]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/alias.c
* alloc-pool.c: Convert to ISO C90 prototypes.
[thirdparty/gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45
46 /* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
50
51 struct S {int i; double d; };
52
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
62
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
66
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
69 past immediate descendants, however, since we propagate all
70 grandchildren up one level.
71
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
75
76 typedef struct alias_set_entry
77 {
78 /* The alias set number, as stored in MEM_ALIAS_SET. */
79 HOST_WIDE_INT alias_set;
80
81 /* The children of the alias set. These are not just the immediate
82 children, but, in fact, all descendants. So, if we have:
83
84 struct T { struct S s; float f; }
85
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
89
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
93 } *alias_set_entry;
94
95 static int rtx_equal_for_memref_p (rtx, rtx);
96 static rtx find_symbolic_term (rtx);
97 rtx get_addr (rtx);
98 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
99 static void record_set (rtx, rtx, void *);
100 static int base_alias_check (rtx, rtx, enum machine_mode,
101 enum machine_mode);
102 static rtx find_base_value (rtx);
103 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
104 static int insert_subset_children (splay_tree_node, void*);
105 static tree find_base_decl (tree);
106 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
107 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
108 int (*) (rtx, int));
109 static int aliases_everything_p (rtx);
110 static bool nonoverlapping_component_refs_p (tree, tree);
111 static tree decl_for_component_ref (tree);
112 static rtx adjust_offset_for_component_ref (tree, rtx);
113 static int nonoverlapping_memrefs_p (rtx, rtx);
114 static int write_dependence_p (rtx, rtx, int);
115
116 static int nonlocal_mentioned_p_1 (rtx *, void *);
117 static int nonlocal_mentioned_p (rtx);
118 static int nonlocal_referenced_p_1 (rtx *, void *);
119 static int nonlocal_referenced_p (rtx);
120 static int nonlocal_set_p_1 (rtx *, void *);
121 static int nonlocal_set_p (rtx);
122 static void memory_modified_1 (rtx, rtx, void *);
123
124 /* Set up all info needed to perform alias analysis on memory references. */
125
126 /* Returns the size in bytes of the mode of X. */
127 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
128
129 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
130 different alias sets. We ignore alias sets in functions making use
131 of variable arguments because the va_arg macros on some systems are
132 not legal ANSI C. */
133 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
134 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
135
136 /* Cap the number of passes we make over the insns propagating alias
137 information through set chains. 10 is a completely arbitrary choice. */
138 #define MAX_ALIAS_LOOP_PASSES 10
139
140 /* reg_base_value[N] gives an address to which register N is related.
141 If all sets after the first add or subtract to the current value
142 or otherwise modify it so it does not point to a different top level
143 object, reg_base_value[N] is equal to the address part of the source
144 of the first set.
145
146 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
147 expressions represent certain special values: function arguments and
148 the stack, frame, and argument pointers.
149
150 The contents of an ADDRESS is not normally used, the mode of the
151 ADDRESS determines whether the ADDRESS is a function argument or some
152 other special value. Pointer equality, not rtx_equal_p, determines whether
153 two ADDRESS expressions refer to the same base address.
154
155 The only use of the contents of an ADDRESS is for determining if the
156 current function performs nonlocal memory memory references for the
157 purposes of marking the function as a constant function. */
158
159 static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
160 static rtx *new_reg_base_value;
161 static unsigned int reg_base_value_size; /* size of reg_base_value array */
162
163 /* Static hunks of RTL used by the aliasing code; these are initialized
164 once per function to avoid unnecessary RTL allocations. */
165 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
166
167 #define REG_BASE_VALUE(X) \
168 (REGNO (X) < reg_base_value_size \
169 ? reg_base_value[REGNO (X)] : 0)
170
171 /* Vector of known invariant relationships between registers. Set in
172 loop unrolling. Indexed by register number, if nonzero the value
173 is an expression describing this register in terms of another.
174
175 The length of this array is REG_BASE_VALUE_SIZE.
176
177 Because this array contains only pseudo registers it has no effect
178 after reload. */
179 static rtx *alias_invariant;
180
181 /* Vector indexed by N giving the initial (unchanging) value known for
182 pseudo-register N. This array is initialized in
183 init_alias_analysis, and does not change until end_alias_analysis
184 is called. */
185 rtx *reg_known_value;
186
187 /* Indicates number of valid entries in reg_known_value. */
188 static unsigned int reg_known_value_size;
189
190 /* Vector recording for each reg_known_value whether it is due to a
191 REG_EQUIV note. Future passes (viz., reload) may replace the
192 pseudo with the equivalent expression and so we account for the
193 dependences that would be introduced if that happens.
194
195 The REG_EQUIV notes created in assign_parms may mention the arg
196 pointer, and there are explicit insns in the RTL that modify the
197 arg pointer. Thus we must ensure that such insns don't get
198 scheduled across each other because that would invalidate the
199 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
200 wrong, but solving the problem in the scheduler will likely give
201 better code, so we do it here. */
202 char *reg_known_equiv_p;
203
204 /* True when scanning insns from the start of the rtl to the
205 NOTE_INSN_FUNCTION_BEG note. */
206 static bool copying_arguments;
207
208 /* The splay-tree used to store the various alias set entries. */
209 static splay_tree alias_sets;
210 \f
211 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
212 such an entry, or NULL otherwise. */
213
214 static alias_set_entry
215 get_alias_set_entry (HOST_WIDE_INT alias_set)
216 {
217 splay_tree_node sn
218 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
219
220 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
221 }
222
223 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
224 the two MEMs cannot alias each other. */
225
226 static int
227 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
228 {
229 #ifdef ENABLE_CHECKING
230 /* Perform a basic sanity check. Namely, that there are no alias sets
231 if we're not using strict aliasing. This helps to catch bugs
232 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
233 where a MEM is allocated in some way other than by the use of
234 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
235 use alias sets to indicate that spilled registers cannot alias each
236 other, we might need to remove this check. */
237 if (! flag_strict_aliasing
238 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
239 abort ();
240 #endif
241
242 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
243 }
244
245 /* Insert the NODE into the splay tree given by DATA. Used by
246 record_alias_subset via splay_tree_foreach. */
247
248 static int
249 insert_subset_children (splay_tree_node node, void *data)
250 {
251 splay_tree_insert ((splay_tree) data, node->key, node->value);
252
253 return 0;
254 }
255
256 /* Return 1 if the two specified alias sets may conflict. */
257
258 int
259 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
260 {
261 alias_set_entry ase;
262
263 /* If have no alias set information for one of the operands, we have
264 to assume it can alias anything. */
265 if (set1 == 0 || set2 == 0
266 /* If the two alias sets are the same, they may alias. */
267 || set1 == set2)
268 return 1;
269
270 /* See if the first alias set is a subset of the second. */
271 ase = get_alias_set_entry (set1);
272 if (ase != 0
273 && (ase->has_zero_child
274 || splay_tree_lookup (ase->children,
275 (splay_tree_key) set2)))
276 return 1;
277
278 /* Now do the same, but with the alias sets reversed. */
279 ase = get_alias_set_entry (set2);
280 if (ase != 0
281 && (ase->has_zero_child
282 || splay_tree_lookup (ase->children,
283 (splay_tree_key) set1)))
284 return 1;
285
286 /* The two alias sets are distinct and neither one is the
287 child of the other. Therefore, they cannot alias. */
288 return 0;
289 }
290 \f
291 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
292 has any readonly fields. If any of the fields have types that
293 contain readonly fields, return true as well. */
294
295 int
296 readonly_fields_p (tree type)
297 {
298 tree field;
299
300 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
301 && TREE_CODE (type) != QUAL_UNION_TYPE)
302 return 0;
303
304 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
305 if (TREE_CODE (field) == FIELD_DECL
306 && (TREE_READONLY (field)
307 || readonly_fields_p (TREE_TYPE (field))))
308 return 1;
309
310 return 0;
311 }
312 \f
313 /* Return 1 if any MEM object of type T1 will always conflict (using the
314 dependency routines in this file) with any MEM object of type T2.
315 This is used when allocating temporary storage. If T1 and/or T2 are
316 NULL_TREE, it means we know nothing about the storage. */
317
318 int
319 objects_must_conflict_p (tree t1, tree t2)
320 {
321 /* If neither has a type specified, we don't know if they'll conflict
322 because we may be using them to store objects of various types, for
323 example the argument and local variables areas of inlined functions. */
324 if (t1 == 0 && t2 == 0)
325 return 0;
326
327 /* If one or the other has readonly fields or is readonly,
328 then they may not conflict. */
329 if ((t1 != 0 && readonly_fields_p (t1))
330 || (t2 != 0 && readonly_fields_p (t2))
331 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
332 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
333 return 0;
334
335 /* If they are the same type, they must conflict. */
336 if (t1 == t2
337 /* Likewise if both are volatile. */
338 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
339 return 1;
340
341 /* If one is aggregate and the other is scalar then they may not
342 conflict. */
343 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
344 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
345 return 0;
346
347 /* Otherwise they conflict only if the alias sets conflict. */
348 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
349 t2 ? get_alias_set (t2) : 0);
350 }
351 \f
352 /* T is an expression with pointer type. Find the DECL on which this
353 expression is based. (For example, in `a[i]' this would be `a'.)
354 If there is no such DECL, or a unique decl cannot be determined,
355 NULL_TREE is returned. */
356
357 static tree
358 find_base_decl (tree t)
359 {
360 tree d0, d1, d2;
361
362 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
363 return 0;
364
365 /* If this is a declaration, return it. */
366 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
367 return t;
368
369 /* Handle general expressions. It would be nice to deal with
370 COMPONENT_REFs here. If we could tell that `a' and `b' were the
371 same, then `a->f' and `b->f' are also the same. */
372 switch (TREE_CODE_CLASS (TREE_CODE (t)))
373 {
374 case '1':
375 return find_base_decl (TREE_OPERAND (t, 0));
376
377 case '2':
378 /* Return 0 if found in neither or both are the same. */
379 d0 = find_base_decl (TREE_OPERAND (t, 0));
380 d1 = find_base_decl (TREE_OPERAND (t, 1));
381 if (d0 == d1)
382 return d0;
383 else if (d0 == 0)
384 return d1;
385 else if (d1 == 0)
386 return d0;
387 else
388 return 0;
389
390 case '3':
391 d0 = find_base_decl (TREE_OPERAND (t, 0));
392 d1 = find_base_decl (TREE_OPERAND (t, 1));
393 d2 = find_base_decl (TREE_OPERAND (t, 2));
394
395 /* Set any nonzero values from the last, then from the first. */
396 if (d1 == 0) d1 = d2;
397 if (d0 == 0) d0 = d1;
398 if (d1 == 0) d1 = d0;
399 if (d2 == 0) d2 = d1;
400
401 /* At this point all are nonzero or all are zero. If all three are the
402 same, return it. Otherwise, return zero. */
403 return (d0 == d1 && d1 == d2) ? d0 : 0;
404
405 default:
406 return 0;
407 }
408 }
409
410 /* Return 1 if all the nested component references handled by
411 get_inner_reference in T are such that we can address the object in T. */
412
413 int
414 can_address_p (tree t)
415 {
416 /* If we're at the end, it is vacuously addressable. */
417 if (! handled_component_p (t))
418 return 1;
419
420 /* Bitfields are never addressable. */
421 else if (TREE_CODE (t) == BIT_FIELD_REF)
422 return 0;
423
424 /* Fields are addressable unless they are marked as nonaddressable or
425 the containing type has alias set 0. */
426 else if (TREE_CODE (t) == COMPONENT_REF
427 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
428 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
429 && can_address_p (TREE_OPERAND (t, 0)))
430 return 1;
431
432 /* Likewise for arrays. */
433 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
434 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
435 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
436 && can_address_p (TREE_OPERAND (t, 0)))
437 return 1;
438
439 return 0;
440 }
441
442 /* Return the alias set for T, which may be either a type or an
443 expression. Call language-specific routine for help, if needed. */
444
445 HOST_WIDE_INT
446 get_alias_set (tree t)
447 {
448 HOST_WIDE_INT set;
449
450 /* If we're not doing any alias analysis, just assume everything
451 aliases everything else. Also return 0 if this or its type is
452 an error. */
453 if (! flag_strict_aliasing || t == error_mark_node
454 || (! TYPE_P (t)
455 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
456 return 0;
457
458 /* We can be passed either an expression or a type. This and the
459 language-specific routine may make mutually-recursive calls to each other
460 to figure out what to do. At each juncture, we see if this is a tree
461 that the language may need to handle specially. First handle things that
462 aren't types. */
463 if (! TYPE_P (t))
464 {
465 tree inner = t;
466 tree placeholder_ptr = 0;
467
468 /* Remove any nops, then give the language a chance to do
469 something with this tree before we look at it. */
470 STRIP_NOPS (t);
471 set = (*lang_hooks.get_alias_set) (t);
472 if (set != -1)
473 return set;
474
475 /* First see if the actual object referenced is an INDIRECT_REF from a
476 restrict-qualified pointer or a "void *". Replace
477 PLACEHOLDER_EXPRs. */
478 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
479 || handled_component_p (inner))
480 {
481 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
482 inner = find_placeholder (inner, &placeholder_ptr);
483 else
484 inner = TREE_OPERAND (inner, 0);
485
486 STRIP_NOPS (inner);
487 }
488
489 /* Check for accesses through restrict-qualified pointers. */
490 if (TREE_CODE (inner) == INDIRECT_REF)
491 {
492 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
493
494 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
495 {
496 /* If we haven't computed the actual alias set, do it now. */
497 if (DECL_POINTER_ALIAS_SET (decl) == -2)
498 {
499 /* No two restricted pointers can point at the same thing.
500 However, a restricted pointer can point at the same thing
501 as an unrestricted pointer, if that unrestricted pointer
502 is based on the restricted pointer. So, we make the
503 alias set for the restricted pointer a subset of the
504 alias set for the type pointed to by the type of the
505 decl. */
506 HOST_WIDE_INT pointed_to_alias_set
507 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
508
509 if (pointed_to_alias_set == 0)
510 /* It's not legal to make a subset of alias set zero. */
511 ;
512 else
513 {
514 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
515 record_alias_subset (pointed_to_alias_set,
516 DECL_POINTER_ALIAS_SET (decl));
517 }
518 }
519
520 /* We use the alias set indicated in the declaration. */
521 return DECL_POINTER_ALIAS_SET (decl);
522 }
523
524 /* If we have an INDIRECT_REF via a void pointer, we don't
525 know anything about what that might alias. */
526 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
527 return 0;
528 }
529
530 /* Otherwise, pick up the outermost object that we could have a pointer
531 to, processing conversion and PLACEHOLDER_EXPR as above. */
532 placeholder_ptr = 0;
533 while (TREE_CODE (t) == PLACEHOLDER_EXPR
534 || (handled_component_p (t) && ! can_address_p (t)))
535 {
536 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
537 t = find_placeholder (t, &placeholder_ptr);
538 else
539 t = TREE_OPERAND (t, 0);
540
541 STRIP_NOPS (t);
542 }
543
544 /* If we've already determined the alias set for a decl, just return
545 it. This is necessary for C++ anonymous unions, whose component
546 variables don't look like union members (boo!). */
547 if (TREE_CODE (t) == VAR_DECL
548 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
549 return MEM_ALIAS_SET (DECL_RTL (t));
550
551 /* Now all we care about is the type. */
552 t = TREE_TYPE (t);
553 }
554
555 /* Variant qualifiers don't affect the alias set, so get the main
556 variant. If this is a type with a known alias set, return it. */
557 t = TYPE_MAIN_VARIANT (t);
558 if (TYPE_ALIAS_SET_KNOWN_P (t))
559 return TYPE_ALIAS_SET (t);
560
561 /* See if the language has special handling for this type. */
562 set = (*lang_hooks.get_alias_set) (t);
563 if (set != -1)
564 return set;
565
566 /* There are no objects of FUNCTION_TYPE, so there's no point in
567 using up an alias set for them. (There are, of course, pointers
568 and references to functions, but that's different.) */
569 else if (TREE_CODE (t) == FUNCTION_TYPE)
570 set = 0;
571
572 /* Unless the language specifies otherwise, let vector types alias
573 their components. This avoids some nasty type punning issues in
574 normal usage. And indeed lets vectors be treated more like an
575 array slice. */
576 else if (TREE_CODE (t) == VECTOR_TYPE)
577 set = get_alias_set (TREE_TYPE (t));
578
579 else
580 /* Otherwise make a new alias set for this type. */
581 set = new_alias_set ();
582
583 TYPE_ALIAS_SET (t) = set;
584
585 /* If this is an aggregate type, we must record any component aliasing
586 information. */
587 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
588 record_component_aliases (t);
589
590 return set;
591 }
592
593 /* Return a brand-new alias set. */
594
595 HOST_WIDE_INT
596 new_alias_set (void)
597 {
598 static HOST_WIDE_INT last_alias_set;
599
600 if (flag_strict_aliasing)
601 return ++last_alias_set;
602 else
603 return 0;
604 }
605
606 /* Indicate that things in SUBSET can alias things in SUPERSET, but
607 not vice versa. For example, in C, a store to an `int' can alias a
608 structure containing an `int', but not vice versa. Here, the
609 structure would be the SUPERSET and `int' the SUBSET. This
610 function should be called only once per SUPERSET/SUBSET pair.
611
612 It is illegal for SUPERSET to be zero; everything is implicitly a
613 subset of alias set zero. */
614
615 void
616 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
617 {
618 alias_set_entry superset_entry;
619 alias_set_entry subset_entry;
620
621 /* It is possible in complex type situations for both sets to be the same,
622 in which case we can ignore this operation. */
623 if (superset == subset)
624 return;
625
626 if (superset == 0)
627 abort ();
628
629 superset_entry = get_alias_set_entry (superset);
630 if (superset_entry == 0)
631 {
632 /* Create an entry for the SUPERSET, so that we have a place to
633 attach the SUBSET. */
634 superset_entry
635 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
636 superset_entry->alias_set = superset;
637 superset_entry->children
638 = splay_tree_new (splay_tree_compare_ints, 0, 0);
639 superset_entry->has_zero_child = 0;
640 splay_tree_insert (alias_sets, (splay_tree_key) superset,
641 (splay_tree_value) superset_entry);
642 }
643
644 if (subset == 0)
645 superset_entry->has_zero_child = 1;
646 else
647 {
648 subset_entry = get_alias_set_entry (subset);
649 /* If there is an entry for the subset, enter all of its children
650 (if they are not already present) as children of the SUPERSET. */
651 if (subset_entry)
652 {
653 if (subset_entry->has_zero_child)
654 superset_entry->has_zero_child = 1;
655
656 splay_tree_foreach (subset_entry->children, insert_subset_children,
657 superset_entry->children);
658 }
659
660 /* Enter the SUBSET itself as a child of the SUPERSET. */
661 splay_tree_insert (superset_entry->children,
662 (splay_tree_key) subset, 0);
663 }
664 }
665
666 /* Record that component types of TYPE, if any, are part of that type for
667 aliasing purposes. For record types, we only record component types
668 for fields that are marked addressable. For array types, we always
669 record the component types, so the front end should not call this
670 function if the individual component aren't addressable. */
671
672 void
673 record_component_aliases (tree type)
674 {
675 HOST_WIDE_INT superset = get_alias_set (type);
676 tree field;
677
678 if (superset == 0)
679 return;
680
681 switch (TREE_CODE (type))
682 {
683 case ARRAY_TYPE:
684 if (! TYPE_NONALIASED_COMPONENT (type))
685 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
686 break;
687
688 case RECORD_TYPE:
689 case UNION_TYPE:
690 case QUAL_UNION_TYPE:
691 /* Recursively record aliases for the base classes, if there are any */
692 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
693 {
694 int i;
695 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
696 {
697 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
698 record_alias_subset (superset,
699 get_alias_set (BINFO_TYPE (binfo)));
700 }
701 }
702 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
703 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
704 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
705 break;
706
707 case COMPLEX_TYPE:
708 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
709 break;
710
711 default:
712 break;
713 }
714 }
715
716 /* Allocate an alias set for use in storing and reading from the varargs
717 spill area. */
718
719 HOST_WIDE_INT
720 get_varargs_alias_set (void)
721 {
722 static HOST_WIDE_INT set = -1;
723
724 if (set == -1)
725 set = new_alias_set ();
726
727 return set;
728 }
729
730 /* Likewise, but used for the fixed portions of the frame, e.g., register
731 save areas. */
732
733 HOST_WIDE_INT
734 get_frame_alias_set (void)
735 {
736 static HOST_WIDE_INT set = -1;
737
738 if (set == -1)
739 set = new_alias_set ();
740
741 return set;
742 }
743
744 /* Inside SRC, the source of a SET, find a base address. */
745
746 static rtx
747 find_base_value (rtx src)
748 {
749 unsigned int regno;
750
751 switch (GET_CODE (src))
752 {
753 case SYMBOL_REF:
754 case LABEL_REF:
755 return src;
756
757 case REG:
758 regno = REGNO (src);
759 /* At the start of a function, argument registers have known base
760 values which may be lost later. Returning an ADDRESS
761 expression here allows optimization based on argument values
762 even when the argument registers are used for other purposes. */
763 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
764 return new_reg_base_value[regno];
765
766 /* If a pseudo has a known base value, return it. Do not do this
767 for non-fixed hard regs since it can result in a circular
768 dependency chain for registers which have values at function entry.
769
770 The test above is not sufficient because the scheduler may move
771 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
772 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
773 && regno < reg_base_value_size)
774 {
775 /* If we're inside init_alias_analysis, use new_reg_base_value
776 to reduce the number of relaxation iterations. */
777 if (new_reg_base_value && new_reg_base_value[regno]
778 && REG_N_SETS (regno) == 1)
779 return new_reg_base_value[regno];
780
781 if (reg_base_value[regno])
782 return reg_base_value[regno];
783 }
784
785 return src;
786
787 case MEM:
788 /* Check for an argument passed in memory. Only record in the
789 copying-arguments block; it is too hard to track changes
790 otherwise. */
791 if (copying_arguments
792 && (XEXP (src, 0) == arg_pointer_rtx
793 || (GET_CODE (XEXP (src, 0)) == PLUS
794 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
795 return gen_rtx_ADDRESS (VOIDmode, src);
796 return 0;
797
798 case CONST:
799 src = XEXP (src, 0);
800 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
801 break;
802
803 /* ... fall through ... */
804
805 case PLUS:
806 case MINUS:
807 {
808 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
809
810 /* If either operand is a REG that is a known pointer, then it
811 is the base. */
812 if (REG_P (src_0) && REG_POINTER (src_0))
813 return find_base_value (src_0);
814 if (REG_P (src_1) && REG_POINTER (src_1))
815 return find_base_value (src_1);
816
817 /* If either operand is a REG, then see if we already have
818 a known value for it. */
819 if (REG_P (src_0))
820 {
821 temp = find_base_value (src_0);
822 if (temp != 0)
823 src_0 = temp;
824 }
825
826 if (REG_P (src_1))
827 {
828 temp = find_base_value (src_1);
829 if (temp!= 0)
830 src_1 = temp;
831 }
832
833 /* If either base is named object or a special address
834 (like an argument or stack reference), then use it for the
835 base term. */
836 if (src_0 != 0
837 && (GET_CODE (src_0) == SYMBOL_REF
838 || GET_CODE (src_0) == LABEL_REF
839 || (GET_CODE (src_0) == ADDRESS
840 && GET_MODE (src_0) != VOIDmode)))
841 return src_0;
842
843 if (src_1 != 0
844 && (GET_CODE (src_1) == SYMBOL_REF
845 || GET_CODE (src_1) == LABEL_REF
846 || (GET_CODE (src_1) == ADDRESS
847 && GET_MODE (src_1) != VOIDmode)))
848 return src_1;
849
850 /* Guess which operand is the base address:
851 If either operand is a symbol, then it is the base. If
852 either operand is a CONST_INT, then the other is the base. */
853 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
854 return find_base_value (src_0);
855 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
856 return find_base_value (src_1);
857
858 return 0;
859 }
860
861 case LO_SUM:
862 /* The standard form is (lo_sum reg sym) so look only at the
863 second operand. */
864 return find_base_value (XEXP (src, 1));
865
866 case AND:
867 /* If the second operand is constant set the base
868 address to the first operand. */
869 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
870 return find_base_value (XEXP (src, 0));
871 return 0;
872
873 case TRUNCATE:
874 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
875 break;
876 /* Fall through. */
877 case HIGH:
878 case PRE_INC:
879 case PRE_DEC:
880 case POST_INC:
881 case POST_DEC:
882 case PRE_MODIFY:
883 case POST_MODIFY:
884 return find_base_value (XEXP (src, 0));
885
886 case ZERO_EXTEND:
887 case SIGN_EXTEND: /* used for NT/Alpha pointers */
888 {
889 rtx temp = find_base_value (XEXP (src, 0));
890
891 #ifdef POINTERS_EXTEND_UNSIGNED
892 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
893 temp = convert_memory_address (Pmode, temp);
894 #endif
895
896 return temp;
897 }
898
899 default:
900 break;
901 }
902
903 return 0;
904 }
905
906 /* Called from init_alias_analysis indirectly through note_stores. */
907
908 /* While scanning insns to find base values, reg_seen[N] is nonzero if
909 register N has been set in this function. */
910 static char *reg_seen;
911
912 /* Addresses which are known not to alias anything else are identified
913 by a unique integer. */
914 static int unique_id;
915
916 static void
917 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
918 {
919 unsigned regno;
920 rtx src;
921 int n;
922
923 if (GET_CODE (dest) != REG)
924 return;
925
926 regno = REGNO (dest);
927
928 if (regno >= reg_base_value_size)
929 abort ();
930
931 /* If this spans multiple hard registers, then we must indicate that every
932 register has an unusable value. */
933 if (regno < FIRST_PSEUDO_REGISTER)
934 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
935 else
936 n = 1;
937 if (n != 1)
938 {
939 while (--n >= 0)
940 {
941 reg_seen[regno + n] = 1;
942 new_reg_base_value[regno + n] = 0;
943 }
944 return;
945 }
946
947 if (set)
948 {
949 /* A CLOBBER wipes out any old value but does not prevent a previously
950 unset register from acquiring a base address (i.e. reg_seen is not
951 set). */
952 if (GET_CODE (set) == CLOBBER)
953 {
954 new_reg_base_value[regno] = 0;
955 return;
956 }
957 src = SET_SRC (set);
958 }
959 else
960 {
961 if (reg_seen[regno])
962 {
963 new_reg_base_value[regno] = 0;
964 return;
965 }
966 reg_seen[regno] = 1;
967 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
968 GEN_INT (unique_id++));
969 return;
970 }
971
972 /* This is not the first set. If the new value is not related to the
973 old value, forget the base value. Note that the following code is
974 not detected:
975 extern int x, y; int *p = &x; p += (&y-&x);
976 ANSI C does not allow computing the difference of addresses
977 of distinct top level objects. */
978 if (new_reg_base_value[regno])
979 switch (GET_CODE (src))
980 {
981 case LO_SUM:
982 case MINUS:
983 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
984 new_reg_base_value[regno] = 0;
985 break;
986 case PLUS:
987 /* If the value we add in the PLUS is also a valid base value,
988 this might be the actual base value, and the original value
989 an index. */
990 {
991 rtx other = NULL_RTX;
992
993 if (XEXP (src, 0) == dest)
994 other = XEXP (src, 1);
995 else if (XEXP (src, 1) == dest)
996 other = XEXP (src, 0);
997
998 if (! other || find_base_value (other))
999 new_reg_base_value[regno] = 0;
1000 break;
1001 }
1002 case AND:
1003 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1004 new_reg_base_value[regno] = 0;
1005 break;
1006 default:
1007 new_reg_base_value[regno] = 0;
1008 break;
1009 }
1010 /* If this is the first set of a register, record the value. */
1011 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1012 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1013 new_reg_base_value[regno] = find_base_value (src);
1014
1015 reg_seen[regno] = 1;
1016 }
1017
1018 /* Called from loop optimization when a new pseudo-register is
1019 created. It indicates that REGNO is being set to VAL. f INVARIANT
1020 is true then this value also describes an invariant relationship
1021 which can be used to deduce that two registers with unknown values
1022 are different. */
1023
1024 void
1025 record_base_value (unsigned int regno, rtx val, int invariant)
1026 {
1027 if (regno >= reg_base_value_size)
1028 return;
1029
1030 if (invariant && alias_invariant)
1031 alias_invariant[regno] = val;
1032
1033 if (GET_CODE (val) == REG)
1034 {
1035 if (REGNO (val) < reg_base_value_size)
1036 reg_base_value[regno] = reg_base_value[REGNO (val)];
1037
1038 return;
1039 }
1040
1041 reg_base_value[regno] = find_base_value (val);
1042 }
1043
1044 /* Clear alias info for a register. This is used if an RTL transformation
1045 changes the value of a register. This is used in flow by AUTO_INC_DEC
1046 optimizations. We don't need to clear reg_base_value, since flow only
1047 changes the offset. */
1048
1049 void
1050 clear_reg_alias_info (rtx reg)
1051 {
1052 unsigned int regno = REGNO (reg);
1053
1054 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1055 reg_known_value[regno] = reg;
1056 }
1057
1058 /* Returns a canonical version of X, from the point of view alias
1059 analysis. (For example, if X is a MEM whose address is a register,
1060 and the register has a known value (say a SYMBOL_REF), then a MEM
1061 whose address is the SYMBOL_REF is returned.) */
1062
1063 rtx
1064 canon_rtx (rtx x)
1065 {
1066 /* Recursively look for equivalences. */
1067 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1068 && REGNO (x) < reg_known_value_size)
1069 return reg_known_value[REGNO (x)] == x
1070 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1071 else if (GET_CODE (x) == PLUS)
1072 {
1073 rtx x0 = canon_rtx (XEXP (x, 0));
1074 rtx x1 = canon_rtx (XEXP (x, 1));
1075
1076 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1077 {
1078 if (GET_CODE (x0) == CONST_INT)
1079 return plus_constant (x1, INTVAL (x0));
1080 else if (GET_CODE (x1) == CONST_INT)
1081 return plus_constant (x0, INTVAL (x1));
1082 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1083 }
1084 }
1085
1086 /* This gives us much better alias analysis when called from
1087 the loop optimizer. Note we want to leave the original
1088 MEM alone, but need to return the canonicalized MEM with
1089 all the flags with their original values. */
1090 else if (GET_CODE (x) == MEM)
1091 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1092
1093 return x;
1094 }
1095
1096 /* Return 1 if X and Y are identical-looking rtx's.
1097 Expect that X and Y has been already canonicalized.
1098
1099 We use the data in reg_known_value above to see if two registers with
1100 different numbers are, in fact, equivalent. */
1101
1102 static int
1103 rtx_equal_for_memref_p (rtx x, rtx y)
1104 {
1105 int i;
1106 int j;
1107 enum rtx_code code;
1108 const char *fmt;
1109
1110 if (x == 0 && y == 0)
1111 return 1;
1112 if (x == 0 || y == 0)
1113 return 0;
1114
1115 if (x == y)
1116 return 1;
1117
1118 code = GET_CODE (x);
1119 /* Rtx's of different codes cannot be equal. */
1120 if (code != GET_CODE (y))
1121 return 0;
1122
1123 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1124 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1125
1126 if (GET_MODE (x) != GET_MODE (y))
1127 return 0;
1128
1129 /* Some RTL can be compared without a recursive examination. */
1130 switch (code)
1131 {
1132 case VALUE:
1133 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1134
1135 case REG:
1136 return REGNO (x) == REGNO (y);
1137
1138 case LABEL_REF:
1139 return XEXP (x, 0) == XEXP (y, 0);
1140
1141 case SYMBOL_REF:
1142 return XSTR (x, 0) == XSTR (y, 0);
1143
1144 case CONST_INT:
1145 case CONST_DOUBLE:
1146 /* There's no need to compare the contents of CONST_DOUBLEs or
1147 CONST_INTs because pointer equality is a good enough
1148 comparison for these nodes. */
1149 return 0;
1150
1151 case ADDRESSOF:
1152 return (XINT (x, 1) == XINT (y, 1)
1153 && rtx_equal_for_memref_p (XEXP (x, 0),
1154 XEXP (y, 0)));
1155
1156 default:
1157 break;
1158 }
1159
1160 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1161 if (code == PLUS)
1162 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1163 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1164 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1165 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1166 /* For commutative operations, the RTX match if the operand match in any
1167 order. Also handle the simple binary and unary cases without a loop. */
1168 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1169 {
1170 rtx xop0 = canon_rtx (XEXP (x, 0));
1171 rtx yop0 = canon_rtx (XEXP (y, 0));
1172 rtx yop1 = canon_rtx (XEXP (y, 1));
1173
1174 return ((rtx_equal_for_memref_p (xop0, yop0)
1175 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1176 || (rtx_equal_for_memref_p (xop0, yop1)
1177 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1178 }
1179 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1180 {
1181 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1182 canon_rtx (XEXP (y, 0)))
1183 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1184 canon_rtx (XEXP (y, 1))));
1185 }
1186 else if (GET_RTX_CLASS (code) == '1')
1187 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1188 canon_rtx (XEXP (y, 0)));
1189
1190 /* Compare the elements. If any pair of corresponding elements
1191 fail to match, return 0 for the whole things.
1192
1193 Limit cases to types which actually appear in addresses. */
1194
1195 fmt = GET_RTX_FORMAT (code);
1196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1197 {
1198 switch (fmt[i])
1199 {
1200 case 'i':
1201 if (XINT (x, i) != XINT (y, i))
1202 return 0;
1203 break;
1204
1205 case 'E':
1206 /* Two vectors must have the same length. */
1207 if (XVECLEN (x, i) != XVECLEN (y, i))
1208 return 0;
1209
1210 /* And the corresponding elements must match. */
1211 for (j = 0; j < XVECLEN (x, i); j++)
1212 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1213 canon_rtx (XVECEXP (y, i, j))) == 0)
1214 return 0;
1215 break;
1216
1217 case 'e':
1218 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1219 canon_rtx (XEXP (y, i))) == 0)
1220 return 0;
1221 break;
1222
1223 /* This can happen for asm operands. */
1224 case 's':
1225 if (strcmp (XSTR (x, i), XSTR (y, i)))
1226 return 0;
1227 break;
1228
1229 /* This can happen for an asm which clobbers memory. */
1230 case '0':
1231 break;
1232
1233 /* It is believed that rtx's at this level will never
1234 contain anything but integers and other rtx's,
1235 except for within LABEL_REFs and SYMBOL_REFs. */
1236 default:
1237 abort ();
1238 }
1239 }
1240 return 1;
1241 }
1242
1243 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1244 X and return it, or return 0 if none found. */
1245
1246 static rtx
1247 find_symbolic_term (rtx x)
1248 {
1249 int i;
1250 enum rtx_code code;
1251 const char *fmt;
1252
1253 code = GET_CODE (x);
1254 if (code == SYMBOL_REF || code == LABEL_REF)
1255 return x;
1256 if (GET_RTX_CLASS (code) == 'o')
1257 return 0;
1258
1259 fmt = GET_RTX_FORMAT (code);
1260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1261 {
1262 rtx t;
1263
1264 if (fmt[i] == 'e')
1265 {
1266 t = find_symbolic_term (XEXP (x, i));
1267 if (t != 0)
1268 return t;
1269 }
1270 else if (fmt[i] == 'E')
1271 break;
1272 }
1273 return 0;
1274 }
1275
1276 rtx
1277 find_base_term (rtx x)
1278 {
1279 cselib_val *val;
1280 struct elt_loc_list *l;
1281
1282 #if defined (FIND_BASE_TERM)
1283 /* Try machine-dependent ways to find the base term. */
1284 x = FIND_BASE_TERM (x);
1285 #endif
1286
1287 switch (GET_CODE (x))
1288 {
1289 case REG:
1290 return REG_BASE_VALUE (x);
1291
1292 case TRUNCATE:
1293 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1294 return 0;
1295 /* Fall through. */
1296 case HIGH:
1297 case PRE_INC:
1298 case PRE_DEC:
1299 case POST_INC:
1300 case POST_DEC:
1301 case PRE_MODIFY:
1302 case POST_MODIFY:
1303 return find_base_term (XEXP (x, 0));
1304
1305 case ZERO_EXTEND:
1306 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1307 {
1308 rtx temp = find_base_term (XEXP (x, 0));
1309
1310 #ifdef POINTERS_EXTEND_UNSIGNED
1311 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1312 temp = convert_memory_address (Pmode, temp);
1313 #endif
1314
1315 return temp;
1316 }
1317
1318 case VALUE:
1319 val = CSELIB_VAL_PTR (x);
1320 for (l = val->locs; l; l = l->next)
1321 if ((x = find_base_term (l->loc)) != 0)
1322 return x;
1323 return 0;
1324
1325 case CONST:
1326 x = XEXP (x, 0);
1327 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1328 return 0;
1329 /* fall through */
1330 case LO_SUM:
1331 case PLUS:
1332 case MINUS:
1333 {
1334 rtx tmp1 = XEXP (x, 0);
1335 rtx tmp2 = XEXP (x, 1);
1336
1337 /* This is a little bit tricky since we have to determine which of
1338 the two operands represents the real base address. Otherwise this
1339 routine may return the index register instead of the base register.
1340
1341 That may cause us to believe no aliasing was possible, when in
1342 fact aliasing is possible.
1343
1344 We use a few simple tests to guess the base register. Additional
1345 tests can certainly be added. For example, if one of the operands
1346 is a shift or multiply, then it must be the index register and the
1347 other operand is the base register. */
1348
1349 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1350 return find_base_term (tmp2);
1351
1352 /* If either operand is known to be a pointer, then use it
1353 to determine the base term. */
1354 if (REG_P (tmp1) && REG_POINTER (tmp1))
1355 return find_base_term (tmp1);
1356
1357 if (REG_P (tmp2) && REG_POINTER (tmp2))
1358 return find_base_term (tmp2);
1359
1360 /* Neither operand was known to be a pointer. Go ahead and find the
1361 base term for both operands. */
1362 tmp1 = find_base_term (tmp1);
1363 tmp2 = find_base_term (tmp2);
1364
1365 /* If either base term is named object or a special address
1366 (like an argument or stack reference), then use it for the
1367 base term. */
1368 if (tmp1 != 0
1369 && (GET_CODE (tmp1) == SYMBOL_REF
1370 || GET_CODE (tmp1) == LABEL_REF
1371 || (GET_CODE (tmp1) == ADDRESS
1372 && GET_MODE (tmp1) != VOIDmode)))
1373 return tmp1;
1374
1375 if (tmp2 != 0
1376 && (GET_CODE (tmp2) == SYMBOL_REF
1377 || GET_CODE (tmp2) == LABEL_REF
1378 || (GET_CODE (tmp2) == ADDRESS
1379 && GET_MODE (tmp2) != VOIDmode)))
1380 return tmp2;
1381
1382 /* We could not determine which of the two operands was the
1383 base register and which was the index. So we can determine
1384 nothing from the base alias check. */
1385 return 0;
1386 }
1387
1388 case AND:
1389 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1390 return find_base_term (XEXP (x, 0));
1391 return 0;
1392
1393 case SYMBOL_REF:
1394 case LABEL_REF:
1395 return x;
1396
1397 case ADDRESSOF:
1398 return REG_BASE_VALUE (frame_pointer_rtx);
1399
1400 default:
1401 return 0;
1402 }
1403 }
1404
1405 /* Return 0 if the addresses X and Y are known to point to different
1406 objects, 1 if they might be pointers to the same object. */
1407
1408 static int
1409 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1410 enum machine_mode y_mode)
1411 {
1412 rtx x_base = find_base_term (x);
1413 rtx y_base = find_base_term (y);
1414
1415 /* If the address itself has no known base see if a known equivalent
1416 value has one. If either address still has no known base, nothing
1417 is known about aliasing. */
1418 if (x_base == 0)
1419 {
1420 rtx x_c;
1421
1422 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1423 return 1;
1424
1425 x_base = find_base_term (x_c);
1426 if (x_base == 0)
1427 return 1;
1428 }
1429
1430 if (y_base == 0)
1431 {
1432 rtx y_c;
1433 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1434 return 1;
1435
1436 y_base = find_base_term (y_c);
1437 if (y_base == 0)
1438 return 1;
1439 }
1440
1441 /* If the base addresses are equal nothing is known about aliasing. */
1442 if (rtx_equal_p (x_base, y_base))
1443 return 1;
1444
1445 /* The base addresses of the read and write are different expressions.
1446 If they are both symbols and they are not accessed via AND, there is
1447 no conflict. We can bring knowledge of object alignment into play
1448 here. For example, on alpha, "char a, b;" can alias one another,
1449 though "char a; long b;" cannot. */
1450 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1451 {
1452 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1453 return 1;
1454 if (GET_CODE (x) == AND
1455 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1456 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1457 return 1;
1458 if (GET_CODE (y) == AND
1459 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1460 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1461 return 1;
1462 /* Differing symbols never alias. */
1463 return 0;
1464 }
1465
1466 /* If one address is a stack reference there can be no alias:
1467 stack references using different base registers do not alias,
1468 a stack reference can not alias a parameter, and a stack reference
1469 can not alias a global. */
1470 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1471 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1472 return 0;
1473
1474 if (! flag_argument_noalias)
1475 return 1;
1476
1477 if (flag_argument_noalias > 1)
1478 return 0;
1479
1480 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1481 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1482 }
1483
1484 /* Convert the address X into something we can use. This is done by returning
1485 it unchanged unless it is a value; in the latter case we call cselib to get
1486 a more useful rtx. */
1487
1488 rtx
1489 get_addr (rtx x)
1490 {
1491 cselib_val *v;
1492 struct elt_loc_list *l;
1493
1494 if (GET_CODE (x) != VALUE)
1495 return x;
1496 v = CSELIB_VAL_PTR (x);
1497 for (l = v->locs; l; l = l->next)
1498 if (CONSTANT_P (l->loc))
1499 return l->loc;
1500 for (l = v->locs; l; l = l->next)
1501 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1502 return l->loc;
1503 if (v->locs)
1504 return v->locs->loc;
1505 return x;
1506 }
1507
1508 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1509 where SIZE is the size in bytes of the memory reference. If ADDR
1510 is not modified by the memory reference then ADDR is returned. */
1511
1512 rtx
1513 addr_side_effect_eval (rtx addr, int size, int n_refs)
1514 {
1515 int offset = 0;
1516
1517 switch (GET_CODE (addr))
1518 {
1519 case PRE_INC:
1520 offset = (n_refs + 1) * size;
1521 break;
1522 case PRE_DEC:
1523 offset = -(n_refs + 1) * size;
1524 break;
1525 case POST_INC:
1526 offset = n_refs * size;
1527 break;
1528 case POST_DEC:
1529 offset = -n_refs * size;
1530 break;
1531
1532 default:
1533 return addr;
1534 }
1535
1536 if (offset)
1537 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1538 GEN_INT (offset));
1539 else
1540 addr = XEXP (addr, 0);
1541 addr = canon_rtx (addr);
1542
1543 return addr;
1544 }
1545
1546 /* Return nonzero if X and Y (memory addresses) could reference the
1547 same location in memory. C is an offset accumulator. When
1548 C is nonzero, we are testing aliases between X and Y + C.
1549 XSIZE is the size in bytes of the X reference,
1550 similarly YSIZE is the size in bytes for Y.
1551 Expect that canon_rtx has been already called for X and Y.
1552
1553 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1554 referenced (the reference was BLKmode), so make the most pessimistic
1555 assumptions.
1556
1557 If XSIZE or YSIZE is negative, we may access memory outside the object
1558 being referenced as a side effect. This can happen when using AND to
1559 align memory references, as is done on the Alpha.
1560
1561 Nice to notice that varying addresses cannot conflict with fp if no
1562 local variables had their addresses taken, but that's too hard now. */
1563
1564 static int
1565 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1566 {
1567 if (GET_CODE (x) == VALUE)
1568 x = get_addr (x);
1569 if (GET_CODE (y) == VALUE)
1570 y = get_addr (y);
1571 if (GET_CODE (x) == HIGH)
1572 x = XEXP (x, 0);
1573 else if (GET_CODE (x) == LO_SUM)
1574 x = XEXP (x, 1);
1575 else
1576 x = addr_side_effect_eval (x, xsize, 0);
1577 if (GET_CODE (y) == HIGH)
1578 y = XEXP (y, 0);
1579 else if (GET_CODE (y) == LO_SUM)
1580 y = XEXP (y, 1);
1581 else
1582 y = addr_side_effect_eval (y, ysize, 0);
1583
1584 if (rtx_equal_for_memref_p (x, y))
1585 {
1586 if (xsize <= 0 || ysize <= 0)
1587 return 1;
1588 if (c >= 0 && xsize > c)
1589 return 1;
1590 if (c < 0 && ysize+c > 0)
1591 return 1;
1592 return 0;
1593 }
1594
1595 /* This code used to check for conflicts involving stack references and
1596 globals but the base address alias code now handles these cases. */
1597
1598 if (GET_CODE (x) == PLUS)
1599 {
1600 /* The fact that X is canonicalized means that this
1601 PLUS rtx is canonicalized. */
1602 rtx x0 = XEXP (x, 0);
1603 rtx x1 = XEXP (x, 1);
1604
1605 if (GET_CODE (y) == PLUS)
1606 {
1607 /* The fact that Y is canonicalized means that this
1608 PLUS rtx is canonicalized. */
1609 rtx y0 = XEXP (y, 0);
1610 rtx y1 = XEXP (y, 1);
1611
1612 if (rtx_equal_for_memref_p (x1, y1))
1613 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1614 if (rtx_equal_for_memref_p (x0, y0))
1615 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1616 if (GET_CODE (x1) == CONST_INT)
1617 {
1618 if (GET_CODE (y1) == CONST_INT)
1619 return memrefs_conflict_p (xsize, x0, ysize, y0,
1620 c - INTVAL (x1) + INTVAL (y1));
1621 else
1622 return memrefs_conflict_p (xsize, x0, ysize, y,
1623 c - INTVAL (x1));
1624 }
1625 else if (GET_CODE (y1) == CONST_INT)
1626 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1627
1628 return 1;
1629 }
1630 else if (GET_CODE (x1) == CONST_INT)
1631 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1632 }
1633 else if (GET_CODE (y) == PLUS)
1634 {
1635 /* The fact that Y is canonicalized means that this
1636 PLUS rtx is canonicalized. */
1637 rtx y0 = XEXP (y, 0);
1638 rtx y1 = XEXP (y, 1);
1639
1640 if (GET_CODE (y1) == CONST_INT)
1641 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1642 else
1643 return 1;
1644 }
1645
1646 if (GET_CODE (x) == GET_CODE (y))
1647 switch (GET_CODE (x))
1648 {
1649 case MULT:
1650 {
1651 /* Handle cases where we expect the second operands to be the
1652 same, and check only whether the first operand would conflict
1653 or not. */
1654 rtx x0, y0;
1655 rtx x1 = canon_rtx (XEXP (x, 1));
1656 rtx y1 = canon_rtx (XEXP (y, 1));
1657 if (! rtx_equal_for_memref_p (x1, y1))
1658 return 1;
1659 x0 = canon_rtx (XEXP (x, 0));
1660 y0 = canon_rtx (XEXP (y, 0));
1661 if (rtx_equal_for_memref_p (x0, y0))
1662 return (xsize == 0 || ysize == 0
1663 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1664
1665 /* Can't properly adjust our sizes. */
1666 if (GET_CODE (x1) != CONST_INT)
1667 return 1;
1668 xsize /= INTVAL (x1);
1669 ysize /= INTVAL (x1);
1670 c /= INTVAL (x1);
1671 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1672 }
1673
1674 case REG:
1675 /* Are these registers known not to be equal? */
1676 if (alias_invariant)
1677 {
1678 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1679 rtx i_x, i_y; /* invariant relationships of X and Y */
1680
1681 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1682 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1683
1684 if (i_x == 0 && i_y == 0)
1685 break;
1686
1687 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1688 ysize, i_y ? i_y : y, c))
1689 return 0;
1690 }
1691 break;
1692
1693 default:
1694 break;
1695 }
1696
1697 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1698 as an access with indeterminate size. Assume that references
1699 besides AND are aligned, so if the size of the other reference is
1700 at least as large as the alignment, assume no other overlap. */
1701 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1702 {
1703 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1704 xsize = -1;
1705 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1706 }
1707 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1708 {
1709 /* ??? If we are indexing far enough into the array/structure, we
1710 may yet be able to determine that we can not overlap. But we
1711 also need to that we are far enough from the end not to overlap
1712 a following reference, so we do nothing with that for now. */
1713 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1714 ysize = -1;
1715 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1716 }
1717
1718 if (GET_CODE (x) == ADDRESSOF)
1719 {
1720 if (y == frame_pointer_rtx
1721 || GET_CODE (y) == ADDRESSOF)
1722 return xsize <= 0 || ysize <= 0;
1723 }
1724 if (GET_CODE (y) == ADDRESSOF)
1725 {
1726 if (x == frame_pointer_rtx)
1727 return xsize <= 0 || ysize <= 0;
1728 }
1729
1730 if (CONSTANT_P (x))
1731 {
1732 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1733 {
1734 c += (INTVAL (y) - INTVAL (x));
1735 return (xsize <= 0 || ysize <= 0
1736 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1737 }
1738
1739 if (GET_CODE (x) == CONST)
1740 {
1741 if (GET_CODE (y) == CONST)
1742 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1743 ysize, canon_rtx (XEXP (y, 0)), c);
1744 else
1745 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1746 ysize, y, c);
1747 }
1748 if (GET_CODE (y) == CONST)
1749 return memrefs_conflict_p (xsize, x, ysize,
1750 canon_rtx (XEXP (y, 0)), c);
1751
1752 if (CONSTANT_P (y))
1753 return (xsize <= 0 || ysize <= 0
1754 || (rtx_equal_for_memref_p (x, y)
1755 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1756
1757 return 1;
1758 }
1759 return 1;
1760 }
1761
1762 /* Functions to compute memory dependencies.
1763
1764 Since we process the insns in execution order, we can build tables
1765 to keep track of what registers are fixed (and not aliased), what registers
1766 are varying in known ways, and what registers are varying in unknown
1767 ways.
1768
1769 If both memory references are volatile, then there must always be a
1770 dependence between the two references, since their order can not be
1771 changed. A volatile and non-volatile reference can be interchanged
1772 though.
1773
1774 A MEM_IN_STRUCT reference at a non-AND varying address can never
1775 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1776 also must allow AND addresses, because they may generate accesses
1777 outside the object being referenced. This is used to generate
1778 aligned addresses from unaligned addresses, for instance, the alpha
1779 storeqi_unaligned pattern. */
1780
1781 /* Read dependence: X is read after read in MEM takes place. There can
1782 only be a dependence here if both reads are volatile. */
1783
1784 int
1785 read_dependence (rtx mem, rtx x)
1786 {
1787 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1788 }
1789
1790 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1791 MEM2 is a reference to a structure at a varying address, or returns
1792 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1793 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1794 to decide whether or not an address may vary; it should return
1795 nonzero whenever variation is possible.
1796 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1797
1798 static rtx
1799 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1800 rtx mem2_addr,
1801 int (*varies_p) (rtx, int))
1802 {
1803 if (! flag_strict_aliasing)
1804 return NULL_RTX;
1805
1806 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1807 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1808 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1809 varying address. */
1810 return mem1;
1811
1812 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1813 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1814 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1815 varying address. */
1816 return mem2;
1817
1818 return NULL_RTX;
1819 }
1820
1821 /* Returns nonzero if something about the mode or address format MEM1
1822 indicates that it might well alias *anything*. */
1823
1824 static int
1825 aliases_everything_p (rtx mem)
1826 {
1827 if (GET_CODE (XEXP (mem, 0)) == AND)
1828 /* If the address is an AND, its very hard to know at what it is
1829 actually pointing. */
1830 return 1;
1831
1832 return 0;
1833 }
1834
1835 /* Return true if we can determine that the fields referenced cannot
1836 overlap for any pair of objects. */
1837
1838 static bool
1839 nonoverlapping_component_refs_p (tree x, tree y)
1840 {
1841 tree fieldx, fieldy, typex, typey, orig_y;
1842
1843 do
1844 {
1845 /* The comparison has to be done at a common type, since we don't
1846 know how the inheritance hierarchy works. */
1847 orig_y = y;
1848 do
1849 {
1850 fieldx = TREE_OPERAND (x, 1);
1851 typex = DECL_FIELD_CONTEXT (fieldx);
1852
1853 y = orig_y;
1854 do
1855 {
1856 fieldy = TREE_OPERAND (y, 1);
1857 typey = DECL_FIELD_CONTEXT (fieldy);
1858
1859 if (typex == typey)
1860 goto found;
1861
1862 y = TREE_OPERAND (y, 0);
1863 }
1864 while (y && TREE_CODE (y) == COMPONENT_REF);
1865
1866 x = TREE_OPERAND (x, 0);
1867 }
1868 while (x && TREE_CODE (x) == COMPONENT_REF);
1869
1870 /* Never found a common type. */
1871 return false;
1872
1873 found:
1874 /* If we're left with accessing different fields of a structure,
1875 then no overlap. */
1876 if (TREE_CODE (typex) == RECORD_TYPE
1877 && fieldx != fieldy)
1878 return true;
1879
1880 /* The comparison on the current field failed. If we're accessing
1881 a very nested structure, look at the next outer level. */
1882 x = TREE_OPERAND (x, 0);
1883 y = TREE_OPERAND (y, 0);
1884 }
1885 while (x && y
1886 && TREE_CODE (x) == COMPONENT_REF
1887 && TREE_CODE (y) == COMPONENT_REF);
1888
1889 return false;
1890 }
1891
1892 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1893
1894 static tree
1895 decl_for_component_ref (tree x)
1896 {
1897 do
1898 {
1899 x = TREE_OPERAND (x, 0);
1900 }
1901 while (x && TREE_CODE (x) == COMPONENT_REF);
1902
1903 return x && DECL_P (x) ? x : NULL_TREE;
1904 }
1905
1906 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1907 offset of the field reference. */
1908
1909 static rtx
1910 adjust_offset_for_component_ref (tree x, rtx offset)
1911 {
1912 HOST_WIDE_INT ioffset;
1913
1914 if (! offset)
1915 return NULL_RTX;
1916
1917 ioffset = INTVAL (offset);
1918 do
1919 {
1920 tree field = TREE_OPERAND (x, 1);
1921
1922 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1923 return NULL_RTX;
1924 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1925 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1926 / BITS_PER_UNIT));
1927
1928 x = TREE_OPERAND (x, 0);
1929 }
1930 while (x && TREE_CODE (x) == COMPONENT_REF);
1931
1932 return GEN_INT (ioffset);
1933 }
1934
1935 /* Return nonzero if we can determine the exprs corresponding to memrefs
1936 X and Y and they do not overlap. */
1937
1938 static int
1939 nonoverlapping_memrefs_p (rtx x, rtx y)
1940 {
1941 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1942 rtx rtlx, rtly;
1943 rtx basex, basey;
1944 rtx moffsetx, moffsety;
1945 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1946
1947 /* Unless both have exprs, we can't tell anything. */
1948 if (exprx == 0 || expry == 0)
1949 return 0;
1950
1951 /* If both are field references, we may be able to determine something. */
1952 if (TREE_CODE (exprx) == COMPONENT_REF
1953 && TREE_CODE (expry) == COMPONENT_REF
1954 && nonoverlapping_component_refs_p (exprx, expry))
1955 return 1;
1956
1957 /* If the field reference test failed, look at the DECLs involved. */
1958 moffsetx = MEM_OFFSET (x);
1959 if (TREE_CODE (exprx) == COMPONENT_REF)
1960 {
1961 tree t = decl_for_component_ref (exprx);
1962 if (! t)
1963 return 0;
1964 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1965 exprx = t;
1966 }
1967 else if (TREE_CODE (exprx) == INDIRECT_REF)
1968 {
1969 exprx = TREE_OPERAND (exprx, 0);
1970 if (flag_argument_noalias < 2
1971 || TREE_CODE (exprx) != PARM_DECL)
1972 return 0;
1973 }
1974
1975 moffsety = MEM_OFFSET (y);
1976 if (TREE_CODE (expry) == COMPONENT_REF)
1977 {
1978 tree t = decl_for_component_ref (expry);
1979 if (! t)
1980 return 0;
1981 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1982 expry = t;
1983 }
1984 else if (TREE_CODE (expry) == INDIRECT_REF)
1985 {
1986 expry = TREE_OPERAND (expry, 0);
1987 if (flag_argument_noalias < 2
1988 || TREE_CODE (expry) != PARM_DECL)
1989 return 0;
1990 }
1991
1992 if (! DECL_P (exprx) || ! DECL_P (expry))
1993 return 0;
1994
1995 rtlx = DECL_RTL (exprx);
1996 rtly = DECL_RTL (expry);
1997
1998 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1999 can't overlap unless they are the same because we never reuse that part
2000 of the stack frame used for locals for spilled pseudos. */
2001 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2002 && ! rtx_equal_p (rtlx, rtly))
2003 return 1;
2004
2005 /* Get the base and offsets of both decls. If either is a register, we
2006 know both are and are the same, so use that as the base. The only
2007 we can avoid overlap is if we can deduce that they are nonoverlapping
2008 pieces of that decl, which is very rare. */
2009 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2010 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2011 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2012
2013 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2014 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2015 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2016
2017 /* If the bases are different, we know they do not overlap if both
2018 are constants or if one is a constant and the other a pointer into the
2019 stack frame. Otherwise a different base means we can't tell if they
2020 overlap or not. */
2021 if (! rtx_equal_p (basex, basey))
2022 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2023 || (CONSTANT_P (basex) && REG_P (basey)
2024 && REGNO_PTR_FRAME_P (REGNO (basey)))
2025 || (CONSTANT_P (basey) && REG_P (basex)
2026 && REGNO_PTR_FRAME_P (REGNO (basex))));
2027
2028 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2029 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2030 : -1);
2031 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2032 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2033 -1);
2034
2035 /* If we have an offset for either memref, it can update the values computed
2036 above. */
2037 if (moffsetx)
2038 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2039 if (moffsety)
2040 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2041
2042 /* If a memref has both a size and an offset, we can use the smaller size.
2043 We can't do this if the offset isn't known because we must view this
2044 memref as being anywhere inside the DECL's MEM. */
2045 if (MEM_SIZE (x) && moffsetx)
2046 sizex = INTVAL (MEM_SIZE (x));
2047 if (MEM_SIZE (y) && moffsety)
2048 sizey = INTVAL (MEM_SIZE (y));
2049
2050 /* Put the values of the memref with the lower offset in X's values. */
2051 if (offsetx > offsety)
2052 {
2053 tem = offsetx, offsetx = offsety, offsety = tem;
2054 tem = sizex, sizex = sizey, sizey = tem;
2055 }
2056
2057 /* If we don't know the size of the lower-offset value, we can't tell
2058 if they conflict. Otherwise, we do the test. */
2059 return sizex >= 0 && offsety >= offsetx + sizex;
2060 }
2061
2062 /* True dependence: X is read after store in MEM takes place. */
2063
2064 int
2065 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2066 int (*varies) (rtx, int))
2067 {
2068 rtx x_addr, mem_addr;
2069 rtx base;
2070
2071 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2072 return 1;
2073
2074 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2075 This is used in epilogue deallocation functions. */
2076 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2077 return 1;
2078 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2079 return 1;
2080
2081 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2082 return 0;
2083
2084 /* Unchanging memory can't conflict with non-unchanging memory.
2085 A non-unchanging read can conflict with a non-unchanging write.
2086 An unchanging read can conflict with an unchanging write since
2087 there may be a single store to this address to initialize it.
2088 Note that an unchanging store can conflict with a non-unchanging read
2089 since we have to make conservative assumptions when we have a
2090 record with readonly fields and we are copying the whole thing.
2091 Just fall through to the code below to resolve potential conflicts.
2092 This won't handle all cases optimally, but the possible performance
2093 loss should be negligible. */
2094 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2095 return 0;
2096
2097 if (nonoverlapping_memrefs_p (mem, x))
2098 return 0;
2099
2100 if (mem_mode == VOIDmode)
2101 mem_mode = GET_MODE (mem);
2102
2103 x_addr = get_addr (XEXP (x, 0));
2104 mem_addr = get_addr (XEXP (mem, 0));
2105
2106 base = find_base_term (x_addr);
2107 if (base && (GET_CODE (base) == LABEL_REF
2108 || (GET_CODE (base) == SYMBOL_REF
2109 && CONSTANT_POOL_ADDRESS_P (base))))
2110 return 0;
2111
2112 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2113 return 0;
2114
2115 x_addr = canon_rtx (x_addr);
2116 mem_addr = canon_rtx (mem_addr);
2117
2118 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2119 SIZE_FOR_MODE (x), x_addr, 0))
2120 return 0;
2121
2122 if (aliases_everything_p (x))
2123 return 1;
2124
2125 /* We cannot use aliases_everything_p to test MEM, since we must look
2126 at MEM_MODE, rather than GET_MODE (MEM). */
2127 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2128 return 1;
2129
2130 /* In true_dependence we also allow BLKmode to alias anything. Why
2131 don't we do this in anti_dependence and output_dependence? */
2132 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2133 return 1;
2134
2135 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2136 varies);
2137 }
2138
2139 /* Canonical true dependence: X is read after store in MEM takes place.
2140 Variant of true_dependence which assumes MEM has already been
2141 canonicalized (hence we no longer do that here).
2142 The mem_addr argument has been added, since true_dependence computed
2143 this value prior to canonicalizing. */
2144
2145 int
2146 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2147 rtx x, int (*varies) (rtx, int))
2148 {
2149 rtx x_addr;
2150
2151 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2152 return 1;
2153
2154 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2155 This is used in epilogue deallocation functions. */
2156 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2157 return 1;
2158 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2159 return 1;
2160
2161 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2162 return 0;
2163
2164 /* If X is an unchanging read, then it can't possibly conflict with any
2165 non-unchanging store. It may conflict with an unchanging write though,
2166 because there may be a single store to this address to initialize it.
2167 Just fall through to the code below to resolve the case where we have
2168 both an unchanging read and an unchanging write. This won't handle all
2169 cases optimally, but the possible performance loss should be
2170 negligible. */
2171 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2172 return 0;
2173
2174 if (nonoverlapping_memrefs_p (x, mem))
2175 return 0;
2176
2177 x_addr = get_addr (XEXP (x, 0));
2178
2179 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2180 return 0;
2181
2182 x_addr = canon_rtx (x_addr);
2183 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2184 SIZE_FOR_MODE (x), x_addr, 0))
2185 return 0;
2186
2187 if (aliases_everything_p (x))
2188 return 1;
2189
2190 /* We cannot use aliases_everything_p to test MEM, since we must look
2191 at MEM_MODE, rather than GET_MODE (MEM). */
2192 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2193 return 1;
2194
2195 /* In true_dependence we also allow BLKmode to alias anything. Why
2196 don't we do this in anti_dependence and output_dependence? */
2197 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2198 return 1;
2199
2200 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2201 varies);
2202 }
2203
2204 /* Returns nonzero if a write to X might alias a previous read from
2205 (or, if WRITEP is nonzero, a write to) MEM. */
2206
2207 static int
2208 write_dependence_p (rtx mem, rtx x, int writep)
2209 {
2210 rtx x_addr, mem_addr;
2211 rtx fixed_scalar;
2212 rtx base;
2213
2214 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2215 return 1;
2216
2217 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2218 This is used in epilogue deallocation functions. */
2219 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2220 return 1;
2221 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2222 return 1;
2223
2224 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2225 return 0;
2226
2227 /* Unchanging memory can't conflict with non-unchanging memory. */
2228 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2229 return 0;
2230
2231 /* If MEM is an unchanging read, then it can't possibly conflict with
2232 the store to X, because there is at most one store to MEM, and it must
2233 have occurred somewhere before MEM. */
2234 if (! writep && RTX_UNCHANGING_P (mem))
2235 return 0;
2236
2237 if (nonoverlapping_memrefs_p (x, mem))
2238 return 0;
2239
2240 x_addr = get_addr (XEXP (x, 0));
2241 mem_addr = get_addr (XEXP (mem, 0));
2242
2243 if (! writep)
2244 {
2245 base = find_base_term (mem_addr);
2246 if (base && (GET_CODE (base) == LABEL_REF
2247 || (GET_CODE (base) == SYMBOL_REF
2248 && CONSTANT_POOL_ADDRESS_P (base))))
2249 return 0;
2250 }
2251
2252 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2253 GET_MODE (mem)))
2254 return 0;
2255
2256 x_addr = canon_rtx (x_addr);
2257 mem_addr = canon_rtx (mem_addr);
2258
2259 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2260 SIZE_FOR_MODE (x), x_addr, 0))
2261 return 0;
2262
2263 fixed_scalar
2264 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2265 rtx_addr_varies_p);
2266
2267 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2268 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2269 }
2270
2271 /* Anti dependence: X is written after read in MEM takes place. */
2272
2273 int
2274 anti_dependence (rtx mem, rtx x)
2275 {
2276 return write_dependence_p (mem, x, /*writep=*/0);
2277 }
2278
2279 /* Output dependence: X is written after store in MEM takes place. */
2280
2281 int
2282 output_dependence (rtx mem, rtx x)
2283 {
2284 return write_dependence_p (mem, x, /*writep=*/1);
2285 }
2286 \f
2287 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2288 something which is not local to the function and is not constant. */
2289
2290 static int
2291 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2292 {
2293 rtx x = *loc;
2294 rtx base;
2295 int regno;
2296
2297 if (! x)
2298 return 0;
2299
2300 switch (GET_CODE (x))
2301 {
2302 case SUBREG:
2303 if (GET_CODE (SUBREG_REG (x)) == REG)
2304 {
2305 /* Global registers are not local. */
2306 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2307 && global_regs[subreg_regno (x)])
2308 return 1;
2309 return 0;
2310 }
2311 break;
2312
2313 case REG:
2314 regno = REGNO (x);
2315 /* Global registers are not local. */
2316 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2317 return 1;
2318 return 0;
2319
2320 case SCRATCH:
2321 case PC:
2322 case CC0:
2323 case CONST_INT:
2324 case CONST_DOUBLE:
2325 case CONST_VECTOR:
2326 case CONST:
2327 case LABEL_REF:
2328 return 0;
2329
2330 case SYMBOL_REF:
2331 /* Constants in the function's constants pool are constant. */
2332 if (CONSTANT_POOL_ADDRESS_P (x))
2333 return 0;
2334 return 1;
2335
2336 case CALL:
2337 /* Non-constant calls and recursion are not local. */
2338 return 1;
2339
2340 case MEM:
2341 /* Be overly conservative and consider any volatile memory
2342 reference as not local. */
2343 if (MEM_VOLATILE_P (x))
2344 return 1;
2345 base = find_base_term (XEXP (x, 0));
2346 if (base)
2347 {
2348 /* A Pmode ADDRESS could be a reference via the structure value
2349 address or static chain. Such memory references are nonlocal.
2350
2351 Thus, we have to examine the contents of the ADDRESS to find
2352 out if this is a local reference or not. */
2353 if (GET_CODE (base) == ADDRESS
2354 && GET_MODE (base) == Pmode
2355 && (XEXP (base, 0) == stack_pointer_rtx
2356 || XEXP (base, 0) == arg_pointer_rtx
2357 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2358 || XEXP (base, 0) == hard_frame_pointer_rtx
2359 #endif
2360 || XEXP (base, 0) == frame_pointer_rtx))
2361 return 0;
2362 /* Constants in the function's constant pool are constant. */
2363 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2364 return 0;
2365 }
2366 return 1;
2367
2368 case UNSPEC_VOLATILE:
2369 case ASM_INPUT:
2370 return 1;
2371
2372 case ASM_OPERANDS:
2373 if (MEM_VOLATILE_P (x))
2374 return 1;
2375
2376 /* FALLTHROUGH */
2377
2378 default:
2379 break;
2380 }
2381
2382 return 0;
2383 }
2384
2385 /* Returns nonzero if X might mention something which is not
2386 local to the function and is not constant. */
2387
2388 static int
2389 nonlocal_mentioned_p (rtx x)
2390 {
2391 if (INSN_P (x))
2392 {
2393 if (GET_CODE (x) == CALL_INSN)
2394 {
2395 if (! CONST_OR_PURE_CALL_P (x))
2396 return 1;
2397 x = CALL_INSN_FUNCTION_USAGE (x);
2398 if (x == 0)
2399 return 0;
2400 }
2401 else
2402 x = PATTERN (x);
2403 }
2404
2405 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2406 }
2407
2408 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2409 something which is not local to the function and is not constant. */
2410
2411 static int
2412 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2413 {
2414 rtx x = *loc;
2415
2416 if (! x)
2417 return 0;
2418
2419 switch (GET_CODE (x))
2420 {
2421 case MEM:
2422 case REG:
2423 case SYMBOL_REF:
2424 case SUBREG:
2425 return nonlocal_mentioned_p (x);
2426
2427 case CALL:
2428 /* Non-constant calls and recursion are not local. */
2429 return 1;
2430
2431 case SET:
2432 if (nonlocal_mentioned_p (SET_SRC (x)))
2433 return 1;
2434
2435 if (GET_CODE (SET_DEST (x)) == MEM)
2436 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2437
2438 /* If the destination is anything other than a CC0, PC,
2439 MEM, REG, or a SUBREG of a REG that occupies all of
2440 the REG, then X references nonlocal memory if it is
2441 mentioned in the destination. */
2442 if (GET_CODE (SET_DEST (x)) != CC0
2443 && GET_CODE (SET_DEST (x)) != PC
2444 && GET_CODE (SET_DEST (x)) != REG
2445 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2446 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2447 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2448 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2449 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2450 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2451 return nonlocal_mentioned_p (SET_DEST (x));
2452 return 0;
2453
2454 case CLOBBER:
2455 if (GET_CODE (XEXP (x, 0)) == MEM)
2456 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2457 return 0;
2458
2459 case USE:
2460 return nonlocal_mentioned_p (XEXP (x, 0));
2461
2462 case ASM_INPUT:
2463 case UNSPEC_VOLATILE:
2464 return 1;
2465
2466 case ASM_OPERANDS:
2467 if (MEM_VOLATILE_P (x))
2468 return 1;
2469
2470 /* FALLTHROUGH */
2471
2472 default:
2473 break;
2474 }
2475
2476 return 0;
2477 }
2478
2479 /* Returns nonzero if X might reference something which is not
2480 local to the function and is not constant. */
2481
2482 static int
2483 nonlocal_referenced_p (rtx x)
2484 {
2485 if (INSN_P (x))
2486 {
2487 if (GET_CODE (x) == CALL_INSN)
2488 {
2489 if (! CONST_OR_PURE_CALL_P (x))
2490 return 1;
2491 x = CALL_INSN_FUNCTION_USAGE (x);
2492 if (x == 0)
2493 return 0;
2494 }
2495 else
2496 x = PATTERN (x);
2497 }
2498
2499 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2500 }
2501
2502 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2503 something which is not local to the function and is not constant. */
2504
2505 static int
2506 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2507 {
2508 rtx x = *loc;
2509
2510 if (! x)
2511 return 0;
2512
2513 switch (GET_CODE (x))
2514 {
2515 case CALL:
2516 /* Non-constant calls and recursion are not local. */
2517 return 1;
2518
2519 case PRE_INC:
2520 case PRE_DEC:
2521 case POST_INC:
2522 case POST_DEC:
2523 case PRE_MODIFY:
2524 case POST_MODIFY:
2525 return nonlocal_mentioned_p (XEXP (x, 0));
2526
2527 case SET:
2528 if (nonlocal_mentioned_p (SET_DEST (x)))
2529 return 1;
2530 return nonlocal_set_p (SET_SRC (x));
2531
2532 case CLOBBER:
2533 return nonlocal_mentioned_p (XEXP (x, 0));
2534
2535 case USE:
2536 return 0;
2537
2538 case ASM_INPUT:
2539 case UNSPEC_VOLATILE:
2540 return 1;
2541
2542 case ASM_OPERANDS:
2543 if (MEM_VOLATILE_P (x))
2544 return 1;
2545
2546 /* FALLTHROUGH */
2547
2548 default:
2549 break;
2550 }
2551
2552 return 0;
2553 }
2554
2555 /* Returns nonzero if X might set something which is not
2556 local to the function and is not constant. */
2557
2558 static int
2559 nonlocal_set_p (rtx x)
2560 {
2561 if (INSN_P (x))
2562 {
2563 if (GET_CODE (x) == CALL_INSN)
2564 {
2565 if (! CONST_OR_PURE_CALL_P (x))
2566 return 1;
2567 x = CALL_INSN_FUNCTION_USAGE (x);
2568 if (x == 0)
2569 return 0;
2570 }
2571 else
2572 x = PATTERN (x);
2573 }
2574
2575 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2576 }
2577
2578 /* Mark the function if it is pure or constant. */
2579
2580 void
2581 mark_constant_function (void)
2582 {
2583 rtx insn;
2584 int nonlocal_memory_referenced;
2585
2586 if (TREE_READONLY (current_function_decl)
2587 || DECL_IS_PURE (current_function_decl)
2588 || TREE_THIS_VOLATILE (current_function_decl)
2589 || current_function_has_nonlocal_goto
2590 || !(*targetm.binds_local_p) (current_function_decl))
2591 return;
2592
2593 /* A loop might not return which counts as a side effect. */
2594 if (mark_dfs_back_edges ())
2595 return;
2596
2597 nonlocal_memory_referenced = 0;
2598
2599 init_alias_analysis ();
2600
2601 /* Determine if this is a constant or pure function. */
2602
2603 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2604 {
2605 if (! INSN_P (insn))
2606 continue;
2607
2608 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2609 || volatile_refs_p (PATTERN (insn)))
2610 break;
2611
2612 if (! nonlocal_memory_referenced)
2613 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2614 }
2615
2616 end_alias_analysis ();
2617
2618 /* Mark the function. */
2619
2620 if (insn)
2621 ;
2622 else if (nonlocal_memory_referenced)
2623 {
2624 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2625 DECL_IS_PURE (current_function_decl) = 1;
2626 }
2627 else
2628 {
2629 cgraph_rtl_info (current_function_decl)->const_function = 1;
2630 TREE_READONLY (current_function_decl) = 1;
2631 }
2632 }
2633 \f
2634
2635 void
2636 init_alias_once (void)
2637 {
2638 int i;
2639
2640 #ifndef OUTGOING_REGNO
2641 #define OUTGOING_REGNO(N) N
2642 #endif
2643 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2644 /* Check whether this register can hold an incoming pointer
2645 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2646 numbers, so translate if necessary due to register windows. */
2647 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2648 && HARD_REGNO_MODE_OK (i, Pmode))
2649 static_reg_base_value[i]
2650 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2651
2652 static_reg_base_value[STACK_POINTER_REGNUM]
2653 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2654 static_reg_base_value[ARG_POINTER_REGNUM]
2655 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2656 static_reg_base_value[FRAME_POINTER_REGNUM]
2657 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2658 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2659 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2660 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2661 #endif
2662
2663 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2664 }
2665
2666 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2667 to be memory reference. */
2668 static bool memory_modified;
2669 static void
2670 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2671 {
2672 if (GET_CODE (x) == MEM)
2673 {
2674 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2675 memory_modified = true;
2676 }
2677 }
2678
2679
2680 /* Return true when INSN possibly modify memory contents of MEM
2681 (ie address can be modified). */
2682 bool
2683 memory_modified_in_insn_p (rtx mem, rtx insn)
2684 {
2685 if (!INSN_P (insn))
2686 return false;
2687 memory_modified = false;
2688 note_stores (PATTERN (insn), memory_modified_1, mem);
2689 return memory_modified;
2690 }
2691
2692 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2693 array. */
2694
2695 void
2696 init_alias_analysis (void)
2697 {
2698 int maxreg = max_reg_num ();
2699 int changed, pass;
2700 int i;
2701 unsigned int ui;
2702 rtx insn;
2703
2704 timevar_push (TV_ALIAS_ANALYSIS);
2705
2706 reg_known_value_size = maxreg;
2707
2708 reg_known_value
2709 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2710 - FIRST_PSEUDO_REGISTER;
2711 reg_known_equiv_p
2712 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2713 - FIRST_PSEUDO_REGISTER;
2714
2715 /* Overallocate reg_base_value to allow some growth during loop
2716 optimization. Loop unrolling can create a large number of
2717 registers. */
2718 reg_base_value_size = maxreg * 2;
2719 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2720 * sizeof (rtx));
2721
2722 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2723 reg_seen = (char *) xmalloc (reg_base_value_size);
2724 if (! reload_completed && flag_old_unroll_loops)
2725 {
2726 /* ??? Why are we realloc'ing if we're just going to zero it? */
2727 alias_invariant = (rtx *)xrealloc (alias_invariant,
2728 reg_base_value_size * sizeof (rtx));
2729 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2730 }
2731
2732 /* The basic idea is that each pass through this loop will use the
2733 "constant" information from the previous pass to propagate alias
2734 information through another level of assignments.
2735
2736 This could get expensive if the assignment chains are long. Maybe
2737 we should throttle the number of iterations, possibly based on
2738 the optimization level or flag_expensive_optimizations.
2739
2740 We could propagate more information in the first pass by making use
2741 of REG_N_SETS to determine immediately that the alias information
2742 for a pseudo is "constant".
2743
2744 A program with an uninitialized variable can cause an infinite loop
2745 here. Instead of doing a full dataflow analysis to detect such problems
2746 we just cap the number of iterations for the loop.
2747
2748 The state of the arrays for the set chain in question does not matter
2749 since the program has undefined behavior. */
2750
2751 pass = 0;
2752 do
2753 {
2754 /* Assume nothing will change this iteration of the loop. */
2755 changed = 0;
2756
2757 /* We want to assign the same IDs each iteration of this loop, so
2758 start counting from zero each iteration of the loop. */
2759 unique_id = 0;
2760
2761 /* We're at the start of the function each iteration through the
2762 loop, so we're copying arguments. */
2763 copying_arguments = true;
2764
2765 /* Wipe the potential alias information clean for this pass. */
2766 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2767
2768 /* Wipe the reg_seen array clean. */
2769 memset ((char *) reg_seen, 0, reg_base_value_size);
2770
2771 /* Mark all hard registers which may contain an address.
2772 The stack, frame and argument pointers may contain an address.
2773 An argument register which can hold a Pmode value may contain
2774 an address even if it is not in BASE_REGS.
2775
2776 The address expression is VOIDmode for an argument and
2777 Pmode for other registers. */
2778
2779 memcpy (new_reg_base_value, static_reg_base_value,
2780 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2781
2782 /* Walk the insns adding values to the new_reg_base_value array. */
2783 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2784 {
2785 if (INSN_P (insn))
2786 {
2787 rtx note, set;
2788
2789 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2790 /* The prologue/epilogue insns are not threaded onto the
2791 insn chain until after reload has completed. Thus,
2792 there is no sense wasting time checking if INSN is in
2793 the prologue/epilogue until after reload has completed. */
2794 if (reload_completed
2795 && prologue_epilogue_contains (insn))
2796 continue;
2797 #endif
2798
2799 /* If this insn has a noalias note, process it, Otherwise,
2800 scan for sets. A simple set will have no side effects
2801 which could change the base value of any other register. */
2802
2803 if (GET_CODE (PATTERN (insn)) == SET
2804 && REG_NOTES (insn) != 0
2805 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2806 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2807 else
2808 note_stores (PATTERN (insn), record_set, NULL);
2809
2810 set = single_set (insn);
2811
2812 if (set != 0
2813 && GET_CODE (SET_DEST (set)) == REG
2814 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2815 {
2816 unsigned int regno = REGNO (SET_DEST (set));
2817 rtx src = SET_SRC (set);
2818
2819 if (REG_NOTES (insn) != 0
2820 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2821 && REG_N_SETS (regno) == 1)
2822 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2823 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2824 && ! rtx_varies_p (XEXP (note, 0), 1)
2825 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2826 {
2827 reg_known_value[regno] = XEXP (note, 0);
2828 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2829 }
2830 else if (REG_N_SETS (regno) == 1
2831 && GET_CODE (src) == PLUS
2832 && GET_CODE (XEXP (src, 0)) == REG
2833 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2834 && (reg_known_value[REGNO (XEXP (src, 0))])
2835 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2836 {
2837 rtx op0 = XEXP (src, 0);
2838 op0 = reg_known_value[REGNO (op0)];
2839 reg_known_value[regno]
2840 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2841 reg_known_equiv_p[regno] = 0;
2842 }
2843 else if (REG_N_SETS (regno) == 1
2844 && ! rtx_varies_p (src, 1))
2845 {
2846 reg_known_value[regno] = src;
2847 reg_known_equiv_p[regno] = 0;
2848 }
2849 }
2850 }
2851 else if (GET_CODE (insn) == NOTE
2852 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2853 copying_arguments = false;
2854 }
2855
2856 /* Now propagate values from new_reg_base_value to reg_base_value. */
2857 for (ui = 0; ui < reg_base_value_size; ui++)
2858 {
2859 if (new_reg_base_value[ui]
2860 && new_reg_base_value[ui] != reg_base_value[ui]
2861 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2862 {
2863 reg_base_value[ui] = new_reg_base_value[ui];
2864 changed = 1;
2865 }
2866 }
2867 }
2868 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2869
2870 /* Fill in the remaining entries. */
2871 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2872 if (reg_known_value[i] == 0)
2873 reg_known_value[i] = regno_reg_rtx[i];
2874
2875 /* Simplify the reg_base_value array so that no register refers to
2876 another register, except to special registers indirectly through
2877 ADDRESS expressions.
2878
2879 In theory this loop can take as long as O(registers^2), but unless
2880 there are very long dependency chains it will run in close to linear
2881 time.
2882
2883 This loop may not be needed any longer now that the main loop does
2884 a better job at propagating alias information. */
2885 pass = 0;
2886 do
2887 {
2888 changed = 0;
2889 pass++;
2890 for (ui = 0; ui < reg_base_value_size; ui++)
2891 {
2892 rtx base = reg_base_value[ui];
2893 if (base && GET_CODE (base) == REG)
2894 {
2895 unsigned int base_regno = REGNO (base);
2896 if (base_regno == ui) /* register set from itself */
2897 reg_base_value[ui] = 0;
2898 else
2899 reg_base_value[ui] = reg_base_value[base_regno];
2900 changed = 1;
2901 }
2902 }
2903 }
2904 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2905
2906 /* Clean up. */
2907 free (new_reg_base_value);
2908 new_reg_base_value = 0;
2909 free (reg_seen);
2910 reg_seen = 0;
2911 timevar_pop (TV_ALIAS_ANALYSIS);
2912 }
2913
2914 void
2915 end_alias_analysis (void)
2916 {
2917 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2918 reg_known_value = 0;
2919 reg_known_value_size = 0;
2920 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2921 reg_known_equiv_p = 0;
2922 reg_base_value = 0;
2923 reg_base_value_size = 0;
2924 if (alias_invariant)
2925 {
2926 free (alias_invariant);
2927 alias_invariant = 0;
2928 }
2929 }
2930
2931 #include "gt-alias.h"