]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/alias.c
re PR target/77834 (ICE: in make_decl_rtl, at varasm.c:1311 with -O -ftree-pre -mstri...
[thirdparty/gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42
43 /* The aliasing API provided here solves related but different problems:
44
45 Say there exists (in c)
46
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
51
52 struct Y y2, *py;
53 struct Z z2, *pz;
54
55
56 py = &x1.y1;
57 px2 = &x1;
58
59 Consider the four questions:
60
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
65
66 The answer to these questions can be yes, yes, yes, and maybe.
67
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
72
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
80
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
83
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
91 */
92
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
97
98 struct S { int i; double d; };
99
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
104 struct S
105 / \
106 / \
107 |/_ _\|
108 int double
109
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
113
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
118
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
122
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
124
125 struct GTY(()) alias_set_entry {
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set;
128
129 /* The children of the alias set. These are not just the immediate
130 children, but, in fact, all descendants. So, if we have:
131
132 struct T { struct S s; float f; }
133
134 continuing our example above, the children here will be all of
135 `int', `double', `float', and `struct S'. */
136 hash_map<alias_set_hash, int> *children;
137
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 bool has_zero_child;
141 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
142 aggregate contaiing pointer.
143 This is used for a special case where we need an universal pointer type
144 compatible with all other pointer types. */
145 bool is_pointer;
146 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
147 bool has_pointer;
148 };
149
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
163
164 static void memory_modified_1 (rtx, const_rtx, void *);
165
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
168
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
178
179
180 /* Set up all info needed to perform alias analysis on memory references. */
181
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
191
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
197
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
200
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
204
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
209
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
214
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
218
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
224
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
227
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
231
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
234
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
246
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
249
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
253
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
263
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
272
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
276
277
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 \f
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
284
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 {
288 tree expr = MEM_EXPR (mem);
289 tree base;
290
291 if (!expr)
292 return false;
293
294 ao_ref_init (ref, expr);
295
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
301
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
310
311 /* If this is a reference based on a partitioned decl replace the
312 base with a MEM_REF of the pointer representative we
313 created during stack slot partitioning. */
314 if (VAR_P (base)
315 && ! is_global_var (base)
316 && cfun->gimple_df->decls_to_pointers != NULL)
317 {
318 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
319 if (namep)
320 ref->base = build_simple_mem_ref (*namep);
321 }
322
323 ref->ref_alias_set = MEM_ALIAS_SET (mem);
324
325 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
326 is conservative, so trust it. */
327 if (!MEM_OFFSET_KNOWN_P (mem)
328 || !MEM_SIZE_KNOWN_P (mem))
329 return true;
330
331 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
332 drop ref->ref. */
333 if (MEM_OFFSET (mem) < 0
334 || (ref->max_size != -1
335 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
336 > ref->max_size)))
337 ref->ref = NULL_TREE;
338
339 /* Refine size and offset we got from analyzing MEM_EXPR by using
340 MEM_SIZE and MEM_OFFSET. */
341
342 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
343 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
344
345 /* The MEM may extend into adjacent fields, so adjust max_size if
346 necessary. */
347 if (ref->max_size != -1
348 && ref->size > ref->max_size)
349 ref->max_size = ref->size;
350
351 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
352 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
353 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
354 && (ref->offset < 0
355 || (DECL_P (ref->base)
356 && (DECL_SIZE (ref->base) == NULL_TREE
357 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
358 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
359 ref->offset + ref->size)))))
360 return false;
361
362 return true;
363 }
364
365 /* Query the alias-oracle on whether the two memory rtx X and MEM may
366 alias. If TBAA_P is set also apply TBAA. Returns true if the
367 two rtxen may alias, false otherwise. */
368
369 static bool
370 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
371 {
372 ao_ref ref1, ref2;
373
374 if (!ao_ref_from_mem (&ref1, x)
375 || !ao_ref_from_mem (&ref2, mem))
376 return true;
377
378 return refs_may_alias_p_1 (&ref1, &ref2,
379 tbaa_p
380 && MEM_ALIAS_SET (x) != 0
381 && MEM_ALIAS_SET (mem) != 0);
382 }
383
384 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
385 such an entry, or NULL otherwise. */
386
387 static inline alias_set_entry *
388 get_alias_set_entry (alias_set_type alias_set)
389 {
390 return (*alias_sets)[alias_set];
391 }
392
393 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
394 the two MEMs cannot alias each other. */
395
396 static inline int
397 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
398 {
399 return (flag_strict_aliasing
400 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
401 MEM_ALIAS_SET (mem2)));
402 }
403
404 /* Return true if the first alias set is a subset of the second. */
405
406 bool
407 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
408 {
409 alias_set_entry *ase2;
410
411 /* Disable TBAA oracle with !flag_strict_aliasing. */
412 if (!flag_strict_aliasing)
413 return true;
414
415 /* Everything is a subset of the "aliases everything" set. */
416 if (set2 == 0)
417 return true;
418
419 /* Check if set1 is a subset of set2. */
420 ase2 = get_alias_set_entry (set2);
421 if (ase2 != 0
422 && (ase2->has_zero_child
423 || (ase2->children && ase2->children->get (set1))))
424 return true;
425
426 /* As a special case we consider alias set of "void *" to be both subset
427 and superset of every alias set of a pointer. This extra symmetry does
428 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
429 to return true on the following testcase:
430
431 void *ptr;
432 char **ptr2=(char **)&ptr;
433 *ptr2 = ...
434
435 Additionally if a set contains universal pointer, we consider every pointer
436 to be a subset of it, but we do not represent this explicitely - doing so
437 would require us to update transitive closure each time we introduce new
438 pointer type. This makes aliasing_component_refs_p to return true
439 on the following testcase:
440
441 struct a {void *ptr;}
442 char **ptr = (char **)&a.ptr;
443 ptr = ...
444
445 This makes void * truly universal pointer type. See pointer handling in
446 get_alias_set for more details. */
447 if (ase2 && ase2->has_pointer)
448 {
449 alias_set_entry *ase1 = get_alias_set_entry (set1);
450
451 if (ase1 && ase1->is_pointer)
452 {
453 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
454 /* If one is ptr_type_node and other is pointer, then we consider
455 them subset of each other. */
456 if (set1 == voidptr_set || set2 == voidptr_set)
457 return true;
458 /* If SET2 contains universal pointer's alias set, then we consdier
459 every (non-universal) pointer. */
460 if (ase2->children && set1 != voidptr_set
461 && ase2->children->get (voidptr_set))
462 return true;
463 }
464 }
465 return false;
466 }
467
468 /* Return 1 if the two specified alias sets may conflict. */
469
470 int
471 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
472 {
473 alias_set_entry *ase1;
474 alias_set_entry *ase2;
475
476 /* The easy case. */
477 if (alias_sets_must_conflict_p (set1, set2))
478 return 1;
479
480 /* See if the first alias set is a subset of the second. */
481 ase1 = get_alias_set_entry (set1);
482 if (ase1 != 0
483 && ase1->children && ase1->children->get (set2))
484 {
485 ++alias_stats.num_dag;
486 return 1;
487 }
488
489 /* Now do the same, but with the alias sets reversed. */
490 ase2 = get_alias_set_entry (set2);
491 if (ase2 != 0
492 && ase2->children && ase2->children->get (set1))
493 {
494 ++alias_stats.num_dag;
495 return 1;
496 }
497
498 /* We want void * to be compatible with any other pointer without
499 really dropping it to alias set 0. Doing so would make it
500 compatible with all non-pointer types too.
501
502 This is not strictly necessary by the C/C++ language
503 standards, but avoids common type punning mistakes. In
504 addition to that, we need the existence of such universal
505 pointer to implement Fortran's C_PTR type (which is defined as
506 type compatible with all C pointers). */
507 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
508 {
509 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
510
511 /* If one of the sets corresponds to universal pointer,
512 we consider it to conflict with anything that is
513 or contains pointer. */
514 if (set1 == voidptr_set || set2 == voidptr_set)
515 {
516 ++alias_stats.num_universal;
517 return true;
518 }
519 /* If one of sets is (non-universal) pointer and the other
520 contains universal pointer, we also get conflict. */
521 if (ase1->is_pointer && set2 != voidptr_set
522 && ase2->children && ase2->children->get (voidptr_set))
523 {
524 ++alias_stats.num_universal;
525 return true;
526 }
527 if (ase2->is_pointer && set1 != voidptr_set
528 && ase1->children && ase1->children->get (voidptr_set))
529 {
530 ++alias_stats.num_universal;
531 return true;
532 }
533 }
534
535 ++alias_stats.num_disambiguated;
536
537 /* The two alias sets are distinct and neither one is the
538 child of the other. Therefore, they cannot conflict. */
539 return 0;
540 }
541
542 /* Return 1 if the two specified alias sets will always conflict. */
543
544 int
545 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
546 {
547 /* Disable TBAA oracle with !flag_strict_aliasing. */
548 if (!flag_strict_aliasing)
549 return 1;
550 if (set1 == 0 || set2 == 0)
551 {
552 ++alias_stats.num_alias_zero;
553 return 1;
554 }
555 if (set1 == set2)
556 {
557 ++alias_stats.num_same_alias_set;
558 return 1;
559 }
560
561 return 0;
562 }
563
564 /* Return 1 if any MEM object of type T1 will always conflict (using the
565 dependency routines in this file) with any MEM object of type T2.
566 This is used when allocating temporary storage. If T1 and/or T2 are
567 NULL_TREE, it means we know nothing about the storage. */
568
569 int
570 objects_must_conflict_p (tree t1, tree t2)
571 {
572 alias_set_type set1, set2;
573
574 /* If neither has a type specified, we don't know if they'll conflict
575 because we may be using them to store objects of various types, for
576 example the argument and local variables areas of inlined functions. */
577 if (t1 == 0 && t2 == 0)
578 return 0;
579
580 /* If they are the same type, they must conflict. */
581 if (t1 == t2)
582 {
583 ++alias_stats.num_same_objects;
584 return 1;
585 }
586 /* Likewise if both are volatile. */
587 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
588 {
589 ++alias_stats.num_volatile;
590 return 1;
591 }
592
593 set1 = t1 ? get_alias_set (t1) : 0;
594 set2 = t2 ? get_alias_set (t2) : 0;
595
596 /* We can't use alias_sets_conflict_p because we must make sure
597 that every subtype of t1 will conflict with every subtype of
598 t2 for which a pair of subobjects of these respective subtypes
599 overlaps on the stack. */
600 return alias_sets_must_conflict_p (set1, set2);
601 }
602 \f
603 /* Return the outermost parent of component present in the chain of
604 component references handled by get_inner_reference in T with the
605 following property:
606 - the component is non-addressable, or
607 - the parent has alias set zero,
608 or NULL_TREE if no such parent exists. In the former cases, the alias
609 set of this parent is the alias set that must be used for T itself. */
610
611 tree
612 component_uses_parent_alias_set_from (const_tree t)
613 {
614 const_tree found = NULL_TREE;
615
616 while (handled_component_p (t))
617 {
618 switch (TREE_CODE (t))
619 {
620 case COMPONENT_REF:
621 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
622 found = t;
623 /* Permit type-punning when accessing a union, provided the access
624 is directly through the union. For example, this code does not
625 permit taking the address of a union member and then storing
626 through it. Even the type-punning allowed here is a GCC
627 extension, albeit a common and useful one; the C standard says
628 that such accesses have implementation-defined behavior. */
629 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
630 found = t;
631 break;
632
633 case ARRAY_REF:
634 case ARRAY_RANGE_REF:
635 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
636 found = t;
637 break;
638
639 case REALPART_EXPR:
640 case IMAGPART_EXPR:
641 break;
642
643 case BIT_FIELD_REF:
644 case VIEW_CONVERT_EXPR:
645 /* Bitfields and casts are never addressable. */
646 found = t;
647 break;
648
649 default:
650 gcc_unreachable ();
651 }
652
653 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
654 found = t;
655
656 t = TREE_OPERAND (t, 0);
657 }
658
659 if (found)
660 return TREE_OPERAND (found, 0);
661
662 return NULL_TREE;
663 }
664
665
666 /* Return whether the pointer-type T effective for aliasing may
667 access everything and thus the reference has to be assigned
668 alias-set zero. */
669
670 static bool
671 ref_all_alias_ptr_type_p (const_tree t)
672 {
673 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
674 || TYPE_REF_CAN_ALIAS_ALL (t));
675 }
676
677 /* Return the alias set for the memory pointed to by T, which may be
678 either a type or an expression. Return -1 if there is nothing
679 special about dereferencing T. */
680
681 static alias_set_type
682 get_deref_alias_set_1 (tree t)
683 {
684 /* All we care about is the type. */
685 if (! TYPE_P (t))
686 t = TREE_TYPE (t);
687
688 /* If we have an INDIRECT_REF via a void pointer, we don't
689 know anything about what that might alias. Likewise if the
690 pointer is marked that way. */
691 if (ref_all_alias_ptr_type_p (t))
692 return 0;
693
694 return -1;
695 }
696
697 /* Return the alias set for the memory pointed to by T, which may be
698 either a type or an expression. */
699
700 alias_set_type
701 get_deref_alias_set (tree t)
702 {
703 /* If we're not doing any alias analysis, just assume everything
704 aliases everything else. */
705 if (!flag_strict_aliasing)
706 return 0;
707
708 alias_set_type set = get_deref_alias_set_1 (t);
709
710 /* Fall back to the alias-set of the pointed-to type. */
711 if (set == -1)
712 {
713 if (! TYPE_P (t))
714 t = TREE_TYPE (t);
715 set = get_alias_set (TREE_TYPE (t));
716 }
717
718 return set;
719 }
720
721 /* Return the pointer-type relevant for TBAA purposes from the
722 memory reference tree *T or NULL_TREE in which case *T is
723 adjusted to point to the outermost component reference that
724 can be used for assigning an alias set. */
725
726 static tree
727 reference_alias_ptr_type_1 (tree *t)
728 {
729 tree inner;
730
731 /* Get the base object of the reference. */
732 inner = *t;
733 while (handled_component_p (inner))
734 {
735 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
736 the type of any component references that wrap it to
737 determine the alias-set. */
738 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
739 *t = TREE_OPERAND (inner, 0);
740 inner = TREE_OPERAND (inner, 0);
741 }
742
743 /* Handle pointer dereferences here, they can override the
744 alias-set. */
745 if (INDIRECT_REF_P (inner)
746 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
747 return TREE_TYPE (TREE_OPERAND (inner, 0));
748 else if (TREE_CODE (inner) == TARGET_MEM_REF)
749 return TREE_TYPE (TMR_OFFSET (inner));
750 else if (TREE_CODE (inner) == MEM_REF
751 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
752 return TREE_TYPE (TREE_OPERAND (inner, 1));
753
754 /* If the innermost reference is a MEM_REF that has a
755 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
756 using the memory access type for determining the alias-set. */
757 if (TREE_CODE (inner) == MEM_REF
758 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
759 != TYPE_MAIN_VARIANT
760 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
761 return TREE_TYPE (TREE_OPERAND (inner, 1));
762
763 /* Otherwise, pick up the outermost object that we could have
764 a pointer to. */
765 tree tem = component_uses_parent_alias_set_from (*t);
766 if (tem)
767 *t = tem;
768
769 return NULL_TREE;
770 }
771
772 /* Return the pointer-type relevant for TBAA purposes from the
773 gimple memory reference tree T. This is the type to be used for
774 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
775 and guarantees that get_alias_set will return the same alias
776 set for T and the replacement. */
777
778 tree
779 reference_alias_ptr_type (tree t)
780 {
781 /* If the frontend assigns this alias-set zero, preserve that. */
782 if (lang_hooks.get_alias_set (t) == 0)
783 return ptr_type_node;
784
785 tree ptype = reference_alias_ptr_type_1 (&t);
786 /* If there is a given pointer type for aliasing purposes, return it. */
787 if (ptype != NULL_TREE)
788 return ptype;
789
790 /* Otherwise build one from the outermost component reference we
791 may use. */
792 if (TREE_CODE (t) == MEM_REF
793 || TREE_CODE (t) == TARGET_MEM_REF)
794 return TREE_TYPE (TREE_OPERAND (t, 1));
795 else
796 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
797 }
798
799 /* Return whether the pointer-types T1 and T2 used to determine
800 two alias sets of two references will yield the same answer
801 from get_deref_alias_set. */
802
803 bool
804 alias_ptr_types_compatible_p (tree t1, tree t2)
805 {
806 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
807 return true;
808
809 if (ref_all_alias_ptr_type_p (t1)
810 || ref_all_alias_ptr_type_p (t2))
811 return false;
812
813 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
814 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
815 }
816
817 /* Create emptry alias set entry. */
818
819 alias_set_entry *
820 init_alias_set_entry (alias_set_type set)
821 {
822 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
823 ase->alias_set = set;
824 ase->children = NULL;
825 ase->has_zero_child = false;
826 ase->is_pointer = false;
827 ase->has_pointer = false;
828 gcc_checking_assert (!get_alias_set_entry (set));
829 (*alias_sets)[set] = ase;
830 return ase;
831 }
832
833 /* Return the alias set for T, which may be either a type or an
834 expression. Call language-specific routine for help, if needed. */
835
836 alias_set_type
837 get_alias_set (tree t)
838 {
839 alias_set_type set;
840
841 /* We can not give up with -fno-strict-aliasing because we need to build
842 proper type representation for possible functions which are build with
843 -fstrict-aliasing. */
844
845 /* return 0 if this or its type is an error. */
846 if (t == error_mark_node
847 || (! TYPE_P (t)
848 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
849 return 0;
850
851 /* We can be passed either an expression or a type. This and the
852 language-specific routine may make mutually-recursive calls to each other
853 to figure out what to do. At each juncture, we see if this is a tree
854 that the language may need to handle specially. First handle things that
855 aren't types. */
856 if (! TYPE_P (t))
857 {
858 /* Give the language a chance to do something with this tree
859 before we look at it. */
860 STRIP_NOPS (t);
861 set = lang_hooks.get_alias_set (t);
862 if (set != -1)
863 return set;
864
865 /* Get the alias pointer-type to use or the outermost object
866 that we could have a pointer to. */
867 tree ptype = reference_alias_ptr_type_1 (&t);
868 if (ptype != NULL)
869 return get_deref_alias_set (ptype);
870
871 /* If we've already determined the alias set for a decl, just return
872 it. This is necessary for C++ anonymous unions, whose component
873 variables don't look like union members (boo!). */
874 if (VAR_P (t)
875 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
876 return MEM_ALIAS_SET (DECL_RTL (t));
877
878 /* Now all we care about is the type. */
879 t = TREE_TYPE (t);
880 }
881
882 /* Variant qualifiers don't affect the alias set, so get the main
883 variant. */
884 t = TYPE_MAIN_VARIANT (t);
885
886 /* Always use the canonical type as well. If this is a type that
887 requires structural comparisons to identify compatible types
888 use alias set zero. */
889 if (TYPE_STRUCTURAL_EQUALITY_P (t))
890 {
891 /* Allow the language to specify another alias set for this
892 type. */
893 set = lang_hooks.get_alias_set (t);
894 if (set != -1)
895 return set;
896 /* Handle structure type equality for pointer types, arrays and vectors.
897 This is easy to do, because the code bellow ignore canonical types on
898 these anyway. This is important for LTO, where TYPE_CANONICAL for
899 pointers can not be meaningfuly computed by the frotnend. */
900 if (canonical_type_used_p (t))
901 {
902 /* In LTO we set canonical types for all types where it makes
903 sense to do so. Double check we did not miss some type. */
904 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
905 return 0;
906 }
907 }
908 else
909 {
910 t = TYPE_CANONICAL (t);
911 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
912 }
913
914 /* If this is a type with a known alias set, return it. */
915 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
916 if (TYPE_ALIAS_SET_KNOWN_P (t))
917 return TYPE_ALIAS_SET (t);
918
919 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
920 if (!COMPLETE_TYPE_P (t))
921 {
922 /* For arrays with unknown size the conservative answer is the
923 alias set of the element type. */
924 if (TREE_CODE (t) == ARRAY_TYPE)
925 return get_alias_set (TREE_TYPE (t));
926
927 /* But return zero as a conservative answer for incomplete types. */
928 return 0;
929 }
930
931 /* See if the language has special handling for this type. */
932 set = lang_hooks.get_alias_set (t);
933 if (set != -1)
934 return set;
935
936 /* There are no objects of FUNCTION_TYPE, so there's no point in
937 using up an alias set for them. (There are, of course, pointers
938 and references to functions, but that's different.) */
939 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
940 set = 0;
941
942 /* Unless the language specifies otherwise, let vector types alias
943 their components. This avoids some nasty type punning issues in
944 normal usage. And indeed lets vectors be treated more like an
945 array slice. */
946 else if (TREE_CODE (t) == VECTOR_TYPE)
947 set = get_alias_set (TREE_TYPE (t));
948
949 /* Unless the language specifies otherwise, treat array types the
950 same as their components. This avoids the asymmetry we get
951 through recording the components. Consider accessing a
952 character(kind=1) through a reference to a character(kind=1)[1:1].
953 Or consider if we want to assign integer(kind=4)[0:D.1387] and
954 integer(kind=4)[4] the same alias set or not.
955 Just be pragmatic here and make sure the array and its element
956 type get the same alias set assigned. */
957 else if (TREE_CODE (t) == ARRAY_TYPE
958 && (!TYPE_NONALIASED_COMPONENT (t)
959 || TYPE_STRUCTURAL_EQUALITY_P (t)))
960 set = get_alias_set (TREE_TYPE (t));
961
962 /* From the former common C and C++ langhook implementation:
963
964 Unfortunately, there is no canonical form of a pointer type.
965 In particular, if we have `typedef int I', then `int *', and
966 `I *' are different types. So, we have to pick a canonical
967 representative. We do this below.
968
969 Technically, this approach is actually more conservative that
970 it needs to be. In particular, `const int *' and `int *'
971 should be in different alias sets, according to the C and C++
972 standard, since their types are not the same, and so,
973 technically, an `int **' and `const int **' cannot point at
974 the same thing.
975
976 But, the standard is wrong. In particular, this code is
977 legal C++:
978
979 int *ip;
980 int **ipp = &ip;
981 const int* const* cipp = ipp;
982 And, it doesn't make sense for that to be legal unless you
983 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
984 the pointed-to types. This issue has been reported to the
985 C++ committee.
986
987 For this reason go to canonical type of the unqalified pointer type.
988 Until GCC 6 this code set all pointers sets to have alias set of
989 ptr_type_node but that is a bad idea, because it prevents disabiguations
990 in between pointers. For Firefox this accounts about 20% of all
991 disambiguations in the program. */
992 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
993 {
994 tree p;
995 auto_vec <bool, 8> reference;
996
997 /* Unnest all pointers and references.
998 We also want to make pointer to array/vector equivalent to pointer to
999 its element (see the reasoning above). Skip all those types, too. */
1000 for (p = t; POINTER_TYPE_P (p)
1001 || (TREE_CODE (p) == ARRAY_TYPE
1002 && (!TYPE_NONALIASED_COMPONENT (p)
1003 || !COMPLETE_TYPE_P (p)
1004 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1005 || TREE_CODE (p) == VECTOR_TYPE;
1006 p = TREE_TYPE (p))
1007 {
1008 /* Ada supports recusive pointers. Instead of doing recrusion check
1009 just give up once the preallocated space of 8 elements is up.
1010 In this case just punt to void * alias set. */
1011 if (reference.length () == 8)
1012 {
1013 p = ptr_type_node;
1014 break;
1015 }
1016 if (TREE_CODE (p) == REFERENCE_TYPE)
1017 /* In LTO we want languages that use references to be compatible
1018 with languages that use pointers. */
1019 reference.safe_push (true && !in_lto_p);
1020 if (TREE_CODE (p) == POINTER_TYPE)
1021 reference.safe_push (false);
1022 }
1023 p = TYPE_MAIN_VARIANT (p);
1024
1025 /* Make void * compatible with char * and also void **.
1026 Programs are commonly violating TBAA by this.
1027
1028 We also make void * to conflict with every pointer
1029 (see record_component_aliases) and thus it is safe it to use it for
1030 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1031 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1032 set = get_alias_set (ptr_type_node);
1033 else
1034 {
1035 /* Rebuild pointer type starting from canonical types using
1036 unqualified pointers and references only. This way all such
1037 pointers will have the same alias set and will conflict with
1038 each other.
1039
1040 Most of time we already have pointers or references of a given type.
1041 If not we build new one just to be sure that if someone later
1042 (probably only middle-end can, as we should assign all alias
1043 classes only after finishing translation unit) builds the pointer
1044 type, the canonical type will match. */
1045 p = TYPE_CANONICAL (p);
1046 while (!reference.is_empty ())
1047 {
1048 if (reference.pop ())
1049 p = build_reference_type (p);
1050 else
1051 p = build_pointer_type (p);
1052 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1053 /* build_pointer_type should always return the canonical type.
1054 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1055 them. Be sure that frontends do not glob canonical types of
1056 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1057 in all other cases. */
1058 gcc_checking_assert (!TYPE_CANONICAL (p)
1059 || p == TYPE_CANONICAL (p));
1060 }
1061
1062 /* Assign the alias set to both p and t.
1063 We can not call get_alias_set (p) here as that would trigger
1064 infinite recursion when p == t. In other cases it would just
1065 trigger unnecesary legwork of rebuilding the pointer again. */
1066 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1067 if (TYPE_ALIAS_SET_KNOWN_P (p))
1068 set = TYPE_ALIAS_SET (p);
1069 else
1070 {
1071 set = new_alias_set ();
1072 TYPE_ALIAS_SET (p) = set;
1073 }
1074 }
1075 }
1076 /* Alias set of ptr_type_node is special and serve as universal pointer which
1077 is TBAA compatible with every other pointer type. Be sure we have the
1078 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1079 of pointer types NULL. */
1080 else if (t == ptr_type_node)
1081 set = new_alias_set ();
1082
1083 /* Otherwise make a new alias set for this type. */
1084 else
1085 {
1086 /* Each canonical type gets its own alias set, so canonical types
1087 shouldn't form a tree. It doesn't really matter for types
1088 we handle specially above, so only check it where it possibly
1089 would result in a bogus alias set. */
1090 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1091
1092 set = new_alias_set ();
1093 }
1094
1095 TYPE_ALIAS_SET (t) = set;
1096
1097 /* If this is an aggregate type or a complex type, we must record any
1098 component aliasing information. */
1099 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1100 record_component_aliases (t);
1101
1102 /* We treat pointer types specially in alias_set_subset_of. */
1103 if (POINTER_TYPE_P (t) && set)
1104 {
1105 alias_set_entry *ase = get_alias_set_entry (set);
1106 if (!ase)
1107 ase = init_alias_set_entry (set);
1108 ase->is_pointer = true;
1109 ase->has_pointer = true;
1110 }
1111
1112 return set;
1113 }
1114
1115 /* Return a brand-new alias set. */
1116
1117 alias_set_type
1118 new_alias_set (void)
1119 {
1120 if (alias_sets == 0)
1121 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1122 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1123 return alias_sets->length () - 1;
1124 }
1125
1126 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1127 not everything that aliases SUPERSET also aliases SUBSET. For example,
1128 in C, a store to an `int' can alias a load of a structure containing an
1129 `int', and vice versa. But it can't alias a load of a 'double' member
1130 of the same structure. Here, the structure would be the SUPERSET and
1131 `int' the SUBSET. This relationship is also described in the comment at
1132 the beginning of this file.
1133
1134 This function should be called only once per SUPERSET/SUBSET pair.
1135
1136 It is illegal for SUPERSET to be zero; everything is implicitly a
1137 subset of alias set zero. */
1138
1139 void
1140 record_alias_subset (alias_set_type superset, alias_set_type subset)
1141 {
1142 alias_set_entry *superset_entry;
1143 alias_set_entry *subset_entry;
1144
1145 /* It is possible in complex type situations for both sets to be the same,
1146 in which case we can ignore this operation. */
1147 if (superset == subset)
1148 return;
1149
1150 gcc_assert (superset);
1151
1152 superset_entry = get_alias_set_entry (superset);
1153 if (superset_entry == 0)
1154 {
1155 /* Create an entry for the SUPERSET, so that we have a place to
1156 attach the SUBSET. */
1157 superset_entry = init_alias_set_entry (superset);
1158 }
1159
1160 if (subset == 0)
1161 superset_entry->has_zero_child = 1;
1162 else
1163 {
1164 subset_entry = get_alias_set_entry (subset);
1165 if (!superset_entry->children)
1166 superset_entry->children
1167 = hash_map<alias_set_hash, int>::create_ggc (64);
1168 /* If there is an entry for the subset, enter all of its children
1169 (if they are not already present) as children of the SUPERSET. */
1170 if (subset_entry)
1171 {
1172 if (subset_entry->has_zero_child)
1173 superset_entry->has_zero_child = true;
1174 if (subset_entry->has_pointer)
1175 superset_entry->has_pointer = true;
1176
1177 if (subset_entry->children)
1178 {
1179 hash_map<alias_set_hash, int>::iterator iter
1180 = subset_entry->children->begin ();
1181 for (; iter != subset_entry->children->end (); ++iter)
1182 superset_entry->children->put ((*iter).first, (*iter).second);
1183 }
1184 }
1185
1186 /* Enter the SUBSET itself as a child of the SUPERSET. */
1187 superset_entry->children->put (subset, 0);
1188 }
1189 }
1190
1191 /* Record that component types of TYPE, if any, are part of that type for
1192 aliasing purposes. For record types, we only record component types
1193 for fields that are not marked non-addressable. For array types, we
1194 only record the component type if it is not marked non-aliased. */
1195
1196 void
1197 record_component_aliases (tree type)
1198 {
1199 alias_set_type superset = get_alias_set (type);
1200 tree field;
1201
1202 if (superset == 0)
1203 return;
1204
1205 switch (TREE_CODE (type))
1206 {
1207 case RECORD_TYPE:
1208 case UNION_TYPE:
1209 case QUAL_UNION_TYPE:
1210 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1211 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1212 {
1213 /* LTO type merging does not make any difference between
1214 component pointer types. We may have
1215
1216 struct foo {int *a;};
1217
1218 as TYPE_CANONICAL of
1219
1220 struct bar {float *a;};
1221
1222 Because accesses to int * and float * do not alias, we would get
1223 false negative when accessing the same memory location by
1224 float ** and bar *. We thus record the canonical type as:
1225
1226 struct {void *a;};
1227
1228 void * is special cased and works as a universal pointer type.
1229 Accesses to it conflicts with accesses to any other pointer
1230 type. */
1231 tree t = TREE_TYPE (field);
1232 if (in_lto_p)
1233 {
1234 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1235 element type and that type has to be normalized to void *,
1236 too, in the case it is a pointer. */
1237 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1238 {
1239 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1240 t = TREE_TYPE (t);
1241 }
1242 if (POINTER_TYPE_P (t))
1243 t = ptr_type_node;
1244 else if (flag_checking)
1245 gcc_checking_assert (get_alias_set (t)
1246 == get_alias_set (TREE_TYPE (field)));
1247 }
1248
1249 record_alias_subset (superset, get_alias_set (t));
1250 }
1251 break;
1252
1253 case COMPLEX_TYPE:
1254 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1255 break;
1256
1257 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1258 element type. */
1259
1260 default:
1261 break;
1262 }
1263 }
1264
1265 /* Allocate an alias set for use in storing and reading from the varargs
1266 spill area. */
1267
1268 static GTY(()) alias_set_type varargs_set = -1;
1269
1270 alias_set_type
1271 get_varargs_alias_set (void)
1272 {
1273 #if 1
1274 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1275 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1276 consistently use the varargs alias set for loads from the varargs
1277 area. So don't use it anywhere. */
1278 return 0;
1279 #else
1280 if (varargs_set == -1)
1281 varargs_set = new_alias_set ();
1282
1283 return varargs_set;
1284 #endif
1285 }
1286
1287 /* Likewise, but used for the fixed portions of the frame, e.g., register
1288 save areas. */
1289
1290 static GTY(()) alias_set_type frame_set = -1;
1291
1292 alias_set_type
1293 get_frame_alias_set (void)
1294 {
1295 if (frame_set == -1)
1296 frame_set = new_alias_set ();
1297
1298 return frame_set;
1299 }
1300
1301 /* Create a new, unique base with id ID. */
1302
1303 static rtx
1304 unique_base_value (HOST_WIDE_INT id)
1305 {
1306 return gen_rtx_ADDRESS (Pmode, id);
1307 }
1308
1309 /* Return true if accesses based on any other base value cannot alias
1310 those based on X. */
1311
1312 static bool
1313 unique_base_value_p (rtx x)
1314 {
1315 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1316 }
1317
1318 /* Return true if X is known to be a base value. */
1319
1320 static bool
1321 known_base_value_p (rtx x)
1322 {
1323 switch (GET_CODE (x))
1324 {
1325 case LABEL_REF:
1326 case SYMBOL_REF:
1327 return true;
1328
1329 case ADDRESS:
1330 /* Arguments may or may not be bases; we don't know for sure. */
1331 return GET_MODE (x) != VOIDmode;
1332
1333 default:
1334 return false;
1335 }
1336 }
1337
1338 /* Inside SRC, the source of a SET, find a base address. */
1339
1340 static rtx
1341 find_base_value (rtx src)
1342 {
1343 unsigned int regno;
1344
1345 #if defined (FIND_BASE_TERM)
1346 /* Try machine-dependent ways to find the base term. */
1347 src = FIND_BASE_TERM (src);
1348 #endif
1349
1350 switch (GET_CODE (src))
1351 {
1352 case SYMBOL_REF:
1353 case LABEL_REF:
1354 return src;
1355
1356 case REG:
1357 regno = REGNO (src);
1358 /* At the start of a function, argument registers have known base
1359 values which may be lost later. Returning an ADDRESS
1360 expression here allows optimization based on argument values
1361 even when the argument registers are used for other purposes. */
1362 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1363 return new_reg_base_value[regno];
1364
1365 /* If a pseudo has a known base value, return it. Do not do this
1366 for non-fixed hard regs since it can result in a circular
1367 dependency chain for registers which have values at function entry.
1368
1369 The test above is not sufficient because the scheduler may move
1370 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1371 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1372 && regno < vec_safe_length (reg_base_value))
1373 {
1374 /* If we're inside init_alias_analysis, use new_reg_base_value
1375 to reduce the number of relaxation iterations. */
1376 if (new_reg_base_value && new_reg_base_value[regno]
1377 && DF_REG_DEF_COUNT (regno) == 1)
1378 return new_reg_base_value[regno];
1379
1380 if ((*reg_base_value)[regno])
1381 return (*reg_base_value)[regno];
1382 }
1383
1384 return 0;
1385
1386 case MEM:
1387 /* Check for an argument passed in memory. Only record in the
1388 copying-arguments block; it is too hard to track changes
1389 otherwise. */
1390 if (copying_arguments
1391 && (XEXP (src, 0) == arg_pointer_rtx
1392 || (GET_CODE (XEXP (src, 0)) == PLUS
1393 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1394 return arg_base_value;
1395 return 0;
1396
1397 case CONST:
1398 src = XEXP (src, 0);
1399 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1400 break;
1401
1402 /* fall through */
1403
1404 case PLUS:
1405 case MINUS:
1406 {
1407 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1408
1409 /* If either operand is a REG that is a known pointer, then it
1410 is the base. */
1411 if (REG_P (src_0) && REG_POINTER (src_0))
1412 return find_base_value (src_0);
1413 if (REG_P (src_1) && REG_POINTER (src_1))
1414 return find_base_value (src_1);
1415
1416 /* If either operand is a REG, then see if we already have
1417 a known value for it. */
1418 if (REG_P (src_0))
1419 {
1420 temp = find_base_value (src_0);
1421 if (temp != 0)
1422 src_0 = temp;
1423 }
1424
1425 if (REG_P (src_1))
1426 {
1427 temp = find_base_value (src_1);
1428 if (temp!= 0)
1429 src_1 = temp;
1430 }
1431
1432 /* If either base is named object or a special address
1433 (like an argument or stack reference), then use it for the
1434 base term. */
1435 if (src_0 != 0 && known_base_value_p (src_0))
1436 return src_0;
1437
1438 if (src_1 != 0 && known_base_value_p (src_1))
1439 return src_1;
1440
1441 /* Guess which operand is the base address:
1442 If either operand is a symbol, then it is the base. If
1443 either operand is a CONST_INT, then the other is the base. */
1444 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1445 return find_base_value (src_0);
1446 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1447 return find_base_value (src_1);
1448
1449 return 0;
1450 }
1451
1452 case LO_SUM:
1453 /* The standard form is (lo_sum reg sym) so look only at the
1454 second operand. */
1455 return find_base_value (XEXP (src, 1));
1456
1457 case AND:
1458 /* If the second operand is constant set the base
1459 address to the first operand. */
1460 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1461 return find_base_value (XEXP (src, 0));
1462 return 0;
1463
1464 case TRUNCATE:
1465 /* As we do not know which address space the pointer is referring to, we can
1466 handle this only if the target does not support different pointer or
1467 address modes depending on the address space. */
1468 if (!target_default_pointer_address_modes_p ())
1469 break;
1470 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1471 break;
1472 /* Fall through. */
1473 case HIGH:
1474 case PRE_INC:
1475 case PRE_DEC:
1476 case POST_INC:
1477 case POST_DEC:
1478 case PRE_MODIFY:
1479 case POST_MODIFY:
1480 return find_base_value (XEXP (src, 0));
1481
1482 case ZERO_EXTEND:
1483 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1484 /* As we do not know which address space the pointer is referring to, we can
1485 handle this only if the target does not support different pointer or
1486 address modes depending on the address space. */
1487 if (!target_default_pointer_address_modes_p ())
1488 break;
1489
1490 {
1491 rtx temp = find_base_value (XEXP (src, 0));
1492
1493 if (temp != 0 && CONSTANT_P (temp))
1494 temp = convert_memory_address (Pmode, temp);
1495
1496 return temp;
1497 }
1498
1499 default:
1500 break;
1501 }
1502
1503 return 0;
1504 }
1505
1506 /* Called from init_alias_analysis indirectly through note_stores,
1507 or directly if DEST is a register with a REG_NOALIAS note attached.
1508 SET is null in the latter case. */
1509
1510 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1511 register N has been set in this function. */
1512 static sbitmap reg_seen;
1513
1514 static void
1515 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1516 {
1517 unsigned regno;
1518 rtx src;
1519 int n;
1520
1521 if (!REG_P (dest))
1522 return;
1523
1524 regno = REGNO (dest);
1525
1526 gcc_checking_assert (regno < reg_base_value->length ());
1527
1528 n = REG_NREGS (dest);
1529 if (n != 1)
1530 {
1531 while (--n >= 0)
1532 {
1533 bitmap_set_bit (reg_seen, regno + n);
1534 new_reg_base_value[regno + n] = 0;
1535 }
1536 return;
1537 }
1538
1539 if (set)
1540 {
1541 /* A CLOBBER wipes out any old value but does not prevent a previously
1542 unset register from acquiring a base address (i.e. reg_seen is not
1543 set). */
1544 if (GET_CODE (set) == CLOBBER)
1545 {
1546 new_reg_base_value[regno] = 0;
1547 return;
1548 }
1549 src = SET_SRC (set);
1550 }
1551 else
1552 {
1553 /* There's a REG_NOALIAS note against DEST. */
1554 if (bitmap_bit_p (reg_seen, regno))
1555 {
1556 new_reg_base_value[regno] = 0;
1557 return;
1558 }
1559 bitmap_set_bit (reg_seen, regno);
1560 new_reg_base_value[regno] = unique_base_value (unique_id++);
1561 return;
1562 }
1563
1564 /* If this is not the first set of REGNO, see whether the new value
1565 is related to the old one. There are two cases of interest:
1566
1567 (1) The register might be assigned an entirely new value
1568 that has the same base term as the original set.
1569
1570 (2) The set might be a simple self-modification that
1571 cannot change REGNO's base value.
1572
1573 If neither case holds, reject the original base value as invalid.
1574 Note that the following situation is not detected:
1575
1576 extern int x, y; int *p = &x; p += (&y-&x);
1577
1578 ANSI C does not allow computing the difference of addresses
1579 of distinct top level objects. */
1580 if (new_reg_base_value[regno] != 0
1581 && find_base_value (src) != new_reg_base_value[regno])
1582 switch (GET_CODE (src))
1583 {
1584 case LO_SUM:
1585 case MINUS:
1586 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1587 new_reg_base_value[regno] = 0;
1588 break;
1589 case PLUS:
1590 /* If the value we add in the PLUS is also a valid base value,
1591 this might be the actual base value, and the original value
1592 an index. */
1593 {
1594 rtx other = NULL_RTX;
1595
1596 if (XEXP (src, 0) == dest)
1597 other = XEXP (src, 1);
1598 else if (XEXP (src, 1) == dest)
1599 other = XEXP (src, 0);
1600
1601 if (! other || find_base_value (other))
1602 new_reg_base_value[regno] = 0;
1603 break;
1604 }
1605 case AND:
1606 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1607 new_reg_base_value[regno] = 0;
1608 break;
1609 default:
1610 new_reg_base_value[regno] = 0;
1611 break;
1612 }
1613 /* If this is the first set of a register, record the value. */
1614 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1615 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1616 new_reg_base_value[regno] = find_base_value (src);
1617
1618 bitmap_set_bit (reg_seen, regno);
1619 }
1620
1621 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1622 using hard registers with non-null REG_BASE_VALUE for renaming. */
1623 rtx
1624 get_reg_base_value (unsigned int regno)
1625 {
1626 return (*reg_base_value)[regno];
1627 }
1628
1629 /* If a value is known for REGNO, return it. */
1630
1631 rtx
1632 get_reg_known_value (unsigned int regno)
1633 {
1634 if (regno >= FIRST_PSEUDO_REGISTER)
1635 {
1636 regno -= FIRST_PSEUDO_REGISTER;
1637 if (regno < vec_safe_length (reg_known_value))
1638 return (*reg_known_value)[regno];
1639 }
1640 return NULL;
1641 }
1642
1643 /* Set it. */
1644
1645 static void
1646 set_reg_known_value (unsigned int regno, rtx val)
1647 {
1648 if (regno >= FIRST_PSEUDO_REGISTER)
1649 {
1650 regno -= FIRST_PSEUDO_REGISTER;
1651 if (regno < vec_safe_length (reg_known_value))
1652 (*reg_known_value)[regno] = val;
1653 }
1654 }
1655
1656 /* Similarly for reg_known_equiv_p. */
1657
1658 bool
1659 get_reg_known_equiv_p (unsigned int regno)
1660 {
1661 if (regno >= FIRST_PSEUDO_REGISTER)
1662 {
1663 regno -= FIRST_PSEUDO_REGISTER;
1664 if (regno < vec_safe_length (reg_known_value))
1665 return bitmap_bit_p (reg_known_equiv_p, regno);
1666 }
1667 return false;
1668 }
1669
1670 static void
1671 set_reg_known_equiv_p (unsigned int regno, bool val)
1672 {
1673 if (regno >= FIRST_PSEUDO_REGISTER)
1674 {
1675 regno -= FIRST_PSEUDO_REGISTER;
1676 if (regno < vec_safe_length (reg_known_value))
1677 {
1678 if (val)
1679 bitmap_set_bit (reg_known_equiv_p, regno);
1680 else
1681 bitmap_clear_bit (reg_known_equiv_p, regno);
1682 }
1683 }
1684 }
1685
1686
1687 /* Returns a canonical version of X, from the point of view alias
1688 analysis. (For example, if X is a MEM whose address is a register,
1689 and the register has a known value (say a SYMBOL_REF), then a MEM
1690 whose address is the SYMBOL_REF is returned.) */
1691
1692 rtx
1693 canon_rtx (rtx x)
1694 {
1695 /* Recursively look for equivalences. */
1696 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1697 {
1698 rtx t = get_reg_known_value (REGNO (x));
1699 if (t == x)
1700 return x;
1701 if (t)
1702 return canon_rtx (t);
1703 }
1704
1705 if (GET_CODE (x) == PLUS)
1706 {
1707 rtx x0 = canon_rtx (XEXP (x, 0));
1708 rtx x1 = canon_rtx (XEXP (x, 1));
1709
1710 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1711 {
1712 if (CONST_INT_P (x0))
1713 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1714 else if (CONST_INT_P (x1))
1715 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1716 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1717 }
1718 }
1719
1720 /* This gives us much better alias analysis when called from
1721 the loop optimizer. Note we want to leave the original
1722 MEM alone, but need to return the canonicalized MEM with
1723 all the flags with their original values. */
1724 else if (MEM_P (x))
1725 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1726
1727 return x;
1728 }
1729
1730 /* Return 1 if X and Y are identical-looking rtx's.
1731 Expect that X and Y has been already canonicalized.
1732
1733 We use the data in reg_known_value above to see if two registers with
1734 different numbers are, in fact, equivalent. */
1735
1736 static int
1737 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1738 {
1739 int i;
1740 int j;
1741 enum rtx_code code;
1742 const char *fmt;
1743
1744 if (x == 0 && y == 0)
1745 return 1;
1746 if (x == 0 || y == 0)
1747 return 0;
1748
1749 if (x == y)
1750 return 1;
1751
1752 code = GET_CODE (x);
1753 /* Rtx's of different codes cannot be equal. */
1754 if (code != GET_CODE (y))
1755 return 0;
1756
1757 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1758 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1759
1760 if (GET_MODE (x) != GET_MODE (y))
1761 return 0;
1762
1763 /* Some RTL can be compared without a recursive examination. */
1764 switch (code)
1765 {
1766 case REG:
1767 return REGNO (x) == REGNO (y);
1768
1769 case LABEL_REF:
1770 return label_ref_label (x) == label_ref_label (y);
1771
1772 case SYMBOL_REF:
1773 return compare_base_symbol_refs (x, y) == 1;
1774
1775 case ENTRY_VALUE:
1776 /* This is magic, don't go through canonicalization et al. */
1777 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1778
1779 case VALUE:
1780 CASE_CONST_UNIQUE:
1781 /* Pointer equality guarantees equality for these nodes. */
1782 return 0;
1783
1784 default:
1785 break;
1786 }
1787
1788 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1789 if (code == PLUS)
1790 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1791 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1792 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1793 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1794 /* For commutative operations, the RTX match if the operand match in any
1795 order. Also handle the simple binary and unary cases without a loop. */
1796 if (COMMUTATIVE_P (x))
1797 {
1798 rtx xop0 = canon_rtx (XEXP (x, 0));
1799 rtx yop0 = canon_rtx (XEXP (y, 0));
1800 rtx yop1 = canon_rtx (XEXP (y, 1));
1801
1802 return ((rtx_equal_for_memref_p (xop0, yop0)
1803 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1804 || (rtx_equal_for_memref_p (xop0, yop1)
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1806 }
1807 else if (NON_COMMUTATIVE_P (x))
1808 {
1809 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1810 canon_rtx (XEXP (y, 0)))
1811 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1812 canon_rtx (XEXP (y, 1))));
1813 }
1814 else if (UNARY_P (x))
1815 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1816 canon_rtx (XEXP (y, 0)));
1817
1818 /* Compare the elements. If any pair of corresponding elements
1819 fail to match, return 0 for the whole things.
1820
1821 Limit cases to types which actually appear in addresses. */
1822
1823 fmt = GET_RTX_FORMAT (code);
1824 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1825 {
1826 switch (fmt[i])
1827 {
1828 case 'i':
1829 if (XINT (x, i) != XINT (y, i))
1830 return 0;
1831 break;
1832
1833 case 'E':
1834 /* Two vectors must have the same length. */
1835 if (XVECLEN (x, i) != XVECLEN (y, i))
1836 return 0;
1837
1838 /* And the corresponding elements must match. */
1839 for (j = 0; j < XVECLEN (x, i); j++)
1840 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1841 canon_rtx (XVECEXP (y, i, j))) == 0)
1842 return 0;
1843 break;
1844
1845 case 'e':
1846 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1847 canon_rtx (XEXP (y, i))) == 0)
1848 return 0;
1849 break;
1850
1851 /* This can happen for asm operands. */
1852 case 's':
1853 if (strcmp (XSTR (x, i), XSTR (y, i)))
1854 return 0;
1855 break;
1856
1857 /* This can happen for an asm which clobbers memory. */
1858 case '0':
1859 break;
1860
1861 /* It is believed that rtx's at this level will never
1862 contain anything but integers and other rtx's,
1863 except for within LABEL_REFs and SYMBOL_REFs. */
1864 default:
1865 gcc_unreachable ();
1866 }
1867 }
1868 return 1;
1869 }
1870
1871 static rtx
1872 find_base_term (rtx x)
1873 {
1874 cselib_val *val;
1875 struct elt_loc_list *l, *f;
1876 rtx ret;
1877
1878 #if defined (FIND_BASE_TERM)
1879 /* Try machine-dependent ways to find the base term. */
1880 x = FIND_BASE_TERM (x);
1881 #endif
1882
1883 switch (GET_CODE (x))
1884 {
1885 case REG:
1886 return REG_BASE_VALUE (x);
1887
1888 case TRUNCATE:
1889 /* As we do not know which address space the pointer is referring to, we can
1890 handle this only if the target does not support different pointer or
1891 address modes depending on the address space. */
1892 if (!target_default_pointer_address_modes_p ())
1893 return 0;
1894 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1895 return 0;
1896 /* Fall through. */
1897 case HIGH:
1898 case PRE_INC:
1899 case PRE_DEC:
1900 case POST_INC:
1901 case POST_DEC:
1902 case PRE_MODIFY:
1903 case POST_MODIFY:
1904 return find_base_term (XEXP (x, 0));
1905
1906 case ZERO_EXTEND:
1907 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1908 /* As we do not know which address space the pointer is referring to, we can
1909 handle this only if the target does not support different pointer or
1910 address modes depending on the address space. */
1911 if (!target_default_pointer_address_modes_p ())
1912 return 0;
1913
1914 {
1915 rtx temp = find_base_term (XEXP (x, 0));
1916
1917 if (temp != 0 && CONSTANT_P (temp))
1918 temp = convert_memory_address (Pmode, temp);
1919
1920 return temp;
1921 }
1922
1923 case VALUE:
1924 val = CSELIB_VAL_PTR (x);
1925 ret = NULL_RTX;
1926
1927 if (!val)
1928 return ret;
1929
1930 if (cselib_sp_based_value_p (val))
1931 return static_reg_base_value[STACK_POINTER_REGNUM];
1932
1933 f = val->locs;
1934 /* Temporarily reset val->locs to avoid infinite recursion. */
1935 val->locs = NULL;
1936
1937 for (l = f; l; l = l->next)
1938 if (GET_CODE (l->loc) == VALUE
1939 && CSELIB_VAL_PTR (l->loc)->locs
1940 && !CSELIB_VAL_PTR (l->loc)->locs->next
1941 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1942 continue;
1943 else if ((ret = find_base_term (l->loc)) != 0)
1944 break;
1945
1946 val->locs = f;
1947 return ret;
1948
1949 case LO_SUM:
1950 /* The standard form is (lo_sum reg sym) so look only at the
1951 second operand. */
1952 return find_base_term (XEXP (x, 1));
1953
1954 case CONST:
1955 x = XEXP (x, 0);
1956 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1957 return 0;
1958 /* Fall through. */
1959 case PLUS:
1960 case MINUS:
1961 {
1962 rtx tmp1 = XEXP (x, 0);
1963 rtx tmp2 = XEXP (x, 1);
1964
1965 /* This is a little bit tricky since we have to determine which of
1966 the two operands represents the real base address. Otherwise this
1967 routine may return the index register instead of the base register.
1968
1969 That may cause us to believe no aliasing was possible, when in
1970 fact aliasing is possible.
1971
1972 We use a few simple tests to guess the base register. Additional
1973 tests can certainly be added. For example, if one of the operands
1974 is a shift or multiply, then it must be the index register and the
1975 other operand is the base register. */
1976
1977 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1978 return find_base_term (tmp2);
1979
1980 /* If either operand is known to be a pointer, then prefer it
1981 to determine the base term. */
1982 if (REG_P (tmp1) && REG_POINTER (tmp1))
1983 ;
1984 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1985 std::swap (tmp1, tmp2);
1986 /* If second argument is constant which has base term, prefer it
1987 over variable tmp1. See PR64025. */
1988 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1989 std::swap (tmp1, tmp2);
1990
1991 /* Go ahead and find the base term for both operands. If either base
1992 term is from a pointer or is a named object or a special address
1993 (like an argument or stack reference), then use it for the
1994 base term. */
1995 rtx base = find_base_term (tmp1);
1996 if (base != NULL_RTX
1997 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1998 || known_base_value_p (base)))
1999 return base;
2000 base = find_base_term (tmp2);
2001 if (base != NULL_RTX
2002 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2003 || known_base_value_p (base)))
2004 return base;
2005
2006 /* We could not determine which of the two operands was the
2007 base register and which was the index. So we can determine
2008 nothing from the base alias check. */
2009 return 0;
2010 }
2011
2012 case AND:
2013 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2014 return find_base_term (XEXP (x, 0));
2015 return 0;
2016
2017 case SYMBOL_REF:
2018 case LABEL_REF:
2019 return x;
2020
2021 default:
2022 return 0;
2023 }
2024 }
2025
2026 /* Return true if accesses to address X may alias accesses based
2027 on the stack pointer. */
2028
2029 bool
2030 may_be_sp_based_p (rtx x)
2031 {
2032 rtx base = find_base_term (x);
2033 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2034 }
2035
2036 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2037 if they refer to different objects and -1 if we can not decide. */
2038
2039 int
2040 compare_base_decls (tree base1, tree base2)
2041 {
2042 int ret;
2043 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2044 if (base1 == base2)
2045 return 1;
2046
2047 /* Declarations of non-automatic variables may have aliases. All other
2048 decls are unique. */
2049 if (!decl_in_symtab_p (base1)
2050 || !decl_in_symtab_p (base2))
2051 return 0;
2052
2053 /* Don't cause symbols to be inserted by the act of checking. */
2054 symtab_node *node1 = symtab_node::get (base1);
2055 if (!node1)
2056 return 0;
2057 symtab_node *node2 = symtab_node::get (base2);
2058 if (!node2)
2059 return 0;
2060
2061 ret = node1->equal_address_to (node2, true);
2062 return ret;
2063 }
2064
2065 /* Same as compare_base_decls but for SYMBOL_REF. */
2066
2067 static int
2068 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2069 {
2070 tree x_decl = SYMBOL_REF_DECL (x_base);
2071 tree y_decl = SYMBOL_REF_DECL (y_base);
2072 bool binds_def = true;
2073
2074 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2075 return 1;
2076 if (x_decl && y_decl)
2077 return compare_base_decls (x_decl, y_decl);
2078 if (x_decl || y_decl)
2079 {
2080 if (!x_decl)
2081 {
2082 std::swap (x_decl, y_decl);
2083 std::swap (x_base, y_base);
2084 }
2085 /* We handle specially only section anchors and assume that other
2086 labels may overlap with user variables in an arbitrary way. */
2087 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2088 return -1;
2089 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2090 to ignore CONST_DECLs because they are readonly. */
2091 if (!VAR_P (x_decl)
2092 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2093 return 0;
2094
2095 symtab_node *x_node = symtab_node::get_create (x_decl)
2096 ->ultimate_alias_target ();
2097 /* External variable can not be in section anchor. */
2098 if (!x_node->definition)
2099 return 0;
2100 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2101 /* If not in anchor, we can disambiguate. */
2102 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2103 return 0;
2104
2105 /* We have an alias of anchored variable. If it can be interposed;
2106 we must assume it may or may not alias its anchor. */
2107 binds_def = decl_binds_to_current_def_p (x_decl);
2108 }
2109 /* If we have variable in section anchor, we can compare by offset. */
2110 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2111 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2112 {
2113 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2114 return 0;
2115 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2116 return binds_def ? 1 : -1;
2117 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2118 return -1;
2119 return 0;
2120 }
2121 /* In general we assume that memory locations pointed to by different labels
2122 may overlap in undefined ways. */
2123 return -1;
2124 }
2125
2126 /* Return 0 if the addresses X and Y are known to point to different
2127 objects, 1 if they might be pointers to the same object. */
2128
2129 static int
2130 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2131 machine_mode x_mode, machine_mode y_mode)
2132 {
2133 /* If the address itself has no known base see if a known equivalent
2134 value has one. If either address still has no known base, nothing
2135 is known about aliasing. */
2136 if (x_base == 0)
2137 {
2138 rtx x_c;
2139
2140 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2141 return 1;
2142
2143 x_base = find_base_term (x_c);
2144 if (x_base == 0)
2145 return 1;
2146 }
2147
2148 if (y_base == 0)
2149 {
2150 rtx y_c;
2151 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2152 return 1;
2153
2154 y_base = find_base_term (y_c);
2155 if (y_base == 0)
2156 return 1;
2157 }
2158
2159 /* If the base addresses are equal nothing is known about aliasing. */
2160 if (rtx_equal_p (x_base, y_base))
2161 return 1;
2162
2163 /* The base addresses are different expressions. If they are not accessed
2164 via AND, there is no conflict. We can bring knowledge of object
2165 alignment into play here. For example, on alpha, "char a, b;" can
2166 alias one another, though "char a; long b;" cannot. AND addesses may
2167 implicitly alias surrounding objects; i.e. unaligned access in DImode
2168 via AND address can alias all surrounding object types except those
2169 with aligment 8 or higher. */
2170 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2171 return 1;
2172 if (GET_CODE (x) == AND
2173 && (!CONST_INT_P (XEXP (x, 1))
2174 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2175 return 1;
2176 if (GET_CODE (y) == AND
2177 && (!CONST_INT_P (XEXP (y, 1))
2178 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2179 return 1;
2180
2181 /* Differing symbols not accessed via AND never alias. */
2182 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2183 return compare_base_symbol_refs (x_base, y_base) != 0;
2184
2185 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2186 return 0;
2187
2188 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2189 return 0;
2190
2191 return 1;
2192 }
2193
2194 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2195 (or equal to) that of V. */
2196
2197 static bool
2198 refs_newer_value_p (const_rtx expr, rtx v)
2199 {
2200 int minuid = CSELIB_VAL_PTR (v)->uid;
2201 subrtx_iterator::array_type array;
2202 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2203 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2204 return true;
2205 return false;
2206 }
2207
2208 /* Convert the address X into something we can use. This is done by returning
2209 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2210 we call cselib to get a more useful rtx. */
2211
2212 rtx
2213 get_addr (rtx x)
2214 {
2215 cselib_val *v;
2216 struct elt_loc_list *l;
2217
2218 if (GET_CODE (x) != VALUE)
2219 {
2220 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2221 && GET_CODE (XEXP (x, 0)) == VALUE
2222 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2223 {
2224 rtx op0 = get_addr (XEXP (x, 0));
2225 if (op0 != XEXP (x, 0))
2226 {
2227 if (GET_CODE (x) == PLUS
2228 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2229 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2230 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2231 op0, XEXP (x, 1));
2232 }
2233 }
2234 return x;
2235 }
2236 v = CSELIB_VAL_PTR (x);
2237 if (v)
2238 {
2239 bool have_equivs = cselib_have_permanent_equivalences ();
2240 if (have_equivs)
2241 v = canonical_cselib_val (v);
2242 for (l = v->locs; l; l = l->next)
2243 if (CONSTANT_P (l->loc))
2244 return l->loc;
2245 for (l = v->locs; l; l = l->next)
2246 if (!REG_P (l->loc) && !MEM_P (l->loc)
2247 /* Avoid infinite recursion when potentially dealing with
2248 var-tracking artificial equivalences, by skipping the
2249 equivalences themselves, and not choosing expressions
2250 that refer to newer VALUEs. */
2251 && (!have_equivs
2252 || (GET_CODE (l->loc) != VALUE
2253 && !refs_newer_value_p (l->loc, x))))
2254 return l->loc;
2255 if (have_equivs)
2256 {
2257 for (l = v->locs; l; l = l->next)
2258 if (REG_P (l->loc)
2259 || (GET_CODE (l->loc) != VALUE
2260 && !refs_newer_value_p (l->loc, x)))
2261 return l->loc;
2262 /* Return the canonical value. */
2263 return v->val_rtx;
2264 }
2265 if (v->locs)
2266 return v->locs->loc;
2267 }
2268 return x;
2269 }
2270
2271 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2272 where SIZE is the size in bytes of the memory reference. If ADDR
2273 is not modified by the memory reference then ADDR is returned. */
2274
2275 static rtx
2276 addr_side_effect_eval (rtx addr, int size, int n_refs)
2277 {
2278 int offset = 0;
2279
2280 switch (GET_CODE (addr))
2281 {
2282 case PRE_INC:
2283 offset = (n_refs + 1) * size;
2284 break;
2285 case PRE_DEC:
2286 offset = -(n_refs + 1) * size;
2287 break;
2288 case POST_INC:
2289 offset = n_refs * size;
2290 break;
2291 case POST_DEC:
2292 offset = -n_refs * size;
2293 break;
2294
2295 default:
2296 return addr;
2297 }
2298
2299 if (offset)
2300 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
2301 gen_int_mode (offset, GET_MODE (addr)));
2302 else
2303 addr = XEXP (addr, 0);
2304 addr = canon_rtx (addr);
2305
2306 return addr;
2307 }
2308
2309 /* Return TRUE if an object X sized at XSIZE bytes and another object
2310 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2311 any of the sizes is zero, assume an overlap, otherwise use the
2312 absolute value of the sizes as the actual sizes. */
2313
2314 static inline bool
2315 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2316 {
2317 return (xsize == 0 || ysize == 0
2318 || (c >= 0
2319 ? (abs (xsize) > c)
2320 : (abs (ysize) > -c)));
2321 }
2322
2323 /* Return one if X and Y (memory addresses) reference the
2324 same location in memory or if the references overlap.
2325 Return zero if they do not overlap, else return
2326 minus one in which case they still might reference the same location.
2327
2328 C is an offset accumulator. When
2329 C is nonzero, we are testing aliases between X and Y + C.
2330 XSIZE is the size in bytes of the X reference,
2331 similarly YSIZE is the size in bytes for Y.
2332 Expect that canon_rtx has been already called for X and Y.
2333
2334 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2335 referenced (the reference was BLKmode), so make the most pessimistic
2336 assumptions.
2337
2338 If XSIZE or YSIZE is negative, we may access memory outside the object
2339 being referenced as a side effect. This can happen when using AND to
2340 align memory references, as is done on the Alpha.
2341
2342 Nice to notice that varying addresses cannot conflict with fp if no
2343 local variables had their addresses taken, but that's too hard now.
2344
2345 ??? Contrary to the tree alias oracle this does not return
2346 one for X + non-constant and Y + non-constant when X and Y are equal.
2347 If that is fixed the TBAA hack for union type-punning can be removed. */
2348
2349 static int
2350 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2351 {
2352 if (GET_CODE (x) == VALUE)
2353 {
2354 if (REG_P (y))
2355 {
2356 struct elt_loc_list *l = NULL;
2357 if (CSELIB_VAL_PTR (x))
2358 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2359 l; l = l->next)
2360 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2361 break;
2362 if (l)
2363 x = y;
2364 else
2365 x = get_addr (x);
2366 }
2367 /* Don't call get_addr if y is the same VALUE. */
2368 else if (x != y)
2369 x = get_addr (x);
2370 }
2371 if (GET_CODE (y) == VALUE)
2372 {
2373 if (REG_P (x))
2374 {
2375 struct elt_loc_list *l = NULL;
2376 if (CSELIB_VAL_PTR (y))
2377 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2378 l; l = l->next)
2379 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2380 break;
2381 if (l)
2382 y = x;
2383 else
2384 y = get_addr (y);
2385 }
2386 /* Don't call get_addr if x is the same VALUE. */
2387 else if (y != x)
2388 y = get_addr (y);
2389 }
2390 if (GET_CODE (x) == HIGH)
2391 x = XEXP (x, 0);
2392 else if (GET_CODE (x) == LO_SUM)
2393 x = XEXP (x, 1);
2394 else
2395 x = addr_side_effect_eval (x, abs (xsize), 0);
2396 if (GET_CODE (y) == HIGH)
2397 y = XEXP (y, 0);
2398 else if (GET_CODE (y) == LO_SUM)
2399 y = XEXP (y, 1);
2400 else
2401 y = addr_side_effect_eval (y, abs (ysize), 0);
2402
2403 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2404 {
2405 int cmp = compare_base_symbol_refs (x,y);
2406
2407 /* If both decls are the same, decide by offsets. */
2408 if (cmp == 1)
2409 return offset_overlap_p (c, xsize, ysize);
2410 /* Assume a potential overlap for symbolic addresses that went
2411 through alignment adjustments (i.e., that have negative
2412 sizes), because we can't know how far they are from each
2413 other. */
2414 if (xsize < 0 || ysize < 0)
2415 return -1;
2416 /* If decls are different or we know by offsets that there is no overlap,
2417 we win. */
2418 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2419 return 0;
2420 /* Decls may or may not be different and offsets overlap....*/
2421 return -1;
2422 }
2423 else if (rtx_equal_for_memref_p (x, y))
2424 {
2425 return offset_overlap_p (c, xsize, ysize);
2426 }
2427
2428 /* This code used to check for conflicts involving stack references and
2429 globals but the base address alias code now handles these cases. */
2430
2431 if (GET_CODE (x) == PLUS)
2432 {
2433 /* The fact that X is canonicalized means that this
2434 PLUS rtx is canonicalized. */
2435 rtx x0 = XEXP (x, 0);
2436 rtx x1 = XEXP (x, 1);
2437
2438 /* However, VALUEs might end up in different positions even in
2439 canonical PLUSes. Comparing their addresses is enough. */
2440 if (x0 == y)
2441 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2442 else if (x1 == y)
2443 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2444
2445 if (GET_CODE (y) == PLUS)
2446 {
2447 /* The fact that Y is canonicalized means that this
2448 PLUS rtx is canonicalized. */
2449 rtx y0 = XEXP (y, 0);
2450 rtx y1 = XEXP (y, 1);
2451
2452 if (x0 == y1)
2453 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2454 if (x1 == y0)
2455 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2456
2457 if (rtx_equal_for_memref_p (x1, y1))
2458 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2459 if (rtx_equal_for_memref_p (x0, y0))
2460 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2461 if (CONST_INT_P (x1))
2462 {
2463 if (CONST_INT_P (y1))
2464 return memrefs_conflict_p (xsize, x0, ysize, y0,
2465 c - INTVAL (x1) + INTVAL (y1));
2466 else
2467 return memrefs_conflict_p (xsize, x0, ysize, y,
2468 c - INTVAL (x1));
2469 }
2470 else if (CONST_INT_P (y1))
2471 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2472
2473 return -1;
2474 }
2475 else if (CONST_INT_P (x1))
2476 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2477 }
2478 else if (GET_CODE (y) == PLUS)
2479 {
2480 /* The fact that Y is canonicalized means that this
2481 PLUS rtx is canonicalized. */
2482 rtx y0 = XEXP (y, 0);
2483 rtx y1 = XEXP (y, 1);
2484
2485 if (x == y0)
2486 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2487 if (x == y1)
2488 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2489
2490 if (CONST_INT_P (y1))
2491 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2492 else
2493 return -1;
2494 }
2495
2496 if (GET_CODE (x) == GET_CODE (y))
2497 switch (GET_CODE (x))
2498 {
2499 case MULT:
2500 {
2501 /* Handle cases where we expect the second operands to be the
2502 same, and check only whether the first operand would conflict
2503 or not. */
2504 rtx x0, y0;
2505 rtx x1 = canon_rtx (XEXP (x, 1));
2506 rtx y1 = canon_rtx (XEXP (y, 1));
2507 if (! rtx_equal_for_memref_p (x1, y1))
2508 return -1;
2509 x0 = canon_rtx (XEXP (x, 0));
2510 y0 = canon_rtx (XEXP (y, 0));
2511 if (rtx_equal_for_memref_p (x0, y0))
2512 return offset_overlap_p (c, xsize, ysize);
2513
2514 /* Can't properly adjust our sizes. */
2515 if (!CONST_INT_P (x1))
2516 return -1;
2517 xsize /= INTVAL (x1);
2518 ysize /= INTVAL (x1);
2519 c /= INTVAL (x1);
2520 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2521 }
2522
2523 default:
2524 break;
2525 }
2526
2527 /* Deal with alignment ANDs by adjusting offset and size so as to
2528 cover the maximum range, without taking any previously known
2529 alignment into account. Make a size negative after such an
2530 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2531 assume a potential overlap, because they may end up in contiguous
2532 memory locations and the stricter-alignment access may span over
2533 part of both. */
2534 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2535 {
2536 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2537 unsigned HOST_WIDE_INT uc = sc;
2538 if (sc < 0 && pow2_or_zerop (-uc))
2539 {
2540 if (xsize > 0)
2541 xsize = -xsize;
2542 if (xsize)
2543 xsize += sc + 1;
2544 c -= sc + 1;
2545 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2546 ysize, y, c);
2547 }
2548 }
2549 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2550 {
2551 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2552 unsigned HOST_WIDE_INT uc = sc;
2553 if (sc < 0 && pow2_or_zerop (-uc))
2554 {
2555 if (ysize > 0)
2556 ysize = -ysize;
2557 if (ysize)
2558 ysize += sc + 1;
2559 c += sc + 1;
2560 return memrefs_conflict_p (xsize, x,
2561 ysize, canon_rtx (XEXP (y, 0)), c);
2562 }
2563 }
2564
2565 if (CONSTANT_P (x))
2566 {
2567 if (CONST_INT_P (x) && CONST_INT_P (y))
2568 {
2569 c += (INTVAL (y) - INTVAL (x));
2570 return offset_overlap_p (c, xsize, ysize);
2571 }
2572
2573 if (GET_CODE (x) == CONST)
2574 {
2575 if (GET_CODE (y) == CONST)
2576 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2577 ysize, canon_rtx (XEXP (y, 0)), c);
2578 else
2579 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2580 ysize, y, c);
2581 }
2582 if (GET_CODE (y) == CONST)
2583 return memrefs_conflict_p (xsize, x, ysize,
2584 canon_rtx (XEXP (y, 0)), c);
2585
2586 /* Assume a potential overlap for symbolic addresses that went
2587 through alignment adjustments (i.e., that have negative
2588 sizes), because we can't know how far they are from each
2589 other. */
2590 if (CONSTANT_P (y))
2591 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2592
2593 return -1;
2594 }
2595
2596 return -1;
2597 }
2598
2599 /* Functions to compute memory dependencies.
2600
2601 Since we process the insns in execution order, we can build tables
2602 to keep track of what registers are fixed (and not aliased), what registers
2603 are varying in known ways, and what registers are varying in unknown
2604 ways.
2605
2606 If both memory references are volatile, then there must always be a
2607 dependence between the two references, since their order can not be
2608 changed. A volatile and non-volatile reference can be interchanged
2609 though.
2610
2611 We also must allow AND addresses, because they may generate accesses
2612 outside the object being referenced. This is used to generate aligned
2613 addresses from unaligned addresses, for instance, the alpha
2614 storeqi_unaligned pattern. */
2615
2616 /* Read dependence: X is read after read in MEM takes place. There can
2617 only be a dependence here if both reads are volatile, or if either is
2618 an explicit barrier. */
2619
2620 int
2621 read_dependence (const_rtx mem, const_rtx x)
2622 {
2623 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2624 return true;
2625 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2626 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2627 return true;
2628 return false;
2629 }
2630
2631 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2632
2633 static tree
2634 decl_for_component_ref (tree x)
2635 {
2636 do
2637 {
2638 x = TREE_OPERAND (x, 0);
2639 }
2640 while (x && TREE_CODE (x) == COMPONENT_REF);
2641
2642 return x && DECL_P (x) ? x : NULL_TREE;
2643 }
2644
2645 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2646 for the offset of the field reference. *KNOWN_P says whether the
2647 offset is known. */
2648
2649 static void
2650 adjust_offset_for_component_ref (tree x, bool *known_p,
2651 HOST_WIDE_INT *offset)
2652 {
2653 if (!*known_p)
2654 return;
2655 do
2656 {
2657 tree xoffset = component_ref_field_offset (x);
2658 tree field = TREE_OPERAND (x, 1);
2659 if (TREE_CODE (xoffset) != INTEGER_CST)
2660 {
2661 *known_p = false;
2662 return;
2663 }
2664
2665 offset_int woffset
2666 = (wi::to_offset (xoffset)
2667 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2668 >> LOG2_BITS_PER_UNIT));
2669 if (!wi::fits_uhwi_p (woffset))
2670 {
2671 *known_p = false;
2672 return;
2673 }
2674 *offset += woffset.to_uhwi ();
2675
2676 x = TREE_OPERAND (x, 0);
2677 }
2678 while (x && TREE_CODE (x) == COMPONENT_REF);
2679 }
2680
2681 /* Return nonzero if we can determine the exprs corresponding to memrefs
2682 X and Y and they do not overlap.
2683 If LOOP_VARIANT is set, skip offset-based disambiguation */
2684
2685 int
2686 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2687 {
2688 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2689 rtx rtlx, rtly;
2690 rtx basex, basey;
2691 bool moffsetx_known_p, moffsety_known_p;
2692 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2693 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
2694
2695 /* Unless both have exprs, we can't tell anything. */
2696 if (exprx == 0 || expry == 0)
2697 return 0;
2698
2699 /* For spill-slot accesses make sure we have valid offsets. */
2700 if ((exprx == get_spill_slot_decl (false)
2701 && ! MEM_OFFSET_KNOWN_P (x))
2702 || (expry == get_spill_slot_decl (false)
2703 && ! MEM_OFFSET_KNOWN_P (y)))
2704 return 0;
2705
2706 /* If the field reference test failed, look at the DECLs involved. */
2707 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2708 if (moffsetx_known_p)
2709 moffsetx = MEM_OFFSET (x);
2710 if (TREE_CODE (exprx) == COMPONENT_REF)
2711 {
2712 tree t = decl_for_component_ref (exprx);
2713 if (! t)
2714 return 0;
2715 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2716 exprx = t;
2717 }
2718
2719 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2720 if (moffsety_known_p)
2721 moffsety = MEM_OFFSET (y);
2722 if (TREE_CODE (expry) == COMPONENT_REF)
2723 {
2724 tree t = decl_for_component_ref (expry);
2725 if (! t)
2726 return 0;
2727 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2728 expry = t;
2729 }
2730
2731 if (! DECL_P (exprx) || ! DECL_P (expry))
2732 return 0;
2733
2734 /* If we refer to different gimple registers, or one gimple register
2735 and one non-gimple-register, we know they can't overlap. First,
2736 gimple registers don't have their addresses taken. Now, there
2737 could be more than one stack slot for (different versions of) the
2738 same gimple register, but we can presumably tell they don't
2739 overlap based on offsets from stack base addresses elsewhere.
2740 It's important that we don't proceed to DECL_RTL, because gimple
2741 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2742 able to do anything about them since no SSA information will have
2743 remained to guide it. */
2744 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2745 return exprx != expry
2746 || (moffsetx_known_p && moffsety_known_p
2747 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2748 && !offset_overlap_p (moffsety - moffsetx,
2749 MEM_SIZE (x), MEM_SIZE (y)));
2750
2751 /* With invalid code we can end up storing into the constant pool.
2752 Bail out to avoid ICEing when creating RTL for this.
2753 See gfortran.dg/lto/20091028-2_0.f90. */
2754 if (TREE_CODE (exprx) == CONST_DECL
2755 || TREE_CODE (expry) == CONST_DECL)
2756 return 1;
2757
2758 /* If one decl is known to be a function or label in a function and
2759 the other is some kind of data, they can't overlap. */
2760 if ((TREE_CODE (exprx) == FUNCTION_DECL
2761 || TREE_CODE (exprx) == LABEL_DECL)
2762 != (TREE_CODE (expry) == FUNCTION_DECL
2763 || TREE_CODE (expry) == LABEL_DECL))
2764 return 1;
2765
2766 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2767 living in multiple places), we can't tell anything. Exception
2768 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2769 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2770 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2771 return 0;
2772
2773 rtlx = DECL_RTL (exprx);
2774 rtly = DECL_RTL (expry);
2775
2776 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2777 can't overlap unless they are the same because we never reuse that part
2778 of the stack frame used for locals for spilled pseudos. */
2779 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2780 && ! rtx_equal_p (rtlx, rtly))
2781 return 1;
2782
2783 /* If we have MEMs referring to different address spaces (which can
2784 potentially overlap), we cannot easily tell from the addresses
2785 whether the references overlap. */
2786 if (MEM_P (rtlx) && MEM_P (rtly)
2787 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2788 return 0;
2789
2790 /* Get the base and offsets of both decls. If either is a register, we
2791 know both are and are the same, so use that as the base. The only
2792 we can avoid overlap is if we can deduce that they are nonoverlapping
2793 pieces of that decl, which is very rare. */
2794 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2795 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2796 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2797
2798 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2799 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2800 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2801
2802 /* If the bases are different, we know they do not overlap if both
2803 are constants or if one is a constant and the other a pointer into the
2804 stack frame. Otherwise a different base means we can't tell if they
2805 overlap or not. */
2806 if (compare_base_decls (exprx, expry) == 0)
2807 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2808 || (CONSTANT_P (basex) && REG_P (basey)
2809 && REGNO_PTR_FRAME_P (REGNO (basey)))
2810 || (CONSTANT_P (basey) && REG_P (basex)
2811 && REGNO_PTR_FRAME_P (REGNO (basex))));
2812
2813 /* Offset based disambiguation not appropriate for loop invariant */
2814 if (loop_invariant)
2815 return 0;
2816
2817 /* Offset based disambiguation is OK even if we do not know that the
2818 declarations are necessarily different
2819 (i.e. compare_base_decls (exprx, expry) == -1) */
2820
2821 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2822 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2823 : -1);
2824 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2825 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2826 : -1);
2827
2828 /* If we have an offset for either memref, it can update the values computed
2829 above. */
2830 if (moffsetx_known_p)
2831 offsetx += moffsetx, sizex -= moffsetx;
2832 if (moffsety_known_p)
2833 offsety += moffsety, sizey -= moffsety;
2834
2835 /* If a memref has both a size and an offset, we can use the smaller size.
2836 We can't do this if the offset isn't known because we must view this
2837 memref as being anywhere inside the DECL's MEM. */
2838 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2839 sizex = MEM_SIZE (x);
2840 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2841 sizey = MEM_SIZE (y);
2842
2843 /* Put the values of the memref with the lower offset in X's values. */
2844 if (offsetx > offsety)
2845 {
2846 std::swap (offsetx, offsety);
2847 std::swap (sizex, sizey);
2848 }
2849
2850 /* If we don't know the size of the lower-offset value, we can't tell
2851 if they conflict. Otherwise, we do the test. */
2852 return sizex >= 0 && offsety >= offsetx + sizex;
2853 }
2854
2855 /* Helper for true_dependence and canon_true_dependence.
2856 Checks for true dependence: X is read after store in MEM takes place.
2857
2858 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2859 NULL_RTX, and the canonical addresses of MEM and X are both computed
2860 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2861
2862 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2863
2864 Returns 1 if there is a true dependence, 0 otherwise. */
2865
2866 static int
2867 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2868 const_rtx x, rtx x_addr, bool mem_canonicalized)
2869 {
2870 rtx true_mem_addr;
2871 rtx base;
2872 int ret;
2873
2874 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2875 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2876
2877 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2878 return 1;
2879
2880 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2881 This is used in epilogue deallocation functions, and in cselib. */
2882 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2883 return 1;
2884 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2885 return 1;
2886 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2887 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2888 return 1;
2889
2890 if (! x_addr)
2891 x_addr = XEXP (x, 0);
2892 x_addr = get_addr (x_addr);
2893
2894 if (! mem_addr)
2895 {
2896 mem_addr = XEXP (mem, 0);
2897 if (mem_mode == VOIDmode)
2898 mem_mode = GET_MODE (mem);
2899 }
2900 true_mem_addr = get_addr (mem_addr);
2901
2902 /* Read-only memory is by definition never modified, and therefore can't
2903 conflict with anything. However, don't assume anything when AND
2904 addresses are involved and leave to the code below to determine
2905 dependence. We don't expect to find read-only set on MEM, but
2906 stupid user tricks can produce them, so don't die. */
2907 if (MEM_READONLY_P (x)
2908 && GET_CODE (x_addr) != AND
2909 && GET_CODE (true_mem_addr) != AND)
2910 return 0;
2911
2912 /* If we have MEMs referring to different address spaces (which can
2913 potentially overlap), we cannot easily tell from the addresses
2914 whether the references overlap. */
2915 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2916 return 1;
2917
2918 base = find_base_term (x_addr);
2919 if (base && (GET_CODE (base) == LABEL_REF
2920 || (GET_CODE (base) == SYMBOL_REF
2921 && CONSTANT_POOL_ADDRESS_P (base))))
2922 return 0;
2923
2924 rtx mem_base = find_base_term (true_mem_addr);
2925 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2926 GET_MODE (x), mem_mode))
2927 return 0;
2928
2929 x_addr = canon_rtx (x_addr);
2930 if (!mem_canonicalized)
2931 mem_addr = canon_rtx (true_mem_addr);
2932
2933 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2934 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2935 return ret;
2936
2937 if (mems_in_disjoint_alias_sets_p (x, mem))
2938 return 0;
2939
2940 if (nonoverlapping_memrefs_p (mem, x, false))
2941 return 0;
2942
2943 return rtx_refs_may_alias_p (x, mem, true);
2944 }
2945
2946 /* True dependence: X is read after store in MEM takes place. */
2947
2948 int
2949 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2950 {
2951 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2952 x, NULL_RTX, /*mem_canonicalized=*/false);
2953 }
2954
2955 /* Canonical true dependence: X is read after store in MEM takes place.
2956 Variant of true_dependence which assumes MEM has already been
2957 canonicalized (hence we no longer do that here).
2958 The mem_addr argument has been added, since true_dependence_1 computed
2959 this value prior to canonicalizing. */
2960
2961 int
2962 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2963 const_rtx x, rtx x_addr)
2964 {
2965 return true_dependence_1 (mem, mem_mode, mem_addr,
2966 x, x_addr, /*mem_canonicalized=*/true);
2967 }
2968
2969 /* Returns nonzero if a write to X might alias a previous read from
2970 (or, if WRITEP is true, a write to) MEM.
2971 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2972 and X_MODE the mode for that access.
2973 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2974
2975 static int
2976 write_dependence_p (const_rtx mem,
2977 const_rtx x, machine_mode x_mode, rtx x_addr,
2978 bool mem_canonicalized, bool x_canonicalized, bool writep)
2979 {
2980 rtx mem_addr;
2981 rtx true_mem_addr, true_x_addr;
2982 rtx base;
2983 int ret;
2984
2985 gcc_checking_assert (x_canonicalized
2986 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2987 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2988
2989 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2990 return 1;
2991
2992 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2993 This is used in epilogue deallocation functions. */
2994 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2995 return 1;
2996 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2997 return 1;
2998 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2999 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3000 return 1;
3001
3002 if (!x_addr)
3003 x_addr = XEXP (x, 0);
3004 true_x_addr = get_addr (x_addr);
3005
3006 mem_addr = XEXP (mem, 0);
3007 true_mem_addr = get_addr (mem_addr);
3008
3009 /* A read from read-only memory can't conflict with read-write memory.
3010 Don't assume anything when AND addresses are involved and leave to
3011 the code below to determine dependence. */
3012 if (!writep
3013 && MEM_READONLY_P (mem)
3014 && GET_CODE (true_x_addr) != AND
3015 && GET_CODE (true_mem_addr) != AND)
3016 return 0;
3017
3018 /* If we have MEMs referring to different address spaces (which can
3019 potentially overlap), we cannot easily tell from the addresses
3020 whether the references overlap. */
3021 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3022 return 1;
3023
3024 base = find_base_term (true_mem_addr);
3025 if (! writep
3026 && base
3027 && (GET_CODE (base) == LABEL_REF
3028 || (GET_CODE (base) == SYMBOL_REF
3029 && CONSTANT_POOL_ADDRESS_P (base))))
3030 return 0;
3031
3032 rtx x_base = find_base_term (true_x_addr);
3033 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3034 GET_MODE (x), GET_MODE (mem)))
3035 return 0;
3036
3037 if (!x_canonicalized)
3038 {
3039 x_addr = canon_rtx (true_x_addr);
3040 x_mode = GET_MODE (x);
3041 }
3042 if (!mem_canonicalized)
3043 mem_addr = canon_rtx (true_mem_addr);
3044
3045 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3046 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3047 return ret;
3048
3049 if (nonoverlapping_memrefs_p (x, mem, false))
3050 return 0;
3051
3052 return rtx_refs_may_alias_p (x, mem, false);
3053 }
3054
3055 /* Anti dependence: X is written after read in MEM takes place. */
3056
3057 int
3058 anti_dependence (const_rtx mem, const_rtx x)
3059 {
3060 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3061 /*mem_canonicalized=*/false,
3062 /*x_canonicalized*/false, /*writep=*/false);
3063 }
3064
3065 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3066 Also, consider X in X_MODE (which might be from an enclosing
3067 STRICT_LOW_PART / ZERO_EXTRACT).
3068 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3069
3070 int
3071 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3072 const_rtx x, machine_mode x_mode, rtx x_addr)
3073 {
3074 return write_dependence_p (mem, x, x_mode, x_addr,
3075 mem_canonicalized, /*x_canonicalized=*/true,
3076 /*writep=*/false);
3077 }
3078
3079 /* Output dependence: X is written after store in MEM takes place. */
3080
3081 int
3082 output_dependence (const_rtx mem, const_rtx x)
3083 {
3084 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3085 /*mem_canonicalized=*/false,
3086 /*x_canonicalized*/false, /*writep=*/true);
3087 }
3088
3089 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3090 Also, consider X in X_MODE (which might be from an enclosing
3091 STRICT_LOW_PART / ZERO_EXTRACT).
3092 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3093
3094 int
3095 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3096 const_rtx x, machine_mode x_mode, rtx x_addr)
3097 {
3098 return write_dependence_p (mem, x, x_mode, x_addr,
3099 mem_canonicalized, /*x_canonicalized=*/true,
3100 /*writep=*/true);
3101 }
3102 \f
3103
3104
3105 /* Check whether X may be aliased with MEM. Don't do offset-based
3106 memory disambiguation & TBAA. */
3107 int
3108 may_alias_p (const_rtx mem, const_rtx x)
3109 {
3110 rtx x_addr, mem_addr;
3111
3112 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3113 return 1;
3114
3115 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3116 This is used in epilogue deallocation functions. */
3117 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3118 return 1;
3119 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3120 return 1;
3121 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3122 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3123 return 1;
3124
3125 x_addr = XEXP (x, 0);
3126 x_addr = get_addr (x_addr);
3127
3128 mem_addr = XEXP (mem, 0);
3129 mem_addr = get_addr (mem_addr);
3130
3131 /* Read-only memory is by definition never modified, and therefore can't
3132 conflict with anything. However, don't assume anything when AND
3133 addresses are involved and leave to the code below to determine
3134 dependence. We don't expect to find read-only set on MEM, but
3135 stupid user tricks can produce them, so don't die. */
3136 if (MEM_READONLY_P (x)
3137 && GET_CODE (x_addr) != AND
3138 && GET_CODE (mem_addr) != AND)
3139 return 0;
3140
3141 /* If we have MEMs referring to different address spaces (which can
3142 potentially overlap), we cannot easily tell from the addresses
3143 whether the references overlap. */
3144 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3145 return 1;
3146
3147 rtx x_base = find_base_term (x_addr);
3148 rtx mem_base = find_base_term (mem_addr);
3149 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3150 GET_MODE (x), GET_MODE (mem_addr)))
3151 return 0;
3152
3153 if (nonoverlapping_memrefs_p (mem, x, true))
3154 return 0;
3155
3156 /* TBAA not valid for loop_invarint */
3157 return rtx_refs_may_alias_p (x, mem, false);
3158 }
3159
3160 void
3161 init_alias_target (void)
3162 {
3163 int i;
3164
3165 if (!arg_base_value)
3166 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3167
3168 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3169
3170 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3171 /* Check whether this register can hold an incoming pointer
3172 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3173 numbers, so translate if necessary due to register windows. */
3174 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3175 && HARD_REGNO_MODE_OK (i, Pmode))
3176 static_reg_base_value[i] = arg_base_value;
3177
3178 static_reg_base_value[STACK_POINTER_REGNUM]
3179 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3180 static_reg_base_value[ARG_POINTER_REGNUM]
3181 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3182 static_reg_base_value[FRAME_POINTER_REGNUM]
3183 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3184 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3185 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3186 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3187 }
3188
3189 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3190 to be memory reference. */
3191 static bool memory_modified;
3192 static void
3193 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3194 {
3195 if (MEM_P (x))
3196 {
3197 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3198 memory_modified = true;
3199 }
3200 }
3201
3202
3203 /* Return true when INSN possibly modify memory contents of MEM
3204 (i.e. address can be modified). */
3205 bool
3206 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3207 {
3208 if (!INSN_P (insn))
3209 return false;
3210 memory_modified = false;
3211 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3212 return memory_modified;
3213 }
3214
3215 /* Return TRUE if the destination of a set is rtx identical to
3216 ITEM. */
3217 static inline bool
3218 set_dest_equal_p (const_rtx set, const_rtx item)
3219 {
3220 rtx dest = SET_DEST (set);
3221 return rtx_equal_p (dest, item);
3222 }
3223
3224 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3225 array. */
3226
3227 void
3228 init_alias_analysis (void)
3229 {
3230 unsigned int maxreg = max_reg_num ();
3231 int changed, pass;
3232 int i;
3233 unsigned int ui;
3234 rtx_insn *insn;
3235 rtx val;
3236 int rpo_cnt;
3237 int *rpo;
3238
3239 timevar_push (TV_ALIAS_ANALYSIS);
3240
3241 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3242 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3243 bitmap_clear (reg_known_equiv_p);
3244
3245 /* If we have memory allocated from the previous run, use it. */
3246 if (old_reg_base_value)
3247 reg_base_value = old_reg_base_value;
3248
3249 if (reg_base_value)
3250 reg_base_value->truncate (0);
3251
3252 vec_safe_grow_cleared (reg_base_value, maxreg);
3253
3254 new_reg_base_value = XNEWVEC (rtx, maxreg);
3255 reg_seen = sbitmap_alloc (maxreg);
3256
3257 /* The basic idea is that each pass through this loop will use the
3258 "constant" information from the previous pass to propagate alias
3259 information through another level of assignments.
3260
3261 The propagation is done on the CFG in reverse post-order, to propagate
3262 things forward as far as possible in each iteration.
3263
3264 This could get expensive if the assignment chains are long. Maybe
3265 we should throttle the number of iterations, possibly based on
3266 the optimization level or flag_expensive_optimizations.
3267
3268 We could propagate more information in the first pass by making use
3269 of DF_REG_DEF_COUNT to determine immediately that the alias information
3270 for a pseudo is "constant".
3271
3272 A program with an uninitialized variable can cause an infinite loop
3273 here. Instead of doing a full dataflow analysis to detect such problems
3274 we just cap the number of iterations for the loop.
3275
3276 The state of the arrays for the set chain in question does not matter
3277 since the program has undefined behavior. */
3278
3279 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3280 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3281
3282 /* The prologue/epilogue insns are not threaded onto the
3283 insn chain until after reload has completed. Thus,
3284 there is no sense wasting time checking if INSN is in
3285 the prologue/epilogue until after reload has completed. */
3286 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3287 || targetm.have_epilogue ())
3288 && reload_completed);
3289
3290 pass = 0;
3291 do
3292 {
3293 /* Assume nothing will change this iteration of the loop. */
3294 changed = 0;
3295
3296 /* We want to assign the same IDs each iteration of this loop, so
3297 start counting from one each iteration of the loop. */
3298 unique_id = 1;
3299
3300 /* We're at the start of the function each iteration through the
3301 loop, so we're copying arguments. */
3302 copying_arguments = true;
3303
3304 /* Wipe the potential alias information clean for this pass. */
3305 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3306
3307 /* Wipe the reg_seen array clean. */
3308 bitmap_clear (reg_seen);
3309
3310 /* Initialize the alias information for this pass. */
3311 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3312 if (static_reg_base_value[i])
3313 {
3314 new_reg_base_value[i] = static_reg_base_value[i];
3315 bitmap_set_bit (reg_seen, i);
3316 }
3317
3318 /* Walk the insns adding values to the new_reg_base_value array. */
3319 for (i = 0; i < rpo_cnt; i++)
3320 {
3321 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3322 FOR_BB_INSNS (bb, insn)
3323 {
3324 if (NONDEBUG_INSN_P (insn))
3325 {
3326 rtx note, set;
3327
3328 if (could_be_prologue_epilogue
3329 && prologue_epilogue_contains (insn))
3330 continue;
3331
3332 /* If this insn has a noalias note, process it, Otherwise,
3333 scan for sets. A simple set will have no side effects
3334 which could change the base value of any other register. */
3335
3336 if (GET_CODE (PATTERN (insn)) == SET
3337 && REG_NOTES (insn) != 0
3338 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3339 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3340 else
3341 note_stores (PATTERN (insn), record_set, NULL);
3342
3343 set = single_set (insn);
3344
3345 if (set != 0
3346 && REG_P (SET_DEST (set))
3347 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3348 {
3349 unsigned int regno = REGNO (SET_DEST (set));
3350 rtx src = SET_SRC (set);
3351 rtx t;
3352
3353 note = find_reg_equal_equiv_note (insn);
3354 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3355 && DF_REG_DEF_COUNT (regno) != 1)
3356 note = NULL_RTX;
3357
3358 if (note != NULL_RTX
3359 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3360 && ! rtx_varies_p (XEXP (note, 0), 1)
3361 && ! reg_overlap_mentioned_p (SET_DEST (set),
3362 XEXP (note, 0)))
3363 {
3364 set_reg_known_value (regno, XEXP (note, 0));
3365 set_reg_known_equiv_p (regno,
3366 REG_NOTE_KIND (note) == REG_EQUIV);
3367 }
3368 else if (DF_REG_DEF_COUNT (regno) == 1
3369 && GET_CODE (src) == PLUS
3370 && REG_P (XEXP (src, 0))
3371 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3372 && CONST_INT_P (XEXP (src, 1)))
3373 {
3374 t = plus_constant (GET_MODE (src), t,
3375 INTVAL (XEXP (src, 1)));
3376 set_reg_known_value (regno, t);
3377 set_reg_known_equiv_p (regno, false);
3378 }
3379 else if (DF_REG_DEF_COUNT (regno) == 1
3380 && ! rtx_varies_p (src, 1))
3381 {
3382 set_reg_known_value (regno, src);
3383 set_reg_known_equiv_p (regno, false);
3384 }
3385 }
3386 }
3387 else if (NOTE_P (insn)
3388 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3389 copying_arguments = false;
3390 }
3391 }
3392
3393 /* Now propagate values from new_reg_base_value to reg_base_value. */
3394 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3395
3396 for (ui = 0; ui < maxreg; ui++)
3397 {
3398 if (new_reg_base_value[ui]
3399 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3400 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3401 {
3402 (*reg_base_value)[ui] = new_reg_base_value[ui];
3403 changed = 1;
3404 }
3405 }
3406 }
3407 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3408 XDELETEVEC (rpo);
3409
3410 /* Fill in the remaining entries. */
3411 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3412 {
3413 int regno = i + FIRST_PSEUDO_REGISTER;
3414 if (! val)
3415 set_reg_known_value (regno, regno_reg_rtx[regno]);
3416 }
3417
3418 /* Clean up. */
3419 free (new_reg_base_value);
3420 new_reg_base_value = 0;
3421 sbitmap_free (reg_seen);
3422 reg_seen = 0;
3423 timevar_pop (TV_ALIAS_ANALYSIS);
3424 }
3425
3426 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3427 Special API for var-tracking pass purposes. */
3428
3429 void
3430 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3431 {
3432 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3433 }
3434
3435 void
3436 end_alias_analysis (void)
3437 {
3438 old_reg_base_value = reg_base_value;
3439 vec_free (reg_known_value);
3440 sbitmap_free (reg_known_equiv_p);
3441 }
3442
3443 void
3444 dump_alias_stats_in_alias_c (FILE *s)
3445 {
3446 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3447 " %llu are in alias set 0\n"
3448 " %llu queries asked about the same object\n"
3449 " %llu queries asked about the same alias set\n"
3450 " %llu access volatile\n"
3451 " %llu are dependent in the DAG\n"
3452 " %llu are aritificially in conflict with void *\n",
3453 alias_stats.num_disambiguated,
3454 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3455 + alias_stats.num_same_objects + alias_stats.num_volatile
3456 + alias_stats.num_dag + alias_stats.num_disambiguated
3457 + alias_stats.num_universal,
3458 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3459 alias_stats.num_same_objects, alias_stats.num_volatile,
3460 alias_stats.num_dag, alias_stats.num_universal);
3461 }
3462 #include "gt-alias.h"