]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/alias.c
alias.c (record_set, [...]): Use REG_P.
[thirdparty/gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47
48 /* The alias sets assigned to MEMs assist the back-end in determining
49 which MEMs can alias which other MEMs. In general, two MEMs in
50 different alias sets cannot alias each other, with one important
51 exception. Consider something like:
52
53 struct S { int i; double d; };
54
55 a store to an `S' can alias something of either type `int' or type
56 `double'. (However, a store to an `int' cannot alias a `double'
57 and vice versa.) We indicate this via a tree structure that looks
58 like:
59 struct S
60 / \
61 / \
62 |/_ _\|
63 int double
64
65 (The arrows are directed and point downwards.)
66 In this situation we say the alias set for `struct S' is the
67 `superset' and that those for `int' and `double' are `subsets'.
68
69 To see whether two alias sets can point to the same memory, we must
70 see if either alias set is a subset of the other. We need not trace
71 past immediate descendants, however, since we propagate all
72 grandchildren up one level.
73
74 Alias set zero is implicitly a superset of all other alias sets.
75 However, this is no actual entry for alias set zero. It is an
76 error to attempt to explicitly construct a subset of zero. */
77
78 struct alias_set_entry GTY(())
79 {
80 /* The alias set number, as stored in MEM_ALIAS_SET. */
81 HOST_WIDE_INT alias_set;
82
83 /* The children of the alias set. These are not just the immediate
84 children, but, in fact, all descendants. So, if we have:
85
86 struct T { struct S s; float f; }
87
88 continuing our example above, the children here will be all of
89 `int', `double', `float', and `struct S'. */
90 splay_tree GTY((param1_is (int), param2_is (int))) children;
91
92 /* Nonzero if would have a child of zero: this effectively makes this
93 alias set the same as alias set zero. */
94 int has_zero_child;
95 };
96 typedef struct alias_set_entry *alias_set_entry;
97
98 static int rtx_equal_for_memref_p (rtx, rtx);
99 static rtx find_symbolic_term (rtx);
100 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
101 static void record_set (rtx, rtx, void *);
102 static int base_alias_check (rtx, rtx, enum machine_mode,
103 enum machine_mode);
104 static rtx find_base_value (rtx);
105 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
106 static int insert_subset_children (splay_tree_node, void*);
107 static tree find_base_decl (tree);
108 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
109 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
110 int (*) (rtx, int));
111 static int aliases_everything_p (rtx);
112 static bool nonoverlapping_component_refs_p (tree, tree);
113 static tree decl_for_component_ref (tree);
114 static rtx adjust_offset_for_component_ref (tree, rtx);
115 static int nonoverlapping_memrefs_p (rtx, rtx);
116 static int write_dependence_p (rtx, rtx, int, int);
117
118 static int nonlocal_mentioned_p_1 (rtx *, void *);
119 static int nonlocal_mentioned_p (rtx);
120 static int nonlocal_referenced_p_1 (rtx *, void *);
121 static int nonlocal_referenced_p (rtx);
122 static int nonlocal_set_p_1 (rtx *, void *);
123 static int nonlocal_set_p (rtx);
124 static void memory_modified_1 (rtx, rtx, void *);
125
126 /* Set up all info needed to perform alias analysis on memory references. */
127
128 /* Returns the size in bytes of the mode of X. */
129 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
130
131 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
132 different alias sets. We ignore alias sets in functions making use
133 of variable arguments because the va_arg macros on some systems are
134 not legal ANSI C. */
135 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
136 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
137
138 /* Cap the number of passes we make over the insns propagating alias
139 information through set chains. 10 is a completely arbitrary choice. */
140 #define MAX_ALIAS_LOOP_PASSES 10
141
142 /* reg_base_value[N] gives an address to which register N is related.
143 If all sets after the first add or subtract to the current value
144 or otherwise modify it so it does not point to a different top level
145 object, reg_base_value[N] is equal to the address part of the source
146 of the first set.
147
148 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
149 expressions represent certain special values: function arguments and
150 the stack, frame, and argument pointers.
151
152 The contents of an ADDRESS is not normally used, the mode of the
153 ADDRESS determines whether the ADDRESS is a function argument or some
154 other special value. Pointer equality, not rtx_equal_p, determines whether
155 two ADDRESS expressions refer to the same base address.
156
157 The only use of the contents of an ADDRESS is for determining if the
158 current function performs nonlocal memory memory references for the
159 purposes of marking the function as a constant function. */
160
161 static GTY(()) varray_type reg_base_value;
162 static rtx *new_reg_base_value;
163
164 /* We preserve the copy of old array around to avoid amount of garbage
165 produced. About 8% of garbage produced were attributed to this
166 array. */
167 static GTY((deletable)) varray_type old_reg_base_value;
168
169 /* Static hunks of RTL used by the aliasing code; these are initialized
170 once per function to avoid unnecessary RTL allocations. */
171 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
172
173 #define REG_BASE_VALUE(X) \
174 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
175 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
176
177 /* Vector of known invariant relationships between registers. Set in
178 loop unrolling. Indexed by register number, if nonzero the value
179 is an expression describing this register in terms of another.
180
181 The length of this array is REG_BASE_VALUE_SIZE.
182
183 Because this array contains only pseudo registers it has no effect
184 after reload. */
185 static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
186 static GTY(()) unsigned int alias_invariant_size;
187
188 /* Vector indexed by N giving the initial (unchanging) value known for
189 pseudo-register N. This array is initialized in init_alias_analysis,
190 and does not change until end_alias_analysis is called. */
191 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
192
193 /* Indicates number of valid entries in reg_known_value. */
194 static GTY(()) unsigned int reg_known_value_size;
195
196 /* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
199 dependences that would be introduced if that happens.
200
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
208 static bool *reg_known_equiv_p;
209
210 /* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
212 static bool copying_arguments;
213
214 /* The splay-tree used to store the various alias set entries. */
215 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
216 \f
217 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
219
220 static inline alias_set_entry
221 get_alias_set_entry (HOST_WIDE_INT alias_set)
222 {
223 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
224 }
225
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
228
229 static inline int
230 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
231 {
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
242 abort ();
243 #endif
244
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
246 }
247
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
250
251 static int
252 insert_subset_children (splay_tree_node node, void *data)
253 {
254 splay_tree_insert ((splay_tree) data, node->key, node->value);
255
256 return 0;
257 }
258
259 /* Return 1 if the two specified alias sets may conflict. */
260
261 int
262 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
263 {
264 alias_set_entry ase;
265
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1 == 0 || set2 == 0
269 /* If the two alias sets are the same, they may alias. */
270 || set1 == set2)
271 return 1;
272
273 /* See if the first alias set is a subset of the second. */
274 ase = get_alias_set_entry (set1);
275 if (ase != 0
276 && (ase->has_zero_child
277 || splay_tree_lookup (ase->children,
278 (splay_tree_key) set2)))
279 return 1;
280
281 /* Now do the same, but with the alias sets reversed. */
282 ase = get_alias_set_entry (set2);
283 if (ase != 0
284 && (ase->has_zero_child
285 || splay_tree_lookup (ase->children,
286 (splay_tree_key) set1)))
287 return 1;
288
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
291 return 0;
292 }
293
294 /* Return 1 if the two specified alias sets might conflict, or if any subtype
295 of these alias sets might conflict. */
296
297 int
298 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
299 {
300 if (set1 == 0 || set2 == 0 || set1 == set2)
301 return 1;
302
303 return 0;
304 }
305
306 \f
307 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
308 has any readonly fields. If any of the fields have types that
309 contain readonly fields, return true as well. */
310
311 int
312 readonly_fields_p (tree type)
313 {
314 tree field;
315
316 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
317 && TREE_CODE (type) != QUAL_UNION_TYPE)
318 return 0;
319
320 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
321 if (TREE_CODE (field) == FIELD_DECL
322 && (TREE_READONLY (field)
323 || readonly_fields_p (TREE_TYPE (field))))
324 return 1;
325
326 return 0;
327 }
328 \f
329 /* Return 1 if any MEM object of type T1 will always conflict (using the
330 dependency routines in this file) with any MEM object of type T2.
331 This is used when allocating temporary storage. If T1 and/or T2 are
332 NULL_TREE, it means we know nothing about the storage. */
333
334 int
335 objects_must_conflict_p (tree t1, tree t2)
336 {
337 HOST_WIDE_INT set1, set2;
338
339 /* If neither has a type specified, we don't know if they'll conflict
340 because we may be using them to store objects of various types, for
341 example the argument and local variables areas of inlined functions. */
342 if (t1 == 0 && t2 == 0)
343 return 0;
344
345 /* If one or the other has readonly fields or is readonly,
346 then they may not conflict. */
347 if ((t1 != 0 && readonly_fields_p (t1))
348 || (t2 != 0 && readonly_fields_p (t2))
349 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
350 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
351 return 0;
352
353 /* If they are the same type, they must conflict. */
354 if (t1 == t2
355 /* Likewise if both are volatile. */
356 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
357 return 1;
358
359 set1 = t1 ? get_alias_set (t1) : 0;
360 set2 = t2 ? get_alias_set (t2) : 0;
361
362 /* Otherwise they conflict if they have no alias set or the same. We
363 can't simply use alias_sets_conflict_p here, because we must make
364 sure that every subtype of t1 will conflict with every subtype of
365 t2 for which a pair of subobjects of these respective subtypes
366 overlaps on the stack. */
367 return set1 == 0 || set2 == 0 || set1 == set2;
368 }
369 \f
370 /* T is an expression with pointer type. Find the DECL on which this
371 expression is based. (For example, in `a[i]' this would be `a'.)
372 If there is no such DECL, or a unique decl cannot be determined,
373 NULL_TREE is returned. */
374
375 static tree
376 find_base_decl (tree t)
377 {
378 tree d0, d1, d2;
379
380 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
381 return 0;
382
383 /* If this is a declaration, return it. */
384 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
385 return t;
386
387 /* Handle general expressions. It would be nice to deal with
388 COMPONENT_REFs here. If we could tell that `a' and `b' were the
389 same, then `a->f' and `b->f' are also the same. */
390 switch (TREE_CODE_CLASS (TREE_CODE (t)))
391 {
392 case '1':
393 return find_base_decl (TREE_OPERAND (t, 0));
394
395 case '2':
396 /* Return 0 if found in neither or both are the same. */
397 d0 = find_base_decl (TREE_OPERAND (t, 0));
398 d1 = find_base_decl (TREE_OPERAND (t, 1));
399 if (d0 == d1)
400 return d0;
401 else if (d0 == 0)
402 return d1;
403 else if (d1 == 0)
404 return d0;
405 else
406 return 0;
407
408 case '3':
409 d0 = find_base_decl (TREE_OPERAND (t, 0));
410 d1 = find_base_decl (TREE_OPERAND (t, 1));
411 d2 = find_base_decl (TREE_OPERAND (t, 2));
412
413 /* Set any nonzero values from the last, then from the first. */
414 if (d1 == 0) d1 = d2;
415 if (d0 == 0) d0 = d1;
416 if (d1 == 0) d1 = d0;
417 if (d2 == 0) d2 = d1;
418
419 /* At this point all are nonzero or all are zero. If all three are the
420 same, return it. Otherwise, return zero. */
421 return (d0 == d1 && d1 == d2) ? d0 : 0;
422
423 default:
424 return 0;
425 }
426 }
427
428 /* Return 1 if all the nested component references handled by
429 get_inner_reference in T are such that we can address the object in T. */
430
431 int
432 can_address_p (tree t)
433 {
434 /* If we're at the end, it is vacuously addressable. */
435 if (! handled_component_p (t))
436 return 1;
437
438 /* Bitfields are never addressable. */
439 else if (TREE_CODE (t) == BIT_FIELD_REF)
440 return 0;
441
442 /* Fields are addressable unless they are marked as nonaddressable or
443 the containing type has alias set 0. */
444 else if (TREE_CODE (t) == COMPONENT_REF
445 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
446 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
447 && can_address_p (TREE_OPERAND (t, 0)))
448 return 1;
449
450 /* Likewise for arrays. */
451 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
452 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
453 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
454 && can_address_p (TREE_OPERAND (t, 0)))
455 return 1;
456
457 return 0;
458 }
459
460 /* Return the alias set for T, which may be either a type or an
461 expression. Call language-specific routine for help, if needed. */
462
463 HOST_WIDE_INT
464 get_alias_set (tree t)
465 {
466 HOST_WIDE_INT set;
467
468 /* If we're not doing any alias analysis, just assume everything
469 aliases everything else. Also return 0 if this or its type is
470 an error. */
471 if (! flag_strict_aliasing || t == error_mark_node
472 || (! TYPE_P (t)
473 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
474 return 0;
475
476 /* We can be passed either an expression or a type. This and the
477 language-specific routine may make mutually-recursive calls to each other
478 to figure out what to do. At each juncture, we see if this is a tree
479 that the language may need to handle specially. First handle things that
480 aren't types. */
481 if (! TYPE_P (t))
482 {
483 tree inner = t;
484
485 /* Remove any nops, then give the language a chance to do
486 something with this tree before we look at it. */
487 STRIP_NOPS (t);
488 set = lang_hooks.get_alias_set (t);
489 if (set != -1)
490 return set;
491
492 /* First see if the actual object referenced is an INDIRECT_REF from a
493 restrict-qualified pointer or a "void *". */
494 while (handled_component_p (inner))
495 {
496 inner = TREE_OPERAND (inner, 0);
497 STRIP_NOPS (inner);
498 }
499
500 /* Check for accesses through restrict-qualified pointers. */
501 if (TREE_CODE (inner) == INDIRECT_REF)
502 {
503 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
504
505 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
506 {
507 /* If we haven't computed the actual alias set, do it now. */
508 if (DECL_POINTER_ALIAS_SET (decl) == -2)
509 {
510 /* No two restricted pointers can point at the same thing.
511 However, a restricted pointer can point at the same thing
512 as an unrestricted pointer, if that unrestricted pointer
513 is based on the restricted pointer. So, we make the
514 alias set for the restricted pointer a subset of the
515 alias set for the type pointed to by the type of the
516 decl. */
517 HOST_WIDE_INT pointed_to_alias_set
518 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
519
520 if (pointed_to_alias_set == 0)
521 /* It's not legal to make a subset of alias set zero. */
522 DECL_POINTER_ALIAS_SET (decl) = 0;
523 else
524 {
525 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
526 record_alias_subset (pointed_to_alias_set,
527 DECL_POINTER_ALIAS_SET (decl));
528 }
529 }
530
531 /* We use the alias set indicated in the declaration. */
532 return DECL_POINTER_ALIAS_SET (decl);
533 }
534
535 /* If we have an INDIRECT_REF via a void pointer, we don't
536 know anything about what that might alias. Likewise if the
537 pointer is marked that way. */
538 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
539 || (TYPE_REF_CAN_ALIAS_ALL
540 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
541 return 0;
542 }
543
544 /* Otherwise, pick up the outermost object that we could have a pointer
545 to, processing conversions as above. */
546 while (handled_component_p (t) && ! can_address_p (t))
547 {
548 t = TREE_OPERAND (t, 0);
549 STRIP_NOPS (t);
550 }
551
552 /* If we've already determined the alias set for a decl, just return
553 it. This is necessary for C++ anonymous unions, whose component
554 variables don't look like union members (boo!). */
555 if (TREE_CODE (t) == VAR_DECL
556 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
557 return MEM_ALIAS_SET (DECL_RTL (t));
558
559 /* Now all we care about is the type. */
560 t = TREE_TYPE (t);
561 }
562
563 /* Variant qualifiers don't affect the alias set, so get the main
564 variant. If this is a type with a known alias set, return it. */
565 t = TYPE_MAIN_VARIANT (t);
566 if (TYPE_ALIAS_SET_KNOWN_P (t))
567 return TYPE_ALIAS_SET (t);
568
569 /* See if the language has special handling for this type. */
570 set = lang_hooks.get_alias_set (t);
571 if (set != -1)
572 return set;
573
574 /* There are no objects of FUNCTION_TYPE, so there's no point in
575 using up an alias set for them. (There are, of course, pointers
576 and references to functions, but that's different.) */
577 else if (TREE_CODE (t) == FUNCTION_TYPE)
578 set = 0;
579
580 /* Unless the language specifies otherwise, let vector types alias
581 their components. This avoids some nasty type punning issues in
582 normal usage. And indeed lets vectors be treated more like an
583 array slice. */
584 else if (TREE_CODE (t) == VECTOR_TYPE)
585 set = get_alias_set (TREE_TYPE (t));
586
587 else
588 /* Otherwise make a new alias set for this type. */
589 set = new_alias_set ();
590
591 TYPE_ALIAS_SET (t) = set;
592
593 /* If this is an aggregate type, we must record any component aliasing
594 information. */
595 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
596 record_component_aliases (t);
597
598 return set;
599 }
600
601 /* Return a brand-new alias set. */
602
603 static GTY(()) HOST_WIDE_INT last_alias_set;
604
605 HOST_WIDE_INT
606 new_alias_set (void)
607 {
608 if (flag_strict_aliasing)
609 {
610 if (!alias_sets)
611 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
612 else
613 VARRAY_GROW (alias_sets, last_alias_set + 2);
614 return ++last_alias_set;
615 }
616 else
617 return 0;
618 }
619
620 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
621 not everything that aliases SUPERSET also aliases SUBSET. For example,
622 in C, a store to an `int' can alias a load of a structure containing an
623 `int', and vice versa. But it can't alias a load of a 'double' member
624 of the same structure. Here, the structure would be the SUPERSET and
625 `int' the SUBSET. This relationship is also described in the comment at
626 the beginning of this file.
627
628 This function should be called only once per SUPERSET/SUBSET pair.
629
630 It is illegal for SUPERSET to be zero; everything is implicitly a
631 subset of alias set zero. */
632
633 void
634 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
635 {
636 alias_set_entry superset_entry;
637 alias_set_entry subset_entry;
638
639 /* It is possible in complex type situations for both sets to be the same,
640 in which case we can ignore this operation. */
641 if (superset == subset)
642 return;
643
644 if (superset == 0)
645 abort ();
646
647 superset_entry = get_alias_set_entry (superset);
648 if (superset_entry == 0)
649 {
650 /* Create an entry for the SUPERSET, so that we have a place to
651 attach the SUBSET. */
652 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
653 superset_entry->alias_set = superset;
654 superset_entry->children
655 = splay_tree_new_ggc (splay_tree_compare_ints);
656 superset_entry->has_zero_child = 0;
657 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
658 }
659
660 if (subset == 0)
661 superset_entry->has_zero_child = 1;
662 else
663 {
664 subset_entry = get_alias_set_entry (subset);
665 /* If there is an entry for the subset, enter all of its children
666 (if they are not already present) as children of the SUPERSET. */
667 if (subset_entry)
668 {
669 if (subset_entry->has_zero_child)
670 superset_entry->has_zero_child = 1;
671
672 splay_tree_foreach (subset_entry->children, insert_subset_children,
673 superset_entry->children);
674 }
675
676 /* Enter the SUBSET itself as a child of the SUPERSET. */
677 splay_tree_insert (superset_entry->children,
678 (splay_tree_key) subset, 0);
679 }
680 }
681
682 /* Record that component types of TYPE, if any, are part of that type for
683 aliasing purposes. For record types, we only record component types
684 for fields that are marked addressable. For array types, we always
685 record the component types, so the front end should not call this
686 function if the individual component aren't addressable. */
687
688 void
689 record_component_aliases (tree type)
690 {
691 HOST_WIDE_INT superset = get_alias_set (type);
692 tree field;
693
694 if (superset == 0)
695 return;
696
697 switch (TREE_CODE (type))
698 {
699 case ARRAY_TYPE:
700 if (! TYPE_NONALIASED_COMPONENT (type))
701 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
702 break;
703
704 case RECORD_TYPE:
705 case UNION_TYPE:
706 case QUAL_UNION_TYPE:
707 /* Recursively record aliases for the base classes, if there are any. */
708 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
709 {
710 int i;
711 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
712 {
713 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
714 record_alias_subset (superset,
715 get_alias_set (BINFO_TYPE (binfo)));
716 }
717 }
718 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
719 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
720 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
721 break;
722
723 case COMPLEX_TYPE:
724 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
725 break;
726
727 default:
728 break;
729 }
730 }
731
732 /* Allocate an alias set for use in storing and reading from the varargs
733 spill area. */
734
735 static GTY(()) HOST_WIDE_INT varargs_set = -1;
736
737 HOST_WIDE_INT
738 get_varargs_alias_set (void)
739 {
740 #if 1
741 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
742 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
743 consistently use the varargs alias set for loads from the varargs
744 area. So don't use it anywhere. */
745 return 0;
746 #else
747 if (varargs_set == -1)
748 varargs_set = new_alias_set ();
749
750 return varargs_set;
751 #endif
752 }
753
754 /* Likewise, but used for the fixed portions of the frame, e.g., register
755 save areas. */
756
757 static GTY(()) HOST_WIDE_INT frame_set = -1;
758
759 HOST_WIDE_INT
760 get_frame_alias_set (void)
761 {
762 if (frame_set == -1)
763 frame_set = new_alias_set ();
764
765 return frame_set;
766 }
767
768 /* Inside SRC, the source of a SET, find a base address. */
769
770 static rtx
771 find_base_value (rtx src)
772 {
773 unsigned int regno;
774
775 switch (GET_CODE (src))
776 {
777 case SYMBOL_REF:
778 case LABEL_REF:
779 return src;
780
781 case REG:
782 regno = REGNO (src);
783 /* At the start of a function, argument registers have known base
784 values which may be lost later. Returning an ADDRESS
785 expression here allows optimization based on argument values
786 even when the argument registers are used for other purposes. */
787 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
788 return new_reg_base_value[regno];
789
790 /* If a pseudo has a known base value, return it. Do not do this
791 for non-fixed hard regs since it can result in a circular
792 dependency chain for registers which have values at function entry.
793
794 The test above is not sufficient because the scheduler may move
795 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
796 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
797 && regno < VARRAY_SIZE (reg_base_value))
798 {
799 /* If we're inside init_alias_analysis, use new_reg_base_value
800 to reduce the number of relaxation iterations. */
801 if (new_reg_base_value && new_reg_base_value[regno]
802 && REG_N_SETS (regno) == 1)
803 return new_reg_base_value[regno];
804
805 if (VARRAY_RTX (reg_base_value, regno))
806 return VARRAY_RTX (reg_base_value, regno);
807 }
808
809 return 0;
810
811 case MEM:
812 /* Check for an argument passed in memory. Only record in the
813 copying-arguments block; it is too hard to track changes
814 otherwise. */
815 if (copying_arguments
816 && (XEXP (src, 0) == arg_pointer_rtx
817 || (GET_CODE (XEXP (src, 0)) == PLUS
818 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
819 return gen_rtx_ADDRESS (VOIDmode, src);
820 return 0;
821
822 case CONST:
823 src = XEXP (src, 0);
824 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
825 break;
826
827 /* ... fall through ... */
828
829 case PLUS:
830 case MINUS:
831 {
832 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
833
834 /* If either operand is a REG that is a known pointer, then it
835 is the base. */
836 if (REG_P (src_0) && REG_POINTER (src_0))
837 return find_base_value (src_0);
838 if (REG_P (src_1) && REG_POINTER (src_1))
839 return find_base_value (src_1);
840
841 /* If either operand is a REG, then see if we already have
842 a known value for it. */
843 if (REG_P (src_0))
844 {
845 temp = find_base_value (src_0);
846 if (temp != 0)
847 src_0 = temp;
848 }
849
850 if (REG_P (src_1))
851 {
852 temp = find_base_value (src_1);
853 if (temp!= 0)
854 src_1 = temp;
855 }
856
857 /* If either base is named object or a special address
858 (like an argument or stack reference), then use it for the
859 base term. */
860 if (src_0 != 0
861 && (GET_CODE (src_0) == SYMBOL_REF
862 || GET_CODE (src_0) == LABEL_REF
863 || (GET_CODE (src_0) == ADDRESS
864 && GET_MODE (src_0) != VOIDmode)))
865 return src_0;
866
867 if (src_1 != 0
868 && (GET_CODE (src_1) == SYMBOL_REF
869 || GET_CODE (src_1) == LABEL_REF
870 || (GET_CODE (src_1) == ADDRESS
871 && GET_MODE (src_1) != VOIDmode)))
872 return src_1;
873
874 /* Guess which operand is the base address:
875 If either operand is a symbol, then it is the base. If
876 either operand is a CONST_INT, then the other is the base. */
877 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
878 return find_base_value (src_0);
879 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
880 return find_base_value (src_1);
881
882 return 0;
883 }
884
885 case LO_SUM:
886 /* The standard form is (lo_sum reg sym) so look only at the
887 second operand. */
888 return find_base_value (XEXP (src, 1));
889
890 case AND:
891 /* If the second operand is constant set the base
892 address to the first operand. */
893 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
894 return find_base_value (XEXP (src, 0));
895 return 0;
896
897 case TRUNCATE:
898 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
899 break;
900 /* Fall through. */
901 case HIGH:
902 case PRE_INC:
903 case PRE_DEC:
904 case POST_INC:
905 case POST_DEC:
906 case PRE_MODIFY:
907 case POST_MODIFY:
908 return find_base_value (XEXP (src, 0));
909
910 case ZERO_EXTEND:
911 case SIGN_EXTEND: /* used for NT/Alpha pointers */
912 {
913 rtx temp = find_base_value (XEXP (src, 0));
914
915 if (temp != 0 && CONSTANT_P (temp))
916 temp = convert_memory_address (Pmode, temp);
917
918 return temp;
919 }
920
921 default:
922 break;
923 }
924
925 return 0;
926 }
927
928 /* Called from init_alias_analysis indirectly through note_stores. */
929
930 /* While scanning insns to find base values, reg_seen[N] is nonzero if
931 register N has been set in this function. */
932 static char *reg_seen;
933
934 /* Addresses which are known not to alias anything else are identified
935 by a unique integer. */
936 static int unique_id;
937
938 static void
939 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
940 {
941 unsigned regno;
942 rtx src;
943 int n;
944
945 if (!REG_P (dest))
946 return;
947
948 regno = REGNO (dest);
949
950 if (regno >= VARRAY_SIZE (reg_base_value))
951 abort ();
952
953 /* If this spans multiple hard registers, then we must indicate that every
954 register has an unusable value. */
955 if (regno < FIRST_PSEUDO_REGISTER)
956 n = hard_regno_nregs[regno][GET_MODE (dest)];
957 else
958 n = 1;
959 if (n != 1)
960 {
961 while (--n >= 0)
962 {
963 reg_seen[regno + n] = 1;
964 new_reg_base_value[regno + n] = 0;
965 }
966 return;
967 }
968
969 if (set)
970 {
971 /* A CLOBBER wipes out any old value but does not prevent a previously
972 unset register from acquiring a base address (i.e. reg_seen is not
973 set). */
974 if (GET_CODE (set) == CLOBBER)
975 {
976 new_reg_base_value[regno] = 0;
977 return;
978 }
979 src = SET_SRC (set);
980 }
981 else
982 {
983 if (reg_seen[regno])
984 {
985 new_reg_base_value[regno] = 0;
986 return;
987 }
988 reg_seen[regno] = 1;
989 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
990 GEN_INT (unique_id++));
991 return;
992 }
993
994 /* If this is not the first set of REGNO, see whether the new value
995 is related to the old one. There are two cases of interest:
996
997 (1) The register might be assigned an entirely new value
998 that has the same base term as the original set.
999
1000 (2) The set might be a simple self-modification that
1001 cannot change REGNO's base value.
1002
1003 If neither case holds, reject the original base value as invalid.
1004 Note that the following situation is not detected:
1005
1006 extern int x, y; int *p = &x; p += (&y-&x);
1007
1008 ANSI C does not allow computing the difference of addresses
1009 of distinct top level objects. */
1010 if (new_reg_base_value[regno] != 0
1011 && find_base_value (src) != new_reg_base_value[regno])
1012 switch (GET_CODE (src))
1013 {
1014 case LO_SUM:
1015 case MINUS:
1016 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1017 new_reg_base_value[regno] = 0;
1018 break;
1019 case PLUS:
1020 /* If the value we add in the PLUS is also a valid base value,
1021 this might be the actual base value, and the original value
1022 an index. */
1023 {
1024 rtx other = NULL_RTX;
1025
1026 if (XEXP (src, 0) == dest)
1027 other = XEXP (src, 1);
1028 else if (XEXP (src, 1) == dest)
1029 other = XEXP (src, 0);
1030
1031 if (! other || find_base_value (other))
1032 new_reg_base_value[regno] = 0;
1033 break;
1034 }
1035 case AND:
1036 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1037 new_reg_base_value[regno] = 0;
1038 break;
1039 default:
1040 new_reg_base_value[regno] = 0;
1041 break;
1042 }
1043 /* If this is the first set of a register, record the value. */
1044 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1045 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1046 new_reg_base_value[regno] = find_base_value (src);
1047
1048 reg_seen[regno] = 1;
1049 }
1050
1051 /* Called from loop optimization when a new pseudo-register is
1052 created. It indicates that REGNO is being set to VAL. f INVARIANT
1053 is true then this value also describes an invariant relationship
1054 which can be used to deduce that two registers with unknown values
1055 are different. */
1056
1057 void
1058 record_base_value (unsigned int regno, rtx val, int invariant)
1059 {
1060 if (invariant && alias_invariant && regno < alias_invariant_size)
1061 alias_invariant[regno] = val;
1062
1063 if (regno >= VARRAY_SIZE (reg_base_value))
1064 VARRAY_GROW (reg_base_value, max_reg_num ());
1065
1066 if (REG_P (val))
1067 {
1068 VARRAY_RTX (reg_base_value, regno)
1069 = REG_BASE_VALUE (val);
1070 return;
1071 }
1072 VARRAY_RTX (reg_base_value, regno)
1073 = find_base_value (val);
1074 }
1075
1076 /* Clear alias info for a register. This is used if an RTL transformation
1077 changes the value of a register. This is used in flow by AUTO_INC_DEC
1078 optimizations. We don't need to clear reg_base_value, since flow only
1079 changes the offset. */
1080
1081 void
1082 clear_reg_alias_info (rtx reg)
1083 {
1084 unsigned int regno = REGNO (reg);
1085
1086 if (regno >= FIRST_PSEUDO_REGISTER)
1087 {
1088 regno -= FIRST_PSEUDO_REGISTER;
1089 if (regno < reg_known_value_size)
1090 {
1091 reg_known_value[regno] = reg;
1092 reg_known_equiv_p[regno] = false;
1093 }
1094 }
1095 }
1096
1097 /* If a value is known for REGNO, return it. */
1098
1099 rtx
1100 get_reg_known_value (unsigned int regno)
1101 {
1102 if (regno >= FIRST_PSEUDO_REGISTER)
1103 {
1104 regno -= FIRST_PSEUDO_REGISTER;
1105 if (regno < reg_known_value_size)
1106 return reg_known_value[regno];
1107 }
1108 return NULL;
1109 }
1110
1111 /* Set it. */
1112
1113 static void
1114 set_reg_known_value (unsigned int regno, rtx val)
1115 {
1116 if (regno >= FIRST_PSEUDO_REGISTER)
1117 {
1118 regno -= FIRST_PSEUDO_REGISTER;
1119 if (regno < reg_known_value_size)
1120 reg_known_value[regno] = val;
1121 }
1122 }
1123
1124 /* Similarly for reg_known_equiv_p. */
1125
1126 bool
1127 get_reg_known_equiv_p (unsigned int regno)
1128 {
1129 if (regno >= FIRST_PSEUDO_REGISTER)
1130 {
1131 regno -= FIRST_PSEUDO_REGISTER;
1132 if (regno < reg_known_value_size)
1133 return reg_known_equiv_p[regno];
1134 }
1135 return false;
1136 }
1137
1138 static void
1139 set_reg_known_equiv_p (unsigned int regno, bool val)
1140 {
1141 if (regno >= FIRST_PSEUDO_REGISTER)
1142 {
1143 regno -= FIRST_PSEUDO_REGISTER;
1144 if (regno < reg_known_value_size)
1145 reg_known_equiv_p[regno] = val;
1146 }
1147 }
1148
1149
1150 /* Returns a canonical version of X, from the point of view alias
1151 analysis. (For example, if X is a MEM whose address is a register,
1152 and the register has a known value (say a SYMBOL_REF), then a MEM
1153 whose address is the SYMBOL_REF is returned.) */
1154
1155 rtx
1156 canon_rtx (rtx x)
1157 {
1158 /* Recursively look for equivalences. */
1159 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1160 {
1161 rtx t = get_reg_known_value (REGNO (x));
1162 if (t == x)
1163 return x;
1164 if (t)
1165 return canon_rtx (t);
1166 }
1167
1168 if (GET_CODE (x) == PLUS)
1169 {
1170 rtx x0 = canon_rtx (XEXP (x, 0));
1171 rtx x1 = canon_rtx (XEXP (x, 1));
1172
1173 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1174 {
1175 if (GET_CODE (x0) == CONST_INT)
1176 return plus_constant (x1, INTVAL (x0));
1177 else if (GET_CODE (x1) == CONST_INT)
1178 return plus_constant (x0, INTVAL (x1));
1179 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1180 }
1181 }
1182
1183 /* This gives us much better alias analysis when called from
1184 the loop optimizer. Note we want to leave the original
1185 MEM alone, but need to return the canonicalized MEM with
1186 all the flags with their original values. */
1187 else if (GET_CODE (x) == MEM)
1188 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1189
1190 return x;
1191 }
1192
1193 /* Return 1 if X and Y are identical-looking rtx's.
1194 Expect that X and Y has been already canonicalized.
1195
1196 We use the data in reg_known_value above to see if two registers with
1197 different numbers are, in fact, equivalent. */
1198
1199 static int
1200 rtx_equal_for_memref_p (rtx x, rtx y)
1201 {
1202 int i;
1203 int j;
1204 enum rtx_code code;
1205 const char *fmt;
1206
1207 if (x == 0 && y == 0)
1208 return 1;
1209 if (x == 0 || y == 0)
1210 return 0;
1211
1212 if (x == y)
1213 return 1;
1214
1215 code = GET_CODE (x);
1216 /* Rtx's of different codes cannot be equal. */
1217 if (code != GET_CODE (y))
1218 return 0;
1219
1220 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1221 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1222
1223 if (GET_MODE (x) != GET_MODE (y))
1224 return 0;
1225
1226 /* Some RTL can be compared without a recursive examination. */
1227 switch (code)
1228 {
1229 case REG:
1230 return REGNO (x) == REGNO (y);
1231
1232 case LABEL_REF:
1233 return XEXP (x, 0) == XEXP (y, 0);
1234
1235 case SYMBOL_REF:
1236 return XSTR (x, 0) == XSTR (y, 0);
1237
1238 case VALUE:
1239 case CONST_INT:
1240 case CONST_DOUBLE:
1241 /* There's no need to compare the contents of CONST_DOUBLEs or
1242 CONST_INTs because pointer equality is a good enough
1243 comparison for these nodes. */
1244 return 0;
1245
1246 case ADDRESSOF:
1247 return (XINT (x, 1) == XINT (y, 1)
1248 && rtx_equal_for_memref_p (XEXP (x, 0),
1249 XEXP (y, 0)));
1250
1251 default:
1252 break;
1253 }
1254
1255 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1256 if (code == PLUS)
1257 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1258 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1259 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1260 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1261 /* For commutative operations, the RTX match if the operand match in any
1262 order. Also handle the simple binary and unary cases without a loop. */
1263 if (COMMUTATIVE_P (x))
1264 {
1265 rtx xop0 = canon_rtx (XEXP (x, 0));
1266 rtx yop0 = canon_rtx (XEXP (y, 0));
1267 rtx yop1 = canon_rtx (XEXP (y, 1));
1268
1269 return ((rtx_equal_for_memref_p (xop0, yop0)
1270 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1271 || (rtx_equal_for_memref_p (xop0, yop1)
1272 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1273 }
1274 else if (NON_COMMUTATIVE_P (x))
1275 {
1276 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1277 canon_rtx (XEXP (y, 0)))
1278 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1279 canon_rtx (XEXP (y, 1))));
1280 }
1281 else if (UNARY_P (x))
1282 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1283 canon_rtx (XEXP (y, 0)));
1284
1285 /* Compare the elements. If any pair of corresponding elements
1286 fail to match, return 0 for the whole things.
1287
1288 Limit cases to types which actually appear in addresses. */
1289
1290 fmt = GET_RTX_FORMAT (code);
1291 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1292 {
1293 switch (fmt[i])
1294 {
1295 case 'i':
1296 if (XINT (x, i) != XINT (y, i))
1297 return 0;
1298 break;
1299
1300 case 'E':
1301 /* Two vectors must have the same length. */
1302 if (XVECLEN (x, i) != XVECLEN (y, i))
1303 return 0;
1304
1305 /* And the corresponding elements must match. */
1306 for (j = 0; j < XVECLEN (x, i); j++)
1307 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1308 canon_rtx (XVECEXP (y, i, j))) == 0)
1309 return 0;
1310 break;
1311
1312 case 'e':
1313 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1314 canon_rtx (XEXP (y, i))) == 0)
1315 return 0;
1316 break;
1317
1318 /* This can happen for asm operands. */
1319 case 's':
1320 if (strcmp (XSTR (x, i), XSTR (y, i)))
1321 return 0;
1322 break;
1323
1324 /* This can happen for an asm which clobbers memory. */
1325 case '0':
1326 break;
1327
1328 /* It is believed that rtx's at this level will never
1329 contain anything but integers and other rtx's,
1330 except for within LABEL_REFs and SYMBOL_REFs. */
1331 default:
1332 abort ();
1333 }
1334 }
1335 return 1;
1336 }
1337
1338 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1339 X and return it, or return 0 if none found. */
1340
1341 static rtx
1342 find_symbolic_term (rtx x)
1343 {
1344 int i;
1345 enum rtx_code code;
1346 const char *fmt;
1347
1348 code = GET_CODE (x);
1349 if (code == SYMBOL_REF || code == LABEL_REF)
1350 return x;
1351 if (OBJECT_P (x))
1352 return 0;
1353
1354 fmt = GET_RTX_FORMAT (code);
1355 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1356 {
1357 rtx t;
1358
1359 if (fmt[i] == 'e')
1360 {
1361 t = find_symbolic_term (XEXP (x, i));
1362 if (t != 0)
1363 return t;
1364 }
1365 else if (fmt[i] == 'E')
1366 break;
1367 }
1368 return 0;
1369 }
1370
1371 rtx
1372 find_base_term (rtx x)
1373 {
1374 cselib_val *val;
1375 struct elt_loc_list *l;
1376
1377 #if defined (FIND_BASE_TERM)
1378 /* Try machine-dependent ways to find the base term. */
1379 x = FIND_BASE_TERM (x);
1380 #endif
1381
1382 switch (GET_CODE (x))
1383 {
1384 case REG:
1385 return REG_BASE_VALUE (x);
1386
1387 case TRUNCATE:
1388 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1389 return 0;
1390 /* Fall through. */
1391 case HIGH:
1392 case PRE_INC:
1393 case PRE_DEC:
1394 case POST_INC:
1395 case POST_DEC:
1396 case PRE_MODIFY:
1397 case POST_MODIFY:
1398 return find_base_term (XEXP (x, 0));
1399
1400 case ZERO_EXTEND:
1401 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1402 {
1403 rtx temp = find_base_term (XEXP (x, 0));
1404
1405 if (temp != 0 && CONSTANT_P (temp))
1406 temp = convert_memory_address (Pmode, temp);
1407
1408 return temp;
1409 }
1410
1411 case VALUE:
1412 val = CSELIB_VAL_PTR (x);
1413 if (!val)
1414 return 0;
1415 for (l = val->locs; l; l = l->next)
1416 if ((x = find_base_term (l->loc)) != 0)
1417 return x;
1418 return 0;
1419
1420 case CONST:
1421 x = XEXP (x, 0);
1422 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1423 return 0;
1424 /* Fall through. */
1425 case LO_SUM:
1426 case PLUS:
1427 case MINUS:
1428 {
1429 rtx tmp1 = XEXP (x, 0);
1430 rtx tmp2 = XEXP (x, 1);
1431
1432 /* This is a little bit tricky since we have to determine which of
1433 the two operands represents the real base address. Otherwise this
1434 routine may return the index register instead of the base register.
1435
1436 That may cause us to believe no aliasing was possible, when in
1437 fact aliasing is possible.
1438
1439 We use a few simple tests to guess the base register. Additional
1440 tests can certainly be added. For example, if one of the operands
1441 is a shift or multiply, then it must be the index register and the
1442 other operand is the base register. */
1443
1444 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1445 return find_base_term (tmp2);
1446
1447 /* If either operand is known to be a pointer, then use it
1448 to determine the base term. */
1449 if (REG_P (tmp1) && REG_POINTER (tmp1))
1450 return find_base_term (tmp1);
1451
1452 if (REG_P (tmp2) && REG_POINTER (tmp2))
1453 return find_base_term (tmp2);
1454
1455 /* Neither operand was known to be a pointer. Go ahead and find the
1456 base term for both operands. */
1457 tmp1 = find_base_term (tmp1);
1458 tmp2 = find_base_term (tmp2);
1459
1460 /* If either base term is named object or a special address
1461 (like an argument or stack reference), then use it for the
1462 base term. */
1463 if (tmp1 != 0
1464 && (GET_CODE (tmp1) == SYMBOL_REF
1465 || GET_CODE (tmp1) == LABEL_REF
1466 || (GET_CODE (tmp1) == ADDRESS
1467 && GET_MODE (tmp1) != VOIDmode)))
1468 return tmp1;
1469
1470 if (tmp2 != 0
1471 && (GET_CODE (tmp2) == SYMBOL_REF
1472 || GET_CODE (tmp2) == LABEL_REF
1473 || (GET_CODE (tmp2) == ADDRESS
1474 && GET_MODE (tmp2) != VOIDmode)))
1475 return tmp2;
1476
1477 /* We could not determine which of the two operands was the
1478 base register and which was the index. So we can determine
1479 nothing from the base alias check. */
1480 return 0;
1481 }
1482
1483 case AND:
1484 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1485 return find_base_term (XEXP (x, 0));
1486 return 0;
1487
1488 case SYMBOL_REF:
1489 case LABEL_REF:
1490 return x;
1491
1492 case ADDRESSOF:
1493 return REG_BASE_VALUE (frame_pointer_rtx);
1494
1495 default:
1496 return 0;
1497 }
1498 }
1499
1500 /* Return 0 if the addresses X and Y are known to point to different
1501 objects, 1 if they might be pointers to the same object. */
1502
1503 static int
1504 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1505 enum machine_mode y_mode)
1506 {
1507 rtx x_base = find_base_term (x);
1508 rtx y_base = find_base_term (y);
1509
1510 /* If the address itself has no known base see if a known equivalent
1511 value has one. If either address still has no known base, nothing
1512 is known about aliasing. */
1513 if (x_base == 0)
1514 {
1515 rtx x_c;
1516
1517 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1518 return 1;
1519
1520 x_base = find_base_term (x_c);
1521 if (x_base == 0)
1522 return 1;
1523 }
1524
1525 if (y_base == 0)
1526 {
1527 rtx y_c;
1528 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1529 return 1;
1530
1531 y_base = find_base_term (y_c);
1532 if (y_base == 0)
1533 return 1;
1534 }
1535
1536 /* If the base addresses are equal nothing is known about aliasing. */
1537 if (rtx_equal_p (x_base, y_base))
1538 return 1;
1539
1540 /* The base addresses of the read and write are different expressions.
1541 If they are both symbols and they are not accessed via AND, there is
1542 no conflict. We can bring knowledge of object alignment into play
1543 here. For example, on alpha, "char a, b;" can alias one another,
1544 though "char a; long b;" cannot. */
1545 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1546 {
1547 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1548 return 1;
1549 if (GET_CODE (x) == AND
1550 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1551 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1552 return 1;
1553 if (GET_CODE (y) == AND
1554 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1555 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1556 return 1;
1557 /* Differing symbols never alias. */
1558 return 0;
1559 }
1560
1561 /* If one address is a stack reference there can be no alias:
1562 stack references using different base registers do not alias,
1563 a stack reference can not alias a parameter, and a stack reference
1564 can not alias a global. */
1565 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1566 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1567 return 0;
1568
1569 if (! flag_argument_noalias)
1570 return 1;
1571
1572 if (flag_argument_noalias > 1)
1573 return 0;
1574
1575 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1576 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1577 }
1578
1579 /* Convert the address X into something we can use. This is done by returning
1580 it unchanged unless it is a value; in the latter case we call cselib to get
1581 a more useful rtx. */
1582
1583 rtx
1584 get_addr (rtx x)
1585 {
1586 cselib_val *v;
1587 struct elt_loc_list *l;
1588
1589 if (GET_CODE (x) != VALUE)
1590 return x;
1591 v = CSELIB_VAL_PTR (x);
1592 if (v)
1593 {
1594 for (l = v->locs; l; l = l->next)
1595 if (CONSTANT_P (l->loc))
1596 return l->loc;
1597 for (l = v->locs; l; l = l->next)
1598 if (!REG_P (l->loc) && GET_CODE (l->loc) != MEM)
1599 return l->loc;
1600 if (v->locs)
1601 return v->locs->loc;
1602 }
1603 return x;
1604 }
1605
1606 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1607 where SIZE is the size in bytes of the memory reference. If ADDR
1608 is not modified by the memory reference then ADDR is returned. */
1609
1610 rtx
1611 addr_side_effect_eval (rtx addr, int size, int n_refs)
1612 {
1613 int offset = 0;
1614
1615 switch (GET_CODE (addr))
1616 {
1617 case PRE_INC:
1618 offset = (n_refs + 1) * size;
1619 break;
1620 case PRE_DEC:
1621 offset = -(n_refs + 1) * size;
1622 break;
1623 case POST_INC:
1624 offset = n_refs * size;
1625 break;
1626 case POST_DEC:
1627 offset = -n_refs * size;
1628 break;
1629
1630 default:
1631 return addr;
1632 }
1633
1634 if (offset)
1635 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1636 GEN_INT (offset));
1637 else
1638 addr = XEXP (addr, 0);
1639 addr = canon_rtx (addr);
1640
1641 return addr;
1642 }
1643
1644 /* Return nonzero if X and Y (memory addresses) could reference the
1645 same location in memory. C is an offset accumulator. When
1646 C is nonzero, we are testing aliases between X and Y + C.
1647 XSIZE is the size in bytes of the X reference,
1648 similarly YSIZE is the size in bytes for Y.
1649 Expect that canon_rtx has been already called for X and Y.
1650
1651 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1652 referenced (the reference was BLKmode), so make the most pessimistic
1653 assumptions.
1654
1655 If XSIZE or YSIZE is negative, we may access memory outside the object
1656 being referenced as a side effect. This can happen when using AND to
1657 align memory references, as is done on the Alpha.
1658
1659 Nice to notice that varying addresses cannot conflict with fp if no
1660 local variables had their addresses taken, but that's too hard now. */
1661
1662 static int
1663 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1664 {
1665 if (GET_CODE (x) == VALUE)
1666 x = get_addr (x);
1667 if (GET_CODE (y) == VALUE)
1668 y = get_addr (y);
1669 if (GET_CODE (x) == HIGH)
1670 x = XEXP (x, 0);
1671 else if (GET_CODE (x) == LO_SUM)
1672 x = XEXP (x, 1);
1673 else
1674 x = addr_side_effect_eval (x, xsize, 0);
1675 if (GET_CODE (y) == HIGH)
1676 y = XEXP (y, 0);
1677 else if (GET_CODE (y) == LO_SUM)
1678 y = XEXP (y, 1);
1679 else
1680 y = addr_side_effect_eval (y, ysize, 0);
1681
1682 if (rtx_equal_for_memref_p (x, y))
1683 {
1684 if (xsize <= 0 || ysize <= 0)
1685 return 1;
1686 if (c >= 0 && xsize > c)
1687 return 1;
1688 if (c < 0 && ysize+c > 0)
1689 return 1;
1690 return 0;
1691 }
1692
1693 /* This code used to check for conflicts involving stack references and
1694 globals but the base address alias code now handles these cases. */
1695
1696 if (GET_CODE (x) == PLUS)
1697 {
1698 /* The fact that X is canonicalized means that this
1699 PLUS rtx is canonicalized. */
1700 rtx x0 = XEXP (x, 0);
1701 rtx x1 = XEXP (x, 1);
1702
1703 if (GET_CODE (y) == PLUS)
1704 {
1705 /* The fact that Y is canonicalized means that this
1706 PLUS rtx is canonicalized. */
1707 rtx y0 = XEXP (y, 0);
1708 rtx y1 = XEXP (y, 1);
1709
1710 if (rtx_equal_for_memref_p (x1, y1))
1711 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1712 if (rtx_equal_for_memref_p (x0, y0))
1713 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1714 if (GET_CODE (x1) == CONST_INT)
1715 {
1716 if (GET_CODE (y1) == CONST_INT)
1717 return memrefs_conflict_p (xsize, x0, ysize, y0,
1718 c - INTVAL (x1) + INTVAL (y1));
1719 else
1720 return memrefs_conflict_p (xsize, x0, ysize, y,
1721 c - INTVAL (x1));
1722 }
1723 else if (GET_CODE (y1) == CONST_INT)
1724 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1725
1726 return 1;
1727 }
1728 else if (GET_CODE (x1) == CONST_INT)
1729 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1730 }
1731 else if (GET_CODE (y) == PLUS)
1732 {
1733 /* The fact that Y is canonicalized means that this
1734 PLUS rtx is canonicalized. */
1735 rtx y0 = XEXP (y, 0);
1736 rtx y1 = XEXP (y, 1);
1737
1738 if (GET_CODE (y1) == CONST_INT)
1739 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1740 else
1741 return 1;
1742 }
1743
1744 if (GET_CODE (x) == GET_CODE (y))
1745 switch (GET_CODE (x))
1746 {
1747 case MULT:
1748 {
1749 /* Handle cases where we expect the second operands to be the
1750 same, and check only whether the first operand would conflict
1751 or not. */
1752 rtx x0, y0;
1753 rtx x1 = canon_rtx (XEXP (x, 1));
1754 rtx y1 = canon_rtx (XEXP (y, 1));
1755 if (! rtx_equal_for_memref_p (x1, y1))
1756 return 1;
1757 x0 = canon_rtx (XEXP (x, 0));
1758 y0 = canon_rtx (XEXP (y, 0));
1759 if (rtx_equal_for_memref_p (x0, y0))
1760 return (xsize == 0 || ysize == 0
1761 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1762
1763 /* Can't properly adjust our sizes. */
1764 if (GET_CODE (x1) != CONST_INT)
1765 return 1;
1766 xsize /= INTVAL (x1);
1767 ysize /= INTVAL (x1);
1768 c /= INTVAL (x1);
1769 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1770 }
1771
1772 case REG:
1773 /* Are these registers known not to be equal? */
1774 if (alias_invariant)
1775 {
1776 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1777 rtx i_x, i_y; /* invariant relationships of X and Y */
1778
1779 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1780 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1781
1782 if (i_x == 0 && i_y == 0)
1783 break;
1784
1785 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1786 ysize, i_y ? i_y : y, c))
1787 return 0;
1788 }
1789 break;
1790
1791 default:
1792 break;
1793 }
1794
1795 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1796 as an access with indeterminate size. Assume that references
1797 besides AND are aligned, so if the size of the other reference is
1798 at least as large as the alignment, assume no other overlap. */
1799 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1800 {
1801 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1802 xsize = -1;
1803 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1804 }
1805 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1806 {
1807 /* ??? If we are indexing far enough into the array/structure, we
1808 may yet be able to determine that we can not overlap. But we
1809 also need to that we are far enough from the end not to overlap
1810 a following reference, so we do nothing with that for now. */
1811 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1812 ysize = -1;
1813 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1814 }
1815
1816 if (GET_CODE (x) == ADDRESSOF)
1817 {
1818 if (y == frame_pointer_rtx
1819 || GET_CODE (y) == ADDRESSOF)
1820 return xsize <= 0 || ysize <= 0;
1821 }
1822 if (GET_CODE (y) == ADDRESSOF)
1823 {
1824 if (x == frame_pointer_rtx)
1825 return xsize <= 0 || ysize <= 0;
1826 }
1827
1828 if (CONSTANT_P (x))
1829 {
1830 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1831 {
1832 c += (INTVAL (y) - INTVAL (x));
1833 return (xsize <= 0 || ysize <= 0
1834 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1835 }
1836
1837 if (GET_CODE (x) == CONST)
1838 {
1839 if (GET_CODE (y) == CONST)
1840 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1841 ysize, canon_rtx (XEXP (y, 0)), c);
1842 else
1843 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1844 ysize, y, c);
1845 }
1846 if (GET_CODE (y) == CONST)
1847 return memrefs_conflict_p (xsize, x, ysize,
1848 canon_rtx (XEXP (y, 0)), c);
1849
1850 if (CONSTANT_P (y))
1851 return (xsize <= 0 || ysize <= 0
1852 || (rtx_equal_for_memref_p (x, y)
1853 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1854
1855 return 1;
1856 }
1857 return 1;
1858 }
1859
1860 /* Functions to compute memory dependencies.
1861
1862 Since we process the insns in execution order, we can build tables
1863 to keep track of what registers are fixed (and not aliased), what registers
1864 are varying in known ways, and what registers are varying in unknown
1865 ways.
1866
1867 If both memory references are volatile, then there must always be a
1868 dependence between the two references, since their order can not be
1869 changed. A volatile and non-volatile reference can be interchanged
1870 though.
1871
1872 A MEM_IN_STRUCT reference at a non-AND varying address can never
1873 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1874 also must allow AND addresses, because they may generate accesses
1875 outside the object being referenced. This is used to generate
1876 aligned addresses from unaligned addresses, for instance, the alpha
1877 storeqi_unaligned pattern. */
1878
1879 /* Read dependence: X is read after read in MEM takes place. There can
1880 only be a dependence here if both reads are volatile. */
1881
1882 int
1883 read_dependence (rtx mem, rtx x)
1884 {
1885 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1886 }
1887
1888 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1889 MEM2 is a reference to a structure at a varying address, or returns
1890 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1891 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1892 to decide whether or not an address may vary; it should return
1893 nonzero whenever variation is possible.
1894 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1895
1896 static rtx
1897 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1898 rtx mem2_addr,
1899 int (*varies_p) (rtx, int))
1900 {
1901 if (! flag_strict_aliasing)
1902 return NULL_RTX;
1903
1904 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1905 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1906 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1907 varying address. */
1908 return mem1;
1909
1910 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1911 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1912 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1913 varying address. */
1914 return mem2;
1915
1916 return NULL_RTX;
1917 }
1918
1919 /* Returns nonzero if something about the mode or address format MEM1
1920 indicates that it might well alias *anything*. */
1921
1922 static int
1923 aliases_everything_p (rtx mem)
1924 {
1925 if (GET_CODE (XEXP (mem, 0)) == AND)
1926 /* If the address is an AND, its very hard to know at what it is
1927 actually pointing. */
1928 return 1;
1929
1930 return 0;
1931 }
1932
1933 /* Return true if we can determine that the fields referenced cannot
1934 overlap for any pair of objects. */
1935
1936 static bool
1937 nonoverlapping_component_refs_p (tree x, tree y)
1938 {
1939 tree fieldx, fieldy, typex, typey, orig_y;
1940
1941 do
1942 {
1943 /* The comparison has to be done at a common type, since we don't
1944 know how the inheritance hierarchy works. */
1945 orig_y = y;
1946 do
1947 {
1948 fieldx = TREE_OPERAND (x, 1);
1949 typex = DECL_FIELD_CONTEXT (fieldx);
1950
1951 y = orig_y;
1952 do
1953 {
1954 fieldy = TREE_OPERAND (y, 1);
1955 typey = DECL_FIELD_CONTEXT (fieldy);
1956
1957 if (typex == typey)
1958 goto found;
1959
1960 y = TREE_OPERAND (y, 0);
1961 }
1962 while (y && TREE_CODE (y) == COMPONENT_REF);
1963
1964 x = TREE_OPERAND (x, 0);
1965 }
1966 while (x && TREE_CODE (x) == COMPONENT_REF);
1967
1968 /* Never found a common type. */
1969 return false;
1970
1971 found:
1972 /* If we're left with accessing different fields of a structure,
1973 then no overlap. */
1974 if (TREE_CODE (typex) == RECORD_TYPE
1975 && fieldx != fieldy)
1976 return true;
1977
1978 /* The comparison on the current field failed. If we're accessing
1979 a very nested structure, look at the next outer level. */
1980 x = TREE_OPERAND (x, 0);
1981 y = TREE_OPERAND (y, 0);
1982 }
1983 while (x && y
1984 && TREE_CODE (x) == COMPONENT_REF
1985 && TREE_CODE (y) == COMPONENT_REF);
1986
1987 return false;
1988 }
1989
1990 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1991
1992 static tree
1993 decl_for_component_ref (tree x)
1994 {
1995 do
1996 {
1997 x = TREE_OPERAND (x, 0);
1998 }
1999 while (x && TREE_CODE (x) == COMPONENT_REF);
2000
2001 return x && DECL_P (x) ? x : NULL_TREE;
2002 }
2003
2004 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2005 offset of the field reference. */
2006
2007 static rtx
2008 adjust_offset_for_component_ref (tree x, rtx offset)
2009 {
2010 HOST_WIDE_INT ioffset;
2011
2012 if (! offset)
2013 return NULL_RTX;
2014
2015 ioffset = INTVAL (offset);
2016 do
2017 {
2018 tree field = TREE_OPERAND (x, 1);
2019
2020 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2021 return NULL_RTX;
2022 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2023 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2024 / BITS_PER_UNIT));
2025
2026 x = TREE_OPERAND (x, 0);
2027 }
2028 while (x && TREE_CODE (x) == COMPONENT_REF);
2029
2030 return GEN_INT (ioffset);
2031 }
2032
2033 /* Return nonzero if we can determine the exprs corresponding to memrefs
2034 X and Y and they do not overlap. */
2035
2036 static int
2037 nonoverlapping_memrefs_p (rtx x, rtx y)
2038 {
2039 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2040 rtx rtlx, rtly;
2041 rtx basex, basey;
2042 rtx moffsetx, moffsety;
2043 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2044
2045 /* Unless both have exprs, we can't tell anything. */
2046 if (exprx == 0 || expry == 0)
2047 return 0;
2048
2049 /* If both are field references, we may be able to determine something. */
2050 if (TREE_CODE (exprx) == COMPONENT_REF
2051 && TREE_CODE (expry) == COMPONENT_REF
2052 && nonoverlapping_component_refs_p (exprx, expry))
2053 return 1;
2054
2055 /* If the field reference test failed, look at the DECLs involved. */
2056 moffsetx = MEM_OFFSET (x);
2057 if (TREE_CODE (exprx) == COMPONENT_REF)
2058 {
2059 tree t = decl_for_component_ref (exprx);
2060 if (! t)
2061 return 0;
2062 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2063 exprx = t;
2064 }
2065 else if (TREE_CODE (exprx) == INDIRECT_REF)
2066 {
2067 exprx = TREE_OPERAND (exprx, 0);
2068 if (flag_argument_noalias < 2
2069 || TREE_CODE (exprx) != PARM_DECL)
2070 return 0;
2071 }
2072
2073 moffsety = MEM_OFFSET (y);
2074 if (TREE_CODE (expry) == COMPONENT_REF)
2075 {
2076 tree t = decl_for_component_ref (expry);
2077 if (! t)
2078 return 0;
2079 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2080 expry = t;
2081 }
2082 else if (TREE_CODE (expry) == INDIRECT_REF)
2083 {
2084 expry = TREE_OPERAND (expry, 0);
2085 if (flag_argument_noalias < 2
2086 || TREE_CODE (expry) != PARM_DECL)
2087 return 0;
2088 }
2089
2090 if (! DECL_P (exprx) || ! DECL_P (expry))
2091 return 0;
2092
2093 rtlx = DECL_RTL (exprx);
2094 rtly = DECL_RTL (expry);
2095
2096 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2097 can't overlap unless they are the same because we never reuse that part
2098 of the stack frame used for locals for spilled pseudos. */
2099 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2100 && ! rtx_equal_p (rtlx, rtly))
2101 return 1;
2102
2103 /* Get the base and offsets of both decls. If either is a register, we
2104 know both are and are the same, so use that as the base. The only
2105 we can avoid overlap is if we can deduce that they are nonoverlapping
2106 pieces of that decl, which is very rare. */
2107 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2108 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2109 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2110
2111 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2112 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2113 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2114
2115 /* If the bases are different, we know they do not overlap if both
2116 are constants or if one is a constant and the other a pointer into the
2117 stack frame. Otherwise a different base means we can't tell if they
2118 overlap or not. */
2119 if (! rtx_equal_p (basex, basey))
2120 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2121 || (CONSTANT_P (basex) && REG_P (basey)
2122 && REGNO_PTR_FRAME_P (REGNO (basey)))
2123 || (CONSTANT_P (basey) && REG_P (basex)
2124 && REGNO_PTR_FRAME_P (REGNO (basex))));
2125
2126 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2127 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2128 : -1);
2129 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2130 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2131 -1);
2132
2133 /* If we have an offset for either memref, it can update the values computed
2134 above. */
2135 if (moffsetx)
2136 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2137 if (moffsety)
2138 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2139
2140 /* If a memref has both a size and an offset, we can use the smaller size.
2141 We can't do this if the offset isn't known because we must view this
2142 memref as being anywhere inside the DECL's MEM. */
2143 if (MEM_SIZE (x) && moffsetx)
2144 sizex = INTVAL (MEM_SIZE (x));
2145 if (MEM_SIZE (y) && moffsety)
2146 sizey = INTVAL (MEM_SIZE (y));
2147
2148 /* Put the values of the memref with the lower offset in X's values. */
2149 if (offsetx > offsety)
2150 {
2151 tem = offsetx, offsetx = offsety, offsety = tem;
2152 tem = sizex, sizex = sizey, sizey = tem;
2153 }
2154
2155 /* If we don't know the size of the lower-offset value, we can't tell
2156 if they conflict. Otherwise, we do the test. */
2157 return sizex >= 0 && offsety >= offsetx + sizex;
2158 }
2159
2160 /* True dependence: X is read after store in MEM takes place. */
2161
2162 int
2163 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2164 int (*varies) (rtx, int))
2165 {
2166 rtx x_addr, mem_addr;
2167 rtx base;
2168
2169 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2170 return 1;
2171
2172 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2173 This is used in epilogue deallocation functions. */
2174 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2175 return 1;
2176 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2177 return 1;
2178
2179 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2180 return 0;
2181
2182 /* Unchanging memory can't conflict with non-unchanging memory.
2183 A non-unchanging read can conflict with a non-unchanging write.
2184 An unchanging read can conflict with an unchanging write since
2185 there may be a single store to this address to initialize it.
2186 Note that an unchanging store can conflict with a non-unchanging read
2187 since we have to make conservative assumptions when we have a
2188 record with readonly fields and we are copying the whole thing.
2189 Just fall through to the code below to resolve potential conflicts.
2190 This won't handle all cases optimally, but the possible performance
2191 loss should be negligible. */
2192 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2193 return 0;
2194
2195 if (nonoverlapping_memrefs_p (mem, x))
2196 return 0;
2197
2198 if (mem_mode == VOIDmode)
2199 mem_mode = GET_MODE (mem);
2200
2201 x_addr = get_addr (XEXP (x, 0));
2202 mem_addr = get_addr (XEXP (mem, 0));
2203
2204 base = find_base_term (x_addr);
2205 if (base && (GET_CODE (base) == LABEL_REF
2206 || (GET_CODE (base) == SYMBOL_REF
2207 && CONSTANT_POOL_ADDRESS_P (base))))
2208 return 0;
2209
2210 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2211 return 0;
2212
2213 x_addr = canon_rtx (x_addr);
2214 mem_addr = canon_rtx (mem_addr);
2215
2216 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2217 SIZE_FOR_MODE (x), x_addr, 0))
2218 return 0;
2219
2220 if (aliases_everything_p (x))
2221 return 1;
2222
2223 /* We cannot use aliases_everything_p to test MEM, since we must look
2224 at MEM_MODE, rather than GET_MODE (MEM). */
2225 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2226 return 1;
2227
2228 /* In true_dependence we also allow BLKmode to alias anything. Why
2229 don't we do this in anti_dependence and output_dependence? */
2230 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2231 return 1;
2232
2233 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2234 varies);
2235 }
2236
2237 /* Canonical true dependence: X is read after store in MEM takes place.
2238 Variant of true_dependence which assumes MEM has already been
2239 canonicalized (hence we no longer do that here).
2240 The mem_addr argument has been added, since true_dependence computed
2241 this value prior to canonicalizing. */
2242
2243 int
2244 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2245 rtx x, int (*varies) (rtx, int))
2246 {
2247 rtx x_addr;
2248
2249 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2250 return 1;
2251
2252 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2253 This is used in epilogue deallocation functions. */
2254 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2255 return 1;
2256 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2257 return 1;
2258
2259 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2260 return 0;
2261
2262 /* If X is an unchanging read, then it can't possibly conflict with any
2263 non-unchanging store. It may conflict with an unchanging write though,
2264 because there may be a single store to this address to initialize it.
2265 Just fall through to the code below to resolve the case where we have
2266 both an unchanging read and an unchanging write. This won't handle all
2267 cases optimally, but the possible performance loss should be
2268 negligible. */
2269 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2270 return 0;
2271
2272 if (nonoverlapping_memrefs_p (x, mem))
2273 return 0;
2274
2275 x_addr = get_addr (XEXP (x, 0));
2276
2277 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2278 return 0;
2279
2280 x_addr = canon_rtx (x_addr);
2281 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2282 SIZE_FOR_MODE (x), x_addr, 0))
2283 return 0;
2284
2285 if (aliases_everything_p (x))
2286 return 1;
2287
2288 /* We cannot use aliases_everything_p to test MEM, since we must look
2289 at MEM_MODE, rather than GET_MODE (MEM). */
2290 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2291 return 1;
2292
2293 /* In true_dependence we also allow BLKmode to alias anything. Why
2294 don't we do this in anti_dependence and output_dependence? */
2295 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2296 return 1;
2297
2298 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2299 varies);
2300 }
2301
2302 /* Returns nonzero if a write to X might alias a previous read from
2303 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2304 honor the RTX_UNCHANGING_P flags on X and MEM. */
2305
2306 static int
2307 write_dependence_p (rtx mem, rtx x, int writep, int constp)
2308 {
2309 rtx x_addr, mem_addr;
2310 rtx fixed_scalar;
2311 rtx base;
2312
2313 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2314 return 1;
2315
2316 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2317 This is used in epilogue deallocation functions. */
2318 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2319 return 1;
2320 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2321 return 1;
2322
2323 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2324 return 0;
2325
2326 if (constp)
2327 {
2328 /* Unchanging memory can't conflict with non-unchanging memory. */
2329 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2330 return 0;
2331
2332 /* If MEM is an unchanging read, then it can't possibly conflict with
2333 the store to X, because there is at most one store to MEM, and it
2334 must have occurred somewhere before MEM. */
2335 if (! writep && RTX_UNCHANGING_P (mem))
2336 return 0;
2337 }
2338
2339 if (nonoverlapping_memrefs_p (x, mem))
2340 return 0;
2341
2342 x_addr = get_addr (XEXP (x, 0));
2343 mem_addr = get_addr (XEXP (mem, 0));
2344
2345 if (! writep)
2346 {
2347 base = find_base_term (mem_addr);
2348 if (base && (GET_CODE (base) == LABEL_REF
2349 || (GET_CODE (base) == SYMBOL_REF
2350 && CONSTANT_POOL_ADDRESS_P (base))))
2351 return 0;
2352 }
2353
2354 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2355 GET_MODE (mem)))
2356 return 0;
2357
2358 x_addr = canon_rtx (x_addr);
2359 mem_addr = canon_rtx (mem_addr);
2360
2361 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2362 SIZE_FOR_MODE (x), x_addr, 0))
2363 return 0;
2364
2365 fixed_scalar
2366 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2367 rtx_addr_varies_p);
2368
2369 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2370 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2371 }
2372
2373 /* Anti dependence: X is written after read in MEM takes place. */
2374
2375 int
2376 anti_dependence (rtx mem, rtx x)
2377 {
2378 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
2379 }
2380
2381 /* Output dependence: X is written after store in MEM takes place. */
2382
2383 int
2384 output_dependence (rtx mem, rtx x)
2385 {
2386 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2387 }
2388
2389 /* Unchanging anti dependence: Like anti_dependence but ignores
2390 the UNCHANGING_RTX_P property on const variable references. */
2391
2392 int
2393 unchanging_anti_dependence (rtx mem, rtx x)
2394 {
2395 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
2396 }
2397 \f
2398 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2399 something which is not local to the function and is not constant. */
2400
2401 static int
2402 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2403 {
2404 rtx x = *loc;
2405 rtx base;
2406 int regno;
2407
2408 if (! x)
2409 return 0;
2410
2411 switch (GET_CODE (x))
2412 {
2413 case SUBREG:
2414 if (REG_P (SUBREG_REG (x)))
2415 {
2416 /* Global registers are not local. */
2417 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2418 && global_regs[subreg_regno (x)])
2419 return 1;
2420 return 0;
2421 }
2422 break;
2423
2424 case REG:
2425 regno = REGNO (x);
2426 /* Global registers are not local. */
2427 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2428 return 1;
2429 return 0;
2430
2431 case SCRATCH:
2432 case PC:
2433 case CC0:
2434 case CONST_INT:
2435 case CONST_DOUBLE:
2436 case CONST_VECTOR:
2437 case CONST:
2438 case LABEL_REF:
2439 return 0;
2440
2441 case SYMBOL_REF:
2442 /* Constants in the function's constants pool are constant. */
2443 if (CONSTANT_POOL_ADDRESS_P (x))
2444 return 0;
2445 return 1;
2446
2447 case CALL:
2448 /* Non-constant calls and recursion are not local. */
2449 return 1;
2450
2451 case MEM:
2452 /* Be overly conservative and consider any volatile memory
2453 reference as not local. */
2454 if (MEM_VOLATILE_P (x))
2455 return 1;
2456 base = find_base_term (XEXP (x, 0));
2457 if (base)
2458 {
2459 /* A Pmode ADDRESS could be a reference via the structure value
2460 address or static chain. Such memory references are nonlocal.
2461
2462 Thus, we have to examine the contents of the ADDRESS to find
2463 out if this is a local reference or not. */
2464 if (GET_CODE (base) == ADDRESS
2465 && GET_MODE (base) == Pmode
2466 && (XEXP (base, 0) == stack_pointer_rtx
2467 || XEXP (base, 0) == arg_pointer_rtx
2468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2469 || XEXP (base, 0) == hard_frame_pointer_rtx
2470 #endif
2471 || XEXP (base, 0) == frame_pointer_rtx))
2472 return 0;
2473 /* Constants in the function's constant pool are constant. */
2474 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2475 return 0;
2476 }
2477 return 1;
2478
2479 case UNSPEC_VOLATILE:
2480 case ASM_INPUT:
2481 return 1;
2482
2483 case ASM_OPERANDS:
2484 if (MEM_VOLATILE_P (x))
2485 return 1;
2486
2487 /* Fall through. */
2488
2489 default:
2490 break;
2491 }
2492
2493 return 0;
2494 }
2495
2496 /* Returns nonzero if X might mention something which is not
2497 local to the function and is not constant. */
2498
2499 static int
2500 nonlocal_mentioned_p (rtx x)
2501 {
2502 if (INSN_P (x))
2503 {
2504 if (GET_CODE (x) == CALL_INSN)
2505 {
2506 if (! CONST_OR_PURE_CALL_P (x))
2507 return 1;
2508 x = CALL_INSN_FUNCTION_USAGE (x);
2509 if (x == 0)
2510 return 0;
2511 }
2512 else
2513 x = PATTERN (x);
2514 }
2515
2516 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2517 }
2518
2519 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2520 something which is not local to the function and is not constant. */
2521
2522 static int
2523 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2524 {
2525 rtx x = *loc;
2526
2527 if (! x)
2528 return 0;
2529
2530 switch (GET_CODE (x))
2531 {
2532 case MEM:
2533 case REG:
2534 case SYMBOL_REF:
2535 case SUBREG:
2536 return nonlocal_mentioned_p (x);
2537
2538 case CALL:
2539 /* Non-constant calls and recursion are not local. */
2540 return 1;
2541
2542 case SET:
2543 if (nonlocal_mentioned_p (SET_SRC (x)))
2544 return 1;
2545
2546 if (GET_CODE (SET_DEST (x)) == MEM)
2547 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2548
2549 /* If the destination is anything other than a CC0, PC,
2550 MEM, REG, or a SUBREG of a REG that occupies all of
2551 the REG, then X references nonlocal memory if it is
2552 mentioned in the destination. */
2553 if (GET_CODE (SET_DEST (x)) != CC0
2554 && GET_CODE (SET_DEST (x)) != PC
2555 && !REG_P (SET_DEST (x))
2556 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2557 && REG_P (SUBREG_REG (SET_DEST (x)))
2558 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2560 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2562 return nonlocal_mentioned_p (SET_DEST (x));
2563 return 0;
2564
2565 case CLOBBER:
2566 if (GET_CODE (XEXP (x, 0)) == MEM)
2567 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2568 return 0;
2569
2570 case USE:
2571 return nonlocal_mentioned_p (XEXP (x, 0));
2572
2573 case ASM_INPUT:
2574 case UNSPEC_VOLATILE:
2575 return 1;
2576
2577 case ASM_OPERANDS:
2578 if (MEM_VOLATILE_P (x))
2579 return 1;
2580
2581 /* Fall through. */
2582
2583 default:
2584 break;
2585 }
2586
2587 return 0;
2588 }
2589
2590 /* Returns nonzero if X might reference something which is not
2591 local to the function and is not constant. */
2592
2593 static int
2594 nonlocal_referenced_p (rtx x)
2595 {
2596 if (INSN_P (x))
2597 {
2598 if (GET_CODE (x) == CALL_INSN)
2599 {
2600 if (! CONST_OR_PURE_CALL_P (x))
2601 return 1;
2602 x = CALL_INSN_FUNCTION_USAGE (x);
2603 if (x == 0)
2604 return 0;
2605 }
2606 else
2607 x = PATTERN (x);
2608 }
2609
2610 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2611 }
2612
2613 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2614 something which is not local to the function and is not constant. */
2615
2616 static int
2617 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2618 {
2619 rtx x = *loc;
2620
2621 if (! x)
2622 return 0;
2623
2624 switch (GET_CODE (x))
2625 {
2626 case CALL:
2627 /* Non-constant calls and recursion are not local. */
2628 return 1;
2629
2630 case PRE_INC:
2631 case PRE_DEC:
2632 case POST_INC:
2633 case POST_DEC:
2634 case PRE_MODIFY:
2635 case POST_MODIFY:
2636 return nonlocal_mentioned_p (XEXP (x, 0));
2637
2638 case SET:
2639 if (nonlocal_mentioned_p (SET_DEST (x)))
2640 return 1;
2641 return nonlocal_set_p (SET_SRC (x));
2642
2643 case CLOBBER:
2644 return nonlocal_mentioned_p (XEXP (x, 0));
2645
2646 case USE:
2647 return 0;
2648
2649 case ASM_INPUT:
2650 case UNSPEC_VOLATILE:
2651 return 1;
2652
2653 case ASM_OPERANDS:
2654 if (MEM_VOLATILE_P (x))
2655 return 1;
2656
2657 /* Fall through. */
2658
2659 default:
2660 break;
2661 }
2662
2663 return 0;
2664 }
2665
2666 /* Returns nonzero if X might set something which is not
2667 local to the function and is not constant. */
2668
2669 static int
2670 nonlocal_set_p (rtx x)
2671 {
2672 if (INSN_P (x))
2673 {
2674 if (GET_CODE (x) == CALL_INSN)
2675 {
2676 if (! CONST_OR_PURE_CALL_P (x))
2677 return 1;
2678 x = CALL_INSN_FUNCTION_USAGE (x);
2679 if (x == 0)
2680 return 0;
2681 }
2682 else
2683 x = PATTERN (x);
2684 }
2685
2686 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2687 }
2688
2689 /* Mark the function if it is pure or constant. */
2690
2691 void
2692 mark_constant_function (void)
2693 {
2694 rtx insn;
2695 int nonlocal_memory_referenced;
2696
2697 if (TREE_READONLY (current_function_decl)
2698 || DECL_IS_PURE (current_function_decl)
2699 || TREE_THIS_VOLATILE (current_function_decl)
2700 || current_function_has_nonlocal_goto
2701 || !targetm.binds_local_p (current_function_decl))
2702 return;
2703
2704 /* A loop might not return which counts as a side effect. */
2705 if (mark_dfs_back_edges ())
2706 return;
2707
2708 nonlocal_memory_referenced = 0;
2709
2710 init_alias_analysis ();
2711
2712 /* Determine if this is a constant or pure function. */
2713
2714 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2715 {
2716 if (! INSN_P (insn))
2717 continue;
2718
2719 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2720 || volatile_refs_p (PATTERN (insn)))
2721 break;
2722
2723 if (! nonlocal_memory_referenced)
2724 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2725 }
2726
2727 end_alias_analysis ();
2728
2729 /* Mark the function. */
2730
2731 if (insn)
2732 ;
2733 else if (nonlocal_memory_referenced)
2734 {
2735 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2736 DECL_IS_PURE (current_function_decl) = 1;
2737 }
2738 else
2739 {
2740 cgraph_rtl_info (current_function_decl)->const_function = 1;
2741 TREE_READONLY (current_function_decl) = 1;
2742 }
2743 }
2744 \f
2745
2746 void
2747 init_alias_once (void)
2748 {
2749 int i;
2750
2751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2752 /* Check whether this register can hold an incoming pointer
2753 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2754 numbers, so translate if necessary due to register windows. */
2755 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2756 && HARD_REGNO_MODE_OK (i, Pmode))
2757 static_reg_base_value[i]
2758 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2759
2760 static_reg_base_value[STACK_POINTER_REGNUM]
2761 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2762 static_reg_base_value[ARG_POINTER_REGNUM]
2763 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2764 static_reg_base_value[FRAME_POINTER_REGNUM]
2765 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2766 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2767 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2768 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2769 #endif
2770 }
2771
2772 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2773 to be memory reference. */
2774 static bool memory_modified;
2775 static void
2776 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2777 {
2778 if (GET_CODE (x) == MEM)
2779 {
2780 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2781 memory_modified = true;
2782 }
2783 }
2784
2785
2786 /* Return true when INSN possibly modify memory contents of MEM
2787 (ie address can be modified). */
2788 bool
2789 memory_modified_in_insn_p (rtx mem, rtx insn)
2790 {
2791 if (!INSN_P (insn))
2792 return false;
2793 memory_modified = false;
2794 note_stores (PATTERN (insn), memory_modified_1, mem);
2795 return memory_modified;
2796 }
2797
2798 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2799 array. */
2800
2801 void
2802 init_alias_analysis (void)
2803 {
2804 unsigned int maxreg = max_reg_num ();
2805 int changed, pass;
2806 int i;
2807 unsigned int ui;
2808 rtx insn;
2809
2810 timevar_push (TV_ALIAS_ANALYSIS);
2811
2812 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2813 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2814 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2815
2816 /* Overallocate reg_base_value to allow some growth during loop
2817 optimization. Loop unrolling can create a large number of
2818 registers. */
2819 if (old_reg_base_value)
2820 {
2821 reg_base_value = old_reg_base_value;
2822 /* If varray gets large zeroing cost may get important. */
2823 if (VARRAY_SIZE (reg_base_value) > 256
2824 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2825 VARRAY_GROW (reg_base_value, maxreg);
2826 VARRAY_CLEAR (reg_base_value);
2827 if (VARRAY_SIZE (reg_base_value) < maxreg)
2828 VARRAY_GROW (reg_base_value, maxreg);
2829 }
2830 else
2831 {
2832 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2833 }
2834
2835 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2836 reg_seen = xmalloc (maxreg);
2837 if (! reload_completed && flag_old_unroll_loops)
2838 {
2839 alias_invariant = ggc_calloc (maxreg, sizeof (rtx));
2840 alias_invariant_size = maxreg;
2841 }
2842
2843 /* The basic idea is that each pass through this loop will use the
2844 "constant" information from the previous pass to propagate alias
2845 information through another level of assignments.
2846
2847 This could get expensive if the assignment chains are long. Maybe
2848 we should throttle the number of iterations, possibly based on
2849 the optimization level or flag_expensive_optimizations.
2850
2851 We could propagate more information in the first pass by making use
2852 of REG_N_SETS to determine immediately that the alias information
2853 for a pseudo is "constant".
2854
2855 A program with an uninitialized variable can cause an infinite loop
2856 here. Instead of doing a full dataflow analysis to detect such problems
2857 we just cap the number of iterations for the loop.
2858
2859 The state of the arrays for the set chain in question does not matter
2860 since the program has undefined behavior. */
2861
2862 pass = 0;
2863 do
2864 {
2865 /* Assume nothing will change this iteration of the loop. */
2866 changed = 0;
2867
2868 /* We want to assign the same IDs each iteration of this loop, so
2869 start counting from zero each iteration of the loop. */
2870 unique_id = 0;
2871
2872 /* We're at the start of the function each iteration through the
2873 loop, so we're copying arguments. */
2874 copying_arguments = true;
2875
2876 /* Wipe the potential alias information clean for this pass. */
2877 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2878
2879 /* Wipe the reg_seen array clean. */
2880 memset (reg_seen, 0, maxreg);
2881
2882 /* Mark all hard registers which may contain an address.
2883 The stack, frame and argument pointers may contain an address.
2884 An argument register which can hold a Pmode value may contain
2885 an address even if it is not in BASE_REGS.
2886
2887 The address expression is VOIDmode for an argument and
2888 Pmode for other registers. */
2889
2890 memcpy (new_reg_base_value, static_reg_base_value,
2891 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2892
2893 /* Walk the insns adding values to the new_reg_base_value array. */
2894 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2895 {
2896 if (INSN_P (insn))
2897 {
2898 rtx note, set;
2899
2900 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2901 /* The prologue/epilogue insns are not threaded onto the
2902 insn chain until after reload has completed. Thus,
2903 there is no sense wasting time checking if INSN is in
2904 the prologue/epilogue until after reload has completed. */
2905 if (reload_completed
2906 && prologue_epilogue_contains (insn))
2907 continue;
2908 #endif
2909
2910 /* If this insn has a noalias note, process it, Otherwise,
2911 scan for sets. A simple set will have no side effects
2912 which could change the base value of any other register. */
2913
2914 if (GET_CODE (PATTERN (insn)) == SET
2915 && REG_NOTES (insn) != 0
2916 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2917 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2918 else
2919 note_stores (PATTERN (insn), record_set, NULL);
2920
2921 set = single_set (insn);
2922
2923 if (set != 0
2924 && REG_P (SET_DEST (set))
2925 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2926 {
2927 unsigned int regno = REGNO (SET_DEST (set));
2928 rtx src = SET_SRC (set);
2929 rtx t;
2930
2931 if (REG_NOTES (insn) != 0
2932 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2933 && REG_N_SETS (regno) == 1)
2934 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2935 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2936 && ! rtx_varies_p (XEXP (note, 0), 1)
2937 && ! reg_overlap_mentioned_p (SET_DEST (set),
2938 XEXP (note, 0)))
2939 {
2940 set_reg_known_value (regno, XEXP (note, 0));
2941 set_reg_known_equiv_p (regno,
2942 REG_NOTE_KIND (note) == REG_EQUIV);
2943 }
2944 else if (REG_N_SETS (regno) == 1
2945 && GET_CODE (src) == PLUS
2946 && REG_P (XEXP (src, 0))
2947 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2948 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2949 {
2950 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2951 set_reg_known_value (regno, t);
2952 set_reg_known_equiv_p (regno, 0);
2953 }
2954 else if (REG_N_SETS (regno) == 1
2955 && ! rtx_varies_p (src, 1))
2956 {
2957 set_reg_known_value (regno, src);
2958 set_reg_known_equiv_p (regno, 0);
2959 }
2960 }
2961 }
2962 else if (GET_CODE (insn) == NOTE
2963 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2964 copying_arguments = false;
2965 }
2966
2967 /* Now propagate values from new_reg_base_value to reg_base_value. */
2968 if (maxreg != (unsigned int) max_reg_num())
2969 abort ();
2970 for (ui = 0; ui < maxreg; ui++)
2971 {
2972 if (new_reg_base_value[ui]
2973 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2974 && ! rtx_equal_p (new_reg_base_value[ui],
2975 VARRAY_RTX (reg_base_value, ui)))
2976 {
2977 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2978 changed = 1;
2979 }
2980 }
2981 }
2982 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2983
2984 /* Fill in the remaining entries. */
2985 for (i = 0; i < (int)reg_known_value_size; i++)
2986 if (reg_known_value[i] == 0)
2987 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2988
2989 /* Simplify the reg_base_value array so that no register refers to
2990 another register, except to special registers indirectly through
2991 ADDRESS expressions.
2992
2993 In theory this loop can take as long as O(registers^2), but unless
2994 there are very long dependency chains it will run in close to linear
2995 time.
2996
2997 This loop may not be needed any longer now that the main loop does
2998 a better job at propagating alias information. */
2999 pass = 0;
3000 do
3001 {
3002 changed = 0;
3003 pass++;
3004 for (ui = 0; ui < maxreg; ui++)
3005 {
3006 rtx base = VARRAY_RTX (reg_base_value, ui);
3007 if (base && REG_P (base))
3008 {
3009 unsigned int base_regno = REGNO (base);
3010 if (base_regno == ui) /* register set from itself */
3011 VARRAY_RTX (reg_base_value, ui) = 0;
3012 else
3013 VARRAY_RTX (reg_base_value, ui)
3014 = VARRAY_RTX (reg_base_value, base_regno);
3015 changed = 1;
3016 }
3017 }
3018 }
3019 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
3020
3021 /* Clean up. */
3022 free (new_reg_base_value);
3023 new_reg_base_value = 0;
3024 free (reg_seen);
3025 reg_seen = 0;
3026 timevar_pop (TV_ALIAS_ANALYSIS);
3027 }
3028
3029 void
3030 end_alias_analysis (void)
3031 {
3032 old_reg_base_value = reg_base_value;
3033 ggc_free (reg_known_value);
3034 reg_known_value = 0;
3035 reg_known_value_size = 0;
3036 free (reg_known_equiv_p);
3037 reg_known_equiv_p = 0;
3038 if (alias_invariant)
3039 {
3040 ggc_free (alias_invariant);
3041 alias_invariant = 0;
3042 alias_invariant_size = 0;
3043 }
3044 }
3045
3046 #include "gt-alias.h"