed => PE_Reason,
959 PE_Address_Of_Intrinsic => PE_Reason,
960 PE_Aliased_Parameters => PE_Reason,
961 PE_All_Guards_Closed => PE_Reason,
962 PE_Bad_Predicated_Generic_Type => PE_Reason,
963 PE_Current_Task_In_Entry_Body => PE_Reason,
964 PE_Duplicated_Entry_Address => PE_Reason,
965 PE_Explicit_Raise => PE_Reason,
966 PE_Finalize_Raised_Exception => PE_Reason,
967 PE_Implicit_Return => PE_Reason,
968 PE_Misaligned_Address_Value => PE_Reason,
969 PE_Missing_Return => PE_Reason,
970 PE_Overlaid_Controlled_Object => PE_Reason,
971 PE_Potentially_Blocking_Operation => PE_Reason,
972 PE_Stubbed_Subprogram_Called => PE_Reason,
973 PE_Unchecked_Union_Restriction => PE_Reason,
974 PE_Non_Transportable_Actual => PE_Reason,
975 PE_Stream_Operation_Not_Allowed => PE_Reason,
976 PE_Build_In_Place_Mismatch => PE_Reason,
977
978 SE_Empty_Storage_Pool => SE_Reason,
979 SE_Explicit_Raise => SE_Reason,
980 SE_Infinite_Recursion => SE_Reason,
981 SE_Object_Too_Large => SE_Reason);
982
983 -- Types for field offsets/sizes used in Seinfo, Sinfo.Nodes and
984 -- Einfo.Entities:
985
986 type Field_Offset is new Nat;
987 -- Offset of a node field, in units of the size of the field, which is
988 -- always a power of 2.
989
990 subtype Field_Size_In_Bits is Field_Offset with Predicate =>
991 Field_Size_In_Bits in 1 | 2 | 4 | 8 | 32;
992
993 subtype Opt_Field_Offset is Field_Offset'Base range -1 .. Field_Offset'Last;
994 No_Field_Offset : constant Opt_Field_Offset := Opt_Field_Offset'First;
995
996 type Offset_Array_Index is new Nat;
997 type Offset_Array is
998 array (Offset_Array_Index range <>) of Opt_Field_Offset;
999
1000 end Types;