]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/alias.c
ChangeLog.2, [...]: Fix spelling errors.
[thirdparty/gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "expr.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "cselib.h"
36 #include "splay-tree.h"
37 #include "ggc.h"
38 #include "langhooks.h"
39
40 /* The alias sets assigned to MEMs assist the back-end in determining
41 which MEMs can alias which other MEMs. In general, two MEMs in
42 different alias sets cannot alias each other, with one important
43 exception. Consider something like:
44
45 struct S {int i; double d; };
46
47 a store to an `S' can alias something of either type `int' or type
48 `double'. (However, a store to an `int' cannot alias a `double'
49 and vice versa.) We indicate this via a tree structure that looks
50 like:
51 struct S
52 / \
53 / \
54 |/_ _\|
55 int double
56
57 (The arrows are directed and point downwards.)
58 In this situation we say the alias set for `struct S' is the
59 `superset' and that those for `int' and `double' are `subsets'.
60
61 To see whether two alias sets can point to the same memory, we must
62 see if either alias set is a subset of the other. We need not trace
63 past immediate descendents, however, since we propagate all
64 grandchildren up one level.
65
66 Alias set zero is implicitly a superset of all other alias sets.
67 However, this is no actual entry for alias set zero. It is an
68 error to attempt to explicitly construct a subset of zero. */
69
70 typedef struct alias_set_entry
71 {
72 /* The alias set number, as stored in MEM_ALIAS_SET. */
73 HOST_WIDE_INT alias_set;
74
75 /* The children of the alias set. These are not just the immediate
76 children, but, in fact, all descendents. So, if we have:
77
78 struct T { struct S s; float f; }
79
80 continuing our example above, the children here will be all of
81 `int', `double', `float', and `struct S'. */
82 splay_tree children;
83
84 /* Nonzero if would have a child of zero: this effectively makes this
85 alias set the same as alias set zero. */
86 int has_zero_child;
87 } *alias_set_entry;
88
89 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
90 static rtx find_symbolic_term PARAMS ((rtx));
91 rtx get_addr PARAMS ((rtx));
92 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
93 HOST_WIDE_INT));
94 static void record_set PARAMS ((rtx, rtx, void *));
95 static rtx find_base_term PARAMS ((rtx));
96 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
97 enum machine_mode));
98 static rtx find_base_value PARAMS ((rtx));
99 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
100 static int insert_subset_children PARAMS ((splay_tree_node, void*));
101 static tree find_base_decl PARAMS ((tree));
102 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
103 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
104 int (*) (rtx, int)));
105 static int aliases_everything_p PARAMS ((rtx));
106 static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
107 static tree decl_for_component_ref PARAMS ((tree));
108 static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
109 static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
110 static int write_dependence_p PARAMS ((rtx, rtx, int));
111 static int nonlocal_mentioned_p PARAMS ((rtx));
112
113 /* Set up all info needed to perform alias analysis on memory references. */
114
115 /* Returns the size in bytes of the mode of X. */
116 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
117
118 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
119 different alias sets. We ignore alias sets in functions making use
120 of variable arguments because the va_arg macros on some systems are
121 not legal ANSI C. */
122 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
123 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
124
125 /* Cap the number of passes we make over the insns propagating alias
126 information through set chains. 10 is a completely arbitrary choice. */
127 #define MAX_ALIAS_LOOP_PASSES 10
128
129 /* reg_base_value[N] gives an address to which register N is related.
130 If all sets after the first add or subtract to the current value
131 or otherwise modify it so it does not point to a different top level
132 object, reg_base_value[N] is equal to the address part of the source
133 of the first set.
134
135 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
136 expressions represent certain special values: function arguments and
137 the stack, frame, and argument pointers.
138
139 The contents of an ADDRESS is not normally used, the mode of the
140 ADDRESS determines whether the ADDRESS is a function argument or some
141 other special value. Pointer equality, not rtx_equal_p, determines whether
142 two ADDRESS expressions refer to the same base address.
143
144 The only use of the contents of an ADDRESS is for determining if the
145 current function performs nonlocal memory memory references for the
146 purposes of marking the function as a constant function. */
147
148 static rtx *reg_base_value;
149 static rtx *new_reg_base_value;
150 static unsigned int reg_base_value_size; /* size of reg_base_value array */
151
152 #define REG_BASE_VALUE(X) \
153 (REGNO (X) < reg_base_value_size \
154 ? reg_base_value[REGNO (X)] : 0)
155
156 /* Vector of known invariant relationships between registers. Set in
157 loop unrolling. Indexed by register number, if nonzero the value
158 is an expression describing this register in terms of another.
159
160 The length of this array is REG_BASE_VALUE_SIZE.
161
162 Because this array contains only pseudo registers it has no effect
163 after reload. */
164 static rtx *alias_invariant;
165
166 /* Vector indexed by N giving the initial (unchanging) value known for
167 pseudo-register N. This array is initialized in
168 init_alias_analysis, and does not change until end_alias_analysis
169 is called. */
170 rtx *reg_known_value;
171
172 /* Indicates number of valid entries in reg_known_value. */
173 static unsigned int reg_known_value_size;
174
175 /* Vector recording for each reg_known_value whether it is due to a
176 REG_EQUIV note. Future passes (viz., reload) may replace the
177 pseudo with the equivalent expression and so we account for the
178 dependences that would be introduced if that happens.
179
180 The REG_EQUIV notes created in assign_parms may mention the arg
181 pointer, and there are explicit insns in the RTL that modify the
182 arg pointer. Thus we must ensure that such insns don't get
183 scheduled across each other because that would invalidate the
184 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
185 wrong, but solving the problem in the scheduler will likely give
186 better code, so we do it here. */
187 char *reg_known_equiv_p;
188
189 /* True when scanning insns from the start of the rtl to the
190 NOTE_INSN_FUNCTION_BEG note. */
191 static int copying_arguments;
192
193 /* The splay-tree used to store the various alias set entries. */
194 static splay_tree alias_sets;
195 \f
196 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
197 such an entry, or NULL otherwise. */
198
199 static alias_set_entry
200 get_alias_set_entry (alias_set)
201 HOST_WIDE_INT alias_set;
202 {
203 splay_tree_node sn
204 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
205
206 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
207 }
208
209 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
210 the two MEMs cannot alias each other. */
211
212 static int
213 mems_in_disjoint_alias_sets_p (mem1, mem2)
214 rtx mem1;
215 rtx mem2;
216 {
217 #ifdef ENABLE_CHECKING
218 /* Perform a basic sanity check. Namely, that there are no alias sets
219 if we're not using strict aliasing. This helps to catch bugs
220 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
221 where a MEM is allocated in some way other than by the use of
222 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
223 use alias sets to indicate that spilled registers cannot alias each
224 other, we might need to remove this check. */
225 if (! flag_strict_aliasing
226 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
227 abort ();
228 #endif
229
230 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
231 }
232
233 /* Insert the NODE into the splay tree given by DATA. Used by
234 record_alias_subset via splay_tree_foreach. */
235
236 static int
237 insert_subset_children (node, data)
238 splay_tree_node node;
239 void *data;
240 {
241 splay_tree_insert ((splay_tree) data, node->key, node->value);
242
243 return 0;
244 }
245
246 /* Return 1 if the two specified alias sets may conflict. */
247
248 int
249 alias_sets_conflict_p (set1, set2)
250 HOST_WIDE_INT set1, set2;
251 {
252 alias_set_entry ase;
253
254 /* If have no alias set information for one of the operands, we have
255 to assume it can alias anything. */
256 if (set1 == 0 || set2 == 0
257 /* If the two alias sets are the same, they may alias. */
258 || set1 == set2)
259 return 1;
260
261 /* See if the first alias set is a subset of the second. */
262 ase = get_alias_set_entry (set1);
263 if (ase != 0
264 && (ase->has_zero_child
265 || splay_tree_lookup (ase->children,
266 (splay_tree_key) set2)))
267 return 1;
268
269 /* Now do the same, but with the alias sets reversed. */
270 ase = get_alias_set_entry (set2);
271 if (ase != 0
272 && (ase->has_zero_child
273 || splay_tree_lookup (ase->children,
274 (splay_tree_key) set1)))
275 return 1;
276
277 /* The two alias sets are distinct and neither one is the
278 child of the other. Therefore, they cannot alias. */
279 return 0;
280 }
281 \f
282 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
283 has any readonly fields. If any of the fields have types that
284 contain readonly fields, return true as well. */
285
286 int
287 readonly_fields_p (type)
288 tree type;
289 {
290 tree field;
291
292 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
293 && TREE_CODE (type) != QUAL_UNION_TYPE)
294 return 0;
295
296 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
297 if (TREE_CODE (field) == FIELD_DECL
298 && (TREE_READONLY (field)
299 || readonly_fields_p (TREE_TYPE (field))))
300 return 1;
301
302 return 0;
303 }
304 \f
305 /* Return 1 if any MEM object of type T1 will always conflict (using the
306 dependency routines in this file) with any MEM object of type T2.
307 This is used when allocating temporary storage. If T1 and/or T2 are
308 NULL_TREE, it means we know nothing about the storage. */
309
310 int
311 objects_must_conflict_p (t1, t2)
312 tree t1, t2;
313 {
314 /* If neither has a type specified, we don't know if they'll conflict
315 because we may be using them to store objects of various types, for
316 example the argument and local variables areas of inlined functions. */
317 if (t1 == 0 && t2 == 0)
318 return 0;
319
320 /* If one or the other has readonly fields or is readonly,
321 then they may not conflict. */
322 if ((t1 != 0 && readonly_fields_p (t1))
323 || (t2 != 0 && readonly_fields_p (t2))
324 || (t1 != 0 && TYPE_READONLY (t1))
325 || (t2 != 0 && TYPE_READONLY (t2)))
326 return 0;
327
328 /* If they are the same type, they must conflict. */
329 if (t1 == t2
330 /* Likewise if both are volatile. */
331 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
332 return 1;
333
334 /* If one is aggregate and the other is scalar then they may not
335 conflict. */
336 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
337 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
338 return 0;
339
340 /* Otherwise they conflict only if the alias sets conflict. */
341 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
342 t2 ? get_alias_set (t2) : 0);
343 }
344 \f
345 /* T is an expression with pointer type. Find the DECL on which this
346 expression is based. (For example, in `a[i]' this would be `a'.)
347 If there is no such DECL, or a unique decl cannot be determined,
348 NULL_TREE is returned. */
349
350 static tree
351 find_base_decl (t)
352 tree t;
353 {
354 tree d0, d1, d2;
355
356 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
357 return 0;
358
359 /* If this is a declaration, return it. */
360 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
361 return t;
362
363 /* Handle general expressions. It would be nice to deal with
364 COMPONENT_REFs here. If we could tell that `a' and `b' were the
365 same, then `a->f' and `b->f' are also the same. */
366 switch (TREE_CODE_CLASS (TREE_CODE (t)))
367 {
368 case '1':
369 return find_base_decl (TREE_OPERAND (t, 0));
370
371 case '2':
372 /* Return 0 if found in neither or both are the same. */
373 d0 = find_base_decl (TREE_OPERAND (t, 0));
374 d1 = find_base_decl (TREE_OPERAND (t, 1));
375 if (d0 == d1)
376 return d0;
377 else if (d0 == 0)
378 return d1;
379 else if (d1 == 0)
380 return d0;
381 else
382 return 0;
383
384 case '3':
385 d0 = find_base_decl (TREE_OPERAND (t, 0));
386 d1 = find_base_decl (TREE_OPERAND (t, 1));
387 d2 = find_base_decl (TREE_OPERAND (t, 2));
388
389 /* Set any nonzero values from the last, then from the first. */
390 if (d1 == 0) d1 = d2;
391 if (d0 == 0) d0 = d1;
392 if (d1 == 0) d1 = d0;
393 if (d2 == 0) d2 = d1;
394
395 /* At this point all are nonzero or all are zero. If all three are the
396 same, return it. Otherwise, return zero. */
397 return (d0 == d1 && d1 == d2) ? d0 : 0;
398
399 default:
400 return 0;
401 }
402 }
403
404 /* Return 1 if all the nested component references handled by
405 get_inner_reference in T are such that we can address the object in T. */
406
407 int
408 can_address_p (t)
409 tree t;
410 {
411 /* If we're at the end, it is vacuously addressable. */
412 if (! handled_component_p (t))
413 return 1;
414
415 /* Bitfields are never addressable. */
416 else if (TREE_CODE (t) == BIT_FIELD_REF)
417 return 0;
418
419 /* Fields are addressable unless they are marked as nonaddressable or
420 the containing type has alias set 0. */
421 else if (TREE_CODE (t) == COMPONENT_REF
422 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
423 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
424 && can_address_p (TREE_OPERAND (t, 0)))
425 return 1;
426
427 /* Likewise for arrays. */
428 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
429 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
430 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
431 && can_address_p (TREE_OPERAND (t, 0)))
432 return 1;
433
434 return 0;
435 }
436
437 /* Return the alias set for T, which may be either a type or an
438 expression. Call language-specific routine for help, if needed. */
439
440 HOST_WIDE_INT
441 get_alias_set (t)
442 tree t;
443 {
444 HOST_WIDE_INT set;
445
446 /* If we're not doing any alias analysis, just assume everything
447 aliases everything else. Also return 0 if this or its type is
448 an error. */
449 if (! flag_strict_aliasing || t == error_mark_node
450 || (! TYPE_P (t)
451 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
452 return 0;
453
454 /* We can be passed either an expression or a type. This and the
455 language-specific routine may make mutually-recursive calls to each other
456 to figure out what to do. At each juncture, we see if this is a tree
457 that the language may need to handle specially. First handle things that
458 aren't types. */
459 if (! TYPE_P (t))
460 {
461 tree inner = t;
462 tree placeholder_ptr = 0;
463
464 /* Remove any nops, then give the language a chance to do
465 something with this tree before we look at it. */
466 STRIP_NOPS (t);
467 set = (*lang_hooks.get_alias_set) (t);
468 if (set != -1)
469 return set;
470
471 /* First see if the actual object referenced is an INDIRECT_REF from a
472 restrict-qualified pointer or a "void *". Replace
473 PLACEHOLDER_EXPRs. */
474 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
475 || handled_component_p (inner))
476 {
477 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
478 inner = find_placeholder (inner, &placeholder_ptr);
479 else
480 inner = TREE_OPERAND (inner, 0);
481
482 STRIP_NOPS (inner);
483 }
484
485 /* Check for accesses through restrict-qualified pointers. */
486 if (TREE_CODE (inner) == INDIRECT_REF)
487 {
488 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
489
490 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
491 {
492 /* If we haven't computed the actual alias set, do it now. */
493 if (DECL_POINTER_ALIAS_SET (decl) == -2)
494 {
495 /* No two restricted pointers can point at the same thing.
496 However, a restricted pointer can point at the same thing
497 as an unrestricted pointer, if that unrestricted pointer
498 is based on the restricted pointer. So, we make the
499 alias set for the restricted pointer a subset of the
500 alias set for the type pointed to by the type of the
501 decl. */
502 HOST_WIDE_INT pointed_to_alias_set
503 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
504
505 if (pointed_to_alias_set == 0)
506 /* It's not legal to make a subset of alias set zero. */
507 ;
508 else
509 {
510 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
511 record_alias_subset (pointed_to_alias_set,
512 DECL_POINTER_ALIAS_SET (decl));
513 }
514 }
515
516 /* We use the alias set indicated in the declaration. */
517 return DECL_POINTER_ALIAS_SET (decl);
518 }
519
520 /* If we have an INDIRECT_REF via a void pointer, we don't
521 know anything about what that might alias. */
522 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
523 return 0;
524 }
525
526 /* Otherwise, pick up the outermost object that we could have a pointer
527 to, processing conversion and PLACEHOLDER_EXPR as above. */
528 placeholder_ptr = 0;
529 while (TREE_CODE (t) == PLACEHOLDER_EXPR
530 || (handled_component_p (t) && ! can_address_p (t)))
531 {
532 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
533 t = find_placeholder (t, &placeholder_ptr);
534 else
535 t = TREE_OPERAND (t, 0);
536
537 STRIP_NOPS (t);
538 }
539
540 /* If we've already determined the alias set for a decl, just return
541 it. This is necessary for C++ anonymous unions, whose component
542 variables don't look like union members (boo!). */
543 if (TREE_CODE (t) == VAR_DECL
544 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
545 return MEM_ALIAS_SET (DECL_RTL (t));
546
547 /* Now all we care about is the type. */
548 t = TREE_TYPE (t);
549 }
550
551 /* Variant qualifiers don't affect the alias set, so get the main
552 variant. If this is a type with a known alias set, return it. */
553 t = TYPE_MAIN_VARIANT (t);
554 if (TYPE_ALIAS_SET_KNOWN_P (t))
555 return TYPE_ALIAS_SET (t);
556
557 /* See if the language has special handling for this type. */
558 set = (*lang_hooks.get_alias_set) (t);
559 if (set != -1)
560 return set;
561
562 /* There are no objects of FUNCTION_TYPE, so there's no point in
563 using up an alias set for them. (There are, of course, pointers
564 and references to functions, but that's different.) */
565 else if (TREE_CODE (t) == FUNCTION_TYPE)
566 set = 0;
567 else
568 /* Otherwise make a new alias set for this type. */
569 set = new_alias_set ();
570
571 TYPE_ALIAS_SET (t) = set;
572
573 /* If this is an aggregate type, we must record any component aliasing
574 information. */
575 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
576 record_component_aliases (t);
577
578 return set;
579 }
580
581 /* Return a brand-new alias set. */
582
583 HOST_WIDE_INT
584 new_alias_set ()
585 {
586 static HOST_WIDE_INT last_alias_set;
587
588 if (flag_strict_aliasing)
589 return ++last_alias_set;
590 else
591 return 0;
592 }
593
594 /* Indicate that things in SUBSET can alias things in SUPERSET, but
595 not vice versa. For example, in C, a store to an `int' can alias a
596 structure containing an `int', but not vice versa. Here, the
597 structure would be the SUPERSET and `int' the SUBSET. This
598 function should be called only once per SUPERSET/SUBSET pair.
599
600 It is illegal for SUPERSET to be zero; everything is implicitly a
601 subset of alias set zero. */
602
603 void
604 record_alias_subset (superset, subset)
605 HOST_WIDE_INT superset;
606 HOST_WIDE_INT subset;
607 {
608 alias_set_entry superset_entry;
609 alias_set_entry subset_entry;
610
611 /* It is possible in complex type situations for both sets to be the same,
612 in which case we can ignore this operation. */
613 if (superset == subset)
614 return;
615
616 if (superset == 0)
617 abort ();
618
619 superset_entry = get_alias_set_entry (superset);
620 if (superset_entry == 0)
621 {
622 /* Create an entry for the SUPERSET, so that we have a place to
623 attach the SUBSET. */
624 superset_entry
625 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
626 superset_entry->alias_set = superset;
627 superset_entry->children
628 = splay_tree_new (splay_tree_compare_ints, 0, 0);
629 superset_entry->has_zero_child = 0;
630 splay_tree_insert (alias_sets, (splay_tree_key) superset,
631 (splay_tree_value) superset_entry);
632 }
633
634 if (subset == 0)
635 superset_entry->has_zero_child = 1;
636 else
637 {
638 subset_entry = get_alias_set_entry (subset);
639 /* If there is an entry for the subset, enter all of its children
640 (if they are not already present) as children of the SUPERSET. */
641 if (subset_entry)
642 {
643 if (subset_entry->has_zero_child)
644 superset_entry->has_zero_child = 1;
645
646 splay_tree_foreach (subset_entry->children, insert_subset_children,
647 superset_entry->children);
648 }
649
650 /* Enter the SUBSET itself as a child of the SUPERSET. */
651 splay_tree_insert (superset_entry->children,
652 (splay_tree_key) subset, 0);
653 }
654 }
655
656 /* Record that component types of TYPE, if any, are part of that type for
657 aliasing purposes. For record types, we only record component types
658 for fields that are marked addressable. For array types, we always
659 record the component types, so the front end should not call this
660 function if the individual component aren't addressable. */
661
662 void
663 record_component_aliases (type)
664 tree type;
665 {
666 HOST_WIDE_INT superset = get_alias_set (type);
667 tree field;
668
669 if (superset == 0)
670 return;
671
672 switch (TREE_CODE (type))
673 {
674 case ARRAY_TYPE:
675 if (! TYPE_NONALIASED_COMPONENT (type))
676 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
677 break;
678
679 case RECORD_TYPE:
680 case UNION_TYPE:
681 case QUAL_UNION_TYPE:
682 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
683 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
684 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
685 break;
686
687 case COMPLEX_TYPE:
688 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
689 break;
690
691 default:
692 break;
693 }
694 }
695
696 /* Allocate an alias set for use in storing and reading from the varargs
697 spill area. */
698
699 HOST_WIDE_INT
700 get_varargs_alias_set ()
701 {
702 static HOST_WIDE_INT set = -1;
703
704 if (set == -1)
705 set = new_alias_set ();
706
707 return set;
708 }
709
710 /* Likewise, but used for the fixed portions of the frame, e.g., register
711 save areas. */
712
713 HOST_WIDE_INT
714 get_frame_alias_set ()
715 {
716 static HOST_WIDE_INT set = -1;
717
718 if (set == -1)
719 set = new_alias_set ();
720
721 return set;
722 }
723
724 /* Inside SRC, the source of a SET, find a base address. */
725
726 static rtx
727 find_base_value (src)
728 rtx src;
729 {
730 unsigned int regno;
731 switch (GET_CODE (src))
732 {
733 case SYMBOL_REF:
734 case LABEL_REF:
735 return src;
736
737 case REG:
738 regno = REGNO (src);
739 /* At the start of a function, argument registers have known base
740 values which may be lost later. Returning an ADDRESS
741 expression here allows optimization based on argument values
742 even when the argument registers are used for other purposes. */
743 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
744 return new_reg_base_value[regno];
745
746 /* If a pseudo has a known base value, return it. Do not do this
747 for hard regs since it can result in a circular dependency
748 chain for registers which have values at function entry.
749
750 The test above is not sufficient because the scheduler may move
751 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
752 if (regno >= FIRST_PSEUDO_REGISTER
753 && regno < reg_base_value_size
754 && reg_base_value[regno])
755 return reg_base_value[regno];
756
757 return src;
758
759 case MEM:
760 /* Check for an argument passed in memory. Only record in the
761 copying-arguments block; it is too hard to track changes
762 otherwise. */
763 if (copying_arguments
764 && (XEXP (src, 0) == arg_pointer_rtx
765 || (GET_CODE (XEXP (src, 0)) == PLUS
766 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
767 return gen_rtx_ADDRESS (VOIDmode, src);
768 return 0;
769
770 case CONST:
771 src = XEXP (src, 0);
772 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
773 break;
774
775 /* ... fall through ... */
776
777 case PLUS:
778 case MINUS:
779 {
780 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
781
782 /* If either operand is a REG, then see if we already have
783 a known value for it. */
784 if (GET_CODE (src_0) == REG)
785 {
786 temp = find_base_value (src_0);
787 if (temp != 0)
788 src_0 = temp;
789 }
790
791 if (GET_CODE (src_1) == REG)
792 {
793 temp = find_base_value (src_1);
794 if (temp!= 0)
795 src_1 = temp;
796 }
797
798 /* Guess which operand is the base address:
799 If either operand is a symbol, then it is the base. If
800 either operand is a CONST_INT, then the other is the base. */
801 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
802 return find_base_value (src_0);
803 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
804 return find_base_value (src_1);
805
806 /* This might not be necessary anymore:
807 If either operand is a REG that is a known pointer, then it
808 is the base. */
809 else if (GET_CODE (src_0) == REG && REG_POINTER (src_0))
810 return find_base_value (src_0);
811 else if (GET_CODE (src_1) == REG && REG_POINTER (src_1))
812 return find_base_value (src_1);
813
814 return 0;
815 }
816
817 case LO_SUM:
818 /* The standard form is (lo_sum reg sym) so look only at the
819 second operand. */
820 return find_base_value (XEXP (src, 1));
821
822 case AND:
823 /* If the second operand is constant set the base
824 address to the first operand. */
825 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
826 return find_base_value (XEXP (src, 0));
827 return 0;
828
829 case TRUNCATE:
830 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
831 break;
832 /* Fall through. */
833 case ZERO_EXTEND:
834 case SIGN_EXTEND: /* used for NT/Alpha pointers */
835 case HIGH:
836 return find_base_value (XEXP (src, 0));
837
838 default:
839 break;
840 }
841
842 return 0;
843 }
844
845 /* Called from init_alias_analysis indirectly through note_stores. */
846
847 /* While scanning insns to find base values, reg_seen[N] is nonzero if
848 register N has been set in this function. */
849 static char *reg_seen;
850
851 /* Addresses which are known not to alias anything else are identified
852 by a unique integer. */
853 static int unique_id;
854
855 static void
856 record_set (dest, set, data)
857 rtx dest, set;
858 void *data ATTRIBUTE_UNUSED;
859 {
860 unsigned regno;
861 rtx src;
862
863 if (GET_CODE (dest) != REG)
864 return;
865
866 regno = REGNO (dest);
867
868 if (regno >= reg_base_value_size)
869 abort ();
870
871 if (set)
872 {
873 /* A CLOBBER wipes out any old value but does not prevent a previously
874 unset register from acquiring a base address (i.e. reg_seen is not
875 set). */
876 if (GET_CODE (set) == CLOBBER)
877 {
878 new_reg_base_value[regno] = 0;
879 return;
880 }
881 src = SET_SRC (set);
882 }
883 else
884 {
885 if (reg_seen[regno])
886 {
887 new_reg_base_value[regno] = 0;
888 return;
889 }
890 reg_seen[regno] = 1;
891 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
892 GEN_INT (unique_id++));
893 return;
894 }
895
896 /* This is not the first set. If the new value is not related to the
897 old value, forget the base value. Note that the following code is
898 not detected:
899 extern int x, y; int *p = &x; p += (&y-&x);
900 ANSI C does not allow computing the difference of addresses
901 of distinct top level objects. */
902 if (new_reg_base_value[regno])
903 switch (GET_CODE (src))
904 {
905 case LO_SUM:
906 case MINUS:
907 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
908 new_reg_base_value[regno] = 0;
909 break;
910 case PLUS:
911 /* If the value we add in the PLUS is also a valid base value,
912 this might be the actual base value, and the original value
913 an index. */
914 {
915 rtx other = NULL_RTX;
916
917 if (XEXP (src, 0) == dest)
918 other = XEXP (src, 1);
919 else if (XEXP (src, 1) == dest)
920 other = XEXP (src, 0);
921
922 if (! other || find_base_value (other))
923 new_reg_base_value[regno] = 0;
924 break;
925 }
926 case AND:
927 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
928 new_reg_base_value[regno] = 0;
929 break;
930 default:
931 new_reg_base_value[regno] = 0;
932 break;
933 }
934 /* If this is the first set of a register, record the value. */
935 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
936 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
937 new_reg_base_value[regno] = find_base_value (src);
938
939 reg_seen[regno] = 1;
940 }
941
942 /* Called from loop optimization when a new pseudo-register is
943 created. It indicates that REGNO is being set to VAL. f INVARIANT
944 is true then this value also describes an invariant relationship
945 which can be used to deduce that two registers with unknown values
946 are different. */
947
948 void
949 record_base_value (regno, val, invariant)
950 unsigned int regno;
951 rtx val;
952 int invariant;
953 {
954 if (regno >= reg_base_value_size)
955 return;
956
957 if (invariant && alias_invariant)
958 alias_invariant[regno] = val;
959
960 if (GET_CODE (val) == REG)
961 {
962 if (REGNO (val) < reg_base_value_size)
963 reg_base_value[regno] = reg_base_value[REGNO (val)];
964
965 return;
966 }
967
968 reg_base_value[regno] = find_base_value (val);
969 }
970
971 /* Clear alias info for a register. This is used if an RTL transformation
972 changes the value of a register. This is used in flow by AUTO_INC_DEC
973 optimizations. We don't need to clear reg_base_value, since flow only
974 changes the offset. */
975
976 void
977 clear_reg_alias_info (reg)
978 rtx reg;
979 {
980 unsigned int regno = REGNO (reg);
981
982 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
983 reg_known_value[regno] = reg;
984 }
985
986 /* Returns a canonical version of X, from the point of view alias
987 analysis. (For example, if X is a MEM whose address is a register,
988 and the register has a known value (say a SYMBOL_REF), then a MEM
989 whose address is the SYMBOL_REF is returned.) */
990
991 rtx
992 canon_rtx (x)
993 rtx x;
994 {
995 /* Recursively look for equivalences. */
996 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
997 && REGNO (x) < reg_known_value_size)
998 return reg_known_value[REGNO (x)] == x
999 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1000 else if (GET_CODE (x) == PLUS)
1001 {
1002 rtx x0 = canon_rtx (XEXP (x, 0));
1003 rtx x1 = canon_rtx (XEXP (x, 1));
1004
1005 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1006 {
1007 if (GET_CODE (x0) == CONST_INT)
1008 return plus_constant (x1, INTVAL (x0));
1009 else if (GET_CODE (x1) == CONST_INT)
1010 return plus_constant (x0, INTVAL (x1));
1011 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1012 }
1013 }
1014
1015 /* This gives us much better alias analysis when called from
1016 the loop optimizer. Note we want to leave the original
1017 MEM alone, but need to return the canonicalized MEM with
1018 all the flags with their original values. */
1019 else if (GET_CODE (x) == MEM)
1020 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1021
1022 return x;
1023 }
1024
1025 /* Return 1 if X and Y are identical-looking rtx's.
1026
1027 We use the data in reg_known_value above to see if two registers with
1028 different numbers are, in fact, equivalent. */
1029
1030 static int
1031 rtx_equal_for_memref_p (x, y)
1032 rtx x, y;
1033 {
1034 int i;
1035 int j;
1036 enum rtx_code code;
1037 const char *fmt;
1038
1039 if (x == 0 && y == 0)
1040 return 1;
1041 if (x == 0 || y == 0)
1042 return 0;
1043
1044 x = canon_rtx (x);
1045 y = canon_rtx (y);
1046
1047 if (x == y)
1048 return 1;
1049
1050 code = GET_CODE (x);
1051 /* Rtx's of different codes cannot be equal. */
1052 if (code != GET_CODE (y))
1053 return 0;
1054
1055 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1056 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1057
1058 if (GET_MODE (x) != GET_MODE (y))
1059 return 0;
1060
1061 /* Some RTL can be compared without a recursive examination. */
1062 switch (code)
1063 {
1064 case VALUE:
1065 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1066
1067 case REG:
1068 return REGNO (x) == REGNO (y);
1069
1070 case LABEL_REF:
1071 return XEXP (x, 0) == XEXP (y, 0);
1072
1073 case SYMBOL_REF:
1074 return XSTR (x, 0) == XSTR (y, 0);
1075
1076 case CONST_INT:
1077 case CONST_DOUBLE:
1078 /* There's no need to compare the contents of CONST_DOUBLEs or
1079 CONST_INTs because pointer equality is a good enough
1080 comparison for these nodes. */
1081 return 0;
1082
1083 case ADDRESSOF:
1084 return (XINT (x, 1) == XINT (y, 1)
1085 && rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)));
1086
1087 default:
1088 break;
1089 }
1090
1091 /* For commutative operations, the RTX match if the operand match in any
1092 order. Also handle the simple binary and unary cases without a loop. */
1093 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1094 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1095 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1096 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1097 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1098 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1099 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1100 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
1101 else if (GET_RTX_CLASS (code) == '1')
1102 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
1103
1104 /* Compare the elements. If any pair of corresponding elements
1105 fail to match, return 0 for the whole things.
1106
1107 Limit cases to types which actually appear in addresses. */
1108
1109 fmt = GET_RTX_FORMAT (code);
1110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1111 {
1112 switch (fmt[i])
1113 {
1114 case 'i':
1115 if (XINT (x, i) != XINT (y, i))
1116 return 0;
1117 break;
1118
1119 case 'E':
1120 /* Two vectors must have the same length. */
1121 if (XVECLEN (x, i) != XVECLEN (y, i))
1122 return 0;
1123
1124 /* And the corresponding elements must match. */
1125 for (j = 0; j < XVECLEN (x, i); j++)
1126 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
1127 XVECEXP (y, i, j)) == 0)
1128 return 0;
1129 break;
1130
1131 case 'e':
1132 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
1133 return 0;
1134 break;
1135
1136 /* This can happen for asm operands. */
1137 case 's':
1138 if (strcmp (XSTR (x, i), XSTR (y, i)))
1139 return 0;
1140 break;
1141
1142 /* This can happen for an asm which clobbers memory. */
1143 case '0':
1144 break;
1145
1146 /* It is believed that rtx's at this level will never
1147 contain anything but integers and other rtx's,
1148 except for within LABEL_REFs and SYMBOL_REFs. */
1149 default:
1150 abort ();
1151 }
1152 }
1153 return 1;
1154 }
1155
1156 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1157 X and return it, or return 0 if none found. */
1158
1159 static rtx
1160 find_symbolic_term (x)
1161 rtx x;
1162 {
1163 int i;
1164 enum rtx_code code;
1165 const char *fmt;
1166
1167 code = GET_CODE (x);
1168 if (code == SYMBOL_REF || code == LABEL_REF)
1169 return x;
1170 if (GET_RTX_CLASS (code) == 'o')
1171 return 0;
1172
1173 fmt = GET_RTX_FORMAT (code);
1174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1175 {
1176 rtx t;
1177
1178 if (fmt[i] == 'e')
1179 {
1180 t = find_symbolic_term (XEXP (x, i));
1181 if (t != 0)
1182 return t;
1183 }
1184 else if (fmt[i] == 'E')
1185 break;
1186 }
1187 return 0;
1188 }
1189
1190 static rtx
1191 find_base_term (x)
1192 rtx x;
1193 {
1194 cselib_val *val;
1195 struct elt_loc_list *l;
1196
1197 #if defined (FIND_BASE_TERM)
1198 /* Try machine-dependent ways to find the base term. */
1199 x = FIND_BASE_TERM (x);
1200 #endif
1201
1202 switch (GET_CODE (x))
1203 {
1204 case REG:
1205 return REG_BASE_VALUE (x);
1206
1207 case ZERO_EXTEND:
1208 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1209 case HIGH:
1210 case PRE_INC:
1211 case PRE_DEC:
1212 case POST_INC:
1213 case POST_DEC:
1214 return find_base_term (XEXP (x, 0));
1215
1216 case VALUE:
1217 val = CSELIB_VAL_PTR (x);
1218 for (l = val->locs; l; l = l->next)
1219 if ((x = find_base_term (l->loc)) != 0)
1220 return x;
1221 return 0;
1222
1223 case CONST:
1224 x = XEXP (x, 0);
1225 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1226 return 0;
1227 /* fall through */
1228 case LO_SUM:
1229 case PLUS:
1230 case MINUS:
1231 {
1232 rtx tmp1 = XEXP (x, 0);
1233 rtx tmp2 = XEXP (x, 1);
1234
1235 /* This is a little bit tricky since we have to determine which of
1236 the two operands represents the real base address. Otherwise this
1237 routine may return the index register instead of the base register.
1238
1239 That may cause us to believe no aliasing was possible, when in
1240 fact aliasing is possible.
1241
1242 We use a few simple tests to guess the base register. Additional
1243 tests can certainly be added. For example, if one of the operands
1244 is a shift or multiply, then it must be the index register and the
1245 other operand is the base register. */
1246
1247 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1248 return find_base_term (tmp2);
1249
1250 /* If either operand is known to be a pointer, then use it
1251 to determine the base term. */
1252 if (REG_P (tmp1) && REG_POINTER (tmp1))
1253 return find_base_term (tmp1);
1254
1255 if (REG_P (tmp2) && REG_POINTER (tmp2))
1256 return find_base_term (tmp2);
1257
1258 /* Neither operand was known to be a pointer. Go ahead and find the
1259 base term for both operands. */
1260 tmp1 = find_base_term (tmp1);
1261 tmp2 = find_base_term (tmp2);
1262
1263 /* If either base term is named object or a special address
1264 (like an argument or stack reference), then use it for the
1265 base term. */
1266 if (tmp1 != 0
1267 && (GET_CODE (tmp1) == SYMBOL_REF
1268 || GET_CODE (tmp1) == LABEL_REF
1269 || (GET_CODE (tmp1) == ADDRESS
1270 && GET_MODE (tmp1) != VOIDmode)))
1271 return tmp1;
1272
1273 if (tmp2 != 0
1274 && (GET_CODE (tmp2) == SYMBOL_REF
1275 || GET_CODE (tmp2) == LABEL_REF
1276 || (GET_CODE (tmp2) == ADDRESS
1277 && GET_MODE (tmp2) != VOIDmode)))
1278 return tmp2;
1279
1280 /* We could not determine which of the two operands was the
1281 base register and which was the index. So we can determine
1282 nothing from the base alias check. */
1283 return 0;
1284 }
1285
1286 case AND:
1287 if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
1288 return REG_BASE_VALUE (XEXP (x, 0));
1289 return 0;
1290
1291 case SYMBOL_REF:
1292 case LABEL_REF:
1293 return x;
1294
1295 case ADDRESSOF:
1296 return REG_BASE_VALUE (frame_pointer_rtx);
1297
1298 default:
1299 return 0;
1300 }
1301 }
1302
1303 /* Return 0 if the addresses X and Y are known to point to different
1304 objects, 1 if they might be pointers to the same object. */
1305
1306 static int
1307 base_alias_check (x, y, x_mode, y_mode)
1308 rtx x, y;
1309 enum machine_mode x_mode, y_mode;
1310 {
1311 rtx x_base = find_base_term (x);
1312 rtx y_base = find_base_term (y);
1313
1314 /* If the address itself has no known base see if a known equivalent
1315 value has one. If either address still has no known base, nothing
1316 is known about aliasing. */
1317 if (x_base == 0)
1318 {
1319 rtx x_c;
1320
1321 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1322 return 1;
1323
1324 x_base = find_base_term (x_c);
1325 if (x_base == 0)
1326 return 1;
1327 }
1328
1329 if (y_base == 0)
1330 {
1331 rtx y_c;
1332 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1333 return 1;
1334
1335 y_base = find_base_term (y_c);
1336 if (y_base == 0)
1337 return 1;
1338 }
1339
1340 /* If the base addresses are equal nothing is known about aliasing. */
1341 if (rtx_equal_p (x_base, y_base))
1342 return 1;
1343
1344 /* The base addresses of the read and write are different expressions.
1345 If they are both symbols and they are not accessed via AND, there is
1346 no conflict. We can bring knowledge of object alignment into play
1347 here. For example, on alpha, "char a, b;" can alias one another,
1348 though "char a; long b;" cannot. */
1349 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1350 {
1351 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1352 return 1;
1353 if (GET_CODE (x) == AND
1354 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1355 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1356 return 1;
1357 if (GET_CODE (y) == AND
1358 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1359 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1360 return 1;
1361 /* Differing symbols never alias. */
1362 return 0;
1363 }
1364
1365 /* If one address is a stack reference there can be no alias:
1366 stack references using different base registers do not alias,
1367 a stack reference can not alias a parameter, and a stack reference
1368 can not alias a global. */
1369 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1370 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1371 return 0;
1372
1373 if (! flag_argument_noalias)
1374 return 1;
1375
1376 if (flag_argument_noalias > 1)
1377 return 0;
1378
1379 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1380 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1381 }
1382
1383 /* Convert the address X into something we can use. This is done by returning
1384 it unchanged unless it is a value; in the latter case we call cselib to get
1385 a more useful rtx. */
1386
1387 rtx
1388 get_addr (x)
1389 rtx x;
1390 {
1391 cselib_val *v;
1392 struct elt_loc_list *l;
1393
1394 if (GET_CODE (x) != VALUE)
1395 return x;
1396 v = CSELIB_VAL_PTR (x);
1397 for (l = v->locs; l; l = l->next)
1398 if (CONSTANT_P (l->loc))
1399 return l->loc;
1400 for (l = v->locs; l; l = l->next)
1401 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1402 return l->loc;
1403 if (v->locs)
1404 return v->locs->loc;
1405 return x;
1406 }
1407
1408 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1409 where SIZE is the size in bytes of the memory reference. If ADDR
1410 is not modified by the memory reference then ADDR is returned. */
1411
1412 rtx
1413 addr_side_effect_eval (addr, size, n_refs)
1414 rtx addr;
1415 int size;
1416 int n_refs;
1417 {
1418 int offset = 0;
1419
1420 switch (GET_CODE (addr))
1421 {
1422 case PRE_INC:
1423 offset = (n_refs + 1) * size;
1424 break;
1425 case PRE_DEC:
1426 offset = -(n_refs + 1) * size;
1427 break;
1428 case POST_INC:
1429 offset = n_refs * size;
1430 break;
1431 case POST_DEC:
1432 offset = -n_refs * size;
1433 break;
1434
1435 default:
1436 return addr;
1437 }
1438
1439 if (offset)
1440 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1441 else
1442 addr = XEXP (addr, 0);
1443
1444 return addr;
1445 }
1446
1447 /* Return nonzero if X and Y (memory addresses) could reference the
1448 same location in memory. C is an offset accumulator. When
1449 C is nonzero, we are testing aliases between X and Y + C.
1450 XSIZE is the size in bytes of the X reference,
1451 similarly YSIZE is the size in bytes for Y.
1452
1453 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1454 referenced (the reference was BLKmode), so make the most pessimistic
1455 assumptions.
1456
1457 If XSIZE or YSIZE is negative, we may access memory outside the object
1458 being referenced as a side effect. This can happen when using AND to
1459 align memory references, as is done on the Alpha.
1460
1461 Nice to notice that varying addresses cannot conflict with fp if no
1462 local variables had their addresses taken, but that's too hard now. */
1463
1464 static int
1465 memrefs_conflict_p (xsize, x, ysize, y, c)
1466 rtx x, y;
1467 int xsize, ysize;
1468 HOST_WIDE_INT c;
1469 {
1470 if (GET_CODE (x) == VALUE)
1471 x = get_addr (x);
1472 if (GET_CODE (y) == VALUE)
1473 y = get_addr (y);
1474 if (GET_CODE (x) == HIGH)
1475 x = XEXP (x, 0);
1476 else if (GET_CODE (x) == LO_SUM)
1477 x = XEXP (x, 1);
1478 else
1479 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
1480 if (GET_CODE (y) == HIGH)
1481 y = XEXP (y, 0);
1482 else if (GET_CODE (y) == LO_SUM)
1483 y = XEXP (y, 1);
1484 else
1485 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
1486
1487 if (rtx_equal_for_memref_p (x, y))
1488 {
1489 if (xsize <= 0 || ysize <= 0)
1490 return 1;
1491 if (c >= 0 && xsize > c)
1492 return 1;
1493 if (c < 0 && ysize+c > 0)
1494 return 1;
1495 return 0;
1496 }
1497
1498 /* This code used to check for conflicts involving stack references and
1499 globals but the base address alias code now handles these cases. */
1500
1501 if (GET_CODE (x) == PLUS)
1502 {
1503 /* The fact that X is canonicalized means that this
1504 PLUS rtx is canonicalized. */
1505 rtx x0 = XEXP (x, 0);
1506 rtx x1 = XEXP (x, 1);
1507
1508 if (GET_CODE (y) == PLUS)
1509 {
1510 /* The fact that Y is canonicalized means that this
1511 PLUS rtx is canonicalized. */
1512 rtx y0 = XEXP (y, 0);
1513 rtx y1 = XEXP (y, 1);
1514
1515 if (rtx_equal_for_memref_p (x1, y1))
1516 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1517 if (rtx_equal_for_memref_p (x0, y0))
1518 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1519 if (GET_CODE (x1) == CONST_INT)
1520 {
1521 if (GET_CODE (y1) == CONST_INT)
1522 return memrefs_conflict_p (xsize, x0, ysize, y0,
1523 c - INTVAL (x1) + INTVAL (y1));
1524 else
1525 return memrefs_conflict_p (xsize, x0, ysize, y,
1526 c - INTVAL (x1));
1527 }
1528 else if (GET_CODE (y1) == CONST_INT)
1529 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1530
1531 return 1;
1532 }
1533 else if (GET_CODE (x1) == CONST_INT)
1534 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1535 }
1536 else if (GET_CODE (y) == PLUS)
1537 {
1538 /* The fact that Y is canonicalized means that this
1539 PLUS rtx is canonicalized. */
1540 rtx y0 = XEXP (y, 0);
1541 rtx y1 = XEXP (y, 1);
1542
1543 if (GET_CODE (y1) == CONST_INT)
1544 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1545 else
1546 return 1;
1547 }
1548
1549 if (GET_CODE (x) == GET_CODE (y))
1550 switch (GET_CODE (x))
1551 {
1552 case MULT:
1553 {
1554 /* Handle cases where we expect the second operands to be the
1555 same, and check only whether the first operand would conflict
1556 or not. */
1557 rtx x0, y0;
1558 rtx x1 = canon_rtx (XEXP (x, 1));
1559 rtx y1 = canon_rtx (XEXP (y, 1));
1560 if (! rtx_equal_for_memref_p (x1, y1))
1561 return 1;
1562 x0 = canon_rtx (XEXP (x, 0));
1563 y0 = canon_rtx (XEXP (y, 0));
1564 if (rtx_equal_for_memref_p (x0, y0))
1565 return (xsize == 0 || ysize == 0
1566 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1567
1568 /* Can't properly adjust our sizes. */
1569 if (GET_CODE (x1) != CONST_INT)
1570 return 1;
1571 xsize /= INTVAL (x1);
1572 ysize /= INTVAL (x1);
1573 c /= INTVAL (x1);
1574 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1575 }
1576
1577 case REG:
1578 /* Are these registers known not to be equal? */
1579 if (alias_invariant)
1580 {
1581 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1582 rtx i_x, i_y; /* invariant relationships of X and Y */
1583
1584 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1585 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1586
1587 if (i_x == 0 && i_y == 0)
1588 break;
1589
1590 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1591 ysize, i_y ? i_y : y, c))
1592 return 0;
1593 }
1594 break;
1595
1596 default:
1597 break;
1598 }
1599
1600 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1601 as an access with indeterminate size. Assume that references
1602 besides AND are aligned, so if the size of the other reference is
1603 at least as large as the alignment, assume no other overlap. */
1604 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1605 {
1606 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1607 xsize = -1;
1608 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1609 }
1610 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1611 {
1612 /* ??? If we are indexing far enough into the array/structure, we
1613 may yet be able to determine that we can not overlap. But we
1614 also need to that we are far enough from the end not to overlap
1615 a following reference, so we do nothing with that for now. */
1616 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1617 ysize = -1;
1618 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1619 }
1620
1621 if (GET_CODE (x) == ADDRESSOF)
1622 {
1623 if (y == frame_pointer_rtx
1624 || GET_CODE (y) == ADDRESSOF)
1625 return xsize <= 0 || ysize <= 0;
1626 }
1627 if (GET_CODE (y) == ADDRESSOF)
1628 {
1629 if (x == frame_pointer_rtx)
1630 return xsize <= 0 || ysize <= 0;
1631 }
1632
1633 if (CONSTANT_P (x))
1634 {
1635 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1636 {
1637 c += (INTVAL (y) - INTVAL (x));
1638 return (xsize <= 0 || ysize <= 0
1639 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1640 }
1641
1642 if (GET_CODE (x) == CONST)
1643 {
1644 if (GET_CODE (y) == CONST)
1645 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1646 ysize, canon_rtx (XEXP (y, 0)), c);
1647 else
1648 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1649 ysize, y, c);
1650 }
1651 if (GET_CODE (y) == CONST)
1652 return memrefs_conflict_p (xsize, x, ysize,
1653 canon_rtx (XEXP (y, 0)), c);
1654
1655 if (CONSTANT_P (y))
1656 return (xsize <= 0 || ysize <= 0
1657 || (rtx_equal_for_memref_p (x, y)
1658 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1659
1660 return 1;
1661 }
1662 return 1;
1663 }
1664
1665 /* Functions to compute memory dependencies.
1666
1667 Since we process the insns in execution order, we can build tables
1668 to keep track of what registers are fixed (and not aliased), what registers
1669 are varying in known ways, and what registers are varying in unknown
1670 ways.
1671
1672 If both memory references are volatile, then there must always be a
1673 dependence between the two references, since their order can not be
1674 changed. A volatile and non-volatile reference can be interchanged
1675 though.
1676
1677 A MEM_IN_STRUCT reference at a non-AND varying address can never
1678 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1679 also must allow AND addresses, because they may generate accesses
1680 outside the object being referenced. This is used to generate
1681 aligned addresses from unaligned addresses, for instance, the alpha
1682 storeqi_unaligned pattern. */
1683
1684 /* Read dependence: X is read after read in MEM takes place. There can
1685 only be a dependence here if both reads are volatile. */
1686
1687 int
1688 read_dependence (mem, x)
1689 rtx mem;
1690 rtx x;
1691 {
1692 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1693 }
1694
1695 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1696 MEM2 is a reference to a structure at a varying address, or returns
1697 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1698 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1699 to decide whether or not an address may vary; it should return
1700 nonzero whenever variation is possible.
1701 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1702
1703 static rtx
1704 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1705 rtx mem1, mem2;
1706 rtx mem1_addr, mem2_addr;
1707 int (*varies_p) PARAMS ((rtx, int));
1708 {
1709 if (! flag_strict_aliasing)
1710 return NULL_RTX;
1711
1712 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1713 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1714 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1715 varying address. */
1716 return mem1;
1717
1718 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1719 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1720 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1721 varying address. */
1722 return mem2;
1723
1724 return NULL_RTX;
1725 }
1726
1727 /* Returns nonzero if something about the mode or address format MEM1
1728 indicates that it might well alias *anything*. */
1729
1730 static int
1731 aliases_everything_p (mem)
1732 rtx mem;
1733 {
1734 if (GET_CODE (XEXP (mem, 0)) == AND)
1735 /* If the address is an AND, its very hard to know at what it is
1736 actually pointing. */
1737 return 1;
1738
1739 return 0;
1740 }
1741
1742 /* Return true if we can determine that the fields referenced cannot
1743 overlap for any pair of objects. */
1744
1745 static bool
1746 nonoverlapping_component_refs_p (x, y)
1747 tree x, y;
1748 {
1749 tree fieldx, fieldy, typex, typey, orig_y;
1750
1751 do
1752 {
1753 /* The comparison has to be done at a common type, since we don't
1754 know how the inheritance hierarchy works. */
1755 orig_y = y;
1756 do
1757 {
1758 fieldx = TREE_OPERAND (x, 1);
1759 typex = DECL_FIELD_CONTEXT (fieldx);
1760
1761 y = orig_y;
1762 do
1763 {
1764 fieldy = TREE_OPERAND (y, 1);
1765 typey = DECL_FIELD_CONTEXT (fieldy);
1766
1767 if (typex == typey)
1768 goto found;
1769
1770 y = TREE_OPERAND (y, 0);
1771 }
1772 while (y && TREE_CODE (y) == COMPONENT_REF);
1773
1774 x = TREE_OPERAND (x, 0);
1775 }
1776 while (x && TREE_CODE (x) == COMPONENT_REF);
1777
1778 /* Never found a common type. */
1779 return false;
1780
1781 found:
1782 /* If we're left with accessing different fields of a structure,
1783 then no overlap. */
1784 if (TREE_CODE (typex) == RECORD_TYPE
1785 && fieldx != fieldy)
1786 return true;
1787
1788 /* The comparison on the current field failed. If we're accessing
1789 a very nested structure, look at the next outer level. */
1790 x = TREE_OPERAND (x, 0);
1791 y = TREE_OPERAND (y, 0);
1792 }
1793 while (x && y
1794 && TREE_CODE (x) == COMPONENT_REF
1795 && TREE_CODE (y) == COMPONENT_REF);
1796
1797 return false;
1798 }
1799
1800 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1801
1802 static tree
1803 decl_for_component_ref (x)
1804 tree x;
1805 {
1806 do
1807 {
1808 x = TREE_OPERAND (x, 0);
1809 }
1810 while (x && TREE_CODE (x) == COMPONENT_REF);
1811
1812 return x && DECL_P (x) ? x : NULL_TREE;
1813 }
1814
1815 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1816 offset of the field reference. */
1817
1818 static rtx
1819 adjust_offset_for_component_ref (x, offset)
1820 tree x;
1821 rtx offset;
1822 {
1823 HOST_WIDE_INT ioffset;
1824
1825 if (! offset)
1826 return NULL_RTX;
1827
1828 ioffset = INTVAL (offset);
1829 do
1830 {
1831 tree field = TREE_OPERAND (x, 1);
1832
1833 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1834 return NULL_RTX;
1835 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1836 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1837 / BITS_PER_UNIT));
1838
1839 x = TREE_OPERAND (x, 0);
1840 }
1841 while (x && TREE_CODE (x) == COMPONENT_REF);
1842
1843 return GEN_INT (ioffset);
1844 }
1845
1846 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1847 X and Y and they do not overlap. */
1848
1849 static int
1850 nonoverlapping_memrefs_p (x, y)
1851 rtx x, y;
1852 {
1853 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1854 rtx rtlx, rtly;
1855 rtx basex, basey;
1856 rtx moffsetx, moffsety;
1857 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1858
1859 /* Unless both have exprs, we can't tell anything. */
1860 if (exprx == 0 || expry == 0)
1861 return 0;
1862
1863 /* If both are field references, we may be able to determine something. */
1864 if (TREE_CODE (exprx) == COMPONENT_REF
1865 && TREE_CODE (expry) == COMPONENT_REF
1866 && nonoverlapping_component_refs_p (exprx, expry))
1867 return 1;
1868
1869 /* If the field reference test failed, look at the DECLs involved. */
1870 moffsetx = MEM_OFFSET (x);
1871 if (TREE_CODE (exprx) == COMPONENT_REF)
1872 {
1873 tree t = decl_for_component_ref (exprx);
1874 if (! t)
1875 return 0;
1876 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1877 exprx = t;
1878 }
1879 moffsety = MEM_OFFSET (y);
1880 if (TREE_CODE (expry) == COMPONENT_REF)
1881 {
1882 tree t = decl_for_component_ref (expry);
1883 if (! t)
1884 return 0;
1885 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1886 expry = t;
1887 }
1888
1889 if (! DECL_P (exprx) || ! DECL_P (expry))
1890 return 0;
1891
1892 rtlx = DECL_RTL (exprx);
1893 rtly = DECL_RTL (expry);
1894
1895 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1896 can't overlap unless they are the same because we never reuse that part
1897 of the stack frame used for locals for spilled pseudos. */
1898 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
1899 && ! rtx_equal_p (rtlx, rtly))
1900 return 1;
1901
1902 /* Get the base and offsets of both decls. If either is a register, we
1903 know both are and are the same, so use that as the base. The only
1904 we can avoid overlap is if we can deduce that they are nonoverlapping
1905 pieces of that decl, which is very rare. */
1906 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
1907 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
1908 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
1909
1910 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
1911 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
1912 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
1913
1914 /* If the bases are different, we know they do not overlap if both
1915 are constants or if one is a constant and the other a pointer into the
1916 stack frame. Otherwise a different base means we can't tell if they
1917 overlap or not. */
1918 if (! rtx_equal_p (basex, basey))
1919 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
1920 || (CONSTANT_P (basex) && REG_P (basey)
1921 && REGNO_PTR_FRAME_P (REGNO (basey)))
1922 || (CONSTANT_P (basey) && REG_P (basex)
1923 && REGNO_PTR_FRAME_P (REGNO (basex))));
1924
1925 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
1926 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
1927 : -1);
1928 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
1929 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
1930 -1);
1931
1932 /* If we have an offset for either memref, it can update the values computed
1933 above. */
1934 if (moffsetx)
1935 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
1936 if (moffsety)
1937 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
1938
1939 /* If a memref has both a size and an offset, we can use the smaller size.
1940 We can't do this if the offset isn't known because we must view this
1941 memref as being anywhere inside the DECL's MEM. */
1942 if (MEM_SIZE (x) && moffsetx)
1943 sizex = INTVAL (MEM_SIZE (x));
1944 if (MEM_SIZE (y) && moffsety)
1945 sizey = INTVAL (MEM_SIZE (y));
1946
1947 /* Put the values of the memref with the lower offset in X's values. */
1948 if (offsetx > offsety)
1949 {
1950 tem = offsetx, offsetx = offsety, offsety = tem;
1951 tem = sizex, sizex = sizey, sizey = tem;
1952 }
1953
1954 /* If we don't know the size of the lower-offset value, we can't tell
1955 if they conflict. Otherwise, we do the test. */
1956 return sizex >= 0 && offsety > offsetx + sizex;
1957 }
1958
1959 /* True dependence: X is read after store in MEM takes place. */
1960
1961 int
1962 true_dependence (mem, mem_mode, x, varies)
1963 rtx mem;
1964 enum machine_mode mem_mode;
1965 rtx x;
1966 int (*varies) PARAMS ((rtx, int));
1967 {
1968 rtx x_addr, mem_addr;
1969 rtx base;
1970
1971 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1972 return 1;
1973
1974 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1975 return 0;
1976
1977 /* Unchanging memory can't conflict with non-unchanging memory.
1978 A non-unchanging read can conflict with a non-unchanging write.
1979 An unchanging read can conflict with an unchanging write since
1980 there may be a single store to this address to initialize it.
1981 Note that an unchanging store can conflict with a non-unchanging read
1982 since we have to make conservative assumptions when we have a
1983 record with readonly fields and we are copying the whole thing.
1984 Just fall through to the code below to resolve potential conflicts.
1985 This won't handle all cases optimally, but the possible performance
1986 loss should be negligible. */
1987 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
1988 return 0;
1989
1990 if (nonoverlapping_memrefs_p (mem, x))
1991 return 0;
1992
1993 if (mem_mode == VOIDmode)
1994 mem_mode = GET_MODE (mem);
1995
1996 x_addr = get_addr (XEXP (x, 0));
1997 mem_addr = get_addr (XEXP (mem, 0));
1998
1999 base = find_base_term (x_addr);
2000 if (base && (GET_CODE (base) == LABEL_REF
2001 || (GET_CODE (base) == SYMBOL_REF
2002 && CONSTANT_POOL_ADDRESS_P (base))))
2003 return 0;
2004
2005 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2006 return 0;
2007
2008 x_addr = canon_rtx (x_addr);
2009 mem_addr = canon_rtx (mem_addr);
2010
2011 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2012 SIZE_FOR_MODE (x), x_addr, 0))
2013 return 0;
2014
2015 if (aliases_everything_p (x))
2016 return 1;
2017
2018 /* We cannot use aliases_everything_p to test MEM, since we must look
2019 at MEM_MODE, rather than GET_MODE (MEM). */
2020 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2021 return 1;
2022
2023 /* In true_dependence we also allow BLKmode to alias anything. Why
2024 don't we do this in anti_dependence and output_dependence? */
2025 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2026 return 1;
2027
2028 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2029 varies);
2030 }
2031
2032 /* Canonical true dependence: X is read after store in MEM takes place.
2033 Variant of true_dependence which assumes MEM has already been
2034 canonicalized (hence we no longer do that here).
2035 The mem_addr argument has been added, since true_dependence computed
2036 this value prior to canonicalizing. */
2037
2038 int
2039 canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2040 rtx mem, mem_addr, x;
2041 enum machine_mode mem_mode;
2042 int (*varies) PARAMS ((rtx, int));
2043 {
2044 rtx x_addr;
2045
2046 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2047 return 1;
2048
2049 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2050 return 0;
2051
2052 /* If X is an unchanging read, then it can't possibly conflict with any
2053 non-unchanging store. It may conflict with an unchanging write though,
2054 because there may be a single store to this address to initialize it.
2055 Just fall through to the code below to resolve the case where we have
2056 both an unchanging read and an unchanging write. This won't handle all
2057 cases optimally, but the possible performance loss should be
2058 negligible. */
2059 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2060 return 0;
2061
2062 if (nonoverlapping_memrefs_p (x, mem))
2063 return 0;
2064
2065 x_addr = get_addr (XEXP (x, 0));
2066
2067 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2068 return 0;
2069
2070 x_addr = canon_rtx (x_addr);
2071 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2072 SIZE_FOR_MODE (x), x_addr, 0))
2073 return 0;
2074
2075 if (aliases_everything_p (x))
2076 return 1;
2077
2078 /* We cannot use aliases_everything_p to test MEM, since we must look
2079 at MEM_MODE, rather than GET_MODE (MEM). */
2080 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2081 return 1;
2082
2083 /* In true_dependence we also allow BLKmode to alias anything. Why
2084 don't we do this in anti_dependence and output_dependence? */
2085 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2086 return 1;
2087
2088 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2089 varies);
2090 }
2091
2092 /* Returns non-zero if a write to X might alias a previous read from
2093 (or, if WRITEP is non-zero, a write to) MEM. */
2094
2095 static int
2096 write_dependence_p (mem, x, writep)
2097 rtx mem;
2098 rtx x;
2099 int writep;
2100 {
2101 rtx x_addr, mem_addr;
2102 rtx fixed_scalar;
2103 rtx base;
2104
2105 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2106 return 1;
2107
2108 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2109 return 0;
2110
2111 /* Unchanging memory can't conflict with non-unchanging memory. */
2112 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2113 return 0;
2114
2115 /* If MEM is an unchanging read, then it can't possibly conflict with
2116 the store to X, because there is at most one store to MEM, and it must
2117 have occurred somewhere before MEM. */
2118 if (! writep && RTX_UNCHANGING_P (mem))
2119 return 0;
2120
2121 if (nonoverlapping_memrefs_p (x, mem))
2122 return 0;
2123
2124 x_addr = get_addr (XEXP (x, 0));
2125 mem_addr = get_addr (XEXP (mem, 0));
2126
2127 if (! writep)
2128 {
2129 base = find_base_term (mem_addr);
2130 if (base && (GET_CODE (base) == LABEL_REF
2131 || (GET_CODE (base) == SYMBOL_REF
2132 && CONSTANT_POOL_ADDRESS_P (base))))
2133 return 0;
2134 }
2135
2136 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2137 GET_MODE (mem)))
2138 return 0;
2139
2140 x_addr = canon_rtx (x_addr);
2141 mem_addr = canon_rtx (mem_addr);
2142
2143 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2144 SIZE_FOR_MODE (x), x_addr, 0))
2145 return 0;
2146
2147 fixed_scalar
2148 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2149 rtx_addr_varies_p);
2150
2151 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2152 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2153 }
2154
2155 /* Anti dependence: X is written after read in MEM takes place. */
2156
2157 int
2158 anti_dependence (mem, x)
2159 rtx mem;
2160 rtx x;
2161 {
2162 return write_dependence_p (mem, x, /*writep=*/0);
2163 }
2164
2165 /* Output dependence: X is written after store in MEM takes place. */
2166
2167 int
2168 output_dependence (mem, x)
2169 rtx mem;
2170 rtx x;
2171 {
2172 return write_dependence_p (mem, x, /*writep=*/1);
2173 }
2174
2175 /* Returns non-zero if X mentions something which is not
2176 local to the function and is not constant. */
2177
2178 static int
2179 nonlocal_mentioned_p (x)
2180 rtx x;
2181 {
2182 rtx base;
2183 RTX_CODE code;
2184 int regno;
2185
2186 code = GET_CODE (x);
2187
2188 if (GET_RTX_CLASS (code) == 'i')
2189 {
2190 /* Constant functions can be constant if they don't use
2191 scratch memory used to mark function w/o side effects. */
2192 if (code == CALL_INSN && CONST_OR_PURE_CALL_P (x))
2193 {
2194 x = CALL_INSN_FUNCTION_USAGE (x);
2195 if (x == 0)
2196 return 0;
2197 }
2198 else
2199 x = PATTERN (x);
2200 code = GET_CODE (x);
2201 }
2202
2203 switch (code)
2204 {
2205 case SUBREG:
2206 if (GET_CODE (SUBREG_REG (x)) == REG)
2207 {
2208 /* Global registers are not local. */
2209 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2210 && global_regs[subreg_regno (x)])
2211 return 1;
2212 return 0;
2213 }
2214 break;
2215
2216 case REG:
2217 regno = REGNO (x);
2218 /* Global registers are not local. */
2219 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2220 return 1;
2221 return 0;
2222
2223 case SCRATCH:
2224 case PC:
2225 case CC0:
2226 case CONST_INT:
2227 case CONST_DOUBLE:
2228 case CONST:
2229 case LABEL_REF:
2230 return 0;
2231
2232 case SYMBOL_REF:
2233 /* Constants in the function's constants pool are constant. */
2234 if (CONSTANT_POOL_ADDRESS_P (x))
2235 return 0;
2236 return 1;
2237
2238 case CALL:
2239 /* Non-constant calls and recursion are not local. */
2240 return 1;
2241
2242 case MEM:
2243 /* Be overly conservative and consider any volatile memory
2244 reference as not local. */
2245 if (MEM_VOLATILE_P (x))
2246 return 1;
2247 base = find_base_term (XEXP (x, 0));
2248 if (base)
2249 {
2250 /* A Pmode ADDRESS could be a reference via the structure value
2251 address or static chain. Such memory references are nonlocal.
2252
2253 Thus, we have to examine the contents of the ADDRESS to find
2254 out if this is a local reference or not. */
2255 if (GET_CODE (base) == ADDRESS
2256 && GET_MODE (base) == Pmode
2257 && (XEXP (base, 0) == stack_pointer_rtx
2258 || XEXP (base, 0) == arg_pointer_rtx
2259 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2260 || XEXP (base, 0) == hard_frame_pointer_rtx
2261 #endif
2262 || XEXP (base, 0) == frame_pointer_rtx))
2263 return 0;
2264 /* Constants in the function's constant pool are constant. */
2265 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2266 return 0;
2267 }
2268 return 1;
2269
2270 case UNSPEC_VOLATILE:
2271 case ASM_INPUT:
2272 return 1;
2273
2274 case ASM_OPERANDS:
2275 if (MEM_VOLATILE_P (x))
2276 return 1;
2277
2278 /* FALLTHROUGH */
2279
2280 default:
2281 break;
2282 }
2283
2284 /* Recursively scan the operands of this expression. */
2285
2286 {
2287 const char *fmt = GET_RTX_FORMAT (code);
2288 int i;
2289
2290 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2291 {
2292 if (fmt[i] == 'e' && XEXP (x, i))
2293 {
2294 if (nonlocal_mentioned_p (XEXP (x, i)))
2295 return 1;
2296 }
2297 else if (fmt[i] == 'E')
2298 {
2299 int j;
2300 for (j = 0; j < XVECLEN (x, i); j++)
2301 if (nonlocal_mentioned_p (XVECEXP (x, i, j)))
2302 return 1;
2303 }
2304 }
2305 }
2306
2307 return 0;
2308 }
2309
2310 /* Mark the function if it is constant. */
2311
2312 void
2313 mark_constant_function ()
2314 {
2315 rtx insn;
2316 int nonlocal_mentioned;
2317
2318 if (TREE_PUBLIC (current_function_decl)
2319 || TREE_READONLY (current_function_decl)
2320 || DECL_IS_PURE (current_function_decl)
2321 || TREE_THIS_VOLATILE (current_function_decl)
2322 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode)
2323 return;
2324
2325 /* A loop might not return which counts as a side effect. */
2326 if (mark_dfs_back_edges ())
2327 return;
2328
2329 nonlocal_mentioned = 0;
2330
2331 init_alias_analysis ();
2332
2333 /* Determine if this is a constant function. */
2334
2335 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2336 if (INSN_P (insn) && nonlocal_mentioned_p (insn))
2337 {
2338 nonlocal_mentioned = 1;
2339 break;
2340 }
2341
2342 end_alias_analysis ();
2343
2344 /* Mark the function. */
2345
2346 if (! nonlocal_mentioned)
2347 TREE_READONLY (current_function_decl) = 1;
2348 }
2349
2350
2351 static HARD_REG_SET argument_registers;
2352
2353 void
2354 init_alias_once ()
2355 {
2356 int i;
2357
2358 #ifndef OUTGOING_REGNO
2359 #define OUTGOING_REGNO(N) N
2360 #endif
2361 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2362 /* Check whether this register can hold an incoming pointer
2363 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2364 numbers, so translate if necessary due to register windows. */
2365 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2366 && HARD_REGNO_MODE_OK (i, Pmode))
2367 SET_HARD_REG_BIT (argument_registers, i);
2368
2369 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2370 }
2371
2372 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2373 array. */
2374
2375 void
2376 init_alias_analysis ()
2377 {
2378 int maxreg = max_reg_num ();
2379 int changed, pass;
2380 int i;
2381 unsigned int ui;
2382 rtx insn;
2383
2384 reg_known_value_size = maxreg;
2385
2386 reg_known_value
2387 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2388 - FIRST_PSEUDO_REGISTER;
2389 reg_known_equiv_p
2390 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2391 - FIRST_PSEUDO_REGISTER;
2392
2393 /* Overallocate reg_base_value to allow some growth during loop
2394 optimization. Loop unrolling can create a large number of
2395 registers. */
2396 reg_base_value_size = maxreg * 2;
2397 reg_base_value = (rtx *) xcalloc (reg_base_value_size, sizeof (rtx));
2398 ggc_add_rtx_root (reg_base_value, reg_base_value_size);
2399
2400 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2401 reg_seen = (char *) xmalloc (reg_base_value_size);
2402 if (! reload_completed && flag_unroll_loops)
2403 {
2404 /* ??? Why are we realloc'ing if we're just going to zero it? */
2405 alias_invariant = (rtx *)xrealloc (alias_invariant,
2406 reg_base_value_size * sizeof (rtx));
2407 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2408 }
2409
2410 /* The basic idea is that each pass through this loop will use the
2411 "constant" information from the previous pass to propagate alias
2412 information through another level of assignments.
2413
2414 This could get expensive if the assignment chains are long. Maybe
2415 we should throttle the number of iterations, possibly based on
2416 the optimization level or flag_expensive_optimizations.
2417
2418 We could propagate more information in the first pass by making use
2419 of REG_N_SETS to determine immediately that the alias information
2420 for a pseudo is "constant".
2421
2422 A program with an uninitialized variable can cause an infinite loop
2423 here. Instead of doing a full dataflow analysis to detect such problems
2424 we just cap the number of iterations for the loop.
2425
2426 The state of the arrays for the set chain in question does not matter
2427 since the program has undefined behavior. */
2428
2429 pass = 0;
2430 do
2431 {
2432 /* Assume nothing will change this iteration of the loop. */
2433 changed = 0;
2434
2435 /* We want to assign the same IDs each iteration of this loop, so
2436 start counting from zero each iteration of the loop. */
2437 unique_id = 0;
2438
2439 /* We're at the start of the function each iteration through the
2440 loop, so we're copying arguments. */
2441 copying_arguments = 1;
2442
2443 /* Wipe the potential alias information clean for this pass. */
2444 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2445
2446 /* Wipe the reg_seen array clean. */
2447 memset ((char *) reg_seen, 0, reg_base_value_size);
2448
2449 /* Mark all hard registers which may contain an address.
2450 The stack, frame and argument pointers may contain an address.
2451 An argument register which can hold a Pmode value may contain
2452 an address even if it is not in BASE_REGS.
2453
2454 The address expression is VOIDmode for an argument and
2455 Pmode for other registers. */
2456
2457 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2458 if (TEST_HARD_REG_BIT (argument_registers, i))
2459 new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
2460 gen_rtx_REG (Pmode, i));
2461
2462 new_reg_base_value[STACK_POINTER_REGNUM]
2463 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2464 new_reg_base_value[ARG_POINTER_REGNUM]
2465 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2466 new_reg_base_value[FRAME_POINTER_REGNUM]
2467 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2469 new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2470 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2471 #endif
2472
2473 /* Walk the insns adding values to the new_reg_base_value array. */
2474 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2475 {
2476 if (INSN_P (insn))
2477 {
2478 rtx note, set;
2479
2480 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2481 /* The prologue/epilogue insns are not threaded onto the
2482 insn chain until after reload has completed. Thus,
2483 there is no sense wasting time checking if INSN is in
2484 the prologue/epilogue until after reload has completed. */
2485 if (reload_completed
2486 && prologue_epilogue_contains (insn))
2487 continue;
2488 #endif
2489
2490 /* If this insn has a noalias note, process it, Otherwise,
2491 scan for sets. A simple set will have no side effects
2492 which could change the base value of any other register. */
2493
2494 if (GET_CODE (PATTERN (insn)) == SET
2495 && REG_NOTES (insn) != 0
2496 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2497 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2498 else
2499 note_stores (PATTERN (insn), record_set, NULL);
2500
2501 set = single_set (insn);
2502
2503 if (set != 0
2504 && GET_CODE (SET_DEST (set)) == REG
2505 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2506 {
2507 unsigned int regno = REGNO (SET_DEST (set));
2508 rtx src = SET_SRC (set);
2509
2510 if (REG_NOTES (insn) != 0
2511 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2512 && REG_N_SETS (regno) == 1)
2513 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2514 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2515 && ! rtx_varies_p (XEXP (note, 0), 1)
2516 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2517 {
2518 reg_known_value[regno] = XEXP (note, 0);
2519 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2520 }
2521 else if (REG_N_SETS (regno) == 1
2522 && GET_CODE (src) == PLUS
2523 && GET_CODE (XEXP (src, 0)) == REG
2524 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2525 && (reg_known_value[REGNO (XEXP (src, 0))])
2526 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2527 {
2528 rtx op0 = XEXP (src, 0);
2529 op0 = reg_known_value[REGNO (op0)];
2530 reg_known_value[regno]
2531 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2532 reg_known_equiv_p[regno] = 0;
2533 }
2534 else if (REG_N_SETS (regno) == 1
2535 && ! rtx_varies_p (src, 1))
2536 {
2537 reg_known_value[regno] = src;
2538 reg_known_equiv_p[regno] = 0;
2539 }
2540 }
2541 }
2542 else if (GET_CODE (insn) == NOTE
2543 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2544 copying_arguments = 0;
2545 }
2546
2547 /* Now propagate values from new_reg_base_value to reg_base_value. */
2548 for (ui = 0; ui < reg_base_value_size; ui++)
2549 {
2550 if (new_reg_base_value[ui]
2551 && new_reg_base_value[ui] != reg_base_value[ui]
2552 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2553 {
2554 reg_base_value[ui] = new_reg_base_value[ui];
2555 changed = 1;
2556 }
2557 }
2558 }
2559 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2560
2561 /* Fill in the remaining entries. */
2562 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2563 if (reg_known_value[i] == 0)
2564 reg_known_value[i] = regno_reg_rtx[i];
2565
2566 /* Simplify the reg_base_value array so that no register refers to
2567 another register, except to special registers indirectly through
2568 ADDRESS expressions.
2569
2570 In theory this loop can take as long as O(registers^2), but unless
2571 there are very long dependency chains it will run in close to linear
2572 time.
2573
2574 This loop may not be needed any longer now that the main loop does
2575 a better job at propagating alias information. */
2576 pass = 0;
2577 do
2578 {
2579 changed = 0;
2580 pass++;
2581 for (ui = 0; ui < reg_base_value_size; ui++)
2582 {
2583 rtx base = reg_base_value[ui];
2584 if (base && GET_CODE (base) == REG)
2585 {
2586 unsigned int base_regno = REGNO (base);
2587 if (base_regno == ui) /* register set from itself */
2588 reg_base_value[ui] = 0;
2589 else
2590 reg_base_value[ui] = reg_base_value[base_regno];
2591 changed = 1;
2592 }
2593 }
2594 }
2595 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2596
2597 /* Clean up. */
2598 free (new_reg_base_value);
2599 new_reg_base_value = 0;
2600 free (reg_seen);
2601 reg_seen = 0;
2602 }
2603
2604 void
2605 end_alias_analysis ()
2606 {
2607 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2608 reg_known_value = 0;
2609 reg_known_value_size = 0;
2610 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2611 reg_known_equiv_p = 0;
2612 if (reg_base_value)
2613 {
2614 ggc_del_root (reg_base_value);
2615 free (reg_base_value);
2616 reg_base_value = 0;
2617 }
2618 reg_base_value_size = 0;
2619 if (alias_invariant)
2620 {
2621 free (alias_invariant);
2622 alias_invariant = 0;
2623 }
2624 }