]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/alias.c
/cp
[thirdparty/gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
43
44 /* The aliasing API provided here solves related but different problems:
45
46 Say there exists (in c)
47
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
52
53 struct Y y2, *py;
54 struct Z z2, *pz;
55
56
57 py = &x1.y1;
58 px2 = &x1;
59
60 Consider the four questions:
61
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
66
67 The answer to these questions can be yes, yes, yes, and maybe.
68
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
73
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
81
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
84
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
92 */
93
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
98
99 struct S { int i; double d; };
100
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
106 / \
107 / \
108 |/_ _\|
109 int double
110
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
114
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
119
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
123
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
129
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
140
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
143
144 struct T { struct S s; float f; }
145
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
149 };
150
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
163
164 static void memory_modified_1 (rtx, const_rtx, void *);
165
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
168
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
178
179
180 /* Set up all info needed to perform alias analysis on memory references. */
181
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
191
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
197
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
200
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
204
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
209
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
214
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
218
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
224
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
227
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
231
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
234
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
246
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
249
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
253
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
263
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
272
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
276
277
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 \f
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
284
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 {
288 tree expr = MEM_EXPR (mem);
289 tree base;
290
291 if (!expr)
292 return false;
293
294 ao_ref_init (ref, expr);
295
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
301
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
310
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
312
313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 return true;
318
319 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
320 drop ref->ref. */
321 if (maybe_lt (MEM_OFFSET (mem), 0)
322 || (ref->max_size_known_p ()
323 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
324 ref->max_size)))
325 ref->ref = NULL_TREE;
326
327 /* Refine size and offset we got from analyzing MEM_EXPR by using
328 MEM_SIZE and MEM_OFFSET. */
329
330 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332
333 /* The MEM may extend into adjacent fields, so adjust max_size if
334 necessary. */
335 if (ref->max_size_known_p ())
336 ref->max_size = upper_bound (ref->max_size, ref->size);
337
338 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (maybe_lt (ref->offset, 0)
342 || (DECL_P (ref->base)
343 && (DECL_SIZE (ref->base) == NULL_TREE
344 || !poly_int_tree_p (DECL_SIZE (ref->base))
345 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
346 ref->offset + ref->size)))))
347 return false;
348
349 return true;
350 }
351
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353 alias. If TBAA_P is set also apply TBAA. Returns true if the
354 two rtxen may alias, false otherwise. */
355
356 static bool
357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
358 {
359 ao_ref ref1, ref2;
360
361 if (!ao_ref_from_mem (&ref1, x)
362 || !ao_ref_from_mem (&ref2, mem))
363 return true;
364
365 return refs_may_alias_p_1 (&ref1, &ref2,
366 tbaa_p
367 && MEM_ALIAS_SET (x) != 0
368 && MEM_ALIAS_SET (mem) != 0);
369 }
370
371 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
372 such an entry, or NULL otherwise. */
373
374 static inline alias_set_entry *
375 get_alias_set_entry (alias_set_type alias_set)
376 {
377 return (*alias_sets)[alias_set];
378 }
379
380 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
381 the two MEMs cannot alias each other. */
382
383 static inline int
384 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
385 {
386 return (flag_strict_aliasing
387 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
388 MEM_ALIAS_SET (mem2)));
389 }
390
391 /* Return true if the first alias set is a subset of the second. */
392
393 bool
394 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
395 {
396 alias_set_entry *ase2;
397
398 /* Disable TBAA oracle with !flag_strict_aliasing. */
399 if (!flag_strict_aliasing)
400 return true;
401
402 /* Everything is a subset of the "aliases everything" set. */
403 if (set2 == 0)
404 return true;
405
406 /* Check if set1 is a subset of set2. */
407 ase2 = get_alias_set_entry (set2);
408 if (ase2 != 0
409 && (ase2->has_zero_child
410 || (ase2->children && ase2->children->get (set1))))
411 return true;
412
413 /* As a special case we consider alias set of "void *" to be both subset
414 and superset of every alias set of a pointer. This extra symmetry does
415 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
416 to return true on the following testcase:
417
418 void *ptr;
419 char **ptr2=(char **)&ptr;
420 *ptr2 = ...
421
422 Additionally if a set contains universal pointer, we consider every pointer
423 to be a subset of it, but we do not represent this explicitely - doing so
424 would require us to update transitive closure each time we introduce new
425 pointer type. This makes aliasing_component_refs_p to return true
426 on the following testcase:
427
428 struct a {void *ptr;}
429 char **ptr = (char **)&a.ptr;
430 ptr = ...
431
432 This makes void * truly universal pointer type. See pointer handling in
433 get_alias_set for more details. */
434 if (ase2 && ase2->has_pointer)
435 {
436 alias_set_entry *ase1 = get_alias_set_entry (set1);
437
438 if (ase1 && ase1->is_pointer)
439 {
440 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
441 /* If one is ptr_type_node and other is pointer, then we consider
442 them subset of each other. */
443 if (set1 == voidptr_set || set2 == voidptr_set)
444 return true;
445 /* If SET2 contains universal pointer's alias set, then we consdier
446 every (non-universal) pointer. */
447 if (ase2->children && set1 != voidptr_set
448 && ase2->children->get (voidptr_set))
449 return true;
450 }
451 }
452 return false;
453 }
454
455 /* Return 1 if the two specified alias sets may conflict. */
456
457 int
458 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
459 {
460 alias_set_entry *ase1;
461 alias_set_entry *ase2;
462
463 /* The easy case. */
464 if (alias_sets_must_conflict_p (set1, set2))
465 return 1;
466
467 /* See if the first alias set is a subset of the second. */
468 ase1 = get_alias_set_entry (set1);
469 if (ase1 != 0
470 && ase1->children && ase1->children->get (set2))
471 {
472 ++alias_stats.num_dag;
473 return 1;
474 }
475
476 /* Now do the same, but with the alias sets reversed. */
477 ase2 = get_alias_set_entry (set2);
478 if (ase2 != 0
479 && ase2->children && ase2->children->get (set1))
480 {
481 ++alias_stats.num_dag;
482 return 1;
483 }
484
485 /* We want void * to be compatible with any other pointer without
486 really dropping it to alias set 0. Doing so would make it
487 compatible with all non-pointer types too.
488
489 This is not strictly necessary by the C/C++ language
490 standards, but avoids common type punning mistakes. In
491 addition to that, we need the existence of such universal
492 pointer to implement Fortran's C_PTR type (which is defined as
493 type compatible with all C pointers). */
494 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
495 {
496 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
497
498 /* If one of the sets corresponds to universal pointer,
499 we consider it to conflict with anything that is
500 or contains pointer. */
501 if (set1 == voidptr_set || set2 == voidptr_set)
502 {
503 ++alias_stats.num_universal;
504 return true;
505 }
506 /* If one of sets is (non-universal) pointer and the other
507 contains universal pointer, we also get conflict. */
508 if (ase1->is_pointer && set2 != voidptr_set
509 && ase2->children && ase2->children->get (voidptr_set))
510 {
511 ++alias_stats.num_universal;
512 return true;
513 }
514 if (ase2->is_pointer && set1 != voidptr_set
515 && ase1->children && ase1->children->get (voidptr_set))
516 {
517 ++alias_stats.num_universal;
518 return true;
519 }
520 }
521
522 ++alias_stats.num_disambiguated;
523
524 /* The two alias sets are distinct and neither one is the
525 child of the other. Therefore, they cannot conflict. */
526 return 0;
527 }
528
529 /* Return 1 if the two specified alias sets will always conflict. */
530
531 int
532 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
533 {
534 /* Disable TBAA oracle with !flag_strict_aliasing. */
535 if (!flag_strict_aliasing)
536 return 1;
537 if (set1 == 0 || set2 == 0)
538 {
539 ++alias_stats.num_alias_zero;
540 return 1;
541 }
542 if (set1 == set2)
543 {
544 ++alias_stats.num_same_alias_set;
545 return 1;
546 }
547
548 return 0;
549 }
550
551 /* Return 1 if any MEM object of type T1 will always conflict (using the
552 dependency routines in this file) with any MEM object of type T2.
553 This is used when allocating temporary storage. If T1 and/or T2 are
554 NULL_TREE, it means we know nothing about the storage. */
555
556 int
557 objects_must_conflict_p (tree t1, tree t2)
558 {
559 alias_set_type set1, set2;
560
561 /* If neither has a type specified, we don't know if they'll conflict
562 because we may be using them to store objects of various types, for
563 example the argument and local variables areas of inlined functions. */
564 if (t1 == 0 && t2 == 0)
565 return 0;
566
567 /* If they are the same type, they must conflict. */
568 if (t1 == t2)
569 {
570 ++alias_stats.num_same_objects;
571 return 1;
572 }
573 /* Likewise if both are volatile. */
574 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
575 {
576 ++alias_stats.num_volatile;
577 return 1;
578 }
579
580 set1 = t1 ? get_alias_set (t1) : 0;
581 set2 = t2 ? get_alias_set (t2) : 0;
582
583 /* We can't use alias_sets_conflict_p because we must make sure
584 that every subtype of t1 will conflict with every subtype of
585 t2 for which a pair of subobjects of these respective subtypes
586 overlaps on the stack. */
587 return alias_sets_must_conflict_p (set1, set2);
588 }
589 \f
590 /* Return the outermost parent of component present in the chain of
591 component references handled by get_inner_reference in T with the
592 following property:
593 - the component is non-addressable
594 or NULL_TREE if no such parent exists. In the former cases, the alias
595 set of this parent is the alias set that must be used for T itself. */
596
597 tree
598 component_uses_parent_alias_set_from (const_tree t)
599 {
600 const_tree found = NULL_TREE;
601
602 while (handled_component_p (t))
603 {
604 switch (TREE_CODE (t))
605 {
606 case COMPONENT_REF:
607 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
608 found = t;
609 /* Permit type-punning when accessing a union, provided the access
610 is directly through the union. For example, this code does not
611 permit taking the address of a union member and then storing
612 through it. Even the type-punning allowed here is a GCC
613 extension, albeit a common and useful one; the C standard says
614 that such accesses have implementation-defined behavior. */
615 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
616 found = t;
617 break;
618
619 case ARRAY_REF:
620 case ARRAY_RANGE_REF:
621 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
622 found = t;
623 break;
624
625 case REALPART_EXPR:
626 case IMAGPART_EXPR:
627 break;
628
629 case BIT_FIELD_REF:
630 case VIEW_CONVERT_EXPR:
631 /* Bitfields and casts are never addressable. */
632 found = t;
633 break;
634
635 default:
636 gcc_unreachable ();
637 }
638
639 t = TREE_OPERAND (t, 0);
640 }
641
642 if (found)
643 return TREE_OPERAND (found, 0);
644
645 return NULL_TREE;
646 }
647
648
649 /* Return whether the pointer-type T effective for aliasing may
650 access everything and thus the reference has to be assigned
651 alias-set zero. */
652
653 static bool
654 ref_all_alias_ptr_type_p (const_tree t)
655 {
656 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
657 || TYPE_REF_CAN_ALIAS_ALL (t));
658 }
659
660 /* Return the alias set for the memory pointed to by T, which may be
661 either a type or an expression. Return -1 if there is nothing
662 special about dereferencing T. */
663
664 static alias_set_type
665 get_deref_alias_set_1 (tree t)
666 {
667 /* All we care about is the type. */
668 if (! TYPE_P (t))
669 t = TREE_TYPE (t);
670
671 /* If we have an INDIRECT_REF via a void pointer, we don't
672 know anything about what that might alias. Likewise if the
673 pointer is marked that way. */
674 if (ref_all_alias_ptr_type_p (t))
675 return 0;
676
677 return -1;
678 }
679
680 /* Return the alias set for the memory pointed to by T, which may be
681 either a type or an expression. */
682
683 alias_set_type
684 get_deref_alias_set (tree t)
685 {
686 /* If we're not doing any alias analysis, just assume everything
687 aliases everything else. */
688 if (!flag_strict_aliasing)
689 return 0;
690
691 alias_set_type set = get_deref_alias_set_1 (t);
692
693 /* Fall back to the alias-set of the pointed-to type. */
694 if (set == -1)
695 {
696 if (! TYPE_P (t))
697 t = TREE_TYPE (t);
698 set = get_alias_set (TREE_TYPE (t));
699 }
700
701 return set;
702 }
703
704 /* Return the pointer-type relevant for TBAA purposes from the
705 memory reference tree *T or NULL_TREE in which case *T is
706 adjusted to point to the outermost component reference that
707 can be used for assigning an alias set. */
708
709 static tree
710 reference_alias_ptr_type_1 (tree *t)
711 {
712 tree inner;
713
714 /* Get the base object of the reference. */
715 inner = *t;
716 while (handled_component_p (inner))
717 {
718 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
719 the type of any component references that wrap it to
720 determine the alias-set. */
721 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
722 *t = TREE_OPERAND (inner, 0);
723 inner = TREE_OPERAND (inner, 0);
724 }
725
726 /* Handle pointer dereferences here, they can override the
727 alias-set. */
728 if (INDIRECT_REF_P (inner)
729 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
730 return TREE_TYPE (TREE_OPERAND (inner, 0));
731 else if (TREE_CODE (inner) == TARGET_MEM_REF)
732 return TREE_TYPE (TMR_OFFSET (inner));
733 else if (TREE_CODE (inner) == MEM_REF
734 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
735 return TREE_TYPE (TREE_OPERAND (inner, 1));
736
737 /* If the innermost reference is a MEM_REF that has a
738 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
739 using the memory access type for determining the alias-set. */
740 if (TREE_CODE (inner) == MEM_REF
741 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
742 != TYPE_MAIN_VARIANT
743 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
744 return TREE_TYPE (TREE_OPERAND (inner, 1));
745
746 /* Otherwise, pick up the outermost object that we could have
747 a pointer to. */
748 tree tem = component_uses_parent_alias_set_from (*t);
749 if (tem)
750 *t = tem;
751
752 return NULL_TREE;
753 }
754
755 /* Return the pointer-type relevant for TBAA purposes from the
756 gimple memory reference tree T. This is the type to be used for
757 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
758 and guarantees that get_alias_set will return the same alias
759 set for T and the replacement. */
760
761 tree
762 reference_alias_ptr_type (tree t)
763 {
764 /* If the frontend assigns this alias-set zero, preserve that. */
765 if (lang_hooks.get_alias_set (t) == 0)
766 return ptr_type_node;
767
768 tree ptype = reference_alias_ptr_type_1 (&t);
769 /* If there is a given pointer type for aliasing purposes, return it. */
770 if (ptype != NULL_TREE)
771 return ptype;
772
773 /* Otherwise build one from the outermost component reference we
774 may use. */
775 if (TREE_CODE (t) == MEM_REF
776 || TREE_CODE (t) == TARGET_MEM_REF)
777 return TREE_TYPE (TREE_OPERAND (t, 1));
778 else
779 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
780 }
781
782 /* Return whether the pointer-types T1 and T2 used to determine
783 two alias sets of two references will yield the same answer
784 from get_deref_alias_set. */
785
786 bool
787 alias_ptr_types_compatible_p (tree t1, tree t2)
788 {
789 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
790 return true;
791
792 if (ref_all_alias_ptr_type_p (t1)
793 || ref_all_alias_ptr_type_p (t2))
794 return false;
795
796 /* This function originally abstracts from simply comparing
797 get_deref_alias_set so that we are sure this still computes
798 the same result after LTO type merging is applied.
799 When in LTO type merging is done we can actually do this compare.
800 */
801 if (in_lto_p)
802 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
803 else
804 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
805 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
806 }
807
808 /* Create emptry alias set entry. */
809
810 alias_set_entry *
811 init_alias_set_entry (alias_set_type set)
812 {
813 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
814 ase->alias_set = set;
815 ase->children = NULL;
816 ase->has_zero_child = false;
817 ase->is_pointer = false;
818 ase->has_pointer = false;
819 gcc_checking_assert (!get_alias_set_entry (set));
820 (*alias_sets)[set] = ase;
821 return ase;
822 }
823
824 /* Return the alias set for T, which may be either a type or an
825 expression. Call language-specific routine for help, if needed. */
826
827 alias_set_type
828 get_alias_set (tree t)
829 {
830 alias_set_type set;
831
832 /* We cannot give up with -fno-strict-aliasing because we need to build
833 proper type representation for possible functions which are build with
834 -fstrict-aliasing. */
835
836 /* return 0 if this or its type is an error. */
837 if (t == error_mark_node
838 || (! TYPE_P (t)
839 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
840 return 0;
841
842 /* We can be passed either an expression or a type. This and the
843 language-specific routine may make mutually-recursive calls to each other
844 to figure out what to do. At each juncture, we see if this is a tree
845 that the language may need to handle specially. First handle things that
846 aren't types. */
847 if (! TYPE_P (t))
848 {
849 /* Give the language a chance to do something with this tree
850 before we look at it. */
851 STRIP_NOPS (t);
852 set = lang_hooks.get_alias_set (t);
853 if (set != -1)
854 return set;
855
856 /* Get the alias pointer-type to use or the outermost object
857 that we could have a pointer to. */
858 tree ptype = reference_alias_ptr_type_1 (&t);
859 if (ptype != NULL)
860 return get_deref_alias_set (ptype);
861
862 /* If we've already determined the alias set for a decl, just return
863 it. This is necessary for C++ anonymous unions, whose component
864 variables don't look like union members (boo!). */
865 if (VAR_P (t)
866 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
867 return MEM_ALIAS_SET (DECL_RTL (t));
868
869 /* Now all we care about is the type. */
870 t = TREE_TYPE (t);
871 }
872
873 /* Variant qualifiers don't affect the alias set, so get the main
874 variant. */
875 t = TYPE_MAIN_VARIANT (t);
876
877 if (AGGREGATE_TYPE_P (t)
878 && TYPE_TYPELESS_STORAGE (t))
879 return 0;
880
881 /* Always use the canonical type as well. If this is a type that
882 requires structural comparisons to identify compatible types
883 use alias set zero. */
884 if (TYPE_STRUCTURAL_EQUALITY_P (t))
885 {
886 /* Allow the language to specify another alias set for this
887 type. */
888 set = lang_hooks.get_alias_set (t);
889 if (set != -1)
890 return set;
891 /* Handle structure type equality for pointer types, arrays and vectors.
892 This is easy to do, because the code bellow ignore canonical types on
893 these anyway. This is important for LTO, where TYPE_CANONICAL for
894 pointers cannot be meaningfuly computed by the frotnend. */
895 if (canonical_type_used_p (t))
896 {
897 /* In LTO we set canonical types for all types where it makes
898 sense to do so. Double check we did not miss some type. */
899 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
900 return 0;
901 }
902 }
903 else
904 {
905 t = TYPE_CANONICAL (t);
906 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
907 }
908
909 /* If this is a type with a known alias set, return it. */
910 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
911 if (TYPE_ALIAS_SET_KNOWN_P (t))
912 return TYPE_ALIAS_SET (t);
913
914 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
915 if (!COMPLETE_TYPE_P (t))
916 {
917 /* For arrays with unknown size the conservative answer is the
918 alias set of the element type. */
919 if (TREE_CODE (t) == ARRAY_TYPE)
920 return get_alias_set (TREE_TYPE (t));
921
922 /* But return zero as a conservative answer for incomplete types. */
923 return 0;
924 }
925
926 /* See if the language has special handling for this type. */
927 set = lang_hooks.get_alias_set (t);
928 if (set != -1)
929 return set;
930
931 /* There are no objects of FUNCTION_TYPE, so there's no point in
932 using up an alias set for them. (There are, of course, pointers
933 and references to functions, but that's different.) */
934 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
935 set = 0;
936
937 /* Unless the language specifies otherwise, let vector types alias
938 their components. This avoids some nasty type punning issues in
939 normal usage. And indeed lets vectors be treated more like an
940 array slice. */
941 else if (TREE_CODE (t) == VECTOR_TYPE)
942 set = get_alias_set (TREE_TYPE (t));
943
944 /* Unless the language specifies otherwise, treat array types the
945 same as their components. This avoids the asymmetry we get
946 through recording the components. Consider accessing a
947 character(kind=1) through a reference to a character(kind=1)[1:1].
948 Or consider if we want to assign integer(kind=4)[0:D.1387] and
949 integer(kind=4)[4] the same alias set or not.
950 Just be pragmatic here and make sure the array and its element
951 type get the same alias set assigned. */
952 else if (TREE_CODE (t) == ARRAY_TYPE
953 && (!TYPE_NONALIASED_COMPONENT (t)
954 || TYPE_STRUCTURAL_EQUALITY_P (t)))
955 set = get_alias_set (TREE_TYPE (t));
956
957 /* From the former common C and C++ langhook implementation:
958
959 Unfortunately, there is no canonical form of a pointer type.
960 In particular, if we have `typedef int I', then `int *', and
961 `I *' are different types. So, we have to pick a canonical
962 representative. We do this below.
963
964 Technically, this approach is actually more conservative that
965 it needs to be. In particular, `const int *' and `int *'
966 should be in different alias sets, according to the C and C++
967 standard, since their types are not the same, and so,
968 technically, an `int **' and `const int **' cannot point at
969 the same thing.
970
971 But, the standard is wrong. In particular, this code is
972 legal C++:
973
974 int *ip;
975 int **ipp = &ip;
976 const int* const* cipp = ipp;
977 And, it doesn't make sense for that to be legal unless you
978 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
979 the pointed-to types. This issue has been reported to the
980 C++ committee.
981
982 For this reason go to canonical type of the unqalified pointer type.
983 Until GCC 6 this code set all pointers sets to have alias set of
984 ptr_type_node but that is a bad idea, because it prevents disabiguations
985 in between pointers. For Firefox this accounts about 20% of all
986 disambiguations in the program. */
987 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
988 {
989 tree p;
990 auto_vec <bool, 8> reference;
991
992 /* Unnest all pointers and references.
993 We also want to make pointer to array/vector equivalent to pointer to
994 its element (see the reasoning above). Skip all those types, too. */
995 for (p = t; POINTER_TYPE_P (p)
996 || (TREE_CODE (p) == ARRAY_TYPE
997 && (!TYPE_NONALIASED_COMPONENT (p)
998 || !COMPLETE_TYPE_P (p)
999 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1000 || TREE_CODE (p) == VECTOR_TYPE;
1001 p = TREE_TYPE (p))
1002 {
1003 /* Ada supports recusive pointers. Instead of doing recrusion check
1004 just give up once the preallocated space of 8 elements is up.
1005 In this case just punt to void * alias set. */
1006 if (reference.length () == 8)
1007 {
1008 p = ptr_type_node;
1009 break;
1010 }
1011 if (TREE_CODE (p) == REFERENCE_TYPE)
1012 /* In LTO we want languages that use references to be compatible
1013 with languages that use pointers. */
1014 reference.safe_push (true && !in_lto_p);
1015 if (TREE_CODE (p) == POINTER_TYPE)
1016 reference.safe_push (false);
1017 }
1018 p = TYPE_MAIN_VARIANT (p);
1019
1020 /* In LTO for C++ programs we can turn in complete types to complete
1021 using ODR name lookup. */
1022 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1023 {
1024 p = prevailing_odr_type (p);
1025 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1026 }
1027
1028 /* Make void * compatible with char * and also void **.
1029 Programs are commonly violating TBAA by this.
1030
1031 We also make void * to conflict with every pointer
1032 (see record_component_aliases) and thus it is safe it to use it for
1033 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1034 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1035 set = get_alias_set (ptr_type_node);
1036 else
1037 {
1038 /* Rebuild pointer type starting from canonical types using
1039 unqualified pointers and references only. This way all such
1040 pointers will have the same alias set and will conflict with
1041 each other.
1042
1043 Most of time we already have pointers or references of a given type.
1044 If not we build new one just to be sure that if someone later
1045 (probably only middle-end can, as we should assign all alias
1046 classes only after finishing translation unit) builds the pointer
1047 type, the canonical type will match. */
1048 p = TYPE_CANONICAL (p);
1049 while (!reference.is_empty ())
1050 {
1051 if (reference.pop ())
1052 p = build_reference_type (p);
1053 else
1054 p = build_pointer_type (p);
1055 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1056 /* build_pointer_type should always return the canonical type.
1057 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1058 them. Be sure that frontends do not glob canonical types of
1059 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1060 in all other cases. */
1061 gcc_checking_assert (!TYPE_CANONICAL (p)
1062 || p == TYPE_CANONICAL (p));
1063 }
1064
1065 /* Assign the alias set to both p and t.
1066 We cannot call get_alias_set (p) here as that would trigger
1067 infinite recursion when p == t. In other cases it would just
1068 trigger unnecesary legwork of rebuilding the pointer again. */
1069 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1070 if (TYPE_ALIAS_SET_KNOWN_P (p))
1071 set = TYPE_ALIAS_SET (p);
1072 else
1073 {
1074 set = new_alias_set ();
1075 TYPE_ALIAS_SET (p) = set;
1076 }
1077 }
1078 }
1079 /* Alias set of ptr_type_node is special and serve as universal pointer which
1080 is TBAA compatible with every other pointer type. Be sure we have the
1081 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1082 of pointer types NULL. */
1083 else if (t == ptr_type_node)
1084 set = new_alias_set ();
1085
1086 /* Otherwise make a new alias set for this type. */
1087 else
1088 {
1089 /* Each canonical type gets its own alias set, so canonical types
1090 shouldn't form a tree. It doesn't really matter for types
1091 we handle specially above, so only check it where it possibly
1092 would result in a bogus alias set. */
1093 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1094
1095 set = new_alias_set ();
1096 }
1097
1098 TYPE_ALIAS_SET (t) = set;
1099
1100 /* If this is an aggregate type or a complex type, we must record any
1101 component aliasing information. */
1102 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1103 record_component_aliases (t);
1104
1105 /* We treat pointer types specially in alias_set_subset_of. */
1106 if (POINTER_TYPE_P (t) && set)
1107 {
1108 alias_set_entry *ase = get_alias_set_entry (set);
1109 if (!ase)
1110 ase = init_alias_set_entry (set);
1111 ase->is_pointer = true;
1112 ase->has_pointer = true;
1113 }
1114
1115 return set;
1116 }
1117
1118 /* Return a brand-new alias set. */
1119
1120 alias_set_type
1121 new_alias_set (void)
1122 {
1123 if (alias_sets == 0)
1124 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1125 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1126 return alias_sets->length () - 1;
1127 }
1128
1129 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1130 not everything that aliases SUPERSET also aliases SUBSET. For example,
1131 in C, a store to an `int' can alias a load of a structure containing an
1132 `int', and vice versa. But it can't alias a load of a 'double' member
1133 of the same structure. Here, the structure would be the SUPERSET and
1134 `int' the SUBSET. This relationship is also described in the comment at
1135 the beginning of this file.
1136
1137 This function should be called only once per SUPERSET/SUBSET pair.
1138
1139 It is illegal for SUPERSET to be zero; everything is implicitly a
1140 subset of alias set zero. */
1141
1142 void
1143 record_alias_subset (alias_set_type superset, alias_set_type subset)
1144 {
1145 alias_set_entry *superset_entry;
1146 alias_set_entry *subset_entry;
1147
1148 /* It is possible in complex type situations for both sets to be the same,
1149 in which case we can ignore this operation. */
1150 if (superset == subset)
1151 return;
1152
1153 gcc_assert (superset);
1154
1155 superset_entry = get_alias_set_entry (superset);
1156 if (superset_entry == 0)
1157 {
1158 /* Create an entry for the SUPERSET, so that we have a place to
1159 attach the SUBSET. */
1160 superset_entry = init_alias_set_entry (superset);
1161 }
1162
1163 if (subset == 0)
1164 superset_entry->has_zero_child = 1;
1165 else
1166 {
1167 subset_entry = get_alias_set_entry (subset);
1168 if (!superset_entry->children)
1169 superset_entry->children
1170 = hash_map<alias_set_hash, int>::create_ggc (64);
1171 /* If there is an entry for the subset, enter all of its children
1172 (if they are not already present) as children of the SUPERSET. */
1173 if (subset_entry)
1174 {
1175 if (subset_entry->has_zero_child)
1176 superset_entry->has_zero_child = true;
1177 if (subset_entry->has_pointer)
1178 superset_entry->has_pointer = true;
1179
1180 if (subset_entry->children)
1181 {
1182 hash_map<alias_set_hash, int>::iterator iter
1183 = subset_entry->children->begin ();
1184 for (; iter != subset_entry->children->end (); ++iter)
1185 superset_entry->children->put ((*iter).first, (*iter).second);
1186 }
1187 }
1188
1189 /* Enter the SUBSET itself as a child of the SUPERSET. */
1190 superset_entry->children->put (subset, 0);
1191 }
1192 }
1193
1194 /* Record that component types of TYPE, if any, are part of that type for
1195 aliasing purposes. For record types, we only record component types
1196 for fields that are not marked non-addressable. For array types, we
1197 only record the component type if it is not marked non-aliased. */
1198
1199 void
1200 record_component_aliases (tree type)
1201 {
1202 alias_set_type superset = get_alias_set (type);
1203 tree field;
1204
1205 if (superset == 0)
1206 return;
1207
1208 switch (TREE_CODE (type))
1209 {
1210 case RECORD_TYPE:
1211 case UNION_TYPE:
1212 case QUAL_UNION_TYPE:
1213 {
1214 /* LTO non-ODR type merging does not make any difference between
1215 component pointer types. We may have
1216
1217 struct foo {int *a;};
1218
1219 as TYPE_CANONICAL of
1220
1221 struct bar {float *a;};
1222
1223 Because accesses to int * and float * do not alias, we would get
1224 false negative when accessing the same memory location by
1225 float ** and bar *. We thus record the canonical type as:
1226
1227 struct {void *a;};
1228
1229 void * is special cased and works as a universal pointer type.
1230 Accesses to it conflicts with accesses to any other pointer
1231 type. */
1232 bool void_pointers = in_lto_p
1233 && (!odr_type_p (type)
1234 || !odr_based_tbaa_p (type));
1235 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1236 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1237 {
1238 tree t = TREE_TYPE (field);
1239 if (void_pointers)
1240 {
1241 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1242 element type and that type has to be normalized to void *,
1243 too, in the case it is a pointer. */
1244 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1245 {
1246 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1247 t = TREE_TYPE (t);
1248 }
1249 if (POINTER_TYPE_P (t))
1250 t = ptr_type_node;
1251 else if (flag_checking)
1252 gcc_checking_assert (get_alias_set (t)
1253 == get_alias_set (TREE_TYPE (field)));
1254 }
1255
1256 record_alias_subset (superset, get_alias_set (t));
1257 }
1258 }
1259 break;
1260
1261 case COMPLEX_TYPE:
1262 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1263 break;
1264
1265 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1266 element type. */
1267
1268 default:
1269 break;
1270 }
1271 }
1272
1273 /* Allocate an alias set for use in storing and reading from the varargs
1274 spill area. */
1275
1276 static GTY(()) alias_set_type varargs_set = -1;
1277
1278 alias_set_type
1279 get_varargs_alias_set (void)
1280 {
1281 #if 1
1282 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1283 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1284 consistently use the varargs alias set for loads from the varargs
1285 area. So don't use it anywhere. */
1286 return 0;
1287 #else
1288 if (varargs_set == -1)
1289 varargs_set = new_alias_set ();
1290
1291 return varargs_set;
1292 #endif
1293 }
1294
1295 /* Likewise, but used for the fixed portions of the frame, e.g., register
1296 save areas. */
1297
1298 static GTY(()) alias_set_type frame_set = -1;
1299
1300 alias_set_type
1301 get_frame_alias_set (void)
1302 {
1303 if (frame_set == -1)
1304 frame_set = new_alias_set ();
1305
1306 return frame_set;
1307 }
1308
1309 /* Create a new, unique base with id ID. */
1310
1311 static rtx
1312 unique_base_value (HOST_WIDE_INT id)
1313 {
1314 return gen_rtx_ADDRESS (Pmode, id);
1315 }
1316
1317 /* Return true if accesses based on any other base value cannot alias
1318 those based on X. */
1319
1320 static bool
1321 unique_base_value_p (rtx x)
1322 {
1323 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1324 }
1325
1326 /* Return true if X is known to be a base value. */
1327
1328 static bool
1329 known_base_value_p (rtx x)
1330 {
1331 switch (GET_CODE (x))
1332 {
1333 case LABEL_REF:
1334 case SYMBOL_REF:
1335 return true;
1336
1337 case ADDRESS:
1338 /* Arguments may or may not be bases; we don't know for sure. */
1339 return GET_MODE (x) != VOIDmode;
1340
1341 default:
1342 return false;
1343 }
1344 }
1345
1346 /* Inside SRC, the source of a SET, find a base address. */
1347
1348 static rtx
1349 find_base_value (rtx src)
1350 {
1351 unsigned int regno;
1352 scalar_int_mode int_mode;
1353
1354 #if defined (FIND_BASE_TERM)
1355 /* Try machine-dependent ways to find the base term. */
1356 src = FIND_BASE_TERM (src);
1357 #endif
1358
1359 switch (GET_CODE (src))
1360 {
1361 case SYMBOL_REF:
1362 case LABEL_REF:
1363 return src;
1364
1365 case REG:
1366 regno = REGNO (src);
1367 /* At the start of a function, argument registers have known base
1368 values which may be lost later. Returning an ADDRESS
1369 expression here allows optimization based on argument values
1370 even when the argument registers are used for other purposes. */
1371 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1372 return new_reg_base_value[regno];
1373
1374 /* If a pseudo has a known base value, return it. Do not do this
1375 for non-fixed hard regs since it can result in a circular
1376 dependency chain for registers which have values at function entry.
1377
1378 The test above is not sufficient because the scheduler may move
1379 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1380 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1381 && regno < vec_safe_length (reg_base_value))
1382 {
1383 /* If we're inside init_alias_analysis, use new_reg_base_value
1384 to reduce the number of relaxation iterations. */
1385 if (new_reg_base_value && new_reg_base_value[regno]
1386 && DF_REG_DEF_COUNT (regno) == 1)
1387 return new_reg_base_value[regno];
1388
1389 if ((*reg_base_value)[regno])
1390 return (*reg_base_value)[regno];
1391 }
1392
1393 return 0;
1394
1395 case MEM:
1396 /* Check for an argument passed in memory. Only record in the
1397 copying-arguments block; it is too hard to track changes
1398 otherwise. */
1399 if (copying_arguments
1400 && (XEXP (src, 0) == arg_pointer_rtx
1401 || (GET_CODE (XEXP (src, 0)) == PLUS
1402 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1403 return arg_base_value;
1404 return 0;
1405
1406 case CONST:
1407 src = XEXP (src, 0);
1408 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1409 break;
1410
1411 /* fall through */
1412
1413 case PLUS:
1414 case MINUS:
1415 {
1416 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1417
1418 /* If either operand is a REG that is a known pointer, then it
1419 is the base. */
1420 if (REG_P (src_0) && REG_POINTER (src_0))
1421 return find_base_value (src_0);
1422 if (REG_P (src_1) && REG_POINTER (src_1))
1423 return find_base_value (src_1);
1424
1425 /* If either operand is a REG, then see if we already have
1426 a known value for it. */
1427 if (REG_P (src_0))
1428 {
1429 temp = find_base_value (src_0);
1430 if (temp != 0)
1431 src_0 = temp;
1432 }
1433
1434 if (REG_P (src_1))
1435 {
1436 temp = find_base_value (src_1);
1437 if (temp!= 0)
1438 src_1 = temp;
1439 }
1440
1441 /* If either base is named object or a special address
1442 (like an argument or stack reference), then use it for the
1443 base term. */
1444 if (src_0 != 0 && known_base_value_p (src_0))
1445 return src_0;
1446
1447 if (src_1 != 0 && known_base_value_p (src_1))
1448 return src_1;
1449
1450 /* Guess which operand is the base address:
1451 If either operand is a symbol, then it is the base. If
1452 either operand is a CONST_INT, then the other is the base. */
1453 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1454 return find_base_value (src_0);
1455 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1456 return find_base_value (src_1);
1457
1458 return 0;
1459 }
1460
1461 case LO_SUM:
1462 /* The standard form is (lo_sum reg sym) so look only at the
1463 second operand. */
1464 return find_base_value (XEXP (src, 1));
1465
1466 case AND:
1467 /* If the second operand is constant set the base
1468 address to the first operand. */
1469 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1470 return find_base_value (XEXP (src, 0));
1471 return 0;
1472
1473 case TRUNCATE:
1474 /* As we do not know which address space the pointer is referring to, we can
1475 handle this only if the target does not support different pointer or
1476 address modes depending on the address space. */
1477 if (!target_default_pointer_address_modes_p ())
1478 break;
1479 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1480 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1481 break;
1482 /* Fall through. */
1483 case HIGH:
1484 case PRE_INC:
1485 case PRE_DEC:
1486 case POST_INC:
1487 case POST_DEC:
1488 case PRE_MODIFY:
1489 case POST_MODIFY:
1490 return find_base_value (XEXP (src, 0));
1491
1492 case ZERO_EXTEND:
1493 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1494 /* As we do not know which address space the pointer is referring to, we can
1495 handle this only if the target does not support different pointer or
1496 address modes depending on the address space. */
1497 if (!target_default_pointer_address_modes_p ())
1498 break;
1499
1500 {
1501 rtx temp = find_base_value (XEXP (src, 0));
1502
1503 if (temp != 0 && CONSTANT_P (temp))
1504 temp = convert_memory_address (Pmode, temp);
1505
1506 return temp;
1507 }
1508
1509 default:
1510 break;
1511 }
1512
1513 return 0;
1514 }
1515
1516 /* Called from init_alias_analysis indirectly through note_stores,
1517 or directly if DEST is a register with a REG_NOALIAS note attached.
1518 SET is null in the latter case. */
1519
1520 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1521 register N has been set in this function. */
1522 static sbitmap reg_seen;
1523
1524 static void
1525 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1526 {
1527 unsigned regno;
1528 rtx src;
1529 int n;
1530
1531 if (!REG_P (dest))
1532 return;
1533
1534 regno = REGNO (dest);
1535
1536 gcc_checking_assert (regno < reg_base_value->length ());
1537
1538 n = REG_NREGS (dest);
1539 if (n != 1)
1540 {
1541 while (--n >= 0)
1542 {
1543 bitmap_set_bit (reg_seen, regno + n);
1544 new_reg_base_value[regno + n] = 0;
1545 }
1546 return;
1547 }
1548
1549 if (set)
1550 {
1551 /* A CLOBBER wipes out any old value but does not prevent a previously
1552 unset register from acquiring a base address (i.e. reg_seen is not
1553 set). */
1554 if (GET_CODE (set) == CLOBBER)
1555 {
1556 new_reg_base_value[regno] = 0;
1557 return;
1558 }
1559
1560 src = SET_SRC (set);
1561 }
1562 else
1563 {
1564 /* There's a REG_NOALIAS note against DEST. */
1565 if (bitmap_bit_p (reg_seen, regno))
1566 {
1567 new_reg_base_value[regno] = 0;
1568 return;
1569 }
1570 bitmap_set_bit (reg_seen, regno);
1571 new_reg_base_value[regno] = unique_base_value (unique_id++);
1572 return;
1573 }
1574
1575 /* If this is not the first set of REGNO, see whether the new value
1576 is related to the old one. There are two cases of interest:
1577
1578 (1) The register might be assigned an entirely new value
1579 that has the same base term as the original set.
1580
1581 (2) The set might be a simple self-modification that
1582 cannot change REGNO's base value.
1583
1584 If neither case holds, reject the original base value as invalid.
1585 Note that the following situation is not detected:
1586
1587 extern int x, y; int *p = &x; p += (&y-&x);
1588
1589 ANSI C does not allow computing the difference of addresses
1590 of distinct top level objects. */
1591 if (new_reg_base_value[regno] != 0
1592 && find_base_value (src) != new_reg_base_value[regno])
1593 switch (GET_CODE (src))
1594 {
1595 case LO_SUM:
1596 case MINUS:
1597 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1598 new_reg_base_value[regno] = 0;
1599 break;
1600 case PLUS:
1601 /* If the value we add in the PLUS is also a valid base value,
1602 this might be the actual base value, and the original value
1603 an index. */
1604 {
1605 rtx other = NULL_RTX;
1606
1607 if (XEXP (src, 0) == dest)
1608 other = XEXP (src, 1);
1609 else if (XEXP (src, 1) == dest)
1610 other = XEXP (src, 0);
1611
1612 if (! other || find_base_value (other))
1613 new_reg_base_value[regno] = 0;
1614 break;
1615 }
1616 case AND:
1617 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1618 new_reg_base_value[regno] = 0;
1619 break;
1620 default:
1621 new_reg_base_value[regno] = 0;
1622 break;
1623 }
1624 /* If this is the first set of a register, record the value. */
1625 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1626 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1627 new_reg_base_value[regno] = find_base_value (src);
1628
1629 bitmap_set_bit (reg_seen, regno);
1630 }
1631
1632 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1633 using hard registers with non-null REG_BASE_VALUE for renaming. */
1634 rtx
1635 get_reg_base_value (unsigned int regno)
1636 {
1637 return (*reg_base_value)[regno];
1638 }
1639
1640 /* If a value is known for REGNO, return it. */
1641
1642 rtx
1643 get_reg_known_value (unsigned int regno)
1644 {
1645 if (regno >= FIRST_PSEUDO_REGISTER)
1646 {
1647 regno -= FIRST_PSEUDO_REGISTER;
1648 if (regno < vec_safe_length (reg_known_value))
1649 return (*reg_known_value)[regno];
1650 }
1651 return NULL;
1652 }
1653
1654 /* Set it. */
1655
1656 static void
1657 set_reg_known_value (unsigned int regno, rtx val)
1658 {
1659 if (regno >= FIRST_PSEUDO_REGISTER)
1660 {
1661 regno -= FIRST_PSEUDO_REGISTER;
1662 if (regno < vec_safe_length (reg_known_value))
1663 (*reg_known_value)[regno] = val;
1664 }
1665 }
1666
1667 /* Similarly for reg_known_equiv_p. */
1668
1669 bool
1670 get_reg_known_equiv_p (unsigned int regno)
1671 {
1672 if (regno >= FIRST_PSEUDO_REGISTER)
1673 {
1674 regno -= FIRST_PSEUDO_REGISTER;
1675 if (regno < vec_safe_length (reg_known_value))
1676 return bitmap_bit_p (reg_known_equiv_p, regno);
1677 }
1678 return false;
1679 }
1680
1681 static void
1682 set_reg_known_equiv_p (unsigned int regno, bool val)
1683 {
1684 if (regno >= FIRST_PSEUDO_REGISTER)
1685 {
1686 regno -= FIRST_PSEUDO_REGISTER;
1687 if (regno < vec_safe_length (reg_known_value))
1688 {
1689 if (val)
1690 bitmap_set_bit (reg_known_equiv_p, regno);
1691 else
1692 bitmap_clear_bit (reg_known_equiv_p, regno);
1693 }
1694 }
1695 }
1696
1697
1698 /* Returns a canonical version of X, from the point of view alias
1699 analysis. (For example, if X is a MEM whose address is a register,
1700 and the register has a known value (say a SYMBOL_REF), then a MEM
1701 whose address is the SYMBOL_REF is returned.) */
1702
1703 rtx
1704 canon_rtx (rtx x)
1705 {
1706 /* Recursively look for equivalences. */
1707 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1708 {
1709 rtx t = get_reg_known_value (REGNO (x));
1710 if (t == x)
1711 return x;
1712 if (t)
1713 return canon_rtx (t);
1714 }
1715
1716 if (GET_CODE (x) == PLUS)
1717 {
1718 rtx x0 = canon_rtx (XEXP (x, 0));
1719 rtx x1 = canon_rtx (XEXP (x, 1));
1720
1721 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1722 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1723 }
1724
1725 /* This gives us much better alias analysis when called from
1726 the loop optimizer. Note we want to leave the original
1727 MEM alone, but need to return the canonicalized MEM with
1728 all the flags with their original values. */
1729 else if (MEM_P (x))
1730 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1731
1732 return x;
1733 }
1734
1735 /* Return 1 if X and Y are identical-looking rtx's.
1736 Expect that X and Y has been already canonicalized.
1737
1738 We use the data in reg_known_value above to see if two registers with
1739 different numbers are, in fact, equivalent. */
1740
1741 static int
1742 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1743 {
1744 int i;
1745 int j;
1746 enum rtx_code code;
1747 const char *fmt;
1748
1749 if (x == 0 && y == 0)
1750 return 1;
1751 if (x == 0 || y == 0)
1752 return 0;
1753
1754 if (x == y)
1755 return 1;
1756
1757 code = GET_CODE (x);
1758 /* Rtx's of different codes cannot be equal. */
1759 if (code != GET_CODE (y))
1760 return 0;
1761
1762 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1763 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1764
1765 if (GET_MODE (x) != GET_MODE (y))
1766 return 0;
1767
1768 /* Some RTL can be compared without a recursive examination. */
1769 switch (code)
1770 {
1771 case REG:
1772 return REGNO (x) == REGNO (y);
1773
1774 case LABEL_REF:
1775 return label_ref_label (x) == label_ref_label (y);
1776
1777 case SYMBOL_REF:
1778 return compare_base_symbol_refs (x, y) == 1;
1779
1780 case ENTRY_VALUE:
1781 /* This is magic, don't go through canonicalization et al. */
1782 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1783
1784 case VALUE:
1785 CASE_CONST_UNIQUE:
1786 /* Pointer equality guarantees equality for these nodes. */
1787 return 0;
1788
1789 default:
1790 break;
1791 }
1792
1793 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1794 if (code == PLUS)
1795 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1796 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1797 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1798 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1799 /* For commutative operations, the RTX match if the operand match in any
1800 order. Also handle the simple binary and unary cases without a loop. */
1801 if (COMMUTATIVE_P (x))
1802 {
1803 rtx xop0 = canon_rtx (XEXP (x, 0));
1804 rtx yop0 = canon_rtx (XEXP (y, 0));
1805 rtx yop1 = canon_rtx (XEXP (y, 1));
1806
1807 return ((rtx_equal_for_memref_p (xop0, yop0)
1808 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1809 || (rtx_equal_for_memref_p (xop0, yop1)
1810 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1811 }
1812 else if (NON_COMMUTATIVE_P (x))
1813 {
1814 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1815 canon_rtx (XEXP (y, 0)))
1816 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1817 canon_rtx (XEXP (y, 1))));
1818 }
1819 else if (UNARY_P (x))
1820 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1821 canon_rtx (XEXP (y, 0)));
1822
1823 /* Compare the elements. If any pair of corresponding elements
1824 fail to match, return 0 for the whole things.
1825
1826 Limit cases to types which actually appear in addresses. */
1827
1828 fmt = GET_RTX_FORMAT (code);
1829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1830 {
1831 switch (fmt[i])
1832 {
1833 case 'i':
1834 if (XINT (x, i) != XINT (y, i))
1835 return 0;
1836 break;
1837
1838 case 'p':
1839 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1840 return 0;
1841 break;
1842
1843 case 'E':
1844 /* Two vectors must have the same length. */
1845 if (XVECLEN (x, i) != XVECLEN (y, i))
1846 return 0;
1847
1848 /* And the corresponding elements must match. */
1849 for (j = 0; j < XVECLEN (x, i); j++)
1850 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1851 canon_rtx (XVECEXP (y, i, j))) == 0)
1852 return 0;
1853 break;
1854
1855 case 'e':
1856 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1857 canon_rtx (XEXP (y, i))) == 0)
1858 return 0;
1859 break;
1860
1861 /* This can happen for asm operands. */
1862 case 's':
1863 if (strcmp (XSTR (x, i), XSTR (y, i)))
1864 return 0;
1865 break;
1866
1867 /* This can happen for an asm which clobbers memory. */
1868 case '0':
1869 break;
1870
1871 /* It is believed that rtx's at this level will never
1872 contain anything but integers and other rtx's,
1873 except for within LABEL_REFs and SYMBOL_REFs. */
1874 default:
1875 gcc_unreachable ();
1876 }
1877 }
1878 return 1;
1879 }
1880
1881 static rtx
1882 find_base_term (rtx x, vec<std::pair<cselib_val *,
1883 struct elt_loc_list *> > &visited_vals)
1884 {
1885 cselib_val *val;
1886 struct elt_loc_list *l, *f;
1887 rtx ret;
1888 scalar_int_mode int_mode;
1889
1890 #if defined (FIND_BASE_TERM)
1891 /* Try machine-dependent ways to find the base term. */
1892 x = FIND_BASE_TERM (x);
1893 #endif
1894
1895 switch (GET_CODE (x))
1896 {
1897 case REG:
1898 return REG_BASE_VALUE (x);
1899
1900 case TRUNCATE:
1901 /* As we do not know which address space the pointer is referring to, we can
1902 handle this only if the target does not support different pointer or
1903 address modes depending on the address space. */
1904 if (!target_default_pointer_address_modes_p ())
1905 return 0;
1906 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1907 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1908 return 0;
1909 /* Fall through. */
1910 case HIGH:
1911 case PRE_INC:
1912 case PRE_DEC:
1913 case POST_INC:
1914 case POST_DEC:
1915 case PRE_MODIFY:
1916 case POST_MODIFY:
1917 return find_base_term (XEXP (x, 0), visited_vals);
1918
1919 case ZERO_EXTEND:
1920 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1921 /* As we do not know which address space the pointer is referring to, we can
1922 handle this only if the target does not support different pointer or
1923 address modes depending on the address space. */
1924 if (!target_default_pointer_address_modes_p ())
1925 return 0;
1926
1927 {
1928 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1929
1930 if (temp != 0 && CONSTANT_P (temp))
1931 temp = convert_memory_address (Pmode, temp);
1932
1933 return temp;
1934 }
1935
1936 case VALUE:
1937 val = CSELIB_VAL_PTR (x);
1938 ret = NULL_RTX;
1939
1940 if (!val)
1941 return ret;
1942
1943 if (cselib_sp_based_value_p (val))
1944 return static_reg_base_value[STACK_POINTER_REGNUM];
1945
1946 f = val->locs;
1947 /* Reset val->locs to avoid infinite recursion. */
1948 if (f)
1949 visited_vals.safe_push (std::make_pair (val, f));
1950 val->locs = NULL;
1951
1952 for (l = f; l; l = l->next)
1953 if (GET_CODE (l->loc) == VALUE
1954 && CSELIB_VAL_PTR (l->loc)->locs
1955 && !CSELIB_VAL_PTR (l->loc)->locs->next
1956 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1957 continue;
1958 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1959 break;
1960
1961 return ret;
1962
1963 case LO_SUM:
1964 /* The standard form is (lo_sum reg sym) so look only at the
1965 second operand. */
1966 return find_base_term (XEXP (x, 1), visited_vals);
1967
1968 case CONST:
1969 x = XEXP (x, 0);
1970 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1971 return 0;
1972 /* Fall through. */
1973 case PLUS:
1974 case MINUS:
1975 {
1976 rtx tmp1 = XEXP (x, 0);
1977 rtx tmp2 = XEXP (x, 1);
1978
1979 /* This is a little bit tricky since we have to determine which of
1980 the two operands represents the real base address. Otherwise this
1981 routine may return the index register instead of the base register.
1982
1983 That may cause us to believe no aliasing was possible, when in
1984 fact aliasing is possible.
1985
1986 We use a few simple tests to guess the base register. Additional
1987 tests can certainly be added. For example, if one of the operands
1988 is a shift or multiply, then it must be the index register and the
1989 other operand is the base register. */
1990
1991 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1992 return find_base_term (tmp2, visited_vals);
1993
1994 /* If either operand is known to be a pointer, then prefer it
1995 to determine the base term. */
1996 if (REG_P (tmp1) && REG_POINTER (tmp1))
1997 ;
1998 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1999 std::swap (tmp1, tmp2);
2000 /* If second argument is constant which has base term, prefer it
2001 over variable tmp1. See PR64025. */
2002 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2003 std::swap (tmp1, tmp2);
2004
2005 /* Go ahead and find the base term for both operands. If either base
2006 term is from a pointer or is a named object or a special address
2007 (like an argument or stack reference), then use it for the
2008 base term. */
2009 rtx base = find_base_term (tmp1, visited_vals);
2010 if (base != NULL_RTX
2011 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2012 || known_base_value_p (base)))
2013 return base;
2014 base = find_base_term (tmp2, visited_vals);
2015 if (base != NULL_RTX
2016 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2017 || known_base_value_p (base)))
2018 return base;
2019
2020 /* We could not determine which of the two operands was the
2021 base register and which was the index. So we can determine
2022 nothing from the base alias check. */
2023 return 0;
2024 }
2025
2026 case AND:
2027 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2028 return find_base_term (XEXP (x, 0), visited_vals);
2029 return 0;
2030
2031 case SYMBOL_REF:
2032 case LABEL_REF:
2033 return x;
2034
2035 default:
2036 return 0;
2037 }
2038 }
2039
2040 /* Wrapper around the worker above which removes locs from visited VALUEs
2041 to avoid visiting them multiple times. We unwind that changes here. */
2042
2043 static rtx
2044 find_base_term (rtx x)
2045 {
2046 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2047 rtx res = find_base_term (x, visited_vals);
2048 for (unsigned i = 0; i < visited_vals.length (); ++i)
2049 visited_vals[i].first->locs = visited_vals[i].second;
2050 return res;
2051 }
2052
2053 /* Return true if accesses to address X may alias accesses based
2054 on the stack pointer. */
2055
2056 bool
2057 may_be_sp_based_p (rtx x)
2058 {
2059 rtx base = find_base_term (x);
2060 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2061 }
2062
2063 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2064 if they refer to different objects and -1 if we cannot decide. */
2065
2066 int
2067 compare_base_decls (tree base1, tree base2)
2068 {
2069 int ret;
2070 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2071 if (base1 == base2)
2072 return 1;
2073
2074 /* If we have two register decls with register specification we
2075 cannot decide unless their assembler names are the same. */
2076 if (DECL_REGISTER (base1)
2077 && DECL_REGISTER (base2)
2078 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2079 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2080 && DECL_ASSEMBLER_NAME_SET_P (base1)
2081 && DECL_ASSEMBLER_NAME_SET_P (base2))
2082 {
2083 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2084 return 1;
2085 return -1;
2086 }
2087
2088 /* Declarations of non-automatic variables may have aliases. All other
2089 decls are unique. */
2090 if (!decl_in_symtab_p (base1)
2091 || !decl_in_symtab_p (base2))
2092 return 0;
2093
2094 /* Don't cause symbols to be inserted by the act of checking. */
2095 symtab_node *node1 = symtab_node::get (base1);
2096 if (!node1)
2097 return 0;
2098 symtab_node *node2 = symtab_node::get (base2);
2099 if (!node2)
2100 return 0;
2101
2102 ret = node1->equal_address_to (node2, true);
2103 return ret;
2104 }
2105
2106 /* Same as compare_base_decls but for SYMBOL_REF. */
2107
2108 static int
2109 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2110 {
2111 tree x_decl = SYMBOL_REF_DECL (x_base);
2112 tree y_decl = SYMBOL_REF_DECL (y_base);
2113 bool binds_def = true;
2114
2115 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2116 return 1;
2117 if (x_decl && y_decl)
2118 return compare_base_decls (x_decl, y_decl);
2119 if (x_decl || y_decl)
2120 {
2121 if (!x_decl)
2122 {
2123 std::swap (x_decl, y_decl);
2124 std::swap (x_base, y_base);
2125 }
2126 /* We handle specially only section anchors and assume that other
2127 labels may overlap with user variables in an arbitrary way. */
2128 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2129 return -1;
2130 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2131 to ignore CONST_DECLs because they are readonly. */
2132 if (!VAR_P (x_decl)
2133 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2134 return 0;
2135
2136 symtab_node *x_node = symtab_node::get_create (x_decl)
2137 ->ultimate_alias_target ();
2138 /* External variable cannot be in section anchor. */
2139 if (!x_node->definition)
2140 return 0;
2141 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2142 /* If not in anchor, we can disambiguate. */
2143 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2144 return 0;
2145
2146 /* We have an alias of anchored variable. If it can be interposed;
2147 we must assume it may or may not alias its anchor. */
2148 binds_def = decl_binds_to_current_def_p (x_decl);
2149 }
2150 /* If we have variable in section anchor, we can compare by offset. */
2151 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2152 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2153 {
2154 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2155 return 0;
2156 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2157 return binds_def ? 1 : -1;
2158 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2159 return -1;
2160 return 0;
2161 }
2162 /* In general we assume that memory locations pointed to by different labels
2163 may overlap in undefined ways. */
2164 return -1;
2165 }
2166
2167 /* Return 0 if the addresses X and Y are known to point to different
2168 objects, 1 if they might be pointers to the same object. */
2169
2170 static int
2171 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2172 machine_mode x_mode, machine_mode y_mode)
2173 {
2174 /* If the address itself has no known base see if a known equivalent
2175 value has one. If either address still has no known base, nothing
2176 is known about aliasing. */
2177 if (x_base == 0)
2178 {
2179 rtx x_c;
2180
2181 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2182 return 1;
2183
2184 x_base = find_base_term (x_c);
2185 if (x_base == 0)
2186 return 1;
2187 }
2188
2189 if (y_base == 0)
2190 {
2191 rtx y_c;
2192 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2193 return 1;
2194
2195 y_base = find_base_term (y_c);
2196 if (y_base == 0)
2197 return 1;
2198 }
2199
2200 /* If the base addresses are equal nothing is known about aliasing. */
2201 if (rtx_equal_p (x_base, y_base))
2202 return 1;
2203
2204 /* The base addresses are different expressions. If they are not accessed
2205 via AND, there is no conflict. We can bring knowledge of object
2206 alignment into play here. For example, on alpha, "char a, b;" can
2207 alias one another, though "char a; long b;" cannot. AND addresses may
2208 implicitly alias surrounding objects; i.e. unaligned access in DImode
2209 via AND address can alias all surrounding object types except those
2210 with aligment 8 or higher. */
2211 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2212 return 1;
2213 if (GET_CODE (x) == AND
2214 && (!CONST_INT_P (XEXP (x, 1))
2215 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2216 return 1;
2217 if (GET_CODE (y) == AND
2218 && (!CONST_INT_P (XEXP (y, 1))
2219 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2220 return 1;
2221
2222 /* Differing symbols not accessed via AND never alias. */
2223 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2224 return compare_base_symbol_refs (x_base, y_base) != 0;
2225
2226 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2227 return 0;
2228
2229 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2236 (or equal to) that of V. */
2237
2238 static bool
2239 refs_newer_value_p (const_rtx expr, rtx v)
2240 {
2241 int minuid = CSELIB_VAL_PTR (v)->uid;
2242 subrtx_iterator::array_type array;
2243 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2244 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2245 return true;
2246 return false;
2247 }
2248
2249 /* Convert the address X into something we can use. This is done by returning
2250 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2251 we call cselib to get a more useful rtx. */
2252
2253 rtx
2254 get_addr (rtx x)
2255 {
2256 cselib_val *v;
2257 struct elt_loc_list *l;
2258
2259 if (GET_CODE (x) != VALUE)
2260 {
2261 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2262 && GET_CODE (XEXP (x, 0)) == VALUE
2263 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2264 {
2265 rtx op0 = get_addr (XEXP (x, 0));
2266 if (op0 != XEXP (x, 0))
2267 {
2268 poly_int64 c;
2269 if (GET_CODE (x) == PLUS
2270 && poly_int_rtx_p (XEXP (x, 1), &c))
2271 return plus_constant (GET_MODE (x), op0, c);
2272 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2273 op0, XEXP (x, 1));
2274 }
2275 }
2276 return x;
2277 }
2278 v = CSELIB_VAL_PTR (x);
2279 if (v)
2280 {
2281 bool have_equivs = cselib_have_permanent_equivalences ();
2282 if (have_equivs)
2283 v = canonical_cselib_val (v);
2284 for (l = v->locs; l; l = l->next)
2285 if (CONSTANT_P (l->loc))
2286 return l->loc;
2287 for (l = v->locs; l; l = l->next)
2288 if (!REG_P (l->loc) && !MEM_P (l->loc)
2289 /* Avoid infinite recursion when potentially dealing with
2290 var-tracking artificial equivalences, by skipping the
2291 equivalences themselves, and not choosing expressions
2292 that refer to newer VALUEs. */
2293 && (!have_equivs
2294 || (GET_CODE (l->loc) != VALUE
2295 && !refs_newer_value_p (l->loc, x))))
2296 return l->loc;
2297 if (have_equivs)
2298 {
2299 for (l = v->locs; l; l = l->next)
2300 if (REG_P (l->loc)
2301 || (GET_CODE (l->loc) != VALUE
2302 && !refs_newer_value_p (l->loc, x)))
2303 return l->loc;
2304 /* Return the canonical value. */
2305 return v->val_rtx;
2306 }
2307 if (v->locs)
2308 return v->locs->loc;
2309 }
2310 return x;
2311 }
2312
2313 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2314 where SIZE is the size in bytes of the memory reference. If ADDR
2315 is not modified by the memory reference then ADDR is returned. */
2316
2317 static rtx
2318 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2319 {
2320 poly_int64 offset = 0;
2321
2322 switch (GET_CODE (addr))
2323 {
2324 case PRE_INC:
2325 offset = (n_refs + 1) * size;
2326 break;
2327 case PRE_DEC:
2328 offset = -(n_refs + 1) * size;
2329 break;
2330 case POST_INC:
2331 offset = n_refs * size;
2332 break;
2333 case POST_DEC:
2334 offset = -n_refs * size;
2335 break;
2336
2337 default:
2338 return addr;
2339 }
2340
2341 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2342 addr = canon_rtx (addr);
2343
2344 return addr;
2345 }
2346
2347 /* Return TRUE if an object X sized at XSIZE bytes and another object
2348 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2349 any of the sizes is zero, assume an overlap, otherwise use the
2350 absolute value of the sizes as the actual sizes. */
2351
2352 static inline bool
2353 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2354 {
2355 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2356 return true;
2357
2358 if (maybe_ge (c, 0))
2359 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2360 else
2361 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2362 }
2363
2364 /* Return one if X and Y (memory addresses) reference the
2365 same location in memory or if the references overlap.
2366 Return zero if they do not overlap, else return
2367 minus one in which case they still might reference the same location.
2368
2369 C is an offset accumulator. When
2370 C is nonzero, we are testing aliases between X and Y + C.
2371 XSIZE is the size in bytes of the X reference,
2372 similarly YSIZE is the size in bytes for Y.
2373 Expect that canon_rtx has been already called for X and Y.
2374
2375 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2376 referenced (the reference was BLKmode), so make the most pessimistic
2377 assumptions.
2378
2379 If XSIZE or YSIZE is negative, we may access memory outside the object
2380 being referenced as a side effect. This can happen when using AND to
2381 align memory references, as is done on the Alpha.
2382
2383 Nice to notice that varying addresses cannot conflict with fp if no
2384 local variables had their addresses taken, but that's too hard now.
2385
2386 ??? Contrary to the tree alias oracle this does not return
2387 one for X + non-constant and Y + non-constant when X and Y are equal.
2388 If that is fixed the TBAA hack for union type-punning can be removed. */
2389
2390 static int
2391 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2392 poly_int64 c)
2393 {
2394 if (GET_CODE (x) == VALUE)
2395 {
2396 if (REG_P (y))
2397 {
2398 struct elt_loc_list *l = NULL;
2399 if (CSELIB_VAL_PTR (x))
2400 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2401 l; l = l->next)
2402 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2403 break;
2404 if (l)
2405 x = y;
2406 else
2407 x = get_addr (x);
2408 }
2409 /* Don't call get_addr if y is the same VALUE. */
2410 else if (x != y)
2411 x = get_addr (x);
2412 }
2413 if (GET_CODE (y) == VALUE)
2414 {
2415 if (REG_P (x))
2416 {
2417 struct elt_loc_list *l = NULL;
2418 if (CSELIB_VAL_PTR (y))
2419 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2420 l; l = l->next)
2421 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2422 break;
2423 if (l)
2424 y = x;
2425 else
2426 y = get_addr (y);
2427 }
2428 /* Don't call get_addr if x is the same VALUE. */
2429 else if (y != x)
2430 y = get_addr (y);
2431 }
2432 if (GET_CODE (x) == HIGH)
2433 x = XEXP (x, 0);
2434 else if (GET_CODE (x) == LO_SUM)
2435 x = XEXP (x, 1);
2436 else
2437 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2438 if (GET_CODE (y) == HIGH)
2439 y = XEXP (y, 0);
2440 else if (GET_CODE (y) == LO_SUM)
2441 y = XEXP (y, 1);
2442 else
2443 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2444
2445 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2446 {
2447 int cmp = compare_base_symbol_refs (x,y);
2448
2449 /* If both decls are the same, decide by offsets. */
2450 if (cmp == 1)
2451 return offset_overlap_p (c, xsize, ysize);
2452 /* Assume a potential overlap for symbolic addresses that went
2453 through alignment adjustments (i.e., that have negative
2454 sizes), because we can't know how far they are from each
2455 other. */
2456 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2457 return -1;
2458 /* If decls are different or we know by offsets that there is no overlap,
2459 we win. */
2460 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2461 return 0;
2462 /* Decls may or may not be different and offsets overlap....*/
2463 return -1;
2464 }
2465 else if (rtx_equal_for_memref_p (x, y))
2466 {
2467 return offset_overlap_p (c, xsize, ysize);
2468 }
2469
2470 /* This code used to check for conflicts involving stack references and
2471 globals but the base address alias code now handles these cases. */
2472
2473 if (GET_CODE (x) == PLUS)
2474 {
2475 /* The fact that X is canonicalized means that this
2476 PLUS rtx is canonicalized. */
2477 rtx x0 = XEXP (x, 0);
2478 rtx x1 = XEXP (x, 1);
2479
2480 /* However, VALUEs might end up in different positions even in
2481 canonical PLUSes. Comparing their addresses is enough. */
2482 if (x0 == y)
2483 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2484 else if (x1 == y)
2485 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2486
2487 poly_int64 cx1, cy1;
2488 if (GET_CODE (y) == PLUS)
2489 {
2490 /* The fact that Y is canonicalized means that this
2491 PLUS rtx is canonicalized. */
2492 rtx y0 = XEXP (y, 0);
2493 rtx y1 = XEXP (y, 1);
2494
2495 if (x0 == y1)
2496 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2497 if (x1 == y0)
2498 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2499
2500 if (rtx_equal_for_memref_p (x1, y1))
2501 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2502 if (rtx_equal_for_memref_p (x0, y0))
2503 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2504 if (poly_int_rtx_p (x1, &cx1))
2505 {
2506 if (poly_int_rtx_p (y1, &cy1))
2507 return memrefs_conflict_p (xsize, x0, ysize, y0,
2508 c - cx1 + cy1);
2509 else
2510 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2511 }
2512 else if (poly_int_rtx_p (y1, &cy1))
2513 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2514
2515 return -1;
2516 }
2517 else if (poly_int_rtx_p (x1, &cx1))
2518 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2519 }
2520 else if (GET_CODE (y) == PLUS)
2521 {
2522 /* The fact that Y is canonicalized means that this
2523 PLUS rtx is canonicalized. */
2524 rtx y0 = XEXP (y, 0);
2525 rtx y1 = XEXP (y, 1);
2526
2527 if (x == y0)
2528 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2529 if (x == y1)
2530 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2531
2532 poly_int64 cy1;
2533 if (poly_int_rtx_p (y1, &cy1))
2534 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2535 else
2536 return -1;
2537 }
2538
2539 if (GET_CODE (x) == GET_CODE (y))
2540 switch (GET_CODE (x))
2541 {
2542 case MULT:
2543 {
2544 /* Handle cases where we expect the second operands to be the
2545 same, and check only whether the first operand would conflict
2546 or not. */
2547 rtx x0, y0;
2548 rtx x1 = canon_rtx (XEXP (x, 1));
2549 rtx y1 = canon_rtx (XEXP (y, 1));
2550 if (! rtx_equal_for_memref_p (x1, y1))
2551 return -1;
2552 x0 = canon_rtx (XEXP (x, 0));
2553 y0 = canon_rtx (XEXP (y, 0));
2554 if (rtx_equal_for_memref_p (x0, y0))
2555 return offset_overlap_p (c, xsize, ysize);
2556
2557 /* Can't properly adjust our sizes. */
2558 poly_int64 c1;
2559 if (!poly_int_rtx_p (x1, &c1)
2560 || !can_div_trunc_p (xsize, c1, &xsize)
2561 || !can_div_trunc_p (ysize, c1, &ysize)
2562 || !can_div_trunc_p (c, c1, &c))
2563 return -1;
2564 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2565 }
2566
2567 default:
2568 break;
2569 }
2570
2571 /* Deal with alignment ANDs by adjusting offset and size so as to
2572 cover the maximum range, without taking any previously known
2573 alignment into account. Make a size negative after such an
2574 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2575 assume a potential overlap, because they may end up in contiguous
2576 memory locations and the stricter-alignment access may span over
2577 part of both. */
2578 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2579 {
2580 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2581 unsigned HOST_WIDE_INT uc = sc;
2582 if (sc < 0 && pow2_or_zerop (-uc))
2583 {
2584 if (maybe_gt (xsize, 0))
2585 xsize = -xsize;
2586 if (maybe_ne (xsize, 0))
2587 xsize += sc + 1;
2588 c -= sc + 1;
2589 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2590 ysize, y, c);
2591 }
2592 }
2593 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2594 {
2595 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2596 unsigned HOST_WIDE_INT uc = sc;
2597 if (sc < 0 && pow2_or_zerop (-uc))
2598 {
2599 if (maybe_gt (ysize, 0))
2600 ysize = -ysize;
2601 if (maybe_ne (ysize, 0))
2602 ysize += sc + 1;
2603 c += sc + 1;
2604 return memrefs_conflict_p (xsize, x,
2605 ysize, canon_rtx (XEXP (y, 0)), c);
2606 }
2607 }
2608
2609 if (CONSTANT_P (x))
2610 {
2611 poly_int64 cx, cy;
2612 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2613 {
2614 c += cy - cx;
2615 return offset_overlap_p (c, xsize, ysize);
2616 }
2617
2618 if (GET_CODE (x) == CONST)
2619 {
2620 if (GET_CODE (y) == CONST)
2621 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2622 ysize, canon_rtx (XEXP (y, 0)), c);
2623 else
2624 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2625 ysize, y, c);
2626 }
2627 if (GET_CODE (y) == CONST)
2628 return memrefs_conflict_p (xsize, x, ysize,
2629 canon_rtx (XEXP (y, 0)), c);
2630
2631 /* Assume a potential overlap for symbolic addresses that went
2632 through alignment adjustments (i.e., that have negative
2633 sizes), because we can't know how far they are from each
2634 other. */
2635 if (CONSTANT_P (y))
2636 return (maybe_lt (xsize, 0)
2637 || maybe_lt (ysize, 0)
2638 || offset_overlap_p (c, xsize, ysize));
2639
2640 return -1;
2641 }
2642
2643 return -1;
2644 }
2645
2646 /* Functions to compute memory dependencies.
2647
2648 Since we process the insns in execution order, we can build tables
2649 to keep track of what registers are fixed (and not aliased), what registers
2650 are varying in known ways, and what registers are varying in unknown
2651 ways.
2652
2653 If both memory references are volatile, then there must always be a
2654 dependence between the two references, since their order cannot be
2655 changed. A volatile and non-volatile reference can be interchanged
2656 though.
2657
2658 We also must allow AND addresses, because they may generate accesses
2659 outside the object being referenced. This is used to generate aligned
2660 addresses from unaligned addresses, for instance, the alpha
2661 storeqi_unaligned pattern. */
2662
2663 /* Read dependence: X is read after read in MEM takes place. There can
2664 only be a dependence here if both reads are volatile, or if either is
2665 an explicit barrier. */
2666
2667 int
2668 read_dependence (const_rtx mem, const_rtx x)
2669 {
2670 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2671 return true;
2672 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2673 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2674 return true;
2675 return false;
2676 }
2677
2678 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2679
2680 static tree
2681 decl_for_component_ref (tree x)
2682 {
2683 do
2684 {
2685 x = TREE_OPERAND (x, 0);
2686 }
2687 while (x && TREE_CODE (x) == COMPONENT_REF);
2688
2689 return x && DECL_P (x) ? x : NULL_TREE;
2690 }
2691
2692 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2693 for the offset of the field reference. *KNOWN_P says whether the
2694 offset is known. */
2695
2696 static void
2697 adjust_offset_for_component_ref (tree x, bool *known_p,
2698 poly_int64 *offset)
2699 {
2700 if (!*known_p)
2701 return;
2702 do
2703 {
2704 tree xoffset = component_ref_field_offset (x);
2705 tree field = TREE_OPERAND (x, 1);
2706 if (!poly_int_tree_p (xoffset))
2707 {
2708 *known_p = false;
2709 return;
2710 }
2711
2712 poly_offset_int woffset
2713 = (wi::to_poly_offset (xoffset)
2714 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2715 >> LOG2_BITS_PER_UNIT)
2716 + *offset);
2717 if (!woffset.to_shwi (offset))
2718 {
2719 *known_p = false;
2720 return;
2721 }
2722
2723 x = TREE_OPERAND (x, 0);
2724 }
2725 while (x && TREE_CODE (x) == COMPONENT_REF);
2726 }
2727
2728 /* Return nonzero if we can determine the exprs corresponding to memrefs
2729 X and Y and they do not overlap.
2730 If LOOP_VARIANT is set, skip offset-based disambiguation */
2731
2732 int
2733 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2734 {
2735 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2736 rtx rtlx, rtly;
2737 rtx basex, basey;
2738 bool moffsetx_known_p, moffsety_known_p;
2739 poly_int64 moffsetx = 0, moffsety = 0;
2740 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2741
2742 /* Unless both have exprs, we can't tell anything. */
2743 if (exprx == 0 || expry == 0)
2744 return 0;
2745
2746 /* For spill-slot accesses make sure we have valid offsets. */
2747 if ((exprx == get_spill_slot_decl (false)
2748 && ! MEM_OFFSET_KNOWN_P (x))
2749 || (expry == get_spill_slot_decl (false)
2750 && ! MEM_OFFSET_KNOWN_P (y)))
2751 return 0;
2752
2753 /* If the field reference test failed, look at the DECLs involved. */
2754 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2755 if (moffsetx_known_p)
2756 moffsetx = MEM_OFFSET (x);
2757 if (TREE_CODE (exprx) == COMPONENT_REF)
2758 {
2759 tree t = decl_for_component_ref (exprx);
2760 if (! t)
2761 return 0;
2762 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2763 exprx = t;
2764 }
2765
2766 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2767 if (moffsety_known_p)
2768 moffsety = MEM_OFFSET (y);
2769 if (TREE_CODE (expry) == COMPONENT_REF)
2770 {
2771 tree t = decl_for_component_ref (expry);
2772 if (! t)
2773 return 0;
2774 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2775 expry = t;
2776 }
2777
2778 if (! DECL_P (exprx) || ! DECL_P (expry))
2779 return 0;
2780
2781 /* If we refer to different gimple registers, or one gimple register
2782 and one non-gimple-register, we know they can't overlap. First,
2783 gimple registers don't have their addresses taken. Now, there
2784 could be more than one stack slot for (different versions of) the
2785 same gimple register, but we can presumably tell they don't
2786 overlap based on offsets from stack base addresses elsewhere.
2787 It's important that we don't proceed to DECL_RTL, because gimple
2788 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2789 able to do anything about them since no SSA information will have
2790 remained to guide it. */
2791 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2792 return exprx != expry
2793 || (moffsetx_known_p && moffsety_known_p
2794 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2795 && !offset_overlap_p (moffsety - moffsetx,
2796 MEM_SIZE (x), MEM_SIZE (y)));
2797
2798 /* With invalid code we can end up storing into the constant pool.
2799 Bail out to avoid ICEing when creating RTL for this.
2800 See gfortran.dg/lto/20091028-2_0.f90. */
2801 if (TREE_CODE (exprx) == CONST_DECL
2802 || TREE_CODE (expry) == CONST_DECL)
2803 return 1;
2804
2805 /* If one decl is known to be a function or label in a function and
2806 the other is some kind of data, they can't overlap. */
2807 if ((TREE_CODE (exprx) == FUNCTION_DECL
2808 || TREE_CODE (exprx) == LABEL_DECL)
2809 != (TREE_CODE (expry) == FUNCTION_DECL
2810 || TREE_CODE (expry) == LABEL_DECL))
2811 return 1;
2812
2813 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2814 living in multiple places), we can't tell anything. Exception
2815 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2816 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2817 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2818 return 0;
2819
2820 rtlx = DECL_RTL (exprx);
2821 rtly = DECL_RTL (expry);
2822
2823 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2824 can't overlap unless they are the same because we never reuse that part
2825 of the stack frame used for locals for spilled pseudos. */
2826 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2827 && ! rtx_equal_p (rtlx, rtly))
2828 return 1;
2829
2830 /* If we have MEMs referring to different address spaces (which can
2831 potentially overlap), we cannot easily tell from the addresses
2832 whether the references overlap. */
2833 if (MEM_P (rtlx) && MEM_P (rtly)
2834 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2835 return 0;
2836
2837 /* Get the base and offsets of both decls. If either is a register, we
2838 know both are and are the same, so use that as the base. The only
2839 we can avoid overlap is if we can deduce that they are nonoverlapping
2840 pieces of that decl, which is very rare. */
2841 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2842 basex = strip_offset_and_add (basex, &offsetx);
2843
2844 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2845 basey = strip_offset_and_add (basey, &offsety);
2846
2847 /* If the bases are different, we know they do not overlap if both
2848 are constants or if one is a constant and the other a pointer into the
2849 stack frame. Otherwise a different base means we can't tell if they
2850 overlap or not. */
2851 if (compare_base_decls (exprx, expry) == 0)
2852 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2853 || (CONSTANT_P (basex) && REG_P (basey)
2854 && REGNO_PTR_FRAME_P (REGNO (basey)))
2855 || (CONSTANT_P (basey) && REG_P (basex)
2856 && REGNO_PTR_FRAME_P (REGNO (basex))));
2857
2858 /* Offset based disambiguation not appropriate for loop invariant */
2859 if (loop_invariant)
2860 return 0;
2861
2862 /* Offset based disambiguation is OK even if we do not know that the
2863 declarations are necessarily different
2864 (i.e. compare_base_decls (exprx, expry) == -1) */
2865
2866 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2867 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2868 : -1);
2869 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2870 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2871 : -1);
2872
2873 /* If we have an offset for either memref, it can update the values computed
2874 above. */
2875 if (moffsetx_known_p)
2876 offsetx += moffsetx, sizex -= moffsetx;
2877 if (moffsety_known_p)
2878 offsety += moffsety, sizey -= moffsety;
2879
2880 /* If a memref has both a size and an offset, we can use the smaller size.
2881 We can't do this if the offset isn't known because we must view this
2882 memref as being anywhere inside the DECL's MEM. */
2883 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2884 sizex = MEM_SIZE (x);
2885 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2886 sizey = MEM_SIZE (y);
2887
2888 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2889 }
2890
2891 /* Helper for true_dependence and canon_true_dependence.
2892 Checks for true dependence: X is read after store in MEM takes place.
2893
2894 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2895 NULL_RTX, and the canonical addresses of MEM and X are both computed
2896 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2897
2898 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2899
2900 Returns 1 if there is a true dependence, 0 otherwise. */
2901
2902 static int
2903 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2904 const_rtx x, rtx x_addr, bool mem_canonicalized)
2905 {
2906 rtx true_mem_addr;
2907 rtx base;
2908 int ret;
2909
2910 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2911 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2912
2913 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2914 return 1;
2915
2916 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2917 This is used in epilogue deallocation functions, and in cselib. */
2918 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2919 return 1;
2920 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2921 return 1;
2922 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2923 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2924 return 1;
2925
2926 if (! x_addr)
2927 x_addr = XEXP (x, 0);
2928 x_addr = get_addr (x_addr);
2929
2930 if (! mem_addr)
2931 {
2932 mem_addr = XEXP (mem, 0);
2933 if (mem_mode == VOIDmode)
2934 mem_mode = GET_MODE (mem);
2935 }
2936 true_mem_addr = get_addr (mem_addr);
2937
2938 /* Read-only memory is by definition never modified, and therefore can't
2939 conflict with anything. However, don't assume anything when AND
2940 addresses are involved and leave to the code below to determine
2941 dependence. We don't expect to find read-only set on MEM, but
2942 stupid user tricks can produce them, so don't die. */
2943 if (MEM_READONLY_P (x)
2944 && GET_CODE (x_addr) != AND
2945 && GET_CODE (true_mem_addr) != AND)
2946 return 0;
2947
2948 /* If we have MEMs referring to different address spaces (which can
2949 potentially overlap), we cannot easily tell from the addresses
2950 whether the references overlap. */
2951 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2952 return 1;
2953
2954 base = find_base_term (x_addr);
2955 if (base && (GET_CODE (base) == LABEL_REF
2956 || (GET_CODE (base) == SYMBOL_REF
2957 && CONSTANT_POOL_ADDRESS_P (base))))
2958 return 0;
2959
2960 rtx mem_base = find_base_term (true_mem_addr);
2961 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2962 GET_MODE (x), mem_mode))
2963 return 0;
2964
2965 x_addr = canon_rtx (x_addr);
2966 if (!mem_canonicalized)
2967 mem_addr = canon_rtx (true_mem_addr);
2968
2969 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2970 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2971 return ret;
2972
2973 if (mems_in_disjoint_alias_sets_p (x, mem))
2974 return 0;
2975
2976 if (nonoverlapping_memrefs_p (mem, x, false))
2977 return 0;
2978
2979 return rtx_refs_may_alias_p (x, mem, true);
2980 }
2981
2982 /* True dependence: X is read after store in MEM takes place. */
2983
2984 int
2985 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2986 {
2987 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2988 x, NULL_RTX, /*mem_canonicalized=*/false);
2989 }
2990
2991 /* Canonical true dependence: X is read after store in MEM takes place.
2992 Variant of true_dependence which assumes MEM has already been
2993 canonicalized (hence we no longer do that here).
2994 The mem_addr argument has been added, since true_dependence_1 computed
2995 this value prior to canonicalizing. */
2996
2997 int
2998 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2999 const_rtx x, rtx x_addr)
3000 {
3001 return true_dependence_1 (mem, mem_mode, mem_addr,
3002 x, x_addr, /*mem_canonicalized=*/true);
3003 }
3004
3005 /* Returns nonzero if a write to X might alias a previous read from
3006 (or, if WRITEP is true, a write to) MEM.
3007 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3008 and X_MODE the mode for that access.
3009 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3010
3011 static int
3012 write_dependence_p (const_rtx mem,
3013 const_rtx x, machine_mode x_mode, rtx x_addr,
3014 bool mem_canonicalized, bool x_canonicalized, bool writep)
3015 {
3016 rtx mem_addr;
3017 rtx true_mem_addr, true_x_addr;
3018 rtx base;
3019 int ret;
3020
3021 gcc_checking_assert (x_canonicalized
3022 ? (x_addr != NULL_RTX
3023 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3024 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3025
3026 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3027 return 1;
3028
3029 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3030 This is used in epilogue deallocation functions. */
3031 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3032 return 1;
3033 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3034 return 1;
3035 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3036 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3037 return 1;
3038
3039 if (!x_addr)
3040 x_addr = XEXP (x, 0);
3041 true_x_addr = get_addr (x_addr);
3042
3043 mem_addr = XEXP (mem, 0);
3044 true_mem_addr = get_addr (mem_addr);
3045
3046 /* A read from read-only memory can't conflict with read-write memory.
3047 Don't assume anything when AND addresses are involved and leave to
3048 the code below to determine dependence. */
3049 if (!writep
3050 && MEM_READONLY_P (mem)
3051 && GET_CODE (true_x_addr) != AND
3052 && GET_CODE (true_mem_addr) != AND)
3053 return 0;
3054
3055 /* If we have MEMs referring to different address spaces (which can
3056 potentially overlap), we cannot easily tell from the addresses
3057 whether the references overlap. */
3058 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3059 return 1;
3060
3061 base = find_base_term (true_mem_addr);
3062 if (! writep
3063 && base
3064 && (GET_CODE (base) == LABEL_REF
3065 || (GET_CODE (base) == SYMBOL_REF
3066 && CONSTANT_POOL_ADDRESS_P (base))))
3067 return 0;
3068
3069 rtx x_base = find_base_term (true_x_addr);
3070 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3071 GET_MODE (x), GET_MODE (mem)))
3072 return 0;
3073
3074 if (!x_canonicalized)
3075 {
3076 x_addr = canon_rtx (true_x_addr);
3077 x_mode = GET_MODE (x);
3078 }
3079 if (!mem_canonicalized)
3080 mem_addr = canon_rtx (true_mem_addr);
3081
3082 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3083 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3084 return ret;
3085
3086 if (nonoverlapping_memrefs_p (x, mem, false))
3087 return 0;
3088
3089 return rtx_refs_may_alias_p (x, mem, false);
3090 }
3091
3092 /* Anti dependence: X is written after read in MEM takes place. */
3093
3094 int
3095 anti_dependence (const_rtx mem, const_rtx x)
3096 {
3097 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3098 /*mem_canonicalized=*/false,
3099 /*x_canonicalized*/false, /*writep=*/false);
3100 }
3101
3102 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3103 Also, consider X in X_MODE (which might be from an enclosing
3104 STRICT_LOW_PART / ZERO_EXTRACT).
3105 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3106
3107 int
3108 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3109 const_rtx x, machine_mode x_mode, rtx x_addr)
3110 {
3111 return write_dependence_p (mem, x, x_mode, x_addr,
3112 mem_canonicalized, /*x_canonicalized=*/true,
3113 /*writep=*/false);
3114 }
3115
3116 /* Output dependence: X is written after store in MEM takes place. */
3117
3118 int
3119 output_dependence (const_rtx mem, const_rtx x)
3120 {
3121 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3122 /*mem_canonicalized=*/false,
3123 /*x_canonicalized*/false, /*writep=*/true);
3124 }
3125
3126 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3127 Also, consider X in X_MODE (which might be from an enclosing
3128 STRICT_LOW_PART / ZERO_EXTRACT).
3129 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3130
3131 int
3132 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3133 const_rtx x, machine_mode x_mode, rtx x_addr)
3134 {
3135 return write_dependence_p (mem, x, x_mode, x_addr,
3136 mem_canonicalized, /*x_canonicalized=*/true,
3137 /*writep=*/true);
3138 }
3139 \f
3140
3141
3142 /* Check whether X may be aliased with MEM. Don't do offset-based
3143 memory disambiguation & TBAA. */
3144 int
3145 may_alias_p (const_rtx mem, const_rtx x)
3146 {
3147 rtx x_addr, mem_addr;
3148
3149 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3150 return 1;
3151
3152 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3153 This is used in epilogue deallocation functions. */
3154 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3155 return 1;
3156 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3157 return 1;
3158 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3159 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3160 return 1;
3161
3162 x_addr = XEXP (x, 0);
3163 x_addr = get_addr (x_addr);
3164
3165 mem_addr = XEXP (mem, 0);
3166 mem_addr = get_addr (mem_addr);
3167
3168 /* Read-only memory is by definition never modified, and therefore can't
3169 conflict with anything. However, don't assume anything when AND
3170 addresses are involved and leave to the code below to determine
3171 dependence. We don't expect to find read-only set on MEM, but
3172 stupid user tricks can produce them, so don't die. */
3173 if (MEM_READONLY_P (x)
3174 && GET_CODE (x_addr) != AND
3175 && GET_CODE (mem_addr) != AND)
3176 return 0;
3177
3178 /* If we have MEMs referring to different address spaces (which can
3179 potentially overlap), we cannot easily tell from the addresses
3180 whether the references overlap. */
3181 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3182 return 1;
3183
3184 rtx x_base = find_base_term (x_addr);
3185 rtx mem_base = find_base_term (mem_addr);
3186 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3187 GET_MODE (x), GET_MODE (mem_addr)))
3188 return 0;
3189
3190 if (nonoverlapping_memrefs_p (mem, x, true))
3191 return 0;
3192
3193 /* TBAA not valid for loop_invarint */
3194 return rtx_refs_may_alias_p (x, mem, false);
3195 }
3196
3197 void
3198 init_alias_target (void)
3199 {
3200 int i;
3201
3202 if (!arg_base_value)
3203 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3204
3205 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3206
3207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3208 /* Check whether this register can hold an incoming pointer
3209 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3210 numbers, so translate if necessary due to register windows. */
3211 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3212 && targetm.hard_regno_mode_ok (i, Pmode))
3213 static_reg_base_value[i] = arg_base_value;
3214
3215 /* RTL code is required to be consistent about whether it uses the
3216 stack pointer, the frame pointer or the argument pointer to
3217 access a given area of the frame. We can therefore use the
3218 base address to distinguish between the different areas. */
3219 static_reg_base_value[STACK_POINTER_REGNUM]
3220 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3221 static_reg_base_value[ARG_POINTER_REGNUM]
3222 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3223 static_reg_base_value[FRAME_POINTER_REGNUM]
3224 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3225
3226 /* The above rules extend post-reload, with eliminations applying
3227 consistently to each of the three pointers. Cope with cases in
3228 which the frame pointer is eliminated to the hard frame pointer
3229 rather than the stack pointer. */
3230 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3231 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3232 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3233 }
3234
3235 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3236 to be memory reference. */
3237 static bool memory_modified;
3238 static void
3239 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3240 {
3241 if (MEM_P (x))
3242 {
3243 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3244 memory_modified = true;
3245 }
3246 }
3247
3248
3249 /* Return true when INSN possibly modify memory contents of MEM
3250 (i.e. address can be modified). */
3251 bool
3252 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3253 {
3254 if (!INSN_P (insn))
3255 return false;
3256 /* Conservatively assume all non-readonly MEMs might be modified in
3257 calls. */
3258 if (CALL_P (insn))
3259 return true;
3260 memory_modified = false;
3261 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3262 CONST_CAST_RTX(mem));
3263 return memory_modified;
3264 }
3265
3266 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3267 array. */
3268
3269 void
3270 init_alias_analysis (void)
3271 {
3272 unsigned int maxreg = max_reg_num ();
3273 int changed, pass;
3274 int i;
3275 unsigned int ui;
3276 rtx_insn *insn;
3277 rtx val;
3278 int rpo_cnt;
3279 int *rpo;
3280
3281 timevar_push (TV_ALIAS_ANALYSIS);
3282
3283 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3284 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3285 bitmap_clear (reg_known_equiv_p);
3286
3287 /* If we have memory allocated from the previous run, use it. */
3288 if (old_reg_base_value)
3289 reg_base_value = old_reg_base_value;
3290
3291 if (reg_base_value)
3292 reg_base_value->truncate (0);
3293
3294 vec_safe_grow_cleared (reg_base_value, maxreg);
3295
3296 new_reg_base_value = XNEWVEC (rtx, maxreg);
3297 reg_seen = sbitmap_alloc (maxreg);
3298
3299 /* The basic idea is that each pass through this loop will use the
3300 "constant" information from the previous pass to propagate alias
3301 information through another level of assignments.
3302
3303 The propagation is done on the CFG in reverse post-order, to propagate
3304 things forward as far as possible in each iteration.
3305
3306 This could get expensive if the assignment chains are long. Maybe
3307 we should throttle the number of iterations, possibly based on
3308 the optimization level or flag_expensive_optimizations.
3309
3310 We could propagate more information in the first pass by making use
3311 of DF_REG_DEF_COUNT to determine immediately that the alias information
3312 for a pseudo is "constant".
3313
3314 A program with an uninitialized variable can cause an infinite loop
3315 here. Instead of doing a full dataflow analysis to detect such problems
3316 we just cap the number of iterations for the loop.
3317
3318 The state of the arrays for the set chain in question does not matter
3319 since the program has undefined behavior. */
3320
3321 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3322 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3323
3324 /* The prologue/epilogue insns are not threaded onto the
3325 insn chain until after reload has completed. Thus,
3326 there is no sense wasting time checking if INSN is in
3327 the prologue/epilogue until after reload has completed. */
3328 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3329 || targetm.have_epilogue ())
3330 && reload_completed);
3331
3332 pass = 0;
3333 do
3334 {
3335 /* Assume nothing will change this iteration of the loop. */
3336 changed = 0;
3337
3338 /* We want to assign the same IDs each iteration of this loop, so
3339 start counting from one each iteration of the loop. */
3340 unique_id = 1;
3341
3342 /* We're at the start of the function each iteration through the
3343 loop, so we're copying arguments. */
3344 copying_arguments = true;
3345
3346 /* Wipe the potential alias information clean for this pass. */
3347 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3348
3349 /* Wipe the reg_seen array clean. */
3350 bitmap_clear (reg_seen);
3351
3352 /* Initialize the alias information for this pass. */
3353 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3354 if (static_reg_base_value[i]
3355 /* Don't treat the hard frame pointer as special if we
3356 eliminated the frame pointer to the stack pointer instead. */
3357 && !(i == HARD_FRAME_POINTER_REGNUM
3358 && reload_completed
3359 && !frame_pointer_needed
3360 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3361 STACK_POINTER_REGNUM)))
3362 {
3363 new_reg_base_value[i] = static_reg_base_value[i];
3364 bitmap_set_bit (reg_seen, i);
3365 }
3366
3367 /* Walk the insns adding values to the new_reg_base_value array. */
3368 for (i = 0; i < rpo_cnt; i++)
3369 {
3370 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3371 FOR_BB_INSNS (bb, insn)
3372 {
3373 if (NONDEBUG_INSN_P (insn))
3374 {
3375 rtx note, set;
3376
3377 if (could_be_prologue_epilogue
3378 && prologue_epilogue_contains (insn))
3379 continue;
3380
3381 /* If this insn has a noalias note, process it, Otherwise,
3382 scan for sets. A simple set will have no side effects
3383 which could change the base value of any other register. */
3384
3385 if (GET_CODE (PATTERN (insn)) == SET
3386 && REG_NOTES (insn) != 0
3387 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3388 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3389 else
3390 note_stores (insn, record_set, NULL);
3391
3392 set = single_set (insn);
3393
3394 if (set != 0
3395 && REG_P (SET_DEST (set))
3396 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3397 {
3398 unsigned int regno = REGNO (SET_DEST (set));
3399 rtx src = SET_SRC (set);
3400 rtx t;
3401
3402 note = find_reg_equal_equiv_note (insn);
3403 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3404 && DF_REG_DEF_COUNT (regno) != 1)
3405 note = NULL_RTX;
3406
3407 poly_int64 offset;
3408 if (note != NULL_RTX
3409 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3410 && ! rtx_varies_p (XEXP (note, 0), 1)
3411 && ! reg_overlap_mentioned_p (SET_DEST (set),
3412 XEXP (note, 0)))
3413 {
3414 set_reg_known_value (regno, XEXP (note, 0));
3415 set_reg_known_equiv_p (regno,
3416 REG_NOTE_KIND (note) == REG_EQUIV);
3417 }
3418 else if (DF_REG_DEF_COUNT (regno) == 1
3419 && GET_CODE (src) == PLUS
3420 && REG_P (XEXP (src, 0))
3421 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3422 && poly_int_rtx_p (XEXP (src, 1), &offset))
3423 {
3424 t = plus_constant (GET_MODE (src), t, offset);
3425 set_reg_known_value (regno, t);
3426 set_reg_known_equiv_p (regno, false);
3427 }
3428 else if (DF_REG_DEF_COUNT (regno) == 1
3429 && ! rtx_varies_p (src, 1))
3430 {
3431 set_reg_known_value (regno, src);
3432 set_reg_known_equiv_p (regno, false);
3433 }
3434 }
3435 }
3436 else if (NOTE_P (insn)
3437 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3438 copying_arguments = false;
3439 }
3440 }
3441
3442 /* Now propagate values from new_reg_base_value to reg_base_value. */
3443 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3444
3445 for (ui = 0; ui < maxreg; ui++)
3446 {
3447 if (new_reg_base_value[ui]
3448 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3449 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3450 {
3451 (*reg_base_value)[ui] = new_reg_base_value[ui];
3452 changed = 1;
3453 }
3454 }
3455 }
3456 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3457 XDELETEVEC (rpo);
3458
3459 /* Fill in the remaining entries. */
3460 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3461 {
3462 int regno = i + FIRST_PSEUDO_REGISTER;
3463 if (! val)
3464 set_reg_known_value (regno, regno_reg_rtx[regno]);
3465 }
3466
3467 /* Clean up. */
3468 free (new_reg_base_value);
3469 new_reg_base_value = 0;
3470 sbitmap_free (reg_seen);
3471 reg_seen = 0;
3472 timevar_pop (TV_ALIAS_ANALYSIS);
3473 }
3474
3475 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3476 Special API for var-tracking pass purposes. */
3477
3478 void
3479 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3480 {
3481 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3482 }
3483
3484 void
3485 end_alias_analysis (void)
3486 {
3487 old_reg_base_value = reg_base_value;
3488 vec_free (reg_known_value);
3489 sbitmap_free (reg_known_equiv_p);
3490 }
3491
3492 void
3493 dump_alias_stats_in_alias_c (FILE *s)
3494 {
3495 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3496 " %llu are in alias set 0\n"
3497 " %llu queries asked about the same object\n"
3498 " %llu queries asked about the same alias set\n"
3499 " %llu access volatile\n"
3500 " %llu are dependent in the DAG\n"
3501 " %llu are aritificially in conflict with void *\n",
3502 alias_stats.num_disambiguated,
3503 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3504 + alias_stats.num_same_objects + alias_stats.num_volatile
3505 + alias_stats.num_dag + alias_stats.num_disambiguated
3506 + alias_stats.num_universal,
3507 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3508 alias_stats.num_same_objects, alias_stats.num_volatile,
3509 alias_stats.num_dag, alias_stats.num_universal);
3510 }
3511 #include "gt-alias.h"