]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/alias.c
Strengthen alias_ptr_types_compatible_p in LTO mode.
[thirdparty/gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
43
44 /* The aliasing API provided here solves related but different problems:
45
46 Say there exists (in c)
47
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
52
53 struct Y y2, *py;
54 struct Z z2, *pz;
55
56
57 py = &x1.y1;
58 px2 = &x1;
59
60 Consider the four questions:
61
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
66
67 The answer to these questions can be yes, yes, yes, and maybe.
68
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
73
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
81
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
84
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
92 */
93
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
98
99 struct S { int i; double d; };
100
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
106 / \
107 / \
108 |/_ _\|
109 int double
110
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
114
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
119
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
123
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
129
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
140
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
143
144 struct T { struct S s; float f; }
145
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
149 };
150
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
163
164 static void memory_modified_1 (rtx, const_rtx, void *);
165
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
168
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
178
179
180 /* Set up all info needed to perform alias analysis on memory references. */
181
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
191
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
197
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
200
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
204
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
209
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
214
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
218
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
224
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
227
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
231
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
234
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
246
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
249
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
253
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
263
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
272
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
276
277
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 \f
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
284
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 {
288 tree expr = MEM_EXPR (mem);
289 tree base;
290
291 if (!expr)
292 return false;
293
294 ao_ref_init (ref, expr);
295
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
301
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
310
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
312
313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 return true;
318
319 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
320 drop ref->ref. */
321 if (maybe_lt (MEM_OFFSET (mem), 0)
322 || (ref->max_size_known_p ()
323 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
324 ref->max_size)))
325 ref->ref = NULL_TREE;
326
327 /* Refine size and offset we got from analyzing MEM_EXPR by using
328 MEM_SIZE and MEM_OFFSET. */
329
330 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332
333 /* The MEM may extend into adjacent fields, so adjust max_size if
334 necessary. */
335 if (ref->max_size_known_p ())
336 ref->max_size = upper_bound (ref->max_size, ref->size);
337
338 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (maybe_lt (ref->offset, 0)
342 || (DECL_P (ref->base)
343 && (DECL_SIZE (ref->base) == NULL_TREE
344 || !poly_int_tree_p (DECL_SIZE (ref->base))
345 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
346 ref->offset + ref->size)))))
347 return false;
348
349 return true;
350 }
351
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353 alias. If TBAA_P is set also apply TBAA. Returns true if the
354 two rtxen may alias, false otherwise. */
355
356 static bool
357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
358 {
359 ao_ref ref1, ref2;
360
361 if (!ao_ref_from_mem (&ref1, x)
362 || !ao_ref_from_mem (&ref2, mem))
363 return true;
364
365 return refs_may_alias_p_1 (&ref1, &ref2,
366 tbaa_p
367 && MEM_ALIAS_SET (x) != 0
368 && MEM_ALIAS_SET (mem) != 0);
369 }
370
371 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
372 such an entry, or NULL otherwise. */
373
374 static inline alias_set_entry *
375 get_alias_set_entry (alias_set_type alias_set)
376 {
377 return (*alias_sets)[alias_set];
378 }
379
380 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
381 the two MEMs cannot alias each other. */
382
383 static inline int
384 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
385 {
386 return (flag_strict_aliasing
387 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
388 MEM_ALIAS_SET (mem2)));
389 }
390
391 /* Return true if the first alias set is a subset of the second. */
392
393 bool
394 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
395 {
396 alias_set_entry *ase2;
397
398 /* Disable TBAA oracle with !flag_strict_aliasing. */
399 if (!flag_strict_aliasing)
400 return true;
401
402 /* Everything is a subset of the "aliases everything" set. */
403 if (set2 == 0)
404 return true;
405
406 /* Check if set1 is a subset of set2. */
407 ase2 = get_alias_set_entry (set2);
408 if (ase2 != 0
409 && (ase2->has_zero_child
410 || (ase2->children && ase2->children->get (set1))))
411 return true;
412
413 /* As a special case we consider alias set of "void *" to be both subset
414 and superset of every alias set of a pointer. This extra symmetry does
415 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
416 to return true on the following testcase:
417
418 void *ptr;
419 char **ptr2=(char **)&ptr;
420 *ptr2 = ...
421
422 Additionally if a set contains universal pointer, we consider every pointer
423 to be a subset of it, but we do not represent this explicitely - doing so
424 would require us to update transitive closure each time we introduce new
425 pointer type. This makes aliasing_component_refs_p to return true
426 on the following testcase:
427
428 struct a {void *ptr;}
429 char **ptr = (char **)&a.ptr;
430 ptr = ...
431
432 This makes void * truly universal pointer type. See pointer handling in
433 get_alias_set for more details. */
434 if (ase2 && ase2->has_pointer)
435 {
436 alias_set_entry *ase1 = get_alias_set_entry (set1);
437
438 if (ase1 && ase1->is_pointer)
439 {
440 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
441 /* If one is ptr_type_node and other is pointer, then we consider
442 them subset of each other. */
443 if (set1 == voidptr_set || set2 == voidptr_set)
444 return true;
445 /* If SET2 contains universal pointer's alias set, then we consdier
446 every (non-universal) pointer. */
447 if (ase2->children && set1 != voidptr_set
448 && ase2->children->get (voidptr_set))
449 return true;
450 }
451 }
452 return false;
453 }
454
455 /* Return 1 if the two specified alias sets may conflict. */
456
457 int
458 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
459 {
460 alias_set_entry *ase1;
461 alias_set_entry *ase2;
462
463 /* The easy case. */
464 if (alias_sets_must_conflict_p (set1, set2))
465 return 1;
466
467 /* See if the first alias set is a subset of the second. */
468 ase1 = get_alias_set_entry (set1);
469 if (ase1 != 0
470 && ase1->children && ase1->children->get (set2))
471 {
472 ++alias_stats.num_dag;
473 return 1;
474 }
475
476 /* Now do the same, but with the alias sets reversed. */
477 ase2 = get_alias_set_entry (set2);
478 if (ase2 != 0
479 && ase2->children && ase2->children->get (set1))
480 {
481 ++alias_stats.num_dag;
482 return 1;
483 }
484
485 /* We want void * to be compatible with any other pointer without
486 really dropping it to alias set 0. Doing so would make it
487 compatible with all non-pointer types too.
488
489 This is not strictly necessary by the C/C++ language
490 standards, but avoids common type punning mistakes. In
491 addition to that, we need the existence of such universal
492 pointer to implement Fortran's C_PTR type (which is defined as
493 type compatible with all C pointers). */
494 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
495 {
496 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
497
498 /* If one of the sets corresponds to universal pointer,
499 we consider it to conflict with anything that is
500 or contains pointer. */
501 if (set1 == voidptr_set || set2 == voidptr_set)
502 {
503 ++alias_stats.num_universal;
504 return true;
505 }
506 /* If one of sets is (non-universal) pointer and the other
507 contains universal pointer, we also get conflict. */
508 if (ase1->is_pointer && set2 != voidptr_set
509 && ase2->children && ase2->children->get (voidptr_set))
510 {
511 ++alias_stats.num_universal;
512 return true;
513 }
514 if (ase2->is_pointer && set1 != voidptr_set
515 && ase1->children && ase1->children->get (voidptr_set))
516 {
517 ++alias_stats.num_universal;
518 return true;
519 }
520 }
521
522 ++alias_stats.num_disambiguated;
523
524 /* The two alias sets are distinct and neither one is the
525 child of the other. Therefore, they cannot conflict. */
526 return 0;
527 }
528
529 /* Return 1 if the two specified alias sets will always conflict. */
530
531 int
532 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
533 {
534 /* Disable TBAA oracle with !flag_strict_aliasing. */
535 if (!flag_strict_aliasing)
536 return 1;
537 if (set1 == 0 || set2 == 0)
538 {
539 ++alias_stats.num_alias_zero;
540 return 1;
541 }
542 if (set1 == set2)
543 {
544 ++alias_stats.num_same_alias_set;
545 return 1;
546 }
547
548 return 0;
549 }
550
551 /* Return 1 if any MEM object of type T1 will always conflict (using the
552 dependency routines in this file) with any MEM object of type T2.
553 This is used when allocating temporary storage. If T1 and/or T2 are
554 NULL_TREE, it means we know nothing about the storage. */
555
556 int
557 objects_must_conflict_p (tree t1, tree t2)
558 {
559 alias_set_type set1, set2;
560
561 /* If neither has a type specified, we don't know if they'll conflict
562 because we may be using them to store objects of various types, for
563 example the argument and local variables areas of inlined functions. */
564 if (t1 == 0 && t2 == 0)
565 return 0;
566
567 /* If they are the same type, they must conflict. */
568 if (t1 == t2)
569 {
570 ++alias_stats.num_same_objects;
571 return 1;
572 }
573 /* Likewise if both are volatile. */
574 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
575 {
576 ++alias_stats.num_volatile;
577 return 1;
578 }
579
580 set1 = t1 ? get_alias_set (t1) : 0;
581 set2 = t2 ? get_alias_set (t2) : 0;
582
583 /* We can't use alias_sets_conflict_p because we must make sure
584 that every subtype of t1 will conflict with every subtype of
585 t2 for which a pair of subobjects of these respective subtypes
586 overlaps on the stack. */
587 return alias_sets_must_conflict_p (set1, set2);
588 }
589 \f
590 /* Return the outermost parent of component present in the chain of
591 component references handled by get_inner_reference in T with the
592 following property:
593 - the component is non-addressable
594 or NULL_TREE if no such parent exists. In the former cases, the alias
595 set of this parent is the alias set that must be used for T itself. */
596
597 tree
598 component_uses_parent_alias_set_from (const_tree t)
599 {
600 const_tree found = NULL_TREE;
601
602 while (handled_component_p (t))
603 {
604 switch (TREE_CODE (t))
605 {
606 case COMPONENT_REF:
607 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
608 found = t;
609 /* Permit type-punning when accessing a union, provided the access
610 is directly through the union. For example, this code does not
611 permit taking the address of a union member and then storing
612 through it. Even the type-punning allowed here is a GCC
613 extension, albeit a common and useful one; the C standard says
614 that such accesses have implementation-defined behavior. */
615 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
616 found = t;
617 break;
618
619 case ARRAY_REF:
620 case ARRAY_RANGE_REF:
621 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
622 found = t;
623 break;
624
625 case REALPART_EXPR:
626 case IMAGPART_EXPR:
627 break;
628
629 case BIT_FIELD_REF:
630 case VIEW_CONVERT_EXPR:
631 /* Bitfields and casts are never addressable. */
632 found = t;
633 break;
634
635 default:
636 gcc_unreachable ();
637 }
638
639 t = TREE_OPERAND (t, 0);
640 }
641
642 if (found)
643 return TREE_OPERAND (found, 0);
644
645 return NULL_TREE;
646 }
647
648
649 /* Return whether the pointer-type T effective for aliasing may
650 access everything and thus the reference has to be assigned
651 alias-set zero. */
652
653 static bool
654 ref_all_alias_ptr_type_p (const_tree t)
655 {
656 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
657 || TYPE_REF_CAN_ALIAS_ALL (t));
658 }
659
660 /* Return the alias set for the memory pointed to by T, which may be
661 either a type or an expression. Return -1 if there is nothing
662 special about dereferencing T. */
663
664 static alias_set_type
665 get_deref_alias_set_1 (tree t)
666 {
667 /* All we care about is the type. */
668 if (! TYPE_P (t))
669 t = TREE_TYPE (t);
670
671 /* If we have an INDIRECT_REF via a void pointer, we don't
672 know anything about what that might alias. Likewise if the
673 pointer is marked that way. */
674 if (ref_all_alias_ptr_type_p (t))
675 return 0;
676
677 return -1;
678 }
679
680 /* Return the alias set for the memory pointed to by T, which may be
681 either a type or an expression. */
682
683 alias_set_type
684 get_deref_alias_set (tree t)
685 {
686 /* If we're not doing any alias analysis, just assume everything
687 aliases everything else. */
688 if (!flag_strict_aliasing)
689 return 0;
690
691 alias_set_type set = get_deref_alias_set_1 (t);
692
693 /* Fall back to the alias-set of the pointed-to type. */
694 if (set == -1)
695 {
696 if (! TYPE_P (t))
697 t = TREE_TYPE (t);
698 set = get_alias_set (TREE_TYPE (t));
699 }
700
701 return set;
702 }
703
704 /* Return the pointer-type relevant for TBAA purposes from the
705 memory reference tree *T or NULL_TREE in which case *T is
706 adjusted to point to the outermost component reference that
707 can be used for assigning an alias set. */
708
709 static tree
710 reference_alias_ptr_type_1 (tree *t)
711 {
712 tree inner;
713
714 /* Get the base object of the reference. */
715 inner = *t;
716 while (handled_component_p (inner))
717 {
718 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
719 the type of any component references that wrap it to
720 determine the alias-set. */
721 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
722 *t = TREE_OPERAND (inner, 0);
723 inner = TREE_OPERAND (inner, 0);
724 }
725
726 /* Handle pointer dereferences here, they can override the
727 alias-set. */
728 if (INDIRECT_REF_P (inner)
729 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
730 return TREE_TYPE (TREE_OPERAND (inner, 0));
731 else if (TREE_CODE (inner) == TARGET_MEM_REF)
732 return TREE_TYPE (TMR_OFFSET (inner));
733 else if (TREE_CODE (inner) == MEM_REF
734 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
735 return TREE_TYPE (TREE_OPERAND (inner, 1));
736
737 /* If the innermost reference is a MEM_REF that has a
738 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
739 using the memory access type for determining the alias-set. */
740 if (TREE_CODE (inner) == MEM_REF
741 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
742 != TYPE_MAIN_VARIANT
743 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
744 return TREE_TYPE (TREE_OPERAND (inner, 1));
745
746 /* Otherwise, pick up the outermost object that we could have
747 a pointer to. */
748 tree tem = component_uses_parent_alias_set_from (*t);
749 if (tem)
750 *t = tem;
751
752 return NULL_TREE;
753 }
754
755 /* Return the pointer-type relevant for TBAA purposes from the
756 gimple memory reference tree T. This is the type to be used for
757 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
758 and guarantees that get_alias_set will return the same alias
759 set for T and the replacement. */
760
761 tree
762 reference_alias_ptr_type (tree t)
763 {
764 /* If the frontend assigns this alias-set zero, preserve that. */
765 if (lang_hooks.get_alias_set (t) == 0)
766 return ptr_type_node;
767
768 tree ptype = reference_alias_ptr_type_1 (&t);
769 /* If there is a given pointer type for aliasing purposes, return it. */
770 if (ptype != NULL_TREE)
771 return ptype;
772
773 /* Otherwise build one from the outermost component reference we
774 may use. */
775 if (TREE_CODE (t) == MEM_REF
776 || TREE_CODE (t) == TARGET_MEM_REF)
777 return TREE_TYPE (TREE_OPERAND (t, 1));
778 else
779 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
780 }
781
782 /* Return whether the pointer-types T1 and T2 used to determine
783 two alias sets of two references will yield the same answer
784 from get_deref_alias_set. */
785
786 bool
787 alias_ptr_types_compatible_p (tree t1, tree t2)
788 {
789 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
790 return true;
791
792 if (ref_all_alias_ptr_type_p (t1)
793 || ref_all_alias_ptr_type_p (t2))
794 return false;
795
796 /* This function originally abstracts from simply comparing
797 get_deref_alias_set so that we are sure this still computes
798 the same result after LTO type merging is applied.
799 When in LTO type merging is done we can actually do this compare.
800 */
801 if (in_lto_p)
802 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
803 else
804 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
805 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
806 }
807
808 /* Create emptry alias set entry. */
809
810 alias_set_entry *
811 init_alias_set_entry (alias_set_type set)
812 {
813 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
814 ase->alias_set = set;
815 ase->children = NULL;
816 ase->has_zero_child = false;
817 ase->is_pointer = false;
818 ase->has_pointer = false;
819 gcc_checking_assert (!get_alias_set_entry (set));
820 (*alias_sets)[set] = ase;
821 return ase;
822 }
823
824 /* Return the alias set for T, which may be either a type or an
825 expression. Call language-specific routine for help, if needed. */
826
827 alias_set_type
828 get_alias_set (tree t)
829 {
830 alias_set_type set;
831
832 /* We cannot give up with -fno-strict-aliasing because we need to build
833 proper type representation for possible functions which are build with
834 -fstrict-aliasing. */
835
836 /* return 0 if this or its type is an error. */
837 if (t == error_mark_node
838 || (! TYPE_P (t)
839 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
840 return 0;
841
842 /* We can be passed either an expression or a type. This and the
843 language-specific routine may make mutually-recursive calls to each other
844 to figure out what to do. At each juncture, we see if this is a tree
845 that the language may need to handle specially. First handle things that
846 aren't types. */
847 if (! TYPE_P (t))
848 {
849 /* Give the language a chance to do something with this tree
850 before we look at it. */
851 STRIP_NOPS (t);
852 set = lang_hooks.get_alias_set (t);
853 if (set != -1)
854 return set;
855
856 /* Get the alias pointer-type to use or the outermost object
857 that we could have a pointer to. */
858 tree ptype = reference_alias_ptr_type_1 (&t);
859 if (ptype != NULL)
860 return get_deref_alias_set (ptype);
861
862 /* If we've already determined the alias set for a decl, just return
863 it. This is necessary for C++ anonymous unions, whose component
864 variables don't look like union members (boo!). */
865 if (VAR_P (t)
866 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
867 return MEM_ALIAS_SET (DECL_RTL (t));
868
869 /* Now all we care about is the type. */
870 t = TREE_TYPE (t);
871 }
872
873 /* Variant qualifiers don't affect the alias set, so get the main
874 variant. */
875 t = TYPE_MAIN_VARIANT (t);
876
877 if (AGGREGATE_TYPE_P (t)
878 && TYPE_TYPELESS_STORAGE (t))
879 return 0;
880
881 /* Always use the canonical type as well. If this is a type that
882 requires structural comparisons to identify compatible types
883 use alias set zero. */
884 if (TYPE_STRUCTURAL_EQUALITY_P (t))
885 {
886 /* Allow the language to specify another alias set for this
887 type. */
888 set = lang_hooks.get_alias_set (t);
889 if (set != -1)
890 return set;
891 /* Handle structure type equality for pointer types, arrays and vectors.
892 This is easy to do, because the code bellow ignore canonical types on
893 these anyway. This is important for LTO, where TYPE_CANONICAL for
894 pointers cannot be meaningfuly computed by the frotnend. */
895 if (canonical_type_used_p (t))
896 {
897 /* In LTO we set canonical types for all types where it makes
898 sense to do so. Double check we did not miss some type. */
899 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
900 return 0;
901 }
902 }
903 else
904 {
905 t = TYPE_CANONICAL (t);
906 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
907 }
908
909 /* If this is a type with a known alias set, return it. */
910 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
911 if (TYPE_ALIAS_SET_KNOWN_P (t))
912 return TYPE_ALIAS_SET (t);
913
914 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
915 if (!COMPLETE_TYPE_P (t))
916 {
917 /* For arrays with unknown size the conservative answer is the
918 alias set of the element type. */
919 if (TREE_CODE (t) == ARRAY_TYPE)
920 return get_alias_set (TREE_TYPE (t));
921
922 /* But return zero as a conservative answer for incomplete types. */
923 return 0;
924 }
925
926 /* See if the language has special handling for this type. */
927 set = lang_hooks.get_alias_set (t);
928 if (set != -1)
929 return set;
930
931 /* There are no objects of FUNCTION_TYPE, so there's no point in
932 using up an alias set for them. (There are, of course, pointers
933 and references to functions, but that's different.) */
934 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
935 set = 0;
936
937 /* Unless the language specifies otherwise, let vector types alias
938 their components. This avoids some nasty type punning issues in
939 normal usage. And indeed lets vectors be treated more like an
940 array slice. */
941 else if (TREE_CODE (t) == VECTOR_TYPE)
942 set = get_alias_set (TREE_TYPE (t));
943
944 /* Unless the language specifies otherwise, treat array types the
945 same as their components. This avoids the asymmetry we get
946 through recording the components. Consider accessing a
947 character(kind=1) through a reference to a character(kind=1)[1:1].
948 Or consider if we want to assign integer(kind=4)[0:D.1387] and
949 integer(kind=4)[4] the same alias set or not.
950 Just be pragmatic here and make sure the array and its element
951 type get the same alias set assigned. */
952 else if (TREE_CODE (t) == ARRAY_TYPE
953 && (!TYPE_NONALIASED_COMPONENT (t)
954 || TYPE_STRUCTURAL_EQUALITY_P (t)))
955 set = get_alias_set (TREE_TYPE (t));
956
957 /* From the former common C and C++ langhook implementation:
958
959 Unfortunately, there is no canonical form of a pointer type.
960 In particular, if we have `typedef int I', then `int *', and
961 `I *' are different types. So, we have to pick a canonical
962 representative. We do this below.
963
964 Technically, this approach is actually more conservative that
965 it needs to be. In particular, `const int *' and `int *'
966 should be in different alias sets, according to the C and C++
967 standard, since their types are not the same, and so,
968 technically, an `int **' and `const int **' cannot point at
969 the same thing.
970
971 But, the standard is wrong. In particular, this code is
972 legal C++:
973
974 int *ip;
975 int **ipp = &ip;
976 const int* const* cipp = ipp;
977 And, it doesn't make sense for that to be legal unless you
978 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
979 the pointed-to types. This issue has been reported to the
980 C++ committee.
981
982 For this reason go to canonical type of the unqalified pointer type.
983 Until GCC 6 this code set all pointers sets to have alias set of
984 ptr_type_node but that is a bad idea, because it prevents disabiguations
985 in between pointers. For Firefox this accounts about 20% of all
986 disambiguations in the program. */
987 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
988 {
989 tree p;
990 auto_vec <bool, 8> reference;
991
992 /* Unnest all pointers and references.
993 We also want to make pointer to array/vector equivalent to pointer to
994 its element (see the reasoning above). Skip all those types, too. */
995 for (p = t; POINTER_TYPE_P (p)
996 || (TREE_CODE (p) == ARRAY_TYPE
997 && (!TYPE_NONALIASED_COMPONENT (p)
998 || !COMPLETE_TYPE_P (p)
999 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1000 || TREE_CODE (p) == VECTOR_TYPE;
1001 p = TREE_TYPE (p))
1002 {
1003 /* Ada supports recusive pointers. Instead of doing recrusion check
1004 just give up once the preallocated space of 8 elements is up.
1005 In this case just punt to void * alias set. */
1006 if (reference.length () == 8)
1007 {
1008 p = ptr_type_node;
1009 break;
1010 }
1011 if (TREE_CODE (p) == REFERENCE_TYPE)
1012 /* In LTO we want languages that use references to be compatible
1013 with languages that use pointers. */
1014 reference.safe_push (true && !in_lto_p);
1015 if (TREE_CODE (p) == POINTER_TYPE)
1016 reference.safe_push (false);
1017 }
1018 p = TYPE_MAIN_VARIANT (p);
1019
1020 /* In LTO for C++ programs we can turn in complete types to complete
1021 using ODR name lookup. */
1022 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1023 {
1024 p = prevailing_odr_type (p);
1025 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1026 }
1027
1028 /* Make void * compatible with char * and also void **.
1029 Programs are commonly violating TBAA by this.
1030
1031 We also make void * to conflict with every pointer
1032 (see record_component_aliases) and thus it is safe it to use it for
1033 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1034 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1035 set = get_alias_set (ptr_type_node);
1036 else
1037 {
1038 /* Rebuild pointer type starting from canonical types using
1039 unqualified pointers and references only. This way all such
1040 pointers will have the same alias set and will conflict with
1041 each other.
1042
1043 Most of time we already have pointers or references of a given type.
1044 If not we build new one just to be sure that if someone later
1045 (probably only middle-end can, as we should assign all alias
1046 classes only after finishing translation unit) builds the pointer
1047 type, the canonical type will match. */
1048 p = TYPE_CANONICAL (p);
1049 while (!reference.is_empty ())
1050 {
1051 if (reference.pop ())
1052 p = build_reference_type (p);
1053 else
1054 p = build_pointer_type (p);
1055 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1056 /* build_pointer_type should always return the canonical type.
1057 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1058 them. Be sure that frontends do not glob canonical types of
1059 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1060 in all other cases. */
1061 gcc_checking_assert (!TYPE_CANONICAL (p)
1062 || p == TYPE_CANONICAL (p));
1063 }
1064
1065 /* Assign the alias set to both p and t.
1066 We cannot call get_alias_set (p) here as that would trigger
1067 infinite recursion when p == t. In other cases it would just
1068 trigger unnecesary legwork of rebuilding the pointer again. */
1069 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1070 if (TYPE_ALIAS_SET_KNOWN_P (p))
1071 set = TYPE_ALIAS_SET (p);
1072 else
1073 {
1074 set = new_alias_set ();
1075 TYPE_ALIAS_SET (p) = set;
1076 }
1077 }
1078 }
1079 /* Alias set of ptr_type_node is special and serve as universal pointer which
1080 is TBAA compatible with every other pointer type. Be sure we have the
1081 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1082 of pointer types NULL. */
1083 else if (t == ptr_type_node)
1084 set = new_alias_set ();
1085
1086 /* Otherwise make a new alias set for this type. */
1087 else
1088 {
1089 /* Each canonical type gets its own alias set, so canonical types
1090 shouldn't form a tree. It doesn't really matter for types
1091 we handle specially above, so only check it where it possibly
1092 would result in a bogus alias set. */
1093 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1094
1095 set = new_alias_set ();
1096 }
1097
1098 TYPE_ALIAS_SET (t) = set;
1099
1100 /* If this is an aggregate type or a complex type, we must record any
1101 component aliasing information. */
1102 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1103 record_component_aliases (t);
1104
1105 /* We treat pointer types specially in alias_set_subset_of. */
1106 if (POINTER_TYPE_P (t) && set)
1107 {
1108 alias_set_entry *ase = get_alias_set_entry (set);
1109 if (!ase)
1110 ase = init_alias_set_entry (set);
1111 ase->is_pointer = true;
1112 ase->has_pointer = true;
1113 }
1114
1115 return set;
1116 }
1117
1118 /* Return a brand-new alias set. */
1119
1120 alias_set_type
1121 new_alias_set (void)
1122 {
1123 if (alias_sets == 0)
1124 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1125 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1126 return alias_sets->length () - 1;
1127 }
1128
1129 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1130 not everything that aliases SUPERSET also aliases SUBSET. For example,
1131 in C, a store to an `int' can alias a load of a structure containing an
1132 `int', and vice versa. But it can't alias a load of a 'double' member
1133 of the same structure. Here, the structure would be the SUPERSET and
1134 `int' the SUBSET. This relationship is also described in the comment at
1135 the beginning of this file.
1136
1137 This function should be called only once per SUPERSET/SUBSET pair.
1138
1139 It is illegal for SUPERSET to be zero; everything is implicitly a
1140 subset of alias set zero. */
1141
1142 void
1143 record_alias_subset (alias_set_type superset, alias_set_type subset)
1144 {
1145 alias_set_entry *superset_entry;
1146 alias_set_entry *subset_entry;
1147
1148 /* It is possible in complex type situations for both sets to be the same,
1149 in which case we can ignore this operation. */
1150 if (superset == subset)
1151 return;
1152
1153 gcc_assert (superset);
1154
1155 superset_entry = get_alias_set_entry (superset);
1156 if (superset_entry == 0)
1157 {
1158 /* Create an entry for the SUPERSET, so that we have a place to
1159 attach the SUBSET. */
1160 superset_entry = init_alias_set_entry (superset);
1161 }
1162
1163 if (subset == 0)
1164 superset_entry->has_zero_child = 1;
1165 else
1166 {
1167 subset_entry = get_alias_set_entry (subset);
1168 if (!superset_entry->children)
1169 superset_entry->children
1170 = hash_map<alias_set_hash, int>::create_ggc (64);
1171 /* If there is an entry for the subset, enter all of its children
1172 (if they are not already present) as children of the SUPERSET. */
1173 if (subset_entry)
1174 {
1175 if (subset_entry->has_zero_child)
1176 superset_entry->has_zero_child = true;
1177 if (subset_entry->has_pointer)
1178 superset_entry->has_pointer = true;
1179
1180 if (subset_entry->children)
1181 {
1182 hash_map<alias_set_hash, int>::iterator iter
1183 = subset_entry->children->begin ();
1184 for (; iter != subset_entry->children->end (); ++iter)
1185 superset_entry->children->put ((*iter).first, (*iter).second);
1186 }
1187 }
1188
1189 /* Enter the SUBSET itself as a child of the SUPERSET. */
1190 superset_entry->children->put (subset, 0);
1191 }
1192 }
1193
1194 /* Record that component types of TYPE, if any, are part of that type for
1195 aliasing purposes. For record types, we only record component types
1196 for fields that are not marked non-addressable. For array types, we
1197 only record the component type if it is not marked non-aliased. */
1198
1199 void
1200 record_component_aliases (tree type)
1201 {
1202 alias_set_type superset = get_alias_set (type);
1203 tree field;
1204
1205 if (superset == 0)
1206 return;
1207
1208 switch (TREE_CODE (type))
1209 {
1210 case RECORD_TYPE:
1211 case UNION_TYPE:
1212 case QUAL_UNION_TYPE:
1213 {
1214 /* LTO non-ODR type merging does not make any difference between
1215 component pointer types. We may have
1216
1217 struct foo {int *a;};
1218
1219 as TYPE_CANONICAL of
1220
1221 struct bar {float *a;};
1222
1223 Because accesses to int * and float * do not alias, we would get
1224 false negative when accessing the same memory location by
1225 float ** and bar *. We thus record the canonical type as:
1226
1227 struct {void *a;};
1228
1229 void * is special cased and works as a universal pointer type.
1230 Accesses to it conflicts with accesses to any other pointer
1231 type. */
1232 bool void_pointers = in_lto_p
1233 && (!odr_type_p (type)
1234 || !odr_based_tbaa_p (type));
1235 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1236 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1237 {
1238 tree t = TREE_TYPE (field);
1239 if (void_pointers)
1240 {
1241 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1242 element type and that type has to be normalized to void *,
1243 too, in the case it is a pointer. */
1244 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1245 {
1246 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1247 t = TREE_TYPE (t);
1248 }
1249 if (POINTER_TYPE_P (t))
1250 t = ptr_type_node;
1251 else if (flag_checking)
1252 gcc_checking_assert (get_alias_set (t)
1253 == get_alias_set (TREE_TYPE (field)));
1254 }
1255
1256 record_alias_subset (superset, get_alias_set (t));
1257 }
1258 }
1259 break;
1260
1261 case COMPLEX_TYPE:
1262 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1263 break;
1264
1265 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1266 element type. */
1267
1268 default:
1269 break;
1270 }
1271 }
1272
1273 /* Allocate an alias set for use in storing and reading from the varargs
1274 spill area. */
1275
1276 static GTY(()) alias_set_type varargs_set = -1;
1277
1278 alias_set_type
1279 get_varargs_alias_set (void)
1280 {
1281 #if 1
1282 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1283 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1284 consistently use the varargs alias set for loads from the varargs
1285 area. So don't use it anywhere. */
1286 return 0;
1287 #else
1288 if (varargs_set == -1)
1289 varargs_set = new_alias_set ();
1290
1291 return varargs_set;
1292 #endif
1293 }
1294
1295 /* Likewise, but used for the fixed portions of the frame, e.g., register
1296 save areas. */
1297
1298 static GTY(()) alias_set_type frame_set = -1;
1299
1300 alias_set_type
1301 get_frame_alias_set (void)
1302 {
1303 if (frame_set == -1)
1304 frame_set = new_alias_set ();
1305
1306 return frame_set;
1307 }
1308
1309 /* Create a new, unique base with id ID. */
1310
1311 static rtx
1312 unique_base_value (HOST_WIDE_INT id)
1313 {
1314 return gen_rtx_ADDRESS (Pmode, id);
1315 }
1316
1317 /* Return true if accesses based on any other base value cannot alias
1318 those based on X. */
1319
1320 static bool
1321 unique_base_value_p (rtx x)
1322 {
1323 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1324 }
1325
1326 /* Return true if X is known to be a base value. */
1327
1328 static bool
1329 known_base_value_p (rtx x)
1330 {
1331 switch (GET_CODE (x))
1332 {
1333 case LABEL_REF:
1334 case SYMBOL_REF:
1335 return true;
1336
1337 case ADDRESS:
1338 /* Arguments may or may not be bases; we don't know for sure. */
1339 return GET_MODE (x) != VOIDmode;
1340
1341 default:
1342 return false;
1343 }
1344 }
1345
1346 /* Inside SRC, the source of a SET, find a base address. */
1347
1348 static rtx
1349 find_base_value (rtx src)
1350 {
1351 unsigned int regno;
1352 scalar_int_mode int_mode;
1353
1354 #if defined (FIND_BASE_TERM)
1355 /* Try machine-dependent ways to find the base term. */
1356 src = FIND_BASE_TERM (src);
1357 #endif
1358
1359 switch (GET_CODE (src))
1360 {
1361 case SYMBOL_REF:
1362 case LABEL_REF:
1363 return src;
1364
1365 case REG:
1366 regno = REGNO (src);
1367 /* At the start of a function, argument registers have known base
1368 values which may be lost later. Returning an ADDRESS
1369 expression here allows optimization based on argument values
1370 even when the argument registers are used for other purposes. */
1371 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1372 return new_reg_base_value[regno];
1373
1374 /* If a pseudo has a known base value, return it. Do not do this
1375 for non-fixed hard regs since it can result in a circular
1376 dependency chain for registers which have values at function entry.
1377
1378 The test above is not sufficient because the scheduler may move
1379 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1380 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1381 && regno < vec_safe_length (reg_base_value))
1382 {
1383 /* If we're inside init_alias_analysis, use new_reg_base_value
1384 to reduce the number of relaxation iterations. */
1385 if (new_reg_base_value && new_reg_base_value[regno]
1386 && DF_REG_DEF_COUNT (regno) == 1)
1387 return new_reg_base_value[regno];
1388
1389 if ((*reg_base_value)[regno])
1390 return (*reg_base_value)[regno];
1391 }
1392
1393 return 0;
1394
1395 case MEM:
1396 /* Check for an argument passed in memory. Only record in the
1397 copying-arguments block; it is too hard to track changes
1398 otherwise. */
1399 if (copying_arguments
1400 && (XEXP (src, 0) == arg_pointer_rtx
1401 || (GET_CODE (XEXP (src, 0)) == PLUS
1402 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1403 return arg_base_value;
1404 return 0;
1405
1406 case CONST:
1407 src = XEXP (src, 0);
1408 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1409 break;
1410
1411 /* fall through */
1412
1413 case PLUS:
1414 case MINUS:
1415 {
1416 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1417
1418 /* If either operand is a REG that is a known pointer, then it
1419 is the base. */
1420 if (REG_P (src_0) && REG_POINTER (src_0))
1421 return find_base_value (src_0);
1422 if (REG_P (src_1) && REG_POINTER (src_1))
1423 return find_base_value (src_1);
1424
1425 /* If either operand is a REG, then see if we already have
1426 a known value for it. */
1427 if (REG_P (src_0))
1428 {
1429 temp = find_base_value (src_0);
1430 if (temp != 0)
1431 src_0 = temp;
1432 }
1433
1434 if (REG_P (src_1))
1435 {
1436 temp = find_base_value (src_1);
1437 if (temp!= 0)
1438 src_1 = temp;
1439 }
1440
1441 /* If either base is named object or a special address
1442 (like an argument or stack reference), then use it for the
1443 base term. */
1444 if (src_0 != 0 && known_base_value_p (src_0))
1445 return src_0;
1446
1447 if (src_1 != 0 && known_base_value_p (src_1))
1448 return src_1;
1449
1450 /* Guess which operand is the base address:
1451 If either operand is a symbol, then it is the base. If
1452 either operand is a CONST_INT, then the other is the base. */
1453 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1454 return find_base_value (src_0);
1455 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1456 return find_base_value (src_1);
1457
1458 return 0;
1459 }
1460
1461 case LO_SUM:
1462 /* The standard form is (lo_sum reg sym) so look only at the
1463 second operand. */
1464 return find_base_value (XEXP (src, 1));
1465
1466 case AND:
1467 /* If the second operand is constant set the base
1468 address to the first operand. */
1469 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1470 return find_base_value (XEXP (src, 0));
1471 return 0;
1472
1473 case TRUNCATE:
1474 /* As we do not know which address space the pointer is referring to, we can
1475 handle this only if the target does not support different pointer or
1476 address modes depending on the address space. */
1477 if (!target_default_pointer_address_modes_p ())
1478 break;
1479 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1480 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1481 break;
1482 /* Fall through. */
1483 case HIGH:
1484 case PRE_INC:
1485 case PRE_DEC:
1486 case POST_INC:
1487 case POST_DEC:
1488 case PRE_MODIFY:
1489 case POST_MODIFY:
1490 return find_base_value (XEXP (src, 0));
1491
1492 case ZERO_EXTEND:
1493 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1494 /* As we do not know which address space the pointer is referring to, we can
1495 handle this only if the target does not support different pointer or
1496 address modes depending on the address space. */
1497 if (!target_default_pointer_address_modes_p ())
1498 break;
1499
1500 {
1501 rtx temp = find_base_value (XEXP (src, 0));
1502
1503 if (temp != 0 && CONSTANT_P (temp))
1504 temp = convert_memory_address (Pmode, temp);
1505
1506 return temp;
1507 }
1508
1509 default:
1510 break;
1511 }
1512
1513 return 0;
1514 }
1515
1516 /* Called from init_alias_analysis indirectly through note_stores,
1517 or directly if DEST is a register with a REG_NOALIAS note attached.
1518 SET is null in the latter case. */
1519
1520 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1521 register N has been set in this function. */
1522 static sbitmap reg_seen;
1523
1524 static void
1525 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1526 {
1527 unsigned regno;
1528 rtx src;
1529 int n;
1530
1531 if (!REG_P (dest))
1532 return;
1533
1534 regno = REGNO (dest);
1535
1536 gcc_checking_assert (regno < reg_base_value->length ());
1537
1538 n = REG_NREGS (dest);
1539 if (n != 1)
1540 {
1541 while (--n >= 0)
1542 {
1543 bitmap_set_bit (reg_seen, regno + n);
1544 new_reg_base_value[regno + n] = 0;
1545 }
1546 return;
1547 }
1548
1549 if (set)
1550 {
1551 /* A CLOBBER wipes out any old value but does not prevent a previously
1552 unset register from acquiring a base address (i.e. reg_seen is not
1553 set). */
1554 if (GET_CODE (set) == CLOBBER)
1555 {
1556 new_reg_base_value[regno] = 0;
1557 return;
1558 }
1559 /* A CLOBBER_HIGH only wipes out the old value if the mode of the old
1560 value is greater than that of the clobber. */
1561 else if (GET_CODE (set) == CLOBBER_HIGH)
1562 {
1563 if (new_reg_base_value[regno] != 0
1564 && reg_is_clobbered_by_clobber_high (
1565 regno, GET_MODE (new_reg_base_value[regno]), XEXP (set, 0)))
1566 new_reg_base_value[regno] = 0;
1567 return;
1568 }
1569
1570 src = SET_SRC (set);
1571 }
1572 else
1573 {
1574 /* There's a REG_NOALIAS note against DEST. */
1575 if (bitmap_bit_p (reg_seen, regno))
1576 {
1577 new_reg_base_value[regno] = 0;
1578 return;
1579 }
1580 bitmap_set_bit (reg_seen, regno);
1581 new_reg_base_value[regno] = unique_base_value (unique_id++);
1582 return;
1583 }
1584
1585 /* If this is not the first set of REGNO, see whether the new value
1586 is related to the old one. There are two cases of interest:
1587
1588 (1) The register might be assigned an entirely new value
1589 that has the same base term as the original set.
1590
1591 (2) The set might be a simple self-modification that
1592 cannot change REGNO's base value.
1593
1594 If neither case holds, reject the original base value as invalid.
1595 Note that the following situation is not detected:
1596
1597 extern int x, y; int *p = &x; p += (&y-&x);
1598
1599 ANSI C does not allow computing the difference of addresses
1600 of distinct top level objects. */
1601 if (new_reg_base_value[regno] != 0
1602 && find_base_value (src) != new_reg_base_value[regno])
1603 switch (GET_CODE (src))
1604 {
1605 case LO_SUM:
1606 case MINUS:
1607 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1608 new_reg_base_value[regno] = 0;
1609 break;
1610 case PLUS:
1611 /* If the value we add in the PLUS is also a valid base value,
1612 this might be the actual base value, and the original value
1613 an index. */
1614 {
1615 rtx other = NULL_RTX;
1616
1617 if (XEXP (src, 0) == dest)
1618 other = XEXP (src, 1);
1619 else if (XEXP (src, 1) == dest)
1620 other = XEXP (src, 0);
1621
1622 if (! other || find_base_value (other))
1623 new_reg_base_value[regno] = 0;
1624 break;
1625 }
1626 case AND:
1627 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1628 new_reg_base_value[regno] = 0;
1629 break;
1630 default:
1631 new_reg_base_value[regno] = 0;
1632 break;
1633 }
1634 /* If this is the first set of a register, record the value. */
1635 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1636 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1637 new_reg_base_value[regno] = find_base_value (src);
1638
1639 bitmap_set_bit (reg_seen, regno);
1640 }
1641
1642 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1643 using hard registers with non-null REG_BASE_VALUE for renaming. */
1644 rtx
1645 get_reg_base_value (unsigned int regno)
1646 {
1647 return (*reg_base_value)[regno];
1648 }
1649
1650 /* If a value is known for REGNO, return it. */
1651
1652 rtx
1653 get_reg_known_value (unsigned int regno)
1654 {
1655 if (regno >= FIRST_PSEUDO_REGISTER)
1656 {
1657 regno -= FIRST_PSEUDO_REGISTER;
1658 if (regno < vec_safe_length (reg_known_value))
1659 return (*reg_known_value)[regno];
1660 }
1661 return NULL;
1662 }
1663
1664 /* Set it. */
1665
1666 static void
1667 set_reg_known_value (unsigned int regno, rtx val)
1668 {
1669 if (regno >= FIRST_PSEUDO_REGISTER)
1670 {
1671 regno -= FIRST_PSEUDO_REGISTER;
1672 if (regno < vec_safe_length (reg_known_value))
1673 (*reg_known_value)[regno] = val;
1674 }
1675 }
1676
1677 /* Similarly for reg_known_equiv_p. */
1678
1679 bool
1680 get_reg_known_equiv_p (unsigned int regno)
1681 {
1682 if (regno >= FIRST_PSEUDO_REGISTER)
1683 {
1684 regno -= FIRST_PSEUDO_REGISTER;
1685 if (regno < vec_safe_length (reg_known_value))
1686 return bitmap_bit_p (reg_known_equiv_p, regno);
1687 }
1688 return false;
1689 }
1690
1691 static void
1692 set_reg_known_equiv_p (unsigned int regno, bool val)
1693 {
1694 if (regno >= FIRST_PSEUDO_REGISTER)
1695 {
1696 regno -= FIRST_PSEUDO_REGISTER;
1697 if (regno < vec_safe_length (reg_known_value))
1698 {
1699 if (val)
1700 bitmap_set_bit (reg_known_equiv_p, regno);
1701 else
1702 bitmap_clear_bit (reg_known_equiv_p, regno);
1703 }
1704 }
1705 }
1706
1707
1708 /* Returns a canonical version of X, from the point of view alias
1709 analysis. (For example, if X is a MEM whose address is a register,
1710 and the register has a known value (say a SYMBOL_REF), then a MEM
1711 whose address is the SYMBOL_REF is returned.) */
1712
1713 rtx
1714 canon_rtx (rtx x)
1715 {
1716 /* Recursively look for equivalences. */
1717 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1718 {
1719 rtx t = get_reg_known_value (REGNO (x));
1720 if (t == x)
1721 return x;
1722 if (t)
1723 return canon_rtx (t);
1724 }
1725
1726 if (GET_CODE (x) == PLUS)
1727 {
1728 rtx x0 = canon_rtx (XEXP (x, 0));
1729 rtx x1 = canon_rtx (XEXP (x, 1));
1730
1731 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1732 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1733 }
1734
1735 /* This gives us much better alias analysis when called from
1736 the loop optimizer. Note we want to leave the original
1737 MEM alone, but need to return the canonicalized MEM with
1738 all the flags with their original values. */
1739 else if (MEM_P (x))
1740 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1741
1742 return x;
1743 }
1744
1745 /* Return 1 if X and Y are identical-looking rtx's.
1746 Expect that X and Y has been already canonicalized.
1747
1748 We use the data in reg_known_value above to see if two registers with
1749 different numbers are, in fact, equivalent. */
1750
1751 static int
1752 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1753 {
1754 int i;
1755 int j;
1756 enum rtx_code code;
1757 const char *fmt;
1758
1759 if (x == 0 && y == 0)
1760 return 1;
1761 if (x == 0 || y == 0)
1762 return 0;
1763
1764 if (x == y)
1765 return 1;
1766
1767 code = GET_CODE (x);
1768 /* Rtx's of different codes cannot be equal. */
1769 if (code != GET_CODE (y))
1770 return 0;
1771
1772 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1773 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1774
1775 if (GET_MODE (x) != GET_MODE (y))
1776 return 0;
1777
1778 /* Some RTL can be compared without a recursive examination. */
1779 switch (code)
1780 {
1781 case REG:
1782 return REGNO (x) == REGNO (y);
1783
1784 case LABEL_REF:
1785 return label_ref_label (x) == label_ref_label (y);
1786
1787 case SYMBOL_REF:
1788 return compare_base_symbol_refs (x, y) == 1;
1789
1790 case ENTRY_VALUE:
1791 /* This is magic, don't go through canonicalization et al. */
1792 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1793
1794 case VALUE:
1795 CASE_CONST_UNIQUE:
1796 /* Pointer equality guarantees equality for these nodes. */
1797 return 0;
1798
1799 default:
1800 break;
1801 }
1802
1803 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1804 if (code == PLUS)
1805 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1806 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1807 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1808 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1809 /* For commutative operations, the RTX match if the operand match in any
1810 order. Also handle the simple binary and unary cases without a loop. */
1811 if (COMMUTATIVE_P (x))
1812 {
1813 rtx xop0 = canon_rtx (XEXP (x, 0));
1814 rtx yop0 = canon_rtx (XEXP (y, 0));
1815 rtx yop1 = canon_rtx (XEXP (y, 1));
1816
1817 return ((rtx_equal_for_memref_p (xop0, yop0)
1818 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1819 || (rtx_equal_for_memref_p (xop0, yop1)
1820 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1821 }
1822 else if (NON_COMMUTATIVE_P (x))
1823 {
1824 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1825 canon_rtx (XEXP (y, 0)))
1826 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1827 canon_rtx (XEXP (y, 1))));
1828 }
1829 else if (UNARY_P (x))
1830 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1831 canon_rtx (XEXP (y, 0)));
1832
1833 /* Compare the elements. If any pair of corresponding elements
1834 fail to match, return 0 for the whole things.
1835
1836 Limit cases to types which actually appear in addresses. */
1837
1838 fmt = GET_RTX_FORMAT (code);
1839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1840 {
1841 switch (fmt[i])
1842 {
1843 case 'i':
1844 if (XINT (x, i) != XINT (y, i))
1845 return 0;
1846 break;
1847
1848 case 'p':
1849 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1850 return 0;
1851 break;
1852
1853 case 'E':
1854 /* Two vectors must have the same length. */
1855 if (XVECLEN (x, i) != XVECLEN (y, i))
1856 return 0;
1857
1858 /* And the corresponding elements must match. */
1859 for (j = 0; j < XVECLEN (x, i); j++)
1860 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1861 canon_rtx (XVECEXP (y, i, j))) == 0)
1862 return 0;
1863 break;
1864
1865 case 'e':
1866 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1867 canon_rtx (XEXP (y, i))) == 0)
1868 return 0;
1869 break;
1870
1871 /* This can happen for asm operands. */
1872 case 's':
1873 if (strcmp (XSTR (x, i), XSTR (y, i)))
1874 return 0;
1875 break;
1876
1877 /* This can happen for an asm which clobbers memory. */
1878 case '0':
1879 break;
1880
1881 /* It is believed that rtx's at this level will never
1882 contain anything but integers and other rtx's,
1883 except for within LABEL_REFs and SYMBOL_REFs. */
1884 default:
1885 gcc_unreachable ();
1886 }
1887 }
1888 return 1;
1889 }
1890
1891 static rtx
1892 find_base_term (rtx x, vec<std::pair<cselib_val *,
1893 struct elt_loc_list *> > &visited_vals)
1894 {
1895 cselib_val *val;
1896 struct elt_loc_list *l, *f;
1897 rtx ret;
1898 scalar_int_mode int_mode;
1899
1900 #if defined (FIND_BASE_TERM)
1901 /* Try machine-dependent ways to find the base term. */
1902 x = FIND_BASE_TERM (x);
1903 #endif
1904
1905 switch (GET_CODE (x))
1906 {
1907 case REG:
1908 return REG_BASE_VALUE (x);
1909
1910 case TRUNCATE:
1911 /* As we do not know which address space the pointer is referring to, we can
1912 handle this only if the target does not support different pointer or
1913 address modes depending on the address space. */
1914 if (!target_default_pointer_address_modes_p ())
1915 return 0;
1916 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1917 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1918 return 0;
1919 /* Fall through. */
1920 case HIGH:
1921 case PRE_INC:
1922 case PRE_DEC:
1923 case POST_INC:
1924 case POST_DEC:
1925 case PRE_MODIFY:
1926 case POST_MODIFY:
1927 return find_base_term (XEXP (x, 0), visited_vals);
1928
1929 case ZERO_EXTEND:
1930 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1931 /* As we do not know which address space the pointer is referring to, we can
1932 handle this only if the target does not support different pointer or
1933 address modes depending on the address space. */
1934 if (!target_default_pointer_address_modes_p ())
1935 return 0;
1936
1937 {
1938 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1939
1940 if (temp != 0 && CONSTANT_P (temp))
1941 temp = convert_memory_address (Pmode, temp);
1942
1943 return temp;
1944 }
1945
1946 case VALUE:
1947 val = CSELIB_VAL_PTR (x);
1948 ret = NULL_RTX;
1949
1950 if (!val)
1951 return ret;
1952
1953 if (cselib_sp_based_value_p (val))
1954 return static_reg_base_value[STACK_POINTER_REGNUM];
1955
1956 f = val->locs;
1957 /* Reset val->locs to avoid infinite recursion. */
1958 if (f)
1959 visited_vals.safe_push (std::make_pair (val, f));
1960 val->locs = NULL;
1961
1962 for (l = f; l; l = l->next)
1963 if (GET_CODE (l->loc) == VALUE
1964 && CSELIB_VAL_PTR (l->loc)->locs
1965 && !CSELIB_VAL_PTR (l->loc)->locs->next
1966 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1967 continue;
1968 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1969 break;
1970
1971 return ret;
1972
1973 case LO_SUM:
1974 /* The standard form is (lo_sum reg sym) so look only at the
1975 second operand. */
1976 return find_base_term (XEXP (x, 1), visited_vals);
1977
1978 case CONST:
1979 x = XEXP (x, 0);
1980 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1981 return 0;
1982 /* Fall through. */
1983 case PLUS:
1984 case MINUS:
1985 {
1986 rtx tmp1 = XEXP (x, 0);
1987 rtx tmp2 = XEXP (x, 1);
1988
1989 /* This is a little bit tricky since we have to determine which of
1990 the two operands represents the real base address. Otherwise this
1991 routine may return the index register instead of the base register.
1992
1993 That may cause us to believe no aliasing was possible, when in
1994 fact aliasing is possible.
1995
1996 We use a few simple tests to guess the base register. Additional
1997 tests can certainly be added. For example, if one of the operands
1998 is a shift or multiply, then it must be the index register and the
1999 other operand is the base register. */
2000
2001 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2002 return find_base_term (tmp2, visited_vals);
2003
2004 /* If either operand is known to be a pointer, then prefer it
2005 to determine the base term. */
2006 if (REG_P (tmp1) && REG_POINTER (tmp1))
2007 ;
2008 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2009 std::swap (tmp1, tmp2);
2010 /* If second argument is constant which has base term, prefer it
2011 over variable tmp1. See PR64025. */
2012 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2013 std::swap (tmp1, tmp2);
2014
2015 /* Go ahead and find the base term for both operands. If either base
2016 term is from a pointer or is a named object or a special address
2017 (like an argument or stack reference), then use it for the
2018 base term. */
2019 rtx base = find_base_term (tmp1, visited_vals);
2020 if (base != NULL_RTX
2021 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2022 || known_base_value_p (base)))
2023 return base;
2024 base = find_base_term (tmp2, visited_vals);
2025 if (base != NULL_RTX
2026 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2027 || known_base_value_p (base)))
2028 return base;
2029
2030 /* We could not determine which of the two operands was the
2031 base register and which was the index. So we can determine
2032 nothing from the base alias check. */
2033 return 0;
2034 }
2035
2036 case AND:
2037 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2038 return find_base_term (XEXP (x, 0), visited_vals);
2039 return 0;
2040
2041 case SYMBOL_REF:
2042 case LABEL_REF:
2043 return x;
2044
2045 default:
2046 return 0;
2047 }
2048 }
2049
2050 /* Wrapper around the worker above which removes locs from visited VALUEs
2051 to avoid visiting them multiple times. We unwind that changes here. */
2052
2053 static rtx
2054 find_base_term (rtx x)
2055 {
2056 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2057 rtx res = find_base_term (x, visited_vals);
2058 for (unsigned i = 0; i < visited_vals.length (); ++i)
2059 visited_vals[i].first->locs = visited_vals[i].second;
2060 return res;
2061 }
2062
2063 /* Return true if accesses to address X may alias accesses based
2064 on the stack pointer. */
2065
2066 bool
2067 may_be_sp_based_p (rtx x)
2068 {
2069 rtx base = find_base_term (x);
2070 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2071 }
2072
2073 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2074 if they refer to different objects and -1 if we cannot decide. */
2075
2076 int
2077 compare_base_decls (tree base1, tree base2)
2078 {
2079 int ret;
2080 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2081 if (base1 == base2)
2082 return 1;
2083
2084 /* If we have two register decls with register specification we
2085 cannot decide unless their assembler names are the same. */
2086 if (DECL_REGISTER (base1)
2087 && DECL_REGISTER (base2)
2088 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2089 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2090 && DECL_ASSEMBLER_NAME_SET_P (base1)
2091 && DECL_ASSEMBLER_NAME_SET_P (base2))
2092 {
2093 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2094 return 1;
2095 return -1;
2096 }
2097
2098 /* Declarations of non-automatic variables may have aliases. All other
2099 decls are unique. */
2100 if (!decl_in_symtab_p (base1)
2101 || !decl_in_symtab_p (base2))
2102 return 0;
2103
2104 /* Don't cause symbols to be inserted by the act of checking. */
2105 symtab_node *node1 = symtab_node::get (base1);
2106 if (!node1)
2107 return 0;
2108 symtab_node *node2 = symtab_node::get (base2);
2109 if (!node2)
2110 return 0;
2111
2112 ret = node1->equal_address_to (node2, true);
2113 return ret;
2114 }
2115
2116 /* Same as compare_base_decls but for SYMBOL_REF. */
2117
2118 static int
2119 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2120 {
2121 tree x_decl = SYMBOL_REF_DECL (x_base);
2122 tree y_decl = SYMBOL_REF_DECL (y_base);
2123 bool binds_def = true;
2124
2125 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2126 return 1;
2127 if (x_decl && y_decl)
2128 return compare_base_decls (x_decl, y_decl);
2129 if (x_decl || y_decl)
2130 {
2131 if (!x_decl)
2132 {
2133 std::swap (x_decl, y_decl);
2134 std::swap (x_base, y_base);
2135 }
2136 /* We handle specially only section anchors and assume that other
2137 labels may overlap with user variables in an arbitrary way. */
2138 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2139 return -1;
2140 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2141 to ignore CONST_DECLs because they are readonly. */
2142 if (!VAR_P (x_decl)
2143 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2144 return 0;
2145
2146 symtab_node *x_node = symtab_node::get_create (x_decl)
2147 ->ultimate_alias_target ();
2148 /* External variable cannot be in section anchor. */
2149 if (!x_node->definition)
2150 return 0;
2151 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2152 /* If not in anchor, we can disambiguate. */
2153 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2154 return 0;
2155
2156 /* We have an alias of anchored variable. If it can be interposed;
2157 we must assume it may or may not alias its anchor. */
2158 binds_def = decl_binds_to_current_def_p (x_decl);
2159 }
2160 /* If we have variable in section anchor, we can compare by offset. */
2161 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2162 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2163 {
2164 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2165 return 0;
2166 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2167 return binds_def ? 1 : -1;
2168 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2169 return -1;
2170 return 0;
2171 }
2172 /* In general we assume that memory locations pointed to by different labels
2173 may overlap in undefined ways. */
2174 return -1;
2175 }
2176
2177 /* Return 0 if the addresses X and Y are known to point to different
2178 objects, 1 if they might be pointers to the same object. */
2179
2180 static int
2181 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2182 machine_mode x_mode, machine_mode y_mode)
2183 {
2184 /* If the address itself has no known base see if a known equivalent
2185 value has one. If either address still has no known base, nothing
2186 is known about aliasing. */
2187 if (x_base == 0)
2188 {
2189 rtx x_c;
2190
2191 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2192 return 1;
2193
2194 x_base = find_base_term (x_c);
2195 if (x_base == 0)
2196 return 1;
2197 }
2198
2199 if (y_base == 0)
2200 {
2201 rtx y_c;
2202 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2203 return 1;
2204
2205 y_base = find_base_term (y_c);
2206 if (y_base == 0)
2207 return 1;
2208 }
2209
2210 /* If the base addresses are equal nothing is known about aliasing. */
2211 if (rtx_equal_p (x_base, y_base))
2212 return 1;
2213
2214 /* The base addresses are different expressions. If they are not accessed
2215 via AND, there is no conflict. We can bring knowledge of object
2216 alignment into play here. For example, on alpha, "char a, b;" can
2217 alias one another, though "char a; long b;" cannot. AND addresses may
2218 implicitly alias surrounding objects; i.e. unaligned access in DImode
2219 via AND address can alias all surrounding object types except those
2220 with aligment 8 or higher. */
2221 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2222 return 1;
2223 if (GET_CODE (x) == AND
2224 && (!CONST_INT_P (XEXP (x, 1))
2225 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2226 return 1;
2227 if (GET_CODE (y) == AND
2228 && (!CONST_INT_P (XEXP (y, 1))
2229 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2230 return 1;
2231
2232 /* Differing symbols not accessed via AND never alias. */
2233 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2234 return compare_base_symbol_refs (x_base, y_base) != 0;
2235
2236 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2237 return 0;
2238
2239 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2240 return 0;
2241
2242 return 1;
2243 }
2244
2245 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2246 (or equal to) that of V. */
2247
2248 static bool
2249 refs_newer_value_p (const_rtx expr, rtx v)
2250 {
2251 int minuid = CSELIB_VAL_PTR (v)->uid;
2252 subrtx_iterator::array_type array;
2253 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2254 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2255 return true;
2256 return false;
2257 }
2258
2259 /* Convert the address X into something we can use. This is done by returning
2260 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2261 we call cselib to get a more useful rtx. */
2262
2263 rtx
2264 get_addr (rtx x)
2265 {
2266 cselib_val *v;
2267 struct elt_loc_list *l;
2268
2269 if (GET_CODE (x) != VALUE)
2270 {
2271 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2272 && GET_CODE (XEXP (x, 0)) == VALUE
2273 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2274 {
2275 rtx op0 = get_addr (XEXP (x, 0));
2276 if (op0 != XEXP (x, 0))
2277 {
2278 poly_int64 c;
2279 if (GET_CODE (x) == PLUS
2280 && poly_int_rtx_p (XEXP (x, 1), &c))
2281 return plus_constant (GET_MODE (x), op0, c);
2282 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2283 op0, XEXP (x, 1));
2284 }
2285 }
2286 return x;
2287 }
2288 v = CSELIB_VAL_PTR (x);
2289 if (v)
2290 {
2291 bool have_equivs = cselib_have_permanent_equivalences ();
2292 if (have_equivs)
2293 v = canonical_cselib_val (v);
2294 for (l = v->locs; l; l = l->next)
2295 if (CONSTANT_P (l->loc))
2296 return l->loc;
2297 for (l = v->locs; l; l = l->next)
2298 if (!REG_P (l->loc) && !MEM_P (l->loc)
2299 /* Avoid infinite recursion when potentially dealing with
2300 var-tracking artificial equivalences, by skipping the
2301 equivalences themselves, and not choosing expressions
2302 that refer to newer VALUEs. */
2303 && (!have_equivs
2304 || (GET_CODE (l->loc) != VALUE
2305 && !refs_newer_value_p (l->loc, x))))
2306 return l->loc;
2307 if (have_equivs)
2308 {
2309 for (l = v->locs; l; l = l->next)
2310 if (REG_P (l->loc)
2311 || (GET_CODE (l->loc) != VALUE
2312 && !refs_newer_value_p (l->loc, x)))
2313 return l->loc;
2314 /* Return the canonical value. */
2315 return v->val_rtx;
2316 }
2317 if (v->locs)
2318 return v->locs->loc;
2319 }
2320 return x;
2321 }
2322
2323 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2324 where SIZE is the size in bytes of the memory reference. If ADDR
2325 is not modified by the memory reference then ADDR is returned. */
2326
2327 static rtx
2328 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2329 {
2330 poly_int64 offset = 0;
2331
2332 switch (GET_CODE (addr))
2333 {
2334 case PRE_INC:
2335 offset = (n_refs + 1) * size;
2336 break;
2337 case PRE_DEC:
2338 offset = -(n_refs + 1) * size;
2339 break;
2340 case POST_INC:
2341 offset = n_refs * size;
2342 break;
2343 case POST_DEC:
2344 offset = -n_refs * size;
2345 break;
2346
2347 default:
2348 return addr;
2349 }
2350
2351 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2352 addr = canon_rtx (addr);
2353
2354 return addr;
2355 }
2356
2357 /* Return TRUE if an object X sized at XSIZE bytes and another object
2358 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2359 any of the sizes is zero, assume an overlap, otherwise use the
2360 absolute value of the sizes as the actual sizes. */
2361
2362 static inline bool
2363 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2364 {
2365 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2366 return true;
2367
2368 if (maybe_ge (c, 0))
2369 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2370 else
2371 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2372 }
2373
2374 /* Return one if X and Y (memory addresses) reference the
2375 same location in memory or if the references overlap.
2376 Return zero if they do not overlap, else return
2377 minus one in which case they still might reference the same location.
2378
2379 C is an offset accumulator. When
2380 C is nonzero, we are testing aliases between X and Y + C.
2381 XSIZE is the size in bytes of the X reference,
2382 similarly YSIZE is the size in bytes for Y.
2383 Expect that canon_rtx has been already called for X and Y.
2384
2385 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2386 referenced (the reference was BLKmode), so make the most pessimistic
2387 assumptions.
2388
2389 If XSIZE or YSIZE is negative, we may access memory outside the object
2390 being referenced as a side effect. This can happen when using AND to
2391 align memory references, as is done on the Alpha.
2392
2393 Nice to notice that varying addresses cannot conflict with fp if no
2394 local variables had their addresses taken, but that's too hard now.
2395
2396 ??? Contrary to the tree alias oracle this does not return
2397 one for X + non-constant and Y + non-constant when X and Y are equal.
2398 If that is fixed the TBAA hack for union type-punning can be removed. */
2399
2400 static int
2401 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2402 poly_int64 c)
2403 {
2404 if (GET_CODE (x) == VALUE)
2405 {
2406 if (REG_P (y))
2407 {
2408 struct elt_loc_list *l = NULL;
2409 if (CSELIB_VAL_PTR (x))
2410 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2411 l; l = l->next)
2412 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2413 break;
2414 if (l)
2415 x = y;
2416 else
2417 x = get_addr (x);
2418 }
2419 /* Don't call get_addr if y is the same VALUE. */
2420 else if (x != y)
2421 x = get_addr (x);
2422 }
2423 if (GET_CODE (y) == VALUE)
2424 {
2425 if (REG_P (x))
2426 {
2427 struct elt_loc_list *l = NULL;
2428 if (CSELIB_VAL_PTR (y))
2429 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2430 l; l = l->next)
2431 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2432 break;
2433 if (l)
2434 y = x;
2435 else
2436 y = get_addr (y);
2437 }
2438 /* Don't call get_addr if x is the same VALUE. */
2439 else if (y != x)
2440 y = get_addr (y);
2441 }
2442 if (GET_CODE (x) == HIGH)
2443 x = XEXP (x, 0);
2444 else if (GET_CODE (x) == LO_SUM)
2445 x = XEXP (x, 1);
2446 else
2447 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2448 if (GET_CODE (y) == HIGH)
2449 y = XEXP (y, 0);
2450 else if (GET_CODE (y) == LO_SUM)
2451 y = XEXP (y, 1);
2452 else
2453 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2454
2455 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2456 {
2457 int cmp = compare_base_symbol_refs (x,y);
2458
2459 /* If both decls are the same, decide by offsets. */
2460 if (cmp == 1)
2461 return offset_overlap_p (c, xsize, ysize);
2462 /* Assume a potential overlap for symbolic addresses that went
2463 through alignment adjustments (i.e., that have negative
2464 sizes), because we can't know how far they are from each
2465 other. */
2466 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2467 return -1;
2468 /* If decls are different or we know by offsets that there is no overlap,
2469 we win. */
2470 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2471 return 0;
2472 /* Decls may or may not be different and offsets overlap....*/
2473 return -1;
2474 }
2475 else if (rtx_equal_for_memref_p (x, y))
2476 {
2477 return offset_overlap_p (c, xsize, ysize);
2478 }
2479
2480 /* This code used to check for conflicts involving stack references and
2481 globals but the base address alias code now handles these cases. */
2482
2483 if (GET_CODE (x) == PLUS)
2484 {
2485 /* The fact that X is canonicalized means that this
2486 PLUS rtx is canonicalized. */
2487 rtx x0 = XEXP (x, 0);
2488 rtx x1 = XEXP (x, 1);
2489
2490 /* However, VALUEs might end up in different positions even in
2491 canonical PLUSes. Comparing their addresses is enough. */
2492 if (x0 == y)
2493 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2494 else if (x1 == y)
2495 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2496
2497 poly_int64 cx1, cy1;
2498 if (GET_CODE (y) == PLUS)
2499 {
2500 /* The fact that Y is canonicalized means that this
2501 PLUS rtx is canonicalized. */
2502 rtx y0 = XEXP (y, 0);
2503 rtx y1 = XEXP (y, 1);
2504
2505 if (x0 == y1)
2506 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2507 if (x1 == y0)
2508 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2509
2510 if (rtx_equal_for_memref_p (x1, y1))
2511 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2512 if (rtx_equal_for_memref_p (x0, y0))
2513 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2514 if (poly_int_rtx_p (x1, &cx1))
2515 {
2516 if (poly_int_rtx_p (y1, &cy1))
2517 return memrefs_conflict_p (xsize, x0, ysize, y0,
2518 c - cx1 + cy1);
2519 else
2520 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2521 }
2522 else if (poly_int_rtx_p (y1, &cy1))
2523 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2524
2525 return -1;
2526 }
2527 else if (poly_int_rtx_p (x1, &cx1))
2528 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2529 }
2530 else if (GET_CODE (y) == PLUS)
2531 {
2532 /* The fact that Y is canonicalized means that this
2533 PLUS rtx is canonicalized. */
2534 rtx y0 = XEXP (y, 0);
2535 rtx y1 = XEXP (y, 1);
2536
2537 if (x == y0)
2538 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2539 if (x == y1)
2540 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2541
2542 poly_int64 cy1;
2543 if (poly_int_rtx_p (y1, &cy1))
2544 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2545 else
2546 return -1;
2547 }
2548
2549 if (GET_CODE (x) == GET_CODE (y))
2550 switch (GET_CODE (x))
2551 {
2552 case MULT:
2553 {
2554 /* Handle cases where we expect the second operands to be the
2555 same, and check only whether the first operand would conflict
2556 or not. */
2557 rtx x0, y0;
2558 rtx x1 = canon_rtx (XEXP (x, 1));
2559 rtx y1 = canon_rtx (XEXP (y, 1));
2560 if (! rtx_equal_for_memref_p (x1, y1))
2561 return -1;
2562 x0 = canon_rtx (XEXP (x, 0));
2563 y0 = canon_rtx (XEXP (y, 0));
2564 if (rtx_equal_for_memref_p (x0, y0))
2565 return offset_overlap_p (c, xsize, ysize);
2566
2567 /* Can't properly adjust our sizes. */
2568 poly_int64 c1;
2569 if (!poly_int_rtx_p (x1, &c1)
2570 || !can_div_trunc_p (xsize, c1, &xsize)
2571 || !can_div_trunc_p (ysize, c1, &ysize)
2572 || !can_div_trunc_p (c, c1, &c))
2573 return -1;
2574 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2575 }
2576
2577 default:
2578 break;
2579 }
2580
2581 /* Deal with alignment ANDs by adjusting offset and size so as to
2582 cover the maximum range, without taking any previously known
2583 alignment into account. Make a size negative after such an
2584 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2585 assume a potential overlap, because they may end up in contiguous
2586 memory locations and the stricter-alignment access may span over
2587 part of both. */
2588 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2589 {
2590 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2591 unsigned HOST_WIDE_INT uc = sc;
2592 if (sc < 0 && pow2_or_zerop (-uc))
2593 {
2594 if (maybe_gt (xsize, 0))
2595 xsize = -xsize;
2596 if (maybe_ne (xsize, 0))
2597 xsize += sc + 1;
2598 c -= sc + 1;
2599 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2600 ysize, y, c);
2601 }
2602 }
2603 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2604 {
2605 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2606 unsigned HOST_WIDE_INT uc = sc;
2607 if (sc < 0 && pow2_or_zerop (-uc))
2608 {
2609 if (maybe_gt (ysize, 0))
2610 ysize = -ysize;
2611 if (maybe_ne (ysize, 0))
2612 ysize += sc + 1;
2613 c += sc + 1;
2614 return memrefs_conflict_p (xsize, x,
2615 ysize, canon_rtx (XEXP (y, 0)), c);
2616 }
2617 }
2618
2619 if (CONSTANT_P (x))
2620 {
2621 poly_int64 cx, cy;
2622 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2623 {
2624 c += cy - cx;
2625 return offset_overlap_p (c, xsize, ysize);
2626 }
2627
2628 if (GET_CODE (x) == CONST)
2629 {
2630 if (GET_CODE (y) == CONST)
2631 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2632 ysize, canon_rtx (XEXP (y, 0)), c);
2633 else
2634 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2635 ysize, y, c);
2636 }
2637 if (GET_CODE (y) == CONST)
2638 return memrefs_conflict_p (xsize, x, ysize,
2639 canon_rtx (XEXP (y, 0)), c);
2640
2641 /* Assume a potential overlap for symbolic addresses that went
2642 through alignment adjustments (i.e., that have negative
2643 sizes), because we can't know how far they are from each
2644 other. */
2645 if (CONSTANT_P (y))
2646 return (maybe_lt (xsize, 0)
2647 || maybe_lt (ysize, 0)
2648 || offset_overlap_p (c, xsize, ysize));
2649
2650 return -1;
2651 }
2652
2653 return -1;
2654 }
2655
2656 /* Functions to compute memory dependencies.
2657
2658 Since we process the insns in execution order, we can build tables
2659 to keep track of what registers are fixed (and not aliased), what registers
2660 are varying in known ways, and what registers are varying in unknown
2661 ways.
2662
2663 If both memory references are volatile, then there must always be a
2664 dependence between the two references, since their order cannot be
2665 changed. A volatile and non-volatile reference can be interchanged
2666 though.
2667
2668 We also must allow AND addresses, because they may generate accesses
2669 outside the object being referenced. This is used to generate aligned
2670 addresses from unaligned addresses, for instance, the alpha
2671 storeqi_unaligned pattern. */
2672
2673 /* Read dependence: X is read after read in MEM takes place. There can
2674 only be a dependence here if both reads are volatile, or if either is
2675 an explicit barrier. */
2676
2677 int
2678 read_dependence (const_rtx mem, const_rtx x)
2679 {
2680 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2681 return true;
2682 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2683 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2684 return true;
2685 return false;
2686 }
2687
2688 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2689
2690 static tree
2691 decl_for_component_ref (tree x)
2692 {
2693 do
2694 {
2695 x = TREE_OPERAND (x, 0);
2696 }
2697 while (x && TREE_CODE (x) == COMPONENT_REF);
2698
2699 return x && DECL_P (x) ? x : NULL_TREE;
2700 }
2701
2702 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2703 for the offset of the field reference. *KNOWN_P says whether the
2704 offset is known. */
2705
2706 static void
2707 adjust_offset_for_component_ref (tree x, bool *known_p,
2708 poly_int64 *offset)
2709 {
2710 if (!*known_p)
2711 return;
2712 do
2713 {
2714 tree xoffset = component_ref_field_offset (x);
2715 tree field = TREE_OPERAND (x, 1);
2716 if (!poly_int_tree_p (xoffset))
2717 {
2718 *known_p = false;
2719 return;
2720 }
2721
2722 poly_offset_int woffset
2723 = (wi::to_poly_offset (xoffset)
2724 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2725 >> LOG2_BITS_PER_UNIT)
2726 + *offset);
2727 if (!woffset.to_shwi (offset))
2728 {
2729 *known_p = false;
2730 return;
2731 }
2732
2733 x = TREE_OPERAND (x, 0);
2734 }
2735 while (x && TREE_CODE (x) == COMPONENT_REF);
2736 }
2737
2738 /* Return nonzero if we can determine the exprs corresponding to memrefs
2739 X and Y and they do not overlap.
2740 If LOOP_VARIANT is set, skip offset-based disambiguation */
2741
2742 int
2743 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2744 {
2745 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2746 rtx rtlx, rtly;
2747 rtx basex, basey;
2748 bool moffsetx_known_p, moffsety_known_p;
2749 poly_int64 moffsetx = 0, moffsety = 0;
2750 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2751
2752 /* Unless both have exprs, we can't tell anything. */
2753 if (exprx == 0 || expry == 0)
2754 return 0;
2755
2756 /* For spill-slot accesses make sure we have valid offsets. */
2757 if ((exprx == get_spill_slot_decl (false)
2758 && ! MEM_OFFSET_KNOWN_P (x))
2759 || (expry == get_spill_slot_decl (false)
2760 && ! MEM_OFFSET_KNOWN_P (y)))
2761 return 0;
2762
2763 /* If the field reference test failed, look at the DECLs involved. */
2764 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2765 if (moffsetx_known_p)
2766 moffsetx = MEM_OFFSET (x);
2767 if (TREE_CODE (exprx) == COMPONENT_REF)
2768 {
2769 tree t = decl_for_component_ref (exprx);
2770 if (! t)
2771 return 0;
2772 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2773 exprx = t;
2774 }
2775
2776 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2777 if (moffsety_known_p)
2778 moffsety = MEM_OFFSET (y);
2779 if (TREE_CODE (expry) == COMPONENT_REF)
2780 {
2781 tree t = decl_for_component_ref (expry);
2782 if (! t)
2783 return 0;
2784 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2785 expry = t;
2786 }
2787
2788 if (! DECL_P (exprx) || ! DECL_P (expry))
2789 return 0;
2790
2791 /* If we refer to different gimple registers, or one gimple register
2792 and one non-gimple-register, we know they can't overlap. First,
2793 gimple registers don't have their addresses taken. Now, there
2794 could be more than one stack slot for (different versions of) the
2795 same gimple register, but we can presumably tell they don't
2796 overlap based on offsets from stack base addresses elsewhere.
2797 It's important that we don't proceed to DECL_RTL, because gimple
2798 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2799 able to do anything about them since no SSA information will have
2800 remained to guide it. */
2801 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2802 return exprx != expry
2803 || (moffsetx_known_p && moffsety_known_p
2804 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2805 && !offset_overlap_p (moffsety - moffsetx,
2806 MEM_SIZE (x), MEM_SIZE (y)));
2807
2808 /* With invalid code we can end up storing into the constant pool.
2809 Bail out to avoid ICEing when creating RTL for this.
2810 See gfortran.dg/lto/20091028-2_0.f90. */
2811 if (TREE_CODE (exprx) == CONST_DECL
2812 || TREE_CODE (expry) == CONST_DECL)
2813 return 1;
2814
2815 /* If one decl is known to be a function or label in a function and
2816 the other is some kind of data, they can't overlap. */
2817 if ((TREE_CODE (exprx) == FUNCTION_DECL
2818 || TREE_CODE (exprx) == LABEL_DECL)
2819 != (TREE_CODE (expry) == FUNCTION_DECL
2820 || TREE_CODE (expry) == LABEL_DECL))
2821 return 1;
2822
2823 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2824 living in multiple places), we can't tell anything. Exception
2825 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2826 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2827 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2828 return 0;
2829
2830 rtlx = DECL_RTL (exprx);
2831 rtly = DECL_RTL (expry);
2832
2833 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2834 can't overlap unless they are the same because we never reuse that part
2835 of the stack frame used for locals for spilled pseudos. */
2836 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2837 && ! rtx_equal_p (rtlx, rtly))
2838 return 1;
2839
2840 /* If we have MEMs referring to different address spaces (which can
2841 potentially overlap), we cannot easily tell from the addresses
2842 whether the references overlap. */
2843 if (MEM_P (rtlx) && MEM_P (rtly)
2844 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2845 return 0;
2846
2847 /* Get the base and offsets of both decls. If either is a register, we
2848 know both are and are the same, so use that as the base. The only
2849 we can avoid overlap is if we can deduce that they are nonoverlapping
2850 pieces of that decl, which is very rare. */
2851 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2852 basex = strip_offset_and_add (basex, &offsetx);
2853
2854 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2855 basey = strip_offset_and_add (basey, &offsety);
2856
2857 /* If the bases are different, we know they do not overlap if both
2858 are constants or if one is a constant and the other a pointer into the
2859 stack frame. Otherwise a different base means we can't tell if they
2860 overlap or not. */
2861 if (compare_base_decls (exprx, expry) == 0)
2862 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2863 || (CONSTANT_P (basex) && REG_P (basey)
2864 && REGNO_PTR_FRAME_P (REGNO (basey)))
2865 || (CONSTANT_P (basey) && REG_P (basex)
2866 && REGNO_PTR_FRAME_P (REGNO (basex))));
2867
2868 /* Offset based disambiguation not appropriate for loop invariant */
2869 if (loop_invariant)
2870 return 0;
2871
2872 /* Offset based disambiguation is OK even if we do not know that the
2873 declarations are necessarily different
2874 (i.e. compare_base_decls (exprx, expry) == -1) */
2875
2876 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2877 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2878 : -1);
2879 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2880 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2881 : -1);
2882
2883 /* If we have an offset for either memref, it can update the values computed
2884 above. */
2885 if (moffsetx_known_p)
2886 offsetx += moffsetx, sizex -= moffsetx;
2887 if (moffsety_known_p)
2888 offsety += moffsety, sizey -= moffsety;
2889
2890 /* If a memref has both a size and an offset, we can use the smaller size.
2891 We can't do this if the offset isn't known because we must view this
2892 memref as being anywhere inside the DECL's MEM. */
2893 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2894 sizex = MEM_SIZE (x);
2895 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2896 sizey = MEM_SIZE (y);
2897
2898 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2899 }
2900
2901 /* Helper for true_dependence and canon_true_dependence.
2902 Checks for true dependence: X is read after store in MEM takes place.
2903
2904 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2905 NULL_RTX, and the canonical addresses of MEM and X are both computed
2906 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2907
2908 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2909
2910 Returns 1 if there is a true dependence, 0 otherwise. */
2911
2912 static int
2913 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2914 const_rtx x, rtx x_addr, bool mem_canonicalized)
2915 {
2916 rtx true_mem_addr;
2917 rtx base;
2918 int ret;
2919
2920 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2921 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2922
2923 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2924 return 1;
2925
2926 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2927 This is used in epilogue deallocation functions, and in cselib. */
2928 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2929 return 1;
2930 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2931 return 1;
2932 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2933 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2934 return 1;
2935
2936 if (! x_addr)
2937 x_addr = XEXP (x, 0);
2938 x_addr = get_addr (x_addr);
2939
2940 if (! mem_addr)
2941 {
2942 mem_addr = XEXP (mem, 0);
2943 if (mem_mode == VOIDmode)
2944 mem_mode = GET_MODE (mem);
2945 }
2946 true_mem_addr = get_addr (mem_addr);
2947
2948 /* Read-only memory is by definition never modified, and therefore can't
2949 conflict with anything. However, don't assume anything when AND
2950 addresses are involved and leave to the code below to determine
2951 dependence. We don't expect to find read-only set on MEM, but
2952 stupid user tricks can produce them, so don't die. */
2953 if (MEM_READONLY_P (x)
2954 && GET_CODE (x_addr) != AND
2955 && GET_CODE (true_mem_addr) != AND)
2956 return 0;
2957
2958 /* If we have MEMs referring to different address spaces (which can
2959 potentially overlap), we cannot easily tell from the addresses
2960 whether the references overlap. */
2961 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2962 return 1;
2963
2964 base = find_base_term (x_addr);
2965 if (base && (GET_CODE (base) == LABEL_REF
2966 || (GET_CODE (base) == SYMBOL_REF
2967 && CONSTANT_POOL_ADDRESS_P (base))))
2968 return 0;
2969
2970 rtx mem_base = find_base_term (true_mem_addr);
2971 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2972 GET_MODE (x), mem_mode))
2973 return 0;
2974
2975 x_addr = canon_rtx (x_addr);
2976 if (!mem_canonicalized)
2977 mem_addr = canon_rtx (true_mem_addr);
2978
2979 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2980 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2981 return ret;
2982
2983 if (mems_in_disjoint_alias_sets_p (x, mem))
2984 return 0;
2985
2986 if (nonoverlapping_memrefs_p (mem, x, false))
2987 return 0;
2988
2989 return rtx_refs_may_alias_p (x, mem, true);
2990 }
2991
2992 /* True dependence: X is read after store in MEM takes place. */
2993
2994 int
2995 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2996 {
2997 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2998 x, NULL_RTX, /*mem_canonicalized=*/false);
2999 }
3000
3001 /* Canonical true dependence: X is read after store in MEM takes place.
3002 Variant of true_dependence which assumes MEM has already been
3003 canonicalized (hence we no longer do that here).
3004 The mem_addr argument has been added, since true_dependence_1 computed
3005 this value prior to canonicalizing. */
3006
3007 int
3008 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3009 const_rtx x, rtx x_addr)
3010 {
3011 return true_dependence_1 (mem, mem_mode, mem_addr,
3012 x, x_addr, /*mem_canonicalized=*/true);
3013 }
3014
3015 /* Returns nonzero if a write to X might alias a previous read from
3016 (or, if WRITEP is true, a write to) MEM.
3017 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3018 and X_MODE the mode for that access.
3019 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3020
3021 static int
3022 write_dependence_p (const_rtx mem,
3023 const_rtx x, machine_mode x_mode, rtx x_addr,
3024 bool mem_canonicalized, bool x_canonicalized, bool writep)
3025 {
3026 rtx mem_addr;
3027 rtx true_mem_addr, true_x_addr;
3028 rtx base;
3029 int ret;
3030
3031 gcc_checking_assert (x_canonicalized
3032 ? (x_addr != NULL_RTX
3033 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3034 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3035
3036 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3037 return 1;
3038
3039 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3040 This is used in epilogue deallocation functions. */
3041 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3042 return 1;
3043 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3044 return 1;
3045 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3046 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3047 return 1;
3048
3049 if (!x_addr)
3050 x_addr = XEXP (x, 0);
3051 true_x_addr = get_addr (x_addr);
3052
3053 mem_addr = XEXP (mem, 0);
3054 true_mem_addr = get_addr (mem_addr);
3055
3056 /* A read from read-only memory can't conflict with read-write memory.
3057 Don't assume anything when AND addresses are involved and leave to
3058 the code below to determine dependence. */
3059 if (!writep
3060 && MEM_READONLY_P (mem)
3061 && GET_CODE (true_x_addr) != AND
3062 && GET_CODE (true_mem_addr) != AND)
3063 return 0;
3064
3065 /* If we have MEMs referring to different address spaces (which can
3066 potentially overlap), we cannot easily tell from the addresses
3067 whether the references overlap. */
3068 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3069 return 1;
3070
3071 base = find_base_term (true_mem_addr);
3072 if (! writep
3073 && base
3074 && (GET_CODE (base) == LABEL_REF
3075 || (GET_CODE (base) == SYMBOL_REF
3076 && CONSTANT_POOL_ADDRESS_P (base))))
3077 return 0;
3078
3079 rtx x_base = find_base_term (true_x_addr);
3080 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3081 GET_MODE (x), GET_MODE (mem)))
3082 return 0;
3083
3084 if (!x_canonicalized)
3085 {
3086 x_addr = canon_rtx (true_x_addr);
3087 x_mode = GET_MODE (x);
3088 }
3089 if (!mem_canonicalized)
3090 mem_addr = canon_rtx (true_mem_addr);
3091
3092 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3093 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3094 return ret;
3095
3096 if (nonoverlapping_memrefs_p (x, mem, false))
3097 return 0;
3098
3099 return rtx_refs_may_alias_p (x, mem, false);
3100 }
3101
3102 /* Anti dependence: X is written after read in MEM takes place. */
3103
3104 int
3105 anti_dependence (const_rtx mem, const_rtx x)
3106 {
3107 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3108 /*mem_canonicalized=*/false,
3109 /*x_canonicalized*/false, /*writep=*/false);
3110 }
3111
3112 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3113 Also, consider X in X_MODE (which might be from an enclosing
3114 STRICT_LOW_PART / ZERO_EXTRACT).
3115 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3116
3117 int
3118 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3119 const_rtx x, machine_mode x_mode, rtx x_addr)
3120 {
3121 return write_dependence_p (mem, x, x_mode, x_addr,
3122 mem_canonicalized, /*x_canonicalized=*/true,
3123 /*writep=*/false);
3124 }
3125
3126 /* Output dependence: X is written after store in MEM takes place. */
3127
3128 int
3129 output_dependence (const_rtx mem, const_rtx x)
3130 {
3131 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3132 /*mem_canonicalized=*/false,
3133 /*x_canonicalized*/false, /*writep=*/true);
3134 }
3135
3136 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3137 Also, consider X in X_MODE (which might be from an enclosing
3138 STRICT_LOW_PART / ZERO_EXTRACT).
3139 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3140
3141 int
3142 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3143 const_rtx x, machine_mode x_mode, rtx x_addr)
3144 {
3145 return write_dependence_p (mem, x, x_mode, x_addr,
3146 mem_canonicalized, /*x_canonicalized=*/true,
3147 /*writep=*/true);
3148 }
3149 \f
3150
3151
3152 /* Check whether X may be aliased with MEM. Don't do offset-based
3153 memory disambiguation & TBAA. */
3154 int
3155 may_alias_p (const_rtx mem, const_rtx x)
3156 {
3157 rtx x_addr, mem_addr;
3158
3159 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3160 return 1;
3161
3162 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3163 This is used in epilogue deallocation functions. */
3164 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3165 return 1;
3166 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3167 return 1;
3168 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3169 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3170 return 1;
3171
3172 x_addr = XEXP (x, 0);
3173 x_addr = get_addr (x_addr);
3174
3175 mem_addr = XEXP (mem, 0);
3176 mem_addr = get_addr (mem_addr);
3177
3178 /* Read-only memory is by definition never modified, and therefore can't
3179 conflict with anything. However, don't assume anything when AND
3180 addresses are involved and leave to the code below to determine
3181 dependence. We don't expect to find read-only set on MEM, but
3182 stupid user tricks can produce them, so don't die. */
3183 if (MEM_READONLY_P (x)
3184 && GET_CODE (x_addr) != AND
3185 && GET_CODE (mem_addr) != AND)
3186 return 0;
3187
3188 /* If we have MEMs referring to different address spaces (which can
3189 potentially overlap), we cannot easily tell from the addresses
3190 whether the references overlap. */
3191 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3192 return 1;
3193
3194 rtx x_base = find_base_term (x_addr);
3195 rtx mem_base = find_base_term (mem_addr);
3196 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3197 GET_MODE (x), GET_MODE (mem_addr)))
3198 return 0;
3199
3200 if (nonoverlapping_memrefs_p (mem, x, true))
3201 return 0;
3202
3203 /* TBAA not valid for loop_invarint */
3204 return rtx_refs_may_alias_p (x, mem, false);
3205 }
3206
3207 void
3208 init_alias_target (void)
3209 {
3210 int i;
3211
3212 if (!arg_base_value)
3213 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3214
3215 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3216
3217 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3218 /* Check whether this register can hold an incoming pointer
3219 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3220 numbers, so translate if necessary due to register windows. */
3221 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3222 && targetm.hard_regno_mode_ok (i, Pmode))
3223 static_reg_base_value[i] = arg_base_value;
3224
3225 /* RTL code is required to be consistent about whether it uses the
3226 stack pointer, the frame pointer or the argument pointer to
3227 access a given area of the frame. We can therefore use the
3228 base address to distinguish between the different areas. */
3229 static_reg_base_value[STACK_POINTER_REGNUM]
3230 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3231 static_reg_base_value[ARG_POINTER_REGNUM]
3232 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3233 static_reg_base_value[FRAME_POINTER_REGNUM]
3234 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3235
3236 /* The above rules extend post-reload, with eliminations applying
3237 consistently to each of the three pointers. Cope with cases in
3238 which the frame pointer is eliminated to the hard frame pointer
3239 rather than the stack pointer. */
3240 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3241 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3242 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3243 }
3244
3245 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3246 to be memory reference. */
3247 static bool memory_modified;
3248 static void
3249 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3250 {
3251 if (MEM_P (x))
3252 {
3253 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3254 memory_modified = true;
3255 }
3256 }
3257
3258
3259 /* Return true when INSN possibly modify memory contents of MEM
3260 (i.e. address can be modified). */
3261 bool
3262 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3263 {
3264 if (!INSN_P (insn))
3265 return false;
3266 /* Conservatively assume all non-readonly MEMs might be modified in
3267 calls. */
3268 if (CALL_P (insn))
3269 return true;
3270 memory_modified = false;
3271 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3272 return memory_modified;
3273 }
3274
3275 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3276 array. */
3277
3278 void
3279 init_alias_analysis (void)
3280 {
3281 unsigned int maxreg = max_reg_num ();
3282 int changed, pass;
3283 int i;
3284 unsigned int ui;
3285 rtx_insn *insn;
3286 rtx val;
3287 int rpo_cnt;
3288 int *rpo;
3289
3290 timevar_push (TV_ALIAS_ANALYSIS);
3291
3292 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3293 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3294 bitmap_clear (reg_known_equiv_p);
3295
3296 /* If we have memory allocated from the previous run, use it. */
3297 if (old_reg_base_value)
3298 reg_base_value = old_reg_base_value;
3299
3300 if (reg_base_value)
3301 reg_base_value->truncate (0);
3302
3303 vec_safe_grow_cleared (reg_base_value, maxreg);
3304
3305 new_reg_base_value = XNEWVEC (rtx, maxreg);
3306 reg_seen = sbitmap_alloc (maxreg);
3307
3308 /* The basic idea is that each pass through this loop will use the
3309 "constant" information from the previous pass to propagate alias
3310 information through another level of assignments.
3311
3312 The propagation is done on the CFG in reverse post-order, to propagate
3313 things forward as far as possible in each iteration.
3314
3315 This could get expensive if the assignment chains are long. Maybe
3316 we should throttle the number of iterations, possibly based on
3317 the optimization level or flag_expensive_optimizations.
3318
3319 We could propagate more information in the first pass by making use
3320 of DF_REG_DEF_COUNT to determine immediately that the alias information
3321 for a pseudo is "constant".
3322
3323 A program with an uninitialized variable can cause an infinite loop
3324 here. Instead of doing a full dataflow analysis to detect such problems
3325 we just cap the number of iterations for the loop.
3326
3327 The state of the arrays for the set chain in question does not matter
3328 since the program has undefined behavior. */
3329
3330 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3331 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3332
3333 /* The prologue/epilogue insns are not threaded onto the
3334 insn chain until after reload has completed. Thus,
3335 there is no sense wasting time checking if INSN is in
3336 the prologue/epilogue until after reload has completed. */
3337 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3338 || targetm.have_epilogue ())
3339 && reload_completed);
3340
3341 pass = 0;
3342 do
3343 {
3344 /* Assume nothing will change this iteration of the loop. */
3345 changed = 0;
3346
3347 /* We want to assign the same IDs each iteration of this loop, so
3348 start counting from one each iteration of the loop. */
3349 unique_id = 1;
3350
3351 /* We're at the start of the function each iteration through the
3352 loop, so we're copying arguments. */
3353 copying_arguments = true;
3354
3355 /* Wipe the potential alias information clean for this pass. */
3356 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3357
3358 /* Wipe the reg_seen array clean. */
3359 bitmap_clear (reg_seen);
3360
3361 /* Initialize the alias information for this pass. */
3362 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3363 if (static_reg_base_value[i]
3364 /* Don't treat the hard frame pointer as special if we
3365 eliminated the frame pointer to the stack pointer instead. */
3366 && !(i == HARD_FRAME_POINTER_REGNUM
3367 && reload_completed
3368 && !frame_pointer_needed
3369 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3370 STACK_POINTER_REGNUM)))
3371 {
3372 new_reg_base_value[i] = static_reg_base_value[i];
3373 bitmap_set_bit (reg_seen, i);
3374 }
3375
3376 /* Walk the insns adding values to the new_reg_base_value array. */
3377 for (i = 0; i < rpo_cnt; i++)
3378 {
3379 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3380 FOR_BB_INSNS (bb, insn)
3381 {
3382 if (NONDEBUG_INSN_P (insn))
3383 {
3384 rtx note, set;
3385
3386 if (could_be_prologue_epilogue
3387 && prologue_epilogue_contains (insn))
3388 continue;
3389
3390 /* If this insn has a noalias note, process it, Otherwise,
3391 scan for sets. A simple set will have no side effects
3392 which could change the base value of any other register. */
3393
3394 if (GET_CODE (PATTERN (insn)) == SET
3395 && REG_NOTES (insn) != 0
3396 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3397 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3398 else
3399 note_stores (PATTERN (insn), record_set, NULL);
3400
3401 set = single_set (insn);
3402
3403 if (set != 0
3404 && REG_P (SET_DEST (set))
3405 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3406 {
3407 unsigned int regno = REGNO (SET_DEST (set));
3408 rtx src = SET_SRC (set);
3409 rtx t;
3410
3411 note = find_reg_equal_equiv_note (insn);
3412 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3413 && DF_REG_DEF_COUNT (regno) != 1)
3414 note = NULL_RTX;
3415
3416 poly_int64 offset;
3417 if (note != NULL_RTX
3418 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3419 && ! rtx_varies_p (XEXP (note, 0), 1)
3420 && ! reg_overlap_mentioned_p (SET_DEST (set),
3421 XEXP (note, 0)))
3422 {
3423 set_reg_known_value (regno, XEXP (note, 0));
3424 set_reg_known_equiv_p (regno,
3425 REG_NOTE_KIND (note) == REG_EQUIV);
3426 }
3427 else if (DF_REG_DEF_COUNT (regno) == 1
3428 && GET_CODE (src) == PLUS
3429 && REG_P (XEXP (src, 0))
3430 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3431 && poly_int_rtx_p (XEXP (src, 1), &offset))
3432 {
3433 t = plus_constant (GET_MODE (src), t, offset);
3434 set_reg_known_value (regno, t);
3435 set_reg_known_equiv_p (regno, false);
3436 }
3437 else if (DF_REG_DEF_COUNT (regno) == 1
3438 && ! rtx_varies_p (src, 1))
3439 {
3440 set_reg_known_value (regno, src);
3441 set_reg_known_equiv_p (regno, false);
3442 }
3443 }
3444 }
3445 else if (NOTE_P (insn)
3446 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3447 copying_arguments = false;
3448 }
3449 }
3450
3451 /* Now propagate values from new_reg_base_value to reg_base_value. */
3452 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3453
3454 for (ui = 0; ui < maxreg; ui++)
3455 {
3456 if (new_reg_base_value[ui]
3457 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3458 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3459 {
3460 (*reg_base_value)[ui] = new_reg_base_value[ui];
3461 changed = 1;
3462 }
3463 }
3464 }
3465 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3466 XDELETEVEC (rpo);
3467
3468 /* Fill in the remaining entries. */
3469 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3470 {
3471 int regno = i + FIRST_PSEUDO_REGISTER;
3472 if (! val)
3473 set_reg_known_value (regno, regno_reg_rtx[regno]);
3474 }
3475
3476 /* Clean up. */
3477 free (new_reg_base_value);
3478 new_reg_base_value = 0;
3479 sbitmap_free (reg_seen);
3480 reg_seen = 0;
3481 timevar_pop (TV_ALIAS_ANALYSIS);
3482 }
3483
3484 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3485 Special API for var-tracking pass purposes. */
3486
3487 void
3488 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3489 {
3490 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3491 }
3492
3493 void
3494 end_alias_analysis (void)
3495 {
3496 old_reg_base_value = reg_base_value;
3497 vec_free (reg_known_value);
3498 sbitmap_free (reg_known_equiv_p);
3499 }
3500
3501 void
3502 dump_alias_stats_in_alias_c (FILE *s)
3503 {
3504 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3505 " %llu are in alias set 0\n"
3506 " %llu queries asked about the same object\n"
3507 " %llu queries asked about the same alias set\n"
3508 " %llu access volatile\n"
3509 " %llu are dependent in the DAG\n"
3510 " %llu are aritificially in conflict with void *\n",
3511 alias_stats.num_disambiguated,
3512 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3513 + alias_stats.num_same_objects + alias_stats.num_volatile
3514 + alias_stats.num_dag + alias_stats.num_disambiguated
3515 + alias_stats.num_universal,
3516 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3517 alias_stats.num_same_objects, alias_stats.num_volatile,
3518 alias_stats.num_dag, alias_stats.num_universal);
3519 }
3520 #include "gt-alias.h"