]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/asan.c
poly_int: get_inner_reference & co.
[thirdparty/gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "stringpool.h"
51 #include "attribs.h"
52 #include "asan.h"
53 #include "dojump.h"
54 #include "explow.h"
55 #include "expr.h"
56 #include "output.h"
57 #include "langhooks.h"
58 #include "cfgloop.h"
59 #include "gimple-builder.h"
60 #include "gimple-fold.h"
61 #include "ubsan.h"
62 #include "params.h"
63 #include "builtins.h"
64 #include "fnmatch.h"
65 #include "tree-inline.h"
66
67 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
68 with <2x slowdown on average.
69
70 The tool consists of two parts:
71 instrumentation module (this file) and a run-time library.
72 The instrumentation module adds a run-time check before every memory insn.
73 For a 8- or 16- byte load accessing address X:
74 ShadowAddr = (X >> 3) + Offset
75 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
76 if (ShadowValue)
77 __asan_report_load8(X);
78 For a load of N bytes (N=1, 2 or 4) from address X:
79 ShadowAddr = (X >> 3) + Offset
80 ShadowValue = *(char*)ShadowAddr;
81 if (ShadowValue)
82 if ((X & 7) + N - 1 > ShadowValue)
83 __asan_report_loadN(X);
84 Stores are instrumented similarly, but using __asan_report_storeN functions.
85 A call too __asan_init_vN() is inserted to the list of module CTORs.
86 N is the version number of the AddressSanitizer API. The changes between the
87 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
88
89 The run-time library redefines malloc (so that redzone are inserted around
90 the allocated memory) and free (so that reuse of free-ed memory is delayed),
91 provides __asan_report* and __asan_init_vN functions.
92
93 Read more:
94 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
95
96 The current implementation supports detection of out-of-bounds and
97 use-after-free in the heap, on the stack and for global variables.
98
99 [Protection of stack variables]
100
101 To understand how detection of out-of-bounds and use-after-free works
102 for stack variables, lets look at this example on x86_64 where the
103 stack grows downward:
104
105 int
106 foo ()
107 {
108 char a[23] = {0};
109 int b[2] = {0};
110
111 a[5] = 1;
112 b[1] = 2;
113
114 return a[5] + b[1];
115 }
116
117 For this function, the stack protected by asan will be organized as
118 follows, from the top of the stack to the bottom:
119
120 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
121
122 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
123 the next slot be 32 bytes aligned; this one is called Partial
124 Redzone; this 32 bytes alignment is an asan constraint]
125
126 Slot 3/ [24 bytes for variable 'a']
127
128 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
129
130 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
131
132 Slot 6/ [8 bytes for variable 'b']
133
134 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
135 'LEFT RedZone']
136
137 The 32 bytes of LEFT red zone at the bottom of the stack can be
138 decomposed as such:
139
140 1/ The first 8 bytes contain a magical asan number that is always
141 0x41B58AB3.
142
143 2/ The following 8 bytes contains a pointer to a string (to be
144 parsed at runtime by the runtime asan library), which format is
145 the following:
146
147 "<function-name> <space> <num-of-variables-on-the-stack>
148 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
149 <length-of-var-in-bytes> ){n} "
150
151 where '(...){n}' means the content inside the parenthesis occurs 'n'
152 times, with 'n' being the number of variables on the stack.
153
154 3/ The following 8 bytes contain the PC of the current function which
155 will be used by the run-time library to print an error message.
156
157 4/ The following 8 bytes are reserved for internal use by the run-time.
158
159 The shadow memory for that stack layout is going to look like this:
160
161 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
162 The F1 byte pattern is a magic number called
163 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
164 the memory for that shadow byte is part of a the LEFT red zone
165 intended to seat at the bottom of the variables on the stack.
166
167 - content of shadow memory 8 bytes for slots 6 and 5:
168 0xF4F4F400. The F4 byte pattern is a magic number
169 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
170 memory region for this shadow byte is a PARTIAL red zone
171 intended to pad a variable A, so that the slot following
172 {A,padding} is 32 bytes aligned.
173
174 Note that the fact that the least significant byte of this
175 shadow memory content is 00 means that 8 bytes of its
176 corresponding memory (which corresponds to the memory of
177 variable 'b') is addressable.
178
179 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
180 The F2 byte pattern is a magic number called
181 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
182 region for this shadow byte is a MIDDLE red zone intended to
183 seat between two 32 aligned slots of {variable,padding}.
184
185 - content of shadow memory 8 bytes for slot 3 and 2:
186 0xF4000000. This represents is the concatenation of
187 variable 'a' and the partial red zone following it, like what we
188 had for variable 'b'. The least significant 3 bytes being 00
189 means that the 3 bytes of variable 'a' are addressable.
190
191 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
192 The F3 byte pattern is a magic number called
193 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
194 region for this shadow byte is a RIGHT red zone intended to seat
195 at the top of the variables of the stack.
196
197 Note that the real variable layout is done in expand_used_vars in
198 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
199 stack variables as well as the different red zones, emits some
200 prologue code to populate the shadow memory as to poison (mark as
201 non-accessible) the regions of the red zones and mark the regions of
202 stack variables as accessible, and emit some epilogue code to
203 un-poison (mark as accessible) the regions of red zones right before
204 the function exits.
205
206 [Protection of global variables]
207
208 The basic idea is to insert a red zone between two global variables
209 and install a constructor function that calls the asan runtime to do
210 the populating of the relevant shadow memory regions at load time.
211
212 So the global variables are laid out as to insert a red zone between
213 them. The size of the red zones is so that each variable starts on a
214 32 bytes boundary.
215
216 Then a constructor function is installed so that, for each global
217 variable, it calls the runtime asan library function
218 __asan_register_globals_with an instance of this type:
219
220 struct __asan_global
221 {
222 // Address of the beginning of the global variable.
223 const void *__beg;
224
225 // Initial size of the global variable.
226 uptr __size;
227
228 // Size of the global variable + size of the red zone. This
229 // size is 32 bytes aligned.
230 uptr __size_with_redzone;
231
232 // Name of the global variable.
233 const void *__name;
234
235 // Name of the module where the global variable is declared.
236 const void *__module_name;
237
238 // 1 if it has dynamic initialization, 0 otherwise.
239 uptr __has_dynamic_init;
240
241 // A pointer to struct that contains source location, could be NULL.
242 __asan_global_source_location *__location;
243 }
244
245 A destructor function that calls the runtime asan library function
246 _asan_unregister_globals is also installed. */
247
248 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
249 static bool asan_shadow_offset_computed;
250 static vec<char *> sanitized_sections;
251 static tree last_alloca_addr;
252
253 /* Set of variable declarations that are going to be guarded by
254 use-after-scope sanitizer. */
255
256 static hash_set<tree> *asan_handled_variables = NULL;
257
258 hash_set <tree> *asan_used_labels = NULL;
259
260 /* Sets shadow offset to value in string VAL. */
261
262 bool
263 set_asan_shadow_offset (const char *val)
264 {
265 char *endp;
266
267 errno = 0;
268 #ifdef HAVE_LONG_LONG
269 asan_shadow_offset_value = strtoull (val, &endp, 0);
270 #else
271 asan_shadow_offset_value = strtoul (val, &endp, 0);
272 #endif
273 if (!(*val != '\0' && *endp == '\0' && errno == 0))
274 return false;
275
276 asan_shadow_offset_computed = true;
277
278 return true;
279 }
280
281 /* Set list of user-defined sections that need to be sanitized. */
282
283 void
284 set_sanitized_sections (const char *sections)
285 {
286 char *pat;
287 unsigned i;
288 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
289 free (pat);
290 sanitized_sections.truncate (0);
291
292 for (const char *s = sections; *s; )
293 {
294 const char *end;
295 for (end = s; *end && *end != ','; ++end);
296 size_t len = end - s;
297 sanitized_sections.safe_push (xstrndup (s, len));
298 s = *end ? end + 1 : end;
299 }
300 }
301
302 bool
303 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
304 {
305 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
306 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
307 }
308
309 bool
310 asan_sanitize_stack_p (void)
311 {
312 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
313 }
314
315 bool
316 asan_sanitize_allocas_p (void)
317 {
318 return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS);
319 }
320
321 /* Checks whether section SEC should be sanitized. */
322
323 static bool
324 section_sanitized_p (const char *sec)
325 {
326 char *pat;
327 unsigned i;
328 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
329 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
330 return true;
331 return false;
332 }
333
334 /* Returns Asan shadow offset. */
335
336 static unsigned HOST_WIDE_INT
337 asan_shadow_offset ()
338 {
339 if (!asan_shadow_offset_computed)
340 {
341 asan_shadow_offset_computed = true;
342 asan_shadow_offset_value = targetm.asan_shadow_offset ();
343 }
344 return asan_shadow_offset_value;
345 }
346
347 alias_set_type asan_shadow_set = -1;
348
349 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
350 alias set is used for all shadow memory accesses. */
351 static GTY(()) tree shadow_ptr_types[3];
352
353 /* Decl for __asan_option_detect_stack_use_after_return. */
354 static GTY(()) tree asan_detect_stack_use_after_return;
355
356 /* Hashtable support for memory references used by gimple
357 statements. */
358
359 /* This type represents a reference to a memory region. */
360 struct asan_mem_ref
361 {
362 /* The expression of the beginning of the memory region. */
363 tree start;
364
365 /* The size of the access. */
366 HOST_WIDE_INT access_size;
367 };
368
369 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
370
371 /* Initializes an instance of asan_mem_ref. */
372
373 static void
374 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
375 {
376 ref->start = start;
377 ref->access_size = access_size;
378 }
379
380 /* Allocates memory for an instance of asan_mem_ref into the memory
381 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
382 START is the address of (or the expression pointing to) the
383 beginning of memory reference. ACCESS_SIZE is the size of the
384 access to the referenced memory. */
385
386 static asan_mem_ref*
387 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
388 {
389 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
390
391 asan_mem_ref_init (ref, start, access_size);
392 return ref;
393 }
394
395 /* This builds and returns a pointer to the end of the memory region
396 that starts at START and of length LEN. */
397
398 tree
399 asan_mem_ref_get_end (tree start, tree len)
400 {
401 if (len == NULL_TREE || integer_zerop (len))
402 return start;
403
404 if (!ptrofftype_p (len))
405 len = convert_to_ptrofftype (len);
406
407 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
408 }
409
410 /* Return a tree expression that represents the end of the referenced
411 memory region. Beware that this function can actually build a new
412 tree expression. */
413
414 tree
415 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
416 {
417 return asan_mem_ref_get_end (ref->start, len);
418 }
419
420 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
421 {
422 static inline hashval_t hash (const asan_mem_ref *);
423 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
424 };
425
426 /* Hash a memory reference. */
427
428 inline hashval_t
429 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
430 {
431 return iterative_hash_expr (mem_ref->start, 0);
432 }
433
434 /* Compare two memory references. We accept the length of either
435 memory references to be NULL_TREE. */
436
437 inline bool
438 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
439 const asan_mem_ref *m2)
440 {
441 return operand_equal_p (m1->start, m2->start, 0);
442 }
443
444 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
445
446 /* Returns a reference to the hash table containing memory references.
447 This function ensures that the hash table is created. Note that
448 this hash table is updated by the function
449 update_mem_ref_hash_table. */
450
451 static hash_table<asan_mem_ref_hasher> *
452 get_mem_ref_hash_table ()
453 {
454 if (!asan_mem_ref_ht)
455 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
456
457 return asan_mem_ref_ht;
458 }
459
460 /* Clear all entries from the memory references hash table. */
461
462 static void
463 empty_mem_ref_hash_table ()
464 {
465 if (asan_mem_ref_ht)
466 asan_mem_ref_ht->empty ();
467 }
468
469 /* Free the memory references hash table. */
470
471 static void
472 free_mem_ref_resources ()
473 {
474 delete asan_mem_ref_ht;
475 asan_mem_ref_ht = NULL;
476
477 asan_mem_ref_pool.release ();
478 }
479
480 /* Return true iff the memory reference REF has been instrumented. */
481
482 static bool
483 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
484 {
485 asan_mem_ref r;
486 asan_mem_ref_init (&r, ref, access_size);
487
488 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
489 return saved_ref && saved_ref->access_size >= access_size;
490 }
491
492 /* Return true iff the memory reference REF has been instrumented. */
493
494 static bool
495 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
496 {
497 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
498 }
499
500 /* Return true iff access to memory region starting at REF and of
501 length LEN has been instrumented. */
502
503 static bool
504 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
505 {
506 HOST_WIDE_INT size_in_bytes
507 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
508
509 return size_in_bytes != -1
510 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
511 }
512
513 /* Set REF to the memory reference present in a gimple assignment
514 ASSIGNMENT. Return true upon successful completion, false
515 otherwise. */
516
517 static bool
518 get_mem_ref_of_assignment (const gassign *assignment,
519 asan_mem_ref *ref,
520 bool *ref_is_store)
521 {
522 gcc_assert (gimple_assign_single_p (assignment));
523
524 if (gimple_store_p (assignment)
525 && !gimple_clobber_p (assignment))
526 {
527 ref->start = gimple_assign_lhs (assignment);
528 *ref_is_store = true;
529 }
530 else if (gimple_assign_load_p (assignment))
531 {
532 ref->start = gimple_assign_rhs1 (assignment);
533 *ref_is_store = false;
534 }
535 else
536 return false;
537
538 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
539 return true;
540 }
541
542 /* Return address of last allocated dynamic alloca. */
543
544 static tree
545 get_last_alloca_addr ()
546 {
547 if (last_alloca_addr)
548 return last_alloca_addr;
549
550 last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
551 gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
552 edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
553 gsi_insert_on_edge_immediate (e, g);
554 return last_alloca_addr;
555 }
556
557 /* Insert __asan_allocas_unpoison (top, bottom) call after
558 __builtin_stack_restore (new_sp) call.
559 The pseudocode of this routine should look like this:
560 __builtin_stack_restore (new_sp);
561 top = last_alloca_addr;
562 bot = new_sp;
563 __asan_allocas_unpoison (top, bot);
564 last_alloca_addr = new_sp;
565 In general, we can't use new_sp as bot parameter because on some
566 architectures SP has non zero offset from dynamic stack area. Moreover, on
567 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
568 particular function only after all callees were expanded to rtl.
569 The most noticeable example is PowerPC{,64}, see
570 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
571 To overcome the issue we use following trick: pass new_sp as a second
572 parameter to __asan_allocas_unpoison and rewrite it during expansion with
573 virtual_dynamic_stack_rtx later in expand_asan_emit_allocas_unpoison
574 function.
575 */
576
577 static void
578 handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
579 {
580 if (!iter || !asan_sanitize_allocas_p ())
581 return;
582
583 tree last_alloca = get_last_alloca_addr ();
584 tree restored_stack = gimple_call_arg (call, 0);
585 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
586 gimple *g = gimple_build_call (fn, 2, last_alloca, restored_stack);
587 gsi_insert_after (iter, g, GSI_NEW_STMT);
588 g = gimple_build_assign (last_alloca, restored_stack);
589 gsi_insert_after (iter, g, GSI_NEW_STMT);
590 }
591
592 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
593 should replace this call with another one with changed parameters and
594 replace all its uses with new address, so
595 addr = __builtin_alloca (old_size, align);
596 is replaced by
597 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
598 Following two statements are optimized out if we know that
599 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
600 redzone.
601 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
602 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
603 right_redzone_size = ASAN_RED_ZONE_SIZE;
604 additional_size = left_redzone_size + partial_redzone_size +
605 right_redzone_size;
606 new_size = old_size + additional_size;
607 new_alloca = __builtin_alloca (new_size, max (align, 32))
608 __asan_alloca_poison (new_alloca, old_size)
609 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
610 last_alloca_addr = new_alloca;
611 ADDITIONAL_SIZE is added to make new memory allocation contain not only
612 requested memory, but also left, partial and right redzones as well as some
613 additional space, required by alignment. */
614
615 static void
616 handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
617 {
618 if (!iter || !asan_sanitize_allocas_p ())
619 return;
620
621 gassign *g;
622 gcall *gg;
623 const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
624
625 tree last_alloca = get_last_alloca_addr ();
626 tree callee = gimple_call_fndecl (call);
627 tree old_size = gimple_call_arg (call, 0);
628 tree ptr_type = gimple_call_lhs (call) ? TREE_TYPE (gimple_call_lhs (call))
629 : ptr_type_node;
630 tree partial_size = NULL_TREE;
631 unsigned int align
632 = DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
633 ? 0 : tree_to_uhwi (gimple_call_arg (call, 1));
634
635 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
636 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
637 manually. */
638 align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
639
640 tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
641 tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
642
643 /* Extract lower bits from old_size. */
644 wide_int size_nonzero_bits = get_nonzero_bits (old_size);
645 wide_int rz_mask
646 = wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
647 wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
648
649 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
650 redzone. Otherwise, compute its size here. */
651 if (wi::ne_p (old_size_lower_bits, 0))
652 {
653 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
654 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
655 g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
656 BIT_AND_EXPR, old_size, alloca_rz_mask);
657 gsi_insert_before (iter, g, GSI_SAME_STMT);
658 tree misalign = gimple_assign_lhs (g);
659 g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
660 redzone_size, misalign);
661 gsi_insert_before (iter, g, GSI_SAME_STMT);
662 partial_size = gimple_assign_lhs (g);
663 }
664
665 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
666 tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
667 + ASAN_RED_ZONE_SIZE);
668 /* If alloca has partial redzone, include it to additional_size too. */
669 if (partial_size)
670 {
671 /* additional_size += partial_size. */
672 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
673 partial_size, additional_size);
674 gsi_insert_before (iter, g, GSI_SAME_STMT);
675 additional_size = gimple_assign_lhs (g);
676 }
677
678 /* new_size = old_size + additional_size. */
679 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
680 additional_size);
681 gsi_insert_before (iter, g, GSI_SAME_STMT);
682 tree new_size = gimple_assign_lhs (g);
683
684 /* Build new __builtin_alloca call:
685 new_alloca_with_rz = __builtin_alloca (new_size, align). */
686 tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
687 gg = gimple_build_call (fn, 2, new_size,
688 build_int_cst (size_type_node, align));
689 tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
690 gimple_call_set_lhs (gg, new_alloca_with_rz);
691 gsi_insert_before (iter, gg, GSI_SAME_STMT);
692
693 /* new_alloca = new_alloca_with_rz + align. */
694 g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
695 new_alloca_with_rz,
696 build_int_cst (size_type_node,
697 align / BITS_PER_UNIT));
698 gsi_insert_before (iter, g, GSI_SAME_STMT);
699 tree new_alloca = gimple_assign_lhs (g);
700
701 /* Poison newly created alloca redzones:
702 __asan_alloca_poison (new_alloca, old_size). */
703 fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
704 gg = gimple_build_call (fn, 2, new_alloca, old_size);
705 gsi_insert_before (iter, gg, GSI_SAME_STMT);
706
707 /* Save new_alloca_with_rz value into last_alloca to use it during
708 allocas unpoisoning. */
709 g = gimple_build_assign (last_alloca, new_alloca_with_rz);
710 gsi_insert_before (iter, g, GSI_SAME_STMT);
711
712 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
713 replace_call_with_value (iter, new_alloca);
714 }
715
716 /* Return the memory references contained in a gimple statement
717 representing a builtin call that has to do with memory access. */
718
719 static bool
720 get_mem_refs_of_builtin_call (gcall *call,
721 asan_mem_ref *src0,
722 tree *src0_len,
723 bool *src0_is_store,
724 asan_mem_ref *src1,
725 tree *src1_len,
726 bool *src1_is_store,
727 asan_mem_ref *dst,
728 tree *dst_len,
729 bool *dst_is_store,
730 bool *dest_is_deref,
731 bool *intercepted_p,
732 gimple_stmt_iterator *iter = NULL)
733 {
734 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
735
736 tree callee = gimple_call_fndecl (call);
737 tree source0 = NULL_TREE, source1 = NULL_TREE,
738 dest = NULL_TREE, len = NULL_TREE;
739 bool is_store = true, got_reference_p = false;
740 HOST_WIDE_INT access_size = 1;
741
742 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
743
744 switch (DECL_FUNCTION_CODE (callee))
745 {
746 /* (s, s, n) style memops. */
747 case BUILT_IN_BCMP:
748 case BUILT_IN_MEMCMP:
749 source0 = gimple_call_arg (call, 0);
750 source1 = gimple_call_arg (call, 1);
751 len = gimple_call_arg (call, 2);
752 break;
753
754 /* (src, dest, n) style memops. */
755 case BUILT_IN_BCOPY:
756 source0 = gimple_call_arg (call, 0);
757 dest = gimple_call_arg (call, 1);
758 len = gimple_call_arg (call, 2);
759 break;
760
761 /* (dest, src, n) style memops. */
762 case BUILT_IN_MEMCPY:
763 case BUILT_IN_MEMCPY_CHK:
764 case BUILT_IN_MEMMOVE:
765 case BUILT_IN_MEMMOVE_CHK:
766 case BUILT_IN_MEMPCPY:
767 case BUILT_IN_MEMPCPY_CHK:
768 dest = gimple_call_arg (call, 0);
769 source0 = gimple_call_arg (call, 1);
770 len = gimple_call_arg (call, 2);
771 break;
772
773 /* (dest, n) style memops. */
774 case BUILT_IN_BZERO:
775 dest = gimple_call_arg (call, 0);
776 len = gimple_call_arg (call, 1);
777 break;
778
779 /* (dest, x, n) style memops*/
780 case BUILT_IN_MEMSET:
781 case BUILT_IN_MEMSET_CHK:
782 dest = gimple_call_arg (call, 0);
783 len = gimple_call_arg (call, 2);
784 break;
785
786 case BUILT_IN_STRLEN:
787 source0 = gimple_call_arg (call, 0);
788 len = gimple_call_lhs (call);
789 break;
790
791 case BUILT_IN_STACK_RESTORE:
792 handle_builtin_stack_restore (call, iter);
793 break;
794
795 CASE_BUILT_IN_ALLOCA:
796 handle_builtin_alloca (call, iter);
797 break;
798 /* And now the __atomic* and __sync builtins.
799 These are handled differently from the classical memory memory
800 access builtins above. */
801
802 case BUILT_IN_ATOMIC_LOAD_1:
803 is_store = false;
804 /* FALLTHRU */
805 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
806 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
807 case BUILT_IN_SYNC_FETCH_AND_OR_1:
808 case BUILT_IN_SYNC_FETCH_AND_AND_1:
809 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
810 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
811 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
812 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
813 case BUILT_IN_SYNC_OR_AND_FETCH_1:
814 case BUILT_IN_SYNC_AND_AND_FETCH_1:
815 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
816 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
817 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
818 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
819 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
820 case BUILT_IN_SYNC_LOCK_RELEASE_1:
821 case BUILT_IN_ATOMIC_EXCHANGE_1:
822 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
823 case BUILT_IN_ATOMIC_STORE_1:
824 case BUILT_IN_ATOMIC_ADD_FETCH_1:
825 case BUILT_IN_ATOMIC_SUB_FETCH_1:
826 case BUILT_IN_ATOMIC_AND_FETCH_1:
827 case BUILT_IN_ATOMIC_NAND_FETCH_1:
828 case BUILT_IN_ATOMIC_XOR_FETCH_1:
829 case BUILT_IN_ATOMIC_OR_FETCH_1:
830 case BUILT_IN_ATOMIC_FETCH_ADD_1:
831 case BUILT_IN_ATOMIC_FETCH_SUB_1:
832 case BUILT_IN_ATOMIC_FETCH_AND_1:
833 case BUILT_IN_ATOMIC_FETCH_NAND_1:
834 case BUILT_IN_ATOMIC_FETCH_XOR_1:
835 case BUILT_IN_ATOMIC_FETCH_OR_1:
836 access_size = 1;
837 goto do_atomic;
838
839 case BUILT_IN_ATOMIC_LOAD_2:
840 is_store = false;
841 /* FALLTHRU */
842 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
843 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
844 case BUILT_IN_SYNC_FETCH_AND_OR_2:
845 case BUILT_IN_SYNC_FETCH_AND_AND_2:
846 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
847 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
848 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
849 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
850 case BUILT_IN_SYNC_OR_AND_FETCH_2:
851 case BUILT_IN_SYNC_AND_AND_FETCH_2:
852 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
853 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
854 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
855 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
856 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
857 case BUILT_IN_SYNC_LOCK_RELEASE_2:
858 case BUILT_IN_ATOMIC_EXCHANGE_2:
859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
860 case BUILT_IN_ATOMIC_STORE_2:
861 case BUILT_IN_ATOMIC_ADD_FETCH_2:
862 case BUILT_IN_ATOMIC_SUB_FETCH_2:
863 case BUILT_IN_ATOMIC_AND_FETCH_2:
864 case BUILT_IN_ATOMIC_NAND_FETCH_2:
865 case BUILT_IN_ATOMIC_XOR_FETCH_2:
866 case BUILT_IN_ATOMIC_OR_FETCH_2:
867 case BUILT_IN_ATOMIC_FETCH_ADD_2:
868 case BUILT_IN_ATOMIC_FETCH_SUB_2:
869 case BUILT_IN_ATOMIC_FETCH_AND_2:
870 case BUILT_IN_ATOMIC_FETCH_NAND_2:
871 case BUILT_IN_ATOMIC_FETCH_XOR_2:
872 case BUILT_IN_ATOMIC_FETCH_OR_2:
873 access_size = 2;
874 goto do_atomic;
875
876 case BUILT_IN_ATOMIC_LOAD_4:
877 is_store = false;
878 /* FALLTHRU */
879 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
880 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
881 case BUILT_IN_SYNC_FETCH_AND_OR_4:
882 case BUILT_IN_SYNC_FETCH_AND_AND_4:
883 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
884 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
885 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
886 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
887 case BUILT_IN_SYNC_OR_AND_FETCH_4:
888 case BUILT_IN_SYNC_AND_AND_FETCH_4:
889 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
890 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
892 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
893 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
894 case BUILT_IN_SYNC_LOCK_RELEASE_4:
895 case BUILT_IN_ATOMIC_EXCHANGE_4:
896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
897 case BUILT_IN_ATOMIC_STORE_4:
898 case BUILT_IN_ATOMIC_ADD_FETCH_4:
899 case BUILT_IN_ATOMIC_SUB_FETCH_4:
900 case BUILT_IN_ATOMIC_AND_FETCH_4:
901 case BUILT_IN_ATOMIC_NAND_FETCH_4:
902 case BUILT_IN_ATOMIC_XOR_FETCH_4:
903 case BUILT_IN_ATOMIC_OR_FETCH_4:
904 case BUILT_IN_ATOMIC_FETCH_ADD_4:
905 case BUILT_IN_ATOMIC_FETCH_SUB_4:
906 case BUILT_IN_ATOMIC_FETCH_AND_4:
907 case BUILT_IN_ATOMIC_FETCH_NAND_4:
908 case BUILT_IN_ATOMIC_FETCH_XOR_4:
909 case BUILT_IN_ATOMIC_FETCH_OR_4:
910 access_size = 4;
911 goto do_atomic;
912
913 case BUILT_IN_ATOMIC_LOAD_8:
914 is_store = false;
915 /* FALLTHRU */
916 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
917 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
918 case BUILT_IN_SYNC_FETCH_AND_OR_8:
919 case BUILT_IN_SYNC_FETCH_AND_AND_8:
920 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
921 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
922 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
923 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
924 case BUILT_IN_SYNC_OR_AND_FETCH_8:
925 case BUILT_IN_SYNC_AND_AND_FETCH_8:
926 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
927 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
928 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
929 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
930 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
931 case BUILT_IN_SYNC_LOCK_RELEASE_8:
932 case BUILT_IN_ATOMIC_EXCHANGE_8:
933 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
934 case BUILT_IN_ATOMIC_STORE_8:
935 case BUILT_IN_ATOMIC_ADD_FETCH_8:
936 case BUILT_IN_ATOMIC_SUB_FETCH_8:
937 case BUILT_IN_ATOMIC_AND_FETCH_8:
938 case BUILT_IN_ATOMIC_NAND_FETCH_8:
939 case BUILT_IN_ATOMIC_XOR_FETCH_8:
940 case BUILT_IN_ATOMIC_OR_FETCH_8:
941 case BUILT_IN_ATOMIC_FETCH_ADD_8:
942 case BUILT_IN_ATOMIC_FETCH_SUB_8:
943 case BUILT_IN_ATOMIC_FETCH_AND_8:
944 case BUILT_IN_ATOMIC_FETCH_NAND_8:
945 case BUILT_IN_ATOMIC_FETCH_XOR_8:
946 case BUILT_IN_ATOMIC_FETCH_OR_8:
947 access_size = 8;
948 goto do_atomic;
949
950 case BUILT_IN_ATOMIC_LOAD_16:
951 is_store = false;
952 /* FALLTHRU */
953 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
954 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
955 case BUILT_IN_SYNC_FETCH_AND_OR_16:
956 case BUILT_IN_SYNC_FETCH_AND_AND_16:
957 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
958 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
959 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
960 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
961 case BUILT_IN_SYNC_OR_AND_FETCH_16:
962 case BUILT_IN_SYNC_AND_AND_FETCH_16:
963 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
964 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
965 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
966 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
967 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
968 case BUILT_IN_SYNC_LOCK_RELEASE_16:
969 case BUILT_IN_ATOMIC_EXCHANGE_16:
970 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
971 case BUILT_IN_ATOMIC_STORE_16:
972 case BUILT_IN_ATOMIC_ADD_FETCH_16:
973 case BUILT_IN_ATOMIC_SUB_FETCH_16:
974 case BUILT_IN_ATOMIC_AND_FETCH_16:
975 case BUILT_IN_ATOMIC_NAND_FETCH_16:
976 case BUILT_IN_ATOMIC_XOR_FETCH_16:
977 case BUILT_IN_ATOMIC_OR_FETCH_16:
978 case BUILT_IN_ATOMIC_FETCH_ADD_16:
979 case BUILT_IN_ATOMIC_FETCH_SUB_16:
980 case BUILT_IN_ATOMIC_FETCH_AND_16:
981 case BUILT_IN_ATOMIC_FETCH_NAND_16:
982 case BUILT_IN_ATOMIC_FETCH_XOR_16:
983 case BUILT_IN_ATOMIC_FETCH_OR_16:
984 access_size = 16;
985 /* FALLTHRU */
986 do_atomic:
987 {
988 dest = gimple_call_arg (call, 0);
989 /* DEST represents the address of a memory location.
990 instrument_derefs wants the memory location, so lets
991 dereference the address DEST before handing it to
992 instrument_derefs. */
993 tree type = build_nonstandard_integer_type (access_size
994 * BITS_PER_UNIT, 1);
995 dest = build2 (MEM_REF, type, dest,
996 build_int_cst (build_pointer_type (char_type_node), 0));
997 break;
998 }
999
1000 default:
1001 /* The other builtins memory access are not instrumented in this
1002 function because they either don't have any length parameter,
1003 or their length parameter is just a limit. */
1004 break;
1005 }
1006
1007 if (len != NULL_TREE)
1008 {
1009 if (source0 != NULL_TREE)
1010 {
1011 src0->start = source0;
1012 src0->access_size = access_size;
1013 *src0_len = len;
1014 *src0_is_store = false;
1015 }
1016
1017 if (source1 != NULL_TREE)
1018 {
1019 src1->start = source1;
1020 src1->access_size = access_size;
1021 *src1_len = len;
1022 *src1_is_store = false;
1023 }
1024
1025 if (dest != NULL_TREE)
1026 {
1027 dst->start = dest;
1028 dst->access_size = access_size;
1029 *dst_len = len;
1030 *dst_is_store = true;
1031 }
1032
1033 got_reference_p = true;
1034 }
1035 else if (dest)
1036 {
1037 dst->start = dest;
1038 dst->access_size = access_size;
1039 *dst_len = NULL_TREE;
1040 *dst_is_store = is_store;
1041 *dest_is_deref = true;
1042 got_reference_p = true;
1043 }
1044
1045 return got_reference_p;
1046 }
1047
1048 /* Return true iff a given gimple statement has been instrumented.
1049 Note that the statement is "defined" by the memory references it
1050 contains. */
1051
1052 static bool
1053 has_stmt_been_instrumented_p (gimple *stmt)
1054 {
1055 if (gimple_assign_single_p (stmt))
1056 {
1057 bool r_is_store;
1058 asan_mem_ref r;
1059 asan_mem_ref_init (&r, NULL, 1);
1060
1061 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
1062 &r_is_store))
1063 return has_mem_ref_been_instrumented (&r);
1064 }
1065 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1066 {
1067 asan_mem_ref src0, src1, dest;
1068 asan_mem_ref_init (&src0, NULL, 1);
1069 asan_mem_ref_init (&src1, NULL, 1);
1070 asan_mem_ref_init (&dest, NULL, 1);
1071
1072 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1073 bool src0_is_store = false, src1_is_store = false,
1074 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
1075 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
1076 &src0, &src0_len, &src0_is_store,
1077 &src1, &src1_len, &src1_is_store,
1078 &dest, &dest_len, &dest_is_store,
1079 &dest_is_deref, &intercepted_p))
1080 {
1081 if (src0.start != NULL_TREE
1082 && !has_mem_ref_been_instrumented (&src0, src0_len))
1083 return false;
1084
1085 if (src1.start != NULL_TREE
1086 && !has_mem_ref_been_instrumented (&src1, src1_len))
1087 return false;
1088
1089 if (dest.start != NULL_TREE
1090 && !has_mem_ref_been_instrumented (&dest, dest_len))
1091 return false;
1092
1093 return true;
1094 }
1095 }
1096 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
1097 {
1098 asan_mem_ref r;
1099 asan_mem_ref_init (&r, NULL, 1);
1100
1101 r.start = gimple_call_lhs (stmt);
1102 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
1103 return has_mem_ref_been_instrumented (&r);
1104 }
1105
1106 return false;
1107 }
1108
1109 /* Insert a memory reference into the hash table. */
1110
1111 static void
1112 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
1113 {
1114 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
1115
1116 asan_mem_ref r;
1117 asan_mem_ref_init (&r, ref, access_size);
1118
1119 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
1120 if (*slot == NULL || (*slot)->access_size < access_size)
1121 *slot = asan_mem_ref_new (ref, access_size);
1122 }
1123
1124 /* Initialize shadow_ptr_types array. */
1125
1126 static void
1127 asan_init_shadow_ptr_types (void)
1128 {
1129 asan_shadow_set = new_alias_set ();
1130 tree types[3] = { signed_char_type_node, short_integer_type_node,
1131 integer_type_node };
1132
1133 for (unsigned i = 0; i < 3; i++)
1134 {
1135 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
1136 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
1137 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
1138 }
1139
1140 initialize_sanitizer_builtins ();
1141 }
1142
1143 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1144
1145 static tree
1146 asan_pp_string (pretty_printer *pp)
1147 {
1148 const char *buf = pp_formatted_text (pp);
1149 size_t len = strlen (buf);
1150 tree ret = build_string (len + 1, buf);
1151 TREE_TYPE (ret)
1152 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
1153 build_index_type (size_int (len)));
1154 TREE_READONLY (ret) = 1;
1155 TREE_STATIC (ret) = 1;
1156 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
1157 }
1158
1159 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
1160
1161 static rtx
1162 asan_shadow_cst (unsigned char shadow_bytes[4])
1163 {
1164 int i;
1165 unsigned HOST_WIDE_INT val = 0;
1166 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
1167 for (i = 0; i < 4; i++)
1168 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
1169 << (BITS_PER_UNIT * i);
1170 return gen_int_mode (val, SImode);
1171 }
1172
1173 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1174 though. */
1175
1176 static void
1177 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
1178 {
1179 rtx_insn *insn, *insns, *jump;
1180 rtx_code_label *top_label;
1181 rtx end, addr, tmp;
1182
1183 start_sequence ();
1184 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
1185 insns = get_insns ();
1186 end_sequence ();
1187 for (insn = insns; insn; insn = NEXT_INSN (insn))
1188 if (CALL_P (insn))
1189 break;
1190 if (insn == NULL_RTX)
1191 {
1192 emit_insn (insns);
1193 return;
1194 }
1195
1196 gcc_assert ((len & 3) == 0);
1197 top_label = gen_label_rtx ();
1198 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1199 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1200 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1201 emit_label (top_label);
1202
1203 emit_move_insn (shadow_mem, const0_rtx);
1204 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1205 true, OPTAB_LIB_WIDEN);
1206 if (tmp != addr)
1207 emit_move_insn (addr, tmp);
1208 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1209 jump = get_last_insn ();
1210 gcc_assert (JUMP_P (jump));
1211 add_reg_br_prob_note (jump,
1212 profile_probability::guessed_always ()
1213 .apply_scale (80, 100));
1214 }
1215
1216 void
1217 asan_function_start (void)
1218 {
1219 section *fnsec = function_section (current_function_decl);
1220 switch_to_section (fnsec);
1221 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1222 current_function_funcdef_no);
1223 }
1224
1225 /* Return number of shadow bytes that are occupied by a local variable
1226 of SIZE bytes. */
1227
1228 static unsigned HOST_WIDE_INT
1229 shadow_mem_size (unsigned HOST_WIDE_INT size)
1230 {
1231 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1232 }
1233
1234 /* Insert code to protect stack vars. The prologue sequence should be emitted
1235 directly, epilogue sequence returned. BASE is the register holding the
1236 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1237 array contains pairs of offsets in reverse order, always the end offset
1238 of some gap that needs protection followed by starting offset,
1239 and DECLS is an array of representative decls for each var partition.
1240 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1241 elements long (OFFSETS include gap before the first variable as well
1242 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1243 register which stack vars DECL_RTLs are based on. Either BASE should be
1244 assigned to PBASE, when not doing use after return protection, or
1245 corresponding address based on __asan_stack_malloc* return value. */
1246
1247 rtx_insn *
1248 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1249 HOST_WIDE_INT *offsets, tree *decls, int length)
1250 {
1251 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1252 rtx_code_label *lab;
1253 rtx_insn *insns;
1254 char buf[32];
1255 unsigned char shadow_bytes[4];
1256 HOST_WIDE_INT base_offset = offsets[length - 1];
1257 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1258 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1259 HOST_WIDE_INT last_offset, last_size;
1260 int l;
1261 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1262 tree str_cst, decl, id;
1263 int use_after_return_class = -1;
1264
1265 if (shadow_ptr_types[0] == NULL_TREE)
1266 asan_init_shadow_ptr_types ();
1267
1268 /* First of all, prepare the description string. */
1269 pretty_printer asan_pp;
1270
1271 pp_decimal_int (&asan_pp, length / 2 - 1);
1272 pp_space (&asan_pp);
1273 for (l = length - 2; l; l -= 2)
1274 {
1275 tree decl = decls[l / 2 - 1];
1276 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1277 pp_space (&asan_pp);
1278 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1279 pp_space (&asan_pp);
1280 if (DECL_P (decl) && DECL_NAME (decl))
1281 {
1282 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1283 pp_space (&asan_pp);
1284 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1285 }
1286 else
1287 pp_string (&asan_pp, "9 <unknown>");
1288 pp_space (&asan_pp);
1289 }
1290 str_cst = asan_pp_string (&asan_pp);
1291
1292 /* Emit the prologue sequence. */
1293 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1294 && ASAN_USE_AFTER_RETURN)
1295 {
1296 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1297 /* __asan_stack_malloc_N guarantees alignment
1298 N < 6 ? (64 << N) : 4096 bytes. */
1299 if (alignb > (use_after_return_class < 6
1300 ? (64U << use_after_return_class) : 4096U))
1301 use_after_return_class = -1;
1302 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1303 base_align_bias = ((asan_frame_size + alignb - 1)
1304 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1305 }
1306 /* Align base if target is STRICT_ALIGNMENT. */
1307 if (STRICT_ALIGNMENT)
1308 base = expand_binop (Pmode, and_optab, base,
1309 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1310 << ASAN_SHADOW_SHIFT)
1311 / BITS_PER_UNIT), Pmode), NULL_RTX,
1312 1, OPTAB_DIRECT);
1313
1314 if (use_after_return_class == -1 && pbase)
1315 emit_move_insn (pbase, base);
1316
1317 base = expand_binop (Pmode, add_optab, base,
1318 gen_int_mode (base_offset - base_align_bias, Pmode),
1319 NULL_RTX, 1, OPTAB_DIRECT);
1320 orig_base = NULL_RTX;
1321 if (use_after_return_class != -1)
1322 {
1323 if (asan_detect_stack_use_after_return == NULL_TREE)
1324 {
1325 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1326 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1327 integer_type_node);
1328 SET_DECL_ASSEMBLER_NAME (decl, id);
1329 TREE_ADDRESSABLE (decl) = 1;
1330 DECL_ARTIFICIAL (decl) = 1;
1331 DECL_IGNORED_P (decl) = 1;
1332 DECL_EXTERNAL (decl) = 1;
1333 TREE_STATIC (decl) = 1;
1334 TREE_PUBLIC (decl) = 1;
1335 TREE_USED (decl) = 1;
1336 asan_detect_stack_use_after_return = decl;
1337 }
1338 orig_base = gen_reg_rtx (Pmode);
1339 emit_move_insn (orig_base, base);
1340 ret = expand_normal (asan_detect_stack_use_after_return);
1341 lab = gen_label_rtx ();
1342 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1343 VOIDmode, 0, lab,
1344 profile_probability::very_likely ());
1345 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1346 use_after_return_class);
1347 ret = init_one_libfunc (buf);
1348 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
1349 GEN_INT (asan_frame_size
1350 + base_align_bias),
1351 TYPE_MODE (pointer_sized_int_node));
1352 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1353 and NULL otherwise. Check RET value is NULL here and jump over the
1354 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1355 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1356 VOIDmode, 0, lab,
1357 profile_probability:: very_unlikely ());
1358 ret = convert_memory_address (Pmode, ret);
1359 emit_move_insn (base, ret);
1360 emit_label (lab);
1361 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1362 gen_int_mode (base_align_bias
1363 - base_offset, Pmode),
1364 NULL_RTX, 1, OPTAB_DIRECT));
1365 }
1366 mem = gen_rtx_MEM (ptr_mode, base);
1367 mem = adjust_address (mem, VOIDmode, base_align_bias);
1368 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1369 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1370 emit_move_insn (mem, expand_normal (str_cst));
1371 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1372 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1373 id = get_identifier (buf);
1374 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1375 VAR_DECL, id, char_type_node);
1376 SET_DECL_ASSEMBLER_NAME (decl, id);
1377 TREE_ADDRESSABLE (decl) = 1;
1378 TREE_READONLY (decl) = 1;
1379 DECL_ARTIFICIAL (decl) = 1;
1380 DECL_IGNORED_P (decl) = 1;
1381 TREE_STATIC (decl) = 1;
1382 TREE_PUBLIC (decl) = 0;
1383 TREE_USED (decl) = 1;
1384 DECL_INITIAL (decl) = decl;
1385 TREE_ASM_WRITTEN (decl) = 1;
1386 TREE_ASM_WRITTEN (id) = 1;
1387 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1388 shadow_base = expand_binop (Pmode, lshr_optab, base,
1389 gen_int_shift_amount (Pmode, ASAN_SHADOW_SHIFT),
1390 NULL_RTX, 1, OPTAB_DIRECT);
1391 shadow_base
1392 = plus_constant (Pmode, shadow_base,
1393 asan_shadow_offset ()
1394 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1395 gcc_assert (asan_shadow_set != -1
1396 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1397 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1398 set_mem_alias_set (shadow_mem, asan_shadow_set);
1399 if (STRICT_ALIGNMENT)
1400 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1401 prev_offset = base_offset;
1402 for (l = length; l; l -= 2)
1403 {
1404 if (l == 2)
1405 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1406 offset = offsets[l - 1];
1407 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1408 {
1409 int i;
1410 HOST_WIDE_INT aoff
1411 = base_offset + ((offset - base_offset)
1412 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1413 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1414 (aoff - prev_offset)
1415 >> ASAN_SHADOW_SHIFT);
1416 prev_offset = aoff;
1417 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1418 if (aoff < offset)
1419 {
1420 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1421 shadow_bytes[i] = 0;
1422 else
1423 shadow_bytes[i] = offset - aoff;
1424 }
1425 else
1426 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1427 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1428 offset = aoff;
1429 }
1430 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1431 {
1432 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1433 (offset - prev_offset)
1434 >> ASAN_SHADOW_SHIFT);
1435 prev_offset = offset;
1436 memset (shadow_bytes, cur_shadow_byte, 4);
1437 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1438 offset += ASAN_RED_ZONE_SIZE;
1439 }
1440 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1441 }
1442 do_pending_stack_adjust ();
1443
1444 /* Construct epilogue sequence. */
1445 start_sequence ();
1446
1447 lab = NULL;
1448 if (use_after_return_class != -1)
1449 {
1450 rtx_code_label *lab2 = gen_label_rtx ();
1451 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1452 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1453 VOIDmode, 0, lab2,
1454 profile_probability::very_likely ());
1455 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1456 set_mem_alias_set (shadow_mem, asan_shadow_set);
1457 mem = gen_rtx_MEM (ptr_mode, base);
1458 mem = adjust_address (mem, VOIDmode, base_align_bias);
1459 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1460 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1461 if (use_after_return_class < 5
1462 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1463 BITS_PER_UNIT, true))
1464 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1465 BITS_PER_UNIT, true, 0);
1466 else if (use_after_return_class >= 5
1467 || !set_storage_via_setmem (shadow_mem,
1468 GEN_INT (sz),
1469 gen_int_mode (c, QImode),
1470 BITS_PER_UNIT, BITS_PER_UNIT,
1471 -1, sz, sz, sz))
1472 {
1473 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1474 use_after_return_class);
1475 ret = init_one_libfunc (buf);
1476 rtx addr = convert_memory_address (ptr_mode, base);
1477 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1478 emit_library_call (ret, LCT_NORMAL, ptr_mode, addr, ptr_mode,
1479 GEN_INT (asan_frame_size + base_align_bias),
1480 TYPE_MODE (pointer_sized_int_node),
1481 orig_addr, ptr_mode);
1482 }
1483 lab = gen_label_rtx ();
1484 emit_jump (lab);
1485 emit_label (lab2);
1486 }
1487
1488 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1489 set_mem_alias_set (shadow_mem, asan_shadow_set);
1490
1491 if (STRICT_ALIGNMENT)
1492 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1493
1494 prev_offset = base_offset;
1495 last_offset = base_offset;
1496 last_size = 0;
1497 for (l = length; l; l -= 2)
1498 {
1499 offset = base_offset + ((offsets[l - 1] - base_offset)
1500 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1501 if (last_offset + last_size != offset)
1502 {
1503 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1504 (last_offset - prev_offset)
1505 >> ASAN_SHADOW_SHIFT);
1506 prev_offset = last_offset;
1507 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1508 last_offset = offset;
1509 last_size = 0;
1510 }
1511 last_size += base_offset + ((offsets[l - 2] - base_offset)
1512 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1513 - offset;
1514
1515 /* Unpoison shadow memory that corresponds to a variable that is
1516 is subject of use-after-return sanitization. */
1517 if (l > 2)
1518 {
1519 decl = decls[l / 2 - 2];
1520 if (asan_handled_variables != NULL
1521 && asan_handled_variables->contains (decl))
1522 {
1523 HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
1524 if (dump_file && (dump_flags & TDF_DETAILS))
1525 {
1526 const char *n = (DECL_NAME (decl)
1527 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1528 : "<unknown>");
1529 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1530 "%s (%" PRId64 " B)\n", n, size);
1531 }
1532
1533 last_size += size & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
1534 }
1535 }
1536 }
1537 if (last_size)
1538 {
1539 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1540 (last_offset - prev_offset)
1541 >> ASAN_SHADOW_SHIFT);
1542 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1543 }
1544
1545 /* Clean-up set with instrumented stack variables. */
1546 delete asan_handled_variables;
1547 asan_handled_variables = NULL;
1548 delete asan_used_labels;
1549 asan_used_labels = NULL;
1550
1551 do_pending_stack_adjust ();
1552 if (lab)
1553 emit_label (lab);
1554
1555 insns = get_insns ();
1556 end_sequence ();
1557 return insns;
1558 }
1559
1560 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1561 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1562 indicates whether we're emitting new instructions sequence or not. */
1563
1564 rtx_insn *
1565 asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
1566 {
1567 if (before)
1568 push_to_sequence (before);
1569 else
1570 start_sequence ();
1571 rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
1572 top = convert_memory_address (ptr_mode, top);
1573 bot = convert_memory_address (ptr_mode, bot);
1574 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
1575 top, ptr_mode, bot, ptr_mode);
1576
1577 do_pending_stack_adjust ();
1578 rtx_insn *insns = get_insns ();
1579 end_sequence ();
1580 return insns;
1581 }
1582
1583 /* Return true if DECL, a global var, might be overridden and needs
1584 therefore a local alias. */
1585
1586 static bool
1587 asan_needs_local_alias (tree decl)
1588 {
1589 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1590 }
1591
1592 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1593 therefore doesn't need protection. */
1594
1595 static bool
1596 is_odr_indicator (tree decl)
1597 {
1598 return (DECL_ARTIFICIAL (decl)
1599 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1600 }
1601
1602 /* Return true if DECL is a VAR_DECL that should be protected
1603 by Address Sanitizer, by appending a red zone with protected
1604 shadow memory after it and aligning it to at least
1605 ASAN_RED_ZONE_SIZE bytes. */
1606
1607 bool
1608 asan_protect_global (tree decl, bool ignore_decl_rtl_set_p)
1609 {
1610 if (!ASAN_GLOBALS)
1611 return false;
1612
1613 rtx rtl, symbol;
1614
1615 if (TREE_CODE (decl) == STRING_CST)
1616 {
1617 /* Instrument all STRING_CSTs except those created
1618 by asan_pp_string here. */
1619 if (shadow_ptr_types[0] != NULL_TREE
1620 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1621 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1622 return false;
1623 return true;
1624 }
1625 if (!VAR_P (decl)
1626 /* TLS vars aren't statically protectable. */
1627 || DECL_THREAD_LOCAL_P (decl)
1628 /* Externs will be protected elsewhere. */
1629 || DECL_EXTERNAL (decl)
1630 /* PR sanitizer/81697: For architectures that use section anchors first
1631 call to asan_protect_global may occur before DECL_RTL (decl) is set.
1632 We should ignore DECL_RTL_SET_P then, because otherwise the first call
1633 to asan_protect_global will return FALSE and the following calls on the
1634 same decl after setting DECL_RTL (decl) will return TRUE and we'll end
1635 up with inconsistency at runtime. */
1636 || (!DECL_RTL_SET_P (decl) && !ignore_decl_rtl_set_p)
1637 /* Comdat vars pose an ABI problem, we can't know if
1638 the var that is selected by the linker will have
1639 padding or not. */
1640 || DECL_ONE_ONLY (decl)
1641 /* Similarly for common vars. People can use -fno-common.
1642 Note: Linux kernel is built with -fno-common, so we do instrument
1643 globals there even if it is C. */
1644 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1645 /* Don't protect if using user section, often vars placed
1646 into user section from multiple TUs are then assumed
1647 to be an array of such vars, putting padding in there
1648 breaks this assumption. */
1649 || (DECL_SECTION_NAME (decl) != NULL
1650 && !symtab_node::get (decl)->implicit_section
1651 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1652 || DECL_SIZE (decl) == 0
1653 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1654 || TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST
1655 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1656 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1657 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1658 || is_odr_indicator (decl))
1659 return false;
1660
1661 if (!ignore_decl_rtl_set_p || DECL_RTL_SET_P (decl))
1662 {
1663
1664 rtl = DECL_RTL (decl);
1665 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1666 return false;
1667 symbol = XEXP (rtl, 0);
1668
1669 if (CONSTANT_POOL_ADDRESS_P (symbol)
1670 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1671 return false;
1672 }
1673
1674 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1675 return false;
1676
1677 if (!TARGET_SUPPORTS_ALIASES && asan_needs_local_alias (decl))
1678 return false;
1679
1680 return true;
1681 }
1682
1683 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1684 IS_STORE is either 1 (for a store) or 0 (for a load). */
1685
1686 static tree
1687 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1688 int *nargs)
1689 {
1690 static enum built_in_function report[2][2][6]
1691 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1692 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1693 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1694 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1695 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1696 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1697 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1698 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1699 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1700 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1701 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1702 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1703 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1704 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1705 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1706 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1707 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1708 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1709 if (size_in_bytes == -1)
1710 {
1711 *nargs = 2;
1712 return builtin_decl_implicit (report[recover_p][is_store][5]);
1713 }
1714 *nargs = 1;
1715 int size_log2 = exact_log2 (size_in_bytes);
1716 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1717 }
1718
1719 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1720 IS_STORE is either 1 (for a store) or 0 (for a load). */
1721
1722 static tree
1723 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1724 int *nargs)
1725 {
1726 static enum built_in_function check[2][2][6]
1727 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1728 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1729 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1730 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1731 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1732 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1733 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1734 BUILT_IN_ASAN_LOAD2_NOABORT,
1735 BUILT_IN_ASAN_LOAD4_NOABORT,
1736 BUILT_IN_ASAN_LOAD8_NOABORT,
1737 BUILT_IN_ASAN_LOAD16_NOABORT,
1738 BUILT_IN_ASAN_LOADN_NOABORT },
1739 { BUILT_IN_ASAN_STORE1_NOABORT,
1740 BUILT_IN_ASAN_STORE2_NOABORT,
1741 BUILT_IN_ASAN_STORE4_NOABORT,
1742 BUILT_IN_ASAN_STORE8_NOABORT,
1743 BUILT_IN_ASAN_STORE16_NOABORT,
1744 BUILT_IN_ASAN_STOREN_NOABORT } } };
1745 if (size_in_bytes == -1)
1746 {
1747 *nargs = 2;
1748 return builtin_decl_implicit (check[recover_p][is_store][5]);
1749 }
1750 *nargs = 1;
1751 int size_log2 = exact_log2 (size_in_bytes);
1752 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1753 }
1754
1755 /* Split the current basic block and create a condition statement
1756 insertion point right before or after the statement pointed to by
1757 ITER. Return an iterator to the point at which the caller might
1758 safely insert the condition statement.
1759
1760 THEN_BLOCK must be set to the address of an uninitialized instance
1761 of basic_block. The function will then set *THEN_BLOCK to the
1762 'then block' of the condition statement to be inserted by the
1763 caller.
1764
1765 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1766 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1767
1768 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1769 block' of the condition statement to be inserted by the caller.
1770
1771 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1772 statements starting from *ITER, and *THEN_BLOCK is a new empty
1773 block.
1774
1775 *ITER is adjusted to point to always point to the first statement
1776 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1777 same as what ITER was pointing to prior to calling this function,
1778 if BEFORE_P is true; otherwise, it is its following statement. */
1779
1780 gimple_stmt_iterator
1781 create_cond_insert_point (gimple_stmt_iterator *iter,
1782 bool before_p,
1783 bool then_more_likely_p,
1784 bool create_then_fallthru_edge,
1785 basic_block *then_block,
1786 basic_block *fallthrough_block)
1787 {
1788 gimple_stmt_iterator gsi = *iter;
1789
1790 if (!gsi_end_p (gsi) && before_p)
1791 gsi_prev (&gsi);
1792
1793 basic_block cur_bb = gsi_bb (*iter);
1794
1795 edge e = split_block (cur_bb, gsi_stmt (gsi));
1796
1797 /* Get a hold on the 'condition block', the 'then block' and the
1798 'else block'. */
1799 basic_block cond_bb = e->src;
1800 basic_block fallthru_bb = e->dest;
1801 basic_block then_bb = create_empty_bb (cond_bb);
1802 if (current_loops)
1803 {
1804 add_bb_to_loop (then_bb, cond_bb->loop_father);
1805 loops_state_set (LOOPS_NEED_FIXUP);
1806 }
1807
1808 /* Set up the newly created 'then block'. */
1809 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1810 profile_probability fallthrough_probability
1811 = then_more_likely_p
1812 ? profile_probability::very_unlikely ()
1813 : profile_probability::very_likely ();
1814 e->probability = fallthrough_probability.invert ();
1815 then_bb->count = e->count ();
1816 if (create_then_fallthru_edge)
1817 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1818
1819 /* Set up the fallthrough basic block. */
1820 e = find_edge (cond_bb, fallthru_bb);
1821 e->flags = EDGE_FALSE_VALUE;
1822 e->probability = fallthrough_probability;
1823
1824 /* Update dominance info for the newly created then_bb; note that
1825 fallthru_bb's dominance info has already been updated by
1826 split_bock. */
1827 if (dom_info_available_p (CDI_DOMINATORS))
1828 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1829
1830 *then_block = then_bb;
1831 *fallthrough_block = fallthru_bb;
1832 *iter = gsi_start_bb (fallthru_bb);
1833
1834 return gsi_last_bb (cond_bb);
1835 }
1836
1837 /* Insert an if condition followed by a 'then block' right before the
1838 statement pointed to by ITER. The fallthrough block -- which is the
1839 else block of the condition as well as the destination of the
1840 outcoming edge of the 'then block' -- starts with the statement
1841 pointed to by ITER.
1842
1843 COND is the condition of the if.
1844
1845 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1846 'then block' is higher than the probability of the edge to the
1847 fallthrough block.
1848
1849 Upon completion of the function, *THEN_BB is set to the newly
1850 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1851 fallthrough block.
1852
1853 *ITER is adjusted to still point to the same statement it was
1854 pointing to initially. */
1855
1856 static void
1857 insert_if_then_before_iter (gcond *cond,
1858 gimple_stmt_iterator *iter,
1859 bool then_more_likely_p,
1860 basic_block *then_bb,
1861 basic_block *fallthrough_bb)
1862 {
1863 gimple_stmt_iterator cond_insert_point =
1864 create_cond_insert_point (iter,
1865 /*before_p=*/true,
1866 then_more_likely_p,
1867 /*create_then_fallthru_edge=*/true,
1868 then_bb,
1869 fallthrough_bb);
1870 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1871 }
1872
1873 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1874 If RETURN_ADDRESS is set to true, return memory location instread
1875 of a value in the shadow memory. */
1876
1877 static tree
1878 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1879 tree base_addr, tree shadow_ptr_type,
1880 bool return_address = false)
1881 {
1882 tree t, uintptr_type = TREE_TYPE (base_addr);
1883 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1884 gimple *g;
1885
1886 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1887 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1888 base_addr, t);
1889 gimple_set_location (g, location);
1890 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1891
1892 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1893 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1894 gimple_assign_lhs (g), t);
1895 gimple_set_location (g, location);
1896 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1897
1898 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1899 gimple_assign_lhs (g));
1900 gimple_set_location (g, location);
1901 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1902
1903 if (!return_address)
1904 {
1905 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1906 build_int_cst (shadow_ptr_type, 0));
1907 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1908 gimple_set_location (g, location);
1909 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1910 }
1911
1912 return gimple_assign_lhs (g);
1913 }
1914
1915 /* BASE can already be an SSA_NAME; in that case, do not create a
1916 new SSA_NAME for it. */
1917
1918 static tree
1919 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1920 bool before_p)
1921 {
1922 if (TREE_CODE (base) == SSA_NAME)
1923 return base;
1924 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1925 TREE_CODE (base), base);
1926 gimple_set_location (g, loc);
1927 if (before_p)
1928 gsi_insert_before (iter, g, GSI_SAME_STMT);
1929 else
1930 gsi_insert_after (iter, g, GSI_NEW_STMT);
1931 return gimple_assign_lhs (g);
1932 }
1933
1934 /* LEN can already have necessary size and precision;
1935 in that case, do not create a new variable. */
1936
1937 tree
1938 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1939 bool before_p)
1940 {
1941 if (ptrofftype_p (len))
1942 return len;
1943 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1944 NOP_EXPR, len);
1945 gimple_set_location (g, loc);
1946 if (before_p)
1947 gsi_insert_before (iter, g, GSI_SAME_STMT);
1948 else
1949 gsi_insert_after (iter, g, GSI_NEW_STMT);
1950 return gimple_assign_lhs (g);
1951 }
1952
1953 /* Instrument the memory access instruction BASE. Insert new
1954 statements before or after ITER.
1955
1956 Note that the memory access represented by BASE can be either an
1957 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1958 location. IS_STORE is TRUE for a store, FALSE for a load.
1959 BEFORE_P is TRUE for inserting the instrumentation code before
1960 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1961 for a scalar memory access and FALSE for memory region access.
1962 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1963 length. ALIGN tells alignment of accessed memory object.
1964
1965 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1966 memory region have already been instrumented.
1967
1968 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1969 statement it was pointing to prior to calling this function,
1970 otherwise, it points to the statement logically following it. */
1971
1972 static void
1973 build_check_stmt (location_t loc, tree base, tree len,
1974 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1975 bool is_non_zero_len, bool before_p, bool is_store,
1976 bool is_scalar_access, unsigned int align = 0)
1977 {
1978 gimple_stmt_iterator gsi = *iter;
1979 gimple *g;
1980
1981 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1982
1983 gsi = *iter;
1984
1985 base = unshare_expr (base);
1986 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1987
1988 if (len)
1989 {
1990 len = unshare_expr (len);
1991 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1992 }
1993 else
1994 {
1995 gcc_assert (size_in_bytes != -1);
1996 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1997 }
1998
1999 if (size_in_bytes > 1)
2000 {
2001 if ((size_in_bytes & (size_in_bytes - 1)) != 0
2002 || size_in_bytes > 16)
2003 is_scalar_access = false;
2004 else if (align && align < size_in_bytes * BITS_PER_UNIT)
2005 {
2006 /* On non-strict alignment targets, if
2007 16-byte access is just 8-byte aligned,
2008 this will result in misaligned shadow
2009 memory 2 byte load, but otherwise can
2010 be handled using one read. */
2011 if (size_in_bytes != 16
2012 || STRICT_ALIGNMENT
2013 || align < 8 * BITS_PER_UNIT)
2014 is_scalar_access = false;
2015 }
2016 }
2017
2018 HOST_WIDE_INT flags = 0;
2019 if (is_store)
2020 flags |= ASAN_CHECK_STORE;
2021 if (is_non_zero_len)
2022 flags |= ASAN_CHECK_NON_ZERO_LEN;
2023 if (is_scalar_access)
2024 flags |= ASAN_CHECK_SCALAR_ACCESS;
2025
2026 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
2027 build_int_cst (integer_type_node, flags),
2028 base, len,
2029 build_int_cst (integer_type_node,
2030 align / BITS_PER_UNIT));
2031 gimple_set_location (g, loc);
2032 if (before_p)
2033 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2034 else
2035 {
2036 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2037 gsi_next (&gsi);
2038 *iter = gsi;
2039 }
2040 }
2041
2042 /* If T represents a memory access, add instrumentation code before ITER.
2043 LOCATION is source code location.
2044 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2045
2046 static void
2047 instrument_derefs (gimple_stmt_iterator *iter, tree t,
2048 location_t location, bool is_store)
2049 {
2050 if (is_store && !ASAN_INSTRUMENT_WRITES)
2051 return;
2052 if (!is_store && !ASAN_INSTRUMENT_READS)
2053 return;
2054
2055 tree type, base;
2056 HOST_WIDE_INT size_in_bytes;
2057 if (location == UNKNOWN_LOCATION)
2058 location = EXPR_LOCATION (t);
2059
2060 type = TREE_TYPE (t);
2061 switch (TREE_CODE (t))
2062 {
2063 case ARRAY_REF:
2064 case COMPONENT_REF:
2065 case INDIRECT_REF:
2066 case MEM_REF:
2067 case VAR_DECL:
2068 case BIT_FIELD_REF:
2069 break;
2070 /* FALLTHRU */
2071 default:
2072 return;
2073 }
2074
2075 size_in_bytes = int_size_in_bytes (type);
2076 if (size_in_bytes <= 0)
2077 return;
2078
2079 poly_int64 bitsize, bitpos;
2080 tree offset;
2081 machine_mode mode;
2082 int unsignedp, reversep, volatilep = 0;
2083 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
2084 &unsignedp, &reversep, &volatilep);
2085
2086 if (TREE_CODE (t) == COMPONENT_REF
2087 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
2088 {
2089 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
2090 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
2091 TREE_OPERAND (t, 0), repr,
2092 TREE_OPERAND (t, 2)),
2093 location, is_store);
2094 return;
2095 }
2096
2097 if (!multiple_p (bitpos, BITS_PER_UNIT)
2098 || maybe_ne (bitsize, size_in_bytes * BITS_PER_UNIT))
2099 return;
2100
2101 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
2102 return;
2103
2104 poly_int64 decl_size;
2105 if (VAR_P (inner)
2106 && offset == NULL_TREE
2107 && DECL_SIZE (inner)
2108 && poly_int_tree_p (DECL_SIZE (inner), &decl_size)
2109 && known_subrange_p (bitpos, bitsize, 0, decl_size))
2110 {
2111 if (DECL_THREAD_LOCAL_P (inner))
2112 return;
2113 if (!ASAN_GLOBALS && is_global_var (inner))
2114 return;
2115 if (!TREE_STATIC (inner))
2116 {
2117 /* Automatic vars in the current function will be always
2118 accessible. */
2119 if (decl_function_context (inner) == current_function_decl
2120 && (!asan_sanitize_use_after_scope ()
2121 || !TREE_ADDRESSABLE (inner)))
2122 return;
2123 }
2124 /* Always instrument external vars, they might be dynamically
2125 initialized. */
2126 else if (!DECL_EXTERNAL (inner))
2127 {
2128 /* For static vars if they are known not to be dynamically
2129 initialized, they will be always accessible. */
2130 varpool_node *vnode = varpool_node::get (inner);
2131 if (vnode && !vnode->dynamically_initialized)
2132 return;
2133 }
2134 }
2135
2136 base = build_fold_addr_expr (t);
2137 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
2138 {
2139 unsigned int align = get_object_alignment (t);
2140 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
2141 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
2142 is_store, /*is_scalar_access*/true, align);
2143 update_mem_ref_hash_table (base, size_in_bytes);
2144 update_mem_ref_hash_table (t, size_in_bytes);
2145 }
2146
2147 }
2148
2149 /* Insert a memory reference into the hash table if access length
2150 can be determined in compile time. */
2151
2152 static void
2153 maybe_update_mem_ref_hash_table (tree base, tree len)
2154 {
2155 if (!POINTER_TYPE_P (TREE_TYPE (base))
2156 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
2157 return;
2158
2159 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2160
2161 if (size_in_bytes != -1)
2162 update_mem_ref_hash_table (base, size_in_bytes);
2163 }
2164
2165 /* Instrument an access to a contiguous memory region that starts at
2166 the address pointed to by BASE, over a length of LEN (expressed in
2167 the sizeof (*BASE) bytes). ITER points to the instruction before
2168 which the instrumentation instructions must be inserted. LOCATION
2169 is the source location that the instrumentation instructions must
2170 have. If IS_STORE is true, then the memory access is a store;
2171 otherwise, it's a load. */
2172
2173 static void
2174 instrument_mem_region_access (tree base, tree len,
2175 gimple_stmt_iterator *iter,
2176 location_t location, bool is_store)
2177 {
2178 if (!POINTER_TYPE_P (TREE_TYPE (base))
2179 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
2180 || integer_zerop (len))
2181 return;
2182
2183 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2184
2185 if ((size_in_bytes == -1)
2186 || !has_mem_ref_been_instrumented (base, size_in_bytes))
2187 {
2188 build_check_stmt (location, base, len, size_in_bytes, iter,
2189 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
2190 is_store, /*is_scalar_access*/false, /*align*/0);
2191 }
2192
2193 maybe_update_mem_ref_hash_table (base, len);
2194 *iter = gsi_for_stmt (gsi_stmt (*iter));
2195 }
2196
2197 /* Instrument the call to a built-in memory access function that is
2198 pointed to by the iterator ITER.
2199
2200 Upon completion, return TRUE iff *ITER has been advanced to the
2201 statement following the one it was originally pointing to. */
2202
2203 static bool
2204 instrument_builtin_call (gimple_stmt_iterator *iter)
2205 {
2206 if (!ASAN_MEMINTRIN)
2207 return false;
2208
2209 bool iter_advanced_p = false;
2210 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
2211
2212 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2213
2214 location_t loc = gimple_location (call);
2215
2216 asan_mem_ref src0, src1, dest;
2217 asan_mem_ref_init (&src0, NULL, 1);
2218 asan_mem_ref_init (&src1, NULL, 1);
2219 asan_mem_ref_init (&dest, NULL, 1);
2220
2221 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2222 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
2223 dest_is_deref = false, intercepted_p = true;
2224
2225 if (get_mem_refs_of_builtin_call (call,
2226 &src0, &src0_len, &src0_is_store,
2227 &src1, &src1_len, &src1_is_store,
2228 &dest, &dest_len, &dest_is_store,
2229 &dest_is_deref, &intercepted_p, iter))
2230 {
2231 if (dest_is_deref)
2232 {
2233 instrument_derefs (iter, dest.start, loc, dest_is_store);
2234 gsi_next (iter);
2235 iter_advanced_p = true;
2236 }
2237 else if (!intercepted_p
2238 && (src0_len || src1_len || dest_len))
2239 {
2240 if (src0.start != NULL_TREE)
2241 instrument_mem_region_access (src0.start, src0_len,
2242 iter, loc, /*is_store=*/false);
2243 if (src1.start != NULL_TREE)
2244 instrument_mem_region_access (src1.start, src1_len,
2245 iter, loc, /*is_store=*/false);
2246 if (dest.start != NULL_TREE)
2247 instrument_mem_region_access (dest.start, dest_len,
2248 iter, loc, /*is_store=*/true);
2249
2250 *iter = gsi_for_stmt (call);
2251 gsi_next (iter);
2252 iter_advanced_p = true;
2253 }
2254 else
2255 {
2256 if (src0.start != NULL_TREE)
2257 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2258 if (src1.start != NULL_TREE)
2259 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2260 if (dest.start != NULL_TREE)
2261 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2262 }
2263 }
2264 return iter_advanced_p;
2265 }
2266
2267 /* Instrument the assignment statement ITER if it is subject to
2268 instrumentation. Return TRUE iff instrumentation actually
2269 happened. In that case, the iterator ITER is advanced to the next
2270 logical expression following the one initially pointed to by ITER,
2271 and the relevant memory reference that which access has been
2272 instrumented is added to the memory references hash table. */
2273
2274 static bool
2275 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2276 {
2277 gimple *s = gsi_stmt (*iter);
2278
2279 gcc_assert (gimple_assign_single_p (s));
2280
2281 tree ref_expr = NULL_TREE;
2282 bool is_store, is_instrumented = false;
2283
2284 if (gimple_store_p (s))
2285 {
2286 ref_expr = gimple_assign_lhs (s);
2287 is_store = true;
2288 instrument_derefs (iter, ref_expr,
2289 gimple_location (s),
2290 is_store);
2291 is_instrumented = true;
2292 }
2293
2294 if (gimple_assign_load_p (s))
2295 {
2296 ref_expr = gimple_assign_rhs1 (s);
2297 is_store = false;
2298 instrument_derefs (iter, ref_expr,
2299 gimple_location (s),
2300 is_store);
2301 is_instrumented = true;
2302 }
2303
2304 if (is_instrumented)
2305 gsi_next (iter);
2306
2307 return is_instrumented;
2308 }
2309
2310 /* Instrument the function call pointed to by the iterator ITER, if it
2311 is subject to instrumentation. At the moment, the only function
2312 calls that are instrumented are some built-in functions that access
2313 memory. Look at instrument_builtin_call to learn more.
2314
2315 Upon completion return TRUE iff *ITER was advanced to the statement
2316 following the one it was originally pointing to. */
2317
2318 static bool
2319 maybe_instrument_call (gimple_stmt_iterator *iter)
2320 {
2321 gimple *stmt = gsi_stmt (*iter);
2322 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2323
2324 if (is_builtin && instrument_builtin_call (iter))
2325 return true;
2326
2327 if (gimple_call_noreturn_p (stmt))
2328 {
2329 if (is_builtin)
2330 {
2331 tree callee = gimple_call_fndecl (stmt);
2332 switch (DECL_FUNCTION_CODE (callee))
2333 {
2334 case BUILT_IN_UNREACHABLE:
2335 case BUILT_IN_TRAP:
2336 /* Don't instrument these. */
2337 return false;
2338 default:
2339 break;
2340 }
2341 }
2342 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2343 gimple *g = gimple_build_call (decl, 0);
2344 gimple_set_location (g, gimple_location (stmt));
2345 gsi_insert_before (iter, g, GSI_SAME_STMT);
2346 }
2347
2348 bool instrumented = false;
2349 if (gimple_store_p (stmt))
2350 {
2351 tree ref_expr = gimple_call_lhs (stmt);
2352 instrument_derefs (iter, ref_expr,
2353 gimple_location (stmt),
2354 /*is_store=*/true);
2355
2356 instrumented = true;
2357 }
2358
2359 /* Walk through gimple_call arguments and check them id needed. */
2360 unsigned args_num = gimple_call_num_args (stmt);
2361 for (unsigned i = 0; i < args_num; ++i)
2362 {
2363 tree arg = gimple_call_arg (stmt, i);
2364 /* If ARG is not a non-aggregate register variable, compiler in general
2365 creates temporary for it and pass it as argument to gimple call.
2366 But in some cases, e.g. when we pass by value a small structure that
2367 fits to register, compiler can avoid extra overhead by pulling out
2368 these temporaries. In this case, we should check the argument. */
2369 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2370 {
2371 instrument_derefs (iter, arg,
2372 gimple_location (stmt),
2373 /*is_store=*/false);
2374 instrumented = true;
2375 }
2376 }
2377 if (instrumented)
2378 gsi_next (iter);
2379 return instrumented;
2380 }
2381
2382 /* Walk each instruction of all basic block and instrument those that
2383 represent memory references: loads, stores, or function calls.
2384 In a given basic block, this function avoids instrumenting memory
2385 references that have already been instrumented. */
2386
2387 static void
2388 transform_statements (void)
2389 {
2390 basic_block bb, last_bb = NULL;
2391 gimple_stmt_iterator i;
2392 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2393
2394 FOR_EACH_BB_FN (bb, cfun)
2395 {
2396 basic_block prev_bb = bb;
2397
2398 if (bb->index >= saved_last_basic_block) continue;
2399
2400 /* Flush the mem ref hash table, if current bb doesn't have
2401 exactly one predecessor, or if that predecessor (skipping
2402 over asan created basic blocks) isn't the last processed
2403 basic block. Thus we effectively flush on extended basic
2404 block boundaries. */
2405 while (single_pred_p (prev_bb))
2406 {
2407 prev_bb = single_pred (prev_bb);
2408 if (prev_bb->index < saved_last_basic_block)
2409 break;
2410 }
2411 if (prev_bb != last_bb)
2412 empty_mem_ref_hash_table ();
2413 last_bb = bb;
2414
2415 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2416 {
2417 gimple *s = gsi_stmt (i);
2418
2419 if (has_stmt_been_instrumented_p (s))
2420 gsi_next (&i);
2421 else if (gimple_assign_single_p (s)
2422 && !gimple_clobber_p (s)
2423 && maybe_instrument_assignment (&i))
2424 /* Nothing to do as maybe_instrument_assignment advanced
2425 the iterator I. */;
2426 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2427 /* Nothing to do as maybe_instrument_call
2428 advanced the iterator I. */;
2429 else
2430 {
2431 /* No instrumentation happened.
2432
2433 If the current instruction is a function call that
2434 might free something, let's forget about the memory
2435 references that got instrumented. Otherwise we might
2436 miss some instrumentation opportunities. Do the same
2437 for a ASAN_MARK poisoning internal function. */
2438 if (is_gimple_call (s)
2439 && (!nonfreeing_call_p (s)
2440 || asan_mark_p (s, ASAN_MARK_POISON)))
2441 empty_mem_ref_hash_table ();
2442
2443 gsi_next (&i);
2444 }
2445 }
2446 }
2447 free_mem_ref_resources ();
2448 }
2449
2450 /* Build
2451 __asan_before_dynamic_init (module_name)
2452 or
2453 __asan_after_dynamic_init ()
2454 call. */
2455
2456 tree
2457 asan_dynamic_init_call (bool after_p)
2458 {
2459 if (shadow_ptr_types[0] == NULL_TREE)
2460 asan_init_shadow_ptr_types ();
2461
2462 tree fn = builtin_decl_implicit (after_p
2463 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2464 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2465 tree module_name_cst = NULL_TREE;
2466 if (!after_p)
2467 {
2468 pretty_printer module_name_pp;
2469 pp_string (&module_name_pp, main_input_filename);
2470
2471 module_name_cst = asan_pp_string (&module_name_pp);
2472 module_name_cst = fold_convert (const_ptr_type_node,
2473 module_name_cst);
2474 }
2475
2476 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2477 }
2478
2479 /* Build
2480 struct __asan_global
2481 {
2482 const void *__beg;
2483 uptr __size;
2484 uptr __size_with_redzone;
2485 const void *__name;
2486 const void *__module_name;
2487 uptr __has_dynamic_init;
2488 __asan_global_source_location *__location;
2489 char *__odr_indicator;
2490 } type. */
2491
2492 static tree
2493 asan_global_struct (void)
2494 {
2495 static const char *field_names[]
2496 = { "__beg", "__size", "__size_with_redzone",
2497 "__name", "__module_name", "__has_dynamic_init", "__location",
2498 "__odr_indicator" };
2499 tree fields[ARRAY_SIZE (field_names)], ret;
2500 unsigned i;
2501
2502 ret = make_node (RECORD_TYPE);
2503 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2504 {
2505 fields[i]
2506 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2507 get_identifier (field_names[i]),
2508 (i == 0 || i == 3) ? const_ptr_type_node
2509 : pointer_sized_int_node);
2510 DECL_CONTEXT (fields[i]) = ret;
2511 if (i)
2512 DECL_CHAIN (fields[i - 1]) = fields[i];
2513 }
2514 tree type_decl = build_decl (input_location, TYPE_DECL,
2515 get_identifier ("__asan_global"), ret);
2516 DECL_IGNORED_P (type_decl) = 1;
2517 DECL_ARTIFICIAL (type_decl) = 1;
2518 TYPE_FIELDS (ret) = fields[0];
2519 TYPE_NAME (ret) = type_decl;
2520 TYPE_STUB_DECL (ret) = type_decl;
2521 layout_type (ret);
2522 return ret;
2523 }
2524
2525 /* Create and return odr indicator symbol for DECL.
2526 TYPE is __asan_global struct type as returned by asan_global_struct. */
2527
2528 static tree
2529 create_odr_indicator (tree decl, tree type)
2530 {
2531 char *name;
2532 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2533 tree decl_name
2534 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2535 : DECL_NAME (decl));
2536 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2537 if (decl_name == NULL_TREE)
2538 return build_int_cst (uptr, 0);
2539 const char *dname = IDENTIFIER_POINTER (decl_name);
2540 if (HAS_DECL_ASSEMBLER_NAME_P (decl))
2541 dname = targetm.strip_name_encoding (dname);
2542 size_t len = strlen (dname) + sizeof ("__odr_asan_");
2543 name = XALLOCAVEC (char, len);
2544 snprintf (name, len, "__odr_asan_%s", dname);
2545 #ifndef NO_DOT_IN_LABEL
2546 name[sizeof ("__odr_asan") - 1] = '.';
2547 #elif !defined(NO_DOLLAR_IN_LABEL)
2548 name[sizeof ("__odr_asan") - 1] = '$';
2549 #endif
2550 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2551 char_type_node);
2552 TREE_ADDRESSABLE (var) = 1;
2553 TREE_READONLY (var) = 0;
2554 TREE_THIS_VOLATILE (var) = 1;
2555 DECL_GIMPLE_REG_P (var) = 0;
2556 DECL_ARTIFICIAL (var) = 1;
2557 DECL_IGNORED_P (var) = 1;
2558 TREE_STATIC (var) = 1;
2559 TREE_PUBLIC (var) = 1;
2560 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2561 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2562
2563 TREE_USED (var) = 1;
2564 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2565 build_int_cst (unsigned_type_node, 0));
2566 TREE_CONSTANT (ctor) = 1;
2567 TREE_STATIC (ctor) = 1;
2568 DECL_INITIAL (var) = ctor;
2569 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2570 NULL, DECL_ATTRIBUTES (var));
2571 make_decl_rtl (var);
2572 varpool_node::finalize_decl (var);
2573 return fold_convert (uptr, build_fold_addr_expr (var));
2574 }
2575
2576 /* Return true if DECL, a global var, might be overridden and needs
2577 an additional odr indicator symbol. */
2578
2579 static bool
2580 asan_needs_odr_indicator_p (tree decl)
2581 {
2582 /* Don't emit ODR indicators for kernel because:
2583 a) Kernel is written in C thus doesn't need ODR indicators.
2584 b) Some kernel code may have assumptions about symbols containing specific
2585 patterns in their names. Since ODR indicators contain original names
2586 of symbols they are emitted for, these assumptions would be broken for
2587 ODR indicator symbols. */
2588 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2589 && !DECL_ARTIFICIAL (decl)
2590 && !DECL_WEAK (decl)
2591 && TREE_PUBLIC (decl));
2592 }
2593
2594 /* Append description of a single global DECL into vector V.
2595 TYPE is __asan_global struct type as returned by asan_global_struct. */
2596
2597 static void
2598 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2599 {
2600 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2601 unsigned HOST_WIDE_INT size;
2602 tree str_cst, module_name_cst, refdecl = decl;
2603 vec<constructor_elt, va_gc> *vinner = NULL;
2604
2605 pretty_printer asan_pp, module_name_pp;
2606
2607 if (DECL_NAME (decl))
2608 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2609 else
2610 pp_string (&asan_pp, "<unknown>");
2611 str_cst = asan_pp_string (&asan_pp);
2612
2613 pp_string (&module_name_pp, main_input_filename);
2614 module_name_cst = asan_pp_string (&module_name_pp);
2615
2616 if (asan_needs_local_alias (decl))
2617 {
2618 char buf[20];
2619 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2620 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2621 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2622 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2623 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2624 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2625 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2626 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2627 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2628 TREE_STATIC (refdecl) = 1;
2629 TREE_PUBLIC (refdecl) = 0;
2630 TREE_USED (refdecl) = 1;
2631 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2632 }
2633
2634 tree odr_indicator_ptr
2635 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2636 : build_int_cst (uptr, 0));
2637 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2638 fold_convert (const_ptr_type_node,
2639 build_fold_addr_expr (refdecl)));
2640 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2641 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2642 size += asan_red_zone_size (size);
2643 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2644 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2645 fold_convert (const_ptr_type_node, str_cst));
2646 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2647 fold_convert (const_ptr_type_node, module_name_cst));
2648 varpool_node *vnode = varpool_node::get (decl);
2649 int has_dynamic_init = 0;
2650 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2651 proper fix for PR 79061 will be applied. */
2652 if (!in_lto_p)
2653 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2654 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2655 build_int_cst (uptr, has_dynamic_init));
2656 tree locptr = NULL_TREE;
2657 location_t loc = DECL_SOURCE_LOCATION (decl);
2658 expanded_location xloc = expand_location (loc);
2659 if (xloc.file != NULL)
2660 {
2661 static int lasanloccnt = 0;
2662 char buf[25];
2663 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2664 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2665 ubsan_get_source_location_type ());
2666 TREE_STATIC (var) = 1;
2667 TREE_PUBLIC (var) = 0;
2668 DECL_ARTIFICIAL (var) = 1;
2669 DECL_IGNORED_P (var) = 1;
2670 pretty_printer filename_pp;
2671 pp_string (&filename_pp, xloc.file);
2672 tree str = asan_pp_string (&filename_pp);
2673 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2674 NULL_TREE, str, NULL_TREE,
2675 build_int_cst (unsigned_type_node,
2676 xloc.line), NULL_TREE,
2677 build_int_cst (unsigned_type_node,
2678 xloc.column));
2679 TREE_CONSTANT (ctor) = 1;
2680 TREE_STATIC (ctor) = 1;
2681 DECL_INITIAL (var) = ctor;
2682 varpool_node::finalize_decl (var);
2683 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2684 }
2685 else
2686 locptr = build_int_cst (uptr, 0);
2687 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2688 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2689 init = build_constructor (type, vinner);
2690 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2691 }
2692
2693 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2694 void
2695 initialize_sanitizer_builtins (void)
2696 {
2697 tree decl;
2698
2699 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2700 return;
2701
2702 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2703 tree BT_FN_VOID_PTR
2704 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2705 tree BT_FN_VOID_CONST_PTR
2706 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2707 tree BT_FN_VOID_PTR_PTR
2708 = build_function_type_list (void_type_node, ptr_type_node,
2709 ptr_type_node, NULL_TREE);
2710 tree BT_FN_VOID_PTR_PTR_PTR
2711 = build_function_type_list (void_type_node, ptr_type_node,
2712 ptr_type_node, ptr_type_node, NULL_TREE);
2713 tree BT_FN_VOID_PTR_PTRMODE
2714 = build_function_type_list (void_type_node, ptr_type_node,
2715 pointer_sized_int_node, NULL_TREE);
2716 tree BT_FN_VOID_INT
2717 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2718 tree BT_FN_SIZE_CONST_PTR_INT
2719 = build_function_type_list (size_type_node, const_ptr_type_node,
2720 integer_type_node, NULL_TREE);
2721
2722 tree BT_FN_VOID_UINT8_UINT8
2723 = build_function_type_list (void_type_node, unsigned_char_type_node,
2724 unsigned_char_type_node, NULL_TREE);
2725 tree BT_FN_VOID_UINT16_UINT16
2726 = build_function_type_list (void_type_node, uint16_type_node,
2727 uint16_type_node, NULL_TREE);
2728 tree BT_FN_VOID_UINT32_UINT32
2729 = build_function_type_list (void_type_node, uint32_type_node,
2730 uint32_type_node, NULL_TREE);
2731 tree BT_FN_VOID_UINT64_UINT64
2732 = build_function_type_list (void_type_node, uint64_type_node,
2733 uint64_type_node, NULL_TREE);
2734 tree BT_FN_VOID_FLOAT_FLOAT
2735 = build_function_type_list (void_type_node, float_type_node,
2736 float_type_node, NULL_TREE);
2737 tree BT_FN_VOID_DOUBLE_DOUBLE
2738 = build_function_type_list (void_type_node, double_type_node,
2739 double_type_node, NULL_TREE);
2740 tree BT_FN_VOID_UINT64_PTR
2741 = build_function_type_list (void_type_node, uint64_type_node,
2742 ptr_type_node, NULL_TREE);
2743
2744 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2745 tree BT_FN_IX_CONST_VPTR_INT[5];
2746 tree BT_FN_IX_VPTR_IX_INT[5];
2747 tree BT_FN_VOID_VPTR_IX_INT[5];
2748 tree vptr
2749 = build_pointer_type (build_qualified_type (void_type_node,
2750 TYPE_QUAL_VOLATILE));
2751 tree cvptr
2752 = build_pointer_type (build_qualified_type (void_type_node,
2753 TYPE_QUAL_VOLATILE
2754 |TYPE_QUAL_CONST));
2755 tree boolt
2756 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2757 int i;
2758 for (i = 0; i < 5; i++)
2759 {
2760 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2761 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2762 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2763 integer_type_node, integer_type_node,
2764 NULL_TREE);
2765 BT_FN_IX_CONST_VPTR_INT[i]
2766 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2767 BT_FN_IX_VPTR_IX_INT[i]
2768 = build_function_type_list (ix, vptr, ix, integer_type_node,
2769 NULL_TREE);
2770 BT_FN_VOID_VPTR_IX_INT[i]
2771 = build_function_type_list (void_type_node, vptr, ix,
2772 integer_type_node, NULL_TREE);
2773 }
2774 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2775 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2776 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2777 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2778 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2779 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2780 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2781 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2782 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2783 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2784 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2785 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2786 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2787 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2788 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2789 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2790 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2791 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2792 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2793 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2794 #undef ATTR_NOTHROW_LEAF_LIST
2795 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2796 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2797 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2798 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2799 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2800 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2801 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2802 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2803 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2804 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2805 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2806 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2807 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2808 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2809 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2810 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2811 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2812 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2813 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2814 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2815 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2816 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2817 #undef DEF_BUILTIN_STUB
2818 #define DEF_BUILTIN_STUB(ENUM, NAME)
2819 #undef DEF_SANITIZER_BUILTIN_1
2820 #define DEF_SANITIZER_BUILTIN_1(ENUM, NAME, TYPE, ATTRS) \
2821 do { \
2822 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2823 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2824 set_call_expr_flags (decl, ATTRS); \
2825 set_builtin_decl (ENUM, decl, true); \
2826 } while (0)
2827 #undef DEF_SANITIZER_BUILTIN
2828 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2829 DEF_SANITIZER_BUILTIN_1 (ENUM, NAME, TYPE, ATTRS);
2830
2831 #include "sanitizer.def"
2832
2833 /* -fsanitize=object-size uses __builtin_object_size, but that might
2834 not be available for e.g. Fortran at this point. We use
2835 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2836 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2837 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2838 DEF_SANITIZER_BUILTIN_1 (BUILT_IN_OBJECT_SIZE, "object_size",
2839 BT_FN_SIZE_CONST_PTR_INT,
2840 ATTR_PURE_NOTHROW_LEAF_LIST);
2841
2842 #undef DEF_SANITIZER_BUILTIN_1
2843 #undef DEF_SANITIZER_BUILTIN
2844 #undef DEF_BUILTIN_STUB
2845 }
2846
2847 /* Called via htab_traverse. Count number of emitted
2848 STRING_CSTs in the constant hash table. */
2849
2850 int
2851 count_string_csts (constant_descriptor_tree **slot,
2852 unsigned HOST_WIDE_INT *data)
2853 {
2854 struct constant_descriptor_tree *desc = *slot;
2855 if (TREE_CODE (desc->value) == STRING_CST
2856 && TREE_ASM_WRITTEN (desc->value)
2857 && asan_protect_global (desc->value))
2858 ++*data;
2859 return 1;
2860 }
2861
2862 /* Helper structure to pass two parameters to
2863 add_string_csts. */
2864
2865 struct asan_add_string_csts_data
2866 {
2867 tree type;
2868 vec<constructor_elt, va_gc> *v;
2869 };
2870
2871 /* Called via hash_table::traverse. Call asan_add_global
2872 on emitted STRING_CSTs from the constant hash table. */
2873
2874 int
2875 add_string_csts (constant_descriptor_tree **slot,
2876 asan_add_string_csts_data *aascd)
2877 {
2878 struct constant_descriptor_tree *desc = *slot;
2879 if (TREE_CODE (desc->value) == STRING_CST
2880 && TREE_ASM_WRITTEN (desc->value)
2881 && asan_protect_global (desc->value))
2882 {
2883 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2884 aascd->type, aascd->v);
2885 }
2886 return 1;
2887 }
2888
2889 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2890 invoke ggc_collect. */
2891 static GTY(()) tree asan_ctor_statements;
2892
2893 /* Module-level instrumentation.
2894 - Insert __asan_init_vN() into the list of CTORs.
2895 - TODO: insert redzones around globals.
2896 */
2897
2898 void
2899 asan_finish_file (void)
2900 {
2901 varpool_node *vnode;
2902 unsigned HOST_WIDE_INT gcount = 0;
2903
2904 if (shadow_ptr_types[0] == NULL_TREE)
2905 asan_init_shadow_ptr_types ();
2906 /* Avoid instrumenting code in the asan ctors/dtors.
2907 We don't need to insert padding after the description strings,
2908 nor after .LASAN* array. */
2909 flag_sanitize &= ~SANITIZE_ADDRESS;
2910
2911 /* For user-space we want asan constructors to run first.
2912 Linux kernel does not support priorities other than default, and the only
2913 other user of constructors is coverage. So we run with the default
2914 priority. */
2915 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2916 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2917
2918 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2919 {
2920 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2921 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2922 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2923 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2924 }
2925 FOR_EACH_DEFINED_VARIABLE (vnode)
2926 if (TREE_ASM_WRITTEN (vnode->decl)
2927 && asan_protect_global (vnode->decl))
2928 ++gcount;
2929 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2930 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2931 (&gcount);
2932 if (gcount)
2933 {
2934 tree type = asan_global_struct (), var, ctor;
2935 tree dtor_statements = NULL_TREE;
2936 vec<constructor_elt, va_gc> *v;
2937 char buf[20];
2938
2939 type = build_array_type_nelts (type, gcount);
2940 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2941 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2942 type);
2943 TREE_STATIC (var) = 1;
2944 TREE_PUBLIC (var) = 0;
2945 DECL_ARTIFICIAL (var) = 1;
2946 DECL_IGNORED_P (var) = 1;
2947 vec_alloc (v, gcount);
2948 FOR_EACH_DEFINED_VARIABLE (vnode)
2949 if (TREE_ASM_WRITTEN (vnode->decl)
2950 && asan_protect_global (vnode->decl))
2951 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2952 struct asan_add_string_csts_data aascd;
2953 aascd.type = TREE_TYPE (type);
2954 aascd.v = v;
2955 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2956 (&aascd);
2957 ctor = build_constructor (type, v);
2958 TREE_CONSTANT (ctor) = 1;
2959 TREE_STATIC (ctor) = 1;
2960 DECL_INITIAL (var) = ctor;
2961 SET_DECL_ALIGN (var, MAX (DECL_ALIGN (var),
2962 ASAN_SHADOW_GRANULARITY * BITS_PER_UNIT));
2963
2964 varpool_node::finalize_decl (var);
2965
2966 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2967 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2968 append_to_statement_list (build_call_expr (fn, 2,
2969 build_fold_addr_expr (var),
2970 gcount_tree),
2971 &asan_ctor_statements);
2972
2973 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2974 append_to_statement_list (build_call_expr (fn, 2,
2975 build_fold_addr_expr (var),
2976 gcount_tree),
2977 &dtor_statements);
2978 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2979 }
2980 if (asan_ctor_statements)
2981 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2982 flag_sanitize |= SANITIZE_ADDRESS;
2983 }
2984
2985 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2986 on SHADOW address. Newly added statements will be added to ITER with
2987 given location LOC. We mark SIZE bytes in shadow memory, where
2988 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2989 end of a variable. */
2990
2991 static void
2992 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2993 tree shadow,
2994 unsigned HOST_WIDE_INT base_addr_offset,
2995 bool is_clobber, unsigned size,
2996 unsigned last_chunk_size)
2997 {
2998 tree shadow_ptr_type;
2999
3000 switch (size)
3001 {
3002 case 1:
3003 shadow_ptr_type = shadow_ptr_types[0];
3004 break;
3005 case 2:
3006 shadow_ptr_type = shadow_ptr_types[1];
3007 break;
3008 case 4:
3009 shadow_ptr_type = shadow_ptr_types[2];
3010 break;
3011 default:
3012 gcc_unreachable ();
3013 }
3014
3015 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
3016 unsigned HOST_WIDE_INT val = 0;
3017 unsigned last_pos = size;
3018 if (last_chunk_size && !is_clobber)
3019 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
3020 for (unsigned i = 0; i < size; ++i)
3021 {
3022 unsigned char shadow_c = c;
3023 if (i == last_pos)
3024 shadow_c = last_chunk_size;
3025 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
3026 }
3027
3028 /* Handle last chunk in unpoisoning. */
3029 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
3030
3031 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
3032 build_int_cst (shadow_ptr_type, base_addr_offset));
3033
3034 gimple *g = gimple_build_assign (dest, magic);
3035 gimple_set_location (g, loc);
3036 gsi_insert_after (iter, g, GSI_NEW_STMT);
3037 }
3038
3039 /* Expand the ASAN_MARK builtins. */
3040
3041 bool
3042 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
3043 {
3044 gimple *g = gsi_stmt (*iter);
3045 location_t loc = gimple_location (g);
3046 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
3047 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
3048
3049 tree base = gimple_call_arg (g, 1);
3050 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
3051 tree decl = TREE_OPERAND (base, 0);
3052
3053 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3054 if (TREE_CODE (decl) == COMPONENT_REF
3055 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
3056 decl = TREE_OPERAND (decl, 0);
3057
3058 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
3059
3060 if (is_poison)
3061 {
3062 if (asan_handled_variables == NULL)
3063 asan_handled_variables = new hash_set<tree> (16);
3064 asan_handled_variables->add (decl);
3065 }
3066 tree len = gimple_call_arg (g, 2);
3067
3068 gcc_assert (tree_fits_shwi_p (len));
3069 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
3070 gcc_assert (size_in_bytes);
3071
3072 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3073 NOP_EXPR, base);
3074 gimple_set_location (g, loc);
3075 gsi_replace (iter, g, false);
3076 tree base_addr = gimple_assign_lhs (g);
3077
3078 /* Generate direct emission if size_in_bytes is small. */
3079 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
3080 {
3081 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
3082
3083 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
3084 shadow_ptr_types[0], true);
3085
3086 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
3087 {
3088 unsigned size = 1;
3089 if (shadow_size - offset >= 4)
3090 size = 4;
3091 else if (shadow_size - offset >= 2)
3092 size = 2;
3093
3094 unsigned HOST_WIDE_INT last_chunk_size = 0;
3095 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
3096 if (s > size_in_bytes)
3097 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
3098
3099 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
3100 size, last_chunk_size);
3101 offset += size;
3102 }
3103 }
3104 else
3105 {
3106 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3107 NOP_EXPR, len);
3108 gimple_set_location (g, loc);
3109 gsi_insert_before (iter, g, GSI_SAME_STMT);
3110 tree sz_arg = gimple_assign_lhs (g);
3111
3112 tree fun
3113 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
3114 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
3115 g = gimple_build_call (fun, 2, base_addr, sz_arg);
3116 gimple_set_location (g, loc);
3117 gsi_insert_after (iter, g, GSI_NEW_STMT);
3118 }
3119
3120 return false;
3121 }
3122
3123 /* Expand the ASAN_{LOAD,STORE} builtins. */
3124
3125 bool
3126 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
3127 {
3128 gimple *g = gsi_stmt (*iter);
3129 location_t loc = gimple_location (g);
3130 bool recover_p;
3131 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3132 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3133 else
3134 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3135
3136 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
3137 gcc_assert (flags < ASAN_CHECK_LAST);
3138 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
3139 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
3140 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
3141
3142 tree base = gimple_call_arg (g, 1);
3143 tree len = gimple_call_arg (g, 2);
3144 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
3145
3146 HOST_WIDE_INT size_in_bytes
3147 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
3148
3149 if (use_calls)
3150 {
3151 /* Instrument using callbacks. */
3152 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3153 NOP_EXPR, base);
3154 gimple_set_location (g, loc);
3155 gsi_insert_before (iter, g, GSI_SAME_STMT);
3156 tree base_addr = gimple_assign_lhs (g);
3157
3158 int nargs;
3159 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
3160 if (nargs == 1)
3161 g = gimple_build_call (fun, 1, base_addr);
3162 else
3163 {
3164 gcc_assert (nargs == 2);
3165 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3166 NOP_EXPR, len);
3167 gimple_set_location (g, loc);
3168 gsi_insert_before (iter, g, GSI_SAME_STMT);
3169 tree sz_arg = gimple_assign_lhs (g);
3170 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
3171 }
3172 gimple_set_location (g, loc);
3173 gsi_replace (iter, g, false);
3174 return false;
3175 }
3176
3177 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
3178
3179 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
3180 tree shadow_type = TREE_TYPE (shadow_ptr_type);
3181
3182 gimple_stmt_iterator gsi = *iter;
3183
3184 if (!is_non_zero_len)
3185 {
3186 /* So, the length of the memory area to asan-protect is
3187 non-constant. Let's guard the generated instrumentation code
3188 like:
3189
3190 if (len != 0)
3191 {
3192 //asan instrumentation code goes here.
3193 }
3194 // falltrough instructions, starting with *ITER. */
3195
3196 g = gimple_build_cond (NE_EXPR,
3197 len,
3198 build_int_cst (TREE_TYPE (len), 0),
3199 NULL_TREE, NULL_TREE);
3200 gimple_set_location (g, loc);
3201
3202 basic_block then_bb, fallthrough_bb;
3203 insert_if_then_before_iter (as_a <gcond *> (g), iter,
3204 /*then_more_likely_p=*/true,
3205 &then_bb, &fallthrough_bb);
3206 /* Note that fallthrough_bb starts with the statement that was
3207 pointed to by ITER. */
3208
3209 /* The 'then block' of the 'if (len != 0) condition is where
3210 we'll generate the asan instrumentation code now. */
3211 gsi = gsi_last_bb (then_bb);
3212 }
3213
3214 /* Get an iterator on the point where we can add the condition
3215 statement for the instrumentation. */
3216 basic_block then_bb, else_bb;
3217 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
3218 /*then_more_likely_p=*/false,
3219 /*create_then_fallthru_edge*/recover_p,
3220 &then_bb,
3221 &else_bb);
3222
3223 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3224 NOP_EXPR, base);
3225 gimple_set_location (g, loc);
3226 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3227 tree base_addr = gimple_assign_lhs (g);
3228
3229 tree t = NULL_TREE;
3230 if (real_size_in_bytes >= 8)
3231 {
3232 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3233 shadow_ptr_type);
3234 t = shadow;
3235 }
3236 else
3237 {
3238 /* Slow path for 1, 2 and 4 byte accesses. */
3239 /* Test (shadow != 0)
3240 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3241 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3242 shadow_ptr_type);
3243 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3244 gimple_seq seq = NULL;
3245 gimple_seq_add_stmt (&seq, shadow_test);
3246 /* Aligned (>= 8 bytes) can test just
3247 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3248 to be 0. */
3249 if (align < 8)
3250 {
3251 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3252 base_addr, 7));
3253 gimple_seq_add_stmt (&seq,
3254 build_type_cast (shadow_type,
3255 gimple_seq_last (seq)));
3256 if (real_size_in_bytes > 1)
3257 gimple_seq_add_stmt (&seq,
3258 build_assign (PLUS_EXPR,
3259 gimple_seq_last (seq),
3260 real_size_in_bytes - 1));
3261 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3262 }
3263 else
3264 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3265 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3266 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3267 gimple_seq_last (seq)));
3268 t = gimple_assign_lhs (gimple_seq_last (seq));
3269 gimple_seq_set_location (seq, loc);
3270 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3271
3272 /* For non-constant, misaligned or otherwise weird access sizes,
3273 check first and last byte. */
3274 if (size_in_bytes == -1)
3275 {
3276 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3277 MINUS_EXPR, len,
3278 build_int_cst (pointer_sized_int_node, 1));
3279 gimple_set_location (g, loc);
3280 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3281 tree last = gimple_assign_lhs (g);
3282 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3283 PLUS_EXPR, base_addr, last);
3284 gimple_set_location (g, loc);
3285 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3286 tree base_end_addr = gimple_assign_lhs (g);
3287
3288 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3289 shadow_ptr_type);
3290 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3291 gimple_seq seq = NULL;
3292 gimple_seq_add_stmt (&seq, shadow_test);
3293 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3294 base_end_addr, 7));
3295 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3296 gimple_seq_last (seq)));
3297 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3298 gimple_seq_last (seq),
3299 shadow));
3300 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3301 gimple_seq_last (seq)));
3302 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3303 gimple_seq_last (seq)));
3304 t = gimple_assign_lhs (gimple_seq_last (seq));
3305 gimple_seq_set_location (seq, loc);
3306 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3307 }
3308 }
3309
3310 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3311 NULL_TREE, NULL_TREE);
3312 gimple_set_location (g, loc);
3313 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3314
3315 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3316 gsi = gsi_start_bb (then_bb);
3317 int nargs;
3318 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3319 g = gimple_build_call (fun, nargs, base_addr, len);
3320 gimple_set_location (g, loc);
3321 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3322
3323 gsi_remove (iter, true);
3324 *iter = gsi_start_bb (else_bb);
3325
3326 return true;
3327 }
3328
3329 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3330 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3331
3332 static tree
3333 create_asan_shadow_var (tree var_decl,
3334 hash_map<tree, tree> &shadow_vars_mapping)
3335 {
3336 tree *slot = shadow_vars_mapping.get (var_decl);
3337 if (slot == NULL)
3338 {
3339 tree shadow_var = copy_node (var_decl);
3340
3341 copy_body_data id;
3342 memset (&id, 0, sizeof (copy_body_data));
3343 id.src_fn = id.dst_fn = current_function_decl;
3344 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3345
3346 DECL_ARTIFICIAL (shadow_var) = 1;
3347 DECL_IGNORED_P (shadow_var) = 1;
3348 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3349 gimple_add_tmp_var (shadow_var);
3350
3351 shadow_vars_mapping.put (var_decl, shadow_var);
3352 return shadow_var;
3353 }
3354 else
3355 return *slot;
3356 }
3357
3358 /* Expand ASAN_POISON ifn. */
3359
3360 bool
3361 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3362 bool *need_commit_edge_insert,
3363 hash_map<tree, tree> &shadow_vars_mapping)
3364 {
3365 gimple *g = gsi_stmt (*iter);
3366 tree poisoned_var = gimple_call_lhs (g);
3367 if (!poisoned_var || has_zero_uses (poisoned_var))
3368 {
3369 gsi_remove (iter, true);
3370 return true;
3371 }
3372
3373 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3374 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3375 create_tmp_var (TREE_TYPE (poisoned_var)));
3376
3377 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3378 shadow_vars_mapping);
3379
3380 bool recover_p;
3381 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3382 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3383 else
3384 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3385 tree size = DECL_SIZE_UNIT (shadow_var);
3386 gimple *poison_call
3387 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3388 build_int_cst (integer_type_node,
3389 ASAN_MARK_POISON),
3390 build_fold_addr_expr (shadow_var), size);
3391
3392 gimple *use;
3393 imm_use_iterator imm_iter;
3394 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3395 {
3396 if (is_gimple_debug (use))
3397 continue;
3398
3399 int nargs;
3400 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3401 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3402 &nargs);
3403
3404 gcall *call = gimple_build_call (fun, 1,
3405 build_fold_addr_expr (shadow_var));
3406 gimple_set_location (call, gimple_location (use));
3407 gimple *call_to_insert = call;
3408
3409 /* The USE can be a gimple PHI node. If so, insert the call on
3410 all edges leading to the PHI node. */
3411 if (is_a <gphi *> (use))
3412 {
3413 gphi *phi = dyn_cast<gphi *> (use);
3414 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3415 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3416 {
3417 edge e = gimple_phi_arg_edge (phi, i);
3418
3419 /* Do not insert on an edge we can't split. */
3420 if (e->flags & EDGE_ABNORMAL)
3421 continue;
3422
3423 if (call_to_insert == NULL)
3424 call_to_insert = gimple_copy (call);
3425
3426 gsi_insert_seq_on_edge (e, call_to_insert);
3427 *need_commit_edge_insert = true;
3428 call_to_insert = NULL;
3429 }
3430 }
3431 else
3432 {
3433 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3434 if (store_p)
3435 gsi_replace (&gsi, call, true);
3436 else
3437 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3438 }
3439 }
3440
3441 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3442 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3443 gsi_replace (iter, poison_call, false);
3444
3445 return true;
3446 }
3447
3448 /* Instrument the current function. */
3449
3450 static unsigned int
3451 asan_instrument (void)
3452 {
3453 if (shadow_ptr_types[0] == NULL_TREE)
3454 asan_init_shadow_ptr_types ();
3455 transform_statements ();
3456 last_alloca_addr = NULL_TREE;
3457 return 0;
3458 }
3459
3460 static bool
3461 gate_asan (void)
3462 {
3463 return sanitize_flags_p (SANITIZE_ADDRESS);
3464 }
3465
3466 namespace {
3467
3468 const pass_data pass_data_asan =
3469 {
3470 GIMPLE_PASS, /* type */
3471 "asan", /* name */
3472 OPTGROUP_NONE, /* optinfo_flags */
3473 TV_NONE, /* tv_id */
3474 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3475 0, /* properties_provided */
3476 0, /* properties_destroyed */
3477 0, /* todo_flags_start */
3478 TODO_update_ssa, /* todo_flags_finish */
3479 };
3480
3481 class pass_asan : public gimple_opt_pass
3482 {
3483 public:
3484 pass_asan (gcc::context *ctxt)
3485 : gimple_opt_pass (pass_data_asan, ctxt)
3486 {}
3487
3488 /* opt_pass methods: */
3489 opt_pass * clone () { return new pass_asan (m_ctxt); }
3490 virtual bool gate (function *) { return gate_asan (); }
3491 virtual unsigned int execute (function *) { return asan_instrument (); }
3492
3493 }; // class pass_asan
3494
3495 } // anon namespace
3496
3497 gimple_opt_pass *
3498 make_pass_asan (gcc::context *ctxt)
3499 {
3500 return new pass_asan (ctxt);
3501 }
3502
3503 namespace {
3504
3505 const pass_data pass_data_asan_O0 =
3506 {
3507 GIMPLE_PASS, /* type */
3508 "asan0", /* name */
3509 OPTGROUP_NONE, /* optinfo_flags */
3510 TV_NONE, /* tv_id */
3511 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3512 0, /* properties_provided */
3513 0, /* properties_destroyed */
3514 0, /* todo_flags_start */
3515 TODO_update_ssa, /* todo_flags_finish */
3516 };
3517
3518 class pass_asan_O0 : public gimple_opt_pass
3519 {
3520 public:
3521 pass_asan_O0 (gcc::context *ctxt)
3522 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3523 {}
3524
3525 /* opt_pass methods: */
3526 virtual bool gate (function *) { return !optimize && gate_asan (); }
3527 virtual unsigned int execute (function *) { return asan_instrument (); }
3528
3529 }; // class pass_asan_O0
3530
3531 } // anon namespace
3532
3533 gimple_opt_pass *
3534 make_pass_asan_O0 (gcc::context *ctxt)
3535 {
3536 return new pass_asan_O0 (ctxt);
3537 }
3538
3539 #include "gt-asan.h"